

GEMTEC Project: 10550.04.01 (Final)

Submitted to:

Defence Construction Canada 180 Kent Street, 14th Floor Ottawa, Ontario K1P 0B6

Step 3 Initial Testing Program and Site 4 Site Classification Former Pinetree Line Radar Station Cut Throat Island

> DCC Project Number: NL17AS01 Contract Number: 65745

> > November 23, 2018

GEMTEC Project: 10550.04.01 (Final)

GEMTEC Consulting Engineers and Scientists Limited
191 Doak Road
Fredericton, NB, Canada
E3C 2E6

November 23, 2018 File: 10550.04.01 (Final)

Defence Construction Canada 180 Kent Street, 14th floor Ottawa, Ontario K1P 0B6

Attention: Maria Drake, Regional Service Line Leader, Environmental Services

Re: Final Report: Step 3 Initial Testing Program and Site 4 Site Classification, Former Pine Tree Line Radar Station, Cut Throat Island, Labrador DCC Project Number: NL17AS01, Contract Number 65745

Please find enclosed the Final Report: Step 3 Initial Testing Program and Site 4 Site Classification, Former Pine Tree Line Radar Station, Cut Throat Island, Labrador DCC Project Number: NL17AS01, Contract Number 65745.

If you have any questions regarding the contents of this report, please do not hesitate to contact the undersigned at (506) 453-1025 or via email at abigail.garnett@gemtec.ca. This report was prepared by Melanie Langille, M.Env.Sc. and Shaun Pelkey, and reviewed by Abigail Garnett, M.Sc.Eng., P.Eng. and Steve Livingstone, M.Sc., P.Geo. on behalf of GEMTEC Consulting Engineers and Scientists Limited.

Melanie Langille, M.Env.Sc. Environmental Scientist

Abigail Garnett, M.Sc.Eng., P.Eng. Senior Environmental Engineer

EXECUTIVE SUMMARY

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Defence Construction Canada (DCC) to conduct a Federal Approach to Contaminated Sites (FACS) Step 3 Initial Testing Program and a Step 4 Site Classification for a former United States Air Force (USAF) Pinetree Line Radar Station located on Cut Throat Island, Labrador (herein referred to as the "Site"). The objectives of the work were to complete Steps 3 and 4 of the FACS. Step 3 of the FACS involves an Initial Testing Program (also known as a Phase II Environmental Site Assessment (ESA)) and Step 4 of the FACS involves the completion of the Canadian Council of Ministers of the Environment (CCME) National Classification System for Contaminated Sites (NCSCS). The work was initiated based on the results of a FACS Step 2 Historical Review (also known as a Phase I ESA) in which potential contamination was identified based on historical activities at the Site (GHD, 2016). The objective of the work was to determine the presence/absence of impacts at the Site, and to determine a priority for action should impacts exist (NCSCS Classification).

The Site is a former manned Pinetree Line Gap Filler Radar Station for the United States Air Force (USAF) Cartwright Air Station, located on Cut Throat Island, Labrador. The Site was operated by the USAF between the mid-1950s and early 1960s. The Sites is identified as having an Upper Site and a Lower Site with approximately 1.5 kilometres of gravel roadway separating the two Sites. Diesel fuel was stored at both the Upper and Lower Sites in (approximately) 1,578,000 and 1,625,000 litre (L) aboveground storage tanks (ASTs), respectively, and an aboveground pipeline connected the two ASTs. Reportedly, a fuel pump house was also located at both the Upper and Lower Sites. Reportedly, fuel was also stored in portable ASTs and drums, in various locations across the Upper and Lower Sites.

While in operation, the Upper Site consisted of: a two-storey main building with an attached radar and radio tower (radome); a garage; a heating and power plant; a barracks (housing 25-50 personnel); an office building; and a dining hall.

The Upper Site also contained two communication antennae, catch basins, a water pumping station and supply lines (from a nearby freshwater lake), a disaster shack, a storage shed with an antenna, and a helicopter landing pad. A former USAF quarry and dump, used during Site operations, were reportedly located southeast of the Upper Site. During the Site reconnaissance completed as part of this assessment in September, 2017, a landfill was identified north of the helicopter landing pad. A dock was also reported to be located at the Lower Site. A seasonal community of fishing sheds is located near the Lower Site. Access to all areas of the Site is not restricted.

The following is a summary of the Step 3 Initial Testing Program and Site 4 Site Classification using the NCSCS:

APECS:

- Based on a document review, 15 preliminary Areas of Potential Environmental Concern (APECs) were identified for field investigation; and
- Following the completion of a Site Reconnaissance, the locations and chemicals of potential concern (COPCs) were adjusted for some APECs, as compared to what was proposed in the GEMTEC work plan, and an additional APEC (#6A, presumed landfill) was identified.

Field Program/Testing Program:

- A total of 66 surface soil (0-0.05 m) samples (including 5 field duplicates), 5 sediment samples and 5 surface water samples were collected from the Site in September, 2017; and
- Concentrations of COPCs were compared to the applicable Provincial (petroleum hydrocarbons (PHCs) only) and Federal screening levels. The regulatory framework includes residential guidelines for the Lower Site, due to the proximity of the Lower Site to a nearby seasonal community (fishing sheds) and commercial for the Upper Site, nongroundwater use/non-potable, and coarse-grained soil. Concentrations of COPCs were compared to the applicable ecological and human health guidelines.

Data Evaluation:

- Based on the results of the analytical program, the following were identified at concentrations exceeding the referenced screening levels:
 - Soil (Upper and Lower Site): PHCs, polycyclic aromatic hydrocarbons (PAHs) and metals;
 - Sediment (Upper Site): PHCs; and
 - Surface water (Upper Site): PHCs and metals;
- Asbestos containing debris (cement board, vinyl floor tiles, and mastic) was confirmed at the Site; and
- Delineation of the impacts has generally not been achieved based on the Initial Testing Program.

NCSCS Scoring and GIS Database:

- The calculated NCSCS score for the Site is 73.4. Based on this score, the Site is classified as Class 1, indicating a High priority for action; and
- The Department of National Defence (DND) Environmental Geospatial Information System (GIS) Data Template was updated with all data collected as part of this mandate.

Based on the results of this Step 3 Initial Testing Program and Step 4 Site Classification, preliminary estimates of the area and volume of impacted soil are provided in Table E.1.1, for each of the now confirmed APECs. Areas provided below include both human and ecological exceedances, when compared to both federal and provincial guidelines, and are considered preliminary estimates only, as delineation was not achieved during the Step 3 Initial Testing Program.

Table E.1.1 Estimated Area and Volume of Impacts

0	0070		Preliminary Estimates		
Sample ID	COPC	Matrix	Depth ¹	Area (m²)	Volume (m³)
APEC #1 (AS	Γ (Upper Site))				
BS_CT_02A	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	2200	110
APEC #2 (AS	Γ, Lower site)				
SS_CT_48, SS_CT_49	F2, F3, modified TPH	Soil	0.10	400	40
APEC #3 (Abo	oveground Fuel Line)				
SS_CT_15	F3, modified TPH	Soil	0.10	250	30
SS_CT_54	modified TPH	Soil	0.10	250	30
APEC #4 (USA	APEC #4 (USAF Quarry and Dump)				
SS_CT_41, SS_CT_42, SS_CT_44	nickel, chromium	Soil	0.10	1100	110
APEC #6 (198	APEC #6 (1987 Landfill/Bury Site)				
SS_CT_08	F3, F4	Soil	0.90	50	50
SS_CT_09	F4	Soil	0.90	150	140
APEC #6A (La	APEC #6A (Landfill/Bury Site)				
SS_CT_62, SS_CT_61, SS_CT_60	chromium, copper, nickel, F2, F3, F4, modified TPH	Soil	0.60	900	540

Table E.1.1 Estimated Area and Volume of Impacts

Comple ID	COPC	Matrix	Preliminary Estimates		
Sample ID	Sample ID COPC		Depth ¹	Area (m²)	Volume (m³)
APEC #8 (Wat	er Source)				
BS_CT_01C	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	400	20
SW_CT_02	aluminum, iron	Surface Water	0.50	150	80
300_01_02	modified TPH	Sediment	0.15	150	30
CW CT 02	aluminum, iron	Surface Water	0.50	250	130
SW_CT_03	modified TPH	Sediment	0.15	150	30
APEC #9 (Pun	APEC #9 (Pump House)				
BS_CT_01D	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	400	20
SS_CT_52, SS_CT_53	F3, modified TPH	Soil	0.10	200	20
APEC #10 (Ma	APEC #10 (Main Building and Motor Pool)				
BS_CT_01B	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	2,200	110
SS_CT_02, SS_CT_03	Several PAHs, arsenic, copper, chromium, lead, nickel, zinc,	Soil	0.10	500	50
SS_CT_01	Zinc	Soil	0.10	200	20
APEC #11 (Disaster Shack)					
BS_CT_01B	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	450	30
APEC #12 (Fo	rmer Storage Building)				
SS_CT_24	F4	Soil	0.10	100	10

Table E.1.1 Estimated Area and Volume of Impacts

Sample ID	COPC	Moteix	Pre	Preliminary Estimates	
Sample ID	COPC	Matrix	Depth ¹	Area (m²)	Volume (m³)
APEC #13 (Fo	ormer Catch Basin)				
SS_CT_26, SS_CT_27, SS_CT_28	F2, F3, modified TPH	Soil	0.30	600	180
APEC #14 (W	aterbody, northeast of the Heli	copter Pad)			
SW_CT_04	Copper, aluminum	Surface Water	0.50	250	130
APEC #15 (Waterbody, north of water source)					
SW_CT_01	aluminum, iron	Surface Water	0.50	200	100
Total Estimated Volume of Impacted Soil at the Site				1,220	
Total Estimated Volume of Asbestos/Soil Mixture				290	
Total Estimated Volume of Impacted Sediment at the Site			60		
Total Estimated Volume of Surface Water at the Site			440		

Notes

m = metres; $m^2 = square metres$; and $m^3 = cubic metres$

Based on the information gathered in the Step 3 Initial Testing Program and Step 4 Site Classification, and taking into consideration the anticipated land use (vacant, adjacent to seasonal community with no municipal infrastructure), a work plan is recommended to further delineate and characterize the APECs and to further refine and prioritize the contaminant risk.

¹⁾ Depth inferred on an APEC by APEC basis is based on observations made at the time of sampling; however, impacts were not delineated vertically during the Step 3 Initial Testing Program. These depths are estimates only. 2) Area estimates were determined on a number of factors presented in Section 7.3.5.

³⁾ Volume estimates are preliminary at this stage as delineation was not achieved during the Step 3 Initial Testing Program. As such, the presented volume estimates have been rounded up to the nearest 10 m³ (e.g., 22.5 is rounded to 30 m³).

⁴⁾ All estimates presented herein should be revised following completion of a Step 5 Detailed Testing Program.

The proposed next step is to close the data/information gaps by conducting a FACS Step 5 Detailed Testing Program and Step 6 Site Re-Classification using the CCME NCSCS of the FACS. The scope of a Detailed Testing Program could include the following:

- Additional data gathering including:
 - Interviews with seasonal fishermen/hunters (if possible) at Cut Throat Island, to determine the source of drinking water in the area (groundwater, surface water, and/or off-island source). As the USAF used surface water for drinking, current use of surface water for potable purposes has not been ruled out.
- Additional field data gathering including:
 - Supplemental background soil sampling to determine background conditions outside the influence of the former Site activities.
 - Collecting surface and subsurface (if applicable) soil samples, sediment samples, and surface water samples to delineate the extent of the identified contaminants;
 and
 - Geophysical survey of landfills (suspected and confirmed) to determine the volume of debris.
- Complete data analysis and evaluation:
 - Analysis of the degree of contamination on the Site (compare data to applicable pathway specific provincial and federal guidelines for human health and ecological health);
 - Refine/update the preliminary assessment of exposure pathways (Human Health and Ecological Conceptual Site Models (CSMs));
 - Update the DND Environmental GIS Data Template with all data collected as part of the mandate;
 - Determine the need for additional environmental site assessment and/or risk assessment work (if any); and
 - Identifying any management actions that may be necessary.
- Complete the FACS Step 6 Site Re-Classification using the CCME NCSCS.

A cost estimate to complete the Step 5 Detailed Testing Program and Step 6 Site Re-Classification is provided under separate cover. Actual costs to complete additional phases of work at the Site will be dictated by Site conditions, the scope of the programs completed, and market values (for professional fees, analytical testing and transportation) at the time the work is completed.

