

Event Based Sampling of Drinking Water Supplies in Newfoundland and Labrador

March 2021

Government of Newfoundland and Labrador Department of Environment, Climate Change and Municipalities Water Resources Management Division St. John's, NL, Canada A1B 4J6

Table of Contents

List of	Tables	iiii
Table o	of Figu	resii
1.0	Intro	duction1
2.0	Meth	odology2
2.1	Sar	nple Collection2
2.2	Sta	tistical Tests2
2.	.2.1	ANOVA
2.	.2.2	Kruskal-Wallis2
3.0	Resul	ts3
3.1	То	rbay
3.2	Gra	and Falls-Windsor5
3.3	Hu	ghes Brook7
3.4	Me	eadows9
3.5	Cla	renville11
3.6	Me	ean, Median and Standard Deviation Comparison13
3.	.6.1	Colour
3.	.6.2	Total Dissolved Solids15
3.	.6.3	pH17
3.	.6.4	Turbidity19
3.	.6.5	Dissolved Organic Carbon21
3.	.6.6	Iron23
4.0	Concl	usions and Recommendations25
5.0	Refer	ences
Appen	dix A	
Appen	dix B	

Appendix C

List of Tables

Table 1: Water System Characteristics	. 1
Table 2: Torbay - North Pond Statistical Analysis	.4
Table 3: Grand Falls-Windsor - Northern Arm Lake Statistical Analysis	. 6
Table 4: Hughes Brook Reservoir Statistical Analysis	. 8
Table 5: Meadows – Meaters Pond Statistical Analysis	10
Table 6: Clarenville – Shoal Harbour River Reservoir Statistical Analysis	L2
Table 7: Variances to be added to Historical Data	25

Table of Figures

Figure 1: Event & Historical Colour – Mean & Standard Deviation	14
Figure 2: Event & Historical Colour – Median	14
Figure 3: Event & Historical TDS – Mean & Standard Deviation	16
Figure 4: Event & Historical TDS – Median.	16
Figure 5: Event & Historical pH – Mean & Standard Deviation	18
Figure 6: Event & Historical pH – Median	18
Figure 7: Event & Historical Turbidity – Mean & Standard Deviation	20
Figure 8: Event & Historical Turbidity – Median	20
Figure 9: Event & Historical DOC – Mean & Standard Deviation	22
Figure 10: Event & Historical DOC – Median.	22
Figure 11: Event & Historical Iron – Mean & Standard Deviation	24
Figure 12: Event & Historical Iron – Median	24

1.0 Introduction

Event based sampling is the collection of water quality data during periods of increased water runoff and discharge, with a primary objective of determining potential changes in water quality parameters. Discharge events can be caused by various factors (e.g., rainfall and runoff, ice back-up, excessive snowmelt, and water storage failure) and may affect the water quality dataset when compared to historical, or routine data.

Event based samples have been collected by the Department of Environment, Climate Change and Municipalities since 2016 in five communities that use a surface water supply (Clarenville, Grand Falls-Windsor, Hughes Brook, Meadows and Torbay).

Information on the five surface water supplies analyzed in this study can be found in Table 1.

Community	Source Type	Supply Type	Dammed	Reservoir Area	Total Watershed Area (km²)	Barren (%)	Forest (%)	Shrub (%)	Water (%)	Wetland (%)
Torbay	Pond	SW	Yes	Large	1	2	80	4	8	2
Grand Falls- Windsor	Lake	SW	Yes	Large	61	5	54	12	14	15
Hughes Brook	Reservoir	SW	Yes	Medium	<1	0	93	1	<1	0
Meadows	Pond	SW	Yes	Large	3	0	91	2	6	1
Clarenville	River	SW	Yes	Small	109	3	70	6	8	12
Note: remainder of watershed area is "unclassified" if areas do not sum to 100%.										

Table 1: Water System Characteristics

Event based samples collected during increased water discharge events were statistically compared to historical drinking water quality data.

The following parameters were analyzed:

- colour (TCU),
- total dissolved solids TDS (mg/L),
- pH,
- turbidity (NTU),
- dissolved organic carbon DOC (mg/L), and
- iron (mg/L).

2.0 Methodology

The purpose of this report is to compare event based samples to historical datasets (colour, TDS, pH, turbidity, DOC, and iron) to determine if the two datasets are significantly different.

2.1 Sample Collection

An event-based sample was typically collected when there was a rainfall event of around 20 mm or greater. If there was a significant and rapid snowmelt in the spring, a sample was also collected to represent this melt-runoff event.

2.2 Statistical Tests

Four statistical comparisons were used in this analysis: mean, standard deviation, ANOVA, and Kruskal-Wallis. Microsoft Excel was used for comparing the parameter means and standard deviation in the communities, while *Minitab* [®] *Release 14* was used for the ANOVA and Kruskal-Wallis tests.

2.2.1 ANOVA

ANOVA, or analysis of variance, is a parametric test designed to determine if there is a statistically significant difference between the mean of two groups of data. ANOVA is based on the following three assumptions:

- Data is normally distributed. Note that with violations of normality, continuing with the ANOVA is generally acceptable if there is a large sample size. If the sample size is small, non-parametric tests (e.g. Kruskal-Wallis) are preferred.
- Homogeneity of variance (i.e. variance among the groups should be approximately equal).
- Observations are independent of each other. The results of ANOVA are invalid if the assumption of independence is violated.

The null hypothesis for an ANOVA is that there is no significant difference among the groups being compared. The alternative hypothesis assumes there is at least one significant difference among the groups. The researcher first tests the assumptions of ANOVA and then (using Minitab) calculates the F-ratio and the associated probability value (p-value). In general, if the p-value associated with the F is smaller than 0.05, then the null hypothesis is rejected and the alternative hypothesis is supported. If the null hypothesis is rejected, one concludes that the means of all the groups are not equal. For this assessment, means were not equal when the p-value was less than 0.05 for more than four data points (or less than 0.1 in scenarios with less than three available data points) (Lye, 2005).

2.2.2 Kruskal-Wallis

The Kruskal-Wallis (K-W) test is a non-parametric test that compares the median of two sets of data to determine if they are significantly different. The K-W test is more robust than the parametric ANOVA as it makes use of the median for comparison as opposed to the mean, making it less susceptible to outliers.

For this assessment medians were not equal when the p-value was less than 0.05 for more than four data points (or less than 0.1 in scenarios with less than three available data points) (Lye, 2005).

3.0 Results

3.1 Torbay

Existing source water samples from North Pond were available from 1998-2015 and used for the historical sample data. There have been 16 event based samples collected between 2016 and 2021.

The statistical results (Table 2) indicate the following:

- Colour:
 - ANOVA: event sample data significantly less than historical data.
 - KW: event sample data significantly less than historical data.
- TDS:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- pH:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- Turbidity:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- DOC:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- Iron:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.

Colour	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	16	8.8 (±2.9)	0.006*	
	Historical Data	29	11.6 (±3.1)		
	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	16	7.7	0.007*	
	Historical Data	29	12.0	0.007	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
TDS	Event Data	16	34.1 (±6.2)	0 726	
	Historical Data	29	33.5 (±5.6)	0.750	
103	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	16	35.5	0.740	
	Historical Data	29	33.0	0.748	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	16	6.6 (±0.3)	0.000*	
	Historical Data	28	6.3 (±0.2)	0.000*	
рН	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	16 6.7		0.001*	
	Historical Data	28	6.3	0.001*	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	16 0.9 (±0.5)		0.004*	
Tankidia	Historical Data	29	0.6 (±0.4)	0.024*	
Turbialty	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	16	0.7	0.024*	
	Historical Data	29	0.4	0.021*	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	16	2.9 (±0.5)		
DOC	Historical Data	24	2.7 (±0.8)	0.260	
DOC	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	16	3.0		
	Historical Data	24	2.8	0.383	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	16	0.04 (±0.04)		
	Historical Data	29	0.03 (±0.02)	0.132	
Iron	Kruskal-Wallis	Number of Water Samples	Median	p-value	
			0.07	Pvalue	
	Event Data	16	0.05	0.000	

Table 2: Torbay - North Pond Statistical Analysis

*p-value less than 0.05

3.2 Grand Falls-Windsor

Existing source water samples from Northern Arm Lake were available from 1987-2017 and used for the historical sample data. There have been five event based samples collected between 2016 and 2021.

The statistical results (Table 3) indicated the following:

- Colour:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- TDS:
 - ANOVA: event sample data significantly less than historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly less than historical data.
- pH:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- Turbidity:
 - ANOVA: no significant difference between event sample data and historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: no significant difference between event sample data and historical data.
- DOC:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- Iron:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: event sample data significantly greater than historical data.

Colour	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	5	38.8 (±7.0)	0.650	
	Historical Data	78	36.7 (±10.3)	0.052	
	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	5	40.0	0 500	
	Historical Data	78	36.0	0.592	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	5	8.6 (±1.5)	0.022*	
	Historical Data	71	13.7 (±5.2)	0.033*	
105	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	5	9.0	0.005*	
	Historical Data	71	13.0	0.005*	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	5	6.7 (±0.3)	0.022*	
	Historical Data	78	6.5 (0.3)	0.032*	
рН	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	5	5 6.7		
	Historical Data	78	6.5	0.040	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	5 1.0 (±0.4)		0.100	
Tankidia	Historical Data	78	0.7 (±0.5)	0.196	
Turbialty	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	5	0.8	0.110	
	Historical Data	78	0.6	0.118	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	5	5.4 (±0.7)	0.600	
DOC	Historical Data	78	5.2 (±1.5)	0.099	
DOC	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	5	5.6	0.750	
	Historical Data	78	5.4	0.759	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	5	0.14 (±0.03)	0.054	
Inco	Historical Data	73	0.10 (±0.04)	0.054	
iron	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	5	0.14	0.042*	
		72	0.10	- 0.042*	

Table 3: Grand Falls-Windsor - Northern Arm Lake Statistical Analysis

*p-value less than 0.05

3.3 Hughes Brook

The reservoir in Hughes Brook is fairly small in area and fed by a combination of springs and streams. Existing source water samples from Hughes Brook Reservoir were available from 1988-2015 and used for the historical sample data. There have been 19 event based samples collected between 2016 and 2021.

The statistical results (Table 4) indicate the following:

- Colour:
 - ANOVA: no significant difference between event sample data and historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: no significant difference between event sample data and historical data.
- TDS:
 - ANOVA: no significant difference between event sample data and historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: no significant difference between event sample data and historical data.
- pH:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- Turbidity:
 - ANOVA: event sample data significantly greater than historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly greater than historical data.
- DOC:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- Iron:
 - ANOVA: no significant difference between event sample data and historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly greater than historical data.

Colour	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	19	14.0 (±6.1)	0.140	
	Historical Data	8	10.6 (±2.6)	0.140	
	Kruskal-Wallis	Number of Water Samples Median		p-value	
	Event Data	19	11.0	0.000	
	Historical Data	8	10.5	0.262	
	ANOVA	Number of Water Samples	nber of Water Samples Mean (Standard Deviation)		
	Event Data	19	190.4 (±21.2)	0.055	
TDC	Historical Data	8	188.8 (22.2)	0.855	
105	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	19	188.0	0.000	
	Historical Data	8	197.5	0.690	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	Event Data 19 8.2 (±0.1)		0.405	
	Historical Data	8	8.2 (±0.2)	0.405	
рн	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	19 8.2		0.266	
	Historical Data	8	8.2	0.300	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	19 0.9 (±0.7)		0.000*	
Turkidity	Historical Data	8	0.2 (±0.1)	0.008	
Turbially	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	19	0.7	0.004*	
	Historical Data	8	0.2	0.001*	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	19	2.7 (±0.9)	0.270	
DOC	Historical Data	5	2.3 (±0.8)	0.376	
DOC	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	19	2.9	0.412	
	Historical Data	5	2.1	0.413	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	19	0.01 (±0.03)	0.000	
lucu	Historical Data	8	0.01 (±0.01)	0.380	
iron	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	19	0.00	0.612	
	Historical Data	8	0.00	0.613	

Table 4: Hughes Brook Reservoir Statistical Analysis

*p-value less than 0.05

3.4 Meadows

Existing source water samples from Meaters Pond are available from 1988-2017 and were used for the historical sample data. There have been 12 event based samples collected for this supply.

The statistical results (Table 5) indicated the following:

- Colour:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- TDS:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- pH:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- Turbidity:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- DOC:
 - ANOVA: event sample data significantly greater than historical data.
 - KW: event sample data significantly greater than historical data.
- Iron:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.

