

iHydrant® - Mission

"Revolutionize water systems by leveraging powerful real time analytics and actionable insights to detects and prevent water loss and evolve the way your utility looks at water. "

Why Manage Pressure?

Real-time Intelligence. Insightful Analytics.


M36

Water Audits and Loss Control Programs

Fourth Edition

By effectively managing and optimizing pressure in the water distribution system, water main and service connection leakage can be reduced, and pipeline asset life can be extended.

https://www.awwa.org/Portals/0/files/publications/documents/M36LookInside.pdf

WATER LOSS CONTROL COMMITTEE

Pressure Management: Options and Opportunities

Drinking water utilities pressurize infrastructure to provide high-guality service, prevent backflow, and accommodate elevation gradients across service territories. Pressure is typically supplied using a combination of pumping infrastructure, storage tanks and gravity. However, excess pressure, particularly caused by elevation change, can contribute to infrastructure failure and compromise service. As a result, pressure must often be supplied and then reduced to maintain a range of acceptable pressure across a service territory. To reduce pressure, many utilities install pressure-regulating infrastructure like pressure reducing valves

Many utilities are considering transitioning from a historical posture of reactive pressure management to a more engaged, proactive stance. However, the specific pressure management tools and implementation plans will vary from utility to utility, depending on the utility's intent and the infrastructure already in place. Nonetheless, all pressure management strategies share a unified goal: supply pressure that fully meets service needs while eliminating excess pressure and pressure transients that cause leakage and infrastructure damage.

Benefits of Pressure Management

Pressure management offers a host of benefits for both a utility and its customers. For example, effective pressure management:

- Improves customer service through appropriate service pressures and reduced service interruptions
- Reduces leakage volumes by decreasing both the frequency of leaks and the flow rate of any given leak
- Extends asset life by reducing stress on infrastructure (particularly in the form of pressure transients)
- Decreases energy expenditures in systems with pumping infrastructure by targeting pressure reductions and therefore the energy costs associated with supplying pressure
- Reduces the potential for contamination through pressure transients in which water pressure can be negative for short periods of time
- Can empower more effective demand management through variable pressure supply connected to demand

Considerations and Costs

Pressure management often requires initial investment before benefits can be realized. Most systems in the United States operate as open grids, meaning that targeted pressure reduction requires the installation of additional infrastructure and/or a coordinated pressure optimization plan involving all infrastructure in a service zone. Typically, utility managers and engineers should consider the following questions in planning a pressure management strategy:

- What pressure infrastructure already exists? Where is the infrastructure located? What are its settings, and when was it last maintained or checked for acceptable performance? Answering these questions usually requires an inventory of tanks, pressurereducing valves, pumps, surge tanks, and other similar assets.
- What pressures are currently supplied throughout the distribution system? Are pressures too low in some places, too high in some places, or generally appropriate for service needs, including fire protection, if provided? Answering these questions typically requires pressure logging at locations (e.g., hydrants) throughout the system.

AWWA advocates for Proactive Pressure Monitoring

The more data a utility has displaying system pressure,

the more effectively system

pressure can be managed.

https://www.awwa.org/Resources-Tools/Resource-Topics/Water-Loss-Control

Pressure Monitoring Blindspot Problem

Pressure monitoring data has historically been limited to pump locations and water reservoirs <u>exclusively</u>, leaving a massive pressure measurement blindspot.

"You can't manage what you can't measure"

iHydrant[®] Solution

Real-time Intelligence. Insightful Analytics.

iHydrant[®] Solution to Blindspot Problem

iHydrantTM sensors located in the hydrant boot are in constant contact with the water and Always On.

Data gathering in real time and continuously for Pressure and Temperature

Real Time Alerts (breakage, theft, abnormal use, etc.)

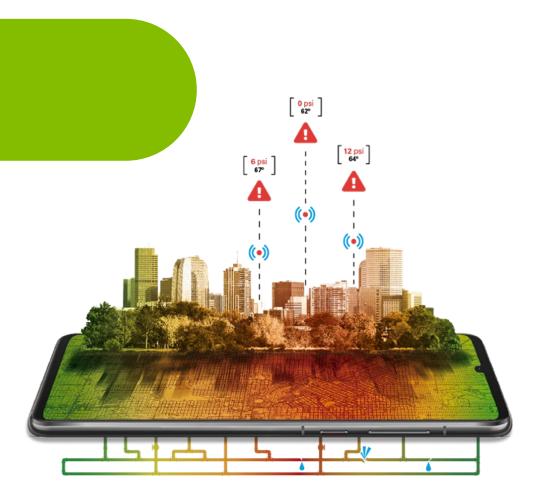
Measurement data is presented as visual graphics, alerts and reports

iHydrant[®] Solution to Blindspot Problem

Converting existing hydrant assets provide an economical remote monitoring solution.