The statements made in this Executive Summary should be read in conjunction with the remainder of the report.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
1.0 INTRODUCTION	1
 1.1 Scope of Work 1.2 Previous Environmental Site Assessments 1.3 Background and Site Description 	2
2.0 DOCUMENT REVIEW	4
2.1 Geology and Hydrogeology	4
2.5 Environmentally Sensitive areas, Shallow Soil Conditions, Surface Water Bodies 2.6 Preliminary Identification of APECs	5
3.0 SITE DESCRIPTION	8
 3.1 Site Characterization 3.2 Contaminant Sources 3.3 Potential Receptors 3.3.1 Human Receptors 3.3.2 Ecological Receptors 	9 10
3.4 Exposure Pathways	10
4.0 APPLICABLE SCREENING LEVELS (REGULATORY FRAMEWORK)	14
 4.1 Rationale for Selected Screening Levels	15
5.0 SITE RECONNAISSANCE AND SITE CHARACTERISTICS	19
5.1 Aerial Observations	19 19
5.2.4 APEC #4: USAF Quarry and Dump	21 21

	5.2.7	APEC #6A: Landfill/Bury Site (Identified During the 2017 Site Reconnaissance)	
	5.2.8	APEC #9: Pure Have and Water Course	
	5.2.9	APEC #8: Pump House and Water Source	
	5.2.10	APEC #10: Main Building and Mater Book	
	5.2.11	APEC #11: Main Building and Motor Pool	
	5.2.12 5.2.13	APEC #11: Disaster Shack (Upper Site)	
	5.2.13	APEC #12: Storage Building	
	5.2.14	APEC #13: Vottner Catch Basin APEC #14: Waterbody (Northeast of the Helicopter Pad)	
	5.2.16	APEC #15A: Waterbody (North of the Water Source)	
		•	
		t Pitting	
	5.4 On-	Site Habitat and Natural Environment	.26
3 1	0 INITIAL	TESTING PROGRAM RESULTS	27
۰.٠	O IINITIAL	TESTING FROGRAM RESULTS	. 21
	6.1 Sco	pe of Field Program	.27
	6.2 San	npling Methods	.29
	6.3 Field	d Observations	.31
	6.4 Ged	spatial Data Collection	.31
		lity Assurance/Quality Control	
		lytical Data Review	
	6.6.1	Background Sampling Program	
	6.6.1.	·	
	6.6.1.2	•	
		Soil	
	6.6.2.		
	6.6.2.2	PAHs in Soil	.37
	6.6.2.3	3 Metals in Soil	.38
	6.6.2.4	PCBs in Soil	.39
	6.6.2.	5 VOCs in Soil	.39
	6.6.2.6	Furans and Dioxin-like compounds in Soil	.40
	6.6.3	Sediment	.40
	6.6.3.		
	6.6.3.2		
	6.6.3.3		
	6.6.3.4		
	6.6.3.		
		Surface Water	
	6.6.4.		
	6.6.4.2 6.6.4.3		
	6.6.4.4	·	
	6.6.4.		
	6.6.5	Building Materials	
7	O DISCU	NOISS	44

7.1 B	ackground Sampling	44
7.2 D	Petection Limits Exceeding Guidelines	45
	inal Conceptual Site Model	
7.3.1	Human Receptors and Exposure Pathways	
7.3.2 7.3.3	Ecological Receptors and Exposure Pathways Contaminants of Potential Concern	
7.3.4	Confirmation/Refutation of APECs	
7.3.5	Estimated Area and Volume of Impacts	49
8.0 NCS	CS CLASSIFICATION	53
9.0 SUM	IMARY	54
	ogram/Testing Program	
Data Ev	aluation:	54
NCSCS	Scoring and GIS Database:	54
10.0 REC	OMMENDATIONS	55
11.0 CLO	SURE	56
12.0 REF	ERENCES	57
LIST OF T	TABLES	
Table 2.1	Preliminary APECs and COPCs	6
Table 3.1	Site Characteristics Used in Selecting Screening Criteria	9
Table 4.1	Comparison of PHC Analytical Methods	15
Table 4.2	Applicable Soil Criteria	15
Table 4.3	Applicable Sediment Criteria	17
Table 4.5	Building Material Criteria	18
Table 6.1	Field Program	27
Table 6.2	Acceptable Relative Percent Difference	32
Table 6.3	Variation in the Dataset	33
Table 6.4	Concentrations of PHCs in Soil above Referenced Screening Levels	35
Table 6.5	Concentrations of PAHs in Soil above Referenced Screening Levels	37
Table 6.6	Concentrations of Metals in Soil above Referenced Screening Levels	38
Table 6.7	Concentrations of PHCs in Sediment above Referenced Screening Levels	40
Table 6.8	Concentrations of PCBs in Sediment above Referenced Screening Levels	41
Table 6.9	Concentrations of PHCs in Surface Water above Referenced Screening Levels	41

Table 6.10 Concentrations of Metals in Surface Water above Referenced Screening Levels42
Table 6.11 Hazardous Building Materials
Table 7.1 Confirmation / Refutation of AECs
Table 7.2 Preliminary Estimates of Impacted Areas
Table 8.1 NCSCS Scoring Summary53
Table C1 - Soil Descriptions
Table C2 - Test Pit Logs
Table D1-1 - Petroleum Hydrocarbons in Soil (mg/kg) (Residential)
Table D1-2 - Petroleum Hydrocarbons in Soil (mg/kg) (Commercial)
Table D2-1 - PAH Concentrations in Soil (mg/kg) (Residential)
Table D2-2 - PAH Concentrations in Soil (mg/kg) (Commercial)
Table D3-1 - Metals in Soil (mg/kg) (Residential)
Table D3-2 - Metals in Soil (mg/kg) (Commercial)
Table D4-1 - PCBs in Soil (mg/kg) (Residential)
Table D4-2 - PCBs in Soil (mg/kg) (Commercial)
Table D5-1 - Volatile Organic Compounds (Excluding BTEX) in Soil (µg/kg) (Residential)
Table D5-2 - Volatile Organic Compounds (Excluding BTEX) in Soil (µg/kg) (Commercial)

- Table D8 PAHs in Sediment (mg/kg)
- Table D9 Metals in Sediment (mg/kg)
- Table D10 PCBs in Sediment (mg/kg)
- Table D11 Volatile Organic Compounds (Excluding BTEX) in Sediment (µg/kg)

Table D6 - Concentrations of Dioxins, Furans, and Dioxin-like Compounds in Soil (ng/kg)

Table D12 - Petroleum Hydrocarbons in Surface Water (mg/L)

Table D7 - Petroleum Hydrocarbons in Sediment (mg/kg)

- Table D13 PAHs in Surface Water (µg/L)
- Table D14 General Chemistry Parameters in Surface Water
- Table D15 Metals in Surface Water (µg/L)
- Table D16 PCBs in Surface Water (µg/L)
- Table D17 Asbestos Fibres in Building Materials

LIST OF DRAWINGS

Drawing 1	Site Location Plan
Drawing 2	Site Overview
Drawing 3	Soil Sample Location Plan - Upper Site
Drawing 4	Soil Sample Location Plan – Upper Site
Drawing 5	Soil Sample Location Plan – Lower Site
Drawing 6	Soil Sample Location Plan – Lower Site
Drawing 7	Sediment and Surface Water Sample Location Plan – Upper Site
Drawing 8	Sediment and Surface Water Sample Location Plan – Upper Site
Drawing 9	Soil Sample Exceedance of Ecological Screening Levels – Upper Site
Drawing 10	Soil Sample Exceedance of Ecological Screening Levels – Upper Site
Drawing 11	Soil Sample Exceedance of Ecological Screening Levels – Lower Site
Drawing 12	Soil Sample Exceedance of Ecological Health Screening Levels – Lower Site
Drawing 13	Sediment and Surface Water Sample Exceedance of Ecological Screening Levels
- Upper Site	
Drawing 14	Sediment and Surface Water Sample Exceedance of Ecological Screening Levels
- Upper Site	
Drawing 15	Soil Sample Exceedance of Human Health Screening Levels - Upper Site
Drawing 16	Soil Sample Exceedance of Human Health Screening Levels - Upper Site
Drawing 17	Soil Sample Exceedance of Human Health Screening Levels - Lower Site
Drawing 18	Soil Sample Exceedance of Human Health Screening Levels - Lower Site
Drawing 19	Estimated Areas of Impact - Upper Site
Drawing 20	Estimated Areas of Impact - Upper Site
Drawing 21	Estimated Areas of Impact - Lower Site
Drawing 22	Estimated Areas of Impact - Lower Site

LIST OF APPENDICES

APPENDIX A	Drawings
APPENDIX B	Selected Site Photographs and Google Earth® Mapping
APPENDIX C	Field Information
APPENDIX D	Analytical Tables
APPENDIX E	Laboratory Certificates of Analysis
APPENDIX F	National Classification System for Contaminated Sites

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) was retained by Defence Construction Canada (DCC) to conduct a Federal Approach to Contaminated Sites (FACS) Step 3 Initial Testing Program and a Step 4 Site Classification for a former United States Air Force (USAF) Pinetree Line Radar Station located on Cut Throat Island, Labrador (herein referred to as the "Site"; Drawing 1, Appendix A). The objectives of the work were to complete Steps 3 and 4 of the FACS. Step 3 of the FACS involves an Initial Testing Program (also known as a Phase II Environmental Site Assessment (ESA)) and Step 4 of the FACS involves the completion of the Canadian Council of Ministers of the Environment (CCME) National Classification System for Contaminated Sites (NCSCS). The work was initiated based on the results of a FACS Step 2 Historical Review (also known as a Phase I Environmental Site Assessment) in which potential contamination was identified based on historical activities at the Site (GHD, 2016).

The purpose of the work completed under this mandate was to determine the presence/absence of impacts at the Site, and determine a priority for action should impacts exist (NCSCS Classification).

1.1 Scope of Work

The scope of work for this Step 3 Initial Testing Program and Step 4 Site Classification included the following:

- Preparing a Health and Safety Plan (HSP);
- Completing documentation review;
- Updating the work plan for the Step 3 Initial Testing Program;
- Conducting the Step 3 Initial Testing Program consisting of sampling and analysis of surface soil, surface water, sediment, building materials, and paint;
- Conducting a site inventory including infrastructure, buildings, and/or debris identified at the Site;
- Developing a regulatory framework to assess Site analytical data;
- Classifying the Site using the CCME NCSCS;
- Updating the Department of National Defence (DND) Environmental Geospatial Information System (GIS) Data Template with all data collected as part of this mandate;
- Developing a Conceptual Site Model (CSM) for the Site;
- Preparing a written report and manageable electronic files of all data collected in the specified format; and
- Providing a work plan for additional environmental site assessment work required (if any), to delineate and further characterize any on-site impacts.

1.2 Previous Environmental Site Assessments

The following environmental site assessment was previously completed for the Site:

 Phase I Environmental Site Assessment. Former United States Military Site. Cut Throat Island, NL. Prepared for the Department of Environment and Conservation (Newfoundland and Labrador). March 2016. GHD Limited.

The above-noted document was reviewed by GEMTEC as part of this mandate. Relevant details are cited throughout this report.

1.3 Background and Site Description

Cut Throat Island is an island situated off the eastern coast of Labrador. It is located approximately 88 kilometres north of the town of Cartwright, Labrador. The Site comprises of four separate parcels of land (Drawing 2) covering an area of approximately 478,015 square meters (m²) (GHD, 2016). The Site is identified as having an Upper Site and a Lower Site with approximately 1.5 km of gravel roadway separating the two Sites.

The Site is a former manned Pinetree Line Gap Filler Radar Station for the United States Air Force (USAF) Cartwright Air Station. The Pinetree Line was a network of Aircraft Control and Warning (AC&W) stations used in the detection of Soviet aircraft flying toward the US and Canada during the Cold War. The Radar Station on Cut Throat Island was established in 1957 and operated until 1961. Soon after, the facility was transferred to the Canadian Armed Forces, was deactivated and closed. In 1986, the property ownership was transferred to the Province of Newfoundland and Labrador (GHD, 2016). The Province of Newfoundland and Labrador remains the current Site owner.

While in operation, the Upper Site consisted of a:

- Main two-storey building (which housed a motor pool/maintenance garage), heating and power plant, barracks (housing 25-50 personnel), office space, and a dining hall;
- Tower (Radome) ,housing the radar equipment, which was connected to the main building by an enclosed corridor;
- Total of two communication antennae;
- Disaster shack;
- Fuel pump house;
- Water pumping station;
- Storage shed;
- Catch basins;
- 1,578,000 litre (L) above ground storage tank (AST) containing diesel/fuel oil; and
- Helicopter pad.

Features of the Upper Site are shown on Drawings 3 and 4 (Appendix A). Also, a freshwater lake, located east of the Upper Site, was used as a source of drinking water by the USAF. A water pump house was installed at the western boundary of the lake, and water was transported via an above-ground pipeline to the Upper Site (Drawing 3, Appendix A). Along the eastern side of the roadway was an above ground pipeline, which transferred fuel from the Lower Site (accessible by boat) to the Upper Site. It is assumed that the pipeline was removed during Site decommissioning work. Some concrete supports of the former pipeline remain.

An area of dumping/landfill associated with the USAF was identified in September 2017 between the Upper Site and the Lower Site along the west side of the roadway (Drawing 4, Appendix A). Sections of the roadway/ former above ground diesel pipeline are shown on Drawings 4 and 6 (along with areas of potential environmental concern, see Section 2.2). A former USAF quarry and dump (Drawing 5, Appendix A) used during Site operations was reportedly located southeast of the Upper Site (GHD 2016).

The Lower Site (Drawing 6, Appendix A) consisted of a 1,625,000 L diesel/fuel oil AST and pump house. This AST was filled via an above ground pipeline that was accessible by boat.

In 1987, the Site was decommissioned. The decommissioning contract included the razing of on-site structures and the burning of all materials, followed by the burying and covering of all building materials. The contractor reportedly did not complete all the work at the Site. All material brought to the radar station, during its construction and operation, remains on-site in various states in landfills.

2.0 DOCUMENT REVIEW

2.1 Geology and Hydrogeology

Surficial geology mapping (Map 1620 A, Cartwright Labrador Newfoundland; Fulton, 1986), indicates that Cut Throat Island is entirely made up of Pre-Quaternary rock and rock thinly covered in drift colluvium, and vegetation; generally hilly and hummocky, steep slopes common; includes small areas of other units and small swampy hollows.

Bedrock geology mapping (Gower, 1979), indicates that the surficial deposits, if any, are underlain by Aphebian-Helikian biotite granodiorite, minor hornblende, fine to coarse grained, foliated to gneissic; and Aphebian-Helikian biotite granodiorite, with potassium feldspar phenocrysts, porphyroblasts or augen, seriate texture in part, foliated and gneissic. Based on the information presented in the bedrock geology map, the bedrock geology for Cut Throat Island was determined via helicopter supported reconnaissance mapping and was not field verified.