Colour	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	12	15.8 (±6.2)	0.446	
	Historical Data	15	14.2 (±4.3)	0.440	
	Kruskal-Wallis	Number of Water Samples Median		p-value	
	Event Data	12	15.5	0.110	
	Historical Data	15	15.0	0.419	
	ANOVA	Number of Water Samples	Number of Water Samples Mean (Standard Deviation)		
	Event Data	12	42.8 (±3.1)	0.004*	
TDC	Historical Data	15	36.0 (±6.9)	0.004	
105	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	12	42.0	0.001*	
	Historical Data	15	37.0	0.001	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	12	7.3 (±0.3)	0.000*	
	Historical Data	15	6.8 (±0.4)	0.003*	
рн	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	12	7.3	0.002*	
	Historical Data	15	6.8	0.002	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	12	0.8 (±0.3)	0.0100*	
Turkidity	Historical Data	15	0.5 (±0.2)	0.0188*	
Turbially	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	12	0.7	0.047*	
	Historical Data	15	0.5	0.047	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	12	4.7 (±0.7)	0.016*	
DOC	Historical Data	12	3.9 (±0.8)	0.010	
DOC	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	12	4.7	0.021*	
	Historical Data	12	3.9	0.021	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	12	0.06 (±0.03)	0 221	
laon	Historical Data	15	0.05 (±0.03)	0.331	
iron	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	12	0.07	0.405	
	Historical Data	15	0.06	0.405	

Table 5: Meadows – Meaters Pond Statistical Analysis

*p-value less than 0.05

3.5 Clarenville

Existing source water samples from Shoal Harbour River are available from 1987-2018 and used for the historical sample data. There have been three event based samples collected.

The statistical results (Table 6) indicated the following:

- Colour:
 - ANOVA: event sample data significantly greater than historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly greater than historical data.
- TDS:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- pH:
 - ANOVA: no significant difference between event sample data and historical data.
 - KW: no significant difference between event sample data and historical data.
- Turbidity:
 - ANOVA: event sample data significantly greater than historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly greater than historical data.
- DOC:
 - ANOVA: event sample data significantly greater than historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly greater than historical data.
- Iron:
 - ANOVA: event sample data significantly greater than historical data. Datasets were not normally distributed therefore the validity of the ANOVA results are uncertain.
 - KW: event sample data significantly greater than historical data.

Due to the lack of event sample data for Clarenville, a 90% confidence interval was used for the statistical assessment. As such, the assessment is considered less accurate when compared to the other analyzed water sources.

	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
Colour	Event Data	3	146.7 (±23.1)		
	Historical Data	62	54.3 (±20.1)	0.000*	
	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	3	144.0		
	Historical Data	62	53.5	0.004*	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	3	31.7 (±5.9)		
	Historical Data	55	24.6 (±6.1)	0.053	
IDS	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	3	34.0	0.000	
	Historical Data	55	23.0	0.060	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	3	6.4 (±0.5)	0.470	
	Historical Data	62	6.5 (±0.4)	0.472	
рН	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	3	6.6	0.000	
	Historical Data	62	6.5	0.002	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	3 1.7 (±0.5)		0.001*	
Turkidity	Historical Data	61	0.6 (±0.5)	0.001*	
Turbialty	Kruskal-Wallis	Number of Water Samples	Median	p-value	
	Event Data	3 1.6		0.000*	
	Historical Data	61	0.4	- 0.009*	
	ANOVA	Number of Water Samples	Mean (Standard Deviation)	p-value	
	Event Data	Number of Water Samples 3	Mean (Standard Deviation) 16.8 (±3.5)	p-value	
DOC	Event Data Historical Data	Number of Water Samples 3 61	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0)	p-value	
DOC	Event Data Historical Data Kruskal-Wallis	Number of Water Samples 3 61 Number of Water Samples	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median	p-value • 0.000* p-value	
DOC	Event Data Historical Data Kruskal-Wallis Event Data	Number of Water Samples 3 61 Number of Water Samples 3	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1	p-value 0.000* p-value	
DOC	ANOVA Event Data Historical Data Kruskal-Wallis Event Data Historical Data	Number of Water Samples 3 61 Number of Water Samples 3 61	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1 6.7	p-value 0.000* p-value 0.004*	
DOC	ANOVA Event Data Historical Data Kruskal-Wallis Event Data Historical Data ANOVA	Number of Water Samples 3 61 Number of Water Samples 3 61 Number of Water Samples	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1 6.7 Mean (Standard Deviation)	p-value 0.000* p-value 0.004* p-value	
DOC	ANOVA Event Data Historical Data Kruskal-Wallis Event Data Historical Data ANOVA Event Data	Number of Water Samples 3 61 Number of Water Samples 3	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1 6.7 Mean (Standard Deviation) 0.43 (±0.07)	p-value 0.000* p-value 0.004* p-value	
DOC	ANOVA Event Data Historical Data Kruskal-Wallis Event Data Historical Data Event Data Historical Data	Number of Water Samples 3 61 Number of Water Samples 3 61 Number of Water Samples 3 61 Samples 3 59	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1 6.7 Mean (Standard Deviation) 0.43 (±0.07) 0.21 (±0.10)	p-value 0.000* p-value 0.004* p-value 0.000*	
DOC	ANOVA Event Data Historical Data Kruskal-Wallis Event Data Historical Data Event Data Historical Data Kruskal-Wallis	Number of Water Samples361Number of Water Samples361Number of Water Samples359Number of Water Samples	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1 6.7 Mean (Standard Deviation) 0.43 (±0.07) 0.21 (±0.10) Median	p-value 0.000* p-value 0.004* p-value 0.000* p-value 0.000* p-value	
DOC	ANOVA Event Data Historical Data Kruskal-Wallis Event Data Historical Data Event Data Historical Data Kruskal-Wallis Event Data	Number of Water Samples361Number of Water Samples361Number of Water Samples359Number of Water Samples3	Mean (Standard Deviation) 16.8 (±3.5) 6.7 (±2.0) Median 16.1 6.7 Mean (Standard Deviation) 0.43 (±0.07) 0.21 (±0.10) Median 0.42	p-value p-value 0.004* p-value 0.000* p-value 0.000*	

Table 6: Clarenville – Shoal Harbour River Reservoir Statistical Analysis

*p-value less than 0.05

3.6 Mean, Median and Standard Deviation Comparison

3.6.1 Colour

Colour in drinking water can be caused by the presence of organic substances originating in the decay of natural vegetation such as in soil runoff; presence of metals such as iron, manganese and copper; or the presence of highly coloured industrial wastes (the most common being pulp and paper textile wastes). Although colour in water does not necessarily pose any health risks, the Guidelines for Canadian Drinking Water Quality (GCDWQ) set an aesthetic objective (AO) for colour of \leq 15 TCU, a threshold that can be detected visually by most consumers (Health Canada, 2020).

- Figure 1: comparison of the mean and standard deviation of event based samples and the historical dataset.
- Figure 2: comparison of the median of the event based samples and the historical dataset.

Community summary:

- Torbay: event-based sampling significantly lower than historical data (event based median = 7.7 TCU vs. historical median = 12.0 TCU).
- Grand Falls-Windsor: no significant difference between event-based sampling and historical data (event based median = 40.0 TCU vs. historical median = 36.0 TCU).
- Hughes Brook: no significant difference between event-based sampling and historical data (event based median = 11.0 TCU vs. historical median = 10.5 TCU.
- Meadows: no significant difference between event-based sampling and historical data (event based median = 15.5 TCU vs. historical median = 15.0 TCU).
- Clarenville: event-based sampling significantly higher than historical data (event based median = 144.0 TCU vs. historical median = 53.5 TCU).

General conclusion: colour does not always increase during a rainfall-runoff event. Maximum colour observed during event based sampling was in the Clarenville water supply.

Figure 1: Event & Historical Colour – Mean & Standard Deviation

Figure 2: Event & Historical Colour – Median

3.6.2 Total Dissolved Solids

Total dissolved solids (TDS) in drinking water typically originates from natural sources, sewage, urban and agricultural run-off, and chemicals used in the water treatment process. It is composed of inorganic salts and small amounts of organic matter that are dissolved in water (e.g., calcium, magnesium, sodium, potassium, carbonate, bicarbonate, chloride, sulphate and nitrate). In general. TDS is the sum of the cations and anions present in drinking water. The main importance of TDS in drinking water is aesthetic. The AO for TDS in drinking water is \leq 500 mg/L (Health Canada, 2020). At higher levels, excessive hardness, unpalatability, mineral deposition and corrosion may occur.

- Figure 3: comparison of the mean and standard deviation of event based samples and the historical dataset.
- Figure 4: comparison of the median of the event based samples and the historical dataset.

Community summary:

- Torbay: no significant difference between event-based sampling and historical data (event median = 35.5 mg/L vs. historical median = 33.0 mg/L)
- Grand Falls-Windsor: event-based sampling significantly lower than historical data (event based median = 9.0 mg/L vs. historical median = 13.0 mg/L).
- Hughes Brook: no significant difference between event-based sampling and historical data (event median = 188.0 mg/L vs. historical median = 197.5 mg/L).
- Meadows: event-based sampling significantly higher than historical data (event based median = 42.0 mg/L vs. historical median = 37.0 mg/L).
- Clarenville: no significant difference between event-based sampling and historical data (event based median = 34.0 mg/L vs. historical median = 23.0 mg/L).

General conclusion: although there is a limited amount of event data, these results indicate that the TDS levels may not always be significantly impacted during increased water runoff and discharge events and may be watershed specific.

Figure 3: Event & Historical TDS – Mean & Standard Deviation

Figure 4: Event & Historical TDS - Median

3.6.3 pH

pH is a measure of the acidity/basicity of water and is one of the most important operational water quality parameters. Every process in water treatment, including coagulation, precipitation, water softening, disinfection and corrosion control, is dependent on pH. The control of pH is important to maximize treatment effectiveness, control corrosion and reduce leaching or metals from distribution system and plumbing components. The GCDWQ acceptable pH range is 7.0-10.5.

- Figure 5: comparison of the mean and standard deviation of event based samples and the historical dataset.
- Figure 6: comparison of the median of the event based samples and the historical dataset.

Community summary:

- Torbay: event-based sampling significantly higher than historical data (event based median = 6.7 vs. historical median = 6.3)
- Grand Falls-Windsor: event-based sampling significantly higher than historical data (event based median = 6.7 vs. historical median = 6.5).
- Hughes Brook: no significant difference between event-based sampling and historical data (event based median = 8.2 vs. historical median = 8.2)
- Meadows: event-based sampling significantly higher than historical data (event based median = 7.3 vs. historical median = 6.8)
- Clarenville: no significant difference between event-based sampling and historical data (event based median = 6.6 vs. historical median = 6.5).

General conclusion: pH levels increased during event based sampling for three out of the five tested sources. pH may respond differently in pond/lake sources than in stream/river sources.

Figure 5: Event & Historical pH – Mean & Standard Deviation

Figure 6: Event & Historical pH - Median

3.6.4 Turbidity

Turbidity is a measure of the relative clarity or cloudiness of water and is measured in nephelometric turbidity units (NTU). It is not a direct measure of suspended particles, but rather a general measure of the scattering and absorbing effect that suspended particles have on light. Turbidity is caused by naturally occurring particles both inorganic (clays, silts, metal precipitates) and organic (decomposed plant and animal microorganisms). These particles can shield microorganisms from disinfection and can entrap heavy metals or biocides. Elevated or fluctuating turbidity levels in filtered water can indicate problems with the water treatment process and a potential increased risk of pathogens in treated water. Filtration systems should be designed and operated to reduce turbidity levels as low as possible to achieve a treated water turbidity ≤ 0.1 NTU for a full scale water treatment plant to ensure pathogen removal goals are met (Health Canada 2020). For the purpose of this study, a guideline value of 1.0 NTU is applicable.

- Figure 7: comparison of the mean and standard deviation of event based samples and the historical dataset.
- Figure 8: comparison of the median of the event based samples and the historical dataset.

Community summary:

- Torbay: event-based sampling significantly higher than historical data (event based median = 0.72 NTU vs. historical median = 0.40 NTU)
- Grand Falls-Windsor: no significant difference between event-based sampling and historical data (event based median = 0.83 NTU vs. historical median = 0.64 NTU)
- Hughes Brook: event-based sampling significantly higher than historical data (event based median = 0.70 NTU vs. historical median = 0.20 NTU)
- Meadows: event-based sampling significantly higher than historical data (event based median = 0.70 NTU vs. historical median = 0.50 NTU)
- Clarenville: event-based sampling significantly higher than historical data (event based median = 1.60 NTU vs historical median = 0.40 NTU).

General conclusion: from this data it can be determined that turbidity is known to increase during a rainfall runoff event as this change occurred for all water sources. The greatest difference between event based sampling turbidity and historical turbidity was observed in Hughes Brook and Clarenville (both have intakes sited in a river).

Figure 7: Event & Historical Turbidity – Mean & Standard Deviation

Figure 8: Event & Historical Turbidity - Median

3.6.5 Dissolved Organic Carbon

Natural organic matter (NOM) refers to a group of carbon-based compounds that are found in surface water and some groundwater supplies. Although they do not pose a risk to human health on their own, NOMs are known to react with chlorine and produce disinfection by-products. In most water supplies in Atlantic Canada, the majority of NOM exist as dissolved compounds and is often measured as dissolved organic carbon (DOC). DOC includes soluble carbohydrates, amino acids, and other acids whose sources include photosynthesis, leaching from plant leaves and roots, and soil organic matter. DOC levels are naturally high in Newfoundland and Labrador due to the abundance of bogs and wetlands. There is no guideline for DOC levels in drinking water in the province but it is preferred that this parameter be as low as possible, preferably less than 4 mg/L.

- Figure 9: comparison of the mean and standard deviation of event based samples and the historical dataset.
- Figure 10: comparison of the median of the event based samples and the historical dataset.