Excavation not necessary with conversion kits.

No electricity required.


A dual-purpose hydrant, fight fires AND acquires data providing vision throughout the network.

Improves overall system performance.

Deployment Strategies

- I iHydrant for 15 to 20 hydrants
- Areas with known issues
- ▲ Low traffic areas
- Near pumping stations, valve chambers, etc.
- Have municipality specs in new construction / development projects

Mechanical Design

Real-time Intelligence. Insightful Analytics.

Patented OEM Sensors

▲ Located at the base

Reading Network Data

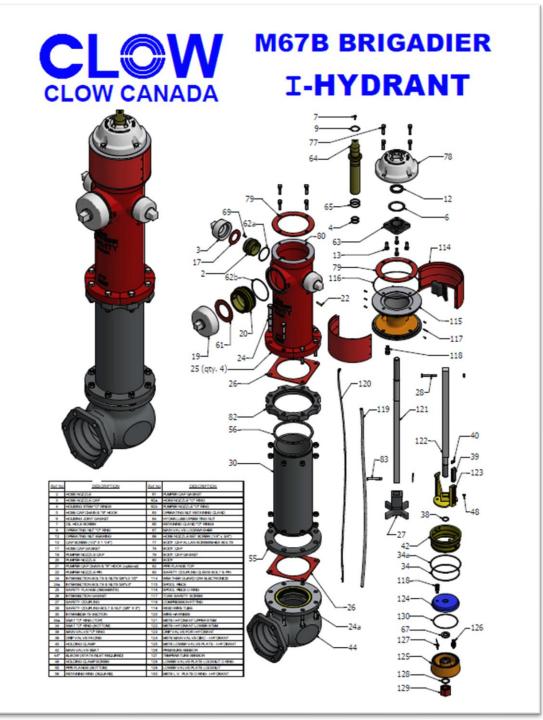
In real time – 24hr / 7days

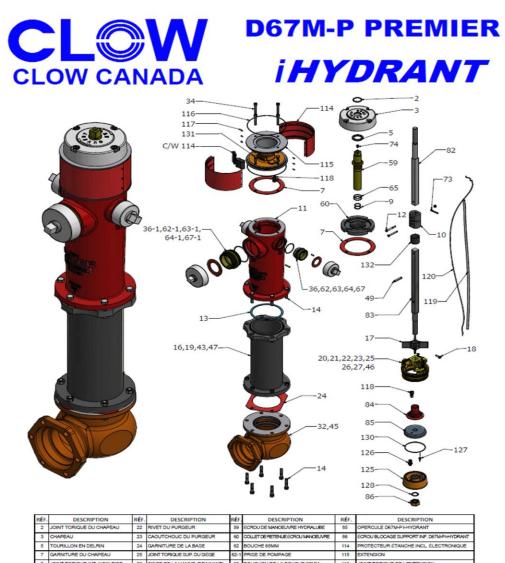
▲ No Handling

Cast Iron Spool

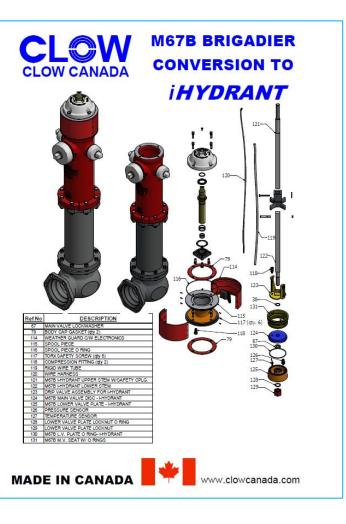
Shroud with Electronics

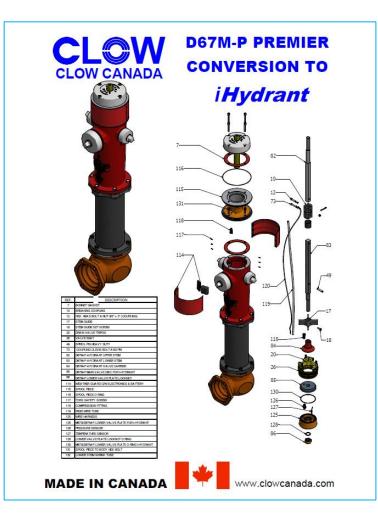
Data transmission via cellular network


LTE CAT 1 (Rogers)