Based on the information presented in the "Hydrogeology of Labrador" (AECOM, 2013), the Site is located in the Pre-Cambrian age geological province referred to as the "Grenville Province". The Grenville Province is located in the southern portion of Labrador and is west to northeast trending, and consists of high grade metamorphic rocks (*i.e.*, gneiss, formed by the metamorphosis of granite or sedimentary rock) and associated intrusive rocks (AECOM, 2013).

Granitic and gneissic rocks of the Grenville Province were found to have low to moderate yields ranging from 0.6 to 315 Liters per minute (Lpm), with a geometric mean of 8.6 Lpm (AECOM, 2013). It is therefore anticipated that the rock at the Site is gneissic and has a relatively low hydraulic conductivity.

2.2 Permafrost

The southern portion of Labrador has isolated patches of permafrost (ground that remains frozen for more than one year), which are typically associated with peaty wetlands (AECOM, 2013). Permafrost was not encountered at the Site during the manual test pitting. Based on the location of the Site and soil conditions encountered at the Site (i.e., no peaty wetland are present), permafrost is not likely to be present.

2.3 Topography and Drainage

Labrador is part of the Canadian Shield physiographic region of Canada. The Mecantina Plateau, located in southeastern Labrador (i.e., the area of the Site) consists of changes in elevation from sea level (at the eastern and southern coasts) to 600 metres above sea level, at the center of the plateau (ESWG, 1996).

Site topography is depicted on Drawing 2 in Appendix A and shown on images obtained from Google Earth Pro® in Appendix B. The Upper Site is situated at 120 to 130 metres above sea

level (masl), while the Lower Site is situated at an elevation of less than 10 masl (Natural Resources Canada, 2017). The terrain at Cut Throat Island is rugged, with steep cliffs, particularly along the north and northwestern shore of the island. Much of the Site surfaces are exposed bedrock, with some small herbaceous vegetation.

Groundwater flow direction is expected to mimic the local topography, flowing from high elevations to low elevations along the coast. Based on the topography and geology mapping, drainage is expected to occur primarily by overland flow, following the surface topography, which generally slopes toward the Labrador Sea.

2.4 Climate

The closest weather station to the Site is in Cartwright, which is located approximately 150 km to the southeast of the Site. Based on Environment Canada Climate Normals from 1971 to 2000 (EC, 2018), the daily average temperature in Cartwright is -0.5 degrees Celsius, with January and February being the coldest months (January (-14.8) and February (-14.1) and July and August being the hottest months (both 12.1 degrees Celsius). Total annual precipitation is 1050.1 millimetres (mm), which includes 573 mm of rainfall and 477.1 mm as rainfall equivalents (includes annual snowfall of 487.6 cm). The average wind speed is 20.2 kilometres per hour (km/hr).

2.5 Environmentally Sensitive areas, Shallow Soil Conditions, Surface Water Bodies

A review of ecologically significant areas (CCEA, 2017), revealed no area of ecological significance within 5 kilometres (km) of the Site. The nearest protected ecological area is the Gannet Islands Ecological Reserve, located approximately 70 km east of the Site. No unique or special habitat was identified at the Site.

2.6 Preliminary Identification of APECs

In preparing the work plan for this Step 3 Initial Testing Program and Step 4 Site Classification, GEMTEC reviewed:

- The previous Step 2 Historical Review prepared by GHD (GHD, 2016). It is noted that, at the request of the client of the Step 2 Historical Review (Province of Newfoundland and Labrador), a Site visit was not completed by GHD; and
- High-resolution aerial imagery, purchased from Sikumiat Environmental Management Limited.

Based on the review of the above information, 15 Areas of Potential Environmental Concern (APECs) were identified (GEMTEC, 2017). A summary of preliminary APECs, activities historically conducted at the Site and the associated Chemicals of Potential Concern (COPCs) is provided in Table 2.1. Selected Site photographs are presented in Appendix B.

Table 2.1 Preliminary APECs and COPCs

APEC (Preliminary)		EC (Preliminary) Historical Activities	
#	Description	Thistorical Activities	COPCs
1	AST (Upper Site)	Storage of up to 1,578,000 L of diesel/fuel oil	PHCs
	, , ,	Burning of Site structures	PAHs
2 AST (Lower Site)		Storage of up to 1,625,000 L of diesel/fuel oil	PHCs
_	NOT (Lower one)	Burning of Site structures	PAHs
3A & 3B	Aboveground Fuel Line	Transport of diesel fuel between the 1,625,000 L Lower Site AST and the 1,578,000 L Upper Site AST	PHCs
4	USAF Quarry and Dump	Potential for any Site materials to be buried / disposed in a landfill/bury Site	PHCs, metals, PCBs, VOCs
5 & 6	1987 Landfill/Bury Site (assumed 2 locations)	Potential for any Site materials to be buried / disposed in a landfill/bury Site	PHCs, metals, PCBs, PAHs
7	Helicopter Pad	Thousands of fuel drums reportedly stored, and portable fueling station for fueling helicopters	PHCs (fuel stored), Metals (from metal drums), PCBs
		Burning of Site structures	PAHs
8	Pump House and Water Source (Upper Site)	Anticipated use of fuel to power water pumps (Burning of Site Structures)	PHCs, PAHs
9	Pump House and Shack (Lower Site)	Anticipated use of fuel to power water pumps (Burning of Site Structures)	PHCs, PAHs
		Fueling and maintenance of Site machinery	PHCs
		Metal works in maintenance of Site machinery. Potential lead or mercury-based paint on exterior of building	Metals
10	Main Building and Motor Pool	Presumed use of solvents in machinery maintenance	VOCs
		Electricity generation	PCBs
		Burning of Site Structures	PAHs
		Assumed fuel storage part of emergency plan	PHCs (fuel stored)
11	Disaster Shack (Upper Site)	Potential lead or mercury-based paint on exterior of building	Metals
		Burning of Site structures	PAHs
12	Storage Building	Potential storage of fuel. Potential lead or mercury-based paint on exterior of building	PHCs, Metals
		Burning of Site structures	PAHs
13	Former Catch Basin	Use is unknown	PHCs, Metals
14	Waterbody (northeast of the Helicopter Pad)	Due to its proximity to the helicopter pad and catch basin the water body may have been impacted by the historical on-site activities.	PHCs, PAHs, metals, PCBs, VOCs

Table 2.1 Preliminary APECs and COPCs

APEC (Preliminary)		Historical Activities	COPCs
#	Description	110001100111000	30.30
15A ¹	Waterbody (north of water source)	Due to its proximity to the Upper Site AST and the pump house and water source, the water body may have been impacted by the historical on-Site activities.	PHCs, PAHs, metals, PCBs, VOCs

COPCs = chemicals of potential concern

PHCs = petroleum hydrocarbons (PHC)

PCBs = Polychlorinated biphenyls

PAHs = Polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

1) In the initial planning phases of this project, sampling in multiple water bodies was proposed, with APEC names 15A, 15B, 15C, etc. As the program was refined, only APEC 15A was carried forward into the initial testing

program. The original nomenclature was retained for consistency with initial drafts.

In addition to the sampling described above, background samples were collected for analysis of PHCs, PAHs, metals, and PCBs. A background concentration is defined as the concentration of analytical parameters in environment media (*i.e.*, soil, surface water, *etc.*) surrounding a Site, that have not been influenced by activities at a Site or related to any releases of contaminants to the environment. Background concentrations can be naturally occurring (*e.g.*, erosion of naturally occurring mineral deposits) or as a result of anthropogenic activities that have occurred off-site and are unrelated to Site activities.

The document review was supplemented by Site Reconnaissance by air and on land, as discussed in Section 5.0.

2.7 Neighbouring Land Use

Fishing sheds (approximately 10) are located to the south of the Lower Site. The area of the sheds is located approximately 250 m southwest of the former AST at the Lower Site. At the time of the USAF operation at the Site, the cook at the main building was a civilian who lived with his family in the area of the fishing sheds (GHD, 2016). It is not clear if the family left the island when the radar station closed. The current use of this area is seasonal residential.

3.0 SITE DESCRIPTION

3.1 Site Characterization

The Site, including the Upper and Lower Sites, is currently vacant with the exception of remnant structures (*e.g.*, foundations, *etc.*). As identified in Section 2.7, an area of fishing sheds is located approximately 250 m to the southeast of the Lower Site. The historical land use was mixed commercial and residential; US military personnel were housed on-site to operate the radar station and a seasonal community (i.e., the fishing sheds) has historically been located in proximity to the Lower Site. Access to both the Upper and Lower Sites is not restricted to people who use the fishing sheds or other visitors to the Site by air or boat. The Site is not located in a developed residential area, nor is such development anticipated due to the remote and rocky nature of the Site.

Based on the distance of the fishing sheds to the Lower Site, it is assumed that residents may regularly access the Lower Site. As such, areas within 250 m of the seasonal community (*i.e.*, APEC #2, APEC #3B, APEC #4 and APEC #9) have been considered "residential" for the purpose of this assessment. A "residential" scenario assumes exposure of 24 hours per day, 365 days per year, for toddlers, children and adults (CCME, 2006).

For areas greater than 250 m from the seasonal community, it is assumed that residents may visit these areas less frequently and for shorter periods of time. Therefore adults, children and toddlers visiting these areas (greater than 250 m from the seasonal community) are assumed to be present for a duration consistent with (or less frequent than) a commercial exposure scenario (*i.e.*, 10 hours per day, 5 days per week, 48 weeks per year (CCME, 2006)). As such, the applicable human health receptor scenario for areas greater than 250 m of the seasonal community has been considered to be "commercial".

Although the USAF obtained drinking water from a surface water body, sources of water, used by residents of the nearby fishing sheds, were not confirmed during the current assessment. Based on the location of the Site, it is highly unlikely that a municipal water distribution system is available. Private groundwater wells were not observed in the seasonal community during the Site visit. The likelihood of drilled wells on the island is considered low, as the island is accessible only by boat, and mobilization cost of a standard drill rig would be very high. Hand-dug wells are unlikely in this area due to the shallow bedrock and close proximity to the sea (salt water intrusion would be a concern for groundwater resources in this area). No signs of water input pipes were observed in any of the waterbodies visited, thus use of freshwater bodies as drinking water was not apparent. Due to the seasonal nature of the fishing sheds, residents may transport water from off-island; however this has not been confirmed. As result of the above, non-potable soil guidelines were selected, as groundwater is not anticipated to be a source of drinking water now or in the future.

Based on the Site reconnaissance, herbaceous and woody vegetation, moss, and wildlife (including bears, hares and wolves) are present at the Site. Based on the overall healthy vegetation community (with the exception of stressed vegetation observed at APEC #2 (Photo 18, Appendix B) and APEC #6A (Photo 48, Appendix B)), the soil invertebrate population is expected to be intact. Species of gull were observed in the freshwater habitat. A fox was observed on Cut Throat Island during the Site visit along with evidence of hares and black bears. Based on a provincial database (Province of Newfoundland and Labrador, 2018), the mapped range of polar bears and wolverines (both considered Species at Risk) overlap the site; other SAR are also potentially present on the Site. The potential for Species at Risk located at the Site was not ruled out as part of this mandate.

Coarse-grained soil texture has been assumed based on field observations, as it is conservative for screening purposes.

The Site characteristics used in selecting screening criteria are summarized in Table 3.1.

Table 3.1 Site Characteristics Used in Selecting Screening Criteria

Site Characteristic	Selection
Land Use	Residential (for areas within 250 m of the seasonal community: portions of APECs #2, #3B, #4, and #9)
25.10 000	Commercial (areas >250 m of the seasonal community)
Groundwater Use	Non-Potable
Soil Type	Coarse-grained

3.2 Contaminant Sources

Potential sources of contamination (COPCs) at the Site include the following, resulting from the historical use of the Site by the USAF:

- Fuel storage and use (PHCs);
- Burning of Site structures (PAHs);
- Metal drums or structures, lead-based paint on former buildings (VOCs, metals);
- Disposed electrical equipment (PCBs);
- Waste incineration (furans and dioxin-like compounds).

3.3 Potential Receptors

3.3.1 Human Receptors

Based on the residential (Lower Site) and commercial (Upper Site) characterization, human receptors on the Site include:

- Adults;
- · Children; and
- Toddlers.

3.3.2 Ecological Receptors

Based on the residential (Lower Site) and commercial (Upper Site) characterization, ecological receptors on the Site include:

- Mammals;
- Birds:
- Plants and Invertebrates;
- Freshwater Aquatic Life; and
- Potential Species at Risk.

3.4 Exposure Pathways

3.4.1 Human Health Receptors

Source media, transport mechanisms, potential exposure pathways and an assessment of whether the exposure pathway is incomplete or complete, is presented for human receptors on and off the site, respectively, in Table 3.2.

