APPENDIX A

Conceptual Hydrogeological Modelling Report

Atkins<mark>Réalis</mark>

Technical Report

Minerai de Fer Québec

April 30, 2024

O/Project no.: 692696 O/Reference no.: 692696-7000-4WER-0001_01

Kami Iron Ore Mine Project Hydrogeological Modelling

ATKINSREALIS - Sensitive (MM-RP-00ER_00 ANG)

AtkinsRéalis

455, BOUL. RENÉ-LÉVESQUE OUEST, MONTRÉAL, QC H2Z 1Z3

Montréal, April 30, 2024

Monsieur Michel Groleau **CHAMPION IRON** 1100, Boul. René Lévesque Ouest, bureau 610 Montréal, QC H3B 4N4

Object: Kami Iron Ore Mine Project Conceptual Hydrogeological Hydrogeological Modelling Report Our file: 692696-7000-4WER-0001_01

Dear sir Groleau,

We are pleased to submit the final version of the report mentioned in the above subject. Do not hesitate to communicate with the undersigned should you have further questions regarding the content of this report.

Truly yours,

ATKINSRÉALIS INC.

Marie-Hélène Paquette, Eng. #PEGNL: 07899 Project Manager Minerals and Metals

EM/lb

Notice to Reader

This report has been prepared and the work referred to in this report has been undertaken by AtkinsRéalis Canada Inc. (AtkinsRéalis), for the exclusive use of Minerai de Fer Québec, who has been party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. AtkinsRéalis accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report.

The findings, conclusions and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area, and (ii) reflect AtkinsRéalis' best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made with respect to the professional services provided to Minerai de Fer Québec or the findings, conclusions and recommendations contained in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered or project parameters change, modifications to this report may be necessary.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final version of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by Minerai de Fer Québec, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Minerai de Fer Québec and AtkinsRéalis.

Signatures Page

Prepared By:

Verified By:

Emmanuelle Millet, P. Geo., M. Sc. #OGQ: 2223, #PEGNL: 11078 Hydrogeologist Luis Bayona, P. Geo., M. Sc. #OGQ: 1819, #PEGNL: 11461 Hydrogeologist Environment & Geoscience

Approved by:

Marie-Hélène Paquette, Eng. M. Env. #PEGNL: 07899 Project Manager Minerals and Metals

List of Revisions

#	Prep.	Rev.	App.	Date	Pages	Remarks
PA	EM	LB	MHP	2023-11-27	All	For internal revision
PB	EM	LB	MHP	2023-12-14	All	For client comments
PC	EM	LB	MHP	2024-01-17	All	For clients comments
00	EM	LB	MHP	2024-03-22	All	Final Version
01	EM	LB	MHP	2024-04-30		Version to be provided with Project Registration

Table of Contents

1.	Intro	duction	1
	1.1	Context	1
	1.2	Mandate	2
2.	Cond	ceptual Model	2
	2.1	Site Location and Proposed Infrastructures	2
	2.2 2.2.1 2.2.2 2.2.3	Geology Overburden Regional Bedrock Geology Rose Pit Bedrock Geology	
	2.3	Climate and Hydrology	7
	2.4	Lakes Water Elevation	7
	2.5 2.5.1 2.5.2	Hydrogeological Context Groundwater Levels Groundwater Gradients	9 9 11
	2.5.3	Groundwater Recharge	
	2.5.4	Groundwater Quality	
	2.5.5	Hydrostratigraphy	
3.	Grou	Indwater Flow Model	
	3.1	Software Description	
	3.2	Model Mesh	19
	3.3	Boundary Conditions	19
	3.4	Model Calibration	20
	3.5	Simulated Piezometry	23
	3.6	Sensitivity Analysis	23
4.	Rose	e Pit Dewatering	
	4.1 4.1.1 4.1.2	Dewatering Results at the End of Operations (Y26) Analytical Results Numerical Results	
	4.2 4.2.1	Sensitivity Analysis Dewatering at the End of Y26	
5	H.Z.Z	tations	
у. С	Dofo	rancas	
υ.	LEIG	1 511653	

List of Tables

Table 2-1: Estimated Lake Water Level Around Rose Pit Area Based on Topographic Data	7
Table 2-2: 2011-2012 Measured Groundwater Levels in the Pit Area	10
Table 2-3: Horizontal Groundwater Gradients Estimated in the Pit Area	11
Table 2-4: Vertical Groundwater Gradients Estimated in the Pit Area	12
Table 2-5: Hydraulic Conductivities Estimated Through Slug Tests in the Overburden (Stantec, 2012)	14
Table 2-6: Hydraulic Conductivities Estimated Through Slug Tests in the Bedrock (Stantec, 2012)	15
Table 2-7: RBR-12-01 and RBR-12-02 Coordinates	16
Table 2-8: Hydraulic Conductivity of Each Hydrostratigraphic Unit	
Table 3-1: Estimated and Calibrated Hydraulic Conductivity	21
Table 3-2: Groundwater Flow Sensitivity Analysis (SA) Results	25
Table 4-1: Pit Dewatering Rate Based on Darcy Approach (Stantec, 2012a)	27
Table 4-2: Pit Dewatering Rate and Lakes Contribution (Y26)	
Table 4-3: Dewatering Flow Rate Sensitivity Analysis (DSA) Results	31
Table 4-4: Pit Dewatering Rate and Lakes Contribution (Y05)	

List of Figures

Figure 2-1: Kami Project Property Stratigraphy (Stantec, 2012a) from Clark and Wares' (2006) Nomenclature	4
Figure 2-2: Vuggy Bedrock Located at Around 430 m in the Sokoman Formation (KGT-23-03)	6
Figure 2-3: Piper Diagram for 2012 Samples	13
Figure 2-4: Intense Weathering Interval at RBR-12-01 (from Stantec, 2012)	16
Figure 2-5: Borehole Packer Permeability Tests with Depth at RBR-12-01 and 02 (Stantec, 2012)	17
Figure 3-1: Hydrogeological Model Calibration Line	22
Figure 3-2: Conceptual Representation of the Faults Connection to Pike Lake through the Overburden in the Hydrogeological Model	24
Figure 4-1: Dewatering Rates During Operations Y01 to Y26	32

List of Appendices

- Appendix A. Scope of Report
- Appendix B. Figures
- Appendix C. ROB-11-Series Logs
- Appendix D. Fault Analysis
- Appendix E. Core Photos
- Appendix F. 2012 Pressure Transducers Data
- Appendix G. 2012 Groundwater Quality
- Appendix H. RBR-12-01 and RBR-12-02 Logs
- Appendix I. RBR-12-01 and RBR-12-02 Packer Results
- Appendix J. Simulated and Measured Hydraulic Heads

1. Introduction

1.1 Context

Champion Iron Mines Ltd (Champion), is proposing to construct and operate the Kami Iron Ore Project (the "Kami Project"), which will involve the construction, operation and eventual closure of an iron ore open pit mine and the supporting infrastructure. The mine operation is expected to produce 8 million tonnes of iron ore concentrate annually, which will be transported by rail to the Pointe Noire port terminal in Ville de Sept-Îles, Québec, for international shipping.

The Kami Project includes construction, operation, and closure/decommissioning and post closure of the following primary components:

- The open pit mine (the Rose Pit).
- The Overburden Stockpile and Mine Rock Stockpile.
- The processing infrastructures including crushing, grinding, spiral concentration, magnetic separation, and tailings thickening areas.
- The Tailings Management Facility (TMF).
- The ancillary infrastructure to support the mine and process plant.
- A rail transportation component including spur line construction to connect the mine site to the Québec North Shore & Labrador Railway (QNS&L).

The project was previously developed by Alderon in 2010 - 2012 and an Environmental Impact Statement was submitted to the government of Newfoundland & Labrador (N.L.) in October 2012. It was approved by the latter in January 2014. In 2018, the Feasibility Study of the project was updated by Alderon. Champion Iron is the new owner of the Kami asset and wishes to update the Feasibility Study and to resubmit the project for approval by the government of N.L. The overall Feasibility Study is led by BBA.

Compared to the water management philosophy presented by Alderon in 2012, improvements were made to the Feasibility Study in order to comply with the conditions requested by the N.L. government as part of the 2014 project release. Refining the hydrogeological knowledge of the project is the main 2014 condition affecting the water management plan.

The main uncertainty related to water management in the Kami Project is the amount of groundwater infiltration associated with the development of Rose Pit. Due to the geology of the area and the poor quality of the bedrock, a large amount of infiltration is expected in the pit.

A review of project data, new site investigations and the creation of an updated conceptual hydrogeological model incorporating a better understanding of the site were carried out with the objective of reducing the risks associated with pit dewatering while complying with the 2014 N.L. government project conditions. The completion of these tasks has improved the hydrogeological understanding of the site and will allow Champion to plan for the large water infiltration volumes expected during dewatering operations.

1.2 Mandate

As part of the Pre-Feasibility Study update and following the conditions of the 2014 government approval, Champion has mandated AtkinsRéalis Inc. (AtkinsRéalis) to conduct a hydrogeological study. The hydrogeological study is an input to the infrastructure design, and includes:

- Data revision and data gap analysis (completed Q2 2023);
- Hydrogeological conceptual modelling of the site, including geological interpretation of the faults;
- Numerical model construction;
- Estimation of open pit dewatering rate;
- Planning of the field work necessary to fill the data gaps.

A detailed hydrogeological model will be prepared in the next phase of engineering, following the field work, which has been completed in Q3 2023 and will resume in the next phase of engineering.

2. Conceptual Model

2.1 Site Location and Proposed Infrastructures

The proposed Kamistiatusset Iron Ore Mine Project (Kami Project) is located in the general vicinity of the towns of Wabush and Labrador City (Labrador), approximately 5 km northeast of the town of Fermont, along the Québec-Labrador border (Figure B1).

The Kami Project is situated in a hilly terrain, marked by lakes and valleys with a northeast-southwest orientation. Topography across the site is generally governed by the underlying geological structures with elevations ranging from 594 m to 700 m (Stantec, 2012a).

The pit footprint will be centered on the valley south of Pike Lake and will extend over the topographic highs to the west (680 m), towards Gleeson Lake and to the east (665 m), north of Molar Lake. To the east and west, the pit will be surrounded by Mills and Daviault lakes respectively. The surface area of the pit footprint will be of approximately 2.80 km², with an overall perimeter of 8 km. The maximum pit depth will extend to approximately 450 m below the existing grade.

In addition to the pit, the site will also include the Overburden Stockpile, the Mine Rock Stockpile, the Tailings Management Facility (TMF), a Railway line and processing infrastructures.

2.2 Geology

2.2.1 Overburden

Overburden materials consist of veneers of organic soils (peat) overlying sequences of glacial till, and occasional glacio-fluvial and fluvial deposits overlying bedrock (Stantec, 2012a). The overburden in the Rose Pit area is generally described as a thin layer of organic topsoil or peat, overlying loose to compact brown silty sand glacial till with cobbles and boulders, becoming denser with depth (Stantec, 2012a). The interface with the bedrock sometimes exhibits sand and gravel, possibly highly weathered bedrock in some boreholes (Stantec, 2012a).

Around Rose Pit, the ROB-series boreholes, 22 boreholes drilled by Stantec in 2011, provide detailed overburden stratigraphy, with most of them reaching the first few metres of bedrock. Geotechnical logs are provided in Appendix C. In the pit footprint, exploration boreholes (K-series) also provide information on overburden thickness, but not detailed stratigraphy.

Based on the ROB and K-series boreholes, the overburden in the vicinity of the Rose Pit exhibits a highly variable range in thickness and a complex bedrock surface topography. In general, glacial till thicknesses range from 0.9 (K-10-52) to 62.2 m (K-11-108), with an average of 21.6 m. The maximal thickness encountered in the ROB-series boreholes is 52.4 m at ROB-11-07. The center of the valley, marked by an alignment northeast-southwest of small lakes, is formed by a depression in the bedrock where the till thickness is greater.

Outside the pit area, south of Long Lake, geotechnical investigations conducted by Stantec in 2012 confirm the presence of a topsoil layer underlain by till deposits. Depending on topography, till thickness is also variable in this area, and ranges from 0.2 to 48.4 m, at BH-12-42 and BH-GE-11 respectively.

An interpolation of the till thickness at the study area is provided in Figure B2. In the pit and tailings area, the interpolation is based on data from exploration and geotechnical drilling. Outside this area, on the periphery of the study zone, control points were added to fill the data gaps: estimated thickness ranges between 1 and 5 m on the topographic highs and is approximately 20 m in the valleys.

2.2.2 Regional Bedrock Geology

The rocks of the Kami Project property form part of the highly metamorphosed and deformed metasedimentary sequence in the Grenville Province of the Labrador Trough (Stantec, 2012a). The bedrock geology consists of folded, metamorphosed sequences of the Ferriman Group, overlying Archean aged basement rock (**Figure 2-1**). A regional geological map of the area is presented in Figure B3.

	<u>Dykes/Sills</u> Intrusive sediment-sill complex into Menihek Fm mud, essentially syndepositional								
	- intrusive contact -								
	<u>Menihek Fm</u> Mudstone and clastic flysch basinal sequence in renovated basins								
FERRIMAN	- diachronous contact -								
GROUP	<u>Sokoman Fm</u> Iron-bearing chemical sediments with facies of Fe- oxide-rich, Fe-carbonate-rich and Fe-silicate- rich facies.								
	- unconformable contact -								
	<u>Wishart Fm</u> Clastic quartzite with local beds of muddy sediment and carbonate near top.								
	- unconformable contact -								
ATTIKAMAGEN SUBGROUP	Denault Fm Reefal dolomite showing full reef facies development								
	- unconformable contact -								
ARCHAEN BASEMENT	Katsao Fm Granite gneiss, coarse mica schist								

Figure 2-1: Kami Project Property Stratigraphy (Stantec, 2012a) from Clark and Wares' (2006) Nomenclature

2.2.3 Rose Pit Bedrock Geology

As presented in Figure B4, in the pit area, bedrock information is available from exploration boreholes (K-series) and shallow geotechnical boreholes (ROB-series). The maximum vertical depth of ROB-series boreholes is 60 m at ROB-11-07 (mainly in overburden), while that of K-series is around 500 m, at K-11-161.

2.2.3.1 Shallow Bedrock

Based on RBR-12-01, RBR-12-02 and the 18 ROB-series boreholes reaching the bedrock (typically 3 to 4 m of core), the shallow bedrock zone can range from a highly competent (based on Rock Quality Designation – RQD) to a highly weathered and fractured material with minimal core recovery (RQD = 0). Strong to very strong rock conditions (with likely poor permeability) were noted at ROB-11-06, 10, 11, 12, 17 and 20; poor rock conditions consistent with highly weathered or severely fractured conditions (and possible moderate permeability) were noted at ROB-11-03, 07, 08, 09, 18, 19 and RBR-12-01 and 02. Moderately strong to slightly fractured conditions are noted at ROB-11-01, 02, 04, 05, 13, 14, 15 and 16. The borehole logs presenting the measured RQDs are presented in Appendix C.

2.2.3.2 Structural Geology

A recent re-evaluation and analysis of geological data and exploration logs have helped refine the structural understanding of the rock formations encountered at the Kami Project deposit, leading to the creation of a 3D geological Leapfrog model (GMining, 2023).

The various formations identified are presented in Figure B4. From the deepest to the shallowest, the sequence consists of Archean gneiss (Katsao formation), dolomitic marble (Denault formation), quartzite sandstone (Wishart formation), iron formations (Sokoman formation) and mica schist (Menihek formation). The Rose Central and Rose North deposits represent a northeast-southwest trending anticline and syncline, respectively, juxtaposed by thrusting from the southeast. The folds are overturned and generally steeply inclined, dipping towards the southeast.

The Rose Central anticline gently plunges towards the northeast and closes at the approximate eastern extent of the proposed Rose Pit (Stantec, 2012a).

To the east of the pit, the core of the anticline is composed of the Denault and Wishart formations. To the west of the pit, the syncline is mainly composed of the Katsao, Wishart and Sokoman formations. The core of the syncline has not been identified due to the absence of boreholes having crossed this structure, but it is thought to be in the Menihek formation. In general, the formations dip to the southeast at an angle of 75° and a strike of 135° (Stantec, 2012a). Two NW-SE sections, perpendicular to the formations, show the geological sequence at depth near RBR-12-01 and RBR-12-02 (Figure B5).

2.2.3.3 Katsao-Wishart Fault

The stability analysis carried out by Stantec in 2012a provided an initial characterization of the rock formation quality, subdividing the pit into four (4) main areas or rockmass domains: NR1 and NR2 to the west, and RC1 and RC2 to the east. Generally, the bedrock in the eastern part of the pit is of good quality, while that in the western part is of good to poor quality, with deep and intense weathering. The most significant area of weathering was noted at NR2 (Stantec, 2012a). In this zone, the entire Wishart was observed in some boreholes to be weathered to poorly consolidated sand. The intense fracturing and alteration of the Wishart is linked to the presence of a major fault interpreted on a regional scale and formed by the contact between the Katsao and Wishart formations. The Katsao-Wishart fault is illustrated at a regional scale on Figure B3 and in the pit area on Figure B4.

In terms of groundwater flow, it appears that the entire Wishart Formation could be considered as a water-bearing structure with an average width of 50 m (Figure B5).

2.2.3.4 Central Fault

An analysis of televiewers surveys from 2008 to 2012 is presented in Appendix D. For each selected borehole, potential fault intervals were identified based on the general bedrock quality and fracture type. Drillcore photos (Appendix E), taken during 2 site visits (May and July 2023), were also analyzed to identify potential fault zones. This analysis led to the identification of several potential fault intervals within the pit area. These highly fractured and altered zones feature pulverized rock horizons of varying thicknesses (between 20 and 50 m) and are mainly found within the Sokoman formation, in the central part of the pit. These intervals occur at different depths (between 150 and 350 m along the borehole depth) but do not appear to be related to changes in stratigraphy.

To identify a potential 3D fault plane, fractured intervals were mapped into the Leapfrog model. However, the spatial distribution of data did not allow to locate a precise fault plane. However, it appeared that the major fracture zones had a similar orientation with a 75° dip to the southeast. These fracture zones could be related to the development of the iron deposit and the upwelling of hydrothermal fluids as suggested by intervals of vuggy bedrock on core samples (**Figure 2-2**).

Figure 2-2: Vuggy Bedrock Located at Around 430 m in the Sokoman Formation (KGT-23-03)

For simplification, these major fracture zones, within the Sokoman, in the center of the pit, will be referred to as the "Central fault" for the remainder of the study. The approximate location of the Central fault is shown on Figures B3, B4 and B5. The true thickness of these fractures has been interpreted between 20 and 40 m, based on boreholes analyses at RBR-12-02, K-12-176A and K-12-179. In terms of groundwater flow, the central fault could be considered as a water-bearing structure with an average width of 30 m.

2.2.3.5 Other Potential Faults

Stantec's Pit Slope Design report (2012a) mentions the presence of a potential fault in the Menihek unit (syncline axis). However, deep exploration holes have not encountered the closure of the syncline and the existence or location of this fault was not confirmed to date.

Interpreted sub-vertical dip-slip faults bisect the deposits, trending roughly northwest-southeast. Three of these major features have been interpreted by Alderon and are illustrated on Figures B3 and B4; however, it is understood that more structures may be present based on reviews of aerial imagery. As a result of directional bias of the exploration boreholes, these structures are rarely intersected and are currently only interpreted through 3D geological interpolation (Stantec, 2012a).

2.3 Climate and Hydrology

In general, the area of West Labrador experiences sub-arctic climatic conditions characterized by long cold winters and short mild summers. Based on data obtained from the Wabush Lake A station for the period of 1961-2012 (Environment Canada, 2023), a large variation in mean daily temperatures is observed throughout the year, from - 22.0 °C in January to 13.8 °C in July, with a mean annual daily temperature of -3.2 °C (SNCL, 2023).

Annual precipitation averages 878.1 mm/year with a range of 675.8 (100-years Dry) to 1265.1 mm/year (100-years Wet) (SNCL, 2023), while annual evapotranspiration averages 387.3 mm/yr (SNCL,2023). Freezing conditions typically occur between mid-October and early November, and major snow melt typically occurs between late April and mid-June. The Kami Project property is in an area of "isolated patches of permafrost" according to Natural Resources Canada (NRC, 1993) and although no permafrost zones were encountered during the field work carried out by Stantec in 2012, several wells were reported to be frozen during groundwater level surveys:

- ROB-11-18 was frozen in November 2011 (Stantec, 2012a);
- ROB-11-01A/B were frozen in April 2012 (Stantec, 2012b);
- K-11-113, K-11-147 and ROB-11-08 were frozen in March 2012 (Stantec, 2012b).

2.4 Lakes Water Elevation

The major lakes in the study area and their water elevations are shown in **Table 2-1**. At the time of this study, all measured lake water levels were not available, so an estimate was made using topographic contours from lidar or the government digital elevation model (DEM). It is also worth noting that the bathymetry of the lakes was not available at the time of the study.

	Lake Water Level Elevation (m)							
Lake	Based on closest topographic line (Lidar 1 m interval)	Based on closest topographic line (DEM 10 m interval)						
Pike	568	-						
Molar	-	594						
Long	538	-						
Mills	579	-						
Daviault	-	594						
Riordan	588	-						

Table 2-1: Estimated	Lake Water L	evel Around	Rose Pit Area	Based on T	opographic Data
	Eand Mator E		Rose i il Alcu	Buscu on i	opogrupino Dutu

A regional map of natural watershed is available in SNCL, 2023. Drainage generally occurs to the northeast. More locally, Pike Lake receives surface water from the Rose Pit area and ultimately discharges into Long Lake. Because of its proximity to the pit, Pike Lake is at risk of a reduction in water level due to the dewatering operations of Rose Pit. The potential drawdown at Pike Lake will depend on the following elements:

- Hydraulic gradient between the lake and the pit;
- The presence of high hydraulic conductivity structures, such as faults or fractures, connecting the pit and the lake;
- Thickness and hydraulic conductivity of lake-bottom sediments and/or overburden under the lake;
- Thickness and hydraulic conductivity of the overburden between Pike Lake and the Rose Pit;
- Lake recharge rate (natural or anthropogenic).

For a conservative approach to dewatering flows rate estimation, it was assumed that the level of the lakes in **Table 2-1** would remain stable during the Rose Pit dewatering. Indeed, some lakes (including Pike Lake) could serve as receptors for dewatering water – if quality criteria are met.

2.5 Hydrogeological Context

2.5.1 Groundwater Levels

Figure B6 shows the location of the 32 wells monitored during fieldwork carried out by Stantec in 2012a. The wells are distributed across the entire proposed pit area, with well screens intercepting till, till/bedrock and bedrock. ROB wells account for most of the wells installed on site (24 wells), mainly in the till and occasionally in the superficial bedrock. Eight exploration boreholes complete the piezometric data from the bedrock aquifer. **Table 2-2** shows the static groundwater levels measured between November 2011 and June 2012. To monitor temporal variations in groundwater levels, pressure transducers were also installed in 11 of these wells, between December 2011 and April 2012. The hydrographs of the pressure transducer data (December 2011 to April 2012) are presented in Appendix F with additional monthly hydrographs. These hydrographs show a general decreasing trend in water levels over the course of the winter when frozen ground conditions and snow cover limit the groundwater recharge (Stantec, 2012a).

Groundwater levels in the Rose Pit area closely correlate with topography and range from 11.64 mbgs in areas of high elevation (ROB-11-06, western part of the pit) to artesian conditions in areas of low elevation (**Table 2-2**). Topographic highs to the west (near Gleeson Lake) and south-east of the pit (North of Elfie Lake) act as preferential recharge areas (grey zones, Figure B6). In contrast, the center of the valley represents a local discharge area (orange zone, Figure B6) where an alignment of lakes such as Mid, Rose and Pike lakes is formed. The relative elevations range from 647 masl at ROB-11-06, in the topographic high to the west, to a low of 578.1 masl at ROB-11-17 in the bottom of the valley; thus creating a water-level difference of 69 m within a relatively small distance (850 m). These high relative elevations account for the numerous flowing artesian wells in the lower areas of the site (Stantec, 2012a). Indeed, during field investigations carried out by AtkinsRéalis in May and September 2023, some wells and exploration boreholes showed artesian conditions. The locations of these wells are presented in Figure B6. Pressure transducers were also installed to confirm water level variations within the pit area, but the data has yet to be analyzed since the associated fieldwork is still ongoing.

The general groundwater flow follows the hydrographic drainage and flows towards Pike Lake. A piezometric map of the Rose Pit area, based on 2012 measurements (**Table 2-2**), is presented in Figure B6. Given the lack of data for each aquifer (bedrock and till), all available measurements were considered to create the piezometric map.

Table 2-2: 2011-2012 Measured Groundwater Levels in the Pit Area

	Borehole Data					Measured Groundwater Levels (mbgs)					Logger Data						
Well ID	X NAD83_Z19N	Y NAD83_Z19N	Z Elevation (m)	Borehole Bottom Elevation (m)	Screen Top Depth (m)	Screen Bottom Depth (m)	Screened Unit	Nov. 2011	Jan. 2012	Mar. 2012	Apr. 2012	Jun. 2012	Mean Depth	Mean Groundwater Elevation (m)	Logger Range (m)	Logger Mean Water Elevation (m)	Data Logger Period
ROB-11-01A	632955	5856148	570	520	47.3	50.8	bedrock	-0.60(A)	-	-	-	-	-0.60	571	-	-	-
ROB-11-01B	632955	5856148	570	520	4.0	46.6	till	-0.60(A)	-	-	-	-	-0.60	571	-	-	-
ROB-11-02	632798	5856402	569	543	4.6	25.8	till/bedrock	-	-	-0.33	1.12	-	0.40	569	-	-	-
ROB-11-03	632656	5856516	576	552	3.9	23.6	till/bedrock	-	-	-0.83	-	-	-0.83	577	-	-	-
ROB-11-04	632177	5856405	595	571	3.1	21.3	till/bedrock	-	-	-	-	0.12	0.12	595	-	-	-
ROB-11-05A	631858	5856183	629	609	16.6	19.5	bedrock	-	-	1.91	6.28	2.12	3.44	626	-	-	-
ROB-11-05B	631858	5856183	629	609	4.7	13.6	till	-	-	1.63	-	1.57	1.60	627	0.44	627.28	26Mar-21Apr
ROB-11-06	631511	5855603	653	639	4.6	13.6	till/bedrock	-	-	11.64	10.35	5.27	9.09	644	0.25	646.93	22Mar-21Apr
ROB-11-07	631694	5855029	603	543	5.2	59.9	till/bedrock	-	-	-	-	5.78	5.78	597	-	-	-
ROB-11-08A	632037	5855003	579	550	9.1	28.5	till/bedrock	-1.35(A)	-1.45(A)	-	-	-	-1.45	581	-	-	-
ROB-11-08B	632037	5855003	579	550	6.2	9.1	till	-	0.58	0.15	-	-	0.37	579	-	-	-
ROB-11-09	632234	5854936	590	559	24.5	30.9	till/bedrock	-0.90(A)	-	-	-	-	-0.90	591	-	-	-
ROB-11-10	632685	5854890	616	608	1.6	7.5	till/bedrock	4.29	5.02	6.45	-	-	5.25	610	2.05	612.00	02Dec-01Apr
ROB-11-11	632958	5855013	617	611	2.8	5.7	bedrock	0.85	5.21	3.39	-	-	3.15	614	2.65	617.25	02Dec-01Apr
ROB-11-12	633282	5855180	630	622	1.4	7.4	till/bedrock	0.15	0.78	0.76	3.25	-	1.24	628	1.18	628.65	02Dec-21Apr
ROB-11-13A	633823	5855457	633	618	12.3	15.2	bedrock	-	-	4.02	6.15	-	5.09	628	-	-	-
ROB-11-13B	633823	5855457	633	618	1.6	10.6	till	-	-	4.68	6.06	-	5.37	628	0.30	627.65	26Mar-21Apr
ROB-11-14	633823	5855953	606	597	3.1	9.0	till/bedrock	-	-	0.20	-	-0.53	-0.17	606	-	-	-
ROB-11-15	633475	5856326	599	590	3.0	8.8	till/bedrock	-	-	-	-	-	-	na	-	-	-
ROB-11-16	633237	5856312	571	554	4.4	16.4	till/bedrock	-0.55	-	-	-	-	-0.55	571	-	-	-
ROB-11-17	632809	5855826	582	534	5.2	47.7	till/bedrock	1.31	1.70	1.41	-	-	1.47	580	0.71	578.35	02Dec-01Apr
ROB-11-18	632226	5855903	574	544	3.2	30.4	till/bedrock	0(F)	-	-	-	-	0.00	574	-	-	-
ROB-11-19	632258	5855429	574	559	2.8	14.7	till/bedrock	-	-	-	-	-	-	na	-	-	-
ROB-11-20	633290	5855780	625	610	3.0	15.0	till/bedrock	2.49	2.45	5.68	-	-	3.54	621	2.71	611.44	02Dec-01Apr
K-08-10	633659	5855708	637	395	-	-	till/bedrock	-	9.30	-	-	-	9.30	628	-	-	-
K-08-18	633161	5855951	592	296	-	-	till/bedrock	-	8.62	9.24	-	-	8.93	583	0.11	582.03	22Jan-28Mar
K-11-106	631896	5855536	584	462	-	-	till/bedrock	6.64	-	-	7.32	-	6.98	577	0.50	576.30	29Mar-21Apr
K-11-108	632237	5856302	586	424	-	-	till/bedrock	-	2.43	-	-	-	2.43	584	0.50	583.10	22Jan-28Mar
K-11-113	632013	5855991	597	431	-	-	till/bedrock	-	13.55	-	-	-	13.55	583	-	-	-
K-11-145	633698	5855726	634	270	-	-	till/bedrock	-	8.48	-	-	-	8.48	625	-	-	-
K-11-147	633647	5855611	632	301	-	-	till/bedrock	-	3.70	-	-	-	3.70	628	-	-	-
K-11-163	632294	5855383	584	136	-	-	till/bedrock	-	6.20	-	-	-	6.20	578	-	-	-

Pressure transducers (Level Logger) deployed; F: Frozen; A: Artesian; Negative values indicate an above groundwater level

2.5.2 Groundwater Gradients

Horizontal gradients were estimated between different pairs of wells, in the till/bedrock or the bedrock. Strong gradients are seen on slopes, in the bedrock, between K-08-10 and K-08-18 (0.08 m/m) and ROB-11-05A and K-11-113 (0.17 m/m). More gentle gradients were estimated in the center of the valley, at the till/bedrock interface, between ROB-11-07 and ROB-11-02 (0.02 m/m) and between ROB-11-04 and ROB-11-02 (0.03 m/m). The **Table 2-3** presents the detailed calculation of horizontal gradients in the pit area.

ID	Screened Unit	Mean Measured Groundwater Elevation (m)	Groundwater Elevation Difference (m)	Distance (m)	Horizontal Gradient i _h (m/m)	Groundwater Flow Direction	
ROB-11-07	till/bedrock	596.92	28.32	1760	0.02	SW-NE towards	
ROB-11-02	till/bedrock	568.6	20:32	1700	0.02	Pike Lake	
ROB-11-04	till/bedrock	594.98	26.29	775	0.02	Easterly	
ROB-11-02	till/bedrock	568.6	20.36	115	0.03	Lake	
K-08-10	bedrock	627.6	44.42	550	0.09	Northerly	
K-08-18	bedrock	583.17	44.43	550	0.06	towards Pike Lake	
ROB-11-05A	bedrock	625.56	12 51	250	0.17	NE-SE towards	
K-11-113	bedrock	583.05	- 42.01	200	0.17	Rose Lake	

Table 2-3: Horizontal Ground	lwater Gradients E	Estimated in the Pit Area
------------------------------	--------------------	---------------------------

The presence of multi-level wells, ROB-11-01A/B, ROB-11-05A/B, ROB-11-08A/B and ROB-11-13A/B provides an opportunity to estimate local vertical gradients. The following observations were made:

- Due to artesian conditions, water levels were not precisely measured at ROB-11-01A/B;
- A vertical downwards gradient of 0.06 m/m was estimated at ROB-11-05A/B, in the western part of the pit, on a topographic high;
- Vertical upwards gradients were estimated at ROB-11-08A/B (0.17 m/m) in the local discharge area in the valley center;
- Vertical upwards gradients were also estimated at ROB-11-13A/B (0.04 m/m) located on a topographic high in the eastern part of the pit. Stantec (2012a) mentioned that the upward gradient at ROB-11-13A/B in an upland area is attributed to shallow bedrock, which may be locally confined by the overburden.

The Table 2-4 presents the detailed calculation of vertical gradients in the pit area.

ID	Measure	d Groundw	vater Levels (mbgs)	Groundwater Elevation Difference	Mid Screen Distance	Vertical Gradient i _v	Groundwater Flow Direction
	Α	В	Date	(m)	(m)	(m/m)	
ROB-11-05	2.12	1.57	Jun. 2012	0.55	8.9	0.06	Downwards
ROB-11-08	-1.45	0.58	Jan. 2012	-2.03	11.15	0.18	Upwards
ROB-11-13	5.09	5.37	Apr. 2012	-0.28	7.65	0.04	Upwards

 Table 2-4: Vertical Groundwater Gradients Estimated in the Pit Area

2.5.3 Groundwater Recharge

As mentioned in previous sections, recharge areas are mainly observed in topographic highs and discharge zones in topographic lows, where artesian conditions have been observed. Groundwater recharge at Rose Pit can be roughly estimated based on the water balance, as follows:

Recharge = Total Precipitations – Evapotranspiration – Runoff

Considering annual precipitation for a dry or wet year, recharge is estimated between 0 and 130 mm/year, with:

- Total precipitation (SNCL, 2023) = between 675.8 and 1265.1 mm/year;
- Rose Pit runoff coefficient for summer/fall (SNCL, 2023) = 0.59;
- Evapotranspiration (SNCL, 2023) = 387 mm/year.

2.5.4 Groundwater Quality

In 2012, the groundwater quality in the Rose Pit area was characterized from 15 wells and boreholes. A more detailed interpretation can be found in Stantec, 2012a. Analysis of groundwater geochemistry is an important component of hydrogeological modelling, providing a better understanding of the conceptual model. A preliminary assessment of groundwater chemistry is also required to evaluate the potential effects of mine-related seepages, and the potential for the on-site development of water supply wells. Differentiation between the geochemical signature of groundwater and surface water could also help interpret water inflows during dewatering.

Based on the elevations of the saturated sand packs, 7 wells were screened across the till/bedrock interface (ROB-11-5A, 02, 10, 11, 12, 13A, 17 and 20), 3 wells were completed within the glacial till (ROB-11-5B, 8B and 13B), and 4 wells were installed in the fractured bedrock units (ROB-11-8A and boreholes K-11-108, 113 and 163).

The major ion concentrations of all 14 sampled wells were similar, and generally described as a clear to slightly coloured, moderately soft (average hardness 62.3 mg/L), neutral to slightly acidic (average alkalinity 72.4 mg/L, average pH 7.9, average calcite saturation index -0.7 at 4 degrees Celsius), calcium-bicarbonate water type of low TDS (average 95.5 mg/L). Chloride is notably low (average 1.3 mg/L; maximum 5.4 mg/L) in these groundwater samples.

Groundwater quality was analyzed for the till, the till/bedrock, and the bedrock:

- In the till, all parameters except manganese (average concentration of 297 µg/L) meet GCDWQ (Guidelines for Canadian Drinking Water Quality, Health Canada, 2010). In contrast to the deeper till/bedrock and bedrock chemistry, the overburden chemistry appears to be slightly higher in sodium, chloride, and TDS concentrations, and lower in alkalinity, organic carbon, and trace metals concentrations.
- In the till/bedrock, all parameters except iron (average 517 µg/L) and manganese (average 442 µg/L) meet GCDWQ. The till/bedrock chemistry typically has a higher total organic carbon concentration (mean 27.5 mg/L, maximum 120 mg/L) than the other units.
- In the bedrock, GCDWQ are typically exceeded for iron (average 1469 µg/L) and manganese (mean 286 µg/L). In comparison to the overburden wells, the bedrock typically has higher concentrations of alkalinity, pH, copper, iron, and zinc.

During field investigations carried out by AtkinsRéalis in September 2023, 18 new samples were collected to analyze the general groundwater chemistry of the pit area. The locations of water samples collected in 2012 and 2023 are presented in Figure B7 and a graphic Piper diagram of the 2012 water chemistry data is presented in Figure 2-3. The results of the 2023 field sampling program will be considered in a subsequent report, as field investigations were ongoing at the time of writing this report. Laboratory results for 2012 are available in Appendix G.

Figure 2-3: Piper Diagram for 2012 Samples

2.5.5 Hydraulic Conductivity

2.5.5.1 Overburden

In the study area, the hydraulic conductivity (K) of the overburden (till) was measured at 6 wells (Figure B8), including 2 in the pit footprint (ROB-11-05B and ROB-11-13B). The hydraulic conductivities estimated from in situ hydraulic tests (slug tests) are presented in **Table 2-5**. An average hydraulic conductivity of 1.2×10^{-6} m/s was obtained for the till, by calculating the geometric mean of the measurements. The deepest wells where the hydraulic conductivity was measured are BH-GE-03 and BH-GE-06, with the base of the screened interval at a depth of 15.5 m.

The hydraulic conductivity of till/bedrock was also estimated at 4 wells screened at the till/shallow bedrock contact. The geometric mean of the till/bedrock hydraulic conductivity (1.8x10⁻⁷ m/s) is about an order of magnitude lower than the till, indicating a probable drop in hydraulic conductivity in the lower till or in the surface bedrock. A difference of one order of magnitude for minimum and maximum values was also observed between the till and the till/bedrock. The deepest well where hydraulic conductivity was measured is ROB-11-17, for which the base of the screened interval is at a depth of 47.7 m.

Hydraulic conductivity values for the overburden were also estimated from grain size distribution curves by empirical methods. The results were relatively similar to the slug tests and can be found in the Stantec report (2012a).

ID	Screened HSU*	K (m/s)	Geometric Mean K (m/s)	Min. K (m/s)	Max. K (m/s)
ROB-11-05B	till	1.8E-06			
ROB-11-13B	till	1.9E-06			
BH-GE-03	till	6.8E-07			
BH-GE-06	till	2.6E-05	1.2E-06	2.4E-07	2.6E-05
BH-GE-09	till	7.3E-07			
BH-GE-10	till	2.6E-07			
BH-GE-18	till	2.4E-07			
BH-TF-07	till/bedrock	2.7E-07			
ROB-11-02	till/bedrock	9.5E-08	1 85 07	3 2 5 08	1.25.06
ROB-11-17	till/bedrock	3.2E-08	1.02-07	5.20-00	1.22-00
ROB-11-20	till/bedrock	1.2E-06			

Table 2-5: Hydraulic Conductivities Estimated Through Slug Tests in the Overburden (Stantec, 2012)

2.5.5.2 Bedrock

In the study area, bedrock hydraulic conductivity (K) was measured in 24 wells (Figure B8), mostly located south of Long Lake. The hydraulic conductivities estimated from in situ hydraulic tests (slug tests) are presented in **Table 2-6**. An average hydraulic conductivity of 1.2×10^{-7} m/s was obtained for the bedrock, by calculating the geometric mean of the measurements. The deepest well where hydraulic conductivity was measured is BH-TF-01A, for which the base of the screened interval is at a depth of 23.6 m.

ID	Screened HSU*	K (m/s)	Geometric Mean K (m/s)	Min. K (m/s)	Max. K (m/s)
BH-TF-01A	Bedrock	8.4E-07	_		
BH-TF-04A	Bedrock	1.1E-07	_		
BH-TF-05A	Bedrock	1.8E-07	_		
BH-TF-07	Deep till/bedrock	2.7E-07	_		
BH-TF-08A	Bedrock	5.5E-07	_		
BH-TF-09A	Bedrock	2.2E-08			
BH-TF-19A	Bedrock	1.7E-06			
BH-TF-21A	Bedrock	2.8E-06			
BH-TF-22A	Bedrock	6.3E-08			
BH-TF-23A	Bedrock	6.0E-08	_		
BH-TF-30	Bedrock	6.2E-08	_		
BH-TF-36A	Bedrock	5.6E-08	1 2E-07	1 0E-08	2 8E-06
BH-TF-39A	Bedrock	3.7E-07	1.22 07	1.02 00	2.02 00
BH-TF-47A	Bedrock	8.0E-08	_		
BH-TF-48A	Bedrock	4.7E-08	_		
BH-TF-50A	Bedrock	2.4E-08	_		
BH-TF-52A	Bedrock	1.4E-07	_		
BH-TF-53A	Bedrock	4.0E-08	_		
BH-TF-55A	Bedrock	1.0E-08	_		
BH-TF-56A	Bedrock	5.2E-08	_		
BH-TF-60A	Bedrock	1.0E-07	_		
BH-12-145A	Bedrock	8.9E-07	_		
ROB-11-02	Deep till/bedrock	9.5E-08	_		
ROB-11-17	Deep till/bedrock	3.2E-08			

Table 2-6: Hydraulic Conductivities Estimated Through Slug Tests in the Bedrock (Stantec, 2012)

2.5.5.3 Faults

In the study area, deep bedrock hydraulic conductivity (K) was measured through a series of packer injection tests in 2 inclined boreholes: RBR-12-01 and RBR-12-02 (**Table 2-7**). The packer tests were performed by Stantec in 2012 within the proposed pit footprint (Figure B8).

ID	X NAD27 Zone 19 UTM	Y NAD27 Zone 19 UTM	Ground Elevation (masl)	Dip	Azimuth	Overburden Thickness (m)	Down Hole Depth (m)
RBR-12-01	632774	5855885	573	-60	270	39	225
RBR-12-02	632131	5855010	581	-60	270	14	300

Table 2-7: RBR-12-01 and RBR-12-02 Coordinates

The injection limit $(1x10^{-5} \text{ m/s})$ was reached during RBR-12-01 testing, at a vertical depth in the bedrock of approximately 100 m (about 160 m along the borehole) revealing an interval of pulverized sandy bedrock in the Sokoman formation (**Figure 2-4**). Core photos of the entire length of each borehole are presented in Appendix E. These photos show a bedrock with intense weathering intervals. Histogram summary plots, geological logs and basic geotechnical logs are also presented for each borehole in Appendix H.

