
Wastewater Collection Pipe Rehabilitation (CIPP)

Circular Road Project

Grand Falls Windsor

Outline

- Town Infrastructure
- History of Cured-In-Place-Pipe (CIPP)
- Advantages and Disadvantages
- CIPP vs. Traditional Replacement
- Scope of Work
- CIPP Process
- Project Challenges
- Conclusions

Town Infrastructure

10 Year Capital Spending Avg.

Total Asset Replacement Value

Running Annual Avg. Expenditure				
Roads	\$	2,283,624		
Water & Sewer	\$	3,303,208		
Recreation	\$	844,703		
Buildings	\$	816,366		
Average:		\$7,247,901		

70-year replacement timeframe Own approx. 97 km of sewer mains

Asset Class	Replacement Value (\$)	Portion of Total* Replacement Value (\$)
Roads	146,725,782	29%
Facilities	135,885,036	27%
Sanitary	73,150,956	14%
Water	61,666,094	12%
Storm	49,024,141	10%
Equipment	26,885,662	5%
Parks and Land Improvements	8,949,725	2%
Fleet	2,560,857	1%
Total*	504,848,253	

History of CIPP

- Definition "Insertion of a resin-impregnated lining tube which is then cured to form a tight fit against the existing sewer."¹
- Invented in the early 1970 by Eric Wood
- 1st project London 1971 (53 yrs.). 1,170 mm x 600 mm brick egg shaped sewer lined 6 mm.
- It is still in use today. Testing completed 20 & 30 years after install. Still in excellent shape.

History of CIPP

- 1st UK patent (Insituform) August 21st, 1970
- 1st CIPP lining in NA was 300 mm drain in Fresno, CA in 1976.
- Formal design processes established in 1983.
- Design life = minimum of 50 years.
- Major installation in Winnipeg, MB in 1978
 - Assessed in 2003 and tested 2011 (450 mm liner)

Grand Falls Windsor

Physicals like new

Advantages & Disadvantages

Advantages:

- Less residential disturbance (min. excavation)
- Cheaper (depending on situation)
- Thin-walled (flow capacity not compromised)
- Minimal insertion access required
- Ability to be pulled through bends
- Disadvantages:
 - Resin smell during steam curing
 - Complexity of installation

CIPP vs. Traditional Replacement

Traditional (Open Cut)

- 2,420 m of new mains.
- 1,320 m of service lines.
- 165 homes to be serviced.
- Approx. Cost = \$800/m
- Total = \$1,930,000 (est.)
 - Significant disturbance to the area. Only patching asphalt.
 - Homes serviced from rear.
 - Topography an issue.

CIPP Relining

2,347 m of sanitary mains relined.