Table 3.2 Human Health Exposure Pathway Assessment

Source Media	Transport Mechanism	Potential Exposure Pathway	Human Health Pathway Assessment	Exposure Pathway Complete or Incomplete?
	Vegetation Uptake	Consumption of Vegetation	The Site and surrounding area are not currently used for agricultural purposes. The Site location/topography and rocky surface, with limited surficial soils, would preclude agricultural use of the Site or surrounding areas in the future.	Incomplete
Surface Soil	-	Soil/Dust Dermal Contact and Ingestion	On-site receptors may come into contact with COPCs in surface soil or dust, via dermal contact and incidental ingestion, in the absence of a barrier (such as concrete) or during construction activities.	Complete
	Wind Erosion – Atmospheric Dispersion	Inhalation of Particles	Possible at Site.	Complete
	Volatilization (Organic Contaminants) – Atmospheric Dispersion	Inhalation of Outdoor Vapours	Possible at Site.	Complete
Surface Soil	Volatilization (Organic Contaminants) – Enclosed Space Accumulation	Inhalation of Indoor Vapours	There are no buildings or structures at the Site and hence no enclosed spaces. However, inhalation of vapours inside a potential future building at the Site cannot be ruled out.	Complete

Table 3.2 Human Health Exposure Pathway Assessment

Source Media	Transport Mechanism	Potential Exposure Pathway	Human Health Pathway Assessment	Exposure Pathway Complete or Incomplete?
Groundwater Soil Leaching to Groundwater	Groundwater Transport – Inhalation of Vapours (Organic Contaminants) Groundwater	There are no buildings or structures at the Site and hence no enclosed spaces. However, inhalation of vapours inside a potential future building at the Site cannot be ruled out. Groundwater is not used as a	Complete	
	•	Incidental Ingestion	source of drinking water (i.e., there are no potable wells on the Site) and groundwater does not daylight at the Site. It	Incomplete
		Groundwater Dermal Contact	is very unlikely that groundwater resources would be developed on the Site, based on the geology and close proximity to the sea (i.e., sea water intrusion would be a concern near the coast).	Incomplete
Surface Water /Sediment	Surface Water/Sediment Incidental Ingestion	Surface water has in the past and may be current used as a source of potable water (for the seasonal community). Future	Complete	
		Surface Water/Sediment Dermal Contact	use of surface water as potable resource, cannot be ruled out.	

3.4.2 Ecological Receptors

Source media, exposure media, potential exposure pathways and an assessment of whether the exposure pathway is incomplete or complete, is presented for ecological receptors on and off the Site, respectively, in Table 3.3. The potential for SAR in the area has not been ruled out as part of this mandate.

 Table 3.3
 Ecological Health Exposure Pathway Assessment

Source Media	Exposure Media	Potential Exposure	Ecological Health Pathway	Exposure Pathway Complete or
		Pathway	Assessment	Incomplete?
Surface Soil	Direct Exposure & Ingestion	Plants & Invertebrates	With the exception of the concrete foundations and gravel roadway, Site surfaces are generally rock covered or covered in short vegetation/mosses. Therefore, invertebrates and plants are likely to be in direct contact with impacted surface soil.	Complete
Surface Soil		Wildlife (mammals/birds)	Incidental ingestion of soil by wildlife, while anticipated to be low, (as wildlife are not anticipated to remain in the previously developed areas of the Site for the duration of their lifetime), cannot be ruled out.	Complete
Groundwater	Ingestion/Plant Uptake	Plants/ invertebrates	Although it is unlikely based on the geology of the Site and encountered soil conditions, it is still possible for plants and invertebrates to come into contact with groundwater.	Complete
		Mammals/birds	No shallow waterbodies or dugouts for wildlife watering were observed at the Site.	Incomplete
Surface Water/ Sediment	Surface Water and Freshwater Sediment	Direct Exposure and/or Ingestion	There are surface water bodies on the Site; therefore, freshwater aquatic life may be present.	Complete

4.0 APPLICABLE SCREENING LEVELS (REGULATORY FRAMEWORK)

4.1 Rationale for Selected Screening Levels

Screening levels are selected based on the applicable contaminant sources, potential exposure pathways, and potential receptors at the Site. Sources, pathways, and potential receptors for this Site are described in Section 3.0.

Federal and provincial screening levels are numerical limits or statements which can be used for comparison with measured contaminant levels at a site in order to determine whether further investigation or actions are required (screening). It should be noted, however, that the definition of impact does not necessarily imply that there will be significant risks to human health and the environment. Natural attenuation mechanisms such as biodegradation and adsorption; the exposure pathways, the frequency and distances to potential receptors must be considered to determine specific risks and potential impacts. GEMTEC has conducted the screening for this Site in the context of both the federal and provincial frameworks, in consideration that our client is a federal organization, and under the understanding that the Province of Newfoundland is the current owner of the property. Both frameworks have been given equal weight in this assessment.

The Province of Newfoundland and Labrador has adopted the Atlantic Risk-Based Corrective Action (Atlantic RBCA) methodology for the assessment of contaminated sites and as such, the Atlantic Partnership in RBCA Implementation (Atlantic PIRI) risk-based screening levels (RBSLs) and ecological screening levels (ESLs) have been referenced for petroleum hydrocarbons. Atlantic PIRI does not currently provide guidelines for non-petroleum contaminants.

For federal screening, the primary source of screening levels are the Canadian Council of Ministers of the Environment (CCME) environmental quality guidelines. The CCME maintains an online database (http://st-ts.ccme.ca/en/index.html) that serves as a repository for the most up-to-date CCME guidelines available. This database was accessed in May 2018 in preparation of this report.

In the absence of provincial or federal screening levels, the following jurisdictions were referenced, in order of preference:

- Nova Scotia Environment (NSE). 2013. PRO 100: Notification of Contamination Protocol;
 and
- World Health Organization (WHO). 2006. Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds.

4.2 Comparison of Provincial and Federal Guidelines for Petroleum Hydrocarbons

Samples collected as part of this Initial Testing Program were analyzed using the CCME Canada-Wide Standard (CWS) methodology. A comparison of the two methods is provided in Table 4.1 (adapted from Atlantic PIRI, 2012).

Table 4.1 Comparison of PHC Analytical Methods

	Atlantic Risk-Based Corrective Action (RBCA)	CCME CWS
Tier I Reporting	C _{>6} -C ₁₀ (aromatic + aliphatic, minus BTEX) C _{>10} -C ₁₆ (aromatic + aliphatic) C _{>16} -C ₂₁ (aromatic + aliphatic) C _{>21} -C ₃₂ (aromatic + aliphatic) modified TPH (equals all TPH less BTEX)	$F1 = C_{>6}-C_{10} \text{ (aromatic + aliphatic)}$ $F2 = C_{>10}-C_{16} \text{ (aromatic + aliphatic)}$ $F3 = C_{>16}-C_{34} \text{ (aromatic + aliphatic)}$ $F4 = C_{>34} \text{ (aromatic + aliphatic)}$ (Note: BTEX is covered under other CCME methods)

For comparison of the laboratory results to the Provincial guidelines (modified TPH, $C_{>6}$ - C_{32})), GEMTEC has summed the detected concentrations of F1, F2, and F3 fractions (C_6 - C_{34}). In the instance of no detections, the highest detection limit is used as the approximate value for modified TPH. This approximation is a slight over representation of the modified TPH concentration. It is noted that the CWS detection limits, in some instances, exceed the Atlantic RBCA guidelines.

4.3 Selected Criteria

The applicable provincial and federal soil criteria for the Site are summarized in Table 4.2.

Table 4.2 Applicable Soil Criteria

Parameter	Criteria		
- u.uo.o.	Ecological Health	Human Health	
Federal			
Petroleum Hydrocarbons (PHCs)	Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX compounds): CCME SQG _E (2004, accessed online May 2018). Commercial and residential land use.	BTEX compounds: CCME SQG _{HH} (2004, accessed online May 2018). Commercial and residential land use. Incremental cancer risk: 10 ⁻⁵ (benzene). Non potable groundwater use.	
Petroleum Hydrocarbons (PHCs)	PHC Fractions F1, F2, F3, and F4: Canada-Wide Standards (CWS) for coarse-grained surface soil (2008) - Human Health Standards. Commercial and residential land use. Most conservative exposure pathway. Where the chromatogram did not return to baseline, additional analysis (F4 Gravimetric (F4G) method) was conducted to quantify concentrations of C>50 hydrocarbons. In these instances, the greater of the (preliminary) F4 (C>34-C50) and F4G (C>50) are compared to the guideline for F4 (C>34).		

Table 4.2 Applicable Soil Criteria

Parameter	Criteria		
i didilictei	Ecological Health	Human Health	
		Carcinogenic PAH compounds: CCME SQG _{HH} (2010) for Benzo(a)pyrene Total Potency Equivalent (B(a)P TPE)	
Polycyclic Aromatic Hydrocarbons (PAHs)	CCME SQG _E (1999 and various updates, accessed online May 2018). Commercial and residential land use.	Non-carcinogenic PAH compounds: No guidelines provided by CCME: however CCME recommends referencing other Canadian jurisdictions. Thus: Nova Scotia Environment (NSE) Tier 1 Environmental Quality Standards (EQS) for Commercial and residential, non-potable Site (2013).	
VOCs	CCME SQG _E (1999, accessed online May 2018). Commercial land use. CCME SQG _{HH} (1999, accessed online May 2018). Commercial land use.		
Furans and dioxin- like compounds	CCME SQG (2002, accessed online May 2018). Commercial land use. Guideline is for toxic equivalent. Toxic equivalent calculated using 2005 World Health Organization Toxic equivalency Factors (WHO, 2006).		
	The generic guideline provided by CCME is assumed to be protective of both ecological and human health receptors.		
Metals	CCME SQG _E (1999, accessed online May 2018). Commercial and residential land use.	CCME SQG _{HH} (1999, accessed online May 2018). Commercial and residential land use.	
PCBs	For some parameters (antimony, cobalt, tin), CCME does not provide separate SQG _E and SQG _{HH} . In these instances, the generic (or interim) guideline was referenced and is assumed to be protective of both ecological and human health receptors.		
Provincial			
PHCs	Atlantic RBCA Tier I Ecological Screening Levels (ESLs) for the direct contact pathway for a property with coarse-grained soil. (2015). Commercial land use.	Atlantic Risk-Based Corrective Action (RBCA) Tier I Soil Risk-Based Screening Levels (RBSLs) for non-potable groundwater use, coarse-grained soil and diesel impacts (closest resemblance to hydrocarbon composition reported by the laboratory, 2015). Commercial and residential land use.	

The applicable provincial and federal sediment criteria for the Site are summarized in Table 4.3.

 Table 4.3
 Applicable Sediment Criteria

Parameter	Criteria		
T didilicter	Ecological Health	Human Health	
Federal			
PHCs VOCs	None available	Not applicable ¹	
PAHs Metals PCBs	CCME Interim Sediment Quality Guidelines (ISQGs) for the Protection of Freshwater Aquatic Life Probable Effects Level (PELs) for the Protection of Freshwater Aquatic Life	Not applicable ¹	
Provincial			
PHCs	Atlantic RBCA Tier I Ecological Screening Levels (ESLs) for typical sediment (2015)/	Not applicable ¹	
Notes: 1) It has been assumed that the surface water bodies are not used as a significant recreational water body (e.g., Swimming), and as such, human receptors would not be in contact with sediment.			

The applicable provincial and federal surface water criteria for the Site are summarized in Table 4.4.

Table 4.4 Applicable Surface Water Criteria

Table 4.4 Appl	Teable Surface Water Criteria		
Parameter	Criteria		
T didilicter	Ecological Health	Human Health ^{1,2}	
Federal			
PCBs	None available	Not applicable	
PHCs PAHs General Chemistry Parameters Metals	CCME Water Quality Guidelines for the Protection of Aquatic Life - Freshwater	Not applicable	
Provincial			
PHCs	Atlantic RBCA Tier I ESLs for the protection of freshwater and marine aquatic life. Diesel/lube oil (most conservative) petroleum type.	Not applicable	
 Notes: 1. Although the USAF used a surface water body for drinking water, for the purposes of this Initial Testing Program, it is presumed that residents of the seasonal community are not using surface water for drinking. 2. It has been assumed that the surface water bodies are not used as a significant recreational water body 			
(e.g., Swimming).			

The applicable provincial and federal building material criteria for the Site are summarized in Table 4.5.

Table 4.5 Building Material Criteria

Parameter	Criteria		
T didilictor	Ecological Health	Human Health	
Federal			
Asbestos	Not applicable	As hazardous building materials are regulated by the Province, and disposal of the waste products will occur within the Province, only Provincial guidelines are referenced.	
Provincial			
Asbestos	Not applicable	Under Newfoundland and Labrador Regulation 111/98 (Asbestos Abatement Regulations, 1998 under the Occupational Health and Safety Act (O.C. 98-730)), Asbestos Containing Material is defined as having >1% asbestos fibres by weight.	

5.0 SITE RECONNAISSANCE AND SITE CHARACTERISTICS

GEMTEC personnel were on-Site on September 12 and 13, 2017. The Site reconnaissance was conducted through a combination of aerial observations (from a helicopter) and Site walkover. The objective of the Site reconnaissance was to confirm the initial work plan (as prepared by GEMTEC, 2017) met the objectives of the project and to assess potential logistical/access considerations for collecting samples at the proposed locations. Site features and details from the Site visit are presented in the following subsections.

5.1 Aerial Observations

Cut Throat Island is approximately 925 Hectares in size with the Site covering the eastern portion of the island. The Lower Site is roughly 200 metres from the shoreline on the southeastern corner of the island, while the Upper Site is 400 metres from the shore on the northeast corner.

The island is predominantly barren bedrock with some low growing grass, mosses and shrubs. There is a large number of surface waterbodies ranging in size from 14,000 square metres to <10 square metres. The northern portion of the island is quite elevated with steep rock cliffs, while the southern shore is much lower in elevation with calmer rocky beaches.

Previous infrastructure has been demolished and buried; however, concrete slabs, foundations, and pipeline supports remain and are quite prevalent from the air. There is minimal to no vegetation impeding on concrete structures. The road between Upper and Lower Sites is well defined and appears to be in excellent condition with gravel cover and little vegetation intrusion.

To the south of the Lower Site on the southernmost peninsula of the island, there is a small seasonal community of fishing sheds. They appear to be in various states of repair with some showing a strong likelihood of regular usage. There does not appear to be any tracks or trails on land surrounding these sheds, which may indicate no overland travel towards the Site and only water transportation to access these sheds is used.

