

Real-Time Water Quality Deployment Report

Paddy's Pond at Outlet

August 24, 2023 to September 22, 2023

Government of Newfoundland & Labrador Department of Environment and Climate Change Water Resources Management Division St. John's, NL, A1B 4J6 Canada

CONTENTS

GENERAL	3
MAINTENANCE AND CALIBRATION OF INSTRUMENT	3
DATA INTERPRETATION	5
WATER TEMPERATURE	5
РН	7
Specific Conductivity	8
DISSOLVED OXYGEN	10
TURBIDITY	11
APPENDIX A : MEAN DAILY TEMPERATURE AND TOTAL PRECIPITATION	13
APPENDIX B : QA/QC GRAB SAMPLE FIELD RESULTS	15

General

The Department of Environment and Climate Change, Water Resources Management Division staff monitor water quality in real-time at Paddy's Pond at outlet to Three Arm Pond (47.488129N, 52.893809W).

Due to timing issues and communication failure, data transmission was lost on September 14, 2023, at 07:30 and continued log file issues were observed. As a result, no data collection, interpretation, or statistical analysis could be completed from September 14, 2023, to September 22, 2023.

Figure 1: Paddy's Pond at Outlet Real-Time Water Quality Station location

Maintenance and Calibration of Instrument

As part of the Quality Assurance and Quality Control protocol (QAQC), an assessment of the reliability of data recorded by an instrument is made at the beginning and end of the deployment period. The procedure is based on the approach used by the United States Geological Survey.

Upon deployment, a QA/QC Sonde is temporarily deployed *in situ*, adjacent to the Field Sonde. Depending on the degree of difference between each parameter from the Field and QA/QC sondes, a qualitative rank is assigned (See Table 1). The possible ranks, from most to least

desirable, are Excellent, Good, Fair, Marginal, and Poor. A grab sample is also taken for additional confirmation of conditions at deployment and to allow for future modelling studies.

Parameter	Excellent	Good	Fair	Marginal	Poor
Temperature (°C)	<=+/-0.2	>+/-0.2 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	<+/-1
pH (unit)	<=+/-0.2	>+/-0.2 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	>+/-1
Sp. Conductance (µS/cm)	<=+/-3	>+/-3 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20
Sp. Conductance > 35 μS/cm (%)	<=+/-3	>+/-3 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20
Dissolved Oxygen (mg/L) (% Sat)	<=+/-0.3	>+/-0.3 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	>+/-1
Turbidity <40 NTU (NTU)	<=+/-2	>+/-2 to 5	>+/-5 to 8	>+/-8 to 10	>+/-10
Turbidity > 40 NTU (%)	<=+/-5	>+/-5 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20

Table 1: Ranking classifications for deployment and removal

At the end of a deployment period, a freshly cleaned and calibrated QA/QC Sonde is placed *in situ*, adjacent to the Field Sonde. Deployment and removal comparison rankings for the station at Paddy's Pond deployed from August 24, 2023, to September 22, 2023, are summarized in Table 2.

Table 2: Qualitative QA/QC comparison rankings for Paddy's Pond at outlet station August 24, 2023through September 22, 2023.

				Comparison Ranking						
Station	Date	Action	on Temperature		Conductivity	Dissolved Oxygen	Turbidity			
	2023-08-24	Deployment	Good	Poor	Fair	Excellent	Excellent			
Paddy's Pond at Outlet	2023-08-24	Grab Sample #2023-1713-00-SI-SP	N/A	Fair	Marginal	N/A	Excellent			
	2023-09-22	Removal	Good	Good	Good	Excellent	Excellent			

- On August 24, 2023, a real-time water quality monitoring instrument was deployed at the station Paddy's Pond at Outlet. The instrument was deployed for a period of 29 days and was removed on September 22, 2023, due to data transmission issues.
- Comparison rankings between the Quality Assurance/Quality Control (QAQC) instrument and the field instrument at Paddy's Pond outlet on August 24, 2023, reveal alignment in some parameters but discrepancies in others. Both instruments agree on temperature, dissolved oxygen, and turbidity, ranking them as 'Good' or 'Excellent', indicating accurate and reliable measurements. However, there are disparities in pH and conductivity rankings, with the field instrument showing a 'Poor' ranking for pH and a 'Fair' ranking for

conductivity. Given the 'Fair' comparison ranking for pH between grab sample (#2023-1713-00-SI-SP) and the field sonde, this indicates the likelihood that insufficient time to acclimate to existing water conditions was provided to the QAQC instrument. Grab sample comparison rankings were also provided for conductivity and turbidity as 'Marginal' and 'Excellent' respectively.