Figure 2-4: Intense Weathering Interval at RBR-12-01 (from Stantec, 2012)

As shown in Figure B8, RBR-12-01 and RBR-12-02 are both located in the center of the proposed pit. Average hydraulic conductivities of 2.4×10^{-6} and 1.5×10^{-6} m/s were obtained for the RBR-12-01 and RBR-12-02 respectively, by calculating the geometric mean of the measurements. Packer tests results tables for each borehole are presented in Appendix I and variations of hydraulic conductivity with depth (along borehole and vertical) are presented in Figure 2-5.

Local high hydraulic conductivities (in comparison to the geometric average) intervals from the packer tests are attributable to the presence of the Central fault, within the Sokoman formation. Consequently, an estimate of fault hydraulic conductivity can be made on the basis of the highest values estimated in packers, i.e., above $1x10^{-5}$ m/s. For all calculations and estimations (and production of **Figure 2-5**), a hydraulic conductivity of $5x10^{-5}$ m/s was assumed for these intervals.

Figure 2-5: Borehole Packer Permeability Tests with Depth at RBR-12-01 and 02 (Stantec, 2012)

2.5.6 Hydrostratigraphy

Figures B9 and B10 present geological cross-sections through the Rose Pit that illustrate the interpreted overburden thickness, faults, bedrock geology and the proposed mine (pit shell) near RBR-12-01 and RBR-12-02, where the bedrock hydraulic conductivity variations with depth are the best known. Based on the data available, the hydrostratigraphy of the conceptual model was divided into 4 units: the till, the bedrock surrounding the total pit depth, the faults, and the deep bedrock beneath the maximum pit depth. The hydraulic conductivity of each unit is based on the geometric mean data of the measured values and is summarized in Table 2-8.

Hydrostratigraphic Units	Approximate Depth Interval (m)	Geometric Mean of Hydraulic ConductivityK (m/s)					
Overburden	0-60	1.2E-06					
Bedrock	0-450 ¹	1.2E-07					
Deep Bedrock	450-650	1.0E-08					
Faults 0-450 ≥1.0E-05							
Note:							
1. The senaration between bedrock and deep bedrock is based on the maximum nit depth of 450 m							

A cross-section showing the hydrostratigraphic units in the hydrogeological model (Feflow model) is presented in Figures B9 and B10 for each geological cross-section. For mesh simplification purposes, the Katsao-Wishart and the Central fault are represented as vertical zones of higher hydraulic conductivity with constant thicknesses of 50 and 30 m, respectively. Since the thickness and hydraulic conductivity of the lake-bottom sediments are unknown, it was assumed that the faults were hydraulically connected to the lakes, crossing the overburden layer.

Although the hydraulic conductivity of the bedrock is not known below 250 m vertical depth, the hydraulic conductivity of the bedrock unit was attributed to the entire bedrock surrounding the pit in a conservative approach (from the surface to the maximum pit depth, 450 m). A value of 1×10^{-8} m/s was assumed for the deep bedrock unit (below the pit), since bedrock generally decreases in permeability with depth (Stober and Bucher, 2007).

3. Groundwater Flow Model

A preliminary estimate of groundwater open pit mine inflows was made using a numerical model of the area. The following sections describe the steps involved in building and calibrating the model before dewatering.

3.1 Software Description

The modelling was conducted using the FEFLOW software, developed by WASY Institute in Germany (DHI, 2005). FEFLOW is a robust numerical groundwater model capable of considering all aspects including mining, processing, mine waste management, and the management (diversion, impoundment, treatment) of groundwater. In this study, the groundwater flow was simulated via Richard's equation representing unsaturated or variably saturated media.

3.2 Model Mesh

The hydrogeological FEFLOW model domain covers an area of approximately 200 km². This area was discretized using a mesh composed of 816,312 triangular prismatic elements of variable dimensions (Figure B11).

Horizontally, meshing and cell sizes have been adapted to adequately represent the local site infrastructure and anticipated hydraulic gradients. Average cell sizes are about 40 m inside the pit area and 5 m around the faults. Vertically, the model is composed of 29 layers of variable thicknesses. The mesh was also refined vertically for the overburden and along the pit depth. The overburden is discretized into 3 layers with an average thickness of 4.5 m. The bedrock surrounding the pit is discretized into 23 layers with an average thickness of less than 25 m. The deep bedrock under the pit is discretized into 5 layers with an average thickness of 25 m.

3.3 Boundary Conditions

The boundary conditions applied to the hydrogeological model are presented in Figure B11. The model domain is bound by physical boundaries that extend from the topographic highs west of Daviault Lake, where a no flow condition is applied, to Wahnahnish Lake in the east, where fixed head conditions are applied to represent the natural flow from Wahnahnish Lake to Labrador City.

To the north, the model boundary follows a hydrographic limit to a topographic low near Labrador City. To the south, the model boundary follows a succession of topographic highs (no flow boundary condition) which correspond to the catchment basin limits, then joins Wahnahnish Lake.

Major lake water elevations are assumed to represent groundwater levels. Based on topographic data and punctual lake water level measurements, a fixed head boundary condition was applied on Daviault, Molar, Pike, Mills, Long and Riordan lakes. Fixed head values used for each lake are presented in **Section 2.4**.

The natural surface drainage due to the hydrographic network was represented by drain boundary conditions (seepage face). These boundary conditions correspond to constant head boundaries with a value equal to the elevation of the surface and with a flow constraint which only allows water to exit the model. Drain boundary conditions were applied to topographic lows and valley floors where streams normally form.

Different recharge rates were used based on the topography of the area: from 35 to 150 mm/year on the topographic highs and no recharge on the topographic lows or steep slopes.

3.4 Model Calibration

During the model calibration process, the numerical model parameters, hydraulic conductivity and recharge, and boundary conditions are adjusted within reasonable ranges to obtain an acceptable match between measured and simulated heads (ASTM D5981-96, 2002).

The hydrogeological model was calibrated in steady state against water levels from 29 piezometers, measured between November 2011 and June 2012. The piezometers are located on the topographic highs at the periphery of the pit and in the topographic low in the center of the pit. The piezometers screens intercept the till, the till/bedrock, and the bedrock.

The normalized root mean squared error (NRMSE) method was chosen to quantitatively evaluate the goodness-offit between the measured and simulated heads. The following equation was used to calculate the NRMSE:

NRMSE (%) =
$$\frac{1}{(h_{max} - h_{min})} \times \left[\frac{1}{N} \sum_{i=1}^{N} (h_s - h_m)^2\right]^{\frac{1}{2}}$$

Where:

N: Number of observations

hs: Simulated head (m)

hm: Measured head (m)

hmax: Maximum measured head (m)

hmin: Minimum measured head (m)

Mainly, during the calibration process, the hydraulic conductivity of the bedrock unit was reduced by half an order of magnitude to raise simulated hydraulic heads in topographic high areas (**Table 3-1**). The hydraulic conductivity from other units remained relatively intact. The recharge was also increased to 130 mm/year on the topographic highs in the Rose Pit area (Figure B11). Calibrated hydraulic conductivities for each of the units in the model are presented in Figure B12.

	Hydraulic Conductivity K (m/s)					
Hydrostratigraphic Units	Mean selected value estimated through slug tests and packer tests	Calibrated values				
Overburden	1.2E-06	1.0E-06				
Bedrock	1.0E-07	5.0E-08				
Deep Bedrock	1.0E-08	1.0E-08				
Faults	≥1.0E-05	1.0E-05				

Table 3-1: Estimated and Calibrated Hydraulic Conductivity

In general, the model calibration is satisfactory, as shown by the alignment of points on the calibration line (**Figure 3-1**). The measured and simulated heads, as well as their residuals are presented in Appendix J. An NRMSE of 9.5% was obtained for the calibrated model, which is below the generally accepted target of 10% (Robertson GeoConsultants Inc. and SRK Consulting, 2012).

Figure 3-1: Hydrogeological Model Calibration Line

As shown in **Figure 3-1**, simulated hydraulic heads are underestimated by approximately 10 m at K-08-10, K-11-145, and K-11-147. Those wells are all located on the topographic high, in the eastern part of the pit. Simulated heads are also underestimated at ROB-11-07, which is located on a steep slope in the southwestern part of the pit.

Simulated heads are overestimated by 10 m at K-08-18, located hydraulically downstream of the previous wells. To the west of the pit, on the hillside, simulated heads are also overestimated by 10 m at K-11-106 whereas heads at ROB-11-06, upstream, are perfectly calibrated.

The over- or underestimation of simulated hydraulic heads at certain wells demonstrates the difficulty of representing abrupt groundwater level variations associated with slopes and complex geology.

Another challenge for the model calibration is the fact that water levels data come from measurements taken at different times of the year, between November 2011 and April 2012. This means that a synchronous data set to calibrate all the wells is not available, which can lead to greater error in the calibration. It is worth noting that the mean average error (MAE) of the calibrated model is 4.5 m (Appendix J), which is less than the local groundwater fluctuation of 6.37 m, which was measured at ROB-11-06 between March and June 2012. The calibration will be refined subsequently, based on new data from level logger installed during 2023 field work.

The calibrated model represents what will subsequently be referred to as the base case scenario.

3.5 Simulated Piezometry

As shown in Figure B13, the simulated piezometry for the base case scenario satisfactorily reproduces the measured piezometry values. The simulated groundwater flow follows the topography and converges towards the valley center, where the flow direction is towards Pike Lake.

The simulated piezometry is also presented along a NW-SE cross-section across the pit (Figure B14). The section shows the flow direction from the topographic highs to the local lows, like Rose Lake and Elfie Lake, where the water level is at the surface or artesian.

3.6 Sensitivity Analysis

A sensitivity analysis of a hydrogeological model is usually conducted to define which of the model parameters has the most influence on the modelling results. It can also be used to adapt the calibration strategy or to validate the impact of insufficient data on the modelling results. The parameters selected for this sensitivity analysis are:

- The hydraulic conductivity of each unit, which was increased and decreased by an order of magnitude;
- The recharge rate, which was increased by 50%;
- The water elevation of Pike Lake, considering that the lake is dried up; and
- The faults connection to Pike Lake through the overburden (Figure 3-2).

Following the variation of these parameters, different types of error (NRMSE, MAE, RMS, and Standard Deviation) were compared to the base case scenario as shown in **Table 3-2**. Based on this sensitivity analysis, the overburden and above all, the bedrock unit hydraulic conductivity, were determined to have a major impact on the calibration, as can be seen with the higher NRMSE values (SA3 and SA4). It should be noted that a less permeable deep bedrock value (1x10⁻⁹ m/s) provides slightly better calibration statistics (SA6). However, to evaluate a conservative case, a more permeable deep bedrock value of 1x10⁻⁸ m/s was selected for future dewatering flow rate estimations.

Other parameters like the recharge rate (SA9), Pike Lake water level (SA10), and the faults connection through the overburden (SA11), seem to have a lesser impact on the calibration.

Figure 3-2: Conceptual Representation of the Faults Connection to Pike Lake through the Overburden in the Hydrogeological Model

Sensitivity Analysis	HSU Hydraulic Conductivity (m/s)				Recharge	Pike Lake Water	Faults	Normalized Root Mean	Mean Absolute	Root Mean	Standart
(SĂ) Scenario	Overburden	Bedrock	Deep Bedrock	Faults	(mm/yr)	(mm/yr) Elevation (m)	Overburden	Square Error NRMSE	Error MAE (m)	Square RMS (m)	σ (m)
Base Case ¹	1.0E-06	5.0E-08	1.0E-08	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>9.51%</th><th>4.48</th><th>6.03</th><th>6.14</th></r<130<>	568	YES	9.51%	4.48	6.03	6.14
SA1	1.0E-05	5.0E-08	1.0E-08	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>16.96%</th><th>9.95</th><th>12.99</th><th>13.22</th></r<130<>	568	YES	16.96%	9.95	12.99	13.22
SA2	1.0E-07	5.0E-08	1.0E-08	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>16.85%</th><th>11.73</th><th>12.7</th><th>12.92</th></r<130<>	568	YES	16.85%	11.73	12.7	12.92
SA3	1.0E-06	5.0E-07	1.0E-08	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>34.72%</th><th>18.84</th><th>26.25</th><th>26.71</th></r<130<>	568	YES	34.72%	18.84	26.25	26.71
SA4	1.0E-06	5.0E-09	1.0E-08	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>144.84%</th><th>62.87</th><th>108.94</th><th>110.87</th></r<130<>	568	YES	144.84%	62.87	108.94	110.87
SA5	1.0E-06	5.0E-08	1.0E-07	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>9.12%</th><th>5.53</th><th>7.13</th><th>7.25</th></r<130<>	568	YES	9.12%	5.53	7.13	7.25
SA6	1.0E-06	5.0E-08	1.0E-09	1.0E-05	0 <r<130< th=""><th>568</th><th>YES</th><th>7.50%</th><th>4.36</th><th>5.9</th><th>6.01</th></r<130<>	568	YES	7.50%	4.36	5.9	6.01
SA7	1.0E-06	5.0E-08	1.0E-08	1.0E-04	0 <r<130< th=""><th>568</th><th>YES</th><th>9.79%</th><th>4.78</th><th>7.74</th><th>7.88</th></r<130<>	568	YES	9.79%	4.78	7.74	7.88
SA8	1.0E-06	5.0E-08	1.0E-08	1.0E-06	0 <r<130< th=""><th>568</th><th>YES</th><th>8.85%</th><th>5.24</th><th>6.69</th><th>6.81</th></r<130<>	568	YES	8.85%	5.24	6.69	6.81
SA9	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R +50%	568	YES	12.90%	8.41	9.69	9.87
SA10	1.0E-06	5.0E-08	1.0E-08	1.0E-05	0 <r<130< th=""><th>DRY</th><th>YES</th><th>7.66%</th><th>4.48</th><th>6.03</th><th>6.13</th></r<130<>	DRY	YES	7.66%	4.48	6.03	6.13
SA11	1.0E-06	5.0E-08	1.0E-08	1.0E-05	0 <r<130< th=""><th>568</th><th>NO</th><th>7.83%</th><th>4.76</th><th>6.11</th><th>6.22</th></r<130<>	568	NO	7.83%	4.76	6.11	6.22
Notes:											

Table 3-2: Groundwater Flow Sensitivity Analysis (SA) Results

1. The base case represents the calibrated scenario, with fault connection through the overburden and Kfaults = 1×10^{-5} m/s Change from the Base Case

4. Rose Pit Dewatering

4.1 Dewatering Results at the End of Operations (Y26)

4.1.1 Analytical Results

In 2012, Stantec estimated pit dewatering rates Q (m³/day) at the end of Operations using an analytical solution, the "Darcy Approach":

$Q = K \cdot i \cdot A$

where inflow is proportional to hydraulic conductivity K (m/s), hydraulic gradient i (m/m) and a cross-sectional area of porous medium, A (m²).

These estimates assume a pit perimeter of 8,627 m, an average seepage face height of 10 m during operations and a conservative hydraulic gradient of 0.5 towards the pit wall. These values reflect potential inflows under final pit development as the perimeter chosen for this exercise represents the maximum pit footprint at ground surface and thus provides an upper bound value of estimated pit inflow (Stantec, 2012a).

- The estimated potential inflow to the pit through the silty sand glacial till overburden material ranges from 1,886 m³/day to 7,156 m³/day with an average of 4,472 m³/day (Stantec, 2012a).
- Using similar pit morphology assumptions and the K values from two packer tests in bedrock (RBR-12-01 and RBR-12-02), the estimated inflow to the pit through bedrock could theoretically range from 321 m³/day to 29,815 m³/day with an average of 6,187 m³/day (Stantec, 2012a).

The above results are summarized in Table 4-1.

Analytical	Hydrauli	ic Conductivi	ty (m/s)¹	Pit Outflow Rate (m ³ /day) ²			
Scenario	Min.	Max.	Average	Min.	Max.	Average	
Till	5.1E-07	1.9E-06	1.2E-06	1,886	7,156	4,472	
Bedrock	8.6E-08	8.0E-06 ³	1.7E-06 ⁴	321	29,815	6,187	
Till + Bedrock	na	na	na	2,207	36,971	10,659	

Table 4-1: Pit Dewatering Rate Based on Darcy Approach (Stantec, 2012a)

Notes:

1: K data for till and bedrock are from ROB-11-05B, 13B and 20 completed in the upper silty sand, and the bedrock is represented by two inclined boreholes RBR-12-01 and RBR-12-02 in bedrock, and ROB-11-01 and

ROB-11-02 completed across the deep till/bedrock interface (Stantec, 2012a).

2: Minimum, maximum, and average pit outflow rates are based on minimum, maximum and geometric average of the hydraulic conductivity for the till and the bedrock, estimated by Stantec (2012a).

3: This value was measured at RBR-12-02 at a vertical depth of around 190 m. However, this maximum does not consider the two RBR-12-01 intervals where the injection limit of 1×10^{-5} m/s was reached (Appendix I).

4: The average bedrock hydraulic conductivity is only based on the packer tests results realized at RBR-12-01 and 02. However, based on current understanding of the site, some hydraulic conductivity intervals of these boreholes are more representative of fault zones, but the distinction between bedrock and fault zones is not considered with the analytical approach.

Stantec's estimates, derived from Darcy's analytical approach, represent a first-order preliminary estimate of potential pit inflows for overburden and bedrock. Analytical models are typically used to represent simple systems or to illustrate broad, generalized effects of different parameter assumptions whereas numerical models are typically used to represent more complex systems (Robertson GeoConsultants Inc. and SRK Consulting, 2012). Groundwater numerical models are powerful tools to conceptualize and quantify current conditions (synthesize existing information), and in this case, understand system dynamics to identify and quantify controlling and significant processes (Robertson GeoConsultants Inc. and SRK Consulting, 2012). Among other things, the existence of the following gives the hydrogeological system its complex character and justifies the need of a numerical model for the rest of the project:

- A highly folded and metamorphosed bedrock geology, with sub-vertical formations;
- A variable thickness of overburden that could present preferential flowpaths (piping);
- Identification of 2 sub-vertical faults, potentially intercepting nearby lakes;
- The presence of nearby lakes, which could lead to significant dewatering flow rates on the one hand, and the potential drying up of the lakes on the other;
- Potential drawdowns or groundwater quality impacts on receptors (such as Duley Lake Provincial Park to the north of the site);
- Impacts of the interactions between all the components of this complex system;
- Future 3D data acquisition.

Given the limited amount of data available in 2012, the Darcy approach used by Stantec was reasonable at that time. However, the Darcy approach is unable to consider the complexity of the site. In addition, the availability of a 3D geological Leapfrog model offers a unique opportunity to support the construction of a 3D groundwater numerical model.

The dewatering results of the 3D numerical Feflow model are presented in the following section.

4.1.2 Numerical Results

To estimate dewatering rates, a steady-state simulation was carried out using the pit's maximum depth (450 m) at the end of operations (Year 26). In a conservative approach, a baseline scenario was selected for infrastructure design purposes (selected case), assuming the faults hydraulic conductivity was 5 times higher than the base case (i.e., $5x10^{-5}$ m/s). The hydraulic conductivity of the faults in the base case ($1x10^{-5}$ m/s) corresponds to the injection limit reached during packer tests in RBR-12-01.

The other assumptions and parameters, like constant lake levels during dewatering operations, the fault connection through the overburden or other units' hydraulic conductivity, remain identical to the base case.

Based on the above assumptions, the simulated pit dewatering flow rate for the selected case would be 40,849 m³/day, while that of the base case would be 12,432 m³/day (**Table 4-2**). It was observed that of the estimated 40,849 m³/day, 29,460 m³/day would originate directly from Pike Lake, which is located north of the pit. The dewatering rate for the selected case is higher than for the base case, due to the increased hydraulic conductivity of the faults. Because of its proximity to the pit and hydraulic connection to the fault, Pike Lake's contribution would be greater than that of the other lakes. The second largest inflow rate would be from Daviault Lake (7,017 m³/day), which in the model, is hydraulically connected to the pit by the Katsao-Wishart fault.

Water contributions during dewatering (inflow rate) from lakes Daviault, Mills and Molar for the base and the selected case are presented in **Table 4-2**.

Numerical	Pit Outflow	Inflow Rate (m³/day)													
Scenario (Y26)	Rate (m ³ /day)	Pike Lake	Mills Lake	Daviault Lake	Molar Lake										
Base Case ¹	12,432	7,051	520	1,133	84										
Selected Case ²	40,849	29,460	525	7,017	110										

Table 4-2: Pit Dewateri	ng Rate and Lakes	Contribution (Y26)
-------------------------	-------------------	--------------------

Notes:

1: The base case represents the calibrated scenario, with faults connection through the overburden and

 $K_{faults} = 1 \times 10^{-5} m/s.$

2: The selected case represents a conservative scenario (higher dewatering flow rate) selected for the water infrastructure design, with faults connection through the overburden and $K_{faults} = 5x10^{-5}$ m/s.

A simulated piezometric map, representing the final phase of pit dewatering (final depth of the mine pit) and assuming steady state conditions, is presented in Figure B15. The influence of dewatering would extend preferentially in a NE-SW alignment, along the more permeable fault zones. Simulated hydraulic heads are also presented at Y26 in a NW-SE cross-section in Figure B16 showing that the drawdown could be significant, especially in topographic highs areas.

The estimation of pit dewatering flow rates relies on a set of conservative conceptual assumptions, such as:

- The representation of faults as homogeneous zones of high hydraulic conductivity (5x10⁻⁵ m/s) directly connected to the lakes (Pike and Daviault);
- The representation of faults throughout the pit's depth (450 m);
- The extension of the Katsao-Wishart fault to Daviault lake, with a high hydraulic conductivity (5x10⁻⁵ m/s). It is worth noting that, based on the regional geology, the Katsao-Wishart fault is interpreted to be continuous up to Daviault lake. However, the geological continuity of the fault does not necessarily translate to a high hydraulic conductivity zone that would extend over the 2.6 kilometres separating the lake from the pit. This hypothesis is therefore conservative with respect to dewatering rates;
- Maintaining constant water levels for Daviault and Pike lakes throughout dewatering, which maintains a high hydraulic gradient towards the pit.

4.2 Sensitivity Analysis

4.2.1 Dewatering at the End of Y26

Several dewatering sensitivity analyses (DSA) were carried out by varying the hydraulic conductivity of the hydrostratigraphic units, the recharge rate, as well as the faults' connection through the overburden and to the lakes (Daviault and Pike). For each scenario, the impact on the pit dewatering flow rate is shown in Table 4-3.

For comparison, Stantec results from an analytical solution (Darcy approach) have also been included in **Table 4-3**. The average (10,659 m³/day) and the maximum (36,971 m³/day) dewatering rates from the analytical solution are relatively similar to the base case (12,432 m³/day) and the selected case (40,849 m³/day) results from the numerical model, respectively. Two main facts explain these similarities: on one hand, the numerical model is based on the same 2012 data used in the analytical solution, since no new data was available at the time of this study; and on the other hand, the 3D numerical model has not been unnecessarily made more complex at this stage, with 4 hydrostratigraphic units represented in the model. New data acquisition would support the updating of a more complex model that would serve as the basis for a more detailed design.

The results of the sensitivity analysis (DSA1 to DSA13) confirm what had previously been established between the base case and the selected case: the hydraulic conductivity of the faults seems to be a major factor controlling pit dewatering rate. Indeed, in the DSA7 and DS8 scenarios, the faults' hydraulic conductivity varies by an order of magnitude around the base value. For the higher value of 1×10^{-4} m/s, the dewatering rate is increased by more than 6 times compared to the base case. On the contrary, the greatest reduction in dewatering rates is observed for DSA8, where the hydraulic conductivity of the faults is reduced to 1×10^{-6} m/s.

The bedrock surrounding the pit also seems to play a significant role (DSA3), with dewatering rates increased by a factor of 3 when the hydraulic conductivity of the bedrock is an order of magnitude higher (5x10⁻⁷ m/s).

Sensitivity analyses DSA14 to 16 illustrate the influence of the system's interconnectivity and the impact of conceptual modelling choices on dewatering results. In the case where a high hydraulic conductivity value is considered for the faults (1x10⁻⁴ m/s), the results of DSA7 show that the dewatering flow rate could reach 76,121 m³/day. However, in the case where the overburden, with a lower hydraulic conductivity (1x10⁻⁶ m/s), overlies the faults, thereby limiting the water inflow from Pike Lake (DSA14), the flow would be reduced by a factor of 3 (i.e., 25,553 m³/day). This scenario limits the influence of the connection between faults and lakes by considering a buffer zone where flow is limited. Based on the overburden data in the pit area, it is likely that a certain thickness of till or lake-bottom sediment is overlying the fault zones or fractured bedrock beneath Pike Lake. However, the overburden properties (thickness and hydraulic conductivity) under the lake have not been studied.

Scenario DSA15 shows the influence of the hydraulic connection between the Katsao-Wishart fault and Daviault Lake on dewatering flow rates. When this fault is not hydraulically connected to the lake, the flow seems to decrease to 59,402 m³/day.

Scenario DSA16 considers that the faults are not connected to Pike Lake through the overburden and that the Katsao-Wishart fault is not connected to the overburden. In contrast to DSA7, the pit dewatering flow rate would be considerably reduced. This simulation shows how the accumulation of different conceptual assumptions can lead to significant variations in pit dewatering flow. In this case, they reduce the initial flow rate by a factor of 4.

The sensitivity analysis highlights the flow dynamics during the final phase of pit dewatering, and the interactions between the various modelling parameters. This exercise also helps define the priority issues to be addressed during future fieldwork.

Dewatering Sensitivity	Ну	draulic Cond	uctivity K (m/s	s)	0 <r<130< th=""><th>Pike Water</th><th>Faults</th><th>K-W Fault</th><th>Y26 Pit Flow</th></r<130<>	Pike Water	Faults	K-W Fault	Y26 Pit Flow
Analysis (DSA) Scenario	Overburden	Bedrock	Deep Bedrock	Faults	(mm/yr)	Elevation (m)	Through Overburden	Connected to Daviault	Rate (m3/day)
Analytical Results (min.) ¹	5.1E-07	8.6E-08	na	na	na	na	na	na	2,207
Analytical Results (max.) ¹	1.9E-06	8.0E-06	na	na	na	na	na	na	36,971
Analytical Results (average) ¹	1.2E-06	1.7E-06	na	na	na	na	na	na	10,659
Base Case ²	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R	568	YES	YES	12,432
Selected Case ³	1.0E-06	5.0E-08	1.0E-08	5.0E-05	R	568	YES	YES	40,849
DSA1	1.0E-05	5.0E-08	1.0E-08	1.0E-05	R	568	YES	YES	16,418
DSA2	1.0E-07	5.0E-08	1.0E-08	1.0E-05	R	568	YES	YES	11,559
DSA3	1.0E-06	5.0E-07	1.0E-08	1.0E-05	R	568	YES	YES	35,303
DSA4	1.0E-06	5.0E-09	1.0E-08	1.0E-05	R	568	YES	YES	9,701
DSA5	1.0E-06	5.0E-08	1.0E-07	1.0E-05	R	568	YES	YES	13,834
DSA6	1.0E-06	5.0E-08	1.0E-09	1.0E-05	R	568	YES	YES	12,277
DSA7	1.0E-06	5.0E-08	1.0E-08	1.0E-04	R	568	YES	YES	76,121
DSA8	1.0E-06	5.0E-08	1.0E-08	1.0E-06	R	568	YES	YES	5,487
DSA9	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R +50%	568	YES	YES	13,119
DSA10	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R	DRY	YES	YES	6,385
DSA11	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R	568	NO	YES	11,671
DSA12	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R	568	YES	NO	10,975
DSA13	1.0E-06	5.0E-08	1.0E-08	1.0E-05	R	568	NO	NO	10,278
DSA14	1.0E-06	5.0E-08	1.0E-08	1.0E-04	R	568	NO	YES	25,553
DSA15	1.0E-06	5.0E-08	1.0E-08	1.0E-04	R	568	YES	NO	59,402
DSA16	1.0E-06	5.0E-08	1.0E-08	1.0E-04	R	568	NO	NO	19,766

Table 4-3: Dewatering Flow Rate Sensitivity Analysis (DSA) Results

Notes:

1: Analytical results are based on the Darcy approach (Stantec, 2012a).

2: The base case represents the calibrated scenario.

3: The selected case represents a conservative scenario (higher dewatering flow rate) for the water infrastructure design.

Change from the Base Case

4.2.2 Yearly Dewatering, Y01 to Y26

Using the 3D numerical model, dewatering flow rates for each year of operation, from year 1 to year 26, for the base case and the selected case, were estimated (**Figure 4-1**). For each year, a steady-state simulation is run using the pit shell of the corresponding year. As a reminder, the dewatering rate results for the selected case are higher than those for the base case due to the hydraulic conductivity of the faults, which is 5 times higher for the selected case (from 1×10^{-5} to 5×10^{-5} m/s). The impact of fault hydraulic conductivity on dewatering flow is visible from the beginning of Operations since faults are represented as outcrops in the model.

Dewatering rates for one-quarter, one-half and three-quarters of the total pit depth were estimated based on the total pit depth. The surface elevation used to calculate pit depth is 570 masl, the approximate elevation of the centre of the valley. For each year, the dewatering results are presented in **Figure 4-1**, for the base case and the selected case, considering the following:

- Elevation 443 masl represents approximately ¼ of the pit's total depth, which is projected to be reached by Y05.
- Elevation 315 masl represents approximately ½ of the pit's total depth, which is projected to be reached by Y14.
- Elevation 188 masl represents approximately ³/₄ of the pit's total depth, which is projected to be reached by Y24.
- Elevation 60 masl represents approximately the final pit's depth, which is projected to be reached by Y26.

Figure 4-1: Dewatering Rates During Operations Y01 to Y26

An estimate of the pit outflow rate and lakes inflow rate was also evaluated in the first years of operation (Y05) for the base case and the selected case. Table 4-4 shows the results of this analysis.

Dewatering	Pit Outflow		Inflow Rate (m³/day)													
Scenario (Y05)	Rate (m ³ /day)	Pike Lake	Mills Lake	Daviault Lake	Molar Lake											
Base Case ¹	5,356	2,458	183	184	11											
Selected Case ²	16,261	10,924	187	2,418	13											
Notes:																

Table 4-4: Pit Dewatering Rate and Lakes Contribution (Y05)

1: The base case represents the calibrated scenario.

2: The selected case represents a conservative scenario (higher dewatering flow rate) selected for the water infrastructure design.

5. Limitations

Groundwater models present a simplified version of the geological and hydrogeological systems represented, as such, the hydrogeological model is subject to the following limitations:

- The model is a simplification of the significant variability of the hydraulic conductivities and hydrostratigraphic units that are usually encountered in fluvial and glacial deposits.
- Groundwater flow into the pit: The assumed water infiltration rate of 40,000 m³/day needs to be narrowed with supplemental hydrogeological field data. A campaign is ongoing (Q4 2023, with drilling and packer tests) and a pumping test is also planned later. These campaigns aim to acquire the following missing information:
 - Measurement of bedrock hydraulic conductivity at depth using packer tests.
 - Characterization of fractured bedrock and fault zones using acoustic and optical televiewers.
 - Groundwater head characterization using Vibrating Wire Piezometers (VWP).
- The calibration of the 3D hydrogeological model is based on water levels measured in boreholes at various dates, and some lake water elevations are based on Lidar data:
 - No synchronous piezometry measurements in all selected boreholes in the pit area.
 - No synchronous piezometry measurements in the pit area and outside (tailings and waste rock area).
 - Limited continuous water level (pressure transducer) data available (less than a year).
 - Limited number of multi-level piezometers to characterize vertical hydraulic gradients.
 - No seasonal measurement of lake level variations.
- Hydraulic conductivity of the bedrock: The current 3D hydrogeological model of the pit is based on the hydraulic conductivity of the bedrock as defined by only two (2) packer tests, with limited vertical depth (approximately 250 m). A drilling campaign is underway to fill these data gaps.
- Faults and fractured zones:
 - Katsao-Wishart fault: This fault was identified by Stantec (2012), who defined the Wishart as a unit of very poor-quality bedrock. However, the extent of this poor-quality unit is not defined outside of the pit area. In particular, the connection between the poor-quality bedrock and the surrounding lakes (especially Pike and Daviault) is unknown. Furthermore, no hydraulic conductivity measurements are available for this fault zone. A drilling campaign is underway to cover these data gaps.
 - Central fault/fractured zones: Based on the interpretation of the televiewer surveys conducted between 2008 and 2012, as well as on the analysis of certain drill core sections, a highly fractured zone has been defined in the center of the pit. However, the spatial continuity and potential connection to the lakes of this fractured zone (or fault) are unknown because it is based on a limited number of boreholes. Furthermore, no hydraulic conductivity measurements are available for this fault zone.
- Pike Lake sediment characteristics and underlying overburden: The thickness and hydraulic conductivity of sediments under the various surrounding lakes, and especially under Pike Lake, remain unknown. Characterization of these sediments is important for estimating the degree of hydraulic connection between the lakes and the proposed pit. For the moment, the hydrogeological model considers a direct connection between the fault zones and the lakes (zero sediment thickness). Sediment characterization in Elfie Lake, End Lake, and Mid Lake is also necessary to understand if the infiltration rate of water from these lakes to Rose Pit could be a potential issue.

A drilling campaign is underway for additional data collection and the hydrogeological model will be updated subsequently. The completion of the following steps will help reduce the uncertainty in predicting groundwater dewatering flow rates:

- Evaluate fault connectivity to Pike Lake by characterizing overburden and lakebed sediments with field investigations;
- Conduct a pumping test to evaluate the connectivity and extent of the fracture network;
- Install pressure transducers in the northern sector of the pit to assess potential groundwater drawdown in the direction of Pike Lake during the pumping test;
- Install pressure transducers in the central and southwestern sector of the pit to assess potential groundwater drawdown in the direction of Daviault lake during the pumping test.

6. References

- Anderson and Woessner, 1992. Applied groundwater modelling, Simulation of flow and advective transport, Academic Press, San Diego California.
- ASTM, 2002. Standard Guide for Calibrating a Ground-Water Flow Model Application. ASTM D5981-96.
- Clark and Wares, 2006. Lithotectonic and Metallogenic Synthesis of the New Québec Orogen (Labrador Trough), Geologie Québec publication: 2005-01.
- DHI FEFLOW Software, 2005. FEFLOW 8.0 finite element subsurface flow and transport simulation system: user's manual. WASY Institute, Berlin, I92pp.
- Environnement Canada, 2023. Données historiques. Retrieved from Gouvernement du Canada: https://climat.meteo.gc.ca/historical_data/search_historic_data_f.html.

GMining Services, 2023. Geological Leapfrog Model of the Rose Pit (Leapfrog files). Health Canada, 2022.

Guidelines for Canadian Drinking Water Quality (GCDWQ) - Summary Tables, (Health Canada, September 2022).

Natural Resources Canada (NRC), 1993. Canada-Permafrost [map]. Fifth Edition, National Atlas.

- Rivers, 1985a. Geology of the Opocopa Lake area, Labrador Québec. Map 85-24. Scale: 1:100 000. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division. Colour map. GS# 023B/0133.
- Rivers, 1985b. Geology of the Lac Virot area, Labrador/Québec. Map 85-025. Scale
- 1:100,000. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division. Colour map. GS#LAB/0696.
- Robertson GeoConsultants Inc. and SRK Consulting, 2012. Groundwater Modelling Guidelines to Assess Impacts of Proposed Natural Resource Development Activities. British Columbia Ministry of Environment. Report No. 194001.
- SNCL, 2023. Kami Mine Water Management Infrastructures Rose Pit Area, Technical Report. 692696-8000-40ER-0001.

Stantec, 2012a. Kami Iron Ore Project, Pit Slope Design, Rose Pit. File No. 121614000.305. September 2012.

Stantec, 2012b. Water resources Baseline Study, Kami Iron Ore Mine and Rail Infrastructure Project. File No. 121614000.484. August 23, 2012.

Stober and Bucher, 2007. Hydraulic properties of crystalline basement. Hydrogeology Journal 15: 213-224.

Appendix A. Scope of Report

1. Use of report a. <u>Use of report</u>

This report has been prepared, and the work mentioned herein was carried out by AtkinsRéalis Canada Inc. (AtkinsRéalis) exclusively for the client (the Client), to whom the report is addressed, and who took part in developing the scope of work and understands the limitations. The methodology, findings, recommendations and results cited in this report are based solely on the scope of work and are subject to the requirements of time and budget, as described in the offer of services and/or the contract under which this report was issued. Use of this report or any decision based on its content by third parties is the sole responsibility of the third parties. AtkinsRéalis is not responsible for any damage incurred by third parties due to the use of this report or of any decision based on its content. The findings, recommendations and results cited in this report (i) have been prepared in accordance with the skill level normally demonstrated by professionals operating in similar conditions in the sector, and (ii) are determined according to the best judgment of AtkinsRéalis, taking into account the information available at the time the report was prepared. The professional services provided to the Client and the findings, recommendations and results cited in this report are not subject to any guarantee, express or implied. The findings and results cited in this report are only valid on the date of the report and may be based in part on information provided by third parties. This report may require modifications in case of inaccurate information, discovery of new information or changes in project parameters. The results of this study are in no way a guarantee that the site in the study is free of contamination. This report must be considered as a whole and its parts or sections must not be taken out of context. If discrepancies were to appear between the draft and the final version of this report, the final version shall prevail. Nothing in this report is mentioned with the intention to provide or constitute legal advice. The content of this report is confidential and proprietary. It is prohibited for any person other than the Client to reproduce or distribute this report, to use or take a decision based on its content, in whole or in part, without the express written permission of the Client and AtkinsRéalis.

b. Modifications to project

The evidence, interpretations and recommendations contained in this report relate to the specific project as described in the report and do not apply to any other project or any other site. If the project is modified from a perspective of design, dimensioning, location or level, AtkinsRéalis must be consulted to confirm that the recommendations already given remain valid and enforceable.

c. Number of soundings

The recommendations in this report are intended only as a guide for the design engineer. The number of soundings to determine all subsurface conditions that may affect construction (costs, techniques, equipment, schedule) should normally be greater than that for the purpose of design. The number of sample sites and chemical analyzes as well as the sampling frequency and choice of parameters can influence the nature and extent of corrective actions as well as treatment or disposal technology and cost. Contractors bidding or subcontracting the work should rely on their own research and their own interpretations of the surveys' factual results to assess how underground conditions can affect their work and the cost of work.

d. Interpretation of data, comments and recommendations

Unless otherwise noted, data and results interpretation, comments and recommendations contained in this report are based, to the best of our knowledge, on environmental policies, criteria and regulations in force at the location of the project and on the production date of the report. If these policies, criteria and regulations are subject to change after submission of the report, AtkinsRéalis must be consulted to review the recommendations in the light of these changes. When no policy, criteria or regulation is available to allow for the interpretation of data and analytical results, comments or recommendations expressed by AtkinsRéalis are based on the best knowledge of the rules accepted in professional practice. The analyzes, comments and recommendations contained in this report are based on data and observations collected on the site, which come from sample work on the site. It is understood that only the data collected directly at the survey sites, sample sites and on the sample date are accurate and that any interpolation or extrapolation of these results to all or part of the site carries the risk of errors, which may themselves influence the nature and extent of the actions required on the site.

2. Sounding reports and interpretation of subsurface conditions

a. Soil and rock descriptions

The soil and rock descriptions given in this report are from classification and identification methods commonly accepted and used in the practice of geotechnical engineering. The classification and identification of soil and rock involves judgment. AtkinsRéalis does not guarantee that the descriptions will be identical in all respects to those made by another geotechnician possessing the same knowledge of geotechnical rules, but ensures accuracy only to what is commonly used in geotechnical practice.

b. Condition of soil and rock at sounding sites

The sounding reports only provide subsurface conditions and only at sounding sites. The boundaries between different layers on sounding reports are often approximate, rather corresponding to the transition zones and therefore subject to interpretation. The precision of subsurface conditions depends on the sounding method, frequency and method of sampling and consistency of the terrain encountered. The spacing between surveys, the sampling frequency and the type of sounding also reflect budgetary considerations and timelines that are outside the control of AtkinsRéalis.

c. Condition of soil and rock between sounding sites

The soil and rock formations are variable over a considerably large area. Subsurface conditions between sounding sites are interpolated and may vary significantly from the conditions encountered at sounding sites. AtkinsRéalis can guarantee the results at the site where sounding are conducted. Any interpretation of the conditions presented between sounding sites carries risks. These interpretations can lead to the discovery of conditions that are different from those that were expected. AtkinsRéalis cannot be held responsible for the discovery of different soil and rock conditions from those described elsewhere than at the site where soundings are conducted.

d. Groundwater levels

The groundwater levels provided in this report only correspond to those observed at the site and on the date indicated in the report and depends on the type of piezometric installation used. These conditions may vary based on the season or due to construction work on the site or on adjacent sites. These variations are beyond the control of AtkinsRéalis.

. Contamination levels

The contamination levels described in this report (if within the scope) correspond to those detected at the site and on the date indicated in the report. These levels can vary based on the season or due to activities on the study site or on adjacent sites. These variations are beyond our control. Contamination levels are determined from the results of chemical analyzes of a limited number of soil, surface water or groundwater samples. The nature and degree of contamination between sample site may vary greatly. The chemical composition of groundwater at each sample site is likely to change due to groundwater flow, surface recharge conditions, stress of the formation investigated (i.e. pump or injection wells near the site) and natural seasonal variability. The accuracy of groundwater contamination levels depends on the frequency and the number of analyzes. The list of parameters analyzed is based on our best knowledge of the history of the site and the contaminants likely to be found on the site and is also a reflection of budgetary considerations and timelines. The fact that a parameter has not been analyzed does not exclude its presence at a concentration above the background noise or the detection limit of this parameter.

4. Study and work monitoring

a. Final phase verification

All design and construction details are not known at the time of issue of the report. It is therefore recommended that AtkinsRéalis's services be retained to provide light on the possible consequences of construction on the final work.

Inspection during execution

It is recommended that AtkinsRéalis's services be retained during construction to verify and confirm that groundwater conditions throughout the site do not differ from those given in the report and that the construction work will not have an adverse effect on the conditions of the site.

5. Changing conditions

The soil conditions described in this report are those observed during the study. Unless otherwise stated, these conditions are the basis for recommendations in the report. Soil conditions can be significantly affected by construction work (traffic, excavation, etc.) on the site or on adjacent sites. Excavation may expose the soil to changes due to humidity, drying or freezing. Unless otherwise indicated, the soil must be protected from these changes or rearrangements during construction. When conditions encountered at the site differ significantly from those provided in this report, due to the heterogeneous nature of the subsurface or due to construction work, it is the responsibility of the Client and the user of this report's recommendations. Recognizing a change in ground conditions requires experience. It is therefore recommended that an experienced geotechnical engineer be dispatched to the site to see if conditions have changed significantly.