Community summary:

- Torbay: no significant difference between event-based sampling and historical data (event based median = 2.95 mg/L vs. historical median = 2.80 mg/L)
- Grand Falls-Windsor: no significant difference between event-based sampling and historical data (event based median = 5.60 mg/L vs. historical median = 5.40 mg/L).
- Hughes Brook: no significant difference between event-based sampling and historical data (event based median = 2.90 mg/L vs. historical median = 2.10 mg/L).
- Meadows: event-based sampling significantly higher than historical data (event based median = 4.70 mg/L vs. historical median = 3.85 mg/L)
- Clarenville: event-based sampling significantly higher than historical data (event based median = 16.10 mg/L vs. historical median = 6.70 mg/L).

General conclusion: Meadows and Clarenville were the only sources that displayed a significant change between historical and event based sampling for DOC levels (ANOVA & K-W). From the data available for assessment, it can be assumed that DOC typically increases during a high rainfall event, though not significantly.

Figure 9: Event & Historical DOC – Mean & Standard Deviation

Figure 10: Event & Historical DOC - Median

3.6.6 Iron

Iron is a natural occurring metal caused by erosion and watering of rocks and minerals. It can also become present in drinking water from acidic mine water drainage, landfill leachates, sewage effluents and iron-related industries. Iron is typically present in surface waters as salts containing Fe(III) when the pH is above 7. Toxic effects have resulted from the ingestion of large quantities of iron, but there is no evidence to indicate that concentrations of iron commonly present in food or drinking water constitute any hazard to human health. Therefore, a maximum acceptable concentration (MAC) has not been set. Only a small percentage of the population are capable of tasting iron in drinking water at concentrations below 0.3 mg/L and therefore the aesthetic objective (AO) for iron quantity is ≤ 0.3 mg/L (Health Canada 2020).

- Figure 11: comparison of the mean and standard deviation of event based samples and the historical dataset.
- Figure 12: comparison of the median of the event based samples and the historical dataset.

Community summary:

- Torbay: no significant difference between event-based sampling and historical data (event based median = 0.05 mg/L vs. historical median = 0.03 mg/L).
- Grand Falls-Windsor: event-based sampling significantly higher than historical data (event based median = 0.14 mg/L vs. 0.10 mg/L).
- Hughes Brook: no significant difference between event-based sampling and historical data (event based median = 0.00 mg/L vs. 0.00 mg/L).
- Meadows: no significant difference between event-based sampling and historical data (event based median = 0.07 mg/L vs. historical median = 0.06 mg/L).
- Clarenville: event-based sampling significantly higher than historical data (event based median = 0.42 mg/L vs. historical median = 0.19 mg/L).

General conclusion: From statistical analysis, Grand Falls-Windsor (K-W) and Clarenville (ANOVA & K-W) were the only sources that displayed a significant change between historical and event based sampling for iron content This is clearly displayed (Figure) as all sources display an increase in iron during event based sampling. Therefore it can be confirmed that iron content typically increases during an event.

Figure 11: Event & Historical Iron – Mean & Standard Deviation

Figure 12: Event & Historical Iron - Median

4.0 Conclusions

The following general conclusions can be made with respect to the impact that rainfall-runoff events have on surface water quality in Newfoundland and Labrador:

- Turbidity increased in all types of surface water sources after an event, and that increase was most significant in stream/river type sources.
- DOC increased in all types of surface water sources after an event, and that increase was most significant in stream/river type sources.
- Iron increased in all types of surface water sources after an event, and that increase was most significant in stream/river type sources.

5.0 Recommendations

Drinking water treatment systems should be designed for the worst-case drinking water quality conditions that can be expected and that may or may not be represented in the available historical source water quality dataset. As such, the variances shown in Table 7 should be added to the historical dataset (mean and max) for determining worst-case drinking water quality conditions from surface drinking water sources.

Parameter	Variance to I	be added to His	storical Mean	Variance to be added to Historical Max				
	Pond	River	Reservoir	Pond	River	Reservoir		
Colour	-	+92.360	-	-	+42.000	-		
TDS	+6.833	-	-	-	-	-		
рН	+0.342	-0.106	-0.106	-	-	-		
Turbidity	+0.287	+1.081	+0.705	+0.500	-	+2.000		
DOC	+0.449	+10.091	+0.416	-	+5.700	+1.000		
Iron	+0.022	+0.224	+0.008	+0.050	-	-		
"-" High precipitation event did not negatively affect water quality parameter								

Table 7: Variances to be added to Historical Data

Based on the findings of this report, the following recommendations have been made:

- Continue the collection of event based samples from surface water drinking water sources to improve the statistical comparison between the historical dataset and event-based data.
- Obtain additional event-based samples for river and reservoir water sources to improve variance to be added to historical data.
- Include the table of observed variance for water quality parameter from surface water sources during rainfall-runoff events to reflect worst-case conditions in the Guidelines for the Design, Construction and Operation of Drinking Water Systems.

6.0 References

Dr. Leonard Lye, P. F. 2005. A Short Course in Environmental Statistics. St. John's: Memorial University of Newfoundland and Labrador.

Health Canada. 2020. Guidelines for Canadian Drinking Water Quality. Federal-Provincial-Territorial Committee. Retrieved via: <u>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html</u>

Appendix A

Event Based Sample Data

Appendix B

Historical Sample Data

Appendix C

Minitab Results

Torbay - North Pond									
Time	Colour (TCU)	TDS	рН	Turbidity	DOC	Iron			
09-Jun-16	8.3	27	6.66	0.99	2.1	0			
12-Jul-16	5.6	28	6.32	0.83	2.5	0.059			
08-Aug-16	7.1	31	6.89	0.73	2.5	0			
21-Nov-16	13	27	6.19	1.1	3.2	0.082			
28-Nov-16	15	29	6.52	0.68	3.3	0.11			
12-Sep-17	13	25	6.65	0.77	3.8	0.13			
11-Dec-17	9.2	27	6.39	0.56	2.9	0.067			
5/31/2018	10	36	6.25	0.7	3.2	0.05			
6/20/2018	10	38	6.71	0.6	3.3	0			
9/13/2018	7	42	7.03	0.6	2.2	0.03			
9/19/2018	7	38	6.38	0.5	3.9	0.03			
10/17/2018	5	42	6.67	1.6	2.9	0.05			
11/30/2018	7	40	6.74	2.4	3.3	0.07			
7/2/2019	7	35	7.14	0.6	2.2	0			
9/4/2019	6	40	6.8	0.5	3	0			
11/22/2019	10	40	6.87	1.2	2.7	0.04			
Mean	8.7625	34.0625	6.6381	0.8975	2.9375	0.0449			
Standard Dev.	2.9074	6.1695	0.2782	0.4982	0.5439	0.0406			
Median	7.700	35.500	6.665	0.715	2.950	0.045			
Max	15.000	42.000	7 1 4 0	2 400	2 000	0 120			

Grand Falls-Windsor - Northern Arm Lake									
Name	Colour (TCU)	TDS	pН	Turbidity	DOC	Iron			
07-Jul-16	40	10	6.88	0.66	5.7	0.12			
08-Aug-16	27	9	7.1	0.83	5	0.11			
12-Oct-16	43	7	6.53	1.4	6.4	0.2			
29-May-17	45	7	6.68	0.53	4.5	0.14			
5/30/2018	39	10	6.45	1.5	5.6	0.14			
Mean	38.8000	8.6000	6.7280	0.9840	5.4400	0.1420			
Standard Dev.	7.0143	1.5166	0.2647	0.4399	0.7232	0.0349			
Median	40.000	9.000	6.680	0.830	5.600	0.140			
Max	45.000	10.000	7,100	1.500	6.400	0.200			

Hugnes Brook -	lugnes Brook - Reservoir (spring)										
Name	Colour (TCU)	TDS	рН	Turbidity	DOC	Iron					
30-Jun-16	11	160	8.16	0.24	1.7	0					
09-Sep-16	10	180	8	0.81	2	0.058					
11-Oct-16	16	180	8.09	2.1	3.2	0.053					
24-Oct-16	21	180	8.06	0.64	3.7	0					
17-May-17	17	140	7.92	1.1	2.9	0.066					
07-Aug-17	9.2	170	8.09	0.37	2.1	0					
13-Sep-17	8.1	180	8.05	1	2.3	0					
5/10/2018	32	188	8.33	1.9	2.5	0					
5/30/2018	11	184	8.24	0.6	3	0					
6/20/2018	11	176	8.13	0.5	3.1	0					
7/25/2018	11	204	8.22	0.2	2.9	0					
8/10/2018	12	193	8.26	0.2	1.9	0					
9/13/2018	9	209	8.23	0.5	1.2	0					
10/17/2018	8	213	8.2	0.3	1.9	0					
10/30/2018	19	212	8.14	1.8	4.6	0					
9/4/2019	9	206	8.17	0.7	1.5	0					
11/7/2019	16	221	8.34	0.7	3.2	0					
11/13/2019	22	213	8.23	1.4	4.5	0.06					
12/11/2019	14	209	8.34	2.4	3.4	0.04					
Mean	14.0158	190.4211	8.1684	0.9189	2.7158	0.0146					
Standard Dev.	6.1411	21.2376	0.1155	0.6838	0.9483	0.0255					
Median	11.000	188.000	8.170	0.700	2.900	0.000					
Max	22,000	221.000	9 2 4 0	2 400	4 600	0.066					

Meadows (Pond)										
Name	Colour (TCU)	TDS	pН	Turbidity	DOC	Iron				
5/17/2018	27	46	7.52	0.8	4.2	0.09				
5/30/2018	20	38	7.19	0.5	4.5	0.06				
6/20/2018	16	38	7.12	0.5	4.7	0.04				
7/25/2018	14	46	7.4	0.5	4.9	0.05				
8/10/2018	13	47	7.57	0.6	3.8	0.05				
9/13/2018	12	41	7.25	0.4	3.4	0				
10/17/2018	13	42	6.87	0.9	4.4	0.07				
10/30/2018	16	42	6.94	1	5.8	0.07				
9/4/2019	15	47	7.88	0.4	4.7	0.03				
11/7/2019	22	43	7.31	1.2	4.9	0.11				
11/13/2019	20	42	7.32	1.1	5	0.1				
12/11/2019	2	42	7.28	1.1	5.9	0.09				
Mean	15.8333	42.8333	7.3042	0.7500	4.6833	0.0633				
Standard Dev.	6.2061	3.1286	0.2747	0.3000	0.7196	0.0317				
Median	15.500	42.000	7.295	0.700	4.700	0.065				
Max	27.000	47.000	7.880	1.200	5.900	0.110				

Clarenville (Rive	Clarenville (River)											
Name	Colour (TCU)	TDS	рН	Turbidity	DOC	Iron						
9/13/2018	125	36	6.57	1.6	13.7	0.37						
10/22/2018	171	25	5.75	2.2	20.6	0.42						
9/4/2019	144	34	6.75	1.2	16.1	0.51						
Mean	146.6667	31.6667	6.3567	1.6667	16.8000	0.4333						
Standard Dev.	23.1157	5.8595	0.5330	0.5033	3.5029	0.0709						
Median	144.000	34.000	6.570	1.600	16.100	0.420						
Max	171	36	6.75	2.2	20.6	0.51						

LOCATION	EVENT MEAN	EVENT MEDIAN	EVENT MAX	EVENT STDEV	
Event Colour					
Torbay	8.763	7.700	15.000	2.907	Lov
Grand Falls-Windso	38.800	40.000	45.000	7.014	
Hughes Brook	14.016	11.000	32.000	6.141	
Meadows	15.833	15.500	27.000	6.206	
Clarenville	146.667	144.000	171.000	23.116	Hig
Event TDS					
Torbay	34.063	35.500	42.000	6.169	
Grand Falls-Windso	8.600	9.000	10.000	1.517	Lov
Hughes Brook	190.421	188.000	221.000	21.238	Hig
Meadows	42.833	42.000	47.000	3.129	
Clarenville	31.667	34.000	36.000	5.859	
Event pH					
Torbay	6.638	6.665	7.140	0.278	
Grand Falls-Windso	6.728	6.680	7.100	0.265	
Hughes Brook	8.168	8.170	8.340	0.116	Hig
Meadows	7.304	7.295	7.880	0.275	
Clarenville	6.357	6.570	6.750	0.533	Lov
Event Turbidity					
Torbay	0.898	0.715	2.400	0.498	
Grand Falls-Windso	0.984	0.830	1.500	0.440	
Hughes Brook	0.919	0.700	2.400	0.684	
Meadows	0.750	0.700	1.200	0.300	Lov
Clarenville	1.667	1.600	2.200	0.503	Hig
Event DOC					
Torbay	2.938	2.950	3.900	0.544	
Grand Falls-Windso	5.440	5.600	6.400	0.723	
Hughes Brook	2.716	2.900	4.600	0.948	Lov
Meadows	4.683	4.700	5.900	0.720	
Clarenville	16.800	16.100	20.600	3.503	Hig
Event Iron					
Torbay	0.045	0.045	0.130	0.041	
Grand Falls-Windso	0.142	0.140	0.200	0.035	
Hughes Brook	0.015	0.000	0.066	0.025	L٥
Meadows	0.063	0.065	0.110	0.032	
Clarenville	0.433	0.420	0.510	0.071	Hig