 At the time of removal, the field instrument ranked 'Excellent' for dissolved oxygen and turbidity, indicating consistent measurements, as well as 'Good' for temperature, pH and conductivity.

DATA INTERPRETATION

The following graphs and discussion illustrate water quality data obtained hourly from August 24, 2023, through September 14, 2023 at Paddy's Pond at outlet to Three Arm Pond, St. John's, NL. Data from September 14 to 22 is not available.

Stage is not monitored at this station to date and as such cannot be discussed with respect to other monitored water quality parameters. All data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol.

Mean daily temperature and total precipitation data was obtained from the Department of Environment and Climate Change Canada (ECCC) historical weather data at <u>https://climate.weather.gc.ca/historical data/search historic data e.html</u> and can be found illustrated in Appendix A. Gaps in available daily data were removed for graphing purposes.

Water Temperature

- Water Temperature is a major factor used to describe water quality. Temperature has major implications on both the ecology and chemistry of a water body, governing processes such as the metabolic rate of aquatic plants and animals and the degree of dissolved oxygen saturation.
- It should be noted that the temperature sensor on any sonde is the most important. All other parameters can be broken down into three groups: temperature dependent, temperature compensated and temperature independent. As the temperature sensor is not isolated from the rest of the sonde, the entire sonde must be at the same temperature before the sensor will stabilize. The values may take some time to climb to the appropriate reading; if a reading is taken too soon it may not accurately portray the water body.

Figure 2: Water temperature (°C) values at Paddy's Pond at Outlet.

- Over the 29-day deployment period, water temperature fluctuated naturally in correlation to air temperature. The mean temperature was 19.73°C with a median of 19.60°C suggests that the majority of temperature readings cluster around this value.
- Minimum water temperature of 18.07°C was observed on September 3, 2023, and a maximum water temperature of 22.01°C was observed on September 10, 2023 (Figure 2).
- Water temperature remained stable during the deployment with a minimal increasing trend in correlation to summer air temperatures.
- A distinctive natural diurnal variation pattern in water temperature was observed. This
 pattern was characterized by significant fluctuations between daytime and nighttime
 temperatures, as expected during the summer season. Daytime temperatures typically rose
 due to solar radiation and warm air temperatures, while nighttime temperatures tended to
 decrease as heat dissipated into the atmosphere. These diurnal variations reflect the dynamic

interplay between solar heating, atmospheric conditions, and water body characteristics, contributing to the overall thermal dynamics of the aquatic environment.

рΗ

- pH is used to give an indication of the acidity or basicity of a solution. A pH of seven (7) denotes a neutral solution while lower values are acidic and higher values are basic. Technically, the pH of a solution indicates the availability of protons to react with molecules dissolved in water. Such reactions can affect how molecules function chemically and metabolically.
- pH values are temperature dependant as well as influenced by photosynthesis and respiration by aquatic organisms. The concentration of dissolved carbon dioxide in the water throughout the day, especially overnight when oxygen production is reduced relative to carbon dioxide levels. Carbon dioxide dissolved in water yields a slightly acidic solution.

Figure 3: pH (pH units) at Paddy's Pond at outlet from August 24, 2023, through September 14, 2023.

- Throughout the deployment period, the pH value trend (shown in red) was uniform, however minimal variability within 6.39 to 7.08 pH units was observed during peak day-time pH levels. A mean unit value of 6.63 and median of 6.61 units (Figure 3) was determined through statistical analysis.
- Most pH values were near or above the CCME Protection of Aquatic Life minimum pH guideline of 6.5 units and below the maximum pH CCME Protection of Aquatic Life guideline (horizontal dashed lines). It must be noted that these are national guidelines and do not reflect the peculiarities of Newfoundland geology. This guideline provides a basis for the overall health of the waterbody. Paddy's Pond at Outlet pH values were slightly below the minimum guideline but historically typical for this waterbody. Other pH reducing influences include lower water temperatures and the addition of more acidic rainwater and/or snowmelt runoff during precipitation events. (See Figure 7 Appendix A).
- Diurnal variation pattern was visible throughout the deployment period. The magnitude of variation correlates to daily water temperature range, length of days and fluctuations in photosynthesis and respiration rates. Inconsistencies to the diurnal variation pattern, as seen on August 31-Septmeber 2, 2023, September 9, 2023, and September 12-14, 2023, is likely the result of an increase in precipitation events as seen in Appendix A Figure 7. The addition of cool precipitation can decrease water temperature, lowering the concentration of dissolved ions and specific conductivity.