5. Drainage

Groundwater drainage is often required for both temporary and permanent project facilities. An incorrect drainage design or execution can have serious consequences. AtkinsRéalis cannot under any circumstance take responsibility for the effects of drainage unless AtkinsRéalis is specifically involved in the detailed design and monitoring of the drainage system's construction.

7. Environmental characterization – Phase I

This report was written after diligent research and evaluation of point data sources or information obtained from third parties that may present uncertainties, gaps or omissions. These sources of information are subject to change over time, for example, according to the progress of activities on the site and surrounding area. Phase I includes no testing, sampling or characterization analysis by a laboratory. Subject to exceptions, Phase I is based on the observation of visible and accessible components on the property and those nearby and could bring environmental harm to the quality of the land in the study. The property titles mentioned in this report are used to identify the former owners of the study site and cannot under any circumstance be considered as an official document for reproduction or other uses. Finally, any sketch, plan view or diagram appearing in the report or any statement specifying dimensions, capacities, quantities or distances are approximate and are included to help the reader visualize the property.

Appendix B. Figures

 $V: \label{eq:linear} V: \lab$

А

7001

Appendix C. ROB-11-Series Logs

O/Ref.: 692696-7000-4WER-0001_01 April 30, 2024 C-1

CI PH LC D	Sta JENT ROJECT OCATION	Stantec BOREHOLE RECORD IENT Alderon Iron Ore Corp. OJECT Kami Iron Ore Project - Pit Slope Design Kami Iron Ore Mine Site, Labrador West, NL N 5855920.66 m TES (mm-dd-yy): BORING 9/29/2011 to 10/6/2011 WATER LEVEL -0.06 m UNDDAINED SHEAP STDEM															LE No. ROB-11-01 L of <u>6</u> No. <u>121614000-305</u> Wash/Dia W/NW/NQ Geodetic (NAD-27)			
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE SA OR RQD %	OTHER TESTS	W/ LIN DY ST	UNDR 1 ATER C /ITS /NAMIC ANDAR	AINED S 0 2 ONTENT & PENETRA D PENETRA	HEAR STR 20 30 ATTERBERG FION TEST, BI	ENGT	H - kPa 40 ₩ ⊙ 0.3m 5/0.3m	50 WL -	C A B	STANDPIPE/ PIEZOMETER ONSTRUCTION DETAILS 0.89 m STICK UP		
- 0 -	570.40	PEAT	$+_{//}$	T	-	\vdash			$\left \right $		1	0 2	0 30		40	50		ARTESIAN -		
	— 370.20	Compact, grey, silty SAND (SM); trace to locally some gravel: TILL		4	SS	1	330	7			٠							CONDITIONS IN WELLS (A,B).		
- 1 -		-occasional cobbles to 4.5 m depth.			SS	2	510	35	s		C	>		•				WATER LEVELS AT 0.6 m ABOVE GROUND SURFACE.		
- 2 -					ss	3	175	57							>					
					SS	4	0	50/75	-		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·							BENTONITE		
- 3 -					SS	5	25	16	_			•								
- 4 -					SS	6	255	17	s		0									
- 5 -					ss	7	25	16	_			•								
- 6 -					ss	8	205	16	S H			•						50 mm DIAMETER		
					ss	9	50	21	_				•					SILICA SAND		
- 7 -					SS	10	100	15	-			•								
- 8 -					ss	11	125	12			· · · · · · · · · · · · · · · · · · ·	•								
					ss	12	610	12	S		c	•								
					SS	13	100	12	-		•								
-10-			<u>1:1-1-1</u>	<u></u>	1	<u> </u>	<u>.</u>	<u> </u>	1	1:	∆U □Fi ◇Fi ▽H	nconfined ield Vane all Cone	Compress Test ∎ Test €	sion Te I (Ren I (Ren I (Ren	nolded)	ne		.1		

CH PI LC D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Lab m-dd-yy): BORING 9/29/2011	ope] radc to 1	B Desi or W 10/6/	OR gn /est, 2011			LE R 585592 /ATER I	EC 20.66	E 632914.75 m E -0.06 m 11/3/2011	BOREHOI PAGE2 PROJECT METHOD SIZEH DATUM	LE No. ROB-11-01 2 of <u>6</u> No. 121614000-305 Wash/Dia IW/NW/NQ Geodetic (NAD-27)		
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENC 10 20 30 WATER CONTENT & ATTERBERG W _F LIMITS – DYNAMIC PENETRATION TEST, BLOW STANDARD PENETRATION TEST, BLOW 10 20 30	TH - kPa 40 50 → W WL S/0.3m ★ NS/0.3m ● 40 50	e P CC	STANDPIPE/ IEZOMETER INSTRUCTION DETAILS	
-10 - - - - 11-		Compact, grey, silty SAND (SM); trace to locally some gravel: TILL			SS	14	175	23						
-12-					SS	16	240	14	-	• · · · · · · · · · · · · · · · · · · ·				
-13-					SS SS	17	205 480	13	s	•				
-14-					SS SS	19	230	24	-	•			50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2	
-15-					SS	21	0	12	-	•			SILICA SAND	
-16-					SS	22	205	21		•				
- 18-					SS SS	23	430	12	s	•				
					SS	25	125	20		• • • • • • • • • • • • • • • • • • •				
-20-											Test emolded) emolded)			

CI PH LC D.	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sko Kami Iron Ore Mine Site, Labu n-dd-yy): BORING 9/29/2011	ope ¹ rado to 1	B Desi or W 0/6/	OR gn /est, 2011		HO	LE R 585592 74TER I	EC 20.66	BOREHOLE No. ROB-11-01 PAGE 3 of 6 PROJECT No. 121614000-305 METHOD Wash/Dia 66 m E.632914.75 m VEL -0.06 m 11/3/2011 DATUM Geodetic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W W _L UMITS
-20-		Compact, grey, silty SAND (SM); trace to locally some gravel: TILL			SS SS	26 27	230 560	19 21	s	
-21-					SS	28	25	20	-	
-22-					ss	29	205	17	sн	
- 23- 					SS SS	30 31	230 305	27	s	
-24-					SS	32	230	16	-	• •
-25-					SS	33	255	11		SILICA SAND PACK (B)
-26-		-very loose to loose from 26.0 m to 28.0 m: Proportion of gravel and sand decreases from 26.0 to 29.0 m			SS	34	405	3	SH	
-27-					SS	35	610	8	s	
-28-					SS	36	330	7	-	
-29-					SS SS SS	37	480 255	16 90/250		
-30-	540.50									
										 ☐ Unconfined Compression Test ☐ Field Vane Test

CI PI LC D	Sta LIENT ROJECT DCATION ATES (mi	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sko Kami Iron Ore Mine Site, Labu m-dd-yy): BORING 9/29/2011	ope rado to 1	B Desi or W 10/6/	Stantec BOREHOLE RECORD IENT Alderon Iron Ore Corp. OJECT Kami Iron Ore Project - Pit Slope Design CATION Kami Iron Ore Mine Site, Labrador West, NL N 5855920.66 m E_632914.75 m VES (mm-dd-yy): BORING 9/29/2011 to 10/6/2011 R SAMPLES UNDRAINED SHEAR STREE R 10														
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W W _L UMITS									
-30-		Very dense, dark grey, silty SAND (SM); trace gravel; trace cobbles and boulders: TILL			SS BS	39 40	75		-										
-31-					BS SS BS	41 42 43	96% 100 87%	- 50/100	S	O 50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK (B)									
-33-		Coring required due to cobbles and boulders.			HQ	44	100%	_	-										
-35-					HQ	45	98%	-	-	BENTONITE (A)									
-37-					HQ	46	55%	-	_										
-39-					HQ	47	30%	-	_										
-40-					HQ	48	89%	_											

Ci Pi Li D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr Dedd-vy): BORING9/29/2011	ppe] rado to 1	B Desi or W 10/6/	OR gn /est, 2011		HO	LE R 585592	20.66	CORD	<u>6329</u> 06 m	<u>14.75 m</u> 1 <u>1/3/20</u>	B P. P M SI 11D	OREHO AGE ROJECT IETHOI IZE ATUM	DLE No <u>5</u> () () () () () () () () () ()	of of /asl	<u>ROB-11-01</u> <u>6</u> 121614000-305 n/Dia 'NQ ic (NAD-27)	5
		ruu yy). Dorario		$\overline{\top}$			AMPL	FS			NED SH	IEAR STR	ENGTH	I-kPa				
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 WATER CON LIMITS DYNAMIC PE STANDARD F	20 ITENT & A ENETRATIO	0 30 .TTERBERG ON TEST, BI TION TEST, 20	W _P Lows/0.3 BLOWS/0	40 50		S P CO	TANDPIPE/ IEZOMETER NSTRUCTION DETAILS	
-40-		Verv dense, dark grev, silty SAND				$\left \right $				10	20) 30	4	0 5	0			_
		(SM); trace gravel; trace cobbles and boulders: TILL											· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·					
-41-					ss	49	— 0—	50/50	-								50 mm DIAMETER	-
																	SCREEN IN No. 2 SILICA SAND	
-42-																	PACK (B)	-
																	 - - -	-
-43-	527.40	Very dense grey SILT with sand		i I													-	-
		(ML); trace gravel: TILL			SS	50	355	128/360	s			Ō	· · · · · · · · · · · · · · · · · · ·				 - -	-
				. .					-								- - - - - - -	-
																	 - -	-
					BS	51	150	-	SH									-
-45-																		-
																	 - 	-
-46-					BS	52	150										BENTONITE (A)	-
																	END CAP (B)	-
-47-	523.40	Moderately jointed to intact, medium		-		+			-									-
		strong, dark grey, biotite muscovite quartz schist (Menihek Formation):		-	NQ	53	100%	79%								\bigotimes	50 mm DIAMETER	-
-48-		BEDROCK		-		$\left \right $											No. 10 SLOT PVC SCREEN IN No. 2	-
			_	-												\bigotimes	SILICA SAND	-
40				-									· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·			\bigotimes	-	-
49				-	NQ	54	100%	96%								\bigotimes		-
				-												\bigotimes	- - - -	-
-50			<u> — – – – – – – – – – – – – – – – – – – </u>	<u> </u>			L		1		confined	Compress	ion Tes	l : : : : t		~~~		-
										☐ Field ◇ Fall ▽ Han	d Vane T Cone Te	Test ■ est ●	(Remo (Remo	olded) olded) Torvane	2			

C P L E	Sta LIENT ROJECT OCATION DATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi m-dd-yy): BORING 9/29/2011	ope 1 rado to 1	B Desi or W	OR <u>gn</u> <u>Vest,</u> /2011		HO	↓ LE R	XEC 20.6(LEVE	;0	RI	D E6 0.06	329 m	014.7 11/3	75 m 3/20)11	BC PA PR MI SIZ DA)REHC .GE :OJECT ETHOI ZE ATUM)LE No. <u>6</u> of 1 No. 2 <u>Was</u> <u>HW/NW</u> <u>Geode</u>	LE No. ROB-11-01 <u>6</u> of <u>6</u> No. <u>121614000-305</u> Wash/Dia IW/NW/NQ Geodetic (NAD-27)			
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm)	N-VALUE SI OR RQD %	OTHER TESTS	U WA LIMI DYN STA	NDF TER C TS IAMIC		D SH 2 NT & / TRAT		STR 30 BERG EST, B	ENG) ; W _P i slows	TH - 4(-kPa 0 50 // W ∋ I n ★ 3m ●	D L F CC	Standpipe/ Piezometer Dnstruction Details			
-50-	519.50	Moderately jointed to intact, medium strong, dark grey, biotite muscovite quartz schist (Menihek Formation): BEDROCK End of Borehole		-								10	2	0	30		40	5		END CAP (A)			
-52-		- Artesian water condition flowing at approx. 0.6m above ground surface.																	_				
-53-																							
-54-																			-				
-56-																							
-57-																			_				
-58-																			_				
-59-											<u>^</u>								-				
											<u>∩</u> Г О Г О Г	Jncon Field \ Fall Co	fined 'ane one T	Com Test est	pres:	sion 1 ∎ (Re ▶ (Re	rest mole mole	ded) ded) Torvane	2				
CI PH LC D.	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr Ar-dd-yy): BORING 2/14/2012	pe l ado to 2	B Desi or W /23/	OR gn 'est, 1 2012		HO N W	LE R 58561(SEC	CORE 5 m F EL 1) <u>6_6328</u> .12 m	318.65 r 04/01/2	B(PA PF M <u>n</u> SI 2012 DA	OREHOI AGE ROJECT ETHOD ZEH ATUM	LE No	ROB-11-02 3 121614000-305 h/Dia ic (NAD-27)	5						
----------------------	---	---	---------------------	---------------------------	-----------------------------	--------	-----------------------------	-----------------------	-------------	---	------------------------------------	---------------------	---	--	---------	---	------------------						
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR % 31	N-VALUE 0 OR RQD %	OTHER TESTS	UNDR 1 WATER CO LIMITS DYNAMIC STANDAR	AINED SH	HEAR STI	RENGTH	- kPa 40 50 ↓ W W _L ↔ I m ★ 0.3m ●	P CO	STANDPIPE/ IEZOMETER NSTRUCTION DETAILS							
- 0 -		PEAT			SS	1	125	1		•													
- 1 -					ss	2	0	1		•													
				<u> </u>												BENTONITE	- - -						
- 2 -	566.87	Loose to dense grev silty SAND			ss	3	255	0	•	•							- - 						
		(SM); trace gravel, cobbles and boulders: TILL			SS	4	330	8	-					>><			-						
- 3 -					ss	5	430	8	-		0					-	- - - -						
- 4 -					ss	6	330	7	-			0											
									-								- - 						
- 5 -					ss	7	230	21	-	0		•				-	- 						
					SS	8	255	23	S	0		•				-	- - - -						
- 6 -					SS	9	280	27	-			•				-							
- 7 -					ss	10	150	22	_		,	•				50 mm DIAMETER							
									-							No. 10 SLOT PVC SCREEN IN No. 2	- - - -						
- 8 -					ss	11	0	33	_				•			SILICA SAND PACK	-						
					ss	12	100	49			þ			•			- - - -						
9																							
-10-										→ · · · · · · · · · · · · · · · · · · ·	nonfined	Compres		· · · · · · · · · · · · · · · · · · ·			- - -						
										⊡ Fi ◇ Fa ▽ Ha	eld Vane all Cone T and Pene	Test trometer	■ (Remo ● (Remo Test ■	lded) lded) lded) Torvane									

CI PI LO D.	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labı n-dd-yy): BORING 2/14/2012	ope 1 rado to 2	B Desig or W /23/2	OR gn [est,] 2012		HO	LE R 58561	SEC 69.85	BOREHOLE No. ROB-11-02 PAGE 2 of 3 PROJECT No. 121614000-305 METHOD Wash/Dia S5 m E. 632818.65 m SIZE HW/HQ VEL 1.12 m 04/01/2012
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) V OR TCR % IT	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 + + + + + WATER CONTENT & ATTERBERG W p W WL LIMITS I DYNAMIC PENETRATION TEST, BLOWS/0.3m ★ STANDARD PENETRATION TEST, BLOWS/0.3m ● 10 20 30 40 50
-10 		Loose to dense, grey, silty SAND (SM); trace gravel, cobbles and boulders: TILL			SS SS	13	175	20	-	
-13 13 					SS SS SS	15 16 17	150 330 175	21 26 13	-	
-15-					SS	18	280	24	-	• 50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK
- 16-	551.32	Vary dance, arey to brown silty			SS SS	20 21	75	31 -50/0	-	
-18 - - 19- -		SAND (SM); trace gravel, cobbles and boulders: TILL			BS BS	22	100%		S	О О О
-20-										

C Pl D	Sta LIENT ROJECT OCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr n-dd-yy): BORING 2/14/2012	ope l rado to 2	B Desi or W 2/23/	OR gn /est,] 2012			LE R 585610	69.85	5 m	RC — H) E <u>6</u> .12	<u>328</u> m	618.6 04/0	65 n 01/2	<u>n</u> 2012	BC PA PR MI SL 2 DA	OREHO AGE ROJECT ETHOE ZE I ATUM	DLE N 3 f Nc f Nc f Mf Mf M	No. of Was /HQ	ROB-11-02 3 121614000-305 h/Dia tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UN WATH LIMIT DYNA STAN		AINE 0 DNTEP PENE D PEN	D SH 2 MT & A TRAT IETRA 20		EST, I TEST	RENG	5/0.3r 4 8/0.3r VS/0.	- kPa 10 50 ↓ W W ⊖ I .3m ● .3m ● 0 5	0 L 0	F CC	STANDPIPE/ ilezometer instruction details
-20-	547.56	Very dense, grey to brown, silty SAND (SM); trace gravel, cobbles and boulders: TILL Fractured to intact, medium strong, grey MIE (Magnetite Iron Formation)			BS	24	100%	-	-		0										50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2
-22-		Sokoman Formation: BEDROCK			HQ	25	93%	85%	-												PACK
-24-					HQ	26	100%	93%	-												
-26-	543.09	End of Borehole		-																	END CAP
-27 -28																			_		
-29-										2	 Ui Fi	ncont eld V	fined	Com Test	pres	sion [™]	Test	t Ided)			

CI PH LC	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Labi	ppe] rado	B Desi or W	OR gn 'est, 1	RE NL	HO	LE R	EC	BOREHOLE No. ROB-11-03 PAGE 1 of 3 PROJECT No. 121614000-305 METHOD Wash/Dia 85 m E 632636.22 m SIZE HW/HQ ROB-11-03 PROJECT NO. 121614000-305
D.	ATES (mr	n-dd-yy): BORING					_ W	ATER	LEVE	UNDRAINED SHEAR STRENGTH - kPa
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WARE LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	21 10 20 30 40 50 21 ++++++++++++++++++++++++++++++++++++
- 0 -	575.90	DEAT								10 20 30 40 50 F WELL HEAD
		PEA1			ss	1	75	0	•	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
- 1 -	574.88	Compact, brown, silty SAND (SM); trace gravel and boulders: TILL			ss	2	380	11		BENTONITE
- 2 -					ss	3	75	23		• > [
					ss	4	205	19	s	; • • • • · • · •
- 3 -										
-	571.04									
- 4 -	3/1.94	Compact to very dense, grey, silty								
		SAND (SM); trace gravel, cobbles and boulders: TILL			ss	5	205	22		
- 5 -					ss	6	175	18	- -	0 • 50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2
- 6 -					SS	7	0	68/380		SILICA SAND
									-	
- 7 -										
- 8 -										
- 9 -					ss	8	230	24		
-10-		-locally loose from 9.5 m to 10.1 m depth			ss	9	305	6	SН	
										Concontined Compression Test Greenolded) Fall Cone Test ♦ (Remolded) Hand Penetrometer Test Torvane

CI PI LO D.	Sta LIENT ROJECT DCATION ATES (mi	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr n-dd-yy): BORING	ope 1 rado o 2/2	B Desig or W 9/20	OR gn 'est, 1 12		HO	LE R 58561 /ATER I	69.85	CO 5 m EL	RD) E 6 0.83	326 m	36.2 03/0	22 m 01/2]]] 12	BOR PAG PRO. MET SIZE DAT	EHO E JECT HOE UM	LE No. 2 of No. Wa IW/HQ Geode	ROB-11-03 3 121614000-305 (sh/Dia 2 etic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	U WAT LIMI DYN STAI	NDR. 1 ER CO TS AMIC NDAR		D SH 2(HT & A TRATI IETRA 2(IEAR) ATTER ON TE TION	STR 30 BERG EST, B TEST, 30	ENGT	H - kF 40 W 0.3m 6/0.3m	Pa 50 ₩I ★ 50		STANDPIPE/ PIEZOMETER :ONSTRUCTION DETAILS
-10-		Compact to very dense, grey, silty SAND (SM); trace gravel, cobbles and boulders: TILL			SS SS	10 11	75 305	25 110/300	-		C			•						
-12-	563.40	Very dense, brown, silty SAND (SM); trace gravel and cobbles: TILL		ar tailtairte ar an tailtairte	SS	12	255	88/300	-											
-13-					BS	13	100%	-	-											50 mm DIAMETER
-15-					BS	15	100%	-	-		0									No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK
-17- - - - - 18-					BS	16	100%	-	-		0									
-19-					BS	17	100%	-	-											
-20-		1	11.64		<u> </u>	<u> </u>		<u> </u>	1	<u>:::</u>	∷ U П Fi ⊘ Fa ⊽ н	L nconi ield V all Co and F	fined ane one To Penel	Com Test est	ipres:	sion Te I (Ren I (Ren I (Ren	st nolded nolded	d) d)		<u></u>

CI PI LC D	Sta LIENT ROJECT DCATION ATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Lab n-dd-yy): BORING	ope] rado to 2/	B Desi or W 9/20	OR gn /est, 12	₹E		LE R 58561	(EC 69.85	m	D E_ <u>632(</u> -0.83 m	536.22 m 03/01/2012	BOREHO PAGE PROJECT METHOD SIZEH 2 DATUM	LE No	<u>ROB-11-03</u> <u>3</u> 121614000-305 h/Dia ic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE	OTHER TESTS	UND WATER LIMITS DYNAM . STAND/	RAINED SI 10 2 CONTENT & IC PENETRAT ARD PENETRA 10 2	HEAR STRENG 10 30 ATTERBERG W 10N TEST, BLOW ATION TEST, BLOW 0 30	GTH - kPa 40 50 → P W WL → VS/0.3m ★ WS/0.3m ● 40 _ 50	S PI CO	STANDPIPE/ IEZOMETER NSTRUCTION DETAILS
-20-	555.78	Severely fractured, medium strong, tan to grey, quartzite (Wishart Formation): BEDROCK		- - -	HQ	18	100%	42%	-						50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2
-22-				-	HQ	19	100%	39%							SILICA SAND
-23-	552.25			- - - - -	HQ	20	100%	49%							END CAP
-24-		End of Borehole - Artesian water condition flowing at approx. 0.83m above ground surface.													
-26															
-27-															
-29-														-	
-30-											Unconfined Field Vane Fall Cone 1 Hand Pene	Compression Test ■ (R Test ♦ (R	Test emolded) emolded)		

CI PI LC	Sta LIENT ROJECT DCATION	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi	ope 1 rado	B Desi or W 6/20	OR gn /est, 1 12		HO	LE R 58561'	EC 76.75	5 m	RD _ E_ 0.12	<u>6321</u> 2 m	1 <u>37.55</u> 06/14	<u> </u>	BOF PAC PRC MET SIZE	$\begin{array}{c} \text{REHO}\\ \text{FE} \\ \text{DJECT}\\ \text{FHOD}\\ \text{FHOD}\\ \text{FIM} \end{array}$	LE No <u>1</u> No. <u>W</u> <u>IW/H</u> Geod). 	ROB-11-04 3 121614000-305 h/Dia ic (NAD-27)
D.		Pud-yy). DORING		1		ç		FS			DRAIN	IED SI	HEAR S		TH - F	Pa			
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) S	N-VALUE OR RQD %	OTHER TESTS	WATE LIMITS DYNA		2 TENT & . NETRAT	20 	30 RG W _P H	40 W 	50 W _L •	-	ع P CO 0.	STANDPIPE/ IEZOMETER NSTRUCTION DETAILS 79 m STICK UP
	595.10										10	2	0 3	30	40	50		۳	CAST IRON WELL HEAD
	594.80	PEAT		₹	ss	1	305	1											-
		Very loose to very dense, grey, silty SAND (SM): trace gravel: TILL																	-
- 1 -					ss	2	355	16				•							BENTONITE
					<u> </u>														
					<u> </u>				-										-
					ss	3	150	9			•								-
					<u> </u>														
					SS	4	150	8										///	-
					<u> </u>				-										-
- 3 -																			-
					SS	5	305	16				•							-
						6	125	20											E
- 4 -						0	123	20											-
									_										-
					ss	7	0	13											Ē
- 5 -									-										-
					ss	8	305	32						•					-
					<u> </u>														
- 0 -																	1 E		-
					SS	9	510	1		•									-
						10	510	_											
					55	10	510	5	_										50 mm DIAMETER
																			SCREEN IN No. 2
					ss	11	255	13											SILICA SAND
					<u> </u>				-										
					ss	12	305	24				· · · · · · · · · · · · · · · · · · ·	•						-
					<u> </u>				-			· · · ·							
9-					<u> </u>				-										-
					ss	13	330	16				•							
									-										
- 10-			P								Unco Field Fall (Hand	onfined Vane Cone 1 d Pene	l Compre Test Fest etrometer	ession T (Rer (Rer (Rer Test	est nolde nolde	ed) ed) prvane			

CI PI L(D	Sta LIENT ROJECT DCATION ATES (m	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Lab m-dd-yy): BORING 4/4/2012 1	ope rado to 4/	B Desi or W '6/20	OR gn /est, /12	XE		LE R	XEC 76.75	BOREHOLE No. ROB-11. PAGE 2 of 3 PROJECT No. 1216140 METHOD Wash/Dia .75 m E_632137.55 m SIZE WEL 0.12 m 06/14/2012 DATUM Geodetic (NAD-2 DATUM Geodetic (NAD-2	<u>-04</u> 000-305
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W W _L UMITS	:)N
-10-		Very loose to very dense, grey, silty SAND (SM); trace gravel: TILL			SS	14	405	18	-		
-11-		-trace cobbles below 11.9 m depth			SS SS	15	305	83	-		
- 14-					BS	17	100%	-	-	50 mm DIAI No. 10 SLO SCREEN IN SILICA SAN PACK	METER - T PVC - I No. 2 - ID -
					ss	18	355	54	-		-
-16-						10	305		_		
- 18-						1,	505		-		
- 19-					SS	20	200	154/405	-		
-20-					SS	21	175	79/255			

C Pl D	Sta LIENT ROJECT OCATION ATES (mi	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit SI Kami Iron Ore Mine Site, Lab m-dd-yy): BORING 4/4/2012	ope prade to 4/	B Desi or W 6/20	ign Vest, 112	₹E	HOI	LE R	EC 76.75	5 m EL	D E_(0.12	6321 m	1 <u>37</u> . 06	.55 1	B P. P N <u>m</u> S 2012 C	ORE AGE ROJE ÆTH IZE DATU	HOL 3 ECT IOD <u>H</u> M	LE No. Mo. Was W/HQ Geodet	ROB-11-04 3 121614000-3 h/Dia ic (NAD-27)	
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE	OTHER TESTS	WA LIM DYI ST/		ED SI 2 ENT & . ETRAT NETR/ 2		R STI 3 RBER TEST, N TES 3	RENGTH 30 G W _P H BLOWS/0. T, BLOWS/0. 0 4	1 - kPa 40 ₩ 	³ 50 ₩ _L -1 ★ 50	S P CO	TANDPIPE/ IEZOMETER INSTRUCTION DETAILS	
-20-	575.04	Intact, medium strong, grey, quartz muscovite biotite schist (Wishart Formation): BEDROCK			HQ	22	100%	100%	-										END CAP	
-22-					HQ	23	100%	100%	_											
-24-	570.72	End of Borehole		· - - - - - -	HQ	24	100%	100%												
-25-																				
-27-																				
-28-																				
-30-											Uncor Field '	nfined Vane	l Coi Tes	mpre:	ssion Tes ■ (Remi ▲ (Remi	st olded)				

CI PF L(Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr	pe] rado	B Desi or W	OR gn /est,	Υ Ε Ι		LE R	EC	BOREHOLE No. ROB-11-05 PAGE 1 of 2 PROJECT No. 121614000-305 METHOD Wash/Dia 8 m E_631819.27 m SIZE HW/HQ
D	ATES (mn	n-dd-yy): BORING	<u>o 3/</u> 9	<u>)/20</u>	12	_	_ W	/ATER I	EVE	EL <u>2.12 m 06/14/2012 DATUM</u> Geodetic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - KPa - 10 20 30 40 50 - + + + + - + STANDPIPE/ WATER CONTENT & ATTERBERG W _P W W _L LIMITS
- 0 -	629.00				ļ'		<u> </u>		<u> </u>	
- 1 -	628.92	VPEAT // Compact to very dense, brown, silty SAND (SM); trace gravel, cobbles and boulders: TILL			SS	1	305	133/380		BENTONITE (A)
						!				
- 2 -					SS	2	305	96	S H	(A) - 2.12 m (B) - 1.57 m
						$\left \right $	<u> </u>			
- 3 -						 -				
					SS	3	280	34		O: ●
						<u> </u>	<u> </u>		-	
- 4 -					SS	4	280	12	-	
					SS	5	150	26	-	50 mm DIAMETER
					SS	6	280	65		0 INO. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND
	623.21	Very dense, grey, SILT with sand				!				РАСК (В)
- 0 -		(ML); trace gravel, cobbles and		i	SS	7	125	67/150		
- 7 -										
					ss	8	0	70/75		
- 8 -	620.77			L						
		Very dense, brown, silty SAND (SM); trace gravel, cobbles and boulders:								
- 9 -		TILL								
					SS	9	150	60/150	S	
10			_	_	_	_			_	 △ Unconfined Compression Test □ Field Vane Test ■ (Remolded) ◇ Fall Cone Test ◆ (Remolded) ▽ Hand Penetrometer Test

C P! D	Sta LIENT ROJECT OCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Ska Kami Iron Ore Mine Site, Labu h-dd-yy): BORING 3/3/2012 t	ope 1 rado	B Desig or W 9/20	OR gn Vest, 1 12	RE NL	HO N W	LE R 58559	REC 54.78	C 8 m EL		D	6. 12 1	318 m	319. 06/	27 ı /14/	n 201	B P P M SI 2 D	OR AG RO IET IZE AT	EHO E JEC HO UM	DLE 2 T N D . HW <u>G</u>	No. ₋ of 0. Was 7/HQ eode	ROB-11-05 2 121614000-305 sh/Dia tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY(mm) RECOVERY(mm) OR TCR %	N-VALUE SA OR RQD %	OTHER TESTS	W/ LIN DY ST		10 		D SH 2 IT & / IRAT ETR/ 20		R STI 3 RBER REST, I TEST 3	REN 30 	GTH 'P VS/0.3 DWS/0 4	I - kI 40 ₩ ☉ 3m 0.3m	Pa 5 	0 /L	C	STANDPIPE/ PIEZOMETER ONSTRUCTION DETAILS
-10 11- 12- 13- 13- 14- 15-		Very dense, brown, silty SAND (SM); trace gravel, cobbles and boulders: TILL		2019년 1월 19일 - 1월 19 1월 19일 - 1월 1	SS	10	75	60/75			c												END CAP (B) BENTONITE (A)
16- 17- 18- 19- 	613.46	Fractured to intact, medium strong, white to green, quartz muscovite biotite calcite Schist (Wishart Formation): BEDROCK			BS HQ HQ	11 12 13 14	100% 100% 100%	- 92% 100% 56%	-														50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK (A) END CAP (A)
-20-		End of Borehole										Un Fie Fal	confi Id Va Il Coi nd P	ined ane ne T	Cor Test est	npre:	ssion (F (F Test	n Tes Remo Remo	st older	d) d)			

CI PH LC D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Ske Kami Iron Ore Mine Site, Labu Ar-dd-yy): BORING 2/26/2012	ope l rado to 2	B Desi r W /28/	OR gn 'est,] 2012		HO	LE R 58559	SEC 54.78	CO 8 m EL) E6314 5.27 m	471.79 06/14	m /2012	BOF PAC PRC ME SIZI DA	REHO GE DJECT FHOE E FUM	LE No. 1 of No. Wa W/H(Geod)	ROB-11-06 2 121614000-305 ush/Dia 2 etic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR ROD %	OTHER TESTS	WA LIM DYI STA	JNDR TER C ITS NAMIC	CAINED SI 10 2 CONTENT & PENETRAT RD PENETRAT	HEAR S	TRENG 30 RG W _P E , BLOWS ST, BLOW	TH - F 40 	<pa 50 ₩ • •</pa 	- - - -	STANDPIPE/ PIEZOMETER CONSTRUCTION DETAILS 1.19 m STICK UP CAST IRON
- 0 -	653.00	TOPSOIL	 ,2147		-				$\left \right $			10 2	0 3 	30	40	51		WELL HEAD
	652.77	Compact, grey, silty SAND (SM)		¢	SS	1	405	26										
-		Compact to very dense, light brown,	Po	C C					1									j t
- 1 -		frequent cobbles and boulders: TILL	S S		SS	2	205	22										BENTONITE
				Ċ	SS	3	355	22	s		0		•					
			Po	¢	<u> </u>				-									
- 2 -			0		SS	4	355	28					•	•				
			0	¢	<u> </u>				-									
- 3 -			þ	e	SS	5	205	45				0				•		
			D		SS	6	0	105/230	-									
			Ø	ç														
- 4 -			P														_	
-					<u> </u>				-									
			Ó	ç	SS	7	305	31						•				
- 5 -			D (SS	8	150	115/355				0					$- \square$	50 mm DIAMETER
-				₹														No. 10 SLOT PVC
-			0	Ś	HQ	9	79%	-										SCREEN IN No. 2
- 6 -			D (<u> </u>				-									PACK
				(
-			0	¢	но	10	57%	-										
- 7 -			р С															
			0	\$														
			Po	¢	SS	11	280	32										
- 8 -			o D	· • •					-									
			0	¢	ss	12	305	71			(>>	♦ 目	
			þ	ć	<u> </u>				-									
			D						1									
			0		SS	13	280	41							•			
-10-	643.04		þ		SS	14	0	50/150	-		<u> </u>				iont			
												ield Vane all Cone I land Pene	Test Test fest	€ (Rei € (Rei € (Rei Test	esi molde molde N To	ed) ed) orvane		

C P L D	Sta LIENT ROJECT OCATION	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sle Kami Iron Ore Mine Site, Lab m-dd-vv): BORING 2/26/2012	ope] rado 2 to 2	B Desi or W 2/28/	OR gn /est, /2012		HO	LE R 58559: VATER	EC 54.78	С 3 п		D E_0 5.27	5 <u>314</u> m	71.	.79 ı /14/	n	BO PA PI M SI 2 D	ORI AGE ROJ IETI IZE	EHOI	LE No. 2 of No 0 0 1W/HQ Geodet	ROB-11-06 	<u>1</u> 5 -
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	W, LIN DY	UNDR ATER C MITS NAMIC ANDAR		ED SH 2 NT & / ETRAT NETR/ 2		R ST RBER TEST, N TES ⁻ 3	REN 30 G W BLOW F, BLC 0	GTH 2 P vs/0.3 ows/c 4(- kP 40 ₩ ↔ 3m 0.3m	'a 50 ₩ _L • •	- 5 - F CC	STANDPIPE/ IEZOMETER INSTRUCTION DETAILS	
-10-		Moderately jointed to intact, strong, grey, quartz muscovite biotite schist (Wishart Formation): BEDROCK		- - - -	HQ	15	100%	89%													50 mm DIAMETER No. 10 SLOT PVC	
- 1 1- - 12-				- - - - -	HQ	16	100%	100%													SCREEN IN No. 2 SILICA SAND PACK	
- 13-				-	HQ	17	100%	100%														
-14-	639.28	End of Borehole																			END CAP	
-15-															· · · · · · · · · · · · · · · · · · ·					-		
-16-																				-		
-17-																				-		
-18-																				-		
- 19-																				-		
												Incor Field N Fall Co Hand	ifined /ane one T Pene	Cor Test est	mpre: t l •	ssion ■ (R ♦ (R Test	Tes lemo lemo	t olded olded Tor	l) I) vane			

CI PR LC	Sta LIENT OJECT OCATION	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr	pe l ado	B Desi r W	OR gn (est, 1)			LE R	EC	BOREHOLE No. ROB-11-07 PAGE 1 of 7 PROJECT No. 121614000-305 METHOD Wash/Dia SIZE HW/HQ
DA	ATES (mn	n-dd-yy): BORING	to 4	/3/2			_ W	ATER I	LEVE	EL <u>5.78 m 06/14/2012 DATUM</u> Geodetic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	0 20 30 40 50 + + + STANDPIPE/ WATER CONTENT & ATTERBERG W P W L PIEZOMETER LIMITS - - DYNAMIC PENETRATION TEST, BLOWS/0.3m ★ STANDARD PENETRATION TEST, BLOWS/0.3m 1.07 m STICK UP
- 0 -	602.70									10 20 30 40 50 CAST IRON WELL HEAD
	602.40	PEAT			ss	1	205	11		
		Compact to very dense, brown, silty SAND (SM); trace gravel, cobbles and boulders: TILL								
					ss	2	280	12	s н	C ●
- 2 -					ss	3	230	64		
									-	
- 3 -				· ·	SS	4	280	49		
				-					-	
					SS	5	230	26		
- 4 -										
- 5 -									-	
				▼	ss	6	205	48		
- 6 -				_	SS	7	355	116		
					BS	8	100%	-		
- 7 -										50 mm DIAMETER
				- - - -						SCREEN IN NO. 2
- 8 -										SILICA SAND
					DC		1000/			
					BS	9	100%	-		
- 9 -										
					BS	10	100%	-		
-10-				.]	I	<u> </u>			<u> </u>	Constraint of the second

C Pl L D	Sta LIENT ROJECT OCATION ATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Labu n-dd-yy): BORING 3/27/2012	ope] rado to 4	B Desig or W 1/3/2	OR gn /est,] 012		HO v	LE R	REC 02.17	BOREHOLE No. ROB-11-07 PAGE 2 of PROJECT No. 121614000-305 METHOD Wash/Dia 17 m E 631655.16 m SIZE HW/HQ VEL 5.78 m 06/14/2012
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) TAW	N-VALUE ST OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 + + + + WATER CONTENT & ATTERBERG W _P W W _L LIMITS
-10 -11 -12 -13 -14 -15 -16 -16 -17	590.51	Compact to very dense, brown, silty SAND (SM); trace gravel, cobbles and boulders: TILL Very dense, grey, silty SAND (SM); trace gravel and cobbles: TILL			BS		380	93	5	10 20 30 40 50 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1
-18-					BS	13	100%	-	-	
										 ☐ Uncontined Compression Test ☐ Field Vane Test ⓓ (Remolded) ♦ (Remolded) ♡ Hand Penetrometer Test N Torvane

C ¹ Pl L0 D	Sta LIENT ROJECT OCATION PATES (m	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr m-dd-yy): BORING 3/27/2012	pe 1 rado to 4	B Desi or W 4/3/2	OR gn /est, 1 012		HO	LE R 58548	REC 02.17	ORE) E <u>6316</u> 5.78 m	55.16 m 06/14/2	B P P N 1 S 2012 D	OREHO AGE ROJECT METHOD IZE DATUM	LE No. <u>3</u> of No. <u>Was</u> [W/HQ Geodet	ROB-11-07 7 121614000-305 h/Dia tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE	OTHER TESTS	UNDR 1 WATER C LIMITS DYNAMIC STANDAR	AINED SH 0 21 ONTENT & A PENETRATI D PENETRA 10 20	IEAR STR 0 30 ATTERBERG ION TEST, B ITION TEST, 0 30	RENGTH) ; W _P 	H-kPa 40 50 ₩ W _L → I 3m ★ ^{10.3m} ● 40 50	F	STANDPIPE/ ilezometer instruction details
-21- -22- -23- -24- -25-		Very dense, grey, silty SAND (SM); trace gravel and cobbles: TILL		2011년 1월 1911년 1월 19 1월 1911년 1월 1911년 1월 1월 1911년 1월	BS	15	100%	-	-) 30	4			50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK
-26-					BS	17	100%	-	-		0					
-28-	575.57	Very dense, brown, silty SAND (SM); trace gravel and cobbles: TILL			BS	18	100%	-	-							
										U □ F □ F	Inconfined ield Vane all Cone T	Compress Test est trometer T	sion Tes I (Rem I (Rem I (Rem	st olded) olded) Torvane		

C. PI LO D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Ske Kami Iron Ore Mine Site, Labu a-dd-yy): BORING	ope rado to 4	B Desig or W	OR gn (est, 1) 012		HO N W	LE F 1 58548 VATER 1	REC 02.17 Leve	BOREHOLE No. ROB-11-07 PAGE 4 of PROJECT No. 121614000-305 METHOD Wash/Dia 17 m E 631655.16 m SIZE HW/HQ VEL 5.78 m 06/14/2012 DATUM Geodetic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 STANDPIPE/ PIEZOMETER CONSTRUCTION DYNAMIC PENETRATION TEST, BLOWS/0.3m STANDARD PENETRATION TEST, BLOWS/0.3m 10 20 20 20 50
-30 -31 -32 -33 -33 -34 -35 -36 -37 -38 -38 -38	570.85	Very dense, brown, silty SAND (SM); trace gravel and cobbles: TILL Very dense, grey, silty SAND (SM); trace gravel and cobbles: TILL			BS BS BS	20 21 22 23	100% 100%			10 20 30 40 50 1<
-40-										

C Pl L D	Sta LIENT ROJECT OCATION ATES (mi	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labu n-dd-yy): BORING 3/27/2012	ope] rado	B Desi or W 4/3/2	OR gn /est, 2012			LE R	XEC 02.17	BOREHOLE No. ROB-11-07 PAGE 5 of 7 PROJECT No. 121614000-305 METHOD Wash/Dia 7 m E 631655.16 m SIZE HW/HQ EL 5.78 m 06/14/2012
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE SI OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W W _L LIMITS
-40 -41 -42 -42 -43 -44 -45 -46 -47 -46 -47 -48 -49 -49 -49	559.42	Very dense, brown, silty SAND (SM); trace gravel and cobbles: TILL Very dense, grey, silty SAND (SM); trace gravel, cobbles and boulders: TILL			BS	24	100% 100%		S S	10 20 30 40 50 50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK ↓ Unconfined Compression Test
										 ☐ Field Vane Test ☐ Remolded) ◇ Fall Cone Test ♦ (Remolded) ∨ Hand Penetrometer Test ▲ Torvane