5.2 Site Inventory and Modifications to Preliminary APECs

The following is based on observations made during the site walkover.

5.2.1 APEC #1: AST (Upper Site)

APEC #1 consists of the area of the former 1,578,000 L diesel AST. A 16 m diameter gravel pad, with concrete edging remains in the footprint of the former AST. The area, and much of the former gravel pad are vegetated with grasses and forbs. A concrete berm, approximately 1.8 m high and approximately 0.30 m wide surrounds the former AST to the north, east, and south. A hole in south berm wall permits surface drainage to the south. The berm is approximately 80 m in total length. Both the concrete perimeter and the berm are in good condition. The estimated volume of concrete here is approximately 50 m³ (berm and AST pad perimeter). Bedrock outcrops surround the former AST to the south, forming a natural berm.

Concrete cradles associated with former above ground piping were found at this APEC.

Potential asbestos-containing black caulking was identified on the concrete joints of the berm. A few discarded pieces of metal piping where identified. Pieces of transite board were strewn over the area, possibly carried there by the wind. Neither PHC odours nor surface staining was observed at APEC #1.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.2 APEC #2: AST (Lower Site)

APEC #2 consists of the area of the former 1,625,000 L diesel AST. A 12 m diameter gravel pad, with concrete edging remains in the footprint of the former AST. A concrete berm, approximately 1.8 m high and approximately 0.30 m wide surrounds the former AST and measures approximately 28 m by 30 m.

The berm wall is in fair (crumbling portions) to good (few to no cracks) condition, the east wall to the berm was at grade with a rock face. Three holes in the east berm wall permits surface drainage, one drain is of corrugated steel with a black sealant covering some of the drain. The concrete blocks (former pipeline supports) which lead to the berm from the wharf area are in poor (mostly disintegrated) condition. The estimated volume of concrete here is approximately 50 m³ (berm and AST pad perimeter).

Soil samples in APEC #2 were modified based on stressed vegetation observed in the field (assumed impacted area): SS_CT_48 and SS_CT_49 were moved to the east from inside the berm to outside of the berm. Soil sample SS_CT_48 was taken at a depth of 0.12 to 0.20 mbgs and soil sample SS_CT_49 was taken at 0.05 to 0.075 mbgs to aid in determining the depth of impacts.

No odours or staining were identified inside the berm. No signs of stressed vegetation were observed inside the berm. A lack of vegetation/stressed vegetation was observed east of the berm. Some odours were identified in the sample SS_CT_48 similar to that of weathered PHCs.

Concrete cradles associated with former above ground piping were found at this APEC.

5.2.3 APEC #3: Aboveground Fuel Line (Upper Site and Lower Site)

APEC #3 is an approximately 1.5 kilometre long gravel roadway that spans from the Upper Site to the Lower Site. Historically, the above ground fuel line ran alongside the roadway. This APEC is referred to herein as two distinct sections:

- APEC #3A: portion of the roadway/former fuel line at the Upper Site; and
- APEC #3B: portion of the roadway/former fuel line at the Lower Site.

Historically, the former above ground fuel line was located alongside the current roadway. A few concrete supports that were likely associated with the former pipeline remain. A couple of pieces of rebar were protruding along the roadway. A large metal dock anchor (approximately 1.5 metres tall) was located near the end of the roadway (southeastern portion of APEC #3B) in the area of the former dock.

Neither PHC odours nor surface staining was observed. The roadway ended at APEC #2 (Lower AST). Based on field observations, the lower portion of APEC #3 (3B) was modified more to the east to follow the roadway and the concrete structures leading to the assumed wharf area. Therefore, soil sample SS_CT_54 was moved to the slightly to the east.

5.2.4 APEC #4: USAF Quarry and Dump

APEC #4 consists of the former USAF Quarry and reported dump area. However, no evidence of any dumping activities was identified during the Site reconnaissance. Signs of historical quarry activities where rock was cut away from the outcrops was evident. The gravel present in the quarry appeared to be the same as that of the roadway. The northern soil sample points were originally outside the footprint of the quarry where it was only rock; therefore, the sample points were moved within the footprint of the quarry (SS_CT_42 and SS_CT_44). Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.5 APEC #5: 1987 Landfill/Bury Site (Assumed Location)

Based on the historical review, the assumed location of APEC #5 was southeast of the helicopter pad (APEC #7, described below). APEC #5 area consists primarily of rock, which is vegetated with grasses, forbs, and low lying shrubs. No signs of any dumping was present in the area. One barrel (rusted, broken, and empty) was located within the area. Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed. Soil sample SS_CT_37 was moved to the area of the barrel. While no obvious signs of dumping were observed in this area, it is still possible that this area was used for dumping in the past and waste was removed.

5.2.6 APEC #6: 1987 Landfill/Bury Site (Assumed Location)

Based on the historical review, the assumed location of APEC #6 was to the south (downgradient) of the main building and motor pool (APEC #10). This area is vegetated with grasses, forbs, and low lying shrubs. A test hole was dug to a depth of 0.9 mbgs to assess for potential debris that may have been buried in the area. Peat was encountered 0 to 0.6 mbgs and very wet sand from 0.6 to 0.9 mbgs. No signs of any dumping were present in the area. A few small pieces of steel were present on the northeast side of the APEC. Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed. While no obvious signs of dumping were observed in this area, it is still possible that this area was used for dumping in the past and waste was removed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.7 APEC #6A: Landfill/Bury Site (Identified During the 2017 Site Reconnaissance)

While APEC #6 did not appear, based on the field observations, to be a landfill/bury site, an area northeast of the helicopter pad (APEC #7) did appear consistent with a landfill/bury site, and as such was added to the field program and labelled APEC #6A. An abundance of various pieces of debris were identified across the area including: metal debris (rusty broken cans, pipes, and fittings); broken glass; transite board; and wood. Signs of stressed vegetation and areas of no vegetative growth were present. Possible peat odors were identified in sample SS_CT_60. This APEC was not identified in GEMTEC's work plan (GEMTEC, 2017). Four samples were collected from this area. Given that the Site appeared to be a landfill/bury area, furans and dioxin-like compounds were added as a COPC to this APEC. One soil sample was submitted for analysis of furans and dioxin-like compounds.

5.2.8 APEC #7: Helicopter Pad

The helicopter pad consists of a gravel and sand surface with some low lying grasses and shrubs. The roadway with a drainage ditch runs along the east of the helicopter pad. An access culvert from the roadway is located at the eastern entrance. A large metal air cylinder with the top missing was located on the culvert. Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.9 APEC #8: Pump House and Water Source

APEC #8 consists of a reservoir, pump house remnants (foundation), and a spillway. This reservoir was used as a water source by the USAF. The ground surface of the Site consists of bedrock outcrops and low-lying grasses and shrubs; the ground surface slopes easterly towards the Labrador Sea. The concrete foundation of the former pump house, which is in good condition (few cracks), measures 5 m by 5 m and is approximately 0.5 m thick. The volume of concrete in the foundation is approximately 13 m³. Piping remains in the slab. The concrete blocks leading from the pump house to the main structure are disintegrating. Small pieces of transite board (approximately 20 pieces) and asphalt roofing shingles are scattered around the pump house foundation. A few pieces of wood and buildings materials are located near the pump house foundation.

The reservoir, which is approximately 14,000 m², appears to be manmade. At the time of the Site visit, the water was blue, and the bottom substrate (rock) was visible near the shore. The depth of the reservoir could not be determined, as boat access would be required to do so. A concrete berm approximately 135 metres in length runs along the entire eastern side of the reservoir. A concrete spillway is located at the southeast side of the reservoir. The spillway is approximately 7 metres wide extending 35 metres in length and appears to be in good shape (few cracks). The

spillway slopes north-easterly to a natural swale that eventually discharges towards the Atlantic Ocean. A few pieces of rebar are located in the area of the reservoir and spillway. There is a significant volume of concrete in this area (likely greater than 2,000 m³).

Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.10 APEC #9: Fuel Pump House and Shack (Lower Site)

APEC #9, the former fuel pump house and shack, is located to the east of APEC #2 (AST Lower Site). The ground cover consists of rock and low-lying grasses and shrubs. The Site slopes southeasterly towards the former dock area. The concrete pad is approximately 5 m by 5 m and is in good condition (few cracks). Some piping remains in the concrete. Small pieces of transite board (approximately 0.05 m in size) were identified in the area (approximately 40 pieces). No PHC odours or staining were identified. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.11 APEC #10: Main Building and Motor Pool

APEC #10 is generally flat, with a gravel roadway around the west of the former main building and the former radome. The Site slopes radially away from the main building. The concrete slab (12.5 m by 60 m) of the former main building remains in fair (cracked and crumbling portions) to good (few cracks) condition. The depth of the slab is estimated to be 0.5 m. Therefore the total volume of concrete in this slab is approximately 375 m³. Numerous drain pipes were observed in the floor of the slab foundation along with pipe fittings. Five bases with exposed pipe fittings are located on the slab. These were likely cradles for the former boilers. Various holes were located in the foundation showing rebar with exposed ground surface. Metal fittings remaining in concrete slab are suspected to be lead-based. Rubber gaskets were also identified.

Concrete supports are located to the west of the main building, adjacent to the octagonal gravel pad with concrete curbing (former radome).

Two sets of three concrete blocks (each $0.5 \text{ m} \times 0.5 \text{ m}$ by 1 m), associated with former tripillar communication antennae, are present. Metal plates are located on the pillars. The total volume of concrete related to the blocks is approximately 1.5 m^3 .

Numerous (30 or more) small concrete blocks (each approximately 0.61 m by 0.61 m by 0.25 m; with black tar on top and 0.10 m by 0.10 m wood inside), lead north of the radome and veered to the west. The total volume of concrete related to these pillars/blocks is approximately 3 m³. GHD (2016) suggests these pillars formerly housed electrical wiring.

Transite board is strewn across the Site ranging from 0.05 m to 0.10 m in size (>100 pieces). Plywood board, metal debris (piping, flashing) and a hydraulic fuel container are also on the Site.

Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.12 APEC #11: Disaster Shack (Upper Site)

A concrete slab foundation of the former disaster shack (13.5 m by 6 m by 0.5 m; volume of 40 m³) is present. The slab is in good condition (few cracks). There were no visible drains or pipes within the slab, with the exception of a pipe that was observed exiting the east side of the foundation of the slab. The black caulking between the slab and foundation was sampled for asbestos analysis. Small pieces of transite board were scattered around the slab (approximately 50 pieces). A piece of rebar was protruding from the ground near the northern corner of the slab. Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.13 APEC #12: Storage Building

APEC #12 is located west of the roadway (APEC #3) and is accessed by a gravel access road. The APEC is slightly upgradient to the main roadway. A concrete slab foundation 5 m by 12 m by 0.5 m is present (estimated volume of 30 m³). A possible metal track was located in the floor; however, no evidence of piping was observed. An approximate 1.5 m by 1.5 m by 0.5 m concrete slab (with metal drain pipes in the structure) is located to the north of the building foundation; the estimate volume of this concrete slab is 1 m³. Some wood and metal debris (rebar) was identified in the area. Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

5.2.14 APEC #13: Former Catch Basin

The ground surface of APEC #13 slopes to the east. The ground surface consists of bedrock outcrops and low-lying grasses and shrubs. A concrete slab 5 m by 12 m by 0.15 m is present (estimated volume of 9 m³). The slab is disintegrating with rebar showing. No visible signs of piping were observed. A large concrete structure (2 m by 6 m by 4 m; estimated volume of 48 m³) is located to the east; its former use is unknown. Pipe holes appear to be located on the top of the concrete structure. Potential hazardous materials were not identified at either structure. Neither PHC odours nor surface staining was observed. No signs of stressed vegetation were observed.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.15 APEC #14: Waterbody (Northeast of the Helicopter Pad)

The freshwater waterbody is located northeast and downgradient of the helicopter pad. This APEC is also downgradient of the former catch basin located to the east. The Site was selected as an APEC due to its proximity to the helicopter pad (APEC #7) and potential impacts from historical fueling and spillage.

The waterbody is approximately 800 m². At the time of the Site visit, the water was blue, and the bottom substrate (brown to dark brown sand, silt and gravel with cobble) was visible more than one metre from the shoreline. The depth of the reservoir could not be determined; a boat would be required to do so.

Modifications to this APEC were not required based on the Site reconnaissance.

5.2.16 APEC #15A: Waterbody (North of the Water Source)

In the initial planning phases of this project, sampling in multiple similar water bodies was proposed, with APEC names #15A, #15B, #15C, etc. As the program was refined, only APEC 15A was carried forward into the initial testing program. The original nomenclature was retained for consistency with initial drafts. APEC #15A is located northeast and downgradient to the former AST at the Upper Site and was selected as an APEC due to its proximity to the AST to investigate potential historical leaks from the AST.

The waterbody is approximately 3,500 m². At the time of the Site visit, the water was blue, and the bottom substrate (brown to dark brown sand, silt and gravel with cobble) was visible more than one metre from the shoreline. The depth of the reservoir could not be determined; a boat would be required to do so.

5.3 Test Pitting

A minimum of one test pit was completed at each APEC during the completion of the Step 3 Initial Testing Program. Details of the test pits are provided in Appendix C. Test pits were excavated to depths ranging from 0.1 to 0.9 metres in each area; bedrock was encountered in most test pits at a depth of 0.1 mbgs. In most areas, surficial soil was 0.1 m thick and overlay hard, competent bedrock. Surficial soil was found to be mostly sand and gravel (with some silt) with the presence of organics in most area. Permafrost was not encountered at any of the test pit locations, and based on the shallow soil conditions encountered, permafrost is not anticipated to present across the Site. On-site soil observations are presented in Section 6.3.