Torbay (Pond)	Torbay (Pond)											
Time	Colour (TCU)	TDS	pН	Turbidity	DOC	Iron						
19-May-88	15	40	6.2	0.3		0.06						
13-Jun-90	13	30	6.23	0.22		0.04						
15-Nov-90	15	50	6.16	0.17		0.01						
16-Jun-93	10	33	6.52	0.85		0.05						
8-Nov-93	14	32	6.36	0.26		0.03						
7-Jun-94	13	37	6.25	0.33	1.8	0.005						
23-Nov-94	14	35	6.32	0.24	2.6	0.02						
21-Jun-95	5	40	6.28	0.8	2.9	0.043						
12-Oct-95	10	30	6.35	0.8	3.4	0.039						
23-May-96	5	30	7.1	0.2	2.7	0.028						
26-Sep-96	11	36	6.45	1.3	1.9	0.03						
5-Jun-97	17	32		0.32	2.9	0.02						
2-Oct-97	12	38	6.23	0.47	3	0.005						
14-Apr-98	13	30	6.01	0.27	2.9	0.02						
1-Oct-98	14	28	6.43	0.83	3.1	0.03						
17-May-99	11	31	6.24	0.36	0.25	0.01						
22-Sep-99	11	29	6.32	0.16	1.1	0.005						
18-May-00	9	30	6.53	0.22	2.6	0.005						
9-Nov-00	15	30	6.27	0.3	2.2	0.01						
27-Jun-01	13	28	6.26	0.07	2.4	0.01						
31-Oct-01	9	36	6.5	0.4	3.6	0.03						
27-May-04	11	40	6.22	0.6	2.4	0.05						
3-Nov-04	12	36	5.91	1.1	3.6	0.08						
22-Aug-05	8	33	6.38	1.7	3.3	0.04						
18-Sep-06	7	34	6.04	1.1	3.3	0.06						
27-May-09	13	23	6.44	0.9	2.7	0.05						
27-Nov-09	17	23	6.09	1	4.1	0.06						
21-Aug-12	8	40	6.77	1	2.9	0.03						
19-Aug-15	10	36	6.2	0.4	2.4	0.03						
Mean	11.5517	33.4483	6.3236	0.5748	2.6688	0.0310						
Standard Dev.	3.1463	5.6289	0.2335	0.4112	0.8270	0.0200						
Median	12.000	33.000	6.275	0.400	2.800	0.030						
	47.000	50.000	7 400	1 700	4 4 0 0	0.000						

LOCATION	HISTORICAL MEAN	HISTORICAL MEDIAN	HISTORICAL MAX	HISTORICAL STDEV	1
Historical Colour					Í
Torbay	11.552	12.000	17.000	3.146	1
Grand Falls-Windsor	36.679	36.000	57.000	10.294	
Hughes Brook	10.625	10.500	15.000	2.615	Low
Meadows	14.267	15.000	21.000	4.301	
Clarenville	54.306	53.500	129.000	20.178	High
Historical TDS					i i
Torbay	33.448	33.000	50.000	5.629	1
Grand Falls-Windsor	13.662	13.000	37.000	5.160	Low
Hughes Brook	188.750	197.500	220.000	22.199	High
Meadows	36.000	37.000	53.000	6.918	
Clarenville	24.564	23.000	41.000	6.067	
Historical pH					Í
Torbay	6.324	6.275	7.100	0.233	Low
Grand Falls-Windsor	6.473	6.470	7.360	0.252	
Hughes Brook	8.218	8.245	8.550	0.182	High
Meadows	6.849	6.830	7.520	0.412	
Clarenville	6.519	6.510	7.870	0.373	
Historical Turbidity					í i
Torbay	0.575	0.400	1.700	0.411	1
Grand Falls-Windsor	0.697	0.635	3.300	0.479	High
Hughes Brook	0.214	0.200	0.400	0.130	Low
Meadows	0.499	0.500	0.900	0.215	
Clarenville	0.586	0.400	2.700	0.502	
Historical DOC					í i
Torbay	2.669	2.800	4.100	0.827	1
Grand Falls-Windsor	5.169	5.400	8.300	1.541	
Hughes Brook	2.300	2.100	3.600	0.752	Low
Meadows	3.875	3.850	5.500	0.793	
Clarenville	6.709	6.700	14.900	2.025	High
Historical Iron					í i
Torbay	0.031	0.030	0.080	0.020	
Grand Falls-Windsor	0.104	0.100	0.230	0.043	i i
Hughes Brook	0.006	0.003	0.020	0.009	Low
Meadows	0.051	0.060	0.110	0.034	1
Clarenville	0.210	0 190	0.720	0.097	High

Grand Falls-Win	dsor (Lake)					
Time	Colour (TCU)	TDS	pН	Turbidity	DOC	Iron
17-Jun-87	20		6.65	0.4	3.85	0.09
21-Oct-87	20		6.3	0.9	6.05	0.19
25-Oct-93	40	10	6.55	0.72	0.5	0.07
14-Jun-94	44	12	6.28	0.29	1.8	0.06
15-Nov-94	44	14	6.48	0.31	2.5	0.11
22-Jun-95	30	20	6.5	0.2	4.3	0.119
12-Oct-95	35	30	6.58	0.4	7.3	0.147
18-Jun-96	30	20	6.33	0.4	5	0.058
10-Oct-96	50	10	6.43	1.41	3	0.15
11-Aug-97	40	20	6.52	0.43	4.3	0.02
24-Nov-97	50	18	6.33	0.53	6.3	0.08
25-Feb-98	54		6.66	0.27	3.4	
4-Jun-98	40	16	6.36	0.31	4.7	0.07
25-Aug-98	34	10	6.56	1.22	5.3	0.40
16-NOV-98	48	13	6.46	1.65	5.2	0.12
26-May-99	34	12	6.46	0.38	3.1	0.02
26-Aug-99	28		6.52	0.67	3.8	
9-Nov-99	44	22	5.99	1.68	5.4	0.03
15-Mar-00	34		5.99	0.34	3.5	
25-May-00	41	14	6.64	0.98	4.3	0.005
9-Aug-00	29	18	6.65	0.46	4.1	0.13
14-Dec-00	53	1/	6.45	0.25	5.8	0.005
25-Jun-01	36	14	6.42	0.15	5.4	0.09
29-Aug-01	23	12	6.32	0.8	3.4	0.1
23-Nov-01	25	14	6.38	1.2	6.3	0.1
16-Jan-02	35	16	6.23	0.4	4.5	0.11
10-May-02	29	11	6.58	0.6	4	0.11
24-Jul-02	20	12	6.22	0.7	3./	0.14
4-Feb-03	30	1/	6.37	0.7	5.2	0.11
15-May-03	37	10	5.93	1	4.6	0.16
11-Jul-03	26	10	6.29	0.6	4.2	0.07
18-Nov-03	41	12	6.2	1.3	5.9	0.14
23-Jan-04	49	16	6.28	0.5	8.3	0.16
15-Jun-04	32	10	6.09	0.7	4.9	0.08
9-Nov-04	24	11	6.35	0.6	5.9	0.11
20-lan-05	57	15	6.36	0.6	6.1	0.1
2-Jun-05	34	8	6.45	0.7	4	0.09
4-Aug-05	19	10	6.76	0.6	4.3	0.08
21-Nov-05	35	12	6.62	0.9	6.5	0.11
13-Feb-06	29	15	6.51	0.2	5.7	0.09
22-Sep-06	38	13	6.46	1	8.3	0.1
13-Aug-07	33	7	6.7	0.4	6.9	0.09
5-Dec-07	30	9	6.63	2.1	6	0.15
13-Feb-08	0	37	7.36	0	3	0
2-Jun-08	43	6	6.49	0.3	4.9	0.11
12-Sep-08	30	7	6.39	0.6	4.5	0.15
28-Nov-08	41	9	6.59	1.1	6.5	0.16
29-May-09	49	10	6.7	07	0.1	0.14
16-Sep-09	40	7	6.7	0.4	4.0	0.12
30-Nov-09	51	11	6.42	0.6	6.3	0.15
22-Jan-10	47	12	6.44	0.5	5.6	0.1
3-Jun-10	37	10	6.53	0.7	6	0.09
16-Sep-10	30	13	6.87	0.7	5.8	0.1
19-NOV-10 28-Eeb-11	43	12	6.94	0.7	7.1	0.09
24-lun-11	40	12	6.42	0.9	5.8	0.08
12-Sep-11	34	12	6.1	0.8	6.2	0.11
18-Oct-11	42	16	6.16	0.8	6.1	0.12
14-Dec-11	51	12	6.45	3.3	5.7	0.23
17-Feb-12	55	14	6.53	0.8	6.2	0.15
12-Sop-12	33	11	6.72	0.3	5.4	0.07
22-Nov-12	30	13	6.27	0.7	8.3	0.12
15-Feb-13	48	18	7.22	1.1	6.5	0.12
22-Aug-13	27	14	6.54	0.7	6.3	0.1
4-Sep-14	30	12	6.77	0.7	6	0.1
5-Aug-15	34	22	7.02	1	5.3	0.08
2/-May-16	35	- 7 c	6.71	0.57	4.4	0.086
0-Juil-17 15-Dec-17	45	13	0.52	0.4	4.4	0.1
10 000-17	I 47	1 15	I 0.0	0.42		1 0.15