Long-lasting battery

Lithium





3	CHAPEAU	23	CAOUTCHOUC DU PURGEUR	60	COLLET DE RETENUE (CROU MANDEL/ RE	86	ÉCROU BLOCAGE SUPPORT INF. D67M-PH-HYDRANT
5	TOURILLON EN DELRIN	24	GARNITURE DE LA BASE	62	BOUCHE 65MM	114	PROTECTEUR ÉTANCHE INCL. ÉLECTRONIQUE
7	GARNITURE DU CHAPEAU	25	JOINT TORIQUE SUP. DU SIÈGE	62-1	PRISE DE POMPAGE	115	EXTENSION
9	JOINT TORIQUE INT. NOIX D'OP.	26	SIÈGE DE LA VANNE (DRAINANT)	63	BOUCHON DE LA BOUCHE 65MM	116	JOINT TORIQUE DE L'EXTENSION
10	ACCOUPLEMENT DE SÚRETÉ	26A	SIÈGE DE LA VANNE (NON DRAINANT)	63-1	BOUCHON DE LA PRISE DE POMPE	117	VIS DE SÉCURITÉ DE TYPE TORX
11	CORPS	27	JOINT TORIQUE INFÉRIEUR DU SIÈGE	64	JOINT TORIQUE DE LA BOUCHE	118	RACCORD A COMPRESSION
12	BOULON & ÉCROU ACCOUPL 38"x 3"	32.	BASE	64-1	JOINT TORIQUE DE LA PRISE DE POMPE	119	TUBE RIGIDE
13	GARNITURE DU CORPS	34	VIS ALLEN DU CHAPEAU 1/2" x 3"	65	JOINT TORIQUE INF. ECROU MANDEU.	120	FAISCEAU DE FILS
14	BOULON& ÉCROUDU CORPS SIT x 3"	36	GARNITURE DU BOUCHON 65MM	67	VISIDEBLOCAGEDELABOUCHE 1/4"x34"	125	PLAQUE DE SUPPORT OPERCULE D67MPIM678H1
16	BRIDE DE RUPTURE	36-1	GARNI, DU BOUCHON DE POMPAGE	67-1	CHEVILLE BLOCAGE PRISE POMPAGE	126	CAPTEUR POUR LA PRESSION
17	GUIDE DE TIGE	43	ANNEAU DE RETENUE DE LA BRIDE	73	BOULONET GOUPLIE ACCOUPLISURETE	127	CAPTEUR POUR LA TEMPÉRATURE
18	BOULON DU GUIDE DE TIGE	45'	DOUBLIPEDE L'ORIFICE DE DRAINAGE	74	VIS DE GRAISSAGE	128	JOINTTOR ÉCROUBLOCAGE PLAQUE DU SUPP. OPERC
19	TUYAU DE RACCORDEMENT	46	RESSORT DU PURGEUR	82	TIGE SUPERIEURE D67M-P1-HYDRANT	130	JOINT TOR, PLAQUE SUPPORT OPERC, D67M-P H-M
20	TRÉPIED DU PURGEUR	47	BRIDE FLOTTANTE	83	TIGE INFÉRIEURE D67M-P1-HYDRANT	131	BOULONS DE L'EXTENSION
21	VIS DE PURGEUR	49	GOUJON TYPE SPIRAL	84	SUPPORT INFÉRIEUR D67M-PHHYDRANT	132	TUBE THERMO-RETRACTABLE DE LA TIGE INF.

Conversion to an existing Clow Hydrant

Conversion 45-60 minutes

Model	 1100-XXX03, 1100-XXX04, 1100-XXX05
Description	 Wireless Pressure and Temperature Monitor for Dry Barrel Hydrants
Pressure Sensor	 Pressure Range: -15-500 psi Over Pressure: 1000 psi Burst Pressure: 2500 psi Accuracy: +/-0.75% Full Scale
Temperature Sensor	• Accuracy: +/-1.0° C
Data Logging	 Sample Rate: Configurable up to 256 samples/sec Data Captured: Minimum, maximum, and average pressure and temperature Interval Read: Five minute anchor reads Memory: Greater than 100,000 data values
Event/Alert Monitoring	 Configurable minimum/maximum pressure, temperature and transient thresholds Thirty second pre and post event detail capture Pressure, temperature and transient alerts sent via email or text
Battery	• 38 Ah Lithium
Communication	 Cellular: LTE modem (selected carrier based on coverage)
Software	 iHydrant^e Cloud based software platform
Enclosure	 IP 65 rated advanced polycarbonate shield OEM ductile iron spool Retrofittable kit or factory installed with new hydrant
Dimensions	 Spool and Enclosure Height: 6" Clow Canada Brigadier: 10" Diameter Spool Clow Canada Premier: 10" Diameter Spool