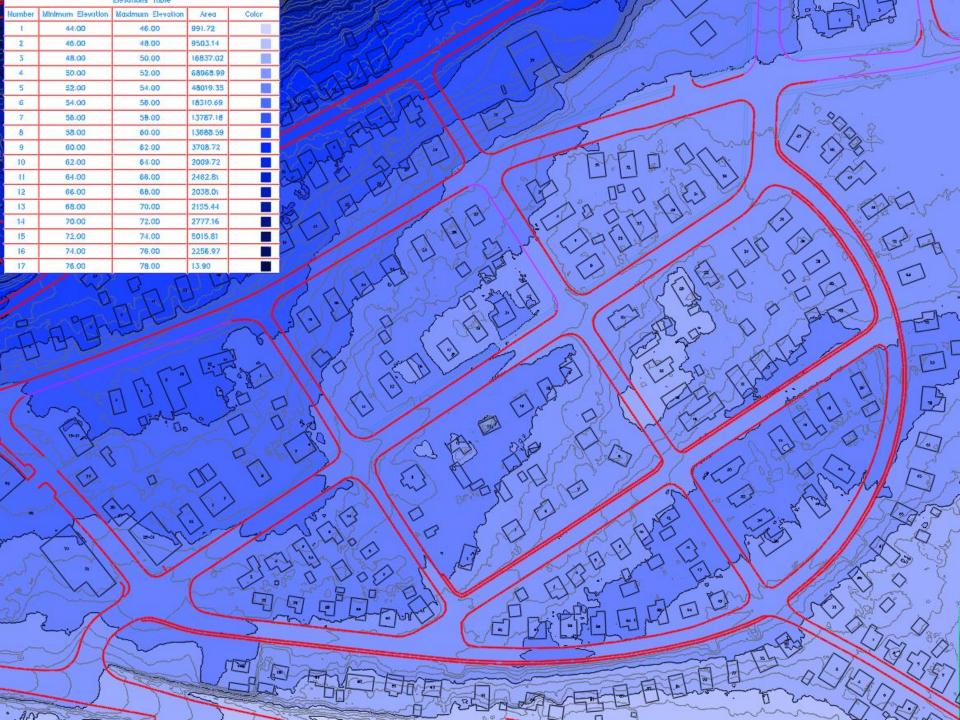
173 m of 100 mm

2,074 m of 150 mm

100 m of 200 mm

106 services reinstated

Average Cost = \$601/m


Total = \$1,410,000

Existing Alignment Example

CIPP Scope of Work

Project Description

- Project funded under ICIP 17-GI-22-00034
- Total funding was \$3,489,067 HST included
 - Water, storm and CIPP sanitary repairs in the Circular Road area. Work remaining for 2024.
 - 90-year-old clay sewer lines
 - Project broken into three separate tenders and a PCA for engineering services.
 - AllNorth Consulting \$83,000
 - Afonso Contracting \$1,410,000
 - ANW Contracting \$1,008,000
 - Paving \$265,000

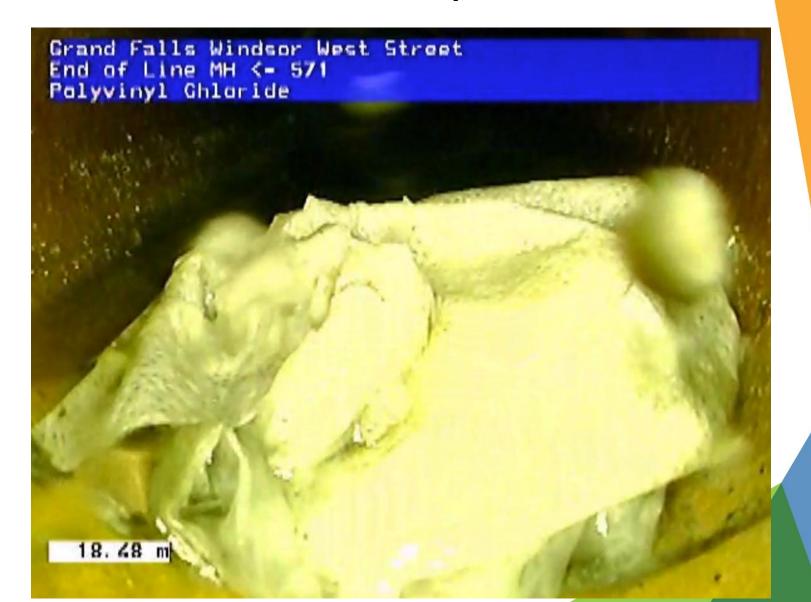
CIPP Process

- Clean & complete CCTV of existing pipe
- Clean host pipe remove root intrusion, grease, debris buildup and trim services.
- Setup bypass for flow & communication
- Install CIPP liner pull-in-place or inversion
- Cure the CIPP steam, hot water or UV light
- Reinstate the service connections
- CCTV camera of final product & QA samples

perfectly centered

CCTV 1-year warranty inspection

Camera Equipment


CCTV Pre-Inspection

CCTV Pre-Inspection

CCTV Pre-Inspection

Design – Fully Deteriorated

PROGRESSIVE ENGINEERING & CONSULTING

CIPP_DESIGN

CIPP Liner Thickness for Non-Pressure Pipes By ASTM F1216-16 Appendix X1 Design Method