Mean	36.6795	13.6620	6.4728	0.6968	5.1692	0.1036
Standard Dev.	10.2937	5.1601	0.2521	0.4793	1.5412	0.0429
Median	36.000	13.000	6.470	0.635	5.400	0.100
Max	57.000	37.000	7.360	3.300	8.300	0.230
Hughes Brook (S	pring)					
Time	Colour	TDS	pH	Turbidity	DOC	Iron
28-Apr-88	10	170	7.96	0.2		0.02
31-May-90	11	160	8.26	0.17		0.02
26-0ct-90	15	195	8	0.02	2.0	0.005
22 Aug 05	10	200	8.25	0.12	3.0	0.005
23-Aug-03	12	200	0.2	0.4	2.1	0
2=JUI=09	9	220	8.33	0.2	1.7	0
11-Sep-15	12	220	8 24	0.4	1.7	0
Moon	10.6250	199 7500	9 2175	0.2129	2 2000	0.0062
Standard Dev	2 6152	22 1988	0.1820	0.1299	0.7517	0.0003
Median	10.500	197,500	8.245	0.200	2.100	0.003
Max	15.000	220.000	8.550	0.400	3.600	0.020
Meadows (Pond	1)					
Time	Colour	TDS	pH	Turbidity	DOC	Iron
15-Sep-88	5	35	6.06	0.55		0.11
31-May-90	20	37	6.66	0.38		0.08
26-Oct-90	18	53	6.81	0.49		0.03
29-May-95	10	40	6.99	0.1	2.5	0.091
17-Oct-95	10	40	7.05	0.26	3.4	0.027
8-May-03	16	24	6.11	0.6	3.8	0.07
22-Oct-03	11	38	6.51	0.8	3.5	0.06
23-Aug-06	18	38	6.65	0.7	5.5	0.06
11-Jun-08	11	2/	7.2/	0.2	3.2	0.07
8-Jun-11	15	30	6.75	0.4	20	0.07
14-Dec-11	21	37	6.83	0.5	3.9	0.05
25-Sep-14	15	40	7.52	0.9	5.1	0.04
27-Jun-17	15	30	7.22	0.48	3.7	0
16-Nov-17	16	32	7.19	0.52	4	0.072
Mean	14.2667	36.0000	6.8487	0.4987	3.8750	0.0507
Standard Dev.	4.3006	6.9179	0.4123	0.2147	0.7933	0.0340
Median	15.000	37.000	6.830	0.500	3.850	0.060
Max	21.000	53.000	7.520	0.900	5.500	0.110
Clarenville (Rive	r)				-	
Time	Colour	TDS	pН	Turbidity	DOC	Iron
28-Sep-87	35	28	6.12	0.5		0.01
15-Jun-89	30		6.6	0.3	3.1	0.18
23-Oct-89	30		6.65	0.55	4.85	0.185
9-Jun-92	55		6.5	0.3	5./	0.21
29-0ct-92	05	20	6.15	0.25	1	0.3
7-Jun-95	25	30	6.71	0.35	0.2	0.14
10-000-95	100	30	6.46	0.8	9.2	0.133
1-Oct-96	12	22	6.25	0.5	4.7	0.145
19-May-98	42	24	6.21	0.02	7.4	0.17
15-Oct-98	62	21	6.6	1.86	7.4	0.21
16-Feb-99	54		6.02	0.3	6.3	
27-May-99	62	20	6.41	0.29	5.8	0.16
20-Jul-99	32		6.9	0.14	3.1	
5-Oct-99	97	27	6.52	2.18	11	0.72
10-Feb-00	57		5.64	0.38	4.9	
7-Jun-01	56	20	6.36	0.15	5	0.18
8-Nov-01	129	20	5.69	1	14.9	0.39
28-Apr-03	61	20	5.89	0.8	6.8	0.21
29-Oct-03	46	19	6.09	0.7	7.3	0.21
30-Aug-05	26	34	6.94	0.3	4.7	0.15
5-Jun-07	24	18	6.8	0.3	4.9	0.15
20-Aug-07	34	21	6.73	0.5	5.8	0.29
22-120-09	32	22	6.42	0.1	5.7	0.23
22-May-08	68	13	6.39	0.4	6.7	0.20
5-Aug-08	34	29	6.89	0.9	3.7	0.14
4-Nov-08	48	14	6.61	0.5	7	0.18
21-Jan-09	50	29	6.45	0.3	4.9	0.19
25-May-09	39	23	6.77	0.4	4.3	0.13
9-Sep-09	46	19	6.84	0.3	5.6	0.15
24-Nov-09	55	16	6.5	0.4	7.9	0.23
10-Feb-10	63	23	6.46	0.3	5.7	0.19
3-Jun-10	52	16	6.32	1.5	7.5	0.16
11-Aug-10	56	22	6.85	0.5	7.6	0.21
2-Eeb-11	58	23	7.07	1.6	8.5	0.22
24-May-11	62	22	6.09	0.9	6.4	0.2
18-Aug-11	108	27	6.35	2.7	11.3	0.51
14-Nov-11	69	21	6.42	0.7	7.3	0.29
1-Feb-12	59	25	6.44	0.8	6.1	0.19
29-May-12	52	32	6.45	0.3	6.6	0.16
20-Nov-12	62	20	6.21	0.7	9	0.24
22-Jan-13	70	31	6.4	0.3	8.3	0.22
28-May-13	50	27	6.62	0.3	5.3	0.16
21-Aug-13	41	29	6.65	0.3	6.8	0.19
25-Nov-13	69	20	6.3	0.7	9.1	0.28
4-Feb-14	73	21	5.73	0.5	7.8	0.25
2/-IVIdV-14			0./	0.4	0.4 ¢ °	0.15
25.Eab **	50	25	C 37		n X	0.18
25-Feb-15	50	25	6.37	0.4	0.0	0.24
25-Feb-15 18-Jun-15 25-Διισ-15	50 53 73	25 31 39	6.37 7.87	0.3	8.7	0.21
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15	50 53 73 27 64	25 31 39 33 27	6.37 7.87 6.85	0.3	8.7 4.3	0.21
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16	50 53 73 27 64 30	25 31 39 33 27 20	6.37 7.87 6.85 6.54 6.95	0.3 0.3 1.5 0.2	8.7 4.3 8.2 4.4	0.21 0.14 0.22 0.12
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16	50 53 73 27 64 30 56	25 31 39 33 27 29 29 23	6.37 7.87 6.85 6.54 6.95 7.08	0.4 0.3 0.3 1.5 0.28 0.34	8.7 4.3 8.2 4.4 8.1	0.21 0.14 0.22 0.13 0.23
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16	50 53 73 27 64 30 56 46	25 31 39 33 27 29 23 21	6.37 7.87 6.85 6.54 6.95 7.08 6.52	0.4 0.3 0.3 1.5 0.28 0.34 0.58	8.7 4.3 8.2 4.4 8.1 6.7	0.21 0.14 0.22 0.13 0.23 0.2
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17	50 53 73 27 64 30 56 46 46	25 31 39 33 27 29 23 21 21 30	6.37 7.87 6.85 6.54 6.95 7.08 6.52 6.78	0.4 0.3 0.3 1.5 0.28 0.34 0.58 0.24	8.7 4.3 8.2 4.4 8.1 6.7 6.3	0.21 0.14 0.22 0.13 0.23 0.2 0.2
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17	50 53 73 27 64 30 56 46 62 46	25 31 39 33 27 29 23 21 30 24	6.37 7.87 6.85 6.54 6.95 7.08 6.52 6.78 6.59	0.4 0.3 0.3 1.5 0.28 0.34 0.58 0.24 0.3	8.7 8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.21
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17 23-Aug-17	50 53 73 27 64 30 56 46 62 46 46 46	25 31 39 33 27 29 23 21 30 24 37	6.37 7.87 6.85 6.54 6.95 7.08 6.52 6.78 6.59 7.15	0.4 0.3 0.3 1.5 0.28 0.34 0.58 0.24 0.3 0.3	8.7 8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.13 0.2
25-Feb-15 18-Jun-15 25-Aug-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17 23-Aug-17 15-Nov-17	50 53 73 27 64 30 56 46 62 46 46 46 35	25 31 39 33 27 29 23 21 30 24 37 25	6.37 7.87 6.85 6.54 6.59 7.08 6.52 6.78 6.59 7.15 6.69	0.3 0.3 0.3 1.5 0.28 0.34 0.58 0.24 0.3 0.3 0.3	8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9 5.5	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.13 0.2 0.21 0.13
25-Feb-15 18-Jun-15 25-Aug-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17 23-Aug-17 15-Nov-17 7-Mar-18	50 53 73 27 64 30 56 46 62 46 46 46 35 39	25 31 39 33 27 29 23 21 30 24 30 24 41	6.37 7.87 6.85 5.54 6.95 7.08 6.52 6.78 6.59 7.15 6.69 7.15 6.69 6.74	0.4 0.3 0.3 1.5 0.28 0.34 0.58 0.24 0.33 0.3 1 0.33	8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9 5.5 5.8	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.13 0.2 0.19 0.19 0.17
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17 23-Aug-17 15-Nov-17 7-Mar-18 31-May-18	500 53 73 27 64 300 56 46 62 46 46 35 39 81	25 31 39 33 27 29 23 23 21 30 20 24 37 25 41 200	6.37 7.87 6.85 6.54 6.52 6.59 7.08 6.52 6.78 6.59 7.15 6.69 6.74 6.32	0.3 0.3 0.3 1.5 0.28 0.34 0.58 0.24 0.3 0.3 0.3 1 0.33 0.5 5	8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9 9 5.5 5.8 8 9.5.5	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.13 0.2 0.19 0.17 0.23
25-Feb-15 18-Jun-15 25-Aug-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 12-Sep-16 12-Feb-17 13-Jun-17 7-Mar-18 31-May-18 Mean Mean	50 53 73 27 64 30 56 46 46 46 46 46 35 39 39 81 54,3065	25 31 39 33 27 29 23 21 30 24 30 24 41 20 24,5636	6.37 7.87 6.85 6.54 6.52 6.52 6.52 6.52 6.78 6.59 7.15 6.69 7.15 6.69 6.74 6.32 6.518	0.3 0.3 0.3 0.3 0.28 0.28 0.24 0.34 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.585 0.585 0.555 0.5555	8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9 5.5 5.8 8 9.5 5.8 8 9.5	0.21 0.14 0.22 0.13 0.23 0.21 0.21 0.21 0.21 0.21 0.23 0.20 0.23 0.23 0.23 0.23 0.23 0.23
25-Feb-15 18-Jun-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17 23-Aug-17 15-Nov-17 7-Mar-18 31-May-18 31-May-18 Mean Standard Dev.	500 533 773 64 300 566 466 466 466 466 355 399 811 54.3065 20.1784	25 31 39 33 27 29 23 21 30 24 30 24 41 20 24,5636 6,0668	6.37 7.87 6.85 6.54 6.52 6.52 6.78 6.59 7.15 6.69 6.74 6.32 6.5189 0.3730	0.3 0.3 0.3 1.5 0.28 0.34 0.34 0.58 0.24 0.3 0.3 0.3 0.3 0.3 0.5 0.5856 0.5017	8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9 5.5 5.8 8.9 5.5 5.8 8.9.5 6.7090 2.0250	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.13 0.2 0.21 0.13 0.2 0.19 0.17 0.23 0.2098 0.0969
25-Feb-15 18-Jun-15 25-Aug-15 25-Aug-15 17-Nov-15 7-Jun-16 12-Sep-16 14-Nov-16 22-Feb-17 13-Jun-17 23-Aug-17 13-Nov-17 7-Mar-18 31-May-18 Mean Standard Dev. Median	500 533 73 73 64 300 56 46 46 46 46 46 46 35 39 811 54.3065 20.1784	25 31 39 33 27 29 23 21 30 0 24 41 30 0 24 41 20 24,5636 6.0668 23,000	6.37 7.87 6.85 6.54 6.52 6.52 6.59 7.15 6.69 6.74 6.32 6.518 0.3730 0.3730	0.3 0.3 0.3 0.28 0.24 0.34 0.34 0.3 0.3 0.3 0.3 0.3 0.58 5 0.585 0.585 0.5017	8.7 4.3 8.2 4.4 8.1 6.7 6.3 4.6 6.9 9 5.5 5.8 9.5 5 5.8 9.5 5 6.7090 2.0250 6.7090	0.21 0.14 0.22 0.13 0.23 0.2 0.21 0.13 0.2 0.19 0.17 0.23 0.2088 0.0969 0.190

Clarenville Event Based Sample Data

——— 1/26/2021 3:22:04 PM -

Welcome to Minitab, press F1 for help.

One-way ANOVA: Color versus Event/Historical

 Source
 DF
 SS
 MS
 F
 P

 Event/Historical
 1
 24410
 24410
 59.36
 0.000

 Error
 63
 25906
 411

 Total
 64
 50316
 50316

 S = 20.28
 R-Sq = 48.51%
 R-Sq(adj) = 47.70%

				Individu Pooled S	al 90% tDev	CIs For	Mean	Based	on
Level	Ν	Mean	StDev	+	+-		-+	+	
Е	3	146.67	23.12				(*_)
Н	62	54.31	20.18	(*-)					
				+	+-		-+	+	
				60	90	1:	20	150	

Pooled StDev = 20.28

One-way ANOVA: TDS versus Event/Historical

 Source
 DF
 SS
 MS
 F
 P

 Event/Historical
 1
 143.5
 143.5
 3.91
 0.053

 Error
 56
 2056.2
 36.7
 7

 Total
 57
 2199.7
 7

S = 6.060 R-Sq = 6.52% R-Sq(adj) = 4.86%

				Individ	ual 90% CI	s For Mean	Based on
				Pooled	StDev		
Level	Ν	Mean	StDev	+	+	+	
E	3	31.667	5.859		(*)
Н	55	24.564	6.067	(*	-)		
				+	+	+	
				24.0	28.0	32.0	36.0

Pooled StDev = 6.060

One-way ANOVA: pH versus Event/Historical

One-way ANOVA: Turbidity versus Event/Historical

Source Event/H Error Total	listo	orical	DF 1 3.3 62 15.6 63 18.9	SS 42 3 12 0 54	MS 3.342).252	F 13.27	P 0.001		
S = 0.5	5018	R-Sq	= 17.63%	R-	-Sq(ad	j) = 16.	30%		
				Indi Pool	lvidua Led StI	l 90% CI Dev	ls For Mea	an Based on	
Level	Ν	Mean	StDev	+-		+	+	+	-
E	3	1.6667	0.5033			((*	·)	
Н	61	0.5856	0.5017	(-	-*-)				
				+-		+	+	+	-
				0.50)	1.00	1.50	2.00	

Pooled StDev = 0.5018

One-way ANOVA: DOC versus Event/Historical

Source	DF	SS	MS	F	P
Event/Historical	1	291.16	291.16	66.72	0.000
Error	62	270.58	4.36		
Total	63	561.74			

S = 2.089 R-Sq = 51.83% R-Sq(adj) = 51.06%

				Indivi Pooled	dual 90% StDev	CIs F	or Mean	Based on
Level	Ν	Mean	StDev	+	+		+	
Е	3	16.800	3.503				(*)
Н	61	6.709	2.025	(*)				
				+	+		+	
				7.0	10.5	1	4.0	17.5

Pooled StDev = 2.089

One-way ANOVA: Iron versus Event/Historical

Source Event/ Error Total	Histo	orical	DF 1 60 61	SS 0.14267 0.55424 0.69691	MS 0.14267 0.00924	15.4	F 15 (P).000		
S = 0.	09611	L R-So	A =	20.47%	R-Sq(adj)	= 19	9.15%	5		
					Individual Pooled StI	L 90% Dev	CIs	For Mean	Based on	
Level E H	N 3 59	Mear 0.43333 0.20978	n 3 (3 (StDev 0.07095 0.09686	-+ (-*-)	+	(** *	+))	
					0.20	0.30		0.40	0.50	

Kruskal-Wallis Test: Color versus Event/Historical

```
Kruskal-Wallis Test on Color
Event/Historical N Median Ave Rank Z
E 3 144.00 63.7 2.88
H 62 53.50 31.5 -2.88
Overall 65 33.0
H = 8.27 DF = 1 P = 0.004
H = 8.29 DF = 1 P = 0.004 (adjusted for ties)
* NOTE * One or more small samples
```

Kruskal-Wallis Test: TDS versus Event/Historical

```
58 cases were used
7 cases contained missing values
Kruskal-Wallis Test on TDS
Event/Historical N Median Ave Rank
                                  Ζ
                               1.88
                 34.0047.323.0028.5
E
              3
Н
              55 23.00
                          28.5 -1.88
Overall
              58
                          29.5
* NOTE * One or more small samples
```

Kruskal-Wallis Test: pH versus Event/Historical

Kruskal-Wallis Test on pH Event/Historical N Median Ave Rank Z E 3 6.570 30.3 -0.25 H 62 6.510 33.1 0.25 Overall 65 33.0 H = 0.06 DF = 1 P = 0.802 H = 0.06 DF = 1 P = 0.802 (adjusted for ties) * NOTE * One or more small samples