C: Pl L0 D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labu n-dd-yy): BORING <u>3/27/2012</u>	ope rado to 4	B Desig	OR gn 'est, 1 012	RE NL	HO	LE R 58548	REC 02.17	SORD BOREHOLE NoRO PAGE6 of7 PROJECT No12 METHODWash/Dia 7 m _ E_631655.16 m SIZEHW/HQ EL5.78 m06/14/2012 DATUMGeodetic (Note: 100, 100, 100, 100, 100, 100, 100, 100)B-11-07 1614000-305 a NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - KPa 10 20 30 40 50 WATER CONTENT & ATTERBERG W P W WL LIMITS	DPIPE/ METER RUCTION AILS
-50 -51 -52		Very dense, grey, silty SAND (SM); trace gravel, cobbles and boulders: TILL			BS	28	100%	-	-		
-53	550.27	Very severely fractured to severely fractured, extremely weak, dark grey, muscovite biotite schist (Menihek Formation): BEDROCK Note: Bedrock is so weak some of it is getting washed out with the drilling water.			SS	29	125	50/125		50 m No.	11 SLOT PVC
-55					NQ	30	26%	9%		SCR SILIC PAC	EEN IN No. 2
-57-				- · · · · · · · · · · · · · · · · · · ·	NQ	31	87%	48%	-		
-59-					NQ	32	52%	0%		Unconfined Compression Test Field Vane Test Field Vane Test Field Come Test Field Co	-

C PI L'	Sta LIENT ROJECT OCATION	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi	ppe l rado to 4	B Designer D	OR gn <u>/est,</u> 012			LE F	REC 302.17	СО 7 m	R	D E 5.78	<u>6316</u> m	555. 06/	<u>16 1</u> /14/	Е Р Р М <u>n</u> S 2012 г	BORI PAGE ROJ IETH IZE	EHOI ECT HOD H	LE No. ROB-11-0 7 of 7 No. 121614000 Wash/Dia IW/HQ Geodetic (NAD-27)	7)-305
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	ECOVERY(mm) SIGME	ES % OK KOD %	OTHER TESTS				ED SH 2 ENT & / ETRAT		R STI	RENGTH 30 G W _P H BLOWS/0.	H - KP 40 + W 3m	a 50 WL +	STANDPIPE/ PIEZOMETER CONSTRUCTION DETAILS	
-60-	542.65	End of Borehole								. 51/		10	2	0	3	0 4	10.311 10	50		
-61-																				
-62-															· · · · · · · · · · · · · · · · · · ·					
-63-																				
-65-																				
-66-																				
-67-																			_	
-68-																			-	
-69-																			-	
												Unco	nfined	l Cor	npre	ssion Te	st			-
												Field Fall C Hand	Vane one T Pene	Test Test	l ∢ eter	I (Rem ♦ (Rem	olded olded)) vane		

CI PH LC	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi	ppe] ado:	B Desi or W 10/2	OR gn (est,]		HO	LE R	EC 86.46	COR	D . E_0 N/A	5319	056.3	7 n]]]	BOI PAC PRC ME SIZ	REHC GE DJEC THOI E	DLE 1 F No D _ HW	No. of D. Wa /HQ	ROB-11-08 4 121614000-305 sh/Dia 2
D.	ATES (mr	h-aa-yy): BORING						ATER I	LEVE		RAINE	ED SI	HEAR	STR	RENGT	DA TH-I	kPa		Jour	
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	WATER LIMITS DYNAM STAND		2 INT & ETRAT	20 	30 BERG) W _P L BLOWS/	40 W 0.3m S/0.3r	50 / W 		C	STANDPIPE/ PIEZOMETER ONSTRUCTION DETAILS 1.45 m STICK UP
- 0 -	579.20										10	2	0	30		40	5			
-	578.90	with peat and topsoil veneer			ss	1	560	13												CONDITIONS.
		Compact to dense, grey to brown, silty		-					_									X		WATER LEVEL
- 1 -		SAND (SM); trace to locally some gravel: TILL			SS	2	405	21	S		0		•							GROUND
-																				SURFACE.
-		-frequent cobbles and boulders to 1.5m depth; occasional cobbles below																		
- 2 -		1.5m depth																		
-																				
- 3 -									-									-0		
					SS	3	355	14			•									
-									-											
- 4 -					SS	4	380	25	S			· · ·								
									_					-				8		
-					SS	5	280	46									•			
- 5 -									-			· · ·			· · · ·					
					ss	6	230	20												
-																				
- 6 -																			8-	
					SS	7	50	38								•				
- - -																				50 mm DIAMETER
- / -					SS	8	535	21	S											No. 10 SLOT PVC
				-																SILICA SAND
-					SS	9	255	18	SН			•			· · · ·					PACK (B)
																$\left \right $				
					ss	10	355	15	s	0		•								
a									-											
							<u> </u>		+											
	569 45			-	SS	11	280	16				•								
-10-		Compact to very dense, brown to	20	*					1											× F
										\square	Uncor Field	nfinec √ane	l Com Test	pres	sion Te ∎ (Ren	est nold	ed)			
										\Diamond	Fall C Hand	one 1 Pene	Test etrome	ter T	(Ren est	nold	ed) orvane	•		

C ^T Pl LC D	Sta LIENT ROJECT OCATION DATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Labi n-dd-yy): BORING 10/26/201	ope rado 1 to	B Desi or W	OR gn /est, 28/20	\ E		LE R 585478	EC <u>36.46</u> Leve	BOREHO BOREHO PAGE PROJEC METHO 6 m E EL N/A	DLE No. ROB-11-08 2 of 4 T No. 121614000-305 D Wash/Dia HW/HQ
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 5 WATER CONTENT & ATTERBERG W P W V LIMITS DYNAMIC PENETRATION TEST, BLOWS/0.3m ★ STANDARD PENETRATION TEST, BLOWS/0.3m ● 10 20 30 40	0 STANDPIPE/ /L PIEZOMETER I CONSTRUCTION DETAILS 50
- 10 -		grey, silty SAND with gravel (SM); trace cobbles: TILL		3 2 2 2 2	SS	12	280	23	s	•	
-12-			700070	2.0.0 ×	SS SS	14	305	51		>	50 mm DIAMETER No. 10 SLOT PVC
-13-					SS	16	280	26	-		SCREEN IN NO. 2 SILICA SAND PACK (A)
-14-			2 0 0 2 0 2 0 0 2 0	20 <u>0</u> 2 2 0 2	SS SS	17	125 255	34	-		
-15-				700					_		
-17-			200 200	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SS SS SS	19 20	280	32 62			
- 18-			0 0 0 0	0 <u>7 7</u> 0 7	SS	21	330	54	S	p. >>	
- 19-	560.66	Very dense, dark grey, silty SAND with gravel (SM) to silty clayey SAND (SC-SM); occasional cobbles: TILL			SS BS	22 23	-	-	-		
20										 ☐ Unconfined Compression Test ☐ Field Vane Test ■ (Remolded) ◇ Fall Cone Test ◆ (Remolded) ♡ Hand Penetrometer Test ▲ Torvan 	e

CI PH LC D.	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Labi n-dd-yy): BORING <u>10/26/201</u>	ope l rado 1 to	B Desi or W 10/2	OR gn /est,] 28/20			LE R 585478 /ATER I	86.46	SOR	D E_6 N/A	319	56.3	57 m	 	BOI PAC PRC ME SIZ DA	REH GE DJEC THC E _ TUN	IOLE 3 CT N DD HW 4 G	No. _ of [0 Was //HQ eode		15
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UND WATER LIMITS DYNAMI STANDA	RAINE 10 CONTEL C PENE RD PEN 10	D SH 20 NT & A TRATIO		STR 30 BERG ST, BI TEST, 30		TH - 40 ₩ %0.3m 'S/0.3i 40	kPa	50 W _L -1 50	F	STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS	
-20-		Very dense, dark grey, silty SAND with gravel (SM) to silty clayey SAND (SC-SM); occasional cobbles: TILL	» D × 0 , D		BS	24	92%	- 50/75	s	0											
- 22-	556.34			0 4 4 4 V	BS	26	-	-	SH		P								50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND	
-23-	550.51	Very severely fractured to moderately jointed, medium strong to occasionally weak, grey, banded, Quartzite, Wishart Formation: BEDROCK		· · · · ·	HQ	27	30%	0%												PACK (A)	
-25-				-	- SS HQ	28 29	60%		-											***	
-26-					HQ	30	100%	35%	-												
-28-					HQ	31	100%	81%	-								• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •			END CAP (A)	
-29	550.24	End of Borehole - Artesian conditions encountered during drilling at approximately		-																
-30-			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			Uncon Field V Fall Co	fined ane 7	Com Test est	press	sion T I (Rer ▶ (Rer	est mold mold	ed) ed)	: 		1	

C: PI LC D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sko Kami Iron Ore Mine Site, Labi n-dd-yy): BORING <u>10/26/201</u>	ope] rado 1 to	B Designer D	OR gn /est, 28/20	Ε <u>Ν</u> <u>Ν</u>	HO	LE F 1. <u>58547</u> WATER	REC 86.46	CC 6 n	DF	RE _ H) E(N/A	631	95	6.3	37	m		BC PA PF M SL DA	ORI AGI ROJ ETI ZE ATI	EHO E _ TEC HO	DLE No. <u>4</u> of T No. D <u>Wa</u> <u>HW/HÇ</u> <u>Geode</u>	<u>ROB-11-08</u> <u>4</u> <u>121614000-</u> sh/Dia ctic (NAD-27)	<u>-30</u> 5
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE SA OR ROD %	OTHER TESTS	W LI S				ED S			R ST	RE 30 + 8G BLC T, BI	NG W _P I ows	TH 4 ./0.3i /S/0	- kF ŀ0 ↓ ₩ ↔ .3m	Pa 5 ∨ ★		STANDPIPE/ PIEZOMETER ONSTRUCTION DETAILS	
-30 -31 -32 -33 -34 -35 -36 -37 -38 -38 -39		 17.7m to 19.9m depth and 22.9m to 29.0m depth. Artesian water condition flowing above ground surface. 															3						50		
-40-												U U Fi Fi	ncoi eld ' all C	nfine Vane one	ed C e Te Te	Corr est st	pre	ssic ■ (● (on T (Rei (Rei	est mol	ldec Idec	i) i)	<u> </u>		-

CI PH LC D	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labu	pe] :ado to 1	B Desi or W 1/5/	OR gn /est, 1 /2011			LE R	EC 55.61	m	D E_632 -0.9 m	217.11 m 11/3/201	B P. - P! - N - S! 1 D	OREHOI AGE ROJECT IETHOD IZE NATUM	LE No. 1 of No. Was IW/HQ Geodet	<u>ROB-11-09</u> <u>4</u> 121614000-305 h/Dia tic (NA <u>D-27)</u>
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATE LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE SI OR RQD %	OTHER TESTS	UND WATER LIMITS DYNAMI STANDA	RAINED S 10 CONTENT 8 C PENETRA RD PENETF	HEAR STREE 20 30 ATTERBERG N TION TEST, BLC ATTION TEST, BLC	V _P Ws/0.:	1 - kPa 40 50 ↓ W W _L → 1 3m ★ /0.3m ●		STANDPIPE/ IEZOMETER INSTRUCTION DETAILS .89 m STICK UP CAST IRON
- 0 -	589.70	PEAT		4	<u> </u> '	\vdash	<u> </u>		+		10 2	20 30	4	-0 5U		WELL HEAD
	307.33	Loose to compact, brown, SILT (ML); trace sand: TILL			SS	1	560	7	-							
- 1 -	588 18				SS	2	355	13	s			0				
	200.10	Loose to compact, brown, silty SAND (SM); trace gravel to poorly graded			SS	3	205	7	S H							BENTONITE
		cobbles: TILL			SS	4	455	27	s		0					
- 3 -					ss	5	255	23								
- 4 -					SS	6	405	30	-			•				
- 5 -					SS	7	305	31	s		Ö	•				
					SS	8	405	17	-							
- 0 -					ss	9	330	19								
- 7 -				a ta ta ara ta ta ta	SS	10	480	28	-			•				
- 8 -					SS	11	455	21	s		0	•	· · · · · · · · · · · · · · · · · · ·			
					SS	12	455	11	-		•					
	580.10	Compact to dense, grey, silty SAND	2 0		SS	13	510	34	-				•			
-10-		<u>with graver (SM), trace coobles and</u>	<u>51.1-1</u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		Unconfine Field Vane Fall Cone Hand Pen	d Compressic e Test ■ (Test ♦ (etrometer Tes	n Tes Remo Remo	st olded) olded) Torvane	<u>I - </u>	

C ^T Pl LC D	Sta LIENT ROJECT OCATION ATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Lab n-dd-yy): BORING 11/2/2011	ope rado to 1	B Desig or W 1/5/	OR gn [est,] 2011		HO	LE R 1 585465 7 Ater I	EC 55.61	ORD <u>m e</u> l0.9	<u>6322</u> m	17.11 n 11/3/20	B P P M S D 11 C	BOREHO PAGE _ PROJEC METHO BIZE DATUM	DLEN 2 T No D <u>V</u> HW/ <u>Ge</u>	No of Mash HQ odetig	ROB-11-09 4 121614000-305 //Dia c (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAIN 10 WATER CONT LIMITS DYNAMIC PEN STANDARD PE	ED SH 20 ENT & A IETRATI	IEAR STF 0 3(RENGTH	H - kPa 40 5 ↓ W W → 	0 /_	S ⁻ PII CON	TANDPIPE/ EZOMETER NSTRUCTION DETAILS
-10-		boulders: TILL		2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SS SS	14 - 15		28			20) 30	4				
-13-				12 - 0 - 0	SS SS	16 17	355	26	S S H	¢		•					
-14- 			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8													
-16-	573.55	Dense to very dense, brown, silty SAND with gravel (SM); trace cobbles: TILL			ss	18	610	33	S		3						
-18-				4 7 0 4	SS	19	230	128/530	-								
-19-				2													
										☐ Unco ☐ Field ♦ Fall C ♥ Hance	onfined Vane Cone To Penet	Compres Test est trometer T	sion Tes I (Rem I (Rem I (Rem	st olded) olded) Torvan	e		

CI PI LO D.	Sta LIENT ROJECT OCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Lab a-dd-yy): BORING 11/2/2011	ope ¹ rado to 1	B Desig or W 1/5/2	OR gn /est, 1 2011		HO	LE R 58546	EC 55.61	BOREHOLE No. ROB-11-09 PAGE 3 of 4 PROJECT No. 121614000-305 METHOD Wash/Dia 51 m E. 632217.11 m SIZE HW/HQ TEL -0.9 m 11/3/2011 DATUM
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) B OR TCR % 17	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENGTH - kPa 10 20 30 40 50 WATER CONTENT & ATTERBERG W P W WL UMITS
-21 -21 -22 -23 -23 -24 -25 -26 -27 -28 -28	567.14	Dense to very dense, brown, silty SAND with gravel (SM); trace cobbles: TILL Very dense, grey silty SAND with gravel (SM); trace cobbles and boulders: TILL Fractured, extremely weak, orange brown, Ms-Sch (Muscivite Schist), Menihek Formation: BEDROCK			SS SS BS HQ HQ	20 21 22 23 24 25		112/300 113/380 - - 67% 50%	SH	0 MILLEN TELES (BURNAULTER) 10 20 30 40 50 10 20 30 40 50 50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK
					HQ	26	83%	72%		

C Pl D	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sle Kami Iron Ore Mine Site, Lab m-dd-vv): BORING 11/2/2011	ope] rado	B Desi or W 11/5/	OR gn /est, 2011		HO	LE F	REC 555.61	CO	RI	D E_ - <u>0.9</u>	632 m	217 11	<u>'.11</u> 1/ <u>3/2</u>	<u>m</u> 011	BC PA PF M SI	ORE AGE ROJI ETH ZE ATI	HOI ECT HOD H	LE No. 4 of No Was W/HQ Geodet	ROB-11-09 4 121614000-3 h/Dia tic (NAD-27)	<u>30</u> 5
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) Add TdMY	N-VALUE S3 OR RQD %	OTHER TESTS	WA LIM DYI ST/		C PEN	ED S ENT & JETRA ENETP		- NR ST 3 ERBER TEST, NN TES 3	REN(30 +	 GTH P vs/0.3 vws/0 4(- kPa +0 + W 	3 50 ₩L -1 *	P CC	STANDPIPE/ IEZOMETER INSTRUCTION DETAILS	
-30-	559.22	Fractured, extremely weak, orange brown, Ms-Sch (Muscivite Schist), Menihek Formation: BEDROCK				+		+	+												END CAP	
-31 -32 -33 -34 -35 -36 -37 -38 -39 -39		End of Borehole																				
												Field Fall (Hanc	Vane Cone	e Tes Test etror	st : •	■ (R ♦ (R Test	temo temo	lded) Ided) Ided))) (ane			

CI	Sta	Alderon Iron Ore Corp.		В	OR	RE	HO	LE R	REC	C	R	D					B P. Pl	ORI AGE ROJ	EHC E _ EC	DLE 1 TN	No. _ of o.	<u>ROB-11-10</u> <u>1</u> 121614000-3	<u> </u>
PF	ROJECT	Kami Iron Ore Project - Pit Slo	pe l	Desi	gn lost	NIT		5054	(()				()				Μ	ETI	HOI		Wa	sh/Dia	_
	OCATION ATES (mr	-dd-vv) BORING 10/17/201	rauo 1 to	10/1	18/20	111	_N_N	<u> </u>	<u>663 i</u> Leve	<u>m</u> EL		Е 6.45	<u>63</u> 5 m	0264 03	<u>15 m</u> 8/01/	1 /201	. SI 2 D	IZE ATI	J.M	<u>п</u> <u>G</u>		etic (NAD-27)	_
	TTES (III					ç	SAMPLI	ES			UNDF	RAIN	IED S	HEA	AR ST	REN	GTH	l - kF	Pa				
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	W/ LIM DY	ATER (MITS 'NAMIC		ENT &		ERBEF TEST,	30 RG W - BLOV	⁷ P vs/0.3	40 W O 3m 0.3m	5 W 1 *	0 /L	С	STANDPIPE/ PIEZOMETER ONSTRUCTION DETAILS 1.07 m STICK UP	
- 0 -	615.60											10	2	20	3	0	4	0	5	50		WELL HEAD	
-	615.52	PEAT		2	SS	1	280	5			•		· · ·										-
	013.43	Loose to very dense, light brown, silty				_			-													BENTONITE	
- 1 -		SAND (SM) to sandy SILT (ML);			ss	2	430	17	s			0	٠										-
		trace gravel: TILL				+			-			:	· · · ·										-
					<u> </u>	+	<u> </u>																_
2					SS	3	430	30	s			þ:				•							_
					-				-														-
					SS	4	355	44	SН										•				-
3									-														-
					55	5	355	55											~			50 mm DIAMETE	:R -
	612.02				- 55		555		_			:										SCREEN IN No.	2
		Intact, strong, grey, thickly banded, magnetite quartzite iron formation																				SILICA SAND	-
4 -		(Sokoman Formation, IF-MAIN):			HQ	6	100%	92%															
		BEDROCK				-			_														-
																							-
- 5 -							1000/	1000/															_
					HQ	[′]	100%	100%															
												:	· · · ·										-
- 6 -					<u> </u>	+			-			:											-
				Ţ									· · · ·										_
					HQ	8	100%	100%				:	· · · ·										-
- 7 -																							_
	607.98												· · · ·									END CAP	
		End of Borehole																			-		
8-																							-
													· · · ·										_
													· · · ·						· · · ·				
- 9 -																							-
-10-			I	1	I	<u> </u>	1	I		1:	<u>∷:</u> u	Jncc	onfine	d Co	mpre	ssior	n Tes	t :				1	
											∐ F ⊘F ▽F	-ield -all (Hanc	Vane Cone	e Tes Test etror	st neter	■ (F ◆ (F Test	Remo Remo	olded olded	l) I) vane	2			

CI PH	Sta LIENT ROJECT	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk	ope l	B Desi	OR ^{gn}	ξE	HO	LE R	REC	0	RD)			BO PA PR ME	REHO GE OJECT THOD	LE No. <u>1</u> of No Was	<u>ROB-11-11</u> <u>1</u> 121614000-305 h/Dia
	OCATION	Kami Iron Ore Mine Site, Labi	rado 1	r W	est,	NL	– N	<u>5854</u>	<u>786 i</u>	<u>m</u>] 3	E <u>632</u> 39 m	<u>2918 m</u> 03/01/	2012	SIZ	E <u> </u>	IW/HQ Geodet	tic (NAD-27)
	41E5 (IIII	Faa-yy). BORING				ç		ATER I	LEVE		NDR	AINED SH	HEAR ST	RENG	DA TH -	kPa		
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	WAT LIMI DYN STAI	1 TER C TS AMIC	0 2	ATTERBER	30 	40 W (0.3m (S/0.3) 50 V W _L → I Bm ●) F CC	STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS .14 m STICK UP CAST IRON
- 0 -	616.70	TOPSOIL	P AX								1	0 2	0 3(0	40	50		WELL HEAD
-	616.55	Loose to compact, brown, silty SAND		-	ss	1	455	6			•							
		(SM); trace gravel: TILL							-		· · ·							
- 1 -					SS	2	430	16	S			0						BENTONITE
-									-									
-	614.95	<u> </u>			SS	3	100	60/230]									
- 2 -		quartz carbonate iron formation	_								· · ·							
		(Sokoman Formation, IF-carbonate):			HQ	4	100%	100%										
-		BEDROCK	<u> </u>															
- 3 -																		50 mm DIAMETER
				Ţ														No. 10 SLOT PVC
-					HQ	5	100%	100%										SILICA SAND
- 4 -																		PACK
				-					1		· · ·							
-																		
- 5 -					HQ	6	100%	100%										
			<u> </u>	-														
	610.88	End of Borehole	_								<u> </u>					· · · · ·		END CAP
- 6 -																		
- / -																	1	
8																		
- 9 -																	4	
											· · · · · · · · · · · · · · · · · · ·							
											· · · · · · · · · · · · · · · · · · ·							
-10-											<u> </u>							-
											U □ F ⊘ F	inconfined ield Vane all Cone T	Test	ssion T ■ (Rei ♦ (Rei	est mold mold	led) led)		

CI PH LO	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi	ppe] rado	B Desi or W	OR gn /est, 1		HO	LE R	EC	COF	RD	6332	242.08 r	B(P/ PF M <u>n SI</u>	OREHOI AGE ROJECT ETHOD ZE	LE No. Mo. Was W/HQ	<u>ROB-11-12</u> <u>1</u> 121614000-305 sh/Dia
D.	ATES (mn	ı-dd-yy): BORING10/20/2011			21/20		- W	ATER I	LEVE	EL _	J.A		U4/U1/	ZUIZD/	- kPa	Geoue	<u>uc (NAD-27)</u>
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	WATE LIMITS DYNAI STANI	10 R COI S MIC P DARD	2 NTENT & / ENETRAT PENETRA	0 3	0 4	40 50 ↓ W W _L ⊖ I .3m ●	F CC 1	STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS 1.04 m STICK UP
- 0 -	629.60	DEAT		<u> </u>							10	20	0 30) 40) 50		WELL HEAD
-	629.45	Compact to very dense, brown, silty	2 0	4	ss	1	330	16				•					
		SAND with gravel (SM); trace cobbles and boulders: TILL		2	SS	2	230	95/300	-								BENTONITE
- 1 -			2 0 D	4													
			, С р	7. 0.		2	205		5								
- 2 -			р р	4	55	3	305	/3	5						>>		
			20	ġ													
- 3 -																	
			70	a ∎ I	SS	4	380	31	s		C	Σ		•			No. 10 SLOT PVC
	675.66		р р		SS	5	100	80/180	_								SCREEN IN No. 2
- 4 -	023.00	Intact, strong, grey, magnetite		<u>}</u> -	HQ	6	100%	100%	-								PACK
		Formation, IF-main): BEDROCK		-	HQ	7	100%	100%	-								-
- 5 -			_	-													
				-	HQ	8	100%	100%									
- 6 -	623.77	Intact, strong, grey, quartz silicate iron		-					-								
		formation (Sokoman Formation, IF-silicate): BEDROCK															
				-	HQ	9	100%	95%									
- 7 -																	
	622.13	End of Borehole															END CAP
- 8 -																	
- 9 -											:						
-10-																	
											∖ Un] Fie) Fal 7 Ha	confined Id Vane I Cone T	Compres Test	ssion Test ■ (Remo ● (Remo Test	t lded) lded) Torvane		

CI PH LC D	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi	ope 1 rado	B Desig or W	OR gn 'est,]		HOI	LE R 585522	EC 29.49	BOREHOLE No. ROB-11-13 PAGE 1 of 2 PROJECT No. 121614000-305 METHOD Wash/Dia 9 m E 633783.66 m SIZE HW/HQ FI 6.15 m 04/01/2012 DATIM
				Τ.		5	- ··	ES		UNDRAINED SHEAR STRENGTH - KPa
DEPTH (m)	ELEVATION (m	DESCRIPTION	STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 20 30 40 50 WATER CONTENT & ATTERBERG WP W WL PIEZOMETER LIMITS Image: Construction test, BLOWS/0.3m The structure of the struct
- 0 -	633.20			\vdash					+	
	633.10	ROOTMAT/TOPSOIL ſ Compact, light brown to grey, silty ſ	2 0 D	4	ss	1	560	25		
- 1 -		SAND with gravel (SM); occasional cobbles and boulders: TILL	2 0 2	2 2	SS	2	255	25	-	φ
				4						
່ 2			7 0 7 0	- 1	ss	3	150	27	ļ	
	630.76			4 2. d			205	12	1	
		Dense to very dense, grey to light brown silty SAND to silty SAND	P 0		55	4	305	42		
- 3 -		with gravel (SM); occasional cobbles		ç Ç	<u> </u>	$\left \right $			1	
		and bounders. TILL	р ₀ D	4	SS	5	305	45		
- 4 -			p p		ss	6	255	55		
			2 0 D	4						
- 5 -			200		ss	7	305	60		SILICA SAND PACK (B)
			P C	, ,	88	8	305	62	s	
			000	2			505	02		
			P 0		SS	9	150	126/380	-	
			p g	4						
- 7 -			20	i. Q						
			2 0 D	2 2 2	SS	10	0	81		
- 8 -			70	0						
			р С	2						
- 9 -	624.06			< <						
		Dense, light brown, silty SAND with gravel (SM); occasional cobbles and		4	ss	11	255	42		
-10-		boulders: TILL		Ş						
										 ☐ Unconfined Compression Test ☐ Field Vane Test

CI PH LC D.	Sta LIENT ROJECT DCATION ATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Lab n-dd-yy): BORING	ope] rado	B Desi or W	OR			LE R [<u>58552</u>] VATER [XEC 29.49) m	RI) E <u>6337</u> 5.15 m	/ <mark>83.66</mark> 04/01	<u>5 m</u> 1/2012	BOI PAC PRC ME SIZ 2 DA	REHO GE _ OJEC THOI Œ _ TUM	DLE No 2 c T No. D <u>W</u> HW/H <u>Geoc</u>).)f /ash [Q deti	ROB-11-13 2 121614000-3(/Dia c (NAD-27)	_ 05
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	U WAT LIMI DYN STA	NDR 1 TER C TS AMIC NDAR	AINED SH			3TH - 40 	kPa 5 / ₩) - I Bm ●		S ⁻ PII CON	TANDPIPE/ EZOMETER ISTRUCTION DETAILS	
- 10 -	621.92	Dense, light brown, silty SAND with gravel (SM); occasional cobbles and boulders: TILL		200		12	75	50/75	-)	30	40		50		END CAP (B)	
- 12	021.72	Moderately jointed to intact, medium strong, dark grey, muscovite biotite schist (Menihek Formation): BEDROCK			HQ	13	100%	88%	-										BENTONITE (A)	
-13-				- - - - -	HQ HQ	14	94% 92%	88% 92%	-										50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND	2
-14-				- - - - - -	HQ	16	100%	100%											PACK (A)	
- 16	617.96	End of Borehole																× 1	END CAP (A)	
- 17-																				
-18-																				
- 20-											∆u	Inconfined	Comp	ression	Test					
											□ F ◇ F ▽ н	ield Vane all Cone T land Pene	Test est tromete	■ (Re ♦ (Re er Test	əmold əmold T 🔊	led) led) Forvan	e			

CI PF LC D	Sta Signature Signat	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi n-dd-vy): BORING 3/25/2012	ope] rado	B Desi or W	OR gn /est,	\ E 	HO	LE R 58557: VATER	SEC 58.73	ORD	<u>633875.6</u> 53 m 06/1	52 m 14/12	BOREH PAGE PROJEC METHO SIZE _ DATUN	IOLE No. <u>1</u> o CT No. DD <u>W:</u> HW/H M <u>Geod</u>	ROB-11-14 f 1 121614000-305 ash/Dia Q letic (NAD-27)
DEPTH (m)	ELEVATION (m) 605.80	DESCRIPTION	STRATA PLOT		ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE	OTHER TESTS	UNDRAIN 10 WATER CONTI LIMITS DYNAMIC PEN STANDARD PE 10	IED SHEAR 20 TENT & ATTERE VETRATION TE ENETRATION 1 20	STRENG 30 BERG W _P ST, BLOWS TEST, BLOWS 30	TH - kPa 40 W 0.3m VS/0.3m 40	50 ₩L -1 (*	STANDPIPE/ PIEZOMETER CONSTRUCTION DETAILS 0.91 m STICK UP CAST IRON
- 0 -	605.75	ROOTMAT/TOPSOIL	2.0			$\left \right $					20	30	40	50	ARTESIAN
- 1 -	604.43	Compact, dark brown, silty SAND with gravel (SM); occasional cobbles, occasional rootlets		A. 7. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.			255	20	-		•				CONDITIONS. WATER LEVEL AT 0.53 m ABOVE GROUND SURFACE. BENTONITE
- - - -		SAND (SM); trace gravel, occasional cobbles and boulders: TILL			ss	2	100	14	1		•0				
					SS	3	255	41	-				•		
- 3 -					SS	4	205	36	-						
- 4 - - 4 - -					SS	5	355	38	S	0			•		
- 5 -	600.98	Moderately jointed to intact, medium			SS	6	150	92/250							
		strong, dark grey, muscovite biotite schist (Menihek Formation), occasional quartz and pyrite, occasional sand seams: BEDROCK		· - - -	HQ	7	100%	96%							SILICA SAND PACK
- 7 -				- · ·	HQ	8	93%	80%	-						
				· - - -					_						
	596.66			- - - -	HQ	9	100%	100%							END CAP
		End of Borehole													
-10-		- Artesian water condition flowing at approx. 0.53m above ground surface.													
											onfined Comp Vane Test Cone Test d Penetrome	pression ⁻ (Re (Re ter Test	Test molded) molded)	ne	

	Sta	Alderon Iron Ore Corp.	nel	B	OR	E	HO	LE R	REC	CORI	כ		BC PA PR	OREHO	LE No. 1 of No.	<u></u>
	ROJECT	Kami Iron Ore Mine Site, Lab	rado	or W	est,	NL	_ N	585614	44.49	9 m	E 633 4	477.5 m	MI SL2	ze <u>H</u>	W/HQ	
Ι	DATES (mn	n-dd-yy): BORING <u>4/8/2012</u>	1		1		_ W	ATER I	LEVE	EL	N/A		_ DA	ATUM	Geode	tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDF WATER C LIMITS DYNAMIC STANDAF	RAINED SH	IEAR STRE 0 30 ATTERBERG	ENGTH 4 W _P V I	-kPa 0 50 ₩ W _L Ə I m ★ 3m ●	F CC	STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS 1.94 m STICK UP
	598.60										10 20) 30	40	50		CAST IRON WELL HEAD
	597.99	PEAT			ss	1	405	15								
- 1 ·	-	Loose to dense, brown, silty SAND (SM); trace gravel & cobbles: TILL			ss	2	305	9	_		• 0					
	-				SS	3	305	17			٠					BENTONITE
	-				SS	4	305	35	s		0		•			
- 3 -	-				SS	5	430	38	-		Ó		•			
- 4					SS	6	330	47	_							
	594.31	Moderately jointed to intact, medium			НО	7	100%	100%	_							
- 5		strong, dark grey, muscovite biotite schist (Menihek Formation): BEDROCK			HQ	8	100%	81%								50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK
- 7					HQ	9	100%	92%								
- 8 -					HQ	10	100%	92%								
- 9	589.63	End of Borehole														END CAP -
⊢10 			1	1	1	1	1	<u>.</u>	<u>1</u>	L F F ↓	Jnconfined Field Vane Fall Cone T	Compressi Test est trometer Te	ion Test (Remol (Remol	ded) ded) Torvane	<u>ı</u>	

CI PH LC	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr	pe l rado	B Desi or W	OR gn Vest,			LE R	EC 85.38	BOREHOLE No. ROB-11-16 PAGE 1 of 2 PROJECT No. 121614000-305 METHOD Wash/Dia 8 m E 633197.23 m SIZE HW/HQ 55 m 11/2/2011										
D/	ATES (mn	10/24/2011		10/2	<u>.5/20</u>	<u>11</u>	_ W	'ATER I	LEVE	EL55 m 11/3/2011 DATUM Geoucus (IVAD-21)										
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W _L PIEZOMETER LIMITS										
- 0 -	570.50				ļ'					10 20 30 40 50 Well HEAD										
	570.35	PEAT		CALL C	SS	1	335	13		ARTESIAN CONDITIONS.										
	570.20	Compact grey silty SAND with	р р Г		'	\square		ļ	4	WATER LEVEL										
- 1 -		gravel (SM) to silty SAND (SM); trave gravel: TILL			ss	2	280	25	SH	O O O O O O O O O O O O O O O O O O O										
				¢ i	'	$\left \right $			-	BENTONITE										
- 2 -			700		SS	3	175	18	s											
				- a	SS	4	175	15												
			0 2 0	¢		$\left \right $			-											
- 3 -			P	4					1											
			0		SS	5	175	12												
- 4 -			а . р. О г.		SS	6	150	14												
				i i					-											
- 5 -			P 0		SS	7	175	10		• 50 mm DIAMETER -										
			ρ ρ Ο		SS	8	330	22	s	O ● No. 10 SLOT PVC SCREEN IN No. 2										
- 6 -			7 (0						-	SILICA SAND PACK										
					SS	9	100	22												
- 7 -			000	4	SS	10	355	18												
			7 V 0 V						_											
- 8 -			о о О О		SS	11	205	19												
			700	X	SS	12	175	20												
- 9 -			P > v	a																
			0 0 0		SS	13	205	15	s	○ ●										
-10-			<u>k</u>	<u></u>]	<u> </u>		∧ Unconfined Compression Test										
										 □ Field Vane Test ■ (Remolded) ◇ Fall Cone Test ◆ (Remolded) ○ Hand Penetrometer Test ▲ Torvane 										
CI PI LC D	Sta LIENT ROJECT OCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr n-dd-yy): BORING <u>10/24/201</u>	ope l rado 1 to	B Desi or W 10/2	OR gn /est, 1 25/20		HO	LE R	EC 85.38		D E_6 -55 n	331 1	97.2 11/3	2 <u>3 m</u> 3/20	E P P M S D 11 C	BORE PAGE PROJ METH SIZE DATU	EHOI ECT HOD H	LE No 2 c No. W W/H Geod	of _ ash Q leti	ROB-11-16 2 121614000-305 n/Dia ic (NAD-27)
------------------------------	---	---	-----------------------	---------------------------	------------------------------	--------	--------------------------	---------------------	--------------------	--------------------------------------	-----------------------	-----------------------------	--------------	---------------------------------------	------------------------------------	--	--------------------------------	---	--------------------------	---
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDF WATER O LIMITS DYNAMIO	RAINE 10 CONTEI	D SH 2 NT & / TRAT		STR 30 BERG ST, B TEST, B	RENGTH C WP L BLOWS/0.	H - kP 40 W .3m /0.3m	a 50 W _L •		S PI COI	TANDPIPE/ EZOMETER NSTRUCTION DETAILS
-10-		Compact, grey, silty SAND with gravel (SM) to silty SAND (SM); trave gravel: TILL	ο - Ο ×		SS SS	14	230	14	SH			20		30		40	50			
-11-		-locally loose from 11.1m to 11.7m depth		1	SS	16	610	4	s	•										50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND
-12-	558.28	Fractured to intact, medium strong to strong, black, banded, biotite muscovite quartz schist, graphitic muscovite quartz schist, and hornblende biotite garnet gneiss			SS HQ	17	230	90/230	-											PACK
- 14-		(Menifiek Formation): BEDROCK			HQ	19	98%	50%	-											
- 15	553.00				HQ	20	100%	100%	-											FND CAP
-17- -18- -19- -20-	553.99	End of Borehole - Artesian water condition flowing at approx. 0.55m above ground surface.										fined			sion Te	st				END CAP
											Field V Fall Co	ane ine T	Test Test	pres:	I (Rem I (Rem I (Rem	olded olded))			

CI PI L(Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Labi	ope] rado	B Desi or W	OR gn /est, 1			LE R	2EC	BOREHOLE No. ROB-11-17 PAGE 1 of 5 PROJECT No. 121614000-305 METHOD Wash/Dia SIZE HW/HQ
D	ATES (mn	10/10/2011			3/20	<u>11</u> ,		ATER I	LEVE	UNDRAINED SHEAR STRENGTH - KPa
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W _L PIEZOMETER LIMITS — — OTHER DYNAMIC PENETRATION TEST, BLOWS/0.3m ★ 0.96 m STICK UP STANDARD PENETRATION TEST, BLOWS/0.3m ● 0.96 m STICK UP
- 0 -	581.60	TODSOIL	- 177	-	<u> </u>				+	
	581.45	Compact to dense, brown, silty SAND with gravel (SM); trace cobbles and	2 0 0 C	4	SS	1	380	17	-	
- 1 -		boulders: TILL	2 0 2 0		ss	2	205	22	S	
			7 0 ¢	0	SS	3	205	19	-	
			0 2 0	.α Σ.Οα	SS	4	50	23		• BENTONITE
- 3 -				2	SS	5	205	36	s	
- 4 -			o 0 0		SS	6	175	28		
			D 2	St. 8. 11. 19. 19. 19					-	
- 5 -			7 0 0 2 0		SS	7	355	39	-	
			0 7 0 7 0	×						
			2 0 2 0	2	SS	8	380	29	s	S0 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2
- 7 -			» о С		ss	9	230	26		SILICA SAND PACK
- 8 -	574.13	Compact to dense, grey, silty SAND with gravel (SM) to silty SAND (SM); trace gravel, cobbles and boulders:		S. T	SS	10	355	33	s	
		TILL	> • • •		SS	11	280	15	SH	
9					SS	12	305	35	_	
-10-			<u>1.46.444</u>	1	1	<u> </u>	<u></u>			

CI PI LO	Sta LIENT ROJECT DCATION	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labi	ope 1 rado	B Desig	OR gn est, 1			LE R	EC	BOREHOLE No. ROB-11-17 PAGE 2 of 5 PROJECT No. 121614000-305 METHOD Wash/Dia 02 m E_632769.44 m SIZE HW/HQ					
D.	ATES (mr	10/10/201	l to	10/1	3/20	11	_ W	ATER I	LEVE	TEL 1.41 m 03/01/2012 DATUM Geodetic (NAD-27)					
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 20 30 40 50 WATER CONTENT & ATTERBERG W P W U PIEZOMETER LIMITS Image: Construction test, BLOWS/0.3m Construction Details STANDARD PENETRATION TEST, BLOWS/0.3m Image: Construction test, BLOWS/0.3m Image: Construction test, BLOWS/0.3m					
-10-		Compact to dense, grey, silty SAND	2 0		SS	13	355	26							
		with gravel (SM) to silty SAND (SM); trace gravel, cobbles and boulders:							-						
-11-		TILL	000		SS	14	280	25							
- - 			D 7 (7	2	SS	15	355	14	s						
-12-															
- - -	SS 16 330 17														
-13- -13- -13-															
			> @	4											
-14-			2 D 0		SS	18	50	15		50 mm DIAMETER					
				4	SS	19	380	17	s	Image: Second state of the se					
-15-			0 2 0							PACK					
 			Р 20		SS	20	280	24							
-16-			0 0 0	4	SS	21	330	20	-						
			700	\$											
-17-			2 2 2		SS	22	355	27	s						
			р о Э	4	SS	23	230	19	-						
-18-			70												
				4	SS	24	280	22							
-19-			00		SS	25	405	20	ѕн						
 - -				2					-						
-20-			Þ							Unconfined Compression Test					
										Green varie rest					

CI PI LC	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr n-dd-vv): BORING 10/10/201	ppe] ado 1 to	B Desig or W 10/1	OR gn /est, 1 3/20	REI		LE R 585559	EC 99.02	BOREHOLE No. ROB-11-17 PAGE 3 of 5 PROJECT No. 121614000-305 METHOD Wash/Dia 02 m E 632769.44 m SIZE HW/HQ //EL 1.41 m 03/01/2012 DATUM
						s	AMPLE	ES		UNDRAINED SHEAR STRENGTH - kPa
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 20 30 40 50 WATER CONTENT & ATTERBERG WP W W LIMITS Image: Construction test, blows/0.3m ★ STANDARD PENETRATION TEST, blows/0.3m ◆
-20-		~								10 20 30 40 50
		Compact to dense, grey, silty SAND with gravel (SM) to silty SAND (SM); trace gravel, cobbles and boulders:		2	SS SS	26 27	380	33	s	
-21-		IILL	2 0 2 0	¢ 						
-22-					ss	28	175	40		
			> 0 > 0		ss	29	280	31		
-23-				2	ss	30	355	25		
-24-			0 0	2	ss	31	330	23		50 mm DIAMETER
				i.	ss	32	150	36		No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND
-25-			> o > 0	× . 	SS	33	480	43	s	о
26			000							
			D C Z D Z		55	54	0	/3/230		
-27-										
				4	ss	35	150	23		
20			0000	ć	ss	36	510	15	s	
-29-		-locally loose from 29.0m to 29.6m		0	ss	37	175	8		
- 30-		···· • • • •		2	ss	38	330	14		
										 ☐ Unconfined Compression Test ☐ Field Vane Test ■ (Remolded) ◇ Fall Cone Test ◆ (Remolded) ✓ Hand Penetrometer Test ▲ Torvane