Specific Conductivity

Conductivity relates to the ease of passing an electric charge – or resistance – through a solution. Conductivity is highly influenced by the concentration of dissolved ions in solution: distilled water has zero conductivity (infinite resistance) while salty solutions have high conductivity (low resistance). Specific Conductivity is corrected to 25°C to allow comparison across variable temperatures.

Figure 4: Specific Conductivity (µS/cm) values at Paddy's Pond at Outlet.

- Conductivity remained stable during the deployment period, with a slight dip between September 1-6, 2023, and September 13, 2023, in correlation with a decrease in water temperature and precipitation events (Figure 7 in Appendix A).
- Inconsistencies to the diurnal variation pattern, as seen on August 31, 2023, September 7-8, 2023, and September 12, 2023, are likely the result of an increase in precipitation events as seen in Appendix A Figure 7. The addition of cool precipitation can decrease water temperature, lowering the concentration of dissolved ions and specific conductivity.
- Given the isolated station location, sources of disturbances that may affect conductivity are considered minimal.
- The calculated Total Dissolved Solids (TDS) value was consistent at 0.0600 g/L throughout the deployment period.

Dissolved Oxygen

Dissolved oxygen is a metabolic requirement of aquatic plants and animals. The concentration of oxygen in water depends on many factors, especially temperature – the saturation of oxygen in water is inversely proportional to water temperature. Oxygen concentrations also tend to be higher in flowing water compared to still, lake environments. Low oxygen concentrations can give an indication of excessive decomposition of organic matter or the presence of oxidizing materials.

Figure 5: Dissolved Oxygen (mg/L & Percent (%) Saturation) values at Paddy's Pond at Outlet.

 In correlation with increasing water temperatures, dissolved oxygen (DO) concentrations (mg/L) had a uniform and stable trend throughout the 29-day deployment period. A maximum DO of 9.64 mg/L (107.0 %Sat) to a minimum DO of 8.16 mg/L (88.1 %Sat) were observed. Dissolved oxygen (% Saturation) readings of greater than 100% air saturation can occur in ambient water because of the production of pure oxygen by photosyntheticallyactive organisms and/or because of non-ideal equilibration of dissolved oxygen between the water and the air above it.

- A consistent diurnal variation pattern was observed throughout the deployment period due to temperature ranges from day to night. Variations can be influenced by water depth during deployment as shallow water temperatures will change more rapidly, especially in a lake environment such as Paddy's Pond. As well as linked to the daily range of water temperature, duration of daylight, and fluctuations in rates of photosynthesis and respiration.
- The dissolved oxygen values were at and below the CCME Guideline for the Protection of Early Life Stages (9.5 mg/L) and remained above the CCME Guideline for the Protection of Other Life Stages (6.5mg/L) for the entire deployment period.

Turbidity

 Turbidity is typically caused by fine suspended solids such as silt, clay, or organic material. Consistently high levels of turbidity tend to block sunlight penetration into a waterbody, discouraging plant growth. High turbidity can also damage the delicate respiratory organs of aquatic animals and cover spawning areas.

Mean	Median	Min	Max
0.3	0.3	0.1	5.1

Figure 6: Water turbidity (NTU) values at Paddy's Pond at Outlet during deployment period through August 24, 2023, to September 14, 2023.

- Turbidity values range from 0.1 to 5.1 NTU, with a mean of 0.3 NTU and a median value of 0.3 NTU (Figure 6).
- Turbidity measurements throughout the deployment period indicated very low turbidity. This is consistent with historical data for this location.
- Turbidity spikes above the baseline, as seen on September 7, 2023 (5.1 NTU), are likely the result of a precipitation events (Figure 7 – Appendix A).

APPENDIX A : MEAN DAILY TEMPERATURE AND TOTAL PRECIPITATION

Figure 7: Mean daily air temperature and total precipitation at St. John's West near Paddy's Pond August 24, 2023 to September 14, 2023.