Kruskal-Wallis Test: Turbidity versus Event/Historical

64 cases were used 1 cases contained missing values Kruskal-Wallis Test on Turbidity Event/Historical N Median Ave Rank Z E 3 1.6000 59.5 2.57 H 61 0.4000 31.2 -2.57 Overall 64 32.5 H = 6.62 DF = 1 P = 0.010 H = 6.76 DF = 1 P = 0.009 (adjusted for ties) * NOTE * One or more small samples

Kruskal-Wallis Test: DOC versus Event/Historical

64 cases were used 1 cases contained missing values Kruskal-Wallis Test on DOC Event/Historical N Median Ave Rank Z E 3 16.100 62.7 2.87 H 61 6.700 31.0 -2.87 Overall 64 32.5 H = 8.26 DF = 1 P = 0.004 H = 8.27 DF = 1 P = 0.004 (adjusted for ties) * NOTE * One or more small samples

Kruskal-Wallis Test: Iron versus Event/Historical

62 cases were used 3 cases contained missing values

Kruskal-Wallis Test on Iron

Event/Historical	Ν	Median	Ave Rank	Z
E	3	0.4200	58.8	2.69
Н	59	0.1900	30.1	-2.69
Overall	62		31.5	

* NOTE * One or more small samples

Е/Н	Color	TDS	pН	Turb.	DOC	Iron
Н	35	28	6.12	0.50	*	0.010
Н	30	*	6.60	0.30	3.10	0.180
Н	30	*	6.65	0.55	4.85	0.185
Н	55	*	6.50	0.30	5.70	0.210
Н	65	*	6.15	*	7.00	0.300
Н	25	30	6.71	0.35	6.00	0.140
Н	100	30	6.84	0.80	9.20	0.133
Н	50	30	6.46	0.30	8.20	0.149
Н	42	22	6.35	0.62	4.70	0.170
Н	72	24	6.21	0.23	7.40	0.170
Н	62	21	6.60	1.86	7.00	0.210
Н	54	*	6.02	0.30	6.30	*
Н	62	20	6.41	0.29	5.80	0.160
Н	32	*	6.90	0.14	3.10	*
Н	97	27	6.52	2.18	11.00	0.720
Н	57	*	5.64	0.38	4.90	*
Н	56	20	6.36	0.15	5.00	0.180
Н	129	20	5.69	1.00	14.90	0.390
Н	61	20	5.89	0.80	6.80	0.210
Н	46	19	6.09	0.70	7.30	0.210

Н	26	34	6.94	0.30	4.70	0.150
Н	24	18	6.80	0.30	4.90	0.150
Н	34	21	6.73	0.50	5.80	0.290
Н	32	16	6.54	0.10	7.40	0.230
Н	39	22	6.42	0.20	5.70	0.280
Н	68	13	6.39	0.40	6.70	0.290
Н	34	29	6.89	0.90	3.70	0.140
Н	48	14	6.61	0.50	7.00	0.180
Н	50	29	6.45	0.30	4.90	0.190
Н	39	23	6.77	0.40	4.30	0.130
Н	46	19	6.84	0.30	5.60	0.150
Н	55	16	6.50	0.40	7.90	0.230
Н	63	23	6.46	0.30	5.70	0.190
Н	52	16	6.32	1.50	7.50	0.160
Н	56	22	6.85	0.50	7.60	0.210
Н	58	23	7.07	1.60	8.50	0.220
Н	62	22	6.07	0.90	6.90	0.200
Н	60	22	6.09	0.50	6.40	0.180
Н	108	27	6.35	2.70	11.30	0.510
Н	69	21	6.42	0.70	7.30	0.290
Н	59	25	6.44	0.80	6.10	0.190
Н	52	32	6.45	0.30	6.60	0.160
Н	62	20	6.21	0.70	9.00	0.240
Н	70	31	6.40	0.30	8.30	0.220
Н	50	27	6.62	0.30	5.30	0.160
Н	41	29	6.65	0.30	6.80	0.190
Н	69	20	6.30	0.70	9.10	0.280
Н	73	21	5.73	0.50	7.80	0.250
Н	50	25	6.70	0.40	6.40	0.150
Н	53	31	6.37	0.40	6.80	0.180
Н	73	39	7.87	0.30	8.70	0.210
Н	27	33	6.85	0.30	4.30	0.140
Н	64	27	6.54	1.50	8.20	0.220
Н	30	29	6.95	0.28	4.40	0.130
Н	56	23	7.08	0.34	8.10	0.230
Н	46	21	6.52	0.58	6.70	0.200
Н	62	30	6.78	0.24	6.30	0.210
Н	46	24	6.59	0.30	4.60	0.130
Н	46	37	7.15	0.30	6.90	0.200
Н	35	25	6.69	1.00	5.50	0.190
Н	39	41	6.74	0.33	5.80	0.170
H	81	20	6.32	0.50	9.50	0.230
E	125	36	6.57	1.60	13.70	0.370
E	171	25	5.75	2.20	20.60	0.420
E	144	34	6.75	1.20	16.10	0.510

Grand Falls-Windsor Event Based Sample Data

———— 1/26/2021 2:54:21 PM —————

Welcome to Minitab, press F1 for help.

One-way ANOVA: Color versus Event/Historical

Source Event/J Error Total	Hist	orical	DF 1 81 82	SS 21 8356 8377	MS 21 103	F 0.20	0.652			
S = 10	.16	R-Sq	= 0.2	5%	R-Sq (a	adj) =	0.00%	5		
				In St	divid Dev	ual 95	% CIs	For Mean	Based o	n Pooled
Level E H	N 5 78	Mean 38.80 36.68	5tDe 7.01 10.21	v 1 9	(+	+ *))
				30	+	35.	+ 0	40.0	45.0	

Pooled StDev = 10.16

One-way ANOVA: TDS versus Event/Historical

 Source
 DF
 SS
 MS
 F
 P

 Event/Historical
 1
 119.7
 119.7
 4.73
 0.033

 Error
 74
 1873.1
 25.3

 Total
 75
 1992.8

S = 5.031 R-Sq = 6.01% R-Sq(adj) = 4.74%

				Individual Pooled StDe	95% CIs v	For Mean	Based on
Level	Ν	Mean	StDev	+	+	+	+
E	5	8.600	1.517	(*)
Н	71	13.662	5.160				(*)
					+	+	+
				6.0	9.0	12.0	15.0

Pooled StDev = 5.031

One-way ANOVA: pH versus Event/Historical

Source Event/H Error Total	listo	orical	DF 1 81 82	SS 0.3060 5.1755 5.4814	MS 0.3060 0.0639	F 4.79	0.	P 032			
S = 0.2	2528	R-Sq	= 5.	58% I	R-Sq(adj)	= 4.	42%				
Level E H	N 5 78	Mean 6.7280 6.4728	St 0.2 0.2	II Po Dev 647 521 (-	ndividual poled StDe -+ (*)	95% ev +	CIs 	For + *-	Mean Bas	sed on +)	

+	+	+	+
6.45	6.60	6.75	6.90

One-way ANOVA: Turbidity versus Event/Historical

Source Event/ Error Total	Hist	orical	DF 1 0.3 81 18.4 82 18.8	SS 88 0 61 0 48	MS .388 .228	F 1.70	P 0.196		
S = 0.	4774	R-Sq	= 2.06%	R-So	q(adj)	= 0.	85%		
				Indi Poole	vidual ed StD	95% ev	CIs For	Mean Based	l on
Level	Ν	Mean	StDev		+-		+	+	+-
Е	5	0.9840	0.4399	(*		· -)
Н	78	0.6968	0.4793	. (*)			
					+_		+	+	+-
					0.75		1.00	1.25	1.50

Pooled StDev = 0.4774

One-way ANOVA: DOC versus Event/Historical

Source	DF	SS	MS	F	P
Event/Historical	1	0.34	0.34	0.15	0.699
Error	81	184.99	2.28		
Total	82	185.34			

S = 1.511 R-Sq = 0.19% R-Sq(adj) = 0.00%

				Individ Pooled	lual 95% CI StDev	s For Mean	Based on	
Level	Ν	Mean	StDev	-+		+		
Ε	5	5.440	0.723	(*)
Н	78	5.169	1.541		(*)		
				-+	+	+	+	
				4.20	4.90	5.60	6.30	

Pooled StDev = 1.511

One-way ANOVA: Iron versus Event/Historical

Source	e		DF	SS	s ms	F	P			
Event/	'Hist	orical	1	0.00691	L 0.00691	3.83	0.054			
Error			76	0.13713	3 0.00180					
Total			77	0.14405	5					
S = 0.	0424	8 R-S	q =	4.80%	R-Sq(adj)	= 3.55	0			
					Individua Pooled St	1 95% C Dev	Is For N	lean Ba	ased on	
Level	N	Mea	n	StDev	+		+		+	
E	5	0.1420	0 C	0.03493	(*)	
Н	73	0.1035	6 C	0.04286	(*)					
					+			+	+	
					0.100	0.125	0.1	150	0.175	

Kruskal-Wallis Test: Color versus Event/Historical

```
Kruskal-Wallis Test on Color
```

Event/Historical N Median Ave Rank Z E 5 40.00 47.6 0.54 H 78 36.00 41.6 -0.54Overall 83 42.0 H = 0.29 DF = 1 P = 0.592 H = 0.29 DF = 1 P = 0.592 (adjusted for ties)

Kruskal-Wallis Test: TDS versus Event/Historical

76 cases were used 7 cases contained missing values

Kruskal-Wallis Test on TDS

Event/Historical N Median Ave Rank Z E 5 9.000 12.0 -2.78 H 71 13.000 40.4 2.78 Overall 76 38.5 H = 7.71 DF = 1 P = 0.006 H = 7.79 DF = 1 P = 0.005 (adjusted for ties)

Kruskal-Wallis Test: pH versus Event/Historical

Kruskal-Wallis Te	st o	n pH		
Event/Historical E H Overall	N 5 78 83	Median 6.680 6.470	Ave Rank 62.7 40.7 42.0	Z 1.98 -1.98
H = 3.92 DF = 1 H = 3.93 DF = 1	P = P =	0.048 0.048	(adjusted	for ties)

Kruskal-Wallis Test: Turbidity versus Event/Historical

Kruskal-Wallis Test on Turbidity

Event/Historical N Median Ave Rank Z E 5 0.8300 58.3 1.56 H 78 0.6350 41.0 -1.56 Overall 83 42.0 H = 2.43 DF = 1 P = 0.119 H = 2.45 DF = 1 P = 0.118 (adjusted for ties)

Kruskal-Wallis Test: DOC versus Event/Historical

Kruskal-Wallis Test on DOC

Event/Historical E H Overall	N 5 78 83	Median 5.600 5.400	Ave Rank 45.2 41.8 42.0	Z 0.31 -0.31
H = 0.09 DF = 1 H = 0.09 DF = 1	P = P =	0.759 0.759	(adjusted	for ties)

Kruskal-Wallis Test: Iron versus Event/Historical

78 cases were used 5 cases contained missing values

Kruskal-Wallis Test on Iron

Event/Historical	Ν	Median	Ave	Rank	Ζ
E	5	0.1400		59.4	2.03
Н	73	0.1000		38.1	-2.03
Overall	78			39.5	

Е/Н	Color	TDS	рН	Turb.	DOC	Iron
Н	20	*	6.65	0.40	3.85	0.090
Н	20	*	6.30	0.90	6.05	0.190
Н	40	10	6.55	0.72	0.50	0.070
Н	35	13	6.58	0.76	1.00	0.130
Н	44	12	6.28	0.29	1.80	0.060
Н	44	14	6.48	0.31	2.50	0.110
Н	30	20	6.50	0.20	4.30	0.119
Н	35	30	6.58	0.40	7.30	0.147
Н	30	20	6.33	0.40	5.00	0.058
Н	50	16	6.43	1.41	3.00	0.150
Н	40	20	6.10	0.43	4.30	0.020
Н	28	*	6.52	0.34	3.40	*
Н	50	18	6.33	0.53	6.30	0.080
Н	54	*	6.66	0.27	3.40	*
Н	40	16	6.36	0.31	4.70	0.070
Н	34	*	6.56	1.22	5.30	*
Н	48	13	6.46	1.65	5.20	0.120
Н	36	12	6.26	0.36	3.10	0.060
Н	34	12	6.46	0.38	3.10	0.020
Н	28	*	6.52	0.67	3.80	*
Н	44	22	5.99	1.68	5.40	0.030
Н	34	*	5.99	0.34	3.50	*
Н	41	14	6.64	0.98	4.30	0.005
Н	29	18	6.65	0.46	4.10	0.130
H	53	17	6.45	0.25	5.80	0.005
Н	57	23	6.10	0.35	6.30	0.060
Н	36	14	6.42	0.15	5.40	0.090
H	23	12	6.32	0.80	3.40	0.100
H	25	14	6.38	1.20	6.30	0.100
H	35	16 11	6.23	0.40	4.50	0.110
H	29	10	6.58	0.60	4.00	0.110
H	20	12	6.22	0.70	3.70	0.140
H	36	1/	6.37	0.70	/.10	0.110
H	45	14	6.20	0.70	5.20	0.140
H	37	10	5.93	1.00	4.60	0.160
гі т	∠10 //1	10	6.29	1 20	4.20	0.070
н	41	10	0.20	1.30	5.90	0.140
H	49	10 10	6.20	0.50	8.30	0.100
н	3Z	1 U	6.09	0.70	4.90	0.080
Н	24	$\perp \perp$	6.35	0.60	5.90	0.110