C: PI LC D	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Slo Kami Iron Ore Mine Site, Labr n-dd-yy): BORING 10/10/2011	ope l ado l to	B Desi r W 10/1	OR gn (est,] 3/20	E <u>NL</u> 11	HO _ N _ W	LE R 585559 ATER I	XEC 99.02) E6327 .41 m	769.44 m 03/01/2012	BOREH PAGE _ PROJEC METHO SIZE 2 DATUM	OLE No. 4 of T No. D Was HW/HQ Geode	<u>ROB-11-17</u> <u>5</u> 121614000-305 sh/Dia tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDR WATER C LIMITS DYNAMIC STANDAR	AINED SI 10 2 	HEAR STRENG 0 30 ATTERBERG W H TON TEST, BLOW ATION TEST, BLOW 0 30	GTH - kPa 40 5 	50 V _L I I C(STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS
-30-		Compact to dense, grey, silty SAND with gravel (SM) to silty SAND (SM); trace gravel, cobbles and boulders: TILL			SS	39	480	40	-				•		
-32-	549.35	Very dense, grey, SILT with sand			SS SS	40	480 255	52 94/250	S H		н. 0		>		
-33-		(ML); trace gravel to gravelly SILT (ML); trace sand, cobbles and boulders throughout: TILL	D 7 0 8		BS	42	0%		-						
-34-			♪ ♪ ♪		BS	43	100%		-						50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND
-35-															PACK
-37-			> 0 > 0		S	44	0		-						
-38-			2 0 0 0 0 0		BS	45	100%		s			Þ			
-39-			0 2 8 7 0		BS	46	100%		5 н						
-40-										 ∟ F ∟	Inconfined ield Vane all Cone T	Compression Test ■ (R Test ♦ (R	Test emolded) emolded)	<u> </u>	-

CI	Sta LIENT ROJECT	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sko Kami Iron Ore Mine Site Labo	ope l	B	OR gn		HO	LER	REC	ORD	(22)		E P P	BOREHO PAGE _ PROJEC METHO	DLE No. <u>5</u> of T No. D <u>Was</u>	<u>ROB-11-17</u> <u>5</u> 121614000-305 sh/Dia
L(D	OCATION ATES (mr	n-dd-yy): BORING <u>10/10/201</u>	rado 1 to	r w 10/1	est, 3/20	NL 11	_ N _ W	<u>585555</u> /ATER I	99.02 Leve	<u>т</u> Е Е 1.4	<u>632'</u> 1 m	769.44 03/01/	m S / <u>201</u> 2 _E	DATUM	<u>Geode</u>	tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAIN 10 WATER CON' LIMITS DYNAMIC PEI STANDARD P 10	NED S	HEAR ST	RENGT	H-kPa 40 5 ↓ W W 3m ★ /0.3m ● 10 5		STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS
-40- - - - - - - - - - - - - - - - - - -	541.06	Very dense, grey, SILT with sand (ML); trace gravel to gravelly SILT (ML); trace sand, cobbles and boulders throughout: TILL		-												
- 42-		(SM); trace gravel, cobbles and boulders: TILL			SS	47	175	90/180	-							
-43-	538.32				BS	48	100%	-	S	0						
44 		Intact, strong, dark grey, foliated, biotite muscovite quartz schist (Menihek Formation): BEDROCK		-	NQ	49	100%	100%								50 mm DIAMETER
-45-				-					_							SILICA SAND PACK
-46-				-	NQ	50	100%	100%								
-47	533.75	End of Borehole		-												END CAP
-49																
-50-											onfined	d Compre	ssion Te	st		
										□ Field ◇ Fall ▽ Han	l Vane Cone ⁻ d Pene	Test Test etrometer	I (Rem (Rem Test Ⅰ	olded) olded) Torvane	9	

CI	Sta	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk	ope]	B Desi	OR	E	HO	LE R	REC	:0	RI	D					H H _ H	BOI PAC PRC ME	REH JE _ DJEC	IOLI 1 CT 1 DD	E No C No. 	of _ /ash	ROB-11-18 4 121614000-30 n/Dia	<u>)</u> 5
L(D	OCATION ATES (mr	Kami Iron Ore Mine Site, Labin-dd-vy): BORING 10/14/201	rado 1 to	or W 10/1	/est, 1 6/20	NL 11	_ N _ W	58556 Ater I	5 76.4 Leve	m L		Е 0 m	632	18 1	6.75 1/3/2	m 201		SIZI DA'	E	$\frac{HV}{4}$	V/H Geoc	IQ leti	ic (NAD-27)	-
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	WA LIM DYN STA			ED S		AR S	TRE 30 RG r, BLC ST, B	W _P I DWS/0	H - I 40 W 0.3m	vPa بر m	50 WL -		S Pl COl 1.'	STANDPIPE/ IEZOMETER NSTRUCTION DETAILS 12 m STICK UP CAST IRON	
- 0 -	574.30	РЕАТ	/	_								10	2	20		30		40		50			WELL HEAD	F
			1	1	SS	1	0	0			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·							-
- 1 -					ss	2	125	4	_														BENTONITE	
- 2 -	572.62	Loose to compact, grey, silty SAND (SM): TILL			ss	3	380	5	s		•		0) 										-
					ss	4	380	13	SН				0											
- 3 -	571.25	Firm to very stiff, grey, sandy SILT (ML) to SILT (ML); trace sand: TILL			ss	5	480	7	s		•			0										
- 4 -					ss	6	355	5	SН		•													-
- 5 -				•	ss	7	405	7			•							· · · · · · · · · · · · · · · · · · ·						
				•	ss	8	430	8			•													
- 6 -					ss	9	535	8	s		ė	•		Ċ)								50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2	
- 7 -		-locally clayey below 6.7m depth			ss	10	355	23	ѕн						•								SILICA SAND PACK	
	566.68	Loose to very dense, grey silty SAND		-																				-
- 8 -		with gravel (SM); occasional cobbles: TILL			ss	11	355	7	s		•		0											-
- 9 -		- Grain size and relative density increase with depth.			ss	12	280	11	SH			•												
					SS	13	75	70/230	-															
-10-				<u>.1</u>	<u>I</u>		<u> </u>	<u> </u>	<u>[</u>	<u> : :</u>		Jnco Field Fall C	nfine Vane Cone	l d C e Te Tes etro	omprost t		on Te (Rem (Rem	: I est nolde nolde	ed) ed)	<u>: l</u> :		<u>1 </u>		-

CLIENTAlderon Iron Ore Corp.PROJECTKami Iron Ore Project - Pit SlopeLOCATIONKami Iron Ore Mine Site, LabradDATES (mm-dd-yy): BORING10/14/2011 tr	LE No. ROB-11-18 2 of <u>4</u> No. <u>121614000-</u> Wash/Dia IW/HQ Geodetic (NAD-27)	<u>30</u> 5								
(E) (U) NO DESCRIPTION LOId VLY U DESCRIPTION LOId VLY Continued from Previous Page	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE S OR RQD %	OTHER TESTS	UNDRAINED SHEAR STREN 10 20 30 WATER CONTENT & ATTERBERG W LIMITS H DYNAMIC PENETRATION TEST, BLOW STANDARD PENETRATION TEST, BLOW 10 20 30	GTH - kPa 40 50 	STANDPIPE/ PIEZOMETER CONSTRUCTION DETAILS	
-10 Loose to very dense, grey, silty SAND - with gravel (SM); occasional cobbles: - TILL - - - Grain size and relative density increase with depth.		SS	14	455 280	29 22	S	•			
-12- 13- 		SS SS	16 17	380 455	28 41	-				
-14- - 15-		SS	18	480	85 	S	0		50 mm DIAMETE No. 10 SLOT PV SCREEN IN No. SILICA SAND PACK	ER
- 16- 17-			20	100	_50/100					
		BS	21	100%	-	-				
-19- 		BS	22	100%	-	-		1 Test Remolded)		

Stantec BOREHOLE RECORD BOREHOLE No. CLIENT Alderon Iron Ore Corp. PROJECT PROJECT PROJECT PROJECT PROJECT No. LOCATION Kami Iron Ore Mine Site, Labrador West, NL N_5855676.4 m E_632186.75 m SIZE HW/H0 DATES (mm-dd-yy): BORING 10/14/2011 to 10/16/2011 N_4TER LEVEL 0 m 11/3/2011 DATUM Geod														
D.	ATES (mr	n-dd-yy): BORING10/14/201	1 to	10/1	6/20	11	_ W	ATER	LEVE	EL <u>0 m 11/3/2011</u>	DATUM G	eodetic (NAD-27)		
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	UNDRAINED SHEAR STRENG 10 20 30 WATER CONTENT & ATTERBERG W _P LIMITS — DYNAMIC PENETRATION TEST, BLOWS STANDARD PENETRATION TEST, BLOWS	TH - kPa 40 50 ₩ WL 	STANDPIPE/ PIEZOMETER CONSTRUCTION DETAILS		
-20-		Loose to very dense grey silty SAND	<u>ात</u> ः							10 20 30	40 50			
		with gravel (SM); occasional cobbles: TILL												
-21-		- Grain size and relative density increase with depth.			SS	23	-75-	50/75						
					BS	24	100%	-	_					
-23-														
-24-					BS	25	100%	-	s	.c		50 mm DIAMETER		
												SCREEN IN No. 2 SILICA SAND		
					BS	26	100%	-	s	Ó				
-26-														
	547.78	Very severely fractured, medium												
-27-		strong, brown, extremely weathered, Sokoman Formation - HIF (Hematite Iron Formation): BEDROCK			HQ	27	100%	25%						
20-			 		HQ	28	55%	0%						
-29-				-										
					HQ	29	72%	22%						
-30-			I		<u> </u>		<u> </u>		<u> </u>	△ Unconfined Compression T ☐ Field Vane Test ✓ Fall Cone Test ♦ (Rei	est molded) molded)			

C. PI D	Sta LIENT ROJECT OCATION ATES (mi	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Lab m-dd-yy): BORING 10/14/201	ope rado 1 to	B Desi or W 10/1	OR <u>gn</u> Vest, 16/20		HC)LE R n_5855(water	EC 576.4	C C I m EL) E_ () m	5321	11	.75 I /3/2	m	B P. P! . M . S! . D	OR AG RO 1ET IZE	EHO E JECT THOD <u>F</u> UM	LE No. <u>4</u> of No. <u>Vas</u> <u>1W/HQ</u> <u>Geodet</u>	ROB-11-18 4 121614000-305 h/Dia tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER		LES N-VALUE OR RQD %	OTHER TESTS	W/ LIM DY ST			ED SI 2 INT & ETRAT		R ST RBER TEST, N TES	REN 30 +	IGTH / _P NS/0.: OWS/	1 - kl 40 ₩ 3m ′0.3m	Pa 50 W _L	- S P CC	STANDPIPE/ ¹ IEZOMETER DNSTRUCTION DETAILS
-30 -31 -32 -33 -33 -34 -35 -36 -37 -38 -38	Line Standborner Standborner																				
-40-												Jncor Field \ Fall Co	nfinec /ane one 1	l Co Tes Test	mpre t	ssior (F (F Test	n Tes Remo Remo	st olde olde	d) d)		

	Sta	Intec Alderon Iron Ore Corp.		В	OR	٤E	HO	LE R	EC	BOREHOLE No. ROB-11-19 PAGE 1 of 2 PROJECT No. 121614000-305
P	ROJECT	Kami Iron Ore Project - Pit Sk	ope l	Desi	gn	• T				METHOD Wash/Dia
	OCATION	Mami Iron Ore Mine Site, Lab add and: BORING 4/9/2012	<u>rado</u>	r w	est,	NL	_ N	<u>5855.</u> 7ATER I	<u>373 i</u> 1 f.vf	<u>m</u> E <u>632349 m</u> SIZE <u>HW/HQ</u> στ N/A DATEM Geodetic (NAD-27)
		Fud-yy). DOKING				5			л ¥ Ц	UNDRAINED SHEAR STRENGTH - KPa
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) A OR TCR %	N-VALUE OR RQD %	OTHER TESTS	10 20 30 40 50 WATER CONTENT & ATTERBERG W.P. PIEZOMETER LIMITS Image: How Structure CONSTRUCTION DYNAMIC PENETRATION TEST, BLOWS/0.3m ★ 0.94 m STICK UP STANDARD PENETRATION TEST, BLOWS/0.3m ● 0.94 m STICK UP
	574.40	<u> </u>								10 20 30 40 50 CAST IRON WELL HEAD
	574.10	PEAT	7/	1	SS	1	175	55/300		
- 1 -		Compact to very dense, grey, silty SAND (SM); trace gravel & cobbles: TILL							-	BENTONITE
					SS	2	305	132/300		
- 2 -									-	
·	- - -				SS	3	50	21	-	
- 4 -					ss	4	230	20	_	
 -					SS	5	380	16	_	
- 5 -	• • •				55	6	255	24	-	
- 6 -	-									
	- - - - -				SS	7	125	21	Ī	No. 10 SLOT PVC SCREEN IN No. 2
- 7 -	-				SS	8	330	14		→ ● SILICA SAND PACK
	· - - -								-	
- 8 -	- - -				SS	9	610	38	SH	
	- - - - -				SS	10	175	78		
10	565.10	Very severely fractured to fractured, weak, dark green silicate iron formation (Sokoman Formation):		-	SS	11	455	36	-	
										 △ Unconfined Compression Test □ Field Vane Test

C ^T Pl LC D	Sta LIENT ROJECT OCATION PATES (mu	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Lab m-dd-vy): BORING 4/9/2012	ope] rado	B Desi or W	OR ign Vest,		HOI	LE R 5855.	XEC 373 I) E632 N/A	2349 m	BC PA _ PR _ MI _ SI _ SI	DREHOI	LE No. 2 of No Was W/HQ Geodet	ROB-11-19 2 121614000-305 h/Dia tic (NAD-27)
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE	OTHER TESTS	UNDF WATER C LIMITS DYNAMIC STANDAF	CAINED SH	IEAR STRE 0 30 ATTERBERG ION TEST, BLO	NGTH 4 N _P WS/0.3i	- kPa I0 50 ↓ ₩ ₩ _L ↔ I m ★ 0.3m ●	P CC	STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS
-10-		BEDROCK			SS	12	205	38	-) 30	40) 50		50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2 SILICA SAND PACK
-12-	562.80	Very severely fractured to fractured, weak, dark green to grey, magnetite-silicate iron formation (Sokoman Formation): BEDROCK			HQ	13	95%	18%	-							
- 14 	<u>560.70</u> 559.44	Very severely fractured to fractured, weak, dark grey, muscovite biotite schist (Menihek Formation): BEDROCK		- - - - - - -	HQ	15	100%	55%	-							END CAP
-16-																
-17- - - -18- -																
-19-											Inconfined	Compressio	on Test	t		
										⊡ F ⊘F ▽F	ield Vane all Cone T	Test	(Remol (Remol	lded) lded) Torvane		

CI PH L(Sta	pe] rado	B Desi or W	OR gn /est,]	RE		LE R	298 1	BOREHOLE No. ROB-11-20 PAGE 1 of 2 PROJECT No. 121614000-305 METHOD Wash/Dia m E 633251 m SIZE HW/HQ F 5.68 m 03/01/2012 DATE of Geodetic (NAD-27)	
D	ATES (mr	r-dd-yy): BORING					W		LEVE	
DEPTH (m)	ELEVATION (m)	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	INDRAINED SHEAK STRENGTT - AF a 10 20 30 40 50 WATER CONTENT & ATTERBERG W _P W W _L PIEZOMETER LIMITS Image: Construction test, BLOWS/0.3m ★ DYNAMIC PENETRATION TEST, BLOWS/0.3m ★ 1.04 m STICK UP STANDARD PENETRATION TEST, BLOWS/0.3m ● 1.04 m STICK UP
- 0 -	624.90		\downarrow	-	<u> </u>					10 20 30 40 50 WELL HEAD
	<u>624.75</u> 624.29	TOPSOIL			ss	1	560	4	-	• • • • • • • • • •
- 1 -		silty SAND (SM); trace to some gravel; trace cobbles and boulders:			SS	2	510	12	-	• BENTONITE
- 2					SS	3	455	35	s	
					SS	4	430	48	вн	
- 3 -					ss	5	405	38	s	
- 4 -					SS	6	480	39		
					SS	7	455	44	-	
					ss	8	535	97	-	50 mm DIAMETER No. 10 SLOT PVC SCREEN IN No. 2
- 6 -		From 6.1 m to 10.2 m: Becomes darker brown in colour. Grain size and			SS	9	230	52	-	
- 7 -		relative density increase.			ss	10	330	64	s	
					SS	11	480	49	- - - 	
- 8 -					ss	12	430	64		
- 9 -						12	205		-	
- 10-						13	305	56		
										 ☐ Unconfined Compression Test ☐ Field Vane Test

CI PI LO D.	Sta LIENT ROJECT DCATION ATES (mr	Alderon Iron Ore Corp. Kami Iron Ore Project - Pit Sk Kami Iron Ore Mine Site, Labu r-dd-yy): BORING 10/23/201	ope l rado 1	BOREHOLE RECORD pe Design ador West, NL N_5855298 m E_633251 m WATER LEVEL 5.68 m 03/01/2012										ROB-11-20 PAGE 2 of 2 PROJECT No. 121614000-305 METHOD Wash/Dia SIZE HW/HQ 2 DATUM Geodetic (NAD-27)							
DEPTH (m)	ELEVATION (m)	DESCRIPTION Continued from Previous Page	STRATA PLOT	WATER LEVEL	TYPE	NUMBER	RECOVERY(mm) OR TCR %	N-VALUE OR RQD %	OTHER TESTS	WA LIM DYI STA	INDR 1 TER C ITS NAMIC		D SH 2(it & A IT & A IRATI ETRA		R STF 3 BERC EST, E TEST	RENG 0 3 W _P blows	5TH 4 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7 7	-kPa 0	50 V _L I	F CC	STANDPIPE/ PIEZOMETER DNSTRUCTION DETAILS
-10-			। जनन		SS	14	610	81			1	0	20)	30)	40		50		50 mm DIAMETER
-	614.66	Fractured to intact, strong to very			110	1.5	020/	020/	-												No. 10 SLOT PVC
- 11-		strong, dark grey, banded, hornblende biotite garnet gneiss (Menihek Formation): BEDROCK		-	HQ	15	92%	92%	-												SCREEN IN No. 2 SILICA SAND PACK
					HQ	16	100%	77%													
-12-				-					-												
-13-				-	HQ	17	100%	90%													
-14-				-					_												
- 15-	609 79			-	HQ	18	100%	65%													
	009.19	End of Borehole													· · · · · · · · · · · · · · · · · · ·						
-16-																					
-17-											· · · · · · · · · · · · · · · · · · ·										
-18-																					
-19-															· · · · · · · · · · · · · · · · · · ·						
-20-							<u> </u>				∆U □Fi ◇Fi	nconfi ield Va all Cor and P	ined ane ne Te	Con Test est	ipres	sion ⁻ ∎ (Re ♦ (Re	Test emole emole	ded) ded) Torvan	e		

Appendix D. Fault Analysis

The following boreholes were analyzed (based on televiewers surveys and core photos) for major fracture zones or faults:

- K-10-55
- K-10-61
- K-11-115
- K-11-161
- K-11-163
- K-11-165
- K-12-176A
- K-12-177
- K-12-179
- K-12-184
- K-12-200

Appendix D - Fault analysis Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

Borehole	Туре	Depth Top (m)	Depth Center (m)	Depth Bottom (m)	Dip (°)	Dip Direction (°)	Apparent aperture / thickness (mm)	Code 1	Code 2	Code 3	Description
K-10-55	ATV	234.55	238.96	243.37	84	335	8820	HFZ			Highly fractured zone with closed, partially open, open and multiple discontinued joints.
K-10-55	ATV	41.15	43.375	45.60	26	286	4450	HFZ			Highly fractured zone with closed, partially open, open and discontinued joints. 2 main joint orientations.
K-10-55	ATV	76.96	79.185	81.41	67	143	4450	OIC			Concentration of open joints
K-10-55	ATV	178.40	180.2	182.00	80	013	3600	MFZ			Moderately fractured zone with closed and partially open joints mostly
K-10-55	ATV	173.20	174.49	175.78	77	133	2580	MFZ			Moderately fractured zone with closed and partially open joints mostly
K-10-55	ATV	250.09	250.775	251.46	87	146	1370	OIC			Concentration of open joints
K-10-55	ATV	163.40	164.03	164.66	86	359	1260	HFZ			Highly fractured zone with closed, partially open and discontinued joints.
K-10-61	ATV	74.40	78.9	83.40	65	145	9000	HFZ			Highly fractured zone with closed, partially open, open joints mainly.
K-10-61	ATV	66.20	68.8	71.40	85	014	5200	HFZ	PF	PG	Highly fractured zone with closed, partially open, open and discontinued joints. 2 main orientations.
K-10-61	ATV	86.40	88.6	90.80	84	155	4400	HFZ	PF	PG	Highly fractured zone with closed, partially open, open joints mainly.
K-10-61	ATV	60.37	62.45	64.53	80	180	4160	HFZ	PF	PG	Highly fractured zone with closed, partially open, open and discontinued joints.
K-10-61	ATV	109.72	110.43	111.14	82	128	1420	HFZ	PG		Highly fractured zone with multiple open joints and a few closed joints.
K-10-61	ATV	125.29	125.71	126.13	72	151	840	HFZ			Highly fractured zone with closed, partially open and discontinued joints.
K-11-115	Core	105.70	114.20	122.70			17000.0	HFZ	PF	WR	Split core. Highly fractured zone, broken core. Locally very weathered.
K-11-115	Core	127.60	132.15	136.70			9100.0	HFZ	PF	WR	Split core. Highly fractured zone, broken core. Locally very weathered.
K-11-115	Core	144.00	159.30	174.60			30600.0	HFZ	PF	WR	Split core. Highly fractured zone, broken core. Mostly very weathered.
K-11-115	Core	272.00	277.00	282.00			10000.0	HFZ			Split core in 4. Very uncertain, but appears to be fractured rock, weathered, but does not appear like a fault necessarily.
K-11-115	Core	395.80	406.40	417.00			21200.0	HFZ	PF	WR	Split core. Highly fractured zone, broken core. Mostly very weathered.
V 11 101		240 50	252.10	254 70	6E	200	E200.0	E7			Fractured zone with mainly closed to slightly open
K-11-131		549.50	352.10	554.70	60	290	5200.0	FZ			features. Random orientation mainly.
K-11-131	OTV	52.93	53.65	54.37	67	321	727.4	OIC	VO		Open joint concentration
K-11-131	OTV	418.66	418.78	418.89	70	313	230.0	HFZ	PG		Highly fractured zone. Likely crushed rock.
K-11-131	OTV	128.95	129.16	129.36	75	127	155.8	HFZ	PG		Highly fractured zone. Likely crushed rock.

Dec	crii		on
Des		JU	UII
	-		

Borehole	Туре	Depth Top (m)	Depth Center (m)	Depth Bottom (m)	Dip (°)	Dip Direction (°)	Apparent aperture / thickness (mm)	Code 1	Code 2	Code 3	Description
K-11-131	OTV	371.88	371.97	372.06	78	287	95.1	HFZ	PG		Highly fractured zone. Likely crushed rock.
K-11-131	ΟΤΛ	55 75	58.28	60.80	40	275	34.0	HF7	W/R	VO	Highly fractured rock zone with multiple open, partially
K 11 151	010	55.75	50.20	00.00	40	275	54.0	1112			open and closed joints. Weathered rock.
K-11-161	OTV/core	159.50	161.25	163.00			3500.0	FZ			NO ACCESS TO WELLCAD LICENSE
K-11-161	OTV/core	446.00	454.00	462.00			16000.0	HFZ	PF	WR	NO ACCESS TO WELLCAD LICENSE
K-11-163	Core	211.80	215.15	218.50			6700.0	HFZ			
K-11-163	Core	222.80	229.90	237.00			14200.0	HFZ	PF	WR	Split core. Highly fractured zone. Slightly to very weathered. Mostly broken core and partly soil.
K-11-163	Core	272.50	280.50	288.50			16000.0	HFZ	PF	WR	Highly fractured zone. Slightly to very weathered. Mostly broken core and partly soil.
K-11-165	ΟΤV	184.84	187.78	190.71	79	132	5870.0	HFZ	PF	PG	Highly fractured zone with many partially open, open and discontinued joints. Probable gouge, fault and crushed rock. One main orientation.
K-11-165	OTV	385.67	386.51	387.35	86	213	1680.0	HFZ	PF	PG	Highly fractured zone. Seems to be a major open joint but difficult to describe because of a blurry image. Orientation likely innacurate.
K-11-165	ΟΤν	269.18	270.01	270.84	84	118	1660.0	HFZ			Highly fractured zone with closed, partially open, open and discontinued joints. Including major open joints.
K-11-165	OTV	257.56	258.16	258.75	72	125	1190.0	OIC			Open joint concentration
K-11-165	ΟΤν	266.64	267.22	267.80	69	148	1160.0	HFZ			Highly fractured zone including two major open joints of 254 and 433 mm.
K-11-165	OTV	235.74	236.31	236.88	79	141	1140.0	OIC			Open joint concentration
K-11-165	OTV	137.06	137.55	138.03	50	158	970.0	OIC	VO		Open joint concentration
K-11-165	OTV	227.08	227.53	227.98	80	150	900.0	OIC			Open joint concentration
K-11-165	ΟΤ٧	349.95	350.36	350.76	71	197	810.0	FZ			Moderately fractured zone with closed, partially open, open and discontinued joints.
K-11-165	ΟΤΛ	379.54	379.89	380.24	67	221	700.0	DIO			Open joint concentration
K-11-165	OTV	339.90	340.12	340.33	70	200	430.0	OIC			Open joint concentration
K-11-165	ΟΤΛ	384.88	385.12	385.35	69	131	262.7	MOJ			Major open joint.
K-11-165	ΟΤV	167.13	167.27	167.40	68	112	152.6	MOJ	PG		Major open joint. Possible gouge and crushed rock.
K-12-176A	ATV	282.26	304.94	327.61	81	128	45350.0	HFZ	PF		Highly fractured zone with multiple open and slightly open joints. One major joint orientation.
K-12-176A	ATV	181.19	188.23	195.27	80	152	14080.0	HFZ	PF	PG	Highly fractured zone with partially open and open joints. Possible gouge filling. Likely weathered and crushed rock.
K-12-176A	ATV	471.43	478.16	484.88	65	145	13450.0	HFZ	PF		Highly fractured zone with multiple open and slightly open joints. One main joint orientation.

Borehole	Туре	Depth Top (m)	Depth Center (m)	Depth Bottom (m)	Dip (°)	Dip Direction (°)	Apparent aperture / thickness (mm)	Code 1	Code 2	Code 3	
K-12-176A	ATV	356.79	363.11	369.43	82	130	12640.0	HFZ	PF		ŀ
K-12-176A	ATV	244.92	250.34	255.76	78	160	10840.0	HFZ			F
K-12-176A	ATV	371.68	375.77	379.86	66	136	8180.0	HFZ			ŀ
K-12-176A	ATV	486.18	489.23	492.27	71	148	6090.0	HFZ	PF		F
K-12-176A	ATV	422.26	423.88	425.50	69	228	3240.0	HFZ			M a
K-12-176A	ATV	433.93	435.34	436.74	83	312	2810.0	HFZ	PF	PG	ŀ
K-12-176A	ATV	401.09	402.30	403.50	82	219	2410.0	HFZ			M a ma
K-12-176A	ATV	172.35	173.35	174.35	74	148	2000.0	HFZ	PF	PG	
K-12-176A	ATV	51.47	52.31	53.14	70	164	1670.0	HFZ			Н
K-12-176A	ATV	336.91	337.72	338.52	73	138	1610.0	HFZ			ŀ
K-12-176A	ATV	128.85	129.62	130.38	64	088	1530.0	HFZ			
K-12-176A	ATV	136.85	137.56	138.26	75	130	1410.0	HFZ	PF	PG	
K-12-176A	ATV	196.00	196.50	197.00	79	134	1000.0	HFZ			
K-12-176A	ATV	205.17	205.56	205.94	74	137	770.0	HFZ	PF		
K-12-176A	ATV	48.38	48.71	49.04	80	130	660.0	OIC			
K-12-176A	ATV	179.20	179.37	179.53	80	180	330.0	HFZ	PF	PG	
K-12-177	Core	146.50	166.00	185.50			39000.0	HFZ	PF	WR	
K-12-177	Core	236.50	251.50	266.50			30000.0	HFZ	PF	WR	9

Description

Highly fractured zone with multiple open and slightly open joints. One major joint orientation with a particular zone of varying joint orientations.

Highly fractured zone with multiple open and slightly open joints. One major joint orientation.

Highly fractured zone with multiple open and slightly open joints.

Highly fractured zone with multiple open and slightly open joints. One main joint orientation.

loderately to highly fractured zone with multiple open and partially open joints and a few closed joints. One main joint orientation.

Highly fractured zone with multiple open and slightly open joints. One main joint orientation.

Noderately to highly fractured zone with multiple open and partially open joints and a few closed joints. Two ain joint orientations including southern dipping joints.

Highly fractured zone with partially open and open joints. Possible gouge filling.

lighly fractured zone with multiple open and partially open joints.

Highly fractured zone with multiple open and slightly open joints. One major joint orientation.

Highly fractured zone with mainly closed joints, and some partially open and open joints.

Highly fractured zone with partially open and open joints. Possible gouge filling.

Highly to moderately fractured zone with closed, partially open, open and discontinued joints.

Highly fractured zone with multiple open joints and partially open and closed joints.

Concentration of open joints

Highly fractured zone with partially open and open joints. Possible gouge filling.

Split core. Highly fractured zone. Mostly very weathered. Fractured a lot along foliation.

Split core. Highly fractured zone. Slightly weathered. Partly broken core and partly soil.

Appendix D - Fault analysis Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

Borehole	Туре	Depth Top (m)	Depth Center (m)	Depth Bottom (m)	Dip (°)	Dip Direction (°)	Apparent aperture / thickness (mm)	Code 1	Code 2	Code 3	Description
K-12-177	Core	270.00	276.85	283.70			13700.0	HFZ	PF	WR	Split core. Highly fractured zone. Slightly weathered. Partly broken core and partly soil.
K-12-177	Core	286.00	290.00	294.00			8000.0	HFZ			
K-12-179	OTV	176.20	187.10	198.00	65	135	21800.0	HFZ	PF	PG	Very highly fractured zone with multiple open joints. Likely fault, crushed rock and gouge. Weathered looking rock. One main orientation.
K-12-179	ΟΤV	203.90	208.47	213.03	70	130	9130.0	HFZ	PF	PG	Highly fractured zone with multiple open joints but zones more concentrated in closed and slightly open features. Weathered looking rock. One main orientation.
K-12-179	OTV	238.80	242.80	246.80	80	130	8000.0	HFZ	PF	PG	Highly fractured zone with multiple open joints. Likely fault, crushed rock and gouge. Weathered looking rock. One main orientation.
K-12-179	ΟΤV	160.33	162.29	164.25	74	151	3920.0	HFZ	PF	PG	Highly fractured zone with closed, partially open, open and discontinued joints. Many major open features and likely crushed rock zones. Varying orientations.
K-12-179	ΟΤV	154.40	155.60	156.80	62	138	2400.0	HFZ	PF		Highly fractured zone with partially open, open and discontinued joints.
K-12-179	ΟΤV	172.55	173.63	174.70	65	140	2150.0	FZ			Fractured zone with mainly closed and slightly open joints.
K-12-179	ΟΤV	166.60	167.50	168.40	75	154	1800.0	HFZ			Highly fractured zone with closed, partially open, open and discontinued joints.
K-12-179	ΟΤV	252.25	253.04	253.82	79	134	1570.0	HFZ	PG		Highly fractured zone with multiple open and partially open joints. Including major open joints of 205 mm and more than 395 mm. Possible gouge and crushed rock.
K-12-179	ΟΤV	247.70	248.48	249.25	72	140	1550.0	FZ			Fractured zone with mainly closed and slightly open joints.
K-12-179	OTV	68.95	69.71	70.47	24	156	1520.0	HFZ	PG	vo	Highly fractured zone with closed, partially open, open and discontinued joints. Including a major open joint (90 mm).
K-12-179	ΟΤV	71.78	72.33	72.88	33	135	1100.0	FZ			Slightly to moderately fractured zone with closed, partially open, open and discontinued joints.
K-12-179	ΟΤV	170.89	171.18	171.47	70	145	580.0	HFZ	PG		Highly fractured zone with many open joints. Likely crushed rock and gouge.
K-12-179	ΟΤV	143.98	144.19	144.40	66	146	420.0	FZ			Possible fractured zone with one open joint and several closed joints.
K-12-179	ΟΤV	169.58	169.71	169.84	79	138	260.0	HFZ	PG		Highly fractured zone with wide aperture. Likely crushed rock and gouge.
K-12-179	ΟΤV	172.00	172.09	172.17	70	129	170.0	HFZ	PG		Highly fractured zone with wide aperture. Likely crushed rock and gouge.

Borehole	Туре	Depth Top (m)	Depth Center (m)	Depth Bottom (m)	Dip (°)	Dip Direction (°)	Apparent aperture / thickness (mm)	Code 1	Code 2	Code 3	
K-12-179	ΟΤν	74.51	74.57	74.63	41	114	120.0	МОЈ	PG		
K-12-179	OTV	21.44	21.49	21.54	61	137	100.0	MOJ			
K-12-179	ΟΤ٧	220.56	220.61	220.66	74	138	100.0	MOJ	PG		
K-12-179	OTV	140.88	140.95	141.01	62	121	84.0	HFZ			
K-12-179	ΟΤV	219.78	219.82	219.85	77	137	70.0	MOJ	PG		
K-12-179	OTV	119.01	119.06	119.10	60	162	52.7	HFZ			
K-12-179	OTV	25.39	25.40	25.41	43	269	20.0	MOJ			
K-12-184	OTV/core	143.00	151.75	160.50			17500.0	HFZ	PF	WR	
K-12-184	OTV/core	181.50	182.75	184.00			2500.0	HFZ	PF	WR	Γ
K-12-200	ATV	20.99	23.36	25.73	77	126	4740.0	HFZ	PG	VO	H aı
K-12-200	ATV	28.40	28.61	28.82	45	280	420.0	HFZ	PG		H
K-12-200	ATV	31.80	32.05	32.30	59	090	500.0	HFZ			I
K-12-200	ATV	49.70	50.49	51.28	57	116	1580.0	HFZ			H Ol
K-12-200	ATV	88.02	88.14	88.26	56	140	240.0	HFZ	PG		Н
K-12-200	ATV	170.44	170.51	170.57	56	118	130.0	HFZ	PG		Н
K-12-200	ATV	179.06	179.13	179.20	62	124	140.0	HFZ	PG		Н
K-12-212	ΟΤV	193.50	202.10	210.70	45	020	17200.0	FZ	vo	WR	
K-12-212	ΟΤV	57.51	59.18	60.84	53	000	3330.0	HFZ			0
K-12-212	ΟΤ٧	69.63	71.26	72.88	49	357	3250.0	HFZ			0
K-12-212	ΟΤν	189.35	190.94	192.52	38	136	3170.0	FZ	vo	WR	

	locori	100	ж	0.10
L	JESUL	191	41	

Major open joint. Possible gouge and crushed rock.

Major open joint.

Major open joint. Possible gouge and crushed rock.

Highly fractured zone. Likely crushed rock.

Major open joint. Possible gouge and crushed rock.

Highly fractured zone. Likely crushed rock.

Major open joint.

NO ACCESS TO WELLCAD LICENSE

NO ACCESS TO WELLCAD LICENSE

ighly fractured zone with multiple open, partially open nd discontinued joints and a few closed joints. Multiple joint orientations.

ighly fractured zone. One orientation. Possible crushed rock and gouge.

Highly fractured zone with several slightly open joints. One main joint orientation.

ighly fractured zone with multiple open joints, partially pen and discontinued joints. One main joint orientation with random joints.

ighly fractured zone. One orientation. Possible crushed rock and gouge.

ighly fractured zone. One orientation. Possible crushed rock and gouge.

ighly fractured zone. One orientation. Possible crushed rock and gouge.

Fractured zone with mainly closed and slightly open joints. Slightly weathered looking aspect. Randomly oriented joints mainly.

Highly fractured zone with many partially open and open joints. One main joint orientation but others too.

Highly fractured zone with many partially open and open joints. One main joint orientation but others too.

Fractured zone with mainly closed and slightly open joints. Slightly weathered looking aspect. Randomly oriented joints mainly.

Borehole	Туре	Depth	Depth	Depth	Dip (°)	Dip Direction (°)	Apparent aperture /	Code 1	Code 2	Code 3	Description
		Top (m)	Center (m)	Bottom (m)			thickness (mm)				Highly fractured zone with multiple closed and partially
K-12-212	OTV	213.77	215.29	216.80	80	320	3030.0	HFZ	WR		open joints and a few open joints.
K-12-212	оти	18.83	19.77	20.70	40	317	1870.0	OIC			Open joint concentration
	_										Highly fractured zone with closed, partially open and
K-12-212	оти	49.14	49.59	50.04	64	344	904.0	HFZ	PF	PG	open joints. Weathered appearance. Possible crushed
											rock and gouge.
K 12 212		46.07	47.21	47.04	20	250	670.0	016	DC		Open joint concentration. Weathered appearance.
K-12-212		46.97	47.31	47.04	30	350	670.0	0,0	PG	VVK	Possible gouge.
K-12-212	OTV	37.25	37.44	37.63	23	031	380.0	OIC			Open joint concentration
											Highly fractured zone partially open and open joints.
K-12-212	OTV	51.60	51.74	51.88	47	335	280.0	HFZ	PG	WR	Weathered appearance. Possible crushed rock and
											gouge.
K-12-212	OTV	159.80	159.90	160.00	48	148	200.0	MOJ			Major open joint.
											Highly fractured zone with multiple open and partially
RBR-12-02	ATV	222.80	248.07	273.33	78	148	50530.0	HFZ	PF		open joints. Likely crushed and weathered rock. One
											main orientation.
											Highly fractured zone with multiple open and partially
RBR-12-02	ATV	181.54	191.81	202.07	75	157	20530.0	HFZ	PF		open joints. Likely crushed and weathered rock. One
											main orientation.
		201.02	200 74	205 50		100	10760.0				Highly fractured zone with multiple open and partially
RBR-12-02	AIV	281.83	288./1	295.59	/9	139	13760.0	HFZ	PF		open joints. Likely crushed and weathered rock. One
											main orientation.
DDD 12 02	AT1 (242.70	216.00	220.00	70	4.47	0200.0	1157	DE		Highly fractured zone with multiple open and partially
RBK-12-02	AIV	212.78	216.88	220.98	/2	147	8200.0	HFZ	PF		open joints. Likely crushed and weathered rock. One
											main orientation.
											Highly fractured zone with multiple open and partially
RBR-12-02	ATV	101.22	103.77	106.31	70	152	5090.0	HFZ	PF		open joints. Likely crushed and weathered rock. One
											main orientation, but other orientations too.
											Moderately to highly fractured zone with closed.
RBR-12-02	ATV	49.71	51.28	52.85	80	132	3140.0	HFZ			partially open, open and discontinued joints.
											Moderately to highly fractured zone with closed,
RBR-12-02	ATV	40.81	42.34	43.87	71	131	3060.0	HFZ			partially open, open and discontinued joints.
	A.T. (22.40	22.22	24.26	60	1.10	2260.0		B C	1/2	Highly to very highly fractured zone. Probable
RBK-12-02	AIV	22.10	23.23	24.36	60	140	2260.0	HFZ	PG	V0	weathered and crushed rock.
RBR-12-02	ATV	45.01	45.60	46.19	72	111	1180.0	OIC			Open joint concentration
	۸۳۱/	10.96	20.21	20.76	65	100	000.0		DC		Highly to very highly fractured zone. Probable
		19.00	20.31	20.70	60	133	900.0				weathered and crushed rock.
RBR-12-02	ATV	97.00	97.14	97.27	53	160	270.0	OIC			Open joint concentration

Table D1 - Fault analysis Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

Fractured zone
Highly fractured zone
Open joint concentration
Major open joint
Possible gouge
Possible fault
Varying orientations (global orientation +/- accurate)
Weathered rock

Appendix E. Core Photos

- K-08-24
- K-10-30
- K-11-115
- K-11-133
- K-11-137
- K-11-151
- K-11-161
- K-11-163
- K-12-175
- K-12-176A
- K-12-177
- K-12-179
- K-12-182
- K-12-184
- K-12-186
- K-12-200
- RBR-12-01
- RBR-12-02

20.0 m

37.8 m

37.8 m

51.0 m

K-08-24 - Core Logs Total core length : 305 m

K-10-30 - Core Logs Core length : 191 m

Total core length : 417 m

405.0 m

417.0 m

K-11-115_CF - Core Logs Total core length : 417 m

142.5 m

142.5 m

156.7 m

345.2 m

350.7 m

357.7 m

358.8 m

K-11-137 - Core Logs Total core length : 539 m

K-11-151 - Core Logs Total core length : 299 m

652.1 m

663.7 m

K-11-161 - Core Logs Total core length : 671 m

569.7 m

K-11-163 - Core Logs Toal core length : 585 m 50.0 m

55.5 m

K-12-175 - Core Logs Total core length : 323 m 585.0 m

596.5 m

K-12-176A - Core Logs Toal core length : 596.5 m 136.9 m

151.4 m

151.4 m

162.2 m

K-12-177 - Core Logs Total core length : 561 m

K-12-177 - Core Logs Total core length : 561 m

Total core length : 479 m

168.0 m

K-12-184 - Core Logs Total core length : 479 m

407.1 m

423.0 m

K-12-186 - Core Logs Toal core length : 423 m 181.5 m

188.6 m

K-12-200 - Core Logs Total core length : 550 m

RBR-12-01 – Core Logs

RBR-12-01 – Core Logs

RBR-12-01 – Core Logs

16 m 29.5 m 39.6 m 50.1 m RB-12-02 – Core Logs

RB-12-02 – Core Logs

RB-12-02 – Core Logs

Appendix F. 2012 Pressure Transducers Data

Logger is placed only 0.15 m below the top of the screen

Logger is placed about 1.5 m above the top of the screen

Logger is placed 1.5 m below the top of the screen

about 5.5 m below top of screen

Recharge could be due to a period of unseasonally warm temperatures causing early snow melt

Logger is placed about 4 m below the top of the screen
Appendix F - Pressure Transducers Data (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

Appendix F - Pressure Transducers Data (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

Don't have information on screen depth

Don't have information on screen depth

Logger is placed about 0.5 m below the top of the screen

Logger is placed about 5.5 m below the top of the screen

No information on screen depths

Logger is placed about 7 m below the top of the screen

Appendix G. 2012 Groundwater Quality

O/Ref.: 692696-7000-4WER-0001_01 April 30, 2024 G-1

Appendix G1 : Dissolved Metals in Groundwater in 2012 (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

		Loca	ation	ROB-11-02	ROB-11-05A	ROB-11-05B	ROB-11-08A	ROB-11-08B	ROB-11-10	ROB-11-11	ROB-11-11	ROB-11-12	ROB-11-13A
		Sample D	Depth (m)	3.1-25.9	16.5-19.6	3.1-13.7	6.8-29.0	2.2-9.0	0.9-7.6	2.2-5.8	Lab-Dup	0.9-7.4	11.6-15.2
		U	nit	Till/Bedrock	Bedrock	Overburden	Till/Bedrock	Overburden	Till/Bedrock	Till/Bedrock		Till/Bedrock	Till/Bedrock
Parameters	Units	RDL	GCDWQ ¹										
Aluminum (Al)	ug/L	5.0	-	ND	71.2	ND	ND	8.0	8.9	7.6	7.7	31.0	26.3
Antimony (Sb)	ug/L	1.0	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	1.0	10	ND	ND	ND	ND	ND	1.4	ND	ND	1.1	ND
Barium (Ba)	ug/L	1.0	1000	16.1	10.7	13.2	4.6	40.6	42.0	10.6	10.8	9.1	19.2
Beryllium (Be)	ug/L	1.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	50	5000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium (Cd)	ug/L	0.017	10	ND	ND	ND	ND	ND	0.218	0.079	0.075	0.035	0.035
Chromium (Cr)	ug/L	1.0	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	0.40	0 50 ND 0 - ND		1.07	ND	ND	ND	2.46	ND	ND	2.96	1.01
Copper (Cu)	ug/L	2.0	1000	ND	6.7	2.3	ND	2.8	11.3	2.3	2.4	3.6	2.8
Iron (Fe)	ug/L	50	300	198	1110	ND	ND	63	382	55	56	2390	651
Lead (Pb)	ug/L	0.50	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Manganese (Mn)	ug/L	2.0	50	679	267	174	ND	538	773	46	47	1130	366
Molybdenum (Mo)	ug/L	2.0	-	ND	20.1	2.6	ND	15.0	11.8	ND	ND	12.4	5.2
Nickel (Ni)	ug/L	2.0	-	ND	2.3	2.6	ND	ND	18.5	ND	ND	ND	5.9
Selenium (Se)	ug/L	1.0	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	0.10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	2.0	-	38.5	32	38.7	25.2	23.8	83.4	31.4	32.3	8	24.6
Thallium (TI)	ug/L	0.10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	2.0	-	ND	2.7	ND	ND	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Uranium (U)	ug/L	0.10	20	0.4	0.2	0.2	2.3	0.6	0.9	0.2	0.2	ND	ND
Vanadium (V)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5.0	5000	5.1	41.7	6	10.2	ND	20.2	ND	ND	10.5	27.3

Notes:

1 = Guidelines for Canadian Drinking Water Quality, Health Canada 2012 - On-Line Update Table.