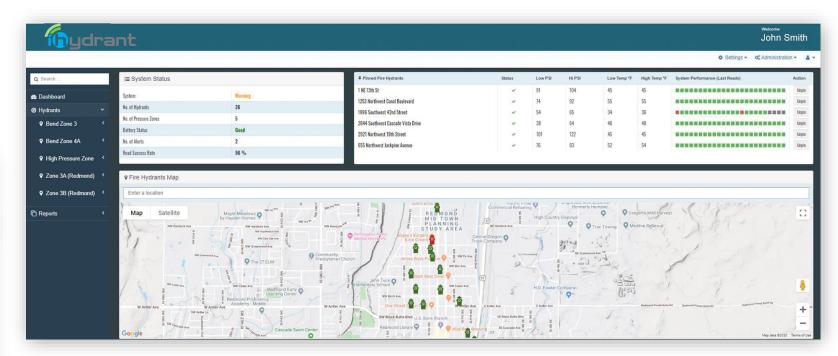
Warranties

2 years on electronic components

12 years for the hydrant

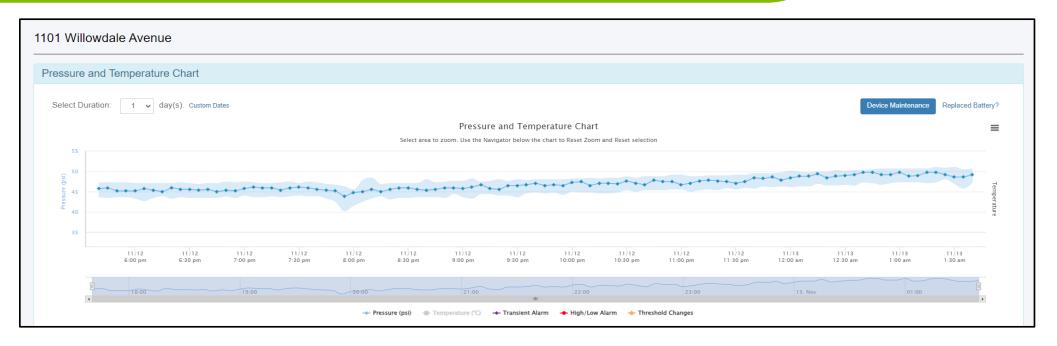
Software / Data

Real-time Intelligence. Insightful Analytics.


Software Package

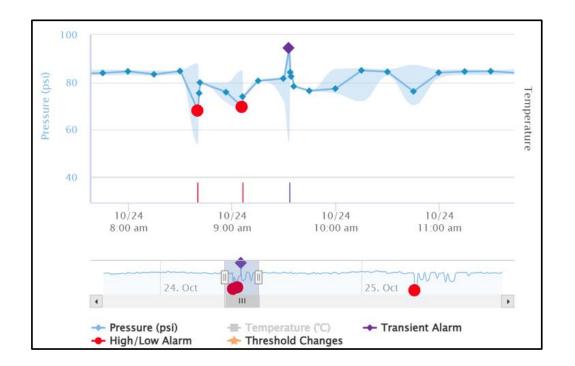
- Hosted, cloud-based platform
- Accessible via internet
- No downloads