APPENDIX B : QA/QC GRAB SAMPLE FIELD RESULTS

Your P.O. #: 220028978-9 Site Location: PADDY'S POND @ OUTLET Your C.O.C. #: n/a, 2023-1713-00-SI-SP

Attention: Robert Richard Harvey

NL Department of Environment, Climate Change and Municipalities Water Resources PO Box 8700 St. John's, NL CANADA A1B 4J6

> Report Date: 2023/09/13 Report #: R7809500 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3Q2868

Received: 2023/08/25, 10:01

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2023/09/11	ATL SOP 00142	SM 24 2320 B
Anions (1)	1	N/A	2023/09/05	CAM SOP-00435	SM 23 4110 B m
Colour	1	N/A	2023/09/12	ATL SOP 00020	SM 24 2120C m
Organic carbon - Diss (DOC) (2)	1	N/A	2023/09/09	ATL SOP 00203	SM 24 5310B m
Conductance - water	1	N/A	2023/09/11	ATL SOP 00004	SM 24 2510B m
Fluoride	1	N/A	2023/09/11	ATL SOP 00043	SM 24 4500-F- C m
Hardness (calculated as CaCO3)	1	N/A	2023/09/12	ATL SOP 00048	Auto Calc
Mercury - Total (CVAA,LL)	1	2023/09/08	2023/09/11	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Total MS	1	2023/09/05	2023/09/07	ATL SOP 00058	EPA 6020B R2 m
Nitrogen Ammonia - water	1	N/A	2023/09/11	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	1	N/A	2023/09/12	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	1	N/A	2023/09/12	ATL SOP 00017	SM 24 4500-NO2- B m
Nitrogen - Nitrate (as N)	1	N/A	2023/09/13	ATL SOP 00018	ASTM D3867-16
рН (3)	1	N/A	2023/09/11	ATL SOP 00003	SM 24 4500-H+ B m
Calculated TDS (DW Pkg)	1	N/A	2023/09/12	N/A	Auto Calc
Total Kjeldahl Nitrogen in Water (1)	1	2023/09/01	2023/09/07	CAM SOP-00938	OMOE E3516 m
Organic carbon - Total (TOC) (2)	1	N/A	2023/09/01	ATL SOP 00203	SM 24 5310B m
Total Phosphorus (Colourimetric) (1)	1	2023/09/01	2023/09/05	CAM SOP-00407	SM 23 4500-P I
Total Suspended Solids	1	2023/08/31	2023/09/01	ATL SOP 00007	SM 24 2540D m
Turbidity	1	N/A	2023/09/08	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

(2) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

(3) The APHA Standard Method requires pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

Your P.O. #: 220028978-9 Site Location: PADDY'S POND @ OUTLET Your C.O.C. #: n/a, 2023-1713-00-SI-SP

Attention: Robert Richard Harvey

NL Department of Environment, Climate Change and Municipalities Water Resources PO Box 8700 St. John's, NL CANADA A1B 4J6

> Report Date: 2023/09/13 Report #: R7809500 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3Q2868 Received: 2023/08/25, 10:01

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Gemarie Balatico, Project Manager Email: Gemarie.Balatico@bureauveritas.com Phone# (905)817-5787

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Suzanne Rogers, General Manager responsible for Nova Scotia Environmental laboratory operations.

Sample Details/Parameters	MAC	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
WVC287 PADDY'S POND @ OUTLET								
Sampling Date 2023/08/24 12:40								
Sample # 2023-1713-00-SI-SP								
Registration # SA-0000								
RESULTS OF ANALYSES OF WATER								
Calculated Parameters								
Hardness (CaCO3)	-	9.1	1.0	mg/L	N/A	2023/09/12		8882777
Nitrate (N)	10	0.055	0.050	mg/L	N/A	2023/09/13		8882780
Total dissolved solids (calc., EC)	-	55	1.0	mg/L	N/A	2023/09/12		8882954
Inorganics								
Conductivity	-	99	1.0	uS/cm	N/A	2023/09/11	LJV	8907514
Chloride (Cl-)	-	24	1.0	mg/L	N/A	2023/09/05	LKH	8890928
Bromide (Br-)	-	ND	1.0	mg/L	N/A	2023/09/05	LKH	8890928
Sulphate (SO4)	-	2.6	1.0	mg/L	N/A	2023/09/05	LKH	8890928
Total Alkalinity (Total as CaCO3)		5.1	2.0	mg/L	N/A	2023/09/11	LJV	8907515
Colour	-	16	5.0	TCU	N/A	2023/09/12	MCN	8911062
Dissolved Fluoride (F-)	1.5	ND	0.10	mg/L	N/A	2023/09/11	LJV	8907516
Total Kjeldahl Nitrogen (TKN)	-	0.19	0.10	mg/L	2023/09/01	2023/09/07	KJP	8893408
Nitrate + Nitrite (N)	-	0.055	0.050	mg/L	N/A	2023/09/12	MCN	8911058
Nitrite (N)	1	ND	0.010	mg/L	N/A	2023/09/12	MCN	8910190
Nitrogen (Ammonia Nitrogen)	-	0.058	0.050	mg/L	N/A	2023/09/11	HGV	8908169
Dissolved Organic Carbon (C)	-	3.9	0.50	mg/L	N/A	2023/09/09	АСК	8904541
Total Organic Carbon (C)	-	3.7	0.50	mg/L	N/A	2023/09/01	АСК	8891751
рН		6.60		рН	N/A	2023/09/11	LJV	8907513
Total Phosphorus	-	0.007	0.004	mg/L	2023/09/01	2023/09/05	SPC	8892341
Total Suspended Solids		3.6	2.0	mg/L	2023/08/31	2023/09/01	ZZH	8888790
Turbidity		0.62	0.10	NTU	N/A	2023/09/08	LJV	8903745
MERCURY BY COLD VAPOUR AA (WATER)								
Metals								
Total Mercury (Hg)	0.001	ND	0.000013	mg/L	2023/09/08	2023/09/11	SGK	8904082