2 - ug/L - micrograms per liter;

= not analysed, not applicable or no applicable guideline Bold/Shaded = value exceeds applicable criteria

Detected above

RDL = Reportable Detection Limit

Appendix G1 : Dissolved Metals in Groundwater in 2012 (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

		Loca	ation	ROB-11-13B	ROB-11-17	ROB-11-20	K-11-108	K-11-113	K-11-163	BH-GE-03	BH-GE-04	BH-GE-06	BH-GE-09
		Sample I	Depth (m)	1.4-10.7	4.6-47.8	1.5-15.0				6.4-15.5	2.7-11.8	3.1-15.8	3.4-9.4
		U	nit	Overburden	Till/Bedrock	Till/Bedrock	Bedrock	Bedrock	Bedrock	Overburden	Till/Bedrock	Overburden	Overburden
Parameters	Units	RDL	GCDWQ ¹										
Aluminum (Al)	ug/L	5.0	-	28.6	6.2	ND	ND	11.6	ND	ND	ND	9.0	6.9
Antimony (Sb)	ug/L	1.0	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic (As)	ug/L	1.0	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium (Ba)	ug/L	1.0	1000	31.7	28.2	30.9	4.2	17.1	10.5	43.6	10.4	4.1	21.7
Beryllium (Be)	ug/L	1.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bismuth (Bi)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Boron (B)	ug/L	50	5000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium (Cd)	ug/L	0.017	10	0.09	0.043	ND	ND	0.037	0.026	ND	ND	ND	0.029
Chromium (Cr)	ug/L	1.0	50	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND
Cobalt (Co)	ug/L	0.40	50 ND 0 - 1.54		ND	0.58	ND	ND	ND	ND	ND	ND	ND
Copper (Cu)	ug/L	2.0	0 - 1.54 1000 6.4		ND	ND	ND	57.7	ND	ND	ND	ND	ND
Iron (Fe)	ug/L	50	300	163	93	342	ND	2120	2620	ND	ND	ND	ND
Lead (Pb)	ug/L	0.50	10	ND	ND	ND	ND	2.22	ND	ND	ND	ND	ND
Manganese (Mn)	ug/L	2.0	50	178	243	297	43.4	79.3	305	254	2	ND	25.5
Molybdenum (Mo)	ug/L	2.0	-	4.0	5.2	3.2	21.4	8.2	2.7	6.9	ND	ND	4.2
Nickel (Ni)	ug/L	2.0	-	10.8	ND	3.5	ND	ND	2.1	ND	ND	ND	4.6
Selenium (Se)	ug/L	1.0	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver (Ag)	ug/L	0.10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Strontium (Sr)	ug/L	2.0	-	46.0	24.4	29	12.7	47.4	17.7	19.1	18.7	13.1	12.1
Thallium (TI)	ug/L	0.10	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin (Sn)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Titanium (Ti)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Uranium (U)	ug/L	0.10	20	ND	0.2	0.2	ND	0.1	ND	0.1	0.3	0.3	0.4
Vanadium (V)	ug/L	2.0	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc (Zn)	ug/L	5.0	5000	16	ND	34.6	ND	99.1	127	11.2	ND	ND	ND

Notes:

1 = Guidelines for Canadian Drinking Water Quality, Health Canada 2012 - On-Line Update Table.

2 - ug/L - micrograms per liter;

= not analysed, not applicable or no applicable guideline Bold/Shaded = value exceeds applicable criteria

Detected above

RDL = Reportable Detection Limit

		Loc	ation	BH-GE-10	BH-GE-18
		Sample	Depth (m)	2.4-9.2	2.4-12.2
		L	Jnit	Overburden	Overburden
Parameters	Units	RDL	GCDWQ ¹		
Aluminum (Al)	ug/L	5.0	-	ND	6.5
Antimony (Sb)	ug/L	1.0	6	ND	ND
Arsenic (As)	ug/L	1.0	10	2.1	ND
Barium (Ba)	ug/L	1.0	1000	191.0	45.0
Beryllium (Be)	ug/L	1.0	-	ND	ND
Bismuth (Bi)	ug/L	2.0	-	ND	ND
Boron (B)	ug/L	50	5000	ND	ND
Cadmium (Cd)	ug/L	0.017	10	ND	0.031
Chromium (Cr)	ug/L	1.0	50	ND	ND
Cobalt (Co)	ug/L	0.40	-	ND	ND
Copper (Cu)	ug/L	2.0	1000	ND	2.3
Iron (Fe)	ug/L	50	300	241	169
Lead (Pb)	ug/L	0.50	10	ND	ND
Manganese (Mn)	ug/L	2.0	50	587	786
Molybdenum (Mo)	ug/L	2.0	-	10.0	11.7
Nickel (Ni)	ug/L	2.0	-	2.0	ND
Selenium (Se)	ug/L	1.0	10	ND	ND
Silver (Ag)	ug/L	0.10	-	ND	ND
Strontium (Sr)	ug/L	2.0	-	29.4	36.5
Thallium (TI)	ug/L	0.10	-	ND	ND
Tin (Sn)	ug/L	2.0	-	ND	ND
Titanium (Ti)	ug/L	2.0	-	ND	ND
Uranium (U)	ug/L	0.10	20	1.1	1.0
Vanadium (V)	ug/L	2.0	-	ND	ND
Zinc (Zn)	ug/L	5.0	5000	ND	137

Notes:

1 = Guidelines for Canadian Drinking Water Quality, Health Canada 2012 - On-Line Update Table.

2 - ug/L - micrograms per liter;

= not analysed, not applicable or no applicable guideline Bold/Shaded = value exceeds applicable criteria

Detected above

RDL = Reportable Detection Limit

Appendix G2 : General Chemistry in Groundwater in 2012 (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

		Loca	ation	ROB-11-02	ROB-11-05A	ROB-11-05B	ROB-11-08A	ROB-11-08B	ROB-11-08B	ROB-11-10	ROB-11-11	ROB-11-11	ROB-11-12	ROB-11-13A
		Sample I	Depth (m)	3.1-25.9	16.5-19.6	3.1-13.7	6.8-29.0	2.2-9.0	Lab-Dup	0.9-7.6	2.2-5.8	Lab-Dup	0.9-7.4	11.6-15.2
		U	nit	Till/Bedrock	Bedrock	Overburden	Till/Bedrock	Overburden		Till/Bedrock	Till/Bedrock		Till/Bedrock	Till/Bedrock
Parameters	Units	RDL	GCDWQ											
Sodium (Na)	mg/L	0.1	200	4.1	4.3	10.2	1.7	1.3	-	3.3	0.7	0.7	0.9	4.2
Potassium (K)	mg/L	0.1	-	3.6	3.7	3.9	1.7	4.3	-	3.1	0.4	0.4	0.4	1.7
Calcium (Ca)	mg/L	0.1	-	21.4	19.6	19.2	19.1	18.5	-	34.9	19.7	20.2	6.2	13.4
Magnesium (Mg)	mg/L	0.1	-	8.9	6.8	4.7	8.3	7.5	-	7.2	3.8	3.8	1.7	3.3
Total Alkalinity (Total as CaCO3)	mg/L	5.0	-	98.0	87.0	78.0	92.0	67.0	-	110.0	82.0	-	66.0	52.0
Dissolved Chloride (Cl)	mg/L	1.0	250	1.4	1.3	4.7	ND	ND	-	1.4	ND	-	1.2	1.1
Dissolved Sulphate (SO4)	mg/L	2.0	500	7.4	6.4	15.0	6.7	12.0	-	24.0	6.8	-	4.4	14.0
Reactive Silica (SiO2)	mg/L	0.50	-	8.1	7.1	15.0	8.9	5.1	-	13.0	7.3	-	14.0	9.7
Orthophosphate (P)	mg/L	0.010	-	ND	ND	ND	0.07	ND	-	ND	ND	-	ND	ND
Total Phosphorus (P)	mg/L	0.1	-	ND	ND	ND	ND	ND	-	ND	ND	ND	ND	0.33
Nitrate + Nitrite	mg/L	0.050	10	ND	0.08	0.12	0.05	ND	-	ND	ND	-	0.25	0.08
Nitrate (N)	mg/L	0.050	45	ND	0.08	0.10	0.05	ND	-	ND	ND	-	0.25	0.08
Nitrite (N)	mg/L	0.010	1	ND	ND	0.02	ND	ND	-	ND	ND	-	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	0.050	-	ND	0.40	0.85	ND	ND	-	ND	ND	-	ND	1.70
Colour	TCU	5.0	15	ND	15	ND	ND	ND	-	ND	ND	-	37	8.9
Turbidity	NTU	3.0	2	1.5	81	30	ND	90	93	72	660	-	120	83
РН	рН	0.01	6.5 to 8.5	7.96	7.89	7.69	8.13	8.06	-	7.88	8.08	-	7.40	7.43
Conductivity	pS/cm	1.0	-	200	180	200	170	150	-	250	160	-	130	130
Total Organic Carbon (C)	mg/L	5.0	-	ND	120 (1)	13.0	ND	0.7	-	100.0	6.5 (1)	-	9.9	1.6
Hardness (CaCO3)	mg/L	1.0	-	90	77	67	82	77	-	120	65	-	22	47
Calculated TDS	mg/L	1.0	500	114	103	121	102	89	-	154	88	-	73	82
Bicarb. Alkalinity (calc, as CaCO3)	mg/L	1.0	-	97.0	86.0	78.0	90.6	66.4	-	110.0	81.1	-	65.7	52.0
Carb. Alkalinity (calc, as CaCO3)	mg/L	1.0	-	ND	ND	ND	1.2	ND	-	ND	ND	-	ND	ND
Cation Sum	me/L	-	-	2.07	1.88	1.95	1.75	1.71	-	2.57	1.33	-	0.58	1.31
Anion Sum	me/L	-	-	2.15	1.91	2.02	1.98	1.58	-	2.75	1.78	-	1.46	1.36
Ion Balance (% Difference)	%	-	-	1.90	0.79	1.76	6.17	3.95	-	3.38	14.50	-	43.10	1.87
Langelier Index (@ 4C)	N/A	-	-	-0.32	-0.48	-0.74	-0.23	-0.44	-	-0.16	-0.30	-	-1.57	-1.31
Langelier Index (@ 20C)	N/A	-	-	-0.07	-0.23	-0.49	0.03	-0.19	-	0.10	-0.05	-	-1.32	-1.06
Saturation pH (@ 4C)	N/A	-	-	8.28	8.37	8.43	8.36	8.50	-	8.04	8.38	-	8.97	8.74
Saturation pH (@ 20C)	N/A	-	-	8.03	8.12	8.18	8.11	8.25	-	7.78	8.13	-	8.72	8.49

Notes:

1 = Guidelines for Canadian Drinking Water Quality, Health Canada 2012 IOn-Line Update Table.

2 - mg/L - milligrams per liter; uS/cm - microseimens per centimeter; me/L - milliequivalents/Liter; NTU - nephelometer turbidity

units; TCU - True Color Units

= not analysed, not applicable or no applicable guideline Bold/Shaded = value exceeds applicable criteria

ND = Not Detected above the RDL

RDL = Reportable Detection Limit

Lab-Dup = Laboratory QA/QC duplicate sample

Appendix G2 : General Chemistry in Groundwater in 2012 (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

		Loca	ation	ROB-11-13B	ROB-11-13B	ROB-11-17	ROB-11-17	ROB-11-20	K-11-108	K-11-113	K-11-163	K-11-163	BH-GE-03	BH-GE-04
		Sample I	Depth (m)	1.4-10.7	Lab-Dup	4.6-47.8	Lab-Dup	1.5-15.0				Lab-Dup	6.4-15.5	2.7-11.8
		U	nit	Overburden		Till/Bedrock		Till/Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	Overburden	Till/Bedrock
Parameters	Units	RDL	GCDWQ ¹											
Sodium (Na)	mg/L	0.1	200	12.5	-	2.1	-	1.8	2.9	4.3	2.7	-	1.2	3.1
Potassium (K)	mg/L	0.1	-	2.9	-	2.4	-	2.6	4.2	4.7	1.7	-	2.0	1.2
Calcium (Ca)	mg/L	0.1	-	9.1	-	12.3	-	11.8	8.2	16.8	19.3	-	16.0	11.4
Magnesium (Mg)	mg/L	0.1	-	3.4	-	3.7	-	3.5	4.5	5.2	9.2	-	5.7	4.9
Total Alkalinity (Total as CaCO3)	mg/L	5.0	-	32.0	-	73.0	76.0	43.0	56.0	79.0	84.0	82.0	54.0	44.0
Dissolved Chloride (Cl)	mg/L	1.0	250	5.4	-	1.0	ND	ND	1.1	1.2	1.6	1.5	ND	ND
Dissolved Sulphate (SO4)	mg/L	2.0	500	30.0	-	13.0	12.0	11.0	ND	5.7	17.0	18.0	20.0	21.0
Reactive Silica (SiO2)	mg/L	0.50	-	9.7	-	9.9	10.0	18.0	ND	0.7	23.0	22.0	7.3	9.4
Orthophosphate (P)	mg/L	0.010	-	ND	-	ND	ND	ND	ND	ND	ND	ND	0.01	ND
Total Phosphorus (P)	mg/L	0.1	-	ND	-	ND	-	ND	ND	ND	ND	-	ND	ND
Nitrate + Nitrite	mg/L	0.050	10	0.07	-	ND	ND	ND	ND	ND	ND	ND	ND	0.05
Nitrate (N)	mg/L	0.050	45	0.07	-	ND	-	ND	ND	ND	ND	-	ND	0.05
Nitrite (N)	mg/L	0.010	1	ND	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrogen (Ammonia Nitrogen)	mg/L	0.050	-	0.62	-	0.13	-	ND	ND	0.13	0.16	-	ND	ND
Colour	TCU	5.0	15	ND	-	ND	ND	ND	ND	11	14	19	ND	ND
Turbidity	NTU	3.0	2	30	35	64	-	260	230	150	250	-	150	2.8
РН	рН	0.01	6.5 to 8.5	7.26	-	8.02	-	7.47	8.87	8.96	7.66	-	8.05	7.64
Conductivity	pS/cm	1.0	-	150	-	160	-	110	100	150	190	-	140	130
Total Organic Carbon (C)	mg/L	5.0	-	6.8	-	3.0	-	1.8	9.8	9.4	9.6	-	0.6	ND
Hardness (CaCO3)	mg/L	1.0	-	37	-	46	-	44	39	63	86	-	63	49
Calculated TDS	mg/L	1.0	500	93	-	88	-	74	54	88	128	-	84	77
Bicarb. Alkalinity (calc, as CaCO3)	mg/L	1.0	-	32.0	-	71.8	-	42.8	51.9	72.0	83.9	-	53.1	43.3
Carb. Alkalinity (calc, as CaCO3)	mg/L	1.0	-	ND	-	ND	-	ND	3.6	6.2	ND	-	ND	ND
Cation Sum	me/L	-	-	1.40	-	1.08	-	1.03	1.01	1.66	1.98	-	1.37	1.14
Anion Sum	me/L	-	-	1.41	-	1.74	-	1.08	1.15	1.73	2.09	-	1.48	1.30
Ion Balance (% Difference)	%	-	-	0.36	-	23.40	-	2.37	6.48	2.06	2.70	-	3.86	6.56
Langelier Index (@ 4C)	N/A	-	-	-1.87	-	-0.62	-	-1.41	-0.07	0.46	-0.74	-	-0.60	-1.25
Langelier Index (@ 20C)	N/A	-	-	-1.62	-	-0.37	-	-1.15	0.19	0.71	-0.49	-	-0.35	-0.99
Saturation pH (@ 4C)	N/A	-	-	9.13	-	8.64	-	8.88	8.94	8.50	8.40	-	8.65	8.89
Saturation pH (@ 20C)	N/A	-	-	8.88	-	8.39	-	8.62	8.68	8.25	8.15	-	8.40	8.63

Notes:

1 = Guidelines for Canadian Drinking Water Quality, Health Canada 2012 IOn-Line Update Table.

2 - mg/L - milligrams per liter; uS/cm - microseimens per centimeter; me/L - milliequivalents/Liter; NTU - nephelometer turbidity

units; TCU - True Color Units

= not analysed, not applicable or no applicable guideline Bold/Shaded = value exceeds applicable criteria

ND = Not Detected above the RDL

RDL = Reportable Detection Limit

Lab-Dup = Laboratory QA/QC duplicate sample

		Loca	ation	BH-GE-06	BH-GE-06	BH-GE-09	BH-GE-10	BH-GE-10	BH-GE-18
		Sample I	Depth (m)	3.1-15.8	Lab-Dup	3.4-9.4	2.4-9.2	Lab-Dup	2.4-12.2
		U	nit	Overburden		Overburden	Overburden		Overburden
Parameters	Units	RDL	GCDWQ						
Sodium (Na)	mg/L	0.1	200	1.0	-	0.6	1.0	-	2.4
Potassium (K)	mg/L	0.1	-	2.1	-	1.3	2.7	-	3.0
Calcium (Ca)	mg/L	0.1	-	10.8	-	27.8	33.7	-	21.3
Magnesium (Mg)	mg/L	0.1	-	3.0	-	15.2	17.9	-	8.0
Total Alkalinity (Total as CaCO3)	mg/L	5.0	-	42.0	-	130.0	140.0	-	92.0
Dissolved Chloride (Cl)	mg/L	1.0	250	ND	-	ND	ND	-	1.5
Dissolved Sulphate (SO4)	mg/L	2.0	500	3.5	-	2.1	6.1	-	10.0
Reactive Silica (SiO2)	mg/L	0.50	-	6.4	-	5.6	8.1	-	6.6
Orthophosphate (P)	mg/L	0.010	-	ND	-	ND	ND	-	ND
Total Phosphorus (P)	mg/L	0.1	-	ND	-	1.18	ND	-	ND
Nitrate + Nitrite	mg/L	0.050	10	ND	-	0.11	ND	-	ND
Nitrate (N)	mg/L	0.050	45	ND	-	0.11	ND	-	ND
Nitrite (N)	mg/L	0.010	1	ND	-	ND	ND	-	ND
Nitrogen (Ammonia Nitrogen)	mg/L	0.050	-	ND	-	ND	ND	ND	0.21
Colour	TCU	5.0	15	ND	-	ND	ND	-	ND
Turbidity	NTU	3.0	2	0.47	0.55	320	140	-	15
РН	рН	0.01	6.5 to 8.5	8.15	-	8.20	8.19	-	8.01
Conductivity	pS/cm	1.0	-	89	-	260	290	-	190
Total Organic Carbon (C)	mg/L	5.0	-	ND	-	0.7	1.1	-	2.4
Hardness (CaCO3)	mg/L	1.0	-	39	-	130	160	-	86
Calculated TDS	mg/L	1.0	500	52	-	129	156	-	109
Bicarb. Alkalinity (calc, as CaCO3)	mg/L	1.0	-	41.0	-	120.0	140.0	-	91.5
Carb. Alkalinity (calc, as CaCO3)	mg/L	1.0	-	ND	-	1.9	2.1	-	ND
Cation Sum	me/L	-	-	0.88	-	2.69	3.28	-	1.92
Anion Sum	me/L	-	-	0.91	-	2.59	2.98	-	2.10
Ion Balance (% Difference)	%	-	-	1.68	-	1.89	4.79	-	4.48
Langelier Index (@ 4C)	N/A	-	-	-0.77	-	0.13	0.25	-	-0.30
Langelier Index (@ 20C)	N/A	-	-	-0.51	-	0.38	0.50	-	-0.05
Saturation pH (@ 4C)	N/A	-	-	8.92	-	8.07	7.94	-	8.31
Saturation pH (@ 20C)	N/A	-	-	8.66	-	7.82	7.69	-	8.06

Notes:

1 = Guidelines for Canadian Drinking Water Quality, Health Canada 2012 IOn-Line Update Table.

2 - mg/L - milligrams per liter; uS/cm - microseimens per centimeter; me/L - milliequivalents/Liter; NTU - nephelometer turbidity

units; TCU - True Color Units

= not analysed, not applicable or no applicable guideline Bold/Shaded = value exceeds applicable criteria

ND = Not Detected above the RDL

RDL = Reportable Detection Limit

Lab-Dup = Laboratory QA/QC duplicate sample

Appendix H. RBR-12-01 and RBR-12-02 Logs

O/Ref.: 692696-7000-4WER-0001_01 April 30, 2024 H-1

Appendix H1 : Geotechnical Logging Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

HOLEID	ID	From (m)	To (m)	Length (m)	Lithology Description	Formation	Rock Type	Rock Type Grouped
K-12-190	RBR-12-01	0	45.4	45.4		MISC	OB	OVB
K-12-190	RBR-12-01	45.4	48.25	2.85	Weathered.BC, Fractured.	Sokoman	LMHIF	M/HIF
K-12-190	RBR-12-01	48.25	50.5	2.25	Extreme BC, Vuggy.	Sokoman	QCIF	CIF
K-12-190	RBR-12-01	50.5	56	5.5	BC, Brittle. Extreme weathered.	Sokoman	SIF	SIF
K-12-190	RBR-12-01	56	58	2	BC, Brottle, vuggy. Weathered.	Sokoman	QCIF	CIF
K-12-190	RBR-12-01	58	59.5	1.5	Large size vugs in layuers. Low angle banding.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	59.5	68.8	9.3	Large intervals Qz diss Hm up to 50cm. Scattered Mt and VCG Hm laters or fracture filling. Low angle banding. Short transition to HIF.	Sokoman	LHMIF	M/HIF
K-12-190	RBR-12-01	68.8	82.5	13.7	BC, vuggy, Sand, weathered. High density banding up to 3cm at 25-35deg and large intervals up to 25cm Qz diss oriented xtls Hm. VCG secondary Hm on scattered narrow fractures. Seldom high grade Hm intervals up to 20cm at the beginning. Gradational transit	Sokoman	HIF	HIF
K-12-190	RBR-12-01	82.5	94.5	12	Strong weathered, BC, cleavage, vuggy layers. High density banding up to 5cm at 30-35deg. Large size vugs in layers. Seldom intervals Mt up to 35% and Hm up to 15%. Short transition to HIF.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	94.5	106.5	12	High density thin layers at the beginning and large intervals up to 15cm Qz/diss Hm at the end. Hm diss and VCG in scattered narrow fractures. Seldom sand intervals. Mt seldom thin layers. MIF from 1404.5 to 105. Short transition to MHIF.	Sokoman	HIF	HIF
K-12-190	RBR-12-01	106.5	110	3.5	Low angle banding and vuggy layuers up to 5cm at 40 to 50deg. BC and weathered. Mt/Hm diss within Qz and filling fractures up to CG.Short transition to MIF.	Sokoman	MHIF	M/HIF
K-12-190	RBR-12-01	110	121.5	11.5	Large intervals up to 30cm Qz diss Mt and vuggy layers. Hm +/- Mt filling narrow fractures. Hm diss increase to the end.Weathered and BC. Seldom white Qz lenses. Sharp ending.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	121.5	127.7	6.2	High density Mt thin layers up to 1cm at 35 to 50deg. Mt high density layers and diss related to Qz intervals.Scattered white Qz narrow lenses. 125.5m weathered HBGGN 3cm. Sharp transition to MIF.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	127.7	133.5	5.8	High density layers up to 2cm at 30-40cm. VFG Qz/Si/Mt. Verry competent core. Grunerite as silicate. Carb/Sil increase to the end up to 30%. Sharp ending.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	133.5	139	5.5	Banding up to 6cm at 40deg. Mt diss and thin layers. Carb in layers and oriented Xtls and spots. Hm diss in some Qz intervals. Sharp ending.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	139	145	6	Broken banding and banding up to 5cm at 40deg. Grunerite>>cumingtunite.	Sokoman	CSIF	SIF
K-12-190	RBR-12-01	145	148	3	Broken banding and banding up to 5cm at low angle up to 35deg. Advanced decarbonation. Grunerite>cumingtonite.	Sokoman	QCIF	CIF
K-12-190	RBR-12-01	148	154	6	Broken banding and banding up to 10cm at 30deg. Advanced decarbonation scattered intervals.	Sokoman	CSIF	SIF
K-12-190	RBR-12-01	154	158.2	4.2	Thin relict banding up to 0.5cm at 30deg. advanced decarbonation to complete replacement of carbonate. grunerite>>cumingtonite.Sharp ending in strong weatheredQCIF.	Sokoman	QSIF	SIF
K-12-190	RBR-12-01	158.2	160.2	2	Intense BC,weathered.	Sokoman	QCIF	CIF
K-12-190	RBR-12-01	160.2	173.5	13.3	Broken banding and banding up to 5cm at low angle up to 35deg. Carb>50% in some intervals. Carb/sil ratio different intervals. Moderate to advanced decarbonation. Sharp ending in weathered HBGGN.	Sokoman	QCIF	CIF
K-12-190	RBR-12-01	173.5	174	0.5	Weathered. Gar up to VCG.BC.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-190	RBR-12-01	174	181	7	Banding up to 6cm. Advanced decarbonation. Leached carb intervals. Qz/Sil-Carb ratio up to 2 in some intervals.Grunerite>>cumingtonite.	Sokoman	QSIF	SIF
K-12-190	RBR-12-01	181	182.3	1.3	Banding and broken banding up to 4cm at 35-40deg. Cleavage and fractured. Mt diss within qz banding. Advanced decarbonation at the end. Gradational transition to MIF.	Sokoman	LMQCIF	CIF
K-12-190	RBR-12-01	182.3	186.9	4.6	Banding and broken banding up to 5cm at 35-40deg. Cleavage and fractured, BC. Vuggy layers. Mt diss within Qz layers and seldom thin layers up to 2cm. Scaterred Pyrite on thin fractures. Short transition to MIF.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	186.9	190.7	3.8	From banding to broken banding and tight folded up to 6cm at 30 to 40deg. Cleavage, sand and vuggy layers. Mt diss large intervals up to 20cm and thin layers. Transitional To MSIF.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	190.7	198.4	7.7	Banding to wavy banding at 40 deg. Mt is disseminated up to FG or in layers up to 1 cm related to silicates/carbonates layers. Fibrous mineral at the end. Short transitional to HMIF.	Sokoman	MSIF	SIF
K-12-190	RBR-12-01	198.4	200	1.6	Banding to wavy and tight folded bands. White qz lences and boudinage. Hm up to MG in wavy layers related to fibrous min. Sharp ending in MIF.	Sokoman	HMIF	M/HIF
K-12-190	RBR-12-01	200	215	15	Banding to broken banding and boudinage. Mt diss oriented xtls and thin layers up to 1cm. Sil up to 20% in some intervals. High density layers at the end. Gradational transition.	Sokoman	MIF	MIF
K-12-190	RBR-12-01	215	224	9	Broken banding, wavy, tight folding and banding up to 5cm at 35-45deg. Scattered verry narrow HBGGN up to 3cm. Scattered vuggy layers. Mt oriented xtls and thin layers. Sharp ending in qz/mt sand. Lost hole.	Sokoman	MSIF	SIF

Appendix H1 : Geotechnical Logging Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

HOLEID	ID	From (m)	To (m)	Length (m)	Lithology Description	Formation	Rock Type	Rock Type Grouped
K-12-194	RBR-12-02	0	16	16		MISC	OB	OVB
K-12-194	RBR-12-02	16	23	7	Extreme BC. Silic weathered to Chlorite. Missing core. Lithology from fragments.	Sokoman	SIF	SIF
K-12-194	RBR-12-02	23	25	2	Relict banding up to 5cm at 45deg. Incipient decarbonation. Short transition to SIF.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	25	34	9	Fractured, BC relict banding. Strong weathered intervals. No pattern texture. Patches of grunerite +/- cumingtonite, dolomite and qz following a relict banding. Ch on fr and joints. Short transition to QCIF.	Sokoman	SIF	SIF
K-12-194	RBR-12-02	34	38.6	4.6	Relict banding and banding up to 4cm at 50-60deg. Sil up to 50% , 60cm interval. Sil 90% replaced by Chlorite. Fractured. Breciated. BC intervals. Sharp ending in a narrow HBGGN.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	38.6	42	3.4	Ocm HBGGN at the beginning. Ga up to 1cm disseminated. Several narrow HBGGN up to 10cm.	Menihek Fm (HW)	GF_B_MS_SCH	SCH
K-12-194	RBR-12-02	42	54.5	12.5	Several HBGGN intervals up to 50cm. Scattred Gf. Slickensided. Chlorite on cleavage. Sharp ending in QCIF.	Menihek Fm (HW)	B_MS_SCH	SCH
K-12-194	RBR-12-02	54.5	55.7	1.2	Banding at 50deg. Chlorite an silicates.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	55.7	62	6.3	Several HBGGN intervals up to 80cm with GA diss up to 0.5cm. Chlorite weathering related to HBGGN.	Menihek Fm (HW)	B_MS_SCH	SCH
K-12-194	RBR-12-02	62	64.5	2.5	Ga aligned xtls up to 0.2mm. Several Bi-Ms-Qz schist intervals up to 30cm. Sharp ending.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-194	RBR-12-02	64.5	66.6	2.1	Very fine grain. Scattered thin qz layers. Short Gf intervals sevage. Sharp ending.	Menihek Fm (HW)	B_MS_SCH	SCH
K-12-194	RBR-12-02	66.6	69	2.4	FG to MG grain size. Scattered thin qz layers. Sharp ending.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-194	RBR-12-02	69	85.5	16.5	FG to MG grain size. Few GF-BI-MS-QZ schist intervals up to 40cm. Scattered Qz thin layers. Gradational ending.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-194	RBR-12-02	85.5	86.8	1.3	FG grain size. Several low GA diss intervals. Seldom Qz thin layers. Sharp ending.	Menihek Fm (HW)	B_MS_SCH	SCH
K-12-194	RBR-12-02	86.8	91	4.2	Ga oriented xtls in layers. FG to MG grain size. Sharp ending.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-194	RBR-12-02	91	97	6	FG grain size. Ga diss up to HBGGN composition in several intervals. Scattered Qz thin layers. GF schist narrow layers up to 10cm.Short transition to HBGGN.	Menihek Fm (HW)	B_MS_SCH	SCH
K-12-194	RBR-12-02	97	101.8	4.8	FG to MG grain size. From 100 to 101.8 Large GF schist intervals up to 50cm, and Ga xtls up to 1cm. Broken to brecciated at the nend. Sharp ending.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-194	RBR-12-02	101.8	111.5	9.7	Several short Gf schist intervals. Slickensides and BC first 5m. VFG to FG grain size.	Menihek Fm (HW)	B MS SCH	SCH
K-12-194	RBR-12-02	111.5	121	9.5	Foliated to 40deg. Scattered narrow Gf intervals.Seldom low grade Ga diss intervals. Sharp ending in GF schist and then QCIF.	Menihek Fm (HW)	MS_B_SCH	SCH
K-12-194	RBR-12-02	121	121.5	0.5		Menihek Fm (HW)	GF B MS SCH	SCH
K-12-194	RBR-12-02	121.5	122.7	1.2	Narrow HBGGN up to 5cm at the beginning and almost every 10cm. Sharp ending.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	122.7	134.3	11.6	Several Gf schist and HBGGN intervals up to 50cm.	Menihek Fm (HW)	MS_B_SCH	SCH
K-12-194	RBR-12-02	134.3	143.5	9.2	High Ms content. Gf low grade pervasive and seldom narrow bands medium grade.Several Ga diss intervals. Fractured along core at the end. CG Q2 lenses at the end. Sharp ending.	Menihek Fm (HW)	GF_B_MS_SCH	SCH
K-12-194	RBR-12-02	143.5	144.3	0.8	Pegmatitic CG QZ and Ms alternating with Ms schist. Scattered sulphide filling thin fractures. Sharp ending.	Menihek Fm (HW)	MS_SCH	SCH
K-12-194	RBR-12-02	144.3	162.1	17.8	Seldom narrow CG Qz lenses at the beginning. GF schist up to 30cm intervals at the beginning. Sharp ending.	Menihek Fm (HW)	MS_SCH	SCH
K-12-194	RBR-12-02	162.1	169.1	7	FG up to MG Ga in layers up to 25%. Short GF interval at the beginning. Scattered thin Qz layers. Sharp ending.	Menihek Fm (HW)	HBG_GN-Menihek	HBG_GN
K-12-194	RBR-12-02	169.1	185.5	16.4	HBGGN-Gf sch-Bi&Ms sch alternating large intervals.Strong wethered intervals at the beginning and intense weathered from 177.5m to the end.	Menihek Fm (HW)	GF_B_MS_SCH	SCH
K-12-194	RBR-12-02	185.5	194	8.5	Extreme weathered. Large BC and gauge intervals. Sharp ending in Gf schist.	Menihek Fm (HW)	MS_SCH	SCH
K-12-194	RBR-12-02	194	200.2	6.2	50cm high Gf at the beginning. Weathered, BC, brittle. Sharp ending.	Menihek Fm (HW)	HBG_GN-Menihek	HBG_GN
K-12-194	RBR-12-02	200.2	214.6	14.4	Broken banding, wavy and banding up to 5cm at 50deg. Carb up to 50% at the end. Advanced decarbonation. Fractured. Strong weathered at the edges. Sharp ending.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	214.6	218	3.4	Gf content. Ga up to 2cm in layers. Moderate weathered and BC. Low angle schistosity up to 45deg.	Menihek Fm (HW)	HBG_GN-Menihek	HBG_GN
K-12-194	RBR-12-02	218	219.3	1.3	White Qz lenses up to 20cm aty low angle and HBGGN narrow intervals. HBGGN made up from Ga&Qz intervals.	Menihek Fm (HW)	HBG_GN-Menihek	HBG_GN
K-12-194	RBR-12-02	219.3	223.7	4.4	Ga up to 20% in layers. Gf rich intervals. Possible MS BI schist with Ga.Sharp ending.	Menihek Fm (HW)	HBG GN-Menihek	HBG GN
K-12-194	RBR-12-02	223.7	227	3.3	High density layers up to 3cm at 50deg. Silicates extreme weathered in Chlorite. Mt diss and thin layers.	Sokoman	MIF	MIF

Appendix H1 : Geotechnical Logging Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

HOLEID	ID	From (m)	To (m)	Length (m)	Lithology Description	Formation	Rock Type	Rock Type Grouped
K-12-194	RBR-12-02	227	231.8	4.8	HBGGN/SIF/Gf schist alternating intervals up to 50cm. Weathered and BC. Sharp ending.	Post-Iron dyke/sill	HBG_GN	HBG_GN
K-12-194	RBR-12-02	231.8	245.5	13.7	Extreme weathered. Cb complete leached out. Vuggy layers. BC. Qz up to 90% intervals. Gradational transition.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	245.5	250	4.5	Extreme BC. Missing core, poor recovery. Vuggy layers. Sand intervals. Lithology reconstitute from fragments. Gradational trensition.	Sokoman	QZT	QZT
K-12-194	RBR-12-02	250	254.8	4.8	Alternating of Qz and MS-Qz schist. Weathered, BC, brittle. Poor recovery. Sand intervals. Sharp ending.	Sokoman	QZT	QZT
K-12-194	RBR-12-02	254.8	258.4	3.6	Weathered, brittle. Sharp ending.	Menihek Fm (HW)	MS_SCH	SCH
K-12-194	RBR-12-02	258.4	265.7	7.3	Relict banding up to 5cm at 50deg. High density vuggy layers up to 2cm. Weathered and BC. Scattered Mt thin layers, weathered to Goetite. Sharp ending.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	265.7	268	2.3	Moderate density layers up to 4cm at 50deg. Vuggy layers. Mt diss within Qz layers. BC on cleavage. MS traces filling vugs. Short transition to QCIF.	Sokoman	LMIF	MIF
K-12-194	RBR-12-02	268	292	24	Broken banding and banding up to 5cm at 50deg. Vuggy and porous bands. Silicates increase to the end. Disseminated within Qz bands a soft, gray matalic mineral up to 5%. Bluish-gray streak?!?!?! BC intervals. Thinup to 5cm scattered HBGGN.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	292	295	3	Fault zone. Extreme BC. Missing core. Sand&clay intervals. Weathered.	Sokoman	QZT	QZT
K-12-194	RBR-12-02	295	298.7	3.7	Several relict banding intervals at 50deg. Unknow gray min diss up to 5% in some intervals. BC intervals. Gradational ending.	Sokoman	QCIF	CIF
K-12-194	RBR-12-02	298.7	300	1.3	Banding up to 3cm at 50deg. High density layers. Advanced decarbonation. EOH.	Sokoman	QSIF	SIF

Appendix H2 : Histogram Summary Plot (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

Appendix H2 : Histogram Summary Plot (from Stantec, 2012) Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

	Th	Stantec	BC	DR	EH	10	LE	R	ECC	DRI	D		F	RB	R-'	12-01	PAGE <u>1</u> DATUM_	of <u></u> NAD 27, Z	one 19	<u>)U</u>
	CLIE	NT Alderon Iron Ore Corp.															PROJECT	No. 121614000	-305	
	PRO.	JECT Kami Iron Ore Project	ost N	JT											57	72.7	DRILLING	$DATE_{3/6/2012}$	$\frac{2}{VD}$	
	LOC.	$\frac{\text{ATION}}{\text{INATION}} = -60 \qquad \text{AZIMI}$	<u>езі, г</u> ітц	27()			LOC		NI- N	_ Е 1 5	LEV. 8558	ATI 85.	10N .2	<u>: 57</u> E 6 3	<u>3.2</u> 32773.6	DRILL RIC	TOR Major JU (A	<u>v D)</u> Drillin	g
⊢		AZIMO				BRC	- KEN (CORE	I FX-FF	RACTUR	RF	CONT-C	ONT	ACT	RZ-BR	OKEN CORE /				<u> </u>
Ê	L Z		OT	ы Ц Ц	STRUCTU		ISHED	CORE	J-JOI		GE	B-BEDD	ING T	ON	RUE PL-PLA	BLE ZONE	PO-POLISHED K-SLICKENSIDED	PC-PARTIALLY COATED CC-COMPLETELY COATED N-FILLED		TS
TH	ATIO	LITHOLOGICAL DESCRIPTION	APL			!	RECO	OVERY			ACT	- T		9 2	01-012		DISCONTINUITY D	ATA		TES
DEF	LEV	(ALERON IRON ORE CORP.)	RAT	ATER	- I D)TAL	SOLID	%		DEX			NDEX	w.r.t. DRE XIS					HER
	Ш.		ST		IN IN		JI (_ / 0		,0	PEI	K 1m	STR		WEA	¶0 204		DESCRIPTIO	DN		0
-0	573.2	OVERBURDEN: Not logged		Σ °	v v) 8	898	8848	884	9.02	19 12	R3 R3 R3	- L	888 888	06 06				88998	<u> </u>
È₁:		o v Liubolubli (i rice logged.																		
['-																				
-2-																				
2																				
Ľ.																				
-4 -																				
Ľ.																				
-6-																				
Ļ′ -																				
-8-																				
L -																				
Ļ"-																				
-10-																				
L' -																				
-12-																				
-13-																				
-14-																				
-15-																				
-16-																				
-17-																				
-18-																				
-19-																				
-20-																				
-21-																				
-22-																				
-23-																				
²⁴⁻																				
-25	₽									: : :			: [:							