5.4 On-Site Habitat and Natural Environment

The Site consists of four primary habitat types:

- <u>Surface water body (freshwater)</u>: many small surface water bodies are scattered throughout the Site and the entire island;
- Gravel access roads: approximately 1.5 km of gravel roadway connects the Upper and Lower Sites. Gravel road also connected the main building, Upper Site AST, disaster shack, and helicopter pad;
- Exposed bedrock/concrete foundations: much of the Site is devoid of, or supports limited vegetation due to the presence of bedrock outcropping and remains of former structure foundations; and
- <u>Low-lying Vegetation</u>: a mixture of grasses and forbs are present in scattered areas across
 the Site. No trees or woody vegetation were observed. This habitat is typical of the coastal
 island region of Labrador.

Cut Throat Island appears to have a healthy invertebrate community. Species of gull were observed in the freshwater habitat. A fox was observed on Cut Throat Island during the Site visit along with evidence of hares and black bears. Stressed vegetation was observed at APEC #2 (Lower Site AST) and APEC #6A Landfill/Bury Site were identified in 2017.

6.0 INITIALTESTING PROGRAM RESULTS

6.1 Scope of Field Program

The preliminary APECs and COPCs identified in Table 1.1 were modified based on the findings during the Site reconnaissance. The updated APECs, COPCs, and the scope of Initial Testing Program and NCSCS Classification are summarized in Table 6.1.

Table 6.1 Field Program

	APEC		Sample IDs					
#	Description	COPCs	Soil	Surface Water	Sediment	Building Materials		
1	AST (Upper Site)	PHCs, PAHs	SS_CT_11, SS_CT_12, SS_CT_13, SS_CT_14	-	-	BS_CT_02A		
2	AST (Lower Site)	PHCs, PAHs, metals	SS_CT_45, SS_CT_46, SS_CT_47, SS_CT_48, SS_CT_49	-	-			
3	Aboveground Fuel Line	PHCs	SS_CT_15, SS_CT_21, SS_CT_34, SS_CT_40, SS_CT_54	-	-			
4	USAF Quarry and Dump	PHCs, VOCs, metals, PCBs	SS_CT_41, SS_CT_42, SS_CT_43, SS_CT_44	-	-			
5	1987 Landfill/Bury Site (assumed location)	PHCs, PAHs, metals, PCBs	SS_CT_36, SS_CT_37, SS_CT_38, SS_CT_39	-	-			
6	1987 Landfill/Bury Site (assumed location)	PHCs, PAHs, metals, PCBs	SS_CT_07, SS_CT_08, SS_CT_09, SS_CT_10	-	-			
6A	Landfill/Bury Site (identified during the 2017 Site reconnaissance)	PHCs, metals, PCBs, VOCs, Dioxins, Furans, and Dioxin-like Compounds	SS_CT_60, SS_CT_61, SS_CT_62, SS_CT_63	-	-			
7	Helicopter Pad	PHCs, PAHs, metals, PCBs	SS_CT_30, SS_CT_31, SS_CT_32, SS_CT_33	-	-			

Table 6.1 Field Program

	APEC	0000		Sampl	le IDs	
#	Description	COPCs	Soil	Surface Water	Sediment	Building Materials
8	Pump House and Water Source	PHCs, PAHs	SS_CT_55, SS_CT_56, SS_CT_57, SS_CT_58	SW_CT_02, SW_CT_03	SD_CT_02, SD_CT_03	BS_CT_01C, BS_CT_03A
9	Pump House and Shack (Lower Site)	PHCs, PAHs	SS_CT_50, SS_CT_51, SS_CT_52, SS_CT_53	-	-	BS_CT_01D
10	Main Building and Motor Pool	PHCs, metals, PCBs, VOCs, PAHs	SS_CT_01, SS_CT_02, SS_CT_03, SS_CT_04, SS_CT_05, SS_CT_06	-	-	BS_CT_01A
11	Disaster Shack (Upper Site)	PHCs, PAHs, metals	SS_CT_16, SS_CT_17, SS_CT_18, SS_CT_19	-	-	BS_CT_02B, BS_CT_01B
12	Storage Building	PHCs, PAHs, metals	SS_CT_22, SS_CT_23, SS_CT_24, SS_CT_25	-	-	
13	Former Catch Basin	PHCs, PAHs, metals	SS_CT_26, SS_CT_27, SS_CT_28, SS_CT_29	-	-	
14	Waterbody (northeast of the Helicopter Pad)	PHCs, PAHs, metals, PCBs, VOCs	-	SW_CT_04	SD_CT_04	
15 A	Waterbody (north of water source) Cs = chemicals of pote	PHCs, PAHs, metals, PCBs, VOCs	-	SW_CT_01	SD_CT_01	

COPCs = chemicals of potential concern

PHCs = petroleum hydrocarbons (including Benzene, Toluene, Ethylbenzene and Xylene (BTEX))

PCBs = Polychlorinated biphenyls

PAHs = Polycyclic aromatic hydrocarbons

VOCs = volatile organic compounds

Soil samples were collected in general accordance with the proposed sampling locations included in the Work Plan (GEMTEC, 2017), or adjusted based on field observations to situate samples where contaminants of potential concern were expected to be present (adjacent to historical structures, near apparent areas of former petroleum storage, and/or in suspected landfill locations).

In addition to the APEC sampling indicated above, background samples were collected in areas that were anticipated to be outside of the areas influenced by historical Site activities. The intention of background sampling is to determine the potential presence of naturally occurring substances (such as metals) that may be elevated compared to generic standards, but are not

attributable to contamination, but rather characteristic of the region. Background samples included:

- Soil located approximately 90 m northwest of APEC #1 (Upper Site AST), and approximately 150 m west of APEC #2 (helicopter pad). There was no indication of historical use of this area, and as such, impacts related to Site activities were not anticipated. Sample SS_CT_20BG (Drawing 3, Appendix A) was analyzed for PHCs, PAHs, PCBs, and metals; and
- Surface water (SW_CT_05BG) and sediment (SD_CT_05BG) in a waterbody located approximately 200 m south of the southernmost edge of the former water supply waterbody (APEC #8), and approximately 500 m south of the former pump house at APEC #8. The background waterbody is not connected to the former water supply water body, and as no USAF infrastructure was located in this immediate area, Site-related impacts are not anticipated. There were no other upstream surface water bodies within this area of the Site; therefore, this waterbody was selected as the most appropriate location for background sampling. The surface water sample was analyzed for PHCs, PAHs, and general chemistry parameters; the sediment sample was analyzed for PHCs, PAHs, and metals.

6.2 Sampling Methods

Soil samples were collected using a hand trowel. Between sampling locations, the trowel was decontaminated. A wire brush was used to knock off loose particles, then the tool was spritzed with a solution of biodegradable detergent and water. A clean paper towel was used to wash the trowel, and then it was rinsed with deionized water. GEMTEC personnel wore disposable, nitrile gloves during sampling; the gloves were replaced prior to sampling the next location. Each surface soil sample was collected in a 120 mL glass jar supplied by the analytical laboratory. The 120 mL soil sample jar was completely filled to eliminate headspace losses of potential volatile contaminants in the sample. After sampling, each sample container was tightly capped, labelled and placed into an insulated cooler containing ice for transport to the analytical laboratory. All samples were maintained in temperature-controlled storage until delivered to the analytical laboratory.

Soil samples for potential PHC or VOC analysis were collected in 60 millilitre (mL) glass jars and 40 mL pre-weighed vials supplied by the analytical laboratory. The 40 mL vials contained 10 mL of methanol preservative, measured by the laboratory. Approximately five grams of soil was extracted using a dedicated sampling device supplied by the laboratory; the sample was placed into the 40 mL vial containing methanol per laboratory sampling requirements. The vial was then swirled to ensure the soil was fully dispersed in the methanol. The soil sample jar was completely filled to eliminate headspace losses of potential volatile contaminants in the sample. A duplicate sample jar was only partially filled to allow for volatilization of contaminants for headspace

analysis using a photoionization detector. The soil samples were maintained in ice-packed coolers until delivered to the analytical laboratory.

Surface water samples were collected in the appropriate laboratory-provided bottles containing all required preservatives. Samples were collected from the shore by skimming the water surface at each sampling location, where possible. Sample collection containers were completely filled to eliminate headspace losses of potential volatile contaminants in the sample. After sampling, each sample container was tightly capped, labelled and placed into insulated coolers containing ice.

Sediment samples were collected from the shore from the same sampling locations as the surface water samples, where possible. Sediment samples were collected using a hand trowel at depths of 0 to 0.05 metres below the sediment/water interface. Water was allowed to drain from the trowel prior to placing the sediment into the sample jars. The trowel was washed with a non-petroleum based cleaner and thoroughly wiped with a clean towel between each sampling location. GEMTEC personnel wore disposable nitrile gloves during sampling; the gloves were replaced prior to collecting the next sample.

Sediment samples were collected in 120 mL glass jars and 40 mL pre-weighed vials (for PHC or VOC analysis) supplied by the analytical laboratory. The 40 mL vials contained 10 mL of methanol preservative, measured by the laboratory. Approximately 5 grams of sediment was extracted using a dedicated syringe supplied by the laboratory; the sample was placed into the 40 mL vial containing methanol per laboratory sampling requirements. The vial was then swirled to ensure the sediment was fully dispersed in the methanol. The 120 mL soil sample jar was completely filled to eliminate headspace losses of potential volatile contaminants in the sample. After sampling, each sample container was tightly capped, labelled and placed into insulated coolers containing ice.

Hazardous building material samples (suspected ACM) were collected from the scattered debris at the Site. Larger debris pieces were broken by hand to a size that would fit in a large zip-top plastic bag (approximately 0.25 m by 0.25 m). One sample was collected to represent each hazardous material type at each APEC. For example, if many pieces of green vinyl floor tile were observed in an APEC, one representative green vinyl floor tile sample was collected for the APEC.

All samples were placed on ice in insulated coolers for transport back to GEMTEC's accommodations in Happy Valley-Goose Bay, Labrador. Additional packing materials (bubble wrap, etc.) were added to the coolers to ensure sample integrity during shipping. The samples were shipped to Maxxam Analytics in Bedford, Nova Scotia for analysis. Several parameters (CCME Hydrocarbons, furans and dioxin-like compounds) were analyzed at the Maxxam Analytics laboratory in Mississauga, Ontario.

In the analysis of PHCs, the laboratory provides a comment regarding whether the equipment (chromatogram) returned to baseline following the analysis of $C_{>34}$ - C_{50} analysis. Where the

chromatogram returns to baseline following the $C_{>34}$ - C_{50} analysis, additional hydrocarbons in the $C_{>50}$ range are not expected, and the preliminary F4 ($C_{>34}$ - C_{50}) analysis is deemed an appropriate approximation of CCME F4 ($C_{>34}$) hydrocarbons. Where the chromatogram did not return to baseline following the $C_{>34}$ - C_{50} analysis (25 of the 73 samples submitted for PHC analysis), additional analysis (F4 Gravimetric method) was conducted to quantify hydrocarbons in the $C_{>50}$ range.

6.3 Field Observations

Samples and manual test pits were logged in the field during the September 2017 field program. Soil color, texture, odours, presence of debris, and headspace vapour readings were recorded. Sample locations were collected using a hand-held GARMIN GPS unit.

In general, the soil conditions at the sampling locations consisted of brown sand and gravel with some areas of organics. Petroleum hydrocarbon odours were observed in samples SS_CT_28 (APEC #13) and SS_CT_60 (APEC #6A) upon disturbing the soil.

A summary of the soil sampling locations and field observations are provided in Appendix C.

6.4 Geospatial Data Collection

Proposed sampling locations were determined using GPS coordinates. Site features were digitized from high-resolution aerial photos, and geospatial data for sampling locations were collected relative to readily identifiable features on aerial mapping, such as the remains of building foundations.

The DND Contaminated Sites Sampling Database was updated. The updated ESRI File Geodatabase was provided to DND/DCC.

6.5 Quality Assurance/Quality Control

The quality assurance/quality control (QA/QC) program consisted of the following:

- Collecting field duplicate samples (FD) of approximately 10% of the sampling program;
- Laboratory duplicates (LD), conducted at random by the laboratory;
- Laboratory in-house routine quality control checks including blanks and matrix spikes; and
- Sending a laboratory prepared trip blank (deionized water) in the coolers along with samples. This trip blank was analyzed for VOCs to assess the potential influence of vehicle emissions (car, helicopter, and airplane) on the sample integrity.

Blind field duplicates were generally conducted when the number of samples was greater than 10. Thus, the following packages were not duplicated in the field due to limited sampling:

- Soil: VOCs (5 samples), furans and dioxin-like compounds (1 sample),
- Sediment: PCBs, VOCs (2 samples each);
- Surface Water: PAHs, General Chemistry, metals (5 samples each), PCBs (2 samples)
 PHCs, general chemistry, metals (5 samples each), PCBs (4 samples)
 PAHs (2 samples)

Lab duplicates are conducted per laboratory protocols, based on each batch of samples analyzed which may include samples from other clients. The number of lab duplicates is out of the control of each client.

The results of VOC analysis for the trip blank sample are provided in Table D19 (Appendix D). VOCs were not detected in the trip blank, indicating no background source of VOCs was present during the transport of the samples that could have influenced the other sample results.

Blind field duplicates and laboratory duplicates were analyzed to determine the extent to which they agree with the parent sample. General data quality targets for duplicate samples, per Health Canada (2008), are summarized in Table 6.2.