EXISTING PIPE PARA	METERS	RS ENTERED CIPP liner design by Appendix X1 method of			TM F1216-16
Existing Pipe Condition Fully Det.		KEY FACTORS: FULLY DETERIORATED CONDITION DESIGN			
Inside Diameter, D		150 mm	Flexural Modulus, E, 50 Year Design 862.0 MPa 50% of		
Depth to Invert		1.88 m	Flexural Strength, σ, 50 Year Design	15.50 MPa	50% of σs
Water Table below Surface 1.5 m		Minimum Dia for host pipe	146 mm	For 3% ovality	
Ovality of Existing Pipe, Δ 35		3%	Maximum Dia for host pipe	155 mm	For 3% ovality
Soil Density, w	(2000 Kg/m3)	19.61 KN/m3	Ovality Reduction Factor, C	0.764	For 3% ovality
Soil Modulus, E's		6.9 MPa	Water Buoyancy Factor, Rw	0.956	
Live Load Used		HS-20	Coeff of Elastic Support, B'	0.2654	
Other Load		0 kPa	Water Pressure, Invert	0.0037 MPa	0.380 m Head
CIPP LINER PARAMETERS ENTERED		Total Design Pressure, P, Invert	0.0037 MPa	For X1.1 & X1.2	
Design Life		50 Years	Water Pressure, Obvert	0.0023 MPa	0.230 m Head
Flexural Modulus Sho	rt-term Test, Es	1724 MPa	Soil Pressure, Obvert	0.0324 MPa	1.730 m Cover
% of Es used for 50 Year Design E 50%		Live Load Pressure Ws, Obvert	0.0108 MPa	Note 1	
Flexural Strength Short-term Test, σs 31 MPa		Other Load Pressure, Obvert	0.0000 MPa		
% of σs used for 50 Year Design σ 50%		Total Design Pressure, qt, Obvert	0.0455 MPa	For X1.3	
Enhancement Factor, K 7			NOTES: E and σ correspond with E _L and σ _L in F1216 Appendix X1		
Poisson's Ratio, v 0.3			Note 1: AASHTO HS-20. Refer AWWA M11, M23, M55.		
Safety Factor, N 2			Note 2: t based on providing DR ≤ 100. See F1216 Note X1.2		
DESIGN BY ASTM F12	16 VERSION	E1216 16	7		

FULLY DETERIORATED DESIGN REQUIRES CIPP THICKNESS SATISFY F1216-X1 EQUATIONS X1.1, X1.2, X1.3 & X1.4						
Equation	Required t mm	Required t in	Required DR			
X1.1: P = [2KE/(1-v^2)] x [1/(DR-1)^3] x [C/N]	1.5 mm	0.059 in	100.0			
For load at invert due to groundwater hydrostatic pressure	Note 2	Note 2	Note 2			
X1.2: (1.5Δ/100)(1+Δ/100)(DR) ² -0.5(1+Δ/100)DR=σ/(PN)	0.7 mm	0.028 in	214.3			
For minimum thickness for ovality						
X1.3: qt=[1/N] x [32 x Rw x B' x E's x C x (E x I/D^3)]^(1/2)	2.1 mm	0.083 in	71.4			
For load at obvert due to groundwater, soil & live loads						
X1.4:(Es x I)/D^3 = Es/[12(DR^3)] ≥ 0.00064 Govern	s 2.5 mm	0.098 in	60.0			
For minimum CIPP liner stiffness						
Required in Place Liner Thickness - Fully Deteriorated	2.5 mm	0.098 in	60.0			

t mm is rounded-up to 1 decimal place; t in = t mm/25.4; DR = (Inside Diameter mm)/(t mm) NA - Not Available/Applicable
Liner Sample Test Requirements Are: Es ≥ 1724 MPa (ASTM D790); σs ≥ 31 MPa (ASTM D790); Thickness ≥ 2.5 mm (ASTM D5813).
If test results are at variance, other combinations of properties and thickness can provide required liner performance. Reconcile design