Irant


íby

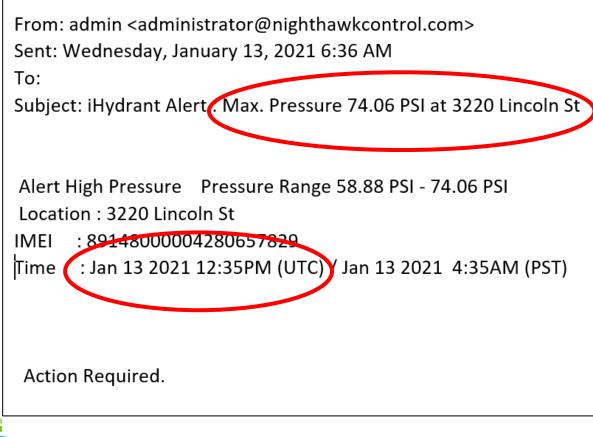
Pressure Readings

Settings

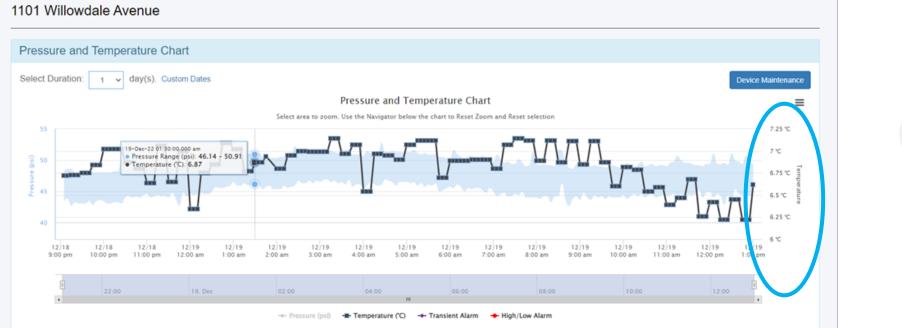


- 1 to 256 readings per second
- 1 average reading every 5 minutes
- Download every 12 hours

Alerts


- **Set according to your system needs**
 - High and low pressure
 - High and low temperature
 - Pressure transient
 - Low battery

Alerts

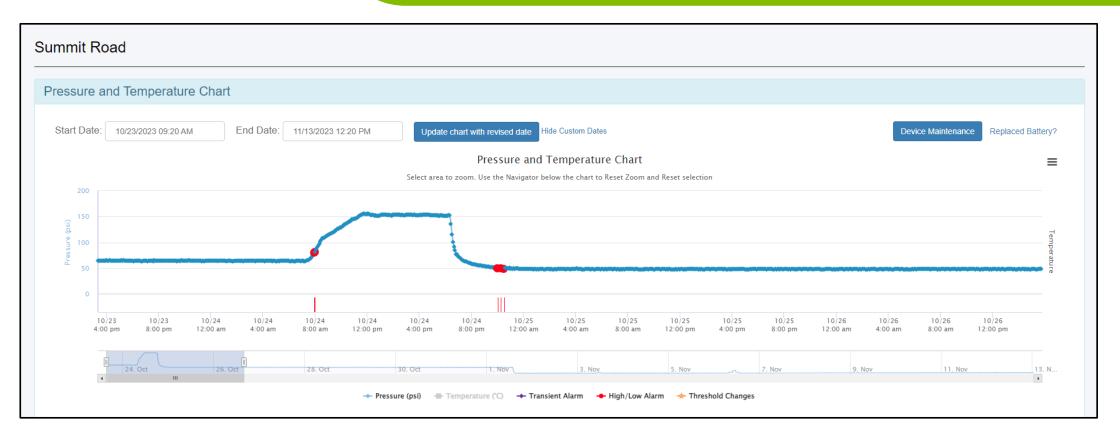


- 🕯 Instant
- Text message or email
- Data downloads
- Allows you to intervene before complaints from citizens
- Reduces the amount of water loss

And why the temperature?

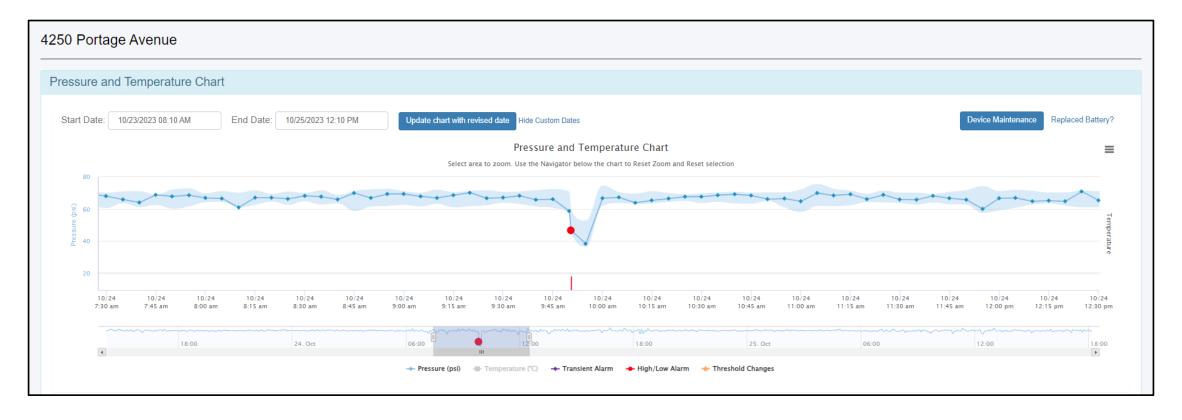
Risk of frost

Bacteriological proliferation to be monitored



Examples...