Table 6.2 Acceptable Relative Percent Difference

Duplicate Type	Soil	Water	
Laboratory Duplicate	28-42%	21-28%	
Field Duplicate ²	57-85%	42-57%	

Notes:

Elevated variation is often seen near the detection limit. Where the results are within five times the detection limit, the difference between the duplicate concentrations should be no more than two times the detection limit (Health Canada, 2008). Variation in the dataset is summarized in Table 6.3.

¹⁾ Relative Percent Difference is calculated as absolute value of the difference over the mean, times 100%

²⁾ Elevated variability due to sampling and handling procedures, in addition to laboratory instrument variation

Table 6.3 Variation in the Dataset

		Duplicates w	ithin 5 x RDL ¹	Duplicates	> 5 x RDL ¹	Percent		
Duplicate Type	Analytical Package	Number of analytes	Absolute Difference ²	Number of analytes	Range of RPD ³	within Acceptable Range		
Soil Samples	5							
	PHC	26	0 - 0.5 X RDL	2	12-21%	100%		
Laboratory	PAH	20	04	-	-	100%		
Laboratory	Metals	11	0 - 0.3 X RDL	16	1-37%	100%		
	PCB	7	04	-	-	100%		
	PHC	38	0 - 0.4 x RDL	9	21-121%	91%		
Field	PAH	38	0 - 7.2 x RDL	4	40-89%	79%		
i ieiu	Metals	33	0 - 1.2 x RDL	48	1-37%	100%		
	PCB	8	04	-	-	100%		
Sediment Sa	mples							
	PHC	-	-	2	12-17%	100%		
Laboratory	PAH	20	04	-	-	100%		
	Metals	8	0 - 0.4 X RDL	18	4-17%	100%		
Field	PHC	7	0 - 22 X RDL	4	160-191%	64%		
Water Samp	Water Samples							
Field	PHC	8	04	-	-	100%		
Notes:					•			

Notes:

EDL = Estimated detection limit

Elevated variability (>85%) was found in PHC and PAH concentrations between surface soil samples SS_CT_07 and SS_CT_07FD. Concentrations of F3 and F4 were above the provincial and/or federal ecological screening levels in the parent sample (SS_CT_07), but below the screening levels in the duplicate (SS_CT_07FD). No obvious reasons for this variability were noted based on field observations during sampling. To address this variability, GEMTEC has

¹⁾ Reportable detection limit (RDL)

²⁾ For values within 5 times the detection limit, duplicate concentrations should be no more than two times the reportable detection limit (RDL x 2, Health Canada, 2008)

³⁾ Relative Percent Difference (RPD). Calculated as absolute value of the difference over the mean, times 100% for values >5 times the detection limit. Acceptable RPD range for laboratory duplicates is 28-42% for soil, and 21-28% for water. Acceptable RPD range for field duplicates is 57-85% for soil, and 42-57% for water (Health Canada, 2008)

⁴⁾ All values in original and duplicate sample were below the RDL

⁵⁾ The laboratory provides Estimated Detection Limits for the Furans and Dioxin-like compounds analysis that were different for the parent and lab duplicate sample. Multiples of the EDL are shown here based on the average EDL for the parent and duplicate

conservatively assumed that the higher concentration is representative of the sample location for the purposes of the Drawings (Appendix A) and estimates of impacted areas (Section 5.0).

Elevated variability (>85%) was found in PHC concentrations between sediment samples SD_CT_02 and SD_CT_02FD. However, as the concentrations of each parameter in both samples was either both above or both below the guidelines, the variability of PHCs in the collected sediment samples does not have a significant impact on the overall interpretation of the dataset. Nonetheless, GEMTEC has conservatively assumed that the higher concentration is representative of the sample location for the purposes of the Drawings (Appendix A) and estimates of impacted areas (Section 5.0).

In-house quality checks performed by the lab are summarized in the laboratory certificates (Appendix E) and are generally within the acceptable ranges. The overall data quality is considered good.

6.6 Analytical Data Review

The sampling locations for the Initial Testing Program are shown on Drawings 3 - 8 (Appendix A). Analytical data were compiled, compared to the screening levels identified in Section 3.4, and presented in tables in Appendix D. Laboratory certificates of analysis are provided in Appendix E.

6.6.1 Background Sampling Program

F3 hydrocarbons were detected in the background soil sample (SS_CT_20_BG and SS_CT_20_BG_LD). The detected concentrations were below the Federal and Provincial screening levels.

PCBs, PAHs, VOCs, were not detected in the background soil sample (SS CT 20 BG).

Metal concentrations were detected in the background soil sample (SS_CT_20_BG). The detected metals concentrations were generally below the referenced screening levels, with the exception of chromium (68 mg/kg) which exceeded the SQG_E for residential land use (64 mg/kg).

6.6.1.1 Background sediment sample results

PHCs and PAHs were not detected in the background sediment sample (SD_CT_05_BG). Concentrations of metals in the background sediment sample were below the ISQG and PELs.

6.6.1.2 Background Surface Water sample Results

PHCs and PAHs were not detected in the background sample (SW_CT_05_BG). General chemistry parameters in the background sample (SW_CT_05_BG) did not exceed the referenced screening levels.

The concentrations of aluminum, copper, and iron in the background sample (SW_CT_05_BG) were above the referenced screening levels.

6.6.2 Soil

6.6.2.1 PHCs in Soil

Concentrations of PHCs in soil are presented in Tables D1-1 (for samples compared to residential guidelines) and D1-2 (for samples compared to commercial guidelines). Soil samples with concentrations exceeding the referenced screening levels are summarized in Table 6.4.

Table 6.4 Concentrations of PHCs in Soil above Referenced Screening Levels

neter	2		Sample Details			ing Level g/kg)	Were Impacts
Parameter	APEC	ID	Depth (m)	Result (mg/kg)	нн	Eco	Delineated? ¹
		Commercial S	creening (Areas	> 250 m from h	nunting/fishi	ng sheds)	
	13	SS_CT_26	0-0.05	6500			No
F2	13	SS_CT_29	0-0.05	1200	1000³	260 ^{2,3}	No
	6A	SS_CT_60	0-0.05	610			No
	6A	SS_CT_62	0-0.05	400	1000³	260 ^{2,3}	No
	3	SS_CT_03	0-0.05	2000			No
	6	SS_CT_09	0-0.05	3500			No
F3	13	SS_CT_26	0-0.05	5500	3500 ³	1700 ^{2,3}	No
	6A	SS_CT_60	0-0.05	5600			No
	6A	SS_CT_62	0-0.05	9000			No
	5	SS_CT_36	0-0.05	4800			No
F4	6	SS_CT_08	0-0.05	4900	10000 ³	3300 ^{2,3}	No
	12	SS_CT_24	0-0.05	4500	10000	3500	No
	6A	SS_CT_62	0-0.05	9400			No

Concentrations of PHCs in Soil above Referenced Screening Levels Table 6.4

neter	ည္		Sample Details			ing Level g/kg)	_ Were Impacts
Parameter	APEC	ID	Depth (m)	Result (mg/kg)	нн	Eco	Delineated? ¹
Modified	13	SS_CT_26	0-0.05	12000	4000²	-	No
TPH	6A	SS_CT_60	0-0.05	6210			No
	R	esidential Scre	eening (Areas wit	thin 250 m from	n hunting/fis	hing sheds)	
F2	2	SS_CT_48	0-0.05	4300	150 ³	150 ^{2,3}	No
	3 SS_CT_15 0-0.05 470	470			No		
	2	SS_CT_48	0.12-0.20	1900	- 2500 ³	300 ^{2,3}	No
F3	2	SS_CT_49	0.05-0.075	620			No
r3	2	SS_CT_49 FD	0.05-0.07	810			No
	9	SS_CT_53	0-0.05	310			No
	3	SS_CT_54	0-0.05	330			No
	3	SS_CT_15	0-0.05	483			No
	2	SS_CT_48	0-0.05	6200			No
	2	SS_CT_49	0-0.05	620			No
Modified TPH	2	SS_CT_49 FD	0-0.05	810	270²	-	No
	9	SS_CT_52	0-0.05	400			No
	9	SS_CT_53	0-0.05	355			No
	3	SS_CT_54	0-0.05	346			No

Notes:

HH = Human Health; Eco = Ecological

- 1.) Refers to horizontal delineation. Impacts are not expected to extend into bedrock, which was encountered in most sampling locations at a depth of 0.10 m.
- Atlantic RBCA Tier I RBSL (HH) and ESL (Eco)
 CCME Canada-Wide Standard for Petroleum Hydrocarbons in soil.

FD = field duplicate
"-" No screening level

6.6.2.2 PAHs in Soil

Concentrations of PAHs in soil are presented in Tables D2-1 (for samples compared to residential guidelines) and D2-2 (for samples compared to commercial guidelines). Soil samples with concentrations exceeding the referenced screening levels are summarized in Table 6.5. Samples collected within 250 m of the seasonal community contained concentrations of PAHs below the residential screening levels.

Table 6.5 Concentrations of PAHs in Soil above Referenced Screening Levels

neter	ပ္	S	ample Details	5		ng Level /kg)	Were Impacts Delineated? ¹				
Parameter	APEC	ID	Depth (m)	Result (mg/kg)	нн	Eco					
Con	Commercial Screening (Areas > 250 m from hunting/fishing sheds)										
Acenaphthene	10	SS_CT_03	0-0.05	5.2	8000 ²	0.28	Yes				
Fluorene	10	SS_CT_03	0-0.05	4.9	4100 ²	0.25	Yes				
Naphthalene	10	SS_CT_03	0-0.05	0.16	25 ²	0.013	Yes				
	10	SS_CT_02	0-0.05	0.065			Yes				
Phenanthrene	10	SS_CT_03	0-0.05	63	-	0.046	No				
	11	SS_CT_19	0-0.05	0.18			No				
Benzo[a]anthracene	10	SS_CT_03	0-0.05	47	-	10	Yes				
Benzo[b]fluoranthene	10	SS_CT_03	0-0.05	26	-		Yes				
Benzo[j]fluoranthene	10	SS_CT_03	0-0.05	15	-	10 ³	Yes				
Benzo[k]fluoranthene	10	SS_CT_03	0-0.05	15	-		Yes				
Indeno[1,2,3- cd]pyrene	10	SS_CT_03	0-0.05	12	-	10	Yes				
B(a)P TPE (calculated) ⁴	10	SS_CT_03	0-0.05	131.55	5.3	-	Yes				

Notes:

HH = Human Health; Eco = Ecological

^{4.)} Benzo(a)pyrene total potency equivalent is a calculated sum of each of the carcinogenic PAHs, multiplied by their respective "potency equivalency factor). The sum here has been multiplied by 3 per CCME guidance as the PAH source may be creosote.

^{1.)} Refers to horizontal delineation. Impacts are not expected to extend into bedrock, which was encountered in most sampling locations at a depth of 0.10 m.

In the absence of CCME guidelines for non-carcinogenic parameters for the protection of human health, CCME stipulates that provincial guidelines be referenced. GEMTEC has referenced Nova Scotia Environment Tier 1 EQS (2012)

^{3.)} Guideline is for the sum of Benzo[a]anthracene, Benzo[j]fluoranthene, Benzo[k]fluoranthene.

6.6.2.3 Metals in Soil

Concentrations of metals in soil are presented in Tables D3-1 (for samples compared to residential guidelines) and D3-2 (for samples compared to commercial guidelines). Soil samples with concentrations exceeding the referenced screening levels are summarized in Table 6.6.

 Table 6.6
 Concentrations of Metals in Soil above Referenced Screening Levels

		Sa	ample Details		Screenii (mg	ng Level /kg)	Were
Parameter	APEC	ID	Depth (m)	Result (mg/kg)	HH¹	Eco ²	Impacts Delineated? ³
	Comm	ercial Screening	(Areas > 250 m	from hunting	g/fishing sl	neds)	
Arsenic	10	SS_CT_03	0-0.05	24	12	26	No
	10	SS_CT_03	0-0.05	170			No
	13	SS_CT_27	0-0.05	310			No
	13	SS_CT_28	0-0.05	190			No
Chromium	5	SS_CT_38	0-0.05	90	630	87	No
	6A	SS_CT_60	0-0.05	200			No
	6A	SS_CT_61	0-0.05	430			No
	6A	SS_CT_62	0-0.05	310			No
	10	SS_CT_03	0-0.05	210		91	No
Copper	13	SS_CT_28	0-0.05	130	4000		No
Соррег	6A	SS_CT_60	0-0.05	130	4000	91	No
	6A	SS_CT_61	0-0.05	170	4000	31	No
Lead	10	SS_CT_03	0-0.05	3200	260	600	No
	10	SS_CT_03	0-0.05	150			No
	13	SS_CT_27	0-0.05	450			No
Nickel	13	SS_CT_28	0-0.05	280	310	89	No
	6A	SS_CT_60	0-0.05	460			No
	6A	SS_CT_61	0-0.05	560			No

Table 6.6 Concentrations of Metals in Soil above Referenced Screening Levels

	ADEC	Sa	imple Details		Screening Level (mg/kg)		Were			
Parameter	APEC	ID	Depth (m)	Result (mg/kg)	HH¹	Eco ²	Impacts Delineated? ³			
7in a	10	SS_CT_02	0-0.05	1100		200	No			
Zinc	10	SS_CT_03	0-0.05	1900	-	200	No			
R	Residential Screening (Lower Site, and lower portions of APEC #7 (pipeline))									
	4	SS_CT_41	0.0-0.05	79			No			
Chromium	4	SS_CT_42	0.0-0.05	370	220	64	No			
	4	SS_CT_44	0.0-0.05	200			No			
Lead	14	SS_CT_62	0.0-0.05	210	140	300	No			
Nickel	4	SS_CT_42	0.0-0.05	90	200	45	No			
Thallium	4	SS_CT_41	0.0-0.05	1.3	1	1.4				
Zinc	11	SS_CT_45	0.0-0.05	770	N/A	200	No			

Notes:

HH = Human Health; Eco = Ecological

- 1.) CCME SQG_{HH}
- 2.) CCME SQG_E
- 3.) Refers to horizontal delineation. Impacts are not expected to extend into bedrock, which was encountered in most sampling locations at a depth of 0.10 m.