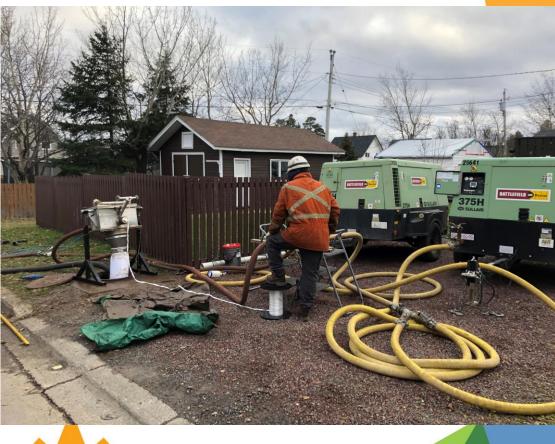
PARAMETERS FOR FLOW COMPARISON
Liner thickness for flow comparison
2.5 mm
Inside Diameter before Lining
150 mm
Manning n used for before lining
0.0120
Inside Diameter after Lining
145 mm
Manning n used for after lining
0.0100
Flow Capacity after Lining
110% of before lining flow
COMMENTS

 Required ASTM F1216-16 Appendix X-1 Design

- Fully Deteriorated
- 50-year design life
- Majority 2.5 mm liners
- Flow capacity
- ~20-30% thicker liner compared to partially deteriorated design.

Heavy Root Intrusion

Root Cutting Equipment



Pull in Place & Inversion

Hot Water Curing

Hot Water Curing

- All 100 mm pipes were wetted with epoxy onsite and cured with hot water.
- Epoxy lining designed for shorter runs (~50m)
- 1-3 hour curing time
- Disadvantage is they must be used installed and cured quickly.

Steam Curing

Steam Curing

Steam Curing

- Liners were ordered from New Jersey already pre-wetted with resin and kept on ice.
- Kept in refrigeration truck out of sunlight.
- Curing is 90 minutes at 130 degrees
 Fahrenheit with 30-minute cool down.
- Pressure varies 8 12 psi.
- 3 thermocouples in place measuring temps.

Reinstate Service Connections

REINSTATEMENT CUTTER

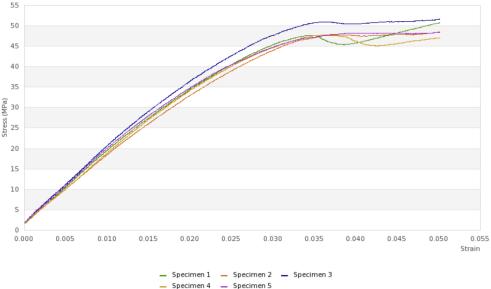
CCTV Camera (Post)

CCTV Camera (Post)

```
m/h 1282 to m/h 578 post liner
10:02:32AM 2023/10/28
                    26.2M
```

CCTV Camera (Post)

QA Testing



QA Testing

QA Testing

LABORATORY REPORT

Paragon Systems Testing

18 Basaltic Road Concord Ontario, Canada, L4K 1G6 Tel: (905) 738-0447 Fax: (905) 738-565

TS 4.10 Liner Sample Test Results - Reconciliation and Deficiency Evaluation Matrix

Test Results	Units	Test Results (from page 1)	Properties Required per Design (Note 1,3)	Test Results vs Design	Required Thickness At Test Properties (RTATP) (Note 2, 3)	Reconciliation Outcome
Short Term Flexural Modulus	MPa	1,780	1,720	Acceptable	_	None
Short Term Flexural Strength	MPa	48.4	31.0	Acceptable	_	None
Thickness (avg)	mm	3.2	2.5	Acceptable	_	None
Thickness (min)	mm	2.9	2.2	Acceptable		None

Overall Sample Status NOT DEFICIENT

Project Challenges

- Resin curing smell complaints (plastic).
- ~2% homes had toilet issue during cleaning.
- 13 pits (distance, size change or joint offsets).
- Small manholes and site access difficult.
- Sags too great in three locations to complete.
- Roots excessive in one line.
- One line with protruding cast iron services.
- One liner failed resulting in sewer backup.

Conclusion

- Approx. 165 homes with relined sewer main.
- Approx. 2.4 km of rehabilitated infrastructure.
- Challenges encountered but successful project
- QA testing results were satisfactory.
- Experienced gained by Town staff.
- Significantly lower disturbance option.
- Contractor great to work with.