	T CLIE	Stantec Alderon Iron Ore Co	B orp.	OF	RE	H	OLE	RE	CO	RD		RE	BR	2-1	PAGE of 10 DATUM NAD 27, Zo PROJECT No_121614000	<u>one 19</u> -305	<u>U</u>
	PRO.	JECT Kami Iron Ore Proje	West	NT										= 7	DRILLING DATE 3/6/2012	2	_
	LOC. INCL	LINATION: <u>-60</u> AZI	IMUTH-	<u>1112</u>	70			LOCA	ATION:	<u>N 5</u>	ELEVA 85588	5.2	N <u>:</u> E	<u>57</u> 63	5.2DRILL RIGMajor So (A)2773.6CONTRACTORMajor L	v D) Drilling	g
(m)	(m) NO		OT	VEL	E & No.	STRUCTURE	BROKEN (CRUSHED MISSING (INFERRED	CORE CORE CORE CORE D FAULT	FX-FRA J-JOINT CL-CLE VN-VEI	CTURE AVAGE	CONT-CO B-BEDDIN F-FAULT FOL-FOLI	NTACT IG ATION	RZ- PL- ST-	-BRC RUBI -PLAI -STEI	KEN CORE / UN-UNDULATING CL-CLEAN BLE ZONE PO-POLISHED PC-PARTIALLY COATED VAR K-SLICKENSIDED CC-COMPLETELY COATED IN-FILLED		STS
EPTH	VATIO	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	TA PI	ERLE	TYPI	URE	REC	OVERY	R.Q.D.	FRACT.	STH	KING	ς - τ		DISCONTINUITY DATA	RMR	ER TE
	ELE		STR/	WAT	MPLE	RUCT	TOTAL CORE %	SOLID CORE %	6	PER 1m	STRENC	VEATHE	DIP w.r	AXIS	TYPE AND SURFACE DESCRIPTION		OTHE
-25	573.2				SA	STI	8848	8848	8848	8 29 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	R282 872 872 872 872 872 872 872 872 872	~	90 Mt	88		8848	
-27-																	
-28-																	
-29-																	
 -30-																	
 -31-																	
-32-																	
-33-																	
-34-																	
-37-																	
-38-																	
-39-																	
40-																	
 -41-																	
-42-																	
-43-																	
-44-					_												
45	22.0				_								8	}	11 - UN, R, PC 11 - UN, R, PC 11 - PL, R, CC - J3 x 2 - PL, R, CC - J3 x 2 - P		
 -46-	222.9	SOKOMAN Fm: brown grey, broke	n		дH										\sim 12 · UN, R, PC = RZ \sim 11 · PL R, CC \sim 11 · PL R, CC		
		magnetite>hematite(10-20%)+quart (minor marble_Ca/Fe-silicates)	z											0	JI - PL, R, CC J2 - PL, R, PC J1 x 7 - PL, R, CC V1 x 7 - PL, R, CC		
-47-		[LMHIF]												<u>8</u>	JĨ - UŇ, Ř. Ă RZ - UŇ, Ř. A JI x 2 - UŇ, R, PC JI - UŇ, R		
48-	531.4	SOKOMAN Fm: brown breeze			Q 2										W J3 - UN, R, PC J2 - UN, R, PC J2 - UN, R, PC		
-49		Quartz (50-90 qz)% carbonate iron formation [QCIF]			Ĥ										— J1, J3 - UN, K, A		
-50		1											∎⊥∷∶	1			1

		Stantec NT Alderon Iron Ore Corp.	во	RE	EH	ole re	ECO	RD	I	RBF	R-12-01	PAGE <u>3</u> of <u>10</u> DATUM <u>NAD 27, Z</u> PROJECT No. <u>121614000</u>	<u>one 19</u> -305	<u>U</u>
	PRO.	JECT Kami Iron Ore Project										DRILLING DATE 3/6/201	2	_
	LOC	ATION Kami Site, Labrador We	est, NL					1	ELEVAT	ION:	573.2	DRILL RIG_Major 50 (A	VD)	_
	INCI	INATION: <u>-60</u> AZIMU	TH	270		LOC	ATION	: <u>N</u>	5855885	5.2 E	632773.6	. CONTRACTOR Major	Drilling	<u>z</u>
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT WATER LEVEL	MPLE TYPE & No.		BROKEN CORE CRUSHED CORE INFERRED FAULT RECOVERY TOTAL CORE % CORE	R.Q.D. %	FRACT INDEX PER 1r	CONT-CON B-BEDDING F-FAULT FOL-FOLIAT	VEATHERING NO 2 LOVE INDEX 0 0 2 LOVE INDEX 0 1 2 LOVE	Z-BROKEN CORE / U RUBBLE ZONE P L-PLANAR K T-STEPPED	N-UNDULATING CL-CLEAN O-POLISHED -SLICKENSIDED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	- RMR	OTHER TESTS
-50	573.2			SA	STF	8848 8848	8848	8 E E E	1 7 2 2 2 1 2 2	2007 2007 2007 2007	388		8848	
-51 -51- -52- -53-	<u>529 5</u>	SOKOMAN Fm: dark green, broken banded, Fe-Ca silicates >50% w/ qzt marble + minor Fe oxide [SIF]		HQ 3							→ J1, J2 - UN, J1, J2 - UN, J1, J2 - UN, J1 - UN, K, Q J1 - UN, K, Q J2 - P/L R J1 - UN, R, Q J2 - P/L R J2 - P/L R J1 - UN, R, Q J1 - UN, R, Q J2 - P/L R J2 - P/L R J1 - UN, R, Q J2 - P/L R J1 - UN, R, Q J2 - P/L R J1 - UN, R, Q J1 - UN, R, Q J2 - P/L R J2 - P/L R	r, A K, CC CC CC CC CC A A A		
-54 	524.7.	SOKOMAN Fau kaoura arou kaolor		HQ 4						, , ,	KR.R.R.A.A. UDUN,R.R.K.N.A.A. UDUN,R.R.K.N.A.A. UDUN,R.R.K.N.A.A. N. S.	A CC CC K, CC K, CC L L CC L L CC L CC		
 -57- -58-	<u>523 0</u>	SOKOMAN Fm: brown grey, broken banded, Quartz (50-90 qz)% carbonate iron formation [QCIF]		HQ 5						o	RZ - UN, R, JI x 4 - UN, RZ - UN, R, JI x 4 - UN, RZ - UN, R, JI x 4 - UN, JI x 4 - UN, JI x 4 - UN, R, JI - UN, R,	R, A A R, A A A		
-59 	521.7	banded (4-64 mm), magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF] SOKOMAN Fm: grey, massive banded >64 mm, hematite>magnetite (HM+MT 10-20%) quartzite (minor marble Ca/Fe	,	HQ 6							0 J1 x 3 - UN, 0 J2 x 2 - UN, 0 J1 - UN, R, I	R, IN (vuggy) R, A N (vuggy)		
 -62 -63 -64		silicates) [LHMIF]		HQ 7						o	0			
 				HQ 8						0	2 - PL, R, P	C C A PC C C C C C A A A A A A		
-68 	<u>513.6</u>	SOKOMAN Fm: brown grey, thick banded (4-64 mm), hematite >20%-quartzite (minor marble Ca/Fe silicates) [HIF]		6 DH						C C C				
				HQ 10						¢	Q JI - PL, R, A JI - UN, R, I JI - UN, R, I Y JI - UN, R, I Q JI - UN, R, I JI - UN, R, I JI - UN, R, I Q JI - UN, R, I JI - UN, R, I JI - UN, R, I Q JI - PL, R, C Q JI - UN, R, I JI - UN, R, I JI - UN, R, I Q JI - UN, R, I Q JI - UN, R, I	A A C C C 2 C A A A A		
-75					<u> </u>									

	T CLIE	Stantec Alderon Iron Ore Corp.	BOF	RE	HC	DLE RE	CO	RD		RB	R-	12-01	PAGE of DATUM NAD 27, Z PROJECT No 121614000	<u>one 19</u> -305	U
	PRO.	DIECT Kami Iron Ore Project Kami Site, Labrador We	st. NL						EL EVA	TION	τ. 5 ΄	73.2	DRILLING DATE 3/6/2012	2 VD)	_
	IOC.	LINATION: <u>-60</u> AZIMU	TH 2'	70		_ LOCA	TION:	<u>N</u> 5	85588	<u>5.2</u>	E 63	32773.6	CONTRACTOR Major I	Drilling	g
DEPTH (m)	(m) NOILEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT WATER LEVEL	SAMPLE TYPE & No.		ROKEN CORE RUSHED CORE IISSING CORE IFERRED FAULT RECOVERY TOTAL SOLID CORE % CORE %	FX-FRA J-JOINT CL-CLE VN-VEII R.Q.D. %	FRACT. INDEX PER 1m	CONT-COI B-BEDDIN F-FAULT FOL-FOLIA EXENCEX BILLENCEX SENT		RZ-BR RUE PL-PL/ ST-STI	OKEN CORE / UN BBLE ZONE PC ANAR K-S EPPED	LUNDULATING POLISHED SLICKENSIDED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	- RMR	OTHER TESTS
-75 -76 -77 -77 -77 -78 -77 -80 -79 -81 -82 -83 -82 -83 -84 -85 -86 -87 -86 -87 -88 -90 -91 -92 -93 -91 -92 -93 -91 -92 -93 -91 -92 -93 -91 -92 -93 -92 -93 -92 -93 -94 -95 -96 -97	573.2 501 8 491 4	SOKOMAN Fm: brown grey, thick banded (4-64 mm), magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF] SOKOMAN Fm: brown grey, thick banded (4-64 mm), hematite >20%-quartzite (minor marble Ca/Fe silicates) [HIF]		219 HQ 18 HQ 17 HQ 16 HQ 15 HQ 14 HQ 13 HQ 12 HQ 11 SA	LS							R. P. IN. A AN A	<pre> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>		
1 00				Ħ											

	CLIE PRO.	Stantec NT Alderon Iron Ore Corp. IECT Kami Iron Ore Project ATION Kami Site, Labrador We	BO est, NI	RE	EHO	OLE F	RE(CO	RD	LEVA		R-'	12-01	PAGE <u>5</u> of DATUM <u> PROJECT No</u> DRILLING DAT DRILL RIG <u>M</u>	<u>10</u> NAD 27, Zc 121614000- E 3/6/2012 ajor 50 (AV	one 19 -305 -/D)	<u>U</u>
]	NCL	INATION: <u>-60</u> AZIMU	TH	270	ut	LC	CA ≥	FION:	<u>N 5</u>	85588	5.2	E 6.	32773.6	_ CONTRACTOR	Major L	rillin	g
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT WATER I EVEI	SAMPLE TYPE & No		TOTAL CORE % CORE		R.Q.D.	FRACT. INDEX PER 1m	B-BEDDIN F-FAULT FOL-FOLIA HLSUS SECON HLS		PL-PL/ ST-STI ST-STI ST-STI	BBLE ZONE I ANAR EPPED	DISCONTINUITY DATA TYPE AND SURFACE DISCONTINUITY DATA	ALLY COATED	RMR	OTHER TESTS
100_ 	-							246			>>>>	0.0 0.0 0.0	RZ - UN, R J4 - UN, R, J1 - UN, R, I1 - UN, R	e, CC - sandy hematite seam (qtz/ PC A CC	carb leached out)	8040	
+01 +02 +03 +03 +03				HQ 20								0 0 0	JI - UN, R. JI - U	PC CC PC PC VC PC CC VC VC VC VC VC VC VC VC VC VC VC VC			
+105 +106	481.0	SOKOMAN Fm: brown grey, thick		HQ 21			· · · · · · · · · · · · · · · · · · ·					000 000 00 00	J1 x 3 - UN J2 - UN, R, 3 J1 - PL, R, 3 J1 - UN, R, J1 - UN, R, J1 - UN, R, J1 x 4 - UN J4 - PL, R 3 J4 - UN R	I, R, A SN PC CC CC VC VC VC VC VC VC VC VC VC VC VC			
+107 +108 +109 +110	477.9	banded (4-64 mm), magnetite>hematite [MT+HM>20%]-quartzite w/minor marble Ca/Fe silicates [MHIF]		HQ 22								0.000	14 - DU, R, 14 - DU, R, 11 - UN, R, 11 -	SN CC CC , R, PC PC IN CC CC PC PC PC PC PC PC PC PC			
+111 +112 +112 +113		SOKOMAN Fm: brown grey, massive banded >64 mm, magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]		HQ 23								0 0 0 0 0	12 - UN, R, 11 - UN, R, 11 x 3 - UN, R, 14 - PL, R, 14 - PL, R, 14 - PL, R, 13 - UN, 14 - PL, R, 14 - PL, R, 14 - PL, R,	SN PC PC A CC A CC F, CC CLEAN			
+114 +115 +115				HQ 24								0.00	J1 x 6 - UN J2 - PL, R, J J2 - PL, R, J J1 - UN, R H4B - UN, F RZ - UN, R H4B - UN, F H2 - UN, R J1 - UN, R H2 - UN, R J1 - UN, R J1 - UN, R	I, R, CC A CC X, PC X, CC X, CC A CC CC CC R, CC A CC A CC A CC A CC A CC A CC A CC			
+17 +17 +18 +18				HQ 25								60 00 00 00 00 00	H2 - UN, R H - UN, R				
120 121	<u>468.0</u>	SOKOMAN Fm: dark grey, thick		HQ 26								0000 . 0000 . 0000 .	J1 x 17 - UI J2 - UN, R J1 x 6 - PL, J1 - VL J1 - VL J	N, R, CC A R, CC - GRAINY CC CC I, R, CC			
122 123 124		banded (4-64 mm), magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]		HQ 27								0 0 0 0 0 0 0	J1 - UN, R, J1 - PL, R, J2 - UN, R, J1 - PL, R, J1 - PL, R,	CLEAN SUEAN SN CLEAN CLEAN			
120																	

	6	Stantec	BO	RE	EHQ	OLE	RE	CO	RD		RB	R-	PAGE <u>6</u> of <u>10</u> DATUM <u>NAD 27, Zo</u>	one 19	<u>U</u>
CI	JEI	NT Alderon Iron Ore Corp.											PROJECT No. 121614000-	305	_
	OJ. DCA	ATION Kami Site, Labrador We	st, NL	1					E	ELEVA	TION	: 5	73.2 DRILL RIG Major 50 (AV	/D)	-
IN	CLI	INATION: <u>-60</u> AZIMUT	гн2	270			LOCA	TION:	N 5	85588	5.2	E 6	32773.6 CONTRACTOR Major D	rilling	5
(m) H			PLOT	PE & No.		BROKEN C CRUSHED AISSING C NFERRED	ORE CORE ORE FAULT	FX-FRA J-JOINT CL-CLE VN-VEI	CTURE AVAGE N	CONT-COI B-BEDDIN F-FAULT FOL-FOLIA		RZ-BF RU PL-PL ST-ST	ROKEN CORE / UN-UNDULATING CL-CLEAN JBBLE ZONE PO-POLISHED PC-PARTIALLY COATED ANAR K-SLICKENSIDED CC-COMPLETELY COATED IN-FILLED		ESTS
DEPT	ELEVA	(ALERON IRON ORE CORP.)	STRATA WATER L	AMPLE TY	IRUCTUR	TOTAL CORE %	SOLID CORE %	R.Q.D. %	FRACT. INDEX PER 1m	STRENGTH INDEX	WEATHERING	DIP w.r.t. CORE AXIS	TYPE AND SURFACE DESCRIPTION	RMR	OTHER 1
125_ ⁵⁷	3.2			Ś	S	8848	8888	8898	s 83430	R4 R3 R2	288 883 883 883	888	3	88998	
 126				28								o	JI x 4 - PL, R, CLEAN		
127				Η								0	J1 - UN, R, SN		
128	26	SOKOMAN Fm: dark grey, thick										0	JI x 2 - UN, R, CC		
 129		banded (4-64 mm), magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]		29								0 0	J2 - UN, R, CLEAN J1 - UN, R, CC J2 - PL, R, CLEAN		
 130				ΗQ								0	JI - PL, R, CC J2 - UN, R, CLEAN		
431												0	- 11 - UN, R, CC		
432												00	JI - PL, K, CC JI - PL, K, A JI - PL, R, A JI - UN, R, PC		
				IQ 3(0	JI - UN, R, CC		
133 45	7.6			1								:0	12 - UN, R, A		
134		SOKOMAN Fm: dark grey, thick handed (4-64 mm)													
435		magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]										:0:	J1 x 2 - PL, R, SN		
				Q 31								0	JI - UN, R, SN		
136				H								0.00	12 - UN, R. SN 14 - UN, R. SN 11 - UN, R. SN 14 - UN, R. SN		
137															
120												00. 00	J1 - VN, K, A, CLEAN J1 - PL, R, PC J1 - PL, R, PC		
				Q 32									- JI - UN, N, CLEAIN		
139 ^{15/}	2.8	SOKOMAN Fm: light greenish-grey,		H								80	II - UN, R. A		
140		broken banded, carbonate $> 50\% +$ silicate iron formation [CSIF]										: :d	$\begin{array}{c} 11 - \text{UN}, \text{R, PC} \\ 12 - \text{PL}, \text{R, A} \\ 12 - \text{UN}, \text{R, A} \end{array}$		
													J2 - UN, R, A		
141				Q 33								00	JI - UN, R, A J2 - UN, R, PC I2 - UN, R, PC		
142				Η									JĪ - ŪŇ, Ř, PČ		
143												0.00	$J_1 = UN, R, CC$ $J_1 = X_1 = UN, R, PC$ $J_1 = UN, R, PC/SN$ $J_1 = UN, R, CC/SN$		
												0	∑ JI - UN, R, CC JI - UN, R, CLEAN		
				Q 34								00	JI - UN, R, CLEAN J2 - UN, R, A		
145 ¹⁴	7.6	SOKOMAN Fm: dark green grey, thick		Ĥ											
146		banded (4-64 mm), Quartz (50-90 qz)% carbonate iron formation [OCIF]										• o	J2 - UN, R, SN		
		· ···· [(()]										o	J2 - UN, R, SN		
147				235								a	J2 - UN, R, SN		
148	5.0	SOKOMAN Fm: light grev broken		H								Q	J1 - UN, R, SN J2 - UN, R, SN		
 149		banded, carbonate $> 50\% + silicate$ iron formation [CSIF]										0	J2 - PL R, CLEAN J2 - UN, R, CLEAN		
												00	J1 - UN, R, CC (W3) J2 - UN, R, CC		
150				1	Į							1 0			L

8	E	Stantec NT <u>Alderon Iron Ore Corp.</u>	BC	RE	EH	OLE	RE	CO	RD		RB	R-	12-01	PAGE <u>7</u> of <u>10</u> DATUM <u>NAD 27, 7</u> PROJECT No <u>121614000</u>	<u>/one 19</u>)-305	<u>U</u>
	PRO.	JECT Kami Iron Ore Project Kami Site, Labrador We	st. N	[.					г		TION	r. 5'	73 2	DRILLING DATE 3/6/201	2 (VD)	
	IOC.	$\frac{-60}{100} \text{ AZIMU}$	TH	270			LOCA	TION	<u>N</u> 5	85588	5.2	E 63	32773.6	CONTRACTOR Major	Drilling	g
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	WALER LEVEL AMPLE TYPE & No.		BROKEN (CRUSHED MISSING (NFERRED RECO TOTAL CORE %	CORE CORE D FAULT DVERY SOLID CORE %	KLINI FX-FRA J-JOINT CL-CLE VN-VEI	FRACT. INDEX PER 1m	CONT-CO B-BEDDIN F-FAULT FOL-FOLI/ FOL-FOLI/ HL SUDEX	MTACT IG ATION INDEX INDEX	RZ-BR RUE PL-PL/ ST-STI VXIS	OKEN CORE / U BBLE ZONE P ANAR K EPPED	N-UNDULATING CL-CLEAN O-POLISHED PC-PARTIALLY COATED -SLICKENSIDED CC-COMPLETELY COATEI IN-FILLED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	RMR	OTHER TESTS
1 50	573.2			36 S.	S	8848	8848	8848	8339	R2 R3	22224	00 00 00 00 00	J2 - PL, R, A	I FAN	88990	+
+ + + + 52 - - -				ОН												
153 154 155	<u>439 8</u>	SOKOMAN Fm: greenish-grey, broken banded, Quartz (50-90% qz) + Ca-Fe silicates + minor Fe oxides [QSIF]		HQ 37								0	J4 - UN, R, F	с С		
+156 +157 +158	126.2			HQ 38								0 0 0	J2 - UN, R, F	хс Х.		
159 160	<u>436.2</u> 434.5	SOKOMAN Fm: brown, broken banded, Quartz (50-90 qz)% carbonate iron formation [QCIF]		HQ 39								900	14 - LX, K I 11 - UN, K I 11 - UN, R I 12 - UN, R, F 12 - RZ, UN	C -slickenslides indicates vertical movement		
+61 +62 +63 		banded, Quartz (50-90 qz)% carbonate iron formation [QCIF]		HQ 40								0000	J1 - UN; R; f J1 - UN; R; F			
164 165 166 				HQ 41								0.0.0	J1 - UN, R, F J2 - UN, R, F J2 - UN, R, F			
 168 169 170				HQ 42								0	JI - UN, R, C JI - UN, PO, RZ - UN, R, J4B - UN, R, J1 - UN, R, J	CC IN PC/A CC		
- +71 - +72 - +73				HQ 43								0.000	JI - UN, R, F RZ - UN, R, JI - UN, R, C JI - UN, R, C	ec cea cea cea ce ce ce		
 174 175	422 <u>9</u> 422.5	POST-IRON DYKE/SILL Fm: brown, foliated, hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN]		HQ 44									12 - UN, R, 7 11 - UN, R, 7 13 - UN, R, 14 11 - UN, R, 14 11 - UN, R, 7 11 - UN, R, 7	A C C C C/A C C		

	Ţ	Stantec	BC	RE	ΞH	OLE	RE	CO	RD		RE	R-	12-01	PAGE	8 of N	<u>10</u> AD 27, Z	<u>one 19</u>	<u>U</u>
	CLIE	ENT Alderon Iron Ore Corp.												PROJECT	No	21614000	<u>-305</u> 7	_
	PRO LOC	ATION Kami Site, Labrador W	est, N	L					E	ELEVA	TION	I: 5	73.2	DRILLING	G Ma	jor 50 (A	- VD)	—
	INCI	LINATION: <u>-60</u> AZIMU	TH	270		L	OCA	ATION:	N 5	85588	5.2	Е 6	32773.6	. CONTRA	CTOR_	Major l	Drillin	g
1 (m)	ON (m)		LOT	EVEL E & No.	STRUCTURE	BROKEN COF CRUSHED CO MISSING COF	RE DRE RE NULT	FX-FRA J-JOINT CL-CLE VN-VEI	CTURE AVAGE	CONT-CO B-BEDDIN F-FAULT FOL-FOLIA	NTACT G	RZ-BF RU PL-PL ST-ST	ROKEN CORE / U IBBLE ZONE P ANAR K TEPPED	N-UNDULATING O-POLISHED -SLICKENSIDED	CL-CLEAN PC-PARTIA CC-COMPL IN-FILLED	LLY COATED ETELY COATED		ESTS
DEPTH	ELEVATI	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA F	VVALEK LE SAMPLE TYF	STRUCTURE	RECOVE	OLID ORE %	R.Q.D.	FRACT. INDEX PER 1m	ROCK STRENGTH INDEX	M WEATHERING	DIPw.r.t. CORE AXIS	2	DISCONTINUITY TYPE AND SU DESCRIPT	IRFACE ION		RMR	OTHER TE
475 476		SOKOMAN Fm: greenish-grey, broken banded, Quartz (50-90% qz) + Ca-Fe			0,	22.44.66		98 00 04 04					5 RZ - UN, R, R J1 - UN, R, C	CC CC R CC			8048	
 477 		sincates + minor re oxides [QSIr]		Q 45	T							0.00.0	JI A U - CH, J3 - UN, R, C J1 - UN, R, C J2 - UN, R, I J1 - UN, R, I					
+78 +79												0000	JI - UN, R, J JI - UN, R, I JI - UN, R, I JI - UN, R, I	A PC A				
1 80 1 81	416.4			HQ 46								0	J1 x 5 - UN,	R, CC				
 182 	415.3	SOKOMAN Fm: light greenish-grey, thick banded (4-64 mm), magnetite (10-20%) quartz carbonate silicate iron formation [LMQCIF]										° 8	J2 - UN, R, I J3 - UN, R, O J1 x 7 - UN, RZ - UN, R,	PC CC R, PC CC				
183 184 		(4-64 mm), magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]		HQ 47									I3 - UN, R, C J1 - UN, R, C RZ - UN, R, C J3 - UN, R J3 x 2 - UN,	CC CC/PC CC CC R, CC				
185 186				48	-							00	RZ - UN, R, RZ - UN, R, J1 - UN, R, I J1 - PL, R, S J4B - UN, R J1 x 7 - UN,	CC PC PC N , PC R, PC				
 187 	411.3	SOKOMAN Fm: grey, broken banded, magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]	;	ЮН								0.0.0.0	J4B - UN, R, RZ - UN, R, J1 - UN, R, C J1 - UN, R, C J1 - UN, R, C J1 - UN, R, C	PC CLEAN CC CC PC CC CC CC				
100 189 				Q 49								30 .00 .00		C PC PC C C C C C C C C LEAN C C LEAN				
1 90 1 91	408.0	SOKOMAN Fm: greenish-grey, broken		H									- JI - ŬN, R, O	CLEAN				
 1 92 1 93		formation [MSIF]		HQ 50								0	JI - UN, R, Z JI - UN, R, Z JI - UN, R, Z	A CC A				
 194 							· · · · · · · · · · · · · · · · · · ·					Q 0	J1 - UN, R, S	5N Çlean				
195 196				HQ 51								O	JI - PL, R, S	IN				
197 198				2								9. 80 0.	J1 - PL, R, S J1 - PL, R, S J1 - PL, R, R J2 - UN, R, C	N LEAN CLEAN CLEAN				
 1 99 2 00	101.4 100.0	SOKOMAN Fm: dark grey, broken banded, hematite>magnetite-quartzite [MT+HM>20%] (minor marble Ca/Fe silicates) [HMIF]		HQ 5.								0.00.00	JI - PL, R, C J2 x 2 - UN, J1 x 5 - PL, I J1 x 2 - VR, I J1 - PL, R, C J2 - UN, R, C	LEAN R, CLEAN R, CLEAN R, CLEAN CLEAN TLEAN CLEAN				

8	CLIE	Stantec NT Alderon Iron Ore Corp. Kami Iron Ore Project	BC	DRE	EHO	OLE	RE	CO	RD		RE	R-	12-01	PAGE <u>9</u> of <u>10</u> DATUM <u>NAD 27, Z</u> PROJECT No <u>121614000</u>	<u>one 19</u> -305	<u>U</u>
1	PROJ LOCA	ATION Kami Site, Labrador We	est, N	L 270					E		TION	1 <u>: 5'</u>	73.2	DRILLING DATE 5/0/201 DRILL RIG Major 50 (A	Z VD) Detilling	
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	AMPLE TYPE & No.		BROKEN C CRUSHED MISSING C NFERRED RECC TOTAL CORE %	CORE CORE FAULT OVERY SOLID CORE %	R.Q.D.	CTURE AVAGE N FRACT. INDEX PER 1m	CONT-COI B-BEDDIN F-FAULT FOL-FOLIA HL SUDA HL SUDA SUDA HL SUDA SUDA HL SUDA HL SUDA HL SUDA SUDA HL SUDA HL SUDA SUDA SUDA HL SUDA SUDA SUDA SUDA SUDA SUDA SUDA SUDA	MEATHERING NUDEX NDEX	RZ-BR RU PL-PL ST-ST T-ST ST-ST	ROKEN CORE / UI JIBBLE ZONE PC JANAR K- TEPPED	VUNDULATING POLISHED SLICKENSIDED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION		OTHER TESTS
200	573.2	SOKOMAN Fm: dark grey, broken banded, magnetite>20%-quartzite (minor marble Ca/Fe-silicates) [MIF]		HQ 57 HQ 56 HQ 55 HQ 54 HQ 53 S								888 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IR - UN, R. I JR - UN, R. C J1 x 7 - PL, R J1 x 3 - PL, R J1 - PL, R, C J1 - PL, R, C J1 - UN, R, R J1 - PL, R, C J1 - PL, R, C J1 - UN, R, R J2 - UN, R, R J3 - UN, R, R J4 - UN, R, R J2 - UN, R, P J2 - UN, R, P J1 - VN, R, P J1 - UN, R, P J1 - PL, R, C J1 - PL, R, C J1 - PL, R, C J1 - N, R P	C LEAN LEAN C CLEAN C CLEAN LEAN C C C C C C C C C C C C C		
215 216 217 217 218 217 219 220 220 220 222 222 222 222 222 222 22	387.0	SOKOMAN Fm: dark greyish-green, broken banded, magnetite >20% silicate iron formation [MSIF]		HQ 60 HQ 59 HQ 58								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J4 - PL, R, C J1 - UN, R, C J1 - UN, R, P J2 - UN, R, C J4 - UN, R, C J4 - UN, R, C J1 - UN, R, C J1 - UN, R, P J1 - UN, R, P J1 - UN, R, P J1 - UN, R, P J4B - UN, R, J1 x 4 - UN, R, J1 x 4 - UN, R, J2 - UN, R, P J4B - UN, R, J4B - UN, R, C	LEAN CC CLEAN CC N(HEALED) CC CC CC PC R, PC C, PC R, A		
2 25	379.2	Dark gray, poorly graded sand (SP) material; magnetic; non-cohesive;														

8		Stantec NT Alderon Iron Ore Corp.	BC	ORE	EH	OLE	RE	CO	RD		RB	BR-′	12-01	PAGE DATUM PROJEC	<u>10</u> of <u>10</u> <u>NAD 27, Z</u> T. No. 12161400	<u>/one</u>)-305	<u>191</u> 5	<u>J</u>
	PRO.	JECT Kami Iron Ore Project												DRILLIN	NG DATE 3/6/201	2		_
	LOC	ATION Kami Site, Labrador Wo	est, N	<u>NL</u> 270			LOC		E	ELEVA	TION	J <u>: 57</u> E 63	1 <u>3.2</u> 12773 6	DRILL R	A CTOD Major 50 (A	<u>.VD)</u> Drill	ina	-
-	NCL	INATION: <u>oo</u> Azimu			#			ATION: ≣ ex-era		CONT-CO		RZ-BR(CL-CLEAN			_
Ξ	N (m)		OT	/EL & Nc	STRUCTUF	CRUSHED		J-JOINT	AVAGE	B-BEDDIN F-FAULT	G	RUB PL-PLA	BLE ZONE	PO-POLISHED K-SLICKENSIDED	PC-PARTIALLY COATED CC-COMPLETELY COATED IN-FILLED	b		STS
PTH ('ATIO		LA PL	R LEV	RE	RECO	OVERY	R.Q.D.	FRACT.	E	D N N			DISCONTINUIT	'Y DATA		/R	R TES
В	ELEV	(ALLINGIN INCINIONE CORF.)	TRAT	IPLE .	JCTU	TOTAL CORE %	SOLID CORE %	%	INDEX PER 1m	ROCK	ATHER	IP w.r.t. CORE AXIS		TYPE AND S	SURFACE			THEF
005	573.2		- ^o	N SAM	STRI	8848	8848	8848	°0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R4 R3 R1 S1 R2 S1	M2 M3 M4 M2 M4	0 °		DESCRIF	PTION	88	88	0
225	-	- Planar upper boundary approximately 35° to core axis (parallel to 11)																
226		- Artesian flow rate increases upon																
2 27		- Bottom 27 m of drill rods fill with																
		End of Borehole	1															
220		- Hole abandoned at approximately 224.0 m depth along borehole in																
229		decomposed/crushed seam to avoid risk of losing drill rods.																
230		- Flowing artesian conditions encountered in bedrock. Artesian flow																
231		rate increases upon intersection of sand seam at 223.7 m depth along hole.																
232																		
233																		
234																		
-																		
235																		
236																		
237																		
z30																		
239																		
2 40																		
241																		
242																		
243																		
244																		
z45																		
246																		
247																		
2/8																		
249																		
250																	::	

3	T	Stantec	B	OF	RE	H	OLI	e Re	ECO	RD		RE	3R-	-12-02	PAGE <u>1</u> of _ DATUM <u>NA</u>	<u>13</u> D 27, Zo	<u>ne 19</u> 205	<u>U</u>
	CLIE	NT Alderon Iron Ore Corp.													_ PROJECT No. 12	3/17/201	<u>305</u> 2	_
	LOC	ATION Kami Site, Labrador W	est, N	NL						F	ELEVA	TIOT	N: (581.3	DRILL RIG_Majo	or 50 (AV	'D)	_
	INCL	INATION: <u>-60</u> AZIMU	JTH_	2'	70			LOC	ATION	: <u>N 5</u>	85501	0.4	E (532131.2	CONTRACTOR	Major D	rillin	g_
(m)	(m) NC		LOT	NEL	E & No.		BROKEN CRUSHE MISSING NFERRE	CORE D CORE CORE D FAULT	FX-FRA J-JOINT CL-CLE VN-VEI	ACTURE T EAVAGE IN	Cont-Co B-Beddin F-Fault Fol-Foli/	NTACT IG ATION	RZ-E R PL-P ST-S	ROKEN CORE / U UBBLE ZONE P LANAR K TEPPED	IN-UNDULATING CL-CLEAN PC-POLISHED PC-PARTIALL SLICKENSIDED CC-COMPLET IN-FILLED	Y COATED ELY COATED		STS
EPTH	VATIO	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	TA P	ER LE	ТҮР	URE	REC	OVERY	R.Q.D.	FRACT.	X TH X	RING	t		DISCONTINUITY DATA		RMR	RTE
	ELE		STR/	WAT	MPLE	RUCT	CORE 1	% SOLID	%	PER 1m	ROCI	/EATHE INDE	DIP w.r CORE	AXIS	TYPE AND SURFACE DESCRIPTION			OTHE
-0	581.3			$\overline{\nabla}$	SAI	STF	8848	8898	8848	s;0;2;0	R2 83	2888	88	8			8848	
		OVERBURDEN: Not logged.		H														
				H														
-2-				H														
-3-				H														
				H														
-4-				H														
-5-				H														
-6-				H										•				
				H														
				H														
-8-				H										•				
-9-				H										· · · · · · · · · · · · · · · · · · ·				
				H														
														· · · · · · · · · · · · · · · · · · ·				
														· · · · · · · · · · · · · · · · · · ·				
-12-																		
-13-														· · · · · · · · · · · · · · · · · · ·				
-14-				H														
-15-				H														
	67.4			H										· · · · · · · · · · · · · · · · · · ·				
- 10-		SOKOMAN Fm: dark green, breccia, Fe-Ca silicates >50% w/ azt_marble +												2 J1 - UN, R, S J2 - UN, R, C J4B - UN, R, C	SN CC CC CC CC			
-17-		minor Fe oxide [SIF] - From 16 m to 23 m: Strong Chlorite			51									- JI x 2 - UN,	к, гС			
-18-		weathering/alteration			Η					<u> </u>				•				
-19														RZ - PL, R, 0	сс			
													0	J1 - UN, PO, J2 - UN, PO,	, CC			
-20-					Q 2									RZ - UN, PC), CC			
-21-					Η													
22													ļ	J1 - UN, PO,	, CC			
	561.4												o	RZ - UN, R, J1 - UN, R, C	PC CC PC			
23		SOKOMAN Fm: greenish-grey, broken banded. Ouartz (50-90 gz)% carbonate			HQ 3								o Q	J2 - UN R I J4A/J4B - U J1 - UN, R, I	PC N, R, IN PC			
-24-		iron formation [QCIF] - From 23 m to 25 m: Moderate Chlorin	te		Ť										PC CLEAN SN PC			
-25	559.6	weathering/alteration	-											J1 - UN, R, I J4A - PL, R,	ČLEAN			

8	T	Stantec	во	RE	EHQ	OLE RE	CO	RD		RB	BR-	12-02	PAGE <u>2</u> of <u>13</u> DATUM <u>NAD 27, Z</u>	one 19	U
	CLIE	ENT Alderon Iron Ore Corp.											PROJECT No. 121614000	<u>-305</u> 12	_
	PRO.	JECT Kami Iton Ore Hoject	est. NI						EL EVA	FION	J- 58	81.3	DRILLING DATE <u>3/1//20</u>	12 VD)	—
	INCI	LINATION: <u>-60</u> AZIMU	TH	270		LOCA	ATION:	N	585501	<u>0.4</u>	E 6	32131.2	CONTRACTOR Major	Drilling	g
(m)	(m) NO		LOT	E & No.		BROKEN CORE CRUSHED CORE MISSING CORE NFERRED FAULT	FX-FRA J-JOINT CL-CLE VN-VEI	CTURE AVAGE	CONT-CON B-BEDDING F-FAULT FOL-FOLIA	ITACT 3	RZ-BR RUI PL-PL/ ST-ST	OKEN CORE / U BBLE ZONE P ANAR K EPPED	IN-UNDULATING CL-CLEAN IO-POLISHED PC-PARTIALLY COATED -SLICKENSIDED CC-COMPLETELY COATED IN-FILLED		STS
DEPTH	ELEVATIO	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA P WATER LE	MPLE TYP	RUCTURE	RECOVERY TOTAL CORE % SOLID CORE %	R.Q.D.	FRACT INDEX PER 1r	STRENGTH INDEX	NEATHERING INDEX	DIP w.r.t. CORE AXIS		DISCONTINUITY DATA	RMR	OTHER TE
-25	581.3			SA	ST	8848 8848	8848	v688	R3 R3 R1 R2		888	LN 14B-UN R		8898	
-26 		SOKOMAN Fm: greenish-grey, broken banded, Fe-Ca silicates >50% w/ qzt marble + minor Fe oxide [SIF] - From 25 m to 34 m: Strong Chlorite weathering/alteration		HQ 4								132 - UN, EV, 111 - UN, PU 114 - UN, PU 148 - UN, PU 148 - UN, K 148 - UN, K 148 - UN, K 122 - UN, R, 1 122 - UN, R, 1 122 - UN, R, 1 148 - UN, PU	NO CC CC CC CC CC CC		
-29 				HQ 5							0.00	J4A - UN, R J4 - UN, R J1 x 7 - UN, J4B - UN, R J1 - UN, SM J1 - UN, SM	, cc CC K, cc C, cc , cc		
-31-												J4B - UN, R J4B - UN, R J4B - UN, R J4B - UN, R J1 - UN, R, J	, CC , CC - Partial biotite covering , CC - Partial biotite covering , CC - Partial biotite covering		
-32 				9 QH							0 0 0 0 0 0	4	20 CC CC CC CC CC, chilorite CC, chilorite CC, chilorite SC		
-34 -35 -36 -36 -37	551.9	SOKOMAN Fm: light greenish-grey, broken banded, Quartz (50-90 qz)% carbonate iron formation [QCIF] - From 34.7 m to 35 m: Strong Chlorite weathering/alteration - From 35 m to 38.6 m: Weak Chlorite weathering/alteration		HQ 7							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RZ-PL, K, K, SSP C, L, L, L, K, K, SSP C, L,	CC (CHLORITE), UN, K, CC (CHLORITE) CC (CONTACT JOINT) CC (CONTACT JOINT CC (CHLORITE) CC (CHLORITE) CC (CHLORITE) CC (CHLORITE) CC (CHLORITE) CC (CHLORITE) CC (CHLORITE) CC - thiorine CC -		
	<u>547.9</u>	MENIHEK Fm: dark grey, foliated, graphitic biotite-muscovite quartz schist often w/ Fe-sulfides [GF_B_MS_SCH]		HQ 8							000 00 00 00 00 00 00 00	11:555, R. C. S.	CC - GRAPHITE , CC - GRAPHITE , CC - GRAPHITE CC - GRAPHITE		
-41 - 42 - 42 - 43	<u>544.9</u>	MENIHEK Fm: dark greenish-grey, foliated, biotite-muscovite quartz schist often w/ Fe-sulfides IB MS_SCH1		6 DH							0.0.0000 0.0000				
-44 -45 -45				HQ 10							0 0 0 00	111 - 81, "DEX 200 PRACE REPORT OF THE PERSON OF THE PERSO	ζς ΦΟ CC ΡΟ CC CC CC CC CC PO CC PO CC PO CC CC CC CC CC CC		
-47 -48 -48				HQ 11							0.0 0.0 0.0	JI x 2 - UN, K, I JI x 2 - UN, PO JI 2 - UN, PO JI x 8 - UN, J2 - UN, R, I	R, CC CC K, CC PC		
-50											· • •	J1 x 4 - UN,	PO, CC		

	CLIE PRO. LOC.	Stantec NT Alderon Iron Ore Corp. JECT Kami Iron Ore Project ATION Kami Site, Labrador We	BC		EHO	OLE I	RE	CO	RD	LEVA	RE	BR	-12-02	PAGE <u>3</u> of <u>13</u> DATUM <u>NAD 27</u> , PROJECT No <u>1216140</u> DRILLING DATE <u>3/17/2</u> DRILL RIG <u>Major 50</u> (Zone 19 00-305 2012 AVD)	<u>9U</u>
	INCI	INATION: AZIMU	TH_	270		L(DCA	TION:	<u>N 5</u>	85501	0.4	E	632131.2	CONTRACTOR Majo	r Drillir	ng
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	WATER LEVEL MPLE TYPE & No.		BROKEN COR CRUSHED COI MISSING CORI NFERRED FAI RECOVEI TOTAL CORE % CC	E RE JLT RY PLID DRE %	INN FX-FRA J-JOINT CL-CLE VN-VEII R.Q.D. %	FRACT. INDEX	CONI-COI B-BEDDIN F-FAULT FOL-FOLIA HLSNDN SON SON SON SON SON SON SON SON SON SO		DIP w.r.t. S-17d S-17d S-17d S-17d S-17d	SROKEN CORE / U UUBBLE ZONE / P PLANAR K STEPPED	IN-UNDUCLATING O-POLISHED SLICKENSIDED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	ED RMR	OTHER TESTS
-50	581.3			I2 SA	STI	8848 8	848	8848	n 6 ft 8	R2 R3 R3 R3	2888	88	8 	CC	8848	
 -51- -52- -53- -53- -54- -54-	534.1			HQ 13 HQ 1										A CC R CC R CC R CC CC CC CC CC CC CC CC CC CC CC CC CC		
-55 56 57- 57- 58-	<u>533 1</u>	SOKOMAN Fm: light greenish-grey, thick banded (4-64 mm), Quartz (50-90 qz)% carbonate iron formation [QCIF] - From 54.5 m to 55.8 m: Weak Chlorite weathering/alteration MENIHEK Fm: dark green brown, foliated, biotite-muscovite quartz schist often w/ Fe-sulfides [B_MS_SCH]	2	HQ 14									RZ - UA- UK, JI x 2 - UK, JI x 2 - UK, JI - UK, <tr< td=""><td>CC PC R, PC C, PC C, CHLORITE/BIOTITE FC C, CC C (CLEAN) C, PC K, CC -CHLORITE K, CC -CHLORITE CC -CHLORITE K, CC -CHLORITE K, CC -CHLORITE</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td></tr<>	CC PC R, PC C, PC C, CHLORITE/BIOTITE FC C, CC C (CLEAN) C, PC K, CC -CHLORITE K, CC -CHLORITE CC -CHLORITE K, CC -CHLORITE K, CC -CHLORITE		· · · · · · · · · · · · · · · · · · ·
 -59 -60- -61-				HQ 15									13 - 00, PO 14 - UN, PO 11 x9 - UN, PO 11 x9 - UN, PO 14 - UN, RC 14 - UN, RC 11 x9 - UN,	CC -CHLORITE CC -CHLORITE CC CC CC CC CC CC CC CC CC CC		
 -62- -63- -64-	527.6	POST-IRON DYKE/SILL Fm: dark green grey, foliated, hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN]		HQ 16			· · · · · ·							TC C C C C C C C C C C C C C C C C C C		
 -65 -66	525.4 523.6	MENIHEK Fm: dark green, foliated, biotite-muscovite quartz schist often w/ Fe-sulfides [B_MS_SCH]		HQ 17								0.00.00	6 11 - PL, S, C 11 - UN, R, (11 - UN, R, (11 - UN, S, C	CC KCCC CLEAN CC CC CLEAN CC		· · · · · · · · ·
-67- -68- -69- 	521.5	POST-IRON DYKE/SILL Fm: dark green grey, foliated, hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN] POST-IRON DYKE/SILL Fm: dark green grey, foliated		HQ 18									J4A - UN, R, J J1 - UN, R, J J1 - UN, R, J J1 - UN, R, R J1 - UN, R, R J4A - UN, S J4A - UN,	28 , PC , PC , CC PC PC PC PC PC PC PC CC CC		
-70 -71- -72- 		hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN]		HQ 19									2 - UN, R, 1 14A x 3 - UN, S (14A x 3 - UN, S (14A x 3 - UN, S (14A x 2 - UN, R (17X - UN, R, 1 14 - UN, R, 1 14 - UN, R, 1	PC V S, CC R AC CC CC CC		
-74 -74 -75				HQ 20								00000	J4 - UN, R, J J4 - UN, R, J J2 - UN, R, J J4 - UN, R, J	PC PC PC		