MAC: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, Septemeber 2022

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

If Screening Levels (SL) for gross alpha or gross beta are exceeded then concentration of the specific radionuclides of the CWQG should be analyzed.

Note 1 Turbidity guideline value of 0.3 NTU based on conventional treatment system. For slow sand or diatomaceous earth filtration 1.0 NTU and for membrane filtration 0.1 NTU.

Note 2 Aluminum guideline value of 0.1 mg/L is for treatment plants using aluminum-based coagulants, 0.2mg/L applies to other types of treatment systems.

Malathion updated January 24, 2023

Sample Details/Parameters		Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
WVC287 PADDY'S POND @ OUTLET								
Sampling Date 2023/08/24 12:40								
Matrix W								
Sample # 2023-1/13-00-SI-SP								
REGISTRATION # SA-0000								
ELEIVIENTS BY ICP/IVIS (WATER)								
Total Aluminum (AI)	20	0.083	0.0050	mg/l	2022/00/05	2022/00/07	MT7	8805860
	2.5	0.005	0.0050	mg/L	2023/09/05	2023/09/07	NAT7	0005000
	0.000		0.0010	111g/L	2023/09/05	2023/09/07		0005009
	0.010		0.0010	mg/L	2023/09/05	2023/09/07	IVI I Z	8895869
Total Barium (Ba)	2.0	0.0030	0.0010	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Boron (B)	5	ND	0.050	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Cadmium (Cd)	0.007	ND	0.000010	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Calcium (Ca)	-	2.5	0.10	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Chromium (Cr)	0.05	ND	0.0010	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Copper (Cu)	2	0.00060	0.00050	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Iron (Fe)	-	0.17	0.050	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Lead (Pb)	0.005	ND	0.00050	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Magnesium (Mg)	-	0.69	0.10	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Manganese (Mn)	0.12	0.15(1)	0.0020	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Nickel (Ni)	-	ND	0.0020	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Phosphorus (P)	-	ND	0.10	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Potassium (K)	-	0.43	0.10	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Selenium (Se)	0.05	ND	0.00050	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Sodium (Na)	-	13	0.10	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Strontium (Sr)	7.0	0.0083	0.0020	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Uranium (U)	0.02	ND	0.00010	mg/L	2023/09/05	2023/09/07	MTZ	8895869
Total Zinc (Zn)	-	ND	0.0050	mg/L	2023/09/05	2023/09/07	MTZ	8895869

(1) POTENTIAL EXCEEDANCE FOR PARAMETER

MAC: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, Septemeber 2022

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

If Screening Levels (SL) for gross alpha or gross beta are exceeded then concentration of the specific radionuclides of the CWQG should be analyzed.

Note 1 Turbidity guideline value of 0.3 NTU based on conventional treatment system. For slow sand or diatomaceous earth filtration 1.0 NTU and for membrane filtration 0.1 NTU.

Note 2 Aluminum guideline value of 0.1 mg/L is for treatment plants using aluminum-based coagulants, 0.2mg/L applies to other types of treatment systems.

Malathion updated January 24, 2023

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	18.0°C	
Result	s relate only to th	e items tested.	

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Colleen Acker, B.Sc, Scientific Service Specialist

Khyno

Janah Rhyno, Scientific Specialist

Mike Wee Sell

Mike MacGillivray, Scientific Specialist (Inorganics)

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.