H H	39 57	12 15	6.11 6.36	1.20 0.60	6.30 6.10	0.120 0.100	
Н	34	8	6.45	0.70	4.00	0.090	
Н	19	10	6.76	0.60	4.30	0.080	
Н	35	12	6.62	0.90	6.50	0.110	
Н	29	15	6.51	0.20	5.70	0.090	
Н	38	13	6.46	1.00	8.30	0.100	
Н	20	7	6.59	0.40	6.90	0.090	
Н	33	7	6.70	0.50	6.00	0.200	
Н	30	9	6.63	2.10	6.00	0.150	
Н	0	37	7.36	0.00	3.00	0.000	
Н	43	6	6.49	0.30	4.90	0.110	
Н	30	7	6.39	0.60	4.50	0.150	
Н	41	9	6.59	1.10	6.50	0.160	
Н	49	16	6.70	0.00	6.10	0.140	
Н	31	10	6.57	0.70	4.60	0.080	
Н	40	7	6.70	0.40	6.90	0.120	
Н	51	11	6.42	0.60	6.30	0.150	
Н	47	12	6.44	0.50	5.60	0.100	
Н	37	10	6.53	0.70	6.00	0.090	
Н	30	13	6.87	0.70	5.80	0.100	
Н	43	12	6.62	0.70	7.10	0.090	
Н	40	17	6.84	0.70	5.40	0.080	
Н	44	12	6.42	0.90	5.80	0.080	
Н	34	12	6.10	0.80	6.20	0.110	
Н	42	16	6.16	0.80	6.10	0.120	
Н	51	12	6.45	3.30	5.70	0.230	
Н	55	14	6.53	0.80	6.20	0.150	
Н	33	11	6.72	0.30	5.40	0.070	
Н	36	13	6.55	0.70	7.70	0.120	
Н	48	14	6.27	0.70	8.30	0.120	
Н	48	18	7.22	1.10	6.50	0.120	
Н	27	14	6.54	0.70	6.30	0.100	
Н	30	12	6.77	0.70	6.00	0.100	
Н	34	22	7.02	1.00	5.30	0.080	
Н	35	7	6.71	0.57	4.40	0.086	
Н	45	6	6.52	0.40	4.40	0.100	
Н	27	13	6.60	0.42	5.40	0.130	
E	40	10	6.88	0.66	5.70	0.120	
Ε	27	9	7.10	0.83	5.00	0.110	
E	43	7	6.53	1.40	6.40	0.200	
Ε	45	7	6.68	0.53	4.50	0.140	
Ε	39	10	6.45	1.50	5.60	0.140	

Hughes Brook Event Based Sample Data

——— 1/26/2021 2:59:30 PM ————

Welcome to Minitab, press F1 for help.

One-way ANOVA: Color versus Event/Historical

 Source
 DF
 SS
 MS
 F
 P

 Event/Historical
 1
 64.7
 64.7
 2.23
 0.148

 Error
 25
 726.7
 29.1

 Total
 26
 791.4

 S = 5.392
 R-Sq = 8.18%
 R-Sq(adj) = 4.51%

				Individ Pooled	ual 95% StDev	CIs	For Mean	Based	on
Level	Ν	Mean	StDev	+	+-		+	+	
Е	19	14.016	6.141				(*)
Н	8	10.625	2.615	(*)	
				7.5	10.0		12.5	15.0)

Pooled StDev = 5.392

One-way ANOVA: TDS versus Event/Historical

Source	DF	SS	MS	F	P
Event/Historical	1	16	16	0.03	0.855
Error	25	11568	463		
Total	26	11584			

S = 21.51 R-Sq = 0.14% R-Sq(adj) = 0.00%

				Individu Pooled S	ual 95% CI: StDev	s For Mean	Based on	
Level	N	Mean	StDev	+	+	+	+	
Е Н	19	190.42 188 75	21.24	()	*))
11	0	100.10	22.20	+	+	+	+	'
				176.0	184.0	192.0	200.0	

Pooled StDev = 21.51

One-way ANOVA: pH versus Event/Historical

Source DF SS MS F P Event/Historical 1 0.0136 0.0136 0.72 0.405 Error 25 0.4720 0.0189 Total 26 0.4856 S = 0.1374 R-Sq = 2.79% R-Sq(adj) = 0.00% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev ------+----+----+ E 19 8.1684 0.1155 (-------) H 8 8.2175 0.1820 (--------)

+-	+-	+	+
8.16	50 8.22	8.280	8.340

One-way ANOVA: Turbidity versus Event/Historical

Source Event/I Error Total	Histo	orical	DF 1 2.8 25 8.5 26 11.3	SS MS 00 2.800 34 0.341 33	F 8.20	P 0.008		
S = 0.	5842	R-Sq	= 24.70%	R-Sq(ac	lj) = 2	1.69%		
				Individua Pooled St	al 95% (Dev	CIs For	Mean Ba	sed on
Level	Ν	Mean	StDev	+		+	+	+
E	19	0.9189	0.6838			(-	*_)
Н	8	0.2138	0.1299	(*)		
				+		+	+	+
				0.00	0.	40	0.80	1.20

Pooled StDev = 0.5842

One-way ANOVA: DOC versus Event/Historical

Source	DF	SS	MS	F	P
Event/Historical	1	0.684	0.684	0.82	0.376
Error	22	18.445	0.838		
Total	23	19.130			

S = 0.9157 R-Sq = 3.58% R-Sq(adj) = 0.00%

				Individ	ual 95%	CIs Fo	r Mean	Based on	
				Pootea	StDev				
Level	Ν	Mean	StDev	-+	+		-+	+	
E	19	2.7158	0.9483			(*)	
Н	5	2.3000	0.7517	(*)	
				-+	+		_+	+	
				1.50	2.00	2	.50	3.00	

Pooled StDev = 0.9157

One-way ANOVA: Iron versus Event/Historical

Source Event/ Error Total	Hist	orical	DF 1 25 26	SS 0.000391 0.012228 0.012619	5 M. L 0.00039 3 0.00048 9	S H 1 0.80 9	0.3	Р 80			
S = 0.	0221	2 R-S	q =	3.09% F	R-Sq(adj)	= 0.009	0				
]	Individual StDev	95% CI	Is For	Mean	Based	on	Pooled
Level	Ν	Mea	n	StDev	+	+		-+	+	+	
E	19	0.0145	8 0	.02548			(_*)
Н	8	0.0062	50	.00876	(*)	
					+	+		-+	+	+	
				-	-0.010	0.000	0	.010	0.0	20	

Kruskal-Wallis Test: Color versus Event/Historical

Kruskal-Wallis Test on Color

Event/Historical N Median Ave Rank Z E 19 11.00 15.1 1.12 H 8 10.50 11.4 -1.12 Overall 27 14.0 H = 1.24 DF = 1 P = 0.265 H = 1.26 DF = 1 P = 0.262 (adjusted for ties)

Kruskal-Wallis Test: TDS versus Event/Historical

Kruskal-Wallis Test on TDS

Event/Historical N Median Ave Rank Z E 19 188.0 14.4 0.40 H 8 197.5 13.1 -0.40 Overall 27 14.0 H = 0.16 DF = 1 P = 0.690 H = 0.16 DF = 1 P = 0.690 (adjusted for ties)

Kruskal-Wallis Test: pH versus Event/Historical

Kruskal-Wallis Test on pH

Event/Historical N Median Ave Rank Z E 19 8.170 13.1 -0.90 H 8 8.245 16.1 0.90 Overall 27 14.0 H = 0.81 DF = 1 P = 0.367 H = 0.82 DF = 1 P = 0.366 (adjusted for ties)

Kruskal-Wallis Test: Turbidity versus Event/Historical

Kruskal-Wallis Test on Turbidity

Event/Historical N Median Ave Rank Z E 19 0.7000 17.3 3.35 H 8 0.2000 6.1 -3.35 Overall 27 14.0 H = 11.19 DF = 1 P = 0.001 H = 11.27 DF = 1 P = 0.001 (adjusted for ties)

Kruskal-Wallis Test: DOC versus Event/Historical

24 cases were used 3 cases contained missing values

Kruskal-Wallis Test on DOC

Event/Historical E H Overall	N 19 5 24	Median 2.900 2.100	Ave Rank 13.1 10.2 12.5	Z 0.82 -0.82
H = 0.67 DF = 1 H = 0.67 DF = 1	P = P =	0.414 0.413	(adjusted	for ties)

Kruskal-Wallis Test: Iron versus Event/Historical

Kruskal-Wallis Test on Iron

Event/Historical	Ν	Median	Ave	Rank	Z
E	19	0.000000000		13.6	-0.42
Н	8	0.002500000		15.0	0.42
Overall	27			14.0	

Е/Н	Color	TDS	pН	Turb.	DOC	Iron
Н	10.0	170	7.96	0.20	*	0.020
Н	11.0	160	8.26	0.17	*	0.020
Н	15.0	195	8.00	0.02	*	0.005
Н	10.0	200	8.25	0.12	3.6	0.005
Н	12.0	200	8.20	0.40	2.1	0.000
Н	9.0	161	8.55	0.20	2.2	0.000
Н	6.0	220	8.28	0.40	1.7	0.000
Н	12.0	204	8.24	0.20	1.9	0.000
Ε	11.0	160	8.16	0.24	1.7	0.000
Ε	10.0	180	8.00	0.81	2.0	0.058
Ε	16.0	180	8.09	2.10	3.2	0.053
Ε	21.0	180	8.06	0.64	3.7	0.000
E	17.0	140	7.92	1.10	2.9	0.066
Ε	9.2	170	8.09	0.37	2.1	0.000
E	8.1	180	8.05	1.00	2.3	0.000
E	32.0	188	8.33	1.90	2.5	0.000
Ε	11.0	184	8.24	0.60	3.0	0.000
E	11.0	176	8.13	0.50	3.1	0.000
Ε	11.0	204	8.22	0.20	2.9	0.000
E	12.0	193	8.26	0.20	1.9	0.000
Ε	9.0	209	8.23	0.50	1.2	0.000
E	8.0	213	8.20	0.30	1.9	0.000
Ε	19.0	212	8.14	1.80	4.6	0.000
Ε	9.0	206	8.17	0.70	1.5	0.000
Ε	16.0	221	8.34	0.70	3.2	0.000
E	22.0	213	8.23	1.40	4.5	0.060
Ε	14.0	209	8.34	2.40	3.4	0.040

Meadows Event Bases Sample Data

——— 1/26/2021 3:03:41 PM -

Welcome to Minitab, press F1 for help.

One-way ANOVA: Color versus Event/Historical

 Source
 DF
 SS
 MS
 F
 P

 Event/Historical
 1
 16.4
 16.4
 0.60
 0.446

 Error
 25
 682.6
 27.3

 Total
 26
 699.0

 S = 5.225
 R-Sq = 2.34%
 R-Sq(adj) = 0.00%

				Individu Pooled S	ual 95% StDev	CIs	For	Mean	Based	on	
Level	Ν	Mean	StDev	+	+			+	+	+	
E	12	15.833	6.206		(*				-)
Н	15	14.267	4.301	(*			-)		
				12.0	14.0		16.	0	18.0)	

Pooled StDev = 5.225

One-way ANOVA: TDS versus Event/Historical

Source	DF	SS	MS	F	P
Event/Historical	1	311.3	311.3	10.01	0.004
Error	25	777.7	31.1		
Total	26	1089.0			

S = 5.577 R-Sq = 28.59% R-Sq(adj) = 25.73%

				Individual Pooled StDe	95% CIs ev	For Mean	Based on
Level E H	N 12 15	Mean 42.833 36.000	StDev 3.129 6.918	(*-)	(-*)
				35.0	38.5	42.0	+ 45.5

Pooled StDev = 5.577

One-way ANOVA: pH versus Event/Historical

	+	+	
6.75	7.00	7.25	7.50

One-way ANOVA: Turbidity versus Event/Historical

Source			DF	SS	MS	F	P		
Event/1 Error	Hist	orical	1 0.4	211 354	0.4211	6.44	0.018		
Total			26 2.0	565	0.0004				
S = 0.1	2558	R-Sq	= 20.48	00	R-Sq(adj) = 17	.30%		
				Ir Po	ndividual poled StDe	95% C. ev	Is For	Mean Bas	ed on
Level	N	Mean	StDev				+		+
E	12	0.7500	0.3000				(*)
Н	15	0.4987	0.2147	(-	*) +	+	
					0.45	0.	60	0.75	0.90

Pooled StDev = 0.2558

One-way ANOVA: DOC versus Event/Historical

Source	DF	SS	MS	F	P	
Event/Historical	1	3.920	3.920	6.83	0.016	
Error	22	12.619	0.574			
Total	23	16.540				

S = 0.7574 R-Sq = 23.70% R-Sq(adj) = 20.24%

				Individual Pooled StD	95% CI ev	s For Mean	Based on
Level E	N 12	Mean 4 6833	StDev 0 7196	+	+	+	
H	12	3.8750	0.7933	(*)	,
				3.50	4.00	4.50	5.00