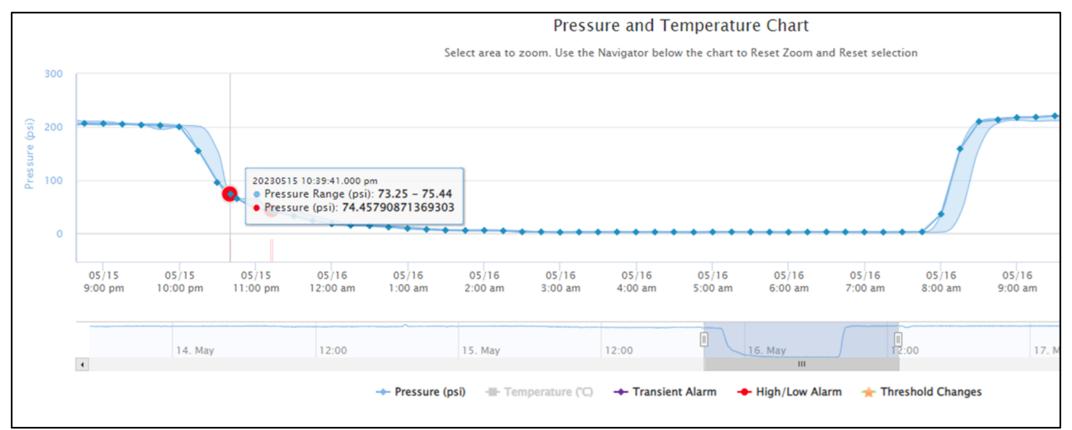
Abnormal High-Pressure Alarm – Rosser



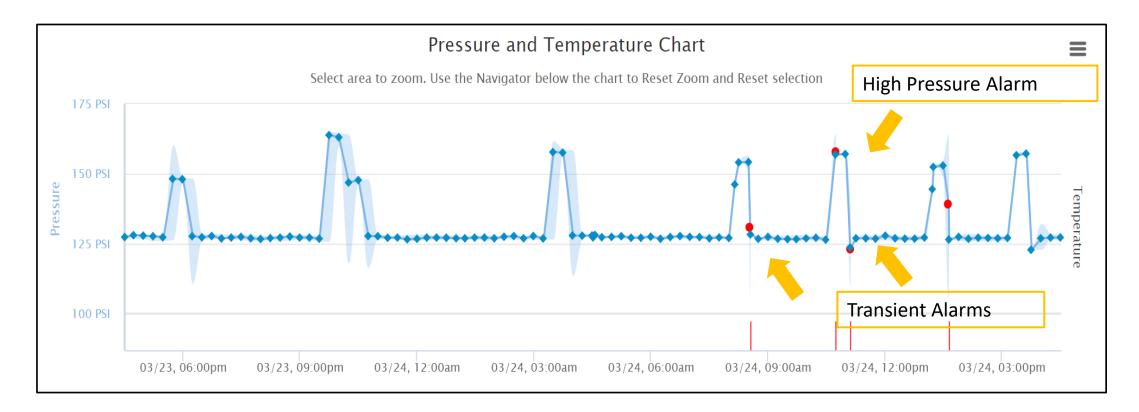
Water Theft – Headingley Manitoba

Transient caused Main Break – Ontario

Transient detected a few hours before the 16" PVC main break



Penticton BC – Plugged Screening Syste



Identify Unknown Issued - British Colum

You have questions?

Adrian Sloan – Product Manager 416 891-4536 <u>Adrian.sloan@clowcanada.com</u>

Martin Phinney – Atlantic sales eng. 506-961-9229 <u>Martin.Phinney@canadapipe.com</u>

Austin Turner – iHydrant Technician 905 807-9536 <u>Austin.turner@clowcanada.com</u>