	T	Stantec	BO	RE	EHO	OLE	: RE	CO	RD		RE	R-	12-02	PAGE <u>4</u> of <u>13</u> DATUM <u>NAD 27, Z</u>	<u>one 19</u>	<u>)U</u>
	CLIE PRO.	ENTAlderon Iron Ore Corp.JECTKami Iron Ore Project												PROJECT No. 121614000 DRILLING DATE 3/17/20	-305 12	
	LOC.	ATION <u>Kami Site, Labrador We</u>	e st, Nl Th	<u>ட்</u> 270				ATION	E	LEVA 85501	TION 0.4	<u>т: 5</u> Е 6	<u>81.3</u> 32131.2	DRILL RIG Major 50 (A)	<u>VD)</u> Drillin	g
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	ALET LEVEL APLE TYPE & No.		ROKEN C XUSHED AISSING C NFERRED RECC TOTAL CORE %	CORE CORE FAULT OVERY SOLID CORE %	FX-FRA J-JOINT CL-CLE VN-VEI R.Q.D. %	ACTURE FAVAGE N FRACT. INDEX PER 1m	CONT-CO B-BEDDIN F-FAULT FOL-FOLI HIL SUCK SUCK HIL SUCK	NTACT G ATION INDEX INDEX	NP w.r.t. BIP w.r.t. CORE AXIS	ROKEN CORE / UI JIBBLE ZONE PC ANAR K- TEPPED	UNDULATING CL-CLEAN POLISHED PC-PARTIALLY COATED SLICKENSIDED CC-COMPLETELY COATED IN-FILLED DISCONTINUITY DATA TYPE AND SURFACE	– – RMR	
-75	581.3			san v	STR	8.8.4.5	8848	8 8 9 9 8	8 35.5 5 5	R1 S.	W1 W2 W4 W4 W1 W1	888	3 J1 - UN, R, C		88888	
 -76- -77- -78- -78- -78- -70-				HQ 21								0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 - UNX KCCCC 14 - UNX - UN, 1 14 - UNX - UN, 1 11 - UNX - UXX	C C C C C PC C C C C C C C C C C C C C		
 80- 81- 				HQ 22									JI - UN, K. C J4 - UN, R. C J4 - UN, R. C J4 - ST, R. P(J1 - ST, R. P(J1 x 4 - PL, R J1 x 4 - PL, R	C - contact with 10 cm graphite-rich zone C , A (CLEAN) PC		
82- 83- 84- 85-				HQ 23								000 00 0000 000 00 0000	14 x 2 - UN, 1 11 x 2 - UN, 1 11 x 2 - UN, R, C 11 - UN, R, C 11 - UN, K, C 11 - UN, K	ζCC C-CHLORITE C FC C C C C C C C C C C C C C C C C C		
 86 ⁻ 87- 	507 <u>3</u>	MENIHEK Fm: dark greyish-green, foliated, biotite-muscovite quartz schist often w/ Fe-sulfides [B_MS_SCH] POST-IRON DYKE/SILL Fm: dark greenish-grey, foliated, hornblende-biotite-garnet gneiss (+		HQ 24								0.0.000.000		CC CC CC CC CC SCC SCC CC CC CC CC CC CC		
89 90- 	502.5			HQ 25								0 0	JI - UN, R, P JI - UN, SM, J3 - UN, R, P J3 - UN, R, P	с сс с		
92- 93- 94-		MENIHEK Fm: greenish-grey, foliated, biotite-muscovite quartz schist often w/ Fe-sulfides [B_MS_SCH]		HQ 26								0	JIAA UN, K, PY JI - PL, R, PY JI - UN, SM, J4B - UN, R, JI - UN, PO, JI - UN, PO,	PC CC CC CC CC		
95- 95- 96- 	497 3			HQ 27								9	II - UN, R. C IR - UN, K. C IR - UN, YO I44. UN, SN 144. UN, SN 11. UN, SM 11. UN, SM 14. UN, SN 14. UN, SM 14. UN, S	LEAN CC CC LPC PC PC PC CC CC PC PC PC PC		
-97- -98- 		POST-IRON DYKE/SILL Fm: dark greenish-grey, foliated, hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN]		HQ 28								0 0 0 0 0 0	14A - UN, YE 14A - UN, YE 14A - UN, YE 11 - UN 11 -	- °CC (°C (°C CC CC CC CC CC CC CC CC PC P		

	CLIE PRO.	Stantec NT Alderon Iron Ore Corp. JECT Kami Iron Ore Project ATION Kami Site, Labrador We	BC		EHC	OLE R	ECC	DRD	ELEVA	RE	BR- '	12-02	PAGE <u>5</u> of DATUM <u>PROJECT No</u> DRILLING DAT	• <u>13</u> NAD 27, Zone 199 121614000-305 E_3/17/2012 ajor 50 (AVD)	<u>U</u>
	INCL	INATION: <u>-60</u> AZIMU	TH	270		LOO	CATION	J: <u>N</u> 5	85501	0.4	Е б	32131.2	CONTRACTOR.	Major Drilling	g
DEPTH (m)	-EVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	ΆΑΤΑ Ρ LΟΤ	TER LEVEL LE TYPE & No.		IROKEN CORE CORE AISSING CORE NFERRED FAULT RECOVERY	FX-FR J-JOIN CL-CL T R.Q.D R.Q.D	ACTURE IT EAVAGE IN FRACT. INDEX	CONT-CO B-BEDDIN F-FAULT FOL-FOLI/ HLSS		RZ-BR RUE PL-PL/ ST-STI	OKEN CORE / UN BBLE ZONE PC ANAR K- EPPED	N-UNDULATING CL-CLEAT D-POLISHED PC-PART SLICKENSIDED CC-COME IN-FILLED DISCONTINUITY DATA	N IALLY COATED PLETELY COATED RMR	HER TESTS
	Ξ		STI	MA	TRUC	CORE % CORE	= %	PER 1m	STRE	WEAT	¶8&		TYPE AND SURFACE DESCRIPTION		Ē
+00 +01 +01 +02 +02 +03 +04 +04	493.1	 From 100.8 m to 106 m: Moderate Clay weathering/alteration MENIHEK Fm: greenish-grey, foliated, biotite-muscovite quartz schist often w/ Fe-sulfides [B_MS_SCH] 		HQ 30 HQ 29 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 - UN, R, C 14 - UN, K, P J4B - UN, K, P I2 - UN, K, C I1 - UN, K, C I3 - UN, K, C I3 - UN, R, P I3 - UN, R, C			
+03 +06 +07 +07 +08 +08				HQ 31							000	33 - UN, SM- 32 - UN, PO, 33 - UN, PO, 33 - UN, PO, 32 - UN, PO,	R, PC CC CC		
+110 +111 +111 +112 +112	<u>484 7</u>	MENIHEK Fm: light grey, foliated, muscovite-biotite quartz schist [MS_B_SCH]		HQ 32							0		A , PC		
+13 +114 +115 +116				4 HQ 33							5.00	— J4B - SI, VR — J4B - ST, VR — J4B - ST, VR	, PC , PC		
 +117 +118 +119				35 HQ 3							0 	JI - UN, R, P	LEAN C_		
 120 121 122	476.5 476.1	MENIHEK Fm: dark grey, foliated, graphitic biotite-muscovite quartz schist often w/ Fe-sulfides [GF_B_MS_SCH]		96 HQ							0	JI - UN; PO,	LEAN		
 123 124 125	475.0	SOKOMAN Fm: greyish-green, thick banded (4-64 mm), Quartz (50-90 qz)% carbonate iron formation [QCIF] MENIHEK Fm: light grey, foliated, muscovite-biotite quartz schist [MS_B_SCH]		НО 3								J1 - UN, R, P J2 - UN, R, P	c c		

	CLIE PRO. LOC.	Stantec ENT Alderon Iron Ore Corp. DIECT Kami Iron Ore Project CATION Kami Site, Labrador We	BC st, N	BOREHOLE RECORD RBR-12-02 PAGE6 of13 DATUMNAD PROJECT No1216 DRILLING DATE3/ DRILL RIGMajor											PAGE <u>6</u> of <u>13</u> DATUM <u>NAD 27, Z</u> PROJECT No <u>121614000</u> DRILLING DATE <u>3/17/20</u> DRILL RIG <u>Major 50 (A</u>	7, Zone 19U 4000-305 7/2012 0 (AVD)		
	INCI	LINATION: <u>-60</u> AZIMU	ГН	270			LOCA	ATION	<u>N 5</u>	85501	0.4	Е	63213	31.2	CONTRACTOR Major	Drillin	g_	
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	WATER LEVEL AMPLE TYPE & No.		BROKEN C CRUSHED MISSING C NFERRED RECC TOTAL CORE %	CORE CORE FAULT DVERY SOLID CORE %	FX-FRA J-JOINT CL-CLE VN-VEII R.Q.D. %	FRACT. INDEX PER 1m	CONT-CO B-BEDDIN F-FAULT FOL-FOLI/ HLSOCK UNDEX SILVENCEX	MTACT G ATION INDEX INDEX	DIP w.r.t	-BROKEN RUBBLE 2 -PLANAR -STEPPEL	I CORE / UN- ZONE PO- K-S D	UNDULATING POLISHED LICKENSIDED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	- RMR	OTHER TESTS	
125	581.3	3		37 S	°.	8848	8848	8848	s949a	R2 R3	28884	8	88			8848		
$ \begin{array}{c} - \frac{1}{120} \\ + \frac{1}{120} \\ - \frac{1}{130} \\ - \frac{1}{1$		MENIHEK Fm: grey, foliated, graphitic biotite-muscovite quartz schist often w/ Fe-sulfides [GF_B_MS_SCH] MENIHEK Fm: light grey, massive banded >64 mm, muscovite-quartz schist [MS_SCH] MENIHEK Fm: grey, foliated, muscovite-quartz schist [MS_SCH]		HQ 38 HQ 3										JI - PL, R, PC J4B - UN, VR, J4B - UN, VR, V J4 - UN, VR, C	PC PC C			
				HQ 39								-		JI - UN, VR JI - UN, SM, P	°C			
	<u>465.0</u>			41 HQ 40								8		JI - UN, K, CC JI - UN, K, CC J4B - UN, R, P J3 - UN, R, CC JI - UN, SM, P	ç ç ç			
			/	HQ 42 HQ								00	, _ ,	— J4B - UN, VR, A — J4B - UN, R, PC — J4A - UN, R, A — J1 - UN, R, A	A C			
	<u>457.0</u> 456.3			HQ 43								Δ		J4A - UN, R, A J1 - UN, PO, P J4B - ST, VR, J4A - ST, VR,	рс cc			
+ - +46 +47 +48				HQ 44								α		J4A - ST, VR, J1 - UN, R, PC	PC			
 149 150				HQ 45								c		J2 - ST, VR, PG J2 - PL, R, CC	c			
450				H		<u> ::::</u>						i c		J2 - PL, R, CC			<u>.</u>	
3	E	Stantec	BC	ORE	EHO	OLE	RE	CO	RD		RE	SR-	12-02	PAGE <u>7</u> of <u>13</u> DATUM <u>NAD 27, Z</u> PROJECT No <u>121614000</u>	<u>one 19</u> -305	U		
---	--------------	---	-------------	-------------------------------	-----	---	---	------------------------------	---	--	---------------------	----------------------------------	--	--	-----------------------	-------------		
	PRO. LOC	JECT Kami Iron Ore Project ATION Kami Site, Labrador We	est, N	JL					E	ELEVA	TION	1 <u>: 58</u>	81.3	DRILLING DATE 3/17/20 DRILL RIG Major 50 (A	12 VD)	_		
	INCL	LINATION: <u>-60</u> AZIMU	TH_	270	આ		LOCA	TION	<u>N 5</u>	85501	0.4	E 63	32131.2	CONTRACTOR Major I	Drillin	<u>g_</u>		
DEPTH (m)	ELEVATION (m	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	WATER LEVEL MPLE TYPE & No		RUSHED MISSING C NFERRED RECO TOTAL CORE %	CORE CORE FAULT DVERY SOLID CORE %	IJ-JOINT CL-CLE VN-VEI	AVAGE N FRACT. INDEX PER 1m	B-BEDDIN F-FAULT FOL-FOLIA HLSOCK NDEX NDEX	MEATHERING INDEX	DIP W.r.t. BIP W.r.t. AXIS	BBLE ZONE PO ANAR K-S EPPED	POLISHED PC-PARTIALLY COATED LICKENSIDED CC-COMPLETELY COATED IN-FILLED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	- RMR	OTHER TESTS		
1 50	581.3			Ś	ST	 	8 8 9 9 0 8 8 9 9 0 8 9 9 0	 8 8 4 8	833 0 u	R3 R3 R3	 	886 			88998			
+51 +52 +52 +53 +53 +54 +55 +55 +56				HQ 47 HQ 46								0	— JI - UN, R, PC — J4B - UN, VR, — J1 - UN, R, CC — J4 - UN, VR, F	РС 2/А 2С/А				
				HQ 48								р 0	J1 - PL, R, CC J2 - UN, R, PC J1 - UN, R, PC RZ - UN, VR,	/A 2 PC				
+61 	<u>440.9</u>	MENIHEK Fm: dark green brown, foliated, hornblende-biotite-garnet gneiss (+ coronite) IHBG GN-Menihek1		HQ 49								0	— J1 - UN, K, IN					
164 - 165 - 166				HQ 50								0 0	— J2 - UN, R, PC					
+167 +168 +168 +169	434.9			HQ 51								0. 0.	— J1 - UN, R, PC — J2 - UN, R, PC					
 +70 +71 +72		MENIHEK Fm: dark grey, foliated, graphitic biotite-muscovite quartz schist often w/ Fe-sulfides [GF_B_MS_SCH]		HQ 52								0 0 0	JI - UN, PO, C J4 - UN, VR, I J2 - UN, VR, I J2 - UN, VR, C J1 - UN, PO, C					
- 173 - 174 - 175				HQ 53								9. 	ji_UN R C RZ-UN R C HZ-UN R C JI-UN K C JI-UN K C	ζ Ç				

3	E	Stantec NT Alderon Iron Ore Corp.	BO	RE	EHO	OLE	RE	CO	RD		RE	BR-'	12-02	PAGE <u>8</u> of <u>13</u> DATUM <u>NAD 27, Z</u> PROJECT No. 121614000	<u>one 19</u> -305	<u>U</u>
	PRO.	IECT Kami Iron Ore Project	at NI										01.2	DRILLING DATE 3/17/20	12 VD)	_
	LOC. INCI	ATION <u>Kami Site, Labrador We</u>	τη <u>΄</u>	270		1		TION	N	ELEVA 585501	TION 0.4	<u>н: 58</u> Е 6 3	32131.2	DRILL RIG Major 50 (A CONTRACTOR Major I	v D) Drilling	-
EPTH (m)	EVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	ATA PLOT	E TYPE & No.		BROKEN CO CRUSHED C MISSING CO NFERRED F RECOV	ORE ORE PRE AULT /ERY	FX-FRA J-JOINT CL-CLE VN-VEI R.Q.D. %	CTURE AVAGE N FRACT	CONT-CO B-BEDDIN F-FAULT FOL-FOLI		RZ-BR RUE PL-PL/ ST-STI	OKEN CORE / U BBLE ZONE P ANAR K EPPED	N-UNDULATING CL-CLEAN O-POLISHED PC-PARTIALLY COATED SLICKENSIDED CC-COMPLETELY COATED IN-FILLED DISCONTINUITY DATA	- RMR	ER TESTS
	ELE		STR/ WAT	AMPLE	IRUCT	CORE %	SOLID CORE %		PER 1r	STRENC	WEATHI	DIP w.I CORE AXIS		TYPE AND SURFACE DESCRIPTION		OTHI
1 75	581.3			/S	ST	8848	8848	8848		R1 2 3 4	2888	888	J1 - UN, R, F	PC	8848	_
 176 177 178		- From 177.5 m to 178.2 m: Moderate Clay weathering/alteration		HQ 54								0.00	J2 - UN, R, F J2 - UN, VR, J4A - UN, VR, J3 - UN, VR, J1 - UN, R, F	C A (Altered/Hematite Seam) R, A (Altered/Hematite Seam) CC C/A		
+79 +80 +81		- From 178.7 m to 179 m: Strong Limonite weathering/alteration - From 179 m to 183 m: Weak Clay weathering/alteration		HQ 55								0	J4A - ST, R, J2 - UN, R, I J4A - UN, V J4A - ST, R, J1 - UN, R, F	IN N C, PC CC CC		
182 - 183 - 184		- From 183.5 m to 187 m: Moderate Clay weathering/alteration		HQ 56								0 0 0	J3 - UN, R, C J4A - UN, R J3 - UN, R J4A - UN, R J4A - UN, R J1 - UN, PO/	сс сс А К		
185 186 	<u>420 7</u>	MENIHEK Fm: brown grey, foliated, muscovite-quartz schist [MS_SCH]		HQ 57								0,0 0	J2 - ST, R, P J1 - UN, PO J2 - ST, R, P J1 - UN, R, C	cc c		
+67 +88 +89 		- From 187 m to 192.5 m: Intense Clay weathering/alteration		HQ 58									- JI - UN, K, I	N		
+90 +91 +92 				HQ 59								0	— J1 - UN, R, I	N		
+93 +94 +95 	<u>413.3</u>	 From 192.5 m to 200.2 m: weak Ctay weathering/alteration MENIHEK Fm: dark greyish-green, foliated, hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN-Menihek] 		HQ 60								0 00	J1 - UN, R, A	A CC CC		
+196 - - - - - - - - - - - - - - - - - - -				HQ 61								0	J4A - UN, K, C	2C R, PC 2C		
2 00				1									- RZ - UN, K,			

9		Stantec	BC	ORE	EHO	OLE	RE	CO	RD		RB	R-	12-02	PAGE <u>9</u> of <u>13</u> DATUM <u>NAD 2'</u> PROJECT No. <u>121614</u>	<u>7, Zone 19</u> 1000-305	<u>)U</u>
1	PRO.	ECT Kami Iron Ore Project	at N	т									01.2	DRILLING DATE 3/17	¹ /2012	_
	LOC. NCI	ATION <u>Kami Site, Labrador we</u>	<u>st, n</u> тн	L 270			LOCA	ATION	E . N 5	ELEVA 5 85501	TION 1 0.4	<u>і: 58</u> Е б	<u>81.3</u> 32131.2	DRILL RIG Major 50 CONTRACTOR Maj	or Drillin	g
	rici آ			Ö	뾔	BROKEN	ORE	§ FX-FRA	CTURE	CONT-CO	NTACT	RZ-BR	ROKEN CORE / UI	N-UNDULATING CL-CLEAN		T
(E	u) NC		LOT	VEL E & N	STRUCT	CRUSHED MISSING C NFERRED	CORE ORE FAULT	CL-CLE VN-VEI	AVAGE N	B-BEDDIN F-FAULT FOL-FOLI	ig Ation	PL-PL ST-ST	BBLE ZONE PO ANAR K- TEPPED	SLICKENSIDED CC-COMPLETELY CC IN-FILLED	DATED	STS
EPTH	VATIO	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	TA PI	TYPI	JRE	RECO	VERY	R.Q.D.	FRACT.	H	RING	<u>ن</u> د		DISCONTINUITY DATA	RMR	R TE
B	ELE	(STRA	VATE APLE	UCTI	TOTAL CORE %	SOLID CORE %	20	PER 1m		EATHE	OIP w.r.1 CORE AXIS				DTHE
200	581.3			SAN	STR	889980	8848	8848	°5,55 20,55	R2 S. R2 S.	M3 W1 W2 W3 W3 W4	888		DESCRIPTION	8 8 9 9 2	
200	407.9	SOKOMAN Fm: light grey, broken		Q 62					· · · · · · · · · · · · · · · · · · ·							
201		banded, Quartz (50-90 qz)% carbonate iron formation [QCIF]		H			· · · · · · · · · · · · · · · · · · ·		:::	· · · ·			RZ - UN, VR	, CC		
202		- From 200.2 m to 202 m: Strong Carbonate Leaching														
L _		Ū.										0 0	J1 - UN, R, P J4 - UN, R, C	C C		
203				Q 63								0	J4 - UN, R, P	C C		
204				Ĥ								00	14 - UN, R, C			
205													J4 - UN, PO, J4 - UN, R, C	ČC XC		
												•	J2 - UN, R, C	C		
206				Q 64								. a	J4B - UN, PC), CC CC		
207				H								00	J4B - UN, R J1 - UN, R C J2 - UN, K, C	CC CC CC		
208												0	J4 - UN, PO,	CC (20mm spacing) CC		
												°0	J4 - UN, PO, J1 - UN, R, P	CC C		
209				Q 65								• • • • • • •	J4 - UN, R, C J4B - UN, R, RZ - UN, R,	CC CC CC		
210				Ĥ												
211												0	J4 - UN, R, C	сс		
												io :	J4 - UN, R, C	CC C		
212				<u> 2</u> 66								¢.	J1 - UN, R, P	C		
213		- From 213 m to 214.5 m: Strong		H										сс		
214		Carbonate Leaching										0	J1 - UN, VR,	PC		
	395.5	- From 214.5 m to 219 m [.] Weak Clay										0	J4 - UN, VR, RZ- UN, R, C	A CC - planar boundary 50° to core axis		
215		weathering/alteration		2 67									J1 - UN, K, C	CC CC		
216		foliated, hornblende-biotite-garnet		H									J4B • 0N, K,			
 917		gneiss (+ coronite) [HBG_GN-Menihek]										:0:	J1 - UN, R, C			
												a .	J4B - UN, R, A J4 - UN, R, A 14B - UN R	PC		
218	<u> 392.5</u>	MENIHEK Fm: dark green brown,		68								8	JI - PL, K, C J4B - UN, R, J1 - UN PO	C CC CC (HBG - GN contact)		
219	391 4	foliated, hornblende-biotite-garnet gneiss (+ coronite)		НČ								Ŏ	Ji - UN, R, P	C (inder sin termate)		
220		[HBG_GN-Menihek] - From 219 m to 221.7 m: Moderate										0 0	J1 - UN, K, C J1 - UN, SM J2 - UN, R P	C CC C		
220		Clay weathering/alteration							· · · · · · · · · · · · · · · · · · ·			:0:	J2 - UN, R, P	Ċ		
221		hornblende-biotite-garnet gneiss (+		69												
222		- From 221.7 m to 229 m: Intense		рН												
222		Chlorite weathering/alteration										ġ.	J4 - UN, R, C	CC		
223	387.6											0	J1 - UN, VR,	CC PC		
2 24		SOKOMAN Fm: dark green, thick banded (4-64 mm),		20								0	J3 - UN, PO,	cc		
2 25		magnetite>20%-quartzite (minor marble		ОН								a 8 :	J4B - UN, R, J1 - UN, R, C			

	CLIE PROJ	Stantec NT Alderon Iron Ore Corp. VECT Kami Iron Ore Project Kami Site, Labrador We	BO	RE	EH	OLE RE	CO	RD		RB	3R-'	12-02	PAGE _1(DATUM_ PROJECT DRILLINC	00f NA G DATE G Mai	<u>13</u> AD 27, Zo 21614000 3/17/201 or 50 (A)	one 19 -305 12 VD)	<u>U</u>
1	NCL	INATION: <u>-60</u> AZIMU	TH	270		LOCA	TION	<u>N</u> 5	85501	0.4	E 63	32131.2	CONTRA	CTOR_	Major I) Drilling	g
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT WATER LEVEL	SAMPLE TYPE & No.		BROKEN CORE CRUSHED CORE MISSING CORE INFERRED FAULT RECOVERY TOTAL CORE % CORE %	FX-FRA J-JOINT CL-CLE VN-VEI R.Q.D. %	ACTURE FAVAGE N FRACT. INDEX PER 1m	REAL	MTACT G MOINDEX INDEX INDEX	RZ-BR RUE PL-PL/ ST-STI VXIS	ROKEN CORE / UI JIBBLE ZONE PR ANAR K- TEPPED	N-UNDULATING D-POLISHED SLICKENSIDED DISCONTINUITY I TYPE AND SUP DESCRIPTI	CL-CLEAN PC-PARTIALI CC-COMPLE IN-FILLED DATA RFACE ON	LY COATED TELY COATED	- - RMR	OTHER TESTS
225 226 227	384.7	Ca/Fe-silicates) [MIF] POST-IRON DYKE/SILL Fm:		<u>0</u> 71		57 2 2 38 57 27 2 38	8 8 4 8	2015 015 015 015 015 015 015 015 015 015			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 - J3 - UN, K, C - J4A - ST, VR - J1 - UN, K, C - J1 - UN, K, C - J1 - UN, VR,	ec e, PC ec ec ec			200 - 200 -	
228 		greenish-grey, toliated, hornblende-biotite-garnet gneiss (+ coronite) [HBG_GN] - From 229 m to 232 m: Moderate Clay weathering/alteration		72 HC							0	RZ - UN, VR J1 - UN, R, P J1 - UN, PO, J1 - UN, K +	t, CC C CC IF, CC (chlorite in f	611)			
231	380.6	SOKOMAN Fm: dark brown, broken banded, Quartz (50-90 qz)% carbonate iron formation [OCIF]		Он							0	J3 - UN, R, II RZ - UN, R, I	N CC/A IN				
233 - 234 - 235		- From 232 m to 244 m: Intense Limonite weathering/alteration		HQ 73							0	JI -					
236				HQ 74							0	— J4B -	DI/A				
239 239 240				HQ 75							a	J2 - UN, R, C	2C				
241 				HQ 76							ò	— J1 - UN, R, II	N/A				
244 	368.7	- From 244 m to 245.5 m: Moderate Limonite weathering/alteration SOKOMAN Fm: light grey, broken banded, quartzite(>90% qz + mica carbonate other) [QZT]		HQ 77							0	— J1 - UN, R, C	xc				
247 248 - 249 -	264 0	- From 245.5 m to 253 m: Weak Limonite weathering/alteration		HQ 78													
2 50	<u>404 A I</u>			_							• • • •						-

	CLIE	Stantec NT Alderon Iron Ore Corp.	BC	DRE	EHO	OLE	RE	CO	RD		RE	BR-	12-02	PAGE <u>11</u> of <u>13</u> DATUM <u>NAD 27</u> , PROJECT No. <u>12161400</u>	Zone 19)0-305 012	<u>)U</u>
	LOC	ATION Kami Site, Labrador We	est, N	IL					E	LEVA	TION	N: 58	81.3	DRILLING DATE OF THE DRILL RIG Major 50 (AVD)	_
	INCL	INATION: <u>-60</u> AZIMU	TH_	270		1	LOCA	TION:	<u>N 5</u>	85501	0.4	Е 6	32131.2	CONTRACTOR Major	· Drillin	<u>Ig</u>
DEPTH (m)	ELEVATION (m)	LITHOLOGICAL DESCRIPTION (ALERON IRON ORE CORP.)	STRATA PLOT	WATER LEVEL MPLE TYPE & No.		ROKEN CC CRUSHED C MISSING CO NFERRED F RECOV TOTAL CORE %	ARE ARE AULT ERY SOLID CORE %	FX-FRA J-JOINT CL-CLE VN-VEI R.Q.D. %	FRACT. INDEX PER 1m	CONT-CC B-BEDDIN F-FAULT FOL-FOLI HDUEX HDUEX	ATION ATION INDEX INDEX	RZ-BR RU PL-PL ST-ST VXIS	ROKEN CORE / UN BBLE ZONE PC ANAR K- EPPED	A-UNDULATING CL-CLEAN D-POLISHED PC-PARTIALLY COATED SLICKENSIDED CC-COMPLETELY COAT IN-FILLED DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION	ED RMR	OTHER TESTS
250	581.3	SOKOMAN Em husur variable arean		б	ST	8848	88988	88848	v;6;€6	R2 R2 R1	2003	888			8848	1
 251 252 		SOKOMAN Fm: brown variable green, broken banded, quartzite(>90% qz + mica carbonate other) [QZT]		HQ 79								0	— J1 - UN, R, C	c		
253 254 	360.6	- From 253 m to 254.8 m: Strong Clay weathering/alteration		Q 80												
255 256 		MENIHEK Fm: brown grey, foliated, muscovite-quartz schist [MS_SCH] - From 254.8 m to 258.4 m: Moderate Clay weathering/alteration		H								0	J1 - PL, R, CO	c c		
257 258 	357.5	SOKOMAN Fm: brown grey, broken		HQ 81			· ·					0	— J1 - UN, R, C	C/A		
259 260 261 262		banded, Quartz (50-90 qz)% carbonate iron formation [QCIF] - From 258.4 m to 265.8 m: Strong Limonite weathering/alteration		HQ 82								0	J2 - UN, VR,	PC C PC CC/A		
 263 264 265				HQ 83								o .0 ⁰	J3 - UN, R, C	C C		
 266 267 268	351.2 349.2	SOKOMAN Fm: dark grey, thick banded (4-64 mm), magnetite(10-20%)-quartzite (minor marble Ca/Fe-silicates) [LMIF] - From 265.8 m to 272 m: Strong Carbonate Leaching		HQ 84								- 0	J1 - PL, R. IN	1		
 269 276 271		SOKOMAN Fm: grey, thick banded (4-64 mm), Quartz (50-90 qz)% carbonate iron formation [QCIF]	,	HQ 85								0.0.0 0.0	— J4A - UN, R, 12 - ST, R, C 14A - UN, R, J4A - UN, R, J4A - UN, R,	CC CC Healed CC		
 272 273 274		- From 272 m to 281 m: Moderate Carbonate Leaching		98 QH								о -		, РС С		
 2 75																

	T CLIE	Stantec NT Alderon Iron Ore Corp.	BO	RE	EHC	OLE RE	CO	RD		RB	8 R -′	12-02	PAGE <u>12</u> of DATUM <u>N</u> PROJECT No.	<u>13</u> NAD 27, Zo 121614000-3	ne 19 305	U
	PRO.	IECT Kami Iron Ore Project ATION Kami Site, Labrador We	est, NL	4				E	LEVA	TION	: 58	81.3	DRILLING DAT	_E 3/1//2012 ajor 50 (AV	2 D)	_
	INCL	INATION: <u>-60</u> AZIMU	TH	270		LOCA	ATION	<u>N</u> 5	85501	0.4	е 6 3	32131.2	CONTRACTOR.	Major D	rilling	2
(m) H	(m) NOI		PLOT	PE & No.		ROKEN CORE CRUSHED CORE MISSING CORE NFERRED FAULT	FX-FRA J-JOINT CL-CLE VN-VEI	ACTURE F I AVAGE I N I	CONT-COI B-BEDDIN F-FAULT FOL-FOLIA		RZ-BR RUE PL-PLA ST-STE	OKEN CORE / UN BBLE ZONE PO ANAR K- EPPED	N-UNDULATING CL-CLEAN D-POLISHED PC-PARTI SLICKENSIDED CC-COMF IN-FILLED	N IALLY COATED PLETELY COATED		ESTS
DEPT	ELEVAT	(ALERON IRON ORE CORP.)	STRATA WATER I	AMPLE TY	RUCTURE	TOTAL SOLID CORE % CORE %	R.Q.D. %	FRACT. INDEX PER 1m	ROCK STRENGTH INDEX	WEATHERING	DIP w.r.t. CORE AXIS		TYPE AND SURFACE DESCRIPTION		RMR	OTHER T
275	581.3			87 S/	ST	8848 8848 8848 8848	8848	59 19 19 19 19 19 19 19 19 19 19 19 19 19	R3 R3 R3 R4	22884	888				8848	<u> </u>
276				HQ							0	J1 - UN, R, C	C C			
											0	RZ - UN, R, O J4 - UN, R, P	CC C			
277																
278				88							o D	J2 - UN, R, P J4B - UN, VF	C S PC			
279				θH							0	JI - PL, R, CO J3 - UN, R, C	C C			
280											D	J2 - UN, R, P	С			
_																
281		- From 281 m to 293.5 m: Moderate Carbonate Leaching		[Q 89							0	J1 - UN, R, C J4B - UN, R,	C A			
282				H							0	J2 - UN, R, C	c			
283												12 - PL, R, CO				
284				0							0	12 - PL, R, A RZ - UN, R, O	çc			
295				HQ 9							: • • •	TI - PL, R, CO RZ - UN, R, C	C CC			
203													20			
286											. O	J1 - UN, R, C	č			
287				91				• • • •								
288				ЪН												
											: 0 : 0 : 0	J1 - UN, R, I J1 - UN, R, I J1 - UN, R, I J1 - PL, R, C	N N C			
_												J2 - PL, R, PO	2			
290				Q 92												
291				H							о •	J2 - UN, R, C	'LEAN			
292	328.4	SOKOMAN Fm: brown grey, thick									:0:	J2 - UN, R, P	С			
293		banded (4-64 mm), quartzite(>90% qz + mica carbonate other) [QZT]		33							: O	J1 - PL, R, IN J2 - PL, R, CO	C			
294		- From 293.5 m to 295 m: Strong		HQ 9							ġ.	J1 - PL, R, IN	I			
_	275 0	Carbonate Leaching						· · · · · · · · · · · · · · · · · · ·								
295	12.3.0	SOKOMAN Fm: light grey, broken									• • • • •	J1 - UN, R, C	C			
296		iron formation [QCIF] - From 295 m to 299 m: Weak		94												
297		Carbonate Leaching		H												
298											o o	J2 - UN, R, P J1 - UN, R, P	c c			
	322.6	SOKOMAN Em: greenich grey thick		95								1) IN D D	C			
299		banded (4-64 mm), Quartz (50-90% qz) + Ca-Fe silicates + minor Fe ovides		HQ								J2 - UN, K, P	I			
3 00 ⁻	321.5	· cu re shieues · hinor re oxides		_	I						1.0.	— JI - FL, K, IN				L

	T	Stantec	B	ORI	ΞH	OLE	ERE	ECO	RD		RE	3R-12	2-02	PAGE <u>13</u> of <u>13</u> DATUM <u>NAD 27,</u>	Zone 19	U
	CLIE PRO. LOC	Alderon Iron Ore Corp. JECT Kami Iron Ore Project ATION Kami Site, Labrador Weither	est, I						E	ELEVA	TION	v <u>: 581.</u>	3	 PROJECT No. 12161400 DRILLING DATE 3/17/2 DRILL RIG Major 50 (. 	00-305 012 AVD)	_
	INCI	LINATION: <u>-60</u> AZIMU	TH_	270)		LOC	ATION	: <u>N 5</u>	85501	0.4	E 6321	31.2	_ CONTRACTOR Major	• Drilling	<u>z</u> _
H (m)	(m) NOI		PLOT	EVEL PF & No.		IBROKEN (ICRUSHED MISSING (INFERRED	CORE CORE CORE D FAULT	FX-FRA J-JOINT CL-CLE VN-VEI	ACTURE T EAVAGE IN	Cont-Co B-Beddin F-Fault Fol-Foli	IG ATION	RZ-BROKEN RUBBLE PL-PLANAR ST-STEPPE	N CORE / ZONE	UN-UNDULATING CL-CLEAN PO-POLISHED K-SLICKENSIDED CC-COMPLETELY COATED IN-FILLED	ED	FSTS
DEPT	ELEVAT	(ALERON IRON ORE CORP.)	STRATA	WATER L MPI E TYI	RUCTURE	TOTAL CORE %	SOLID	R.Q.D. %	FRACT. INDEX PER 1m	ROCK STRENGTH INDEX	VEATHERING INDEX	DIP w.r.t. CORE AXIS		DISCONTINUITY DATA	RMR	
300	581.3	1		AS.	STI	8848	8848	8848	v6858	82 K 2 K	2888 2888	888			8848	
 301		[QSIF] - From 299 m to 300 m: Weak Chlorite weathering/alteration End of Borehole														
302 303 304		 Borehole terminated at target depth of 300 m along borehole. Flowing artesian conditions encountered in overburden and bedrock 														
 305 306 307																
308 309 																
310 311 																
312 313 314																
315 316 317																
318 319 320																
321 322 323 324																

Appendix I. RBR-12-01 & RBR-12-02 Packer Results

Appendix I : Summary of Borehole Packer Permeability Tests, RBR-12-01 RBR-12-02 Pre-Feasibility Study of the Kamistiatusset (Kami) Iron Ore Property Hydrogeology and Water Management

				RBR-12-01				
Top interval depth along borehole (m)	Bottom interval depth along borehole (m)	Mid Interval depth along borehole (m)	Mid vertical interval depth (m)	Mid vertical interval depth in the bedrock (m)	K (m/s)	Geometric Mean K (m/s)	Min. K (m/s)	Max. K (m/s)
48	62	55	48	9	1.1E-06			
62	74	68	59	20	2.4E-06			
74	86	80	69	30	3.1E-06			
87	98	93	80	41	1.9E-06			
96	110	103	89	50	2.3E-06			
110	122	116	100	61	5.3E-06			
120	134	127	110	71	6.6E-07	1.5E-06	1.3E-07	5.3E-06
132	146	139	121	81	6.2E-07			
146	158	152	132	92	na			
158	170	164	142	103	na			
168	182	175	152	112	5.3E-06			
181	194	188	163	123	4.9E-06			
192	206	199	172	133	1.3E-07			
204	218	211	183	144	3.6E-07			
				RBR-12-02				
23	32	28	24	10	9.4E-07			
29	43	36	31	17	2.3E-06			
41	55	48	42	28	6.4E-07			
55	67	61	53	39	9.0E-07			
65	79	72	62	49	2.7E-06			
77	91	84	73	59	9.5E-07			
89	103	96	83	69	1.3E-06			
101	115	108	94	80	2.0E-06			
113	127	120	104	90	3.2E-06			
125	139	132	114	101	4.4E-06			
137	151	144	125	111	7.3E-06			
149	163	156	135	121	2.9E-06	1.5E-06	8.6E-08	8.0E-06
161	175	168	146	132	6.0E-06			
173	187	180	156	142	8.6E-08			
185	199	192	166	153	1.8E-07			
197	211	204	177	163	1.1E-06]		
209	223	216	187	173	8.0E-06]		
221	235	228	198	184	3.0E-06]		
233	247	240	208	194	1.3E-06]		
254	262	258	224	210	4.6E-06			
260	274	267	231	217	6.2E-07]		
272	286	279	242	228	2.2E-06]		
284	300	292	253	239	3.0E-07			

Outside range of Packer injection Method; K exceeds about 1x10-5 m/s

RBR-12-01 and RBR-12-2 are located in more fractured bedrock area / fault zone

	X NAD27 Zone 19 UTM	Y NAD27 Zone 19 UTM	ground elevation (m asl)	elevation - bedrock	OB thickness	bottom elevation	Dip	Azimuth
RBR-12-01	632774	5855885	573	534	39	379	-60	270
RBR-12-02	632131	5855010	581	567	14	322	-60	270

Appendix J. Simulated and Measured Hydraulic Heads

O/Ref.: 692696-7000-4WER-0001_01 April 30, 2024 J-1

ID	Observed hydraulic heads (m)	Simulated hydraulic heads (m)	hobs - hsim (m)
ROB-11-01A	571.00	575.48	4
ROB-11-01B	571.00	575.32	4
ROB-11-02	568.60	573.66	5
ROB-11-03	576.73	578.53	2
ROB-11-04	594.98	594.46	1
ROB-11-05A	625.56	619.38	6
ROB-11-05B	627.40	620.17	7
ROB-11-06	643.91	642.27	2
ROB-11-07	596.92	584.38	13
ROB-11-08A	580.65	585.07	4
ROB-11-08B	578.83	585.07	6
ROB-11-09	590.60	592.14	2
ROB-11-10	610.35	609.09	1
ROB-11-11	613.55	613.43	0
ROB-11-12	628.36	630.98	3
ROB-11-13A	628.11	631.15	3
ROB-11-13B	627.83	631.86	4
ROB-11-14	605.97	605.50	0
ROB-11-16	571.05	572.64	2
ROB-11-17	580.13	581.74	2
ROB-11-18	574.30	582.94	9
K-08-10	627.60	614.15	13
K-08-18	583.17	595.45	12
K-11-106	576.72	593.28	17
K-11-108	583.87	585.92	2
K-11-113	583.05	591.06	8
K-11-145	625.32	611.88	13
K-11-147	628.10	616.30	12
K-11-163	578.20	577.58	1

h obs max (m)	644
h obs min (m)	569
Mean absolute error MAE (m)	5.4

AtkinsRéalis

AtkinsRéalis Minerals and Metals

© AtkinsRéalis unless otherwise stated