Pooled StDev = 0.7574

One-way ANOVA: Iron versus Event/Historical

Source			DF	S	S	MS	F	P		
Event/	Hist	orical	1	0.0010	7 0	.00107	0.98	0.331		
Error			25	0.0272	5 0	.00109				
Total			26	0.0283	2					
S = 0.	0330	2 R-S	q =	3.78%	R-So	q(adj)	= 0.00) %		
					Ind: Pool	ividua led StI	1 95% (Dev	CIs For	Mean Based	on
Level	Ν	Mea	n	StDev		+		+		+-
E	12	0.0633	3 (0.03172		(*)
Н	15	0.0506	7 (0.03400	(*		-)	
						+		+	+	+-
						0.04	45	0.060	0.075	0.090

Kruskal-Wallis Test: Color versus Event/Historical

```
Kruskal-Wallis Test on Color
```

Event/Historical N Median Ave Rank Z E 12 15.50 15.4 0.81 H 15 15.00 12.9 -0.81 Overall 27 14.0 H = 0.65 DF = 1 P = 0.421 H = 0.65 DF = 1 P = 0.419 (adjusted for ties)

Kruskal-Wallis Test: TDS versus Event/Historical

```
Kruskal-Wallis Test on TDS
```

Event/Historical N Median Ave Rank Z E 12 42.00 19.7 3.32 H 15 37.00 9.5 -3.32 Overall 27 14.0 H = 11.01 DF = 1 P = 0.001 H = 11.10 DF = 1 P = 0.001 (adjusted for ties)

Kruskal-Wallis Test: pH versus Event/Historical

Kruskal-Wallis Test on pH

Event/Historical N Median Ave Rank Z E 12 7.295 19.2 3.03 H 15 6.830 9.9 -3.03 Overall 27 14.0 H = 9.15 DF = 1 P = 0.002 H = 9.16 DF = 1 P = 0.002 (adjusted for ties)

Kruskal-Wallis Test: Turbidity versus Event/Historical

Kruskal-Wallis Test on Turbidity

Event/Historical E H Overall	N 12 15 27	Median 0.7000 0.5000	Ave Rank 17.4 11.3 14.0	Z 1.98 -1.98
H = 3.91 DF = 1 H = 3.93 DF = 1	P = P =	0.048 0.047	(adjusted	for ties)

Kruskal-Wallis Test: DOC versus Event/Historical

24 cases were used 3 cases contained missing values

Kruskal-Wallis Test on DOC

Event/Historical E H Overall	N 12 12 24	Median 4.700 3.850	Ave Rank 15.8 9.2 12.5	Z 2.31 -2.31
H = 5.33 DF = 1 H = 5.35 DF = 1	P = P =	0.021 0.021	(adjusted	for ties)

Kruskal-Wallis Test: Iron versus Event/Historical

Kruskal-Wallis Test on Iron

Event/Historical	Ν	Median	Ave Rank	Z
E	12	0.06500	15.4	0.83
Н	15	0.06000	12.9	-0.83
Overall	27		14.0	

H = 0.69 DF = 1 P = 0.407 H = 0.69 DF = 1 P = 0.405 (adjusted for ties)

E/H	Color	TDS	pН	Turb.	DOC	Iron
Н	5	35	6.06	0.55	*	0.110
Н	20	37	6.66	0.38	*	0.080
Н	18	53	6.81	0.49	*	0.030
Н	10	40	6.99	0.10	2.5	0.091
Н	10	40	7.05	0.26	3.4	0.027
Н	16	24	6.11	0.60	3.8	0.070
Н	11	38	6.51	0.80	3.5	0.060
Н	18	38	6.65	0.70	5.5	0.060
Н	11	27	7.27	0.20	3.2	0.000
Н	13	30	7.11	0.40	4.0	0.070
Н	15	37	6.75	0.50	3.9	0.000
Н	21	39	6.83	0.60	3.9	0.050
Н	15	40	7.52	0.90	5.1	0.040
Н	15	30	7.22	0.48	3.7	0.000
Н	16	32	7.19	0.52	4.0	0.072
E	27	46	7.52	0.80	4.2	0.090
E	20	38	7.19	0.50	4.5	0.060
E	16	38	7.12	0.50	4.7	0.040
E	14	46	7.40	0.50	4.9	0.050
Ε	13	47	7.57	0.60	3.8	0.050
Ε	12	41	7.25	0.40	3.4	0.000
Е	13	42	6.87	0.90	4.4	0.070
Е	16	42	6.94	1.00	5.8	0.070
Е	15	47	7.88	0.40	4.7	0.030
E	22	43	7.31	1.20	4.9	0.110
E	20	42	7.32	1.10	5.0	0.100
E	2	42	7.28	1.10	5.9	0.090

Torbay Event Based Sample Data

——— 1/26/2021 2:46:46 PM ——-

Welcome to Minitab, press F1 for help.

One-way ANOVA: Color versus Event/Historical

Pooled StDev = 3.065

One-way ANOVA: TDS versus Event/Historical

 Source
 DF
 SS
 MS
 F
 P

 Event/Historical
 1
 3.9
 3.9
 0.11
 0.736

 Error
 43
 1458.1
 33.9
 33.9

 Total
 44
 1462.0
 33.9

S = 5.823 R-Sq = 0.27% R-Sq(adj) = 0.00%

				Individ Pooled	dual 95% StDev	CIs	For	Mean	Based	on
Level	Ν	Mean	StDev	+	+-			+	+	
E	16	34.063	6.169	(*)
Н	29	33.448	5.629	(*)	
				+	+-			+	+	
				31.5	33.0		34.	5	36.0)

Pooled StDev = 5.823

One-way ANOVA: pH versus Event/Historical

Source Event/Histo Error Total	orical	DF 1 1.00 42 2.63 43 3.63	SS MS 74 1.0074 25 0.0627 99	F 16.07	P 0.000	
S = 0.2504	R-Sq	= 27.68%	R-Sq(adj) = 25.	96%	
Level N E 16 H 28	Mean 6.6381 6.3236	StDev 0.2782 0.2335	Individual Pooled StD	95% CI	s For Mean Based or 	1 + -)

	+	+	+
6.30	6.45	6.60	6.75

One-way ANOVA: Turbidity versus Event/Historical

Source Event/H Error Total	Hist	orical	DF 1 1.0 43 8.4 44 9.5	SS 74 58 31	MS 1.074 0.197	F 5.46	P 0.024			
S = 0.4	4435	R-Sq	= 11.26	00	R-Sq(ac	łj) = 9	9.20%			
				In Po	dividua oled St	al 95% Dev	CIs For	Mean B	ased on	
Level	Ν	Mean	StDev	-	+	+		+	+	
E	16	0.8975	0.4982				(*_)	
Н	29	0.5748	0.4112		(*)			
					+	+		+	+	
				0.	40	0.60	0.	80	1.00	

Pooled StDev = 0.4435

One-way ANOVA: DOC versus Event/Historical

Source	DF	SS	MS	F	P
Event/Historical	1	0.693	0.693	1.31	0.260
Error	38	20.167	0.531		
Total	39	20.860			

S = 0.7285 R-Sq = 3.32% R-Sq(adj) = 0.78%

				Individual Pooled StD	95% CIs ev	For Mean	Based on
Level	Ν	Mean	StDev		+	+	+
E	16	2.9375	0.5439	(–		*)
H	24	2.6688	0.8270	(*)	
				2.50	2.75	3.00	3.25

Pooled StDev = 0.7285

One-way ANOVA: Iron versus Event/Historical

Source		Ι	ΟF	SS	М	S F	P		
Event/	Hist	orical	1 0.0	01975	0.00197	5 2.36	0.132		
Error		4	13 0.0	35997	0.00083	7			
Total		2	14 0.0	37972					
S = 0.	0289	3 R-Sq	= 5.20)% R−	Sq(adj)	= 3.00%			
				In Po	dividual oled StD	95% CIs ev	For Mean	Based on	
Level	Ν	Mean	StI)ev	+	+	+		
E	16	0.04488	0.040	64		(*)
Н	29	0.03103	0.020	02	(*)		
				0.	+	+ 0.030	0.040	0.050	

Kruskal-Wallis Test: Color versus Event/Historical

```
Kruskal-Wallis Test on Color
```

Event/Historical N Median Ave Rank Z E 16 7.700 15.9 -2.70 H 29 12.000 26.9 2.70 Overall 45 23.0 H = 7.31 DF = 1 P = 0.007 H = 7.38 DF = 1 P = 0.007 (adjusted for ties)

Kruskal-Wallis Test: TDS versus Event/Historical

```
Kruskal-Wallis Test on TDS
```

Event/Historical N Median Ave Rank Z E 16 35.50 23.8 0.32 H 29 33.00 22.5 -0.32 Overall 45 23.0 H = 0.10 DF = 1 P = 0.749 H = 0.10 DF = 1 P = 0.748 (adjusted for ties)

Kruskal-Wallis Test: pH versus Event/Historical

44 cases were used 1 cases contained missing values Kruskal-Wallis Test on pH Event/Historical N Median Ave Rank Z E 16 6.665 31.2 3.38 H 28 6.275 17.6 -3.38 Overall 44 22.5 H = 11.42 DF = 1 P = 0.001 H = 11.43 DF = 1 P = 0.001 (adjusted for ties)

Kruskal-Wallis Test: Turbidity versus Event/Historical

Kruskal-Wallis Test on TurbidityEvent/HistoricalNMedianAveRankZE160.715029.12.30H290.400019.7-2.30Overall4523.0H= 5.29DF = 1P = 0.021H = 5.30DF = 1P = 0.021(adjusted for ties)

Kruskal-Wallis Test: DOC versus Event/Historical

40 cases were used 5 cases contained missing values Kruskal-Wallis Test on DOC

Event/Historical	Ν	Median	Ave Rank	Z
E	16	2.950	22.5	0.87
Н	24	2.800	19.2	-0.87
Overall	40		20.5	
H = 0.76 DF = 1 H = 0.76 DF = 1	P = P =	0.384 0.383	(adjusted	for ties)

Kruskal-Wallis Test: Iron versus Event/Historical

Kruskal-Wallis Test on Iron

Event/Historical E H Overall	N 16 29 45	Median 0.04500 0.03000	Ave Rank Z 25.1 0.78 21.9 -0.78 23.0
H = 0.61 DF = 1	P =	0.434	(adjusted for ties)
H = 0.62 DF = 1	P =	0.432	

E/H	Color	TDS	pН	Turb.	DOC	Iron
Н	15.0	40	6.20	0.30	*	0.060
Н	13.0	30	6.23	0.22	*	0.040
Н	15.0	50	6.16	0.17	*	0.010
Н	10.0	33	6.52	0.85	*	0.050
Н	14.0	32	6.36	0.26	*	0.030
Н	13.0	37	6.25	0.33	1.80	0.005
Н	14.0	35	6.32	0.24	2.60	0.020
Н	5.0	40	6.28	0.80	2.90	0.043
Н	10.0	30	6.35	0.80	3.40	0.039
Н	5.0	30	7.10	0.20	2.70	0.028
Н	11.0	36	6.45	1.30	1.90	0.030
Н	17.0	32	*	0.32	2.90	0.020
Н	12.0	38	6.23	0.47	3.00	0.005
Н	13.0	30	6.01	0.27	2.90	0.020
Н	14.0	28	6.43	0.83	3.10	0.030
Н	11.0	31	6.24	0.36	0.25	0.010
Н	11.0	29	6.32	0.16	1.10	0.005
Н	9.0	30	6.53	0.22	2.60	0.005
Н	15.0	30	6.27	0.30	2.20	0.010
Н	13.0	28	6.26	0.07	2.40	0.010
Н	9.0	36	6.50	0.40	3.60	0.030
Н	11.0	40	6.22	0.60	2.40	0.050
Н	12.0	36	5.91	1.10	3.60	0.080
Н	8.0	33	6.38	1.70	3.30	0.040
Н	7.0	34	6.04	1.10	3.30	0.060
Н	13.0	23	6.44	0.90	2.70	0.050
Н	17.0	23	6.09	1.00	4.10	0.060
Н	8.0	40	6.77	1.00	2.90	0.030
Н	10.0	36	6.20	0.40	2.40	0.030
Е	8.3	27	6.66	0.99	2.10	0.000
Е	5.6	28	6.32	0.83	2.50	0.059
E	7.1	31	6.89	0.73	2.50	0.000
Е	13.0	27	6.19	1.10	3.20	0.082
Е	15.0	29	6.52	0.68	3.30	0.110

13.0	25	6.65	0.77	3.80	0.130
9.2	27	6.39	0.56	2.90	0.067
10.0	36	6.25	0.70	3.20	0.050
10.0	38	6.71	0.60	3.30	0.000
7.0	42	7.03	0.60	2.20	0.030
7.0	38	6.38	0.50	3.90	0.030
5.0	42	6.67	1.60	2.90	0.050
7.0	40	6.74	2.40	3.30	0.070
7.0	35	7.14	0.60	2.20	0.000
6.0	40	6.80	0.50	3.00	0.000
10.0	40	6.87	1.20	2.70	0.040
	13.0 9.2 10.0 7.0 7.0 5.0 7.0 7.0 6.0 10.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$