6.6.2.4 PCBs in Soil

Concentrations of PCBs in soil are presented in Tables D4-1 (for samples compared to residential guidelines) and D4-2 (for samples compared to commercial guidelines). PCBs were not detected in the analyzed soil samples, and the laboratory detection limits were below the human health and ecological guidelines for residential and commercial land use.

6.6.2.5 VOCs in Soil

Concentrations of VOCs in soil are presented in Table D5 for samples compared to commercial guidelines. No samples were collected for VOC analysis in the residential screening area of the Site. VOCs were not detected in the analyzed soil samples, and the laboratory detection limits were below the human health and ecological guidelines for commercial land use.

6.6.2.6 Furans and Dioxin-like compounds in Soil

Concentrations of furans and dioxin-like compounds in soil are presented in Table D6 for samples compared to commercial guidelines. No samples were collected for furans and dioxin-like compounds analysis in the residential screening area of the Site. A Toxic Equivalency Quotient (TEQ) was calculated for the analyzed sample by summing the concentration of each parameter, multiplied by its respective Toxic Equivalency Factor (TEF). The calculated TEQ (0.365 ng/kg in SS_CT_63) is below the human health screening level of 1000 ng/kg, and below the ecological screening level of 4 ng/kg.

6.6.3 Sediment

6.6.3.1 PHCs in Sediment

Concentrations of PHCs in sediment are presented in Table D7. Sediment samples with concentrations exceeding the referenced screening levels are summarized in Table 6.7 and are shown on Drawings 13 and 14 (Appendix A). The detection limit for modified TPH exceeds the referenced screening level.

Table 6.7 Concentrations of PHCs in Sediment above Referenced Screening Levels

Parameter	APEC	Sa	imple Det	Screening Level	Were Impacts		
1 didilictor		ID	Depth (m)	Concentration (mg/kg)	(mg/kg)	Delineated? ¹	
		SD_CT_02	0-0.05	962			
Modified TPH	13	SD_CT_02_FD	0-0.05	100	15 ²	No	
		SD_CT_03	0-0.05	170			

Notes:

FD = field duplicate

- 1.) Horizontal delineation. Samples were collected at one depth only (0-0.05 m) thus, the vertical extent of impacts has not been determined.
- 2.) Atlantic RBCA Tier I ESL for typical sediment.

6.6.3.2 PAHs in Sediment

Concentrations of PAHs in sediment are presented in Table D8. PAHs were not detected in the analyzed sediment samples, and the detection limits were below the referenced screening levels.

6.6.3.3 Metals in Sediment

Concentrations of metals in sediment are presented in Table D9. The detected metals in sediment were below the referenced screening levels.

6.6.3.4 PCBs in Sediment

Concentrations of PCBs in sediment are presented in Table D10. PCBs were not detected in the analyzed sediment samples, however the detection limit for (calculated) total PCBs exceeds the

referenced screening level. Sediment samples with concentrations exceeding the referenced screening levels are summarized in Table 6.8.

Table 6.8 Concentrations of PCBs in Sediment above Referenced Screening Levels

Parameter	APEC	Sa	ımple Det	ails	Screenir (mg		Were Impacts
i didiliotoi	AI LO	ID	Depth (m)	Result (mg/kg)	ISQG ¹	PEL ²	Delineated? ³
Calculated Total PCB	8	SD_CT_02	0-0.05	<0.050	0.0341	0.277	No
	14	SD_CT_04	0-0.05	<0.050	0.0341 0.277		No

Notes:

- 1.) Interim Sediment Quality Guideline (ISQG), represents tolerable effects level, which is the level below which adverse effects are expected to occur rarely (CCME, 1999).
- 2.) Probable Effects Level (PEL), level above which adverse effects are expected to occur frequently (CCME, 1999)
- 3.) Horizontal delineation. Samples were collected at one depth only (0-0.05 m) thus, the vertical extent of impacts has not been determined.

Although the calculated total PCB concentration exceeds the ISGQ, each individual PCB parameter was below the laboratory detection limits, and below their respective ISQG (where available). The calculated total PCB concentration is below the PEL at both APEC #8 and APEC #14.

6.6.3.5 VOCs in Sediment

Concentrations of VOCs in sediment are presented in Table D11. VOCs were not detected in the analyzed sediment samples, and the detection limits were below the referenced guidelines.

6.6.4 Surface Water

6.6.4.1 PHCs in Surface Water

Concentrations of PHCs in surface water are presented in Table D12. Samples with concentrations exceeding the referenced screening levels are summarized in Table 6.9.

Table 6.9 Concentrations of PHCs in Surface Water above Referenced Screening Levels

Parameter	APEC	Sa		Ecological Screening	
		ID	Depth (m)	Result (mg/L)	Level (mg/L)
	15A	SW_CT_01	N/A		
	8	SW_CT_02	N/A		0.1 ¹
Modified TPH	8	SW_CT_02_FD	N/A	<0.2	
	8	SW_CT_03	N/A		
	14	SW_CT_04	N/A		

Notes:

N/A = not applicable; FD = field duplicate

¹⁾ Atlantic RBCA Tier I ESL for surface water.

Surface water samples were analyzed using the CCME CWS method. For comparison of the laboratory results to the Provincial guidelines (modified TPH, $C_{>6}$ - C_{32}), GEMTEC has summed the detected concentrations of F1, F2, and F3 fractions (C_6 - C_{34}). In the instance of no detections, the highest detection limit of the F1, F2, and F3 fractions is used as the approximate value for modified TPH. This approximation is a slight over representation of the modified TPH concentration. It is noted that the CWS detection limits, in some instances, exceed the Atlantic RBCA guidelines. Nevertheless, petroleum hydrocarbon products (F1, F2, and F3) were not detected by the laboratory in the above-noted samples.

6.6.4.2 PAHs in Surface Water

Concentrations of PAHs in surface water are presented in Table D13. PAHs were not detected in the background sample (SW_SP_01_BG). PAHs were not detected in the analyzed surface water samples, and the detection limits were below the referenced guidelines.

6.6.4.3 General Chemistry in Surface water

Concentrations of general chemistry parameters in surface water are presented in Table D14. Concentrations of general chemistry parameters in surface water were below the referenced ecological screening levels.

6.6.4.4 Metals in Surface water

Concentrations of metals in surface water are presented in Table D15. Surface water samples with concentrations exceeding the referenced screening levels are summarized in Table 6.10.

Table 6.10 Concentrations of Metals in Surface Water above Referenced Screening Levels

Parameter	APEC	Sai	Ecological Screening Level		
	7.11 2.0	ID	Depth (m)	Result (mg/L)	(mg/kg)
	8	SW_CT_02	N/A	200	100
	, and the second	SW_CT_03	N/A	180	100
Aluminum ¹	13	SW_SP_04	N/A	340	100
	14	SW_CT_04	N/A	270	100
	15A	SW_CT_01	N/A	120	100
Copper ¹	14	SW_CT_04	N/A	4.3	2

Table 6.10 Concentrations of Metals in Surface Water above Referenced Screening Levels

Parameter	Parameter APEC		Sample Details			
. u.u.moto.	7.11 2.0	ID	Depth (m)	Result (mg/L)	Screening Level (mg/kg)	
	15A	SW_CT_01	N/A	380		
Iron	8	SW_CT_02	N/A	510	300	
	8	SW_CT_03	N/A	530		

Notes:

N/A = not applicable

6.6.4.5 PCBs in Surface water

Concentrations of PCBs in surface water are presented in Table D16. PCBs were not detected in the analyzed surface water samples, and the laboratory detection limits were below the referenced guidelines.

6.6.5 Building Materials

Concentrations of asbestos and lead and mercury in paint are presented in Table D17. Building materials meeting the definition of "hazardous" (> 1% asbestos fibres by weight) are summarized in Table 6.11.

Table 6.11 Hazardous Building Materials

Sample ID	APEC	Description	Result
Asbestos Containing Materials			
BS_CT_01A	10	Transite Board	15% Chrysotile
BS_CT_01B	11	Transite Board	15% Chrysotile
BS_CT_01C	8	Transite Board	15% Chrysotile
BS_CT_01D	9	Transite Board	15% Chrysotile
BS_CT_02A	1	Caulking	6% Chrysotile

¹⁾ Guidelines for aluminum and copper are dependent on pH and/or hardness. Sample-specific guidelines were calculated based on the pH and hardness measured by the lab and are presented here.

7.0 DISCUSSION

7.1 Background Sampling

The location of the background soil sample (SS_CT_20_BG) was originally selected based on aerial imagery, and located in an area that did not appear to have been part of the former USAF operations. During the site reconnaissance the sample location was moved southwest to a higher elevation where it was assumed that influence from Site activities (e.g. potential overland runoff) would be even less likely. However, detectable concentrations of petroleum hydrocarbons in the F3 range and modified TPH were detected in the background sample (below the referenced screening levels). Similarly, petroleum hydrocarbons were detected on the same order of magnitude as the background samples (below the screening levels) in samples collected from APEC #3 (former above ground fuel line), APEC #4 (USAF dump), APEC #8 (water supply), APEC #6A (presumed landfill), and APEC #11 (disaster shack). Given the scattered nature of the detections, a background source cannot be ruled out at this time.

A total of 11 of the 39 soil samples submitted for metals analysis had elevated concentrations of chromium exceeding the referenced ecological screening levels, with one exceeding the referenced human health screening level. Soil sample concentrations ranged from 4.4 mg/kg to 430 mg/kg. Chromium exceedances were identified in the areas of: APEC #4 (USAF Quarry and Dump); APEC #10 (Main Building and Motor Pool); APEC #13 (former Catch Basin); APEC #5 (1987 Landfill/Bury Site); and APEC #6A (Landfill/Bury Site). When compared to residential screening levels the background soil sample SS_CT_20_BG (68 mg/kg) slightly exceeded the ecological screening level (64 mg/kg) however was below the ecological screening level for a commercial site (87 mg/kg). Based on the findings naturally occurring (background) elevated chromium cannot be ruled out.

Background surface water sampling revealed concentrations of aluminum, copper, and iron above the referenced screening levels. These same metals were also found at concentrations above the referenced guidelines in samples collected from other surface water bodies at the Site. As there are no obvious sources of these metals in the immediate area of the background sampling location, there were no metals impacts at APEC #6 (located to the west of the background surface water body) above screening levels and there were no metals impacts at APEC #11 (located upgrading of the background surface water body), it is very unlikely that aluminum, copper, and iron in the surface water samples are attributable to the former USAF Site activities, but rather they are likely naturally occurring.

7.2 Detection Limits Exceeding Guidelines

There were several occurrences of laboratory detection limits exceeding the referenced screening levels.

- Total PCBs in sediment (SD_CT_02, and SD_CT_04). Although the calculated total PCB concentration exceeds the ISGQ, each individual PCB parameter was below the laboratory detection limits, and below their respective ISQG (where available). The calculated total PCB concentration is below the PEL. Given that PCBs are not a concern at the adjacent land-based APECs, and no substantive source of PCBs is expected in the vicinity of the collected sediment samples, the detection limit for the Total PCB parameter above the ISQG does not represent a gap in the overall understanding of the Site conditions. No unacceptable risk associated with PCBs is anticipated.
- Modified TPH in surface water (SW_CT_01, SW_CT_02, SW_CT_02_FD, SW_CT_03, and SW_CT_04): Surface water samples were analyzed using the CCME CWS method. For comparison of the laboratory results to the Provincial guidelines (modified TPH, C>6-C32), GEMTEC has summed the detected concentrations of F1, F2, and F3 fractions (C6-C34). In the instance of no detections, the highest detection limit is used as the approximate value for modified TPH. This approximation is a slight over representation of the modified TPH concentration. It is noted that the CWS detection limits, in some instances, exceed the Atlantic RBCA guidelines. Nevertheless, petroleum hydrocarbon products (F1, F2, and F3) were not detected by the laboratory in the above-noted samples.
 - Should additional surface water sampling for PHCs be desired in future studies and if continued comparison to the Atlantic RBCA guidelines is anticipated, Atlantic MUST methodology analysis may be preferable to the CCME methodology analysis conducted as part of this mandate.

With the exception of PCBs in sediment, detection limits above the guidelines have been included as "exceedances" warranting additional study for the remainder of this assessment.

7.3 Conceptual Site Model

7.3.1 Human Receptors and Exposure Pathways

Human receptors identified at the Site include adults, children and toddlers. The complete exposure pathways by which human receptors could come into contact with impacts at the Site include: soil/dust dermal contact and ingestion; wind erosion and atmospheric dispersion; volatilization of organic contaminants and atmospheric dispersion, enclosed space accumulation; soil leaching to groundwater, and incidental ingestion and dermal contact with surface water and sediment.

7.3.2 Ecological Receptors and Exposure Pathways

Ecological receptors identified at the Site include mammals, birds, plants and invertebrates, freshwater aquatic life and potential species at risk. The complete exposure pathways by which ecological receptors could come into contact with impacts at the Site include: direct exposure and ingestion of surface soil; ingestion/plant uptake of groundwater; and direction exposure and/or ingestion with surface water and freshwater sediment.

7.3.3 Contaminants of Potential Concern

Based on the results of the analytical program the following COPC were identified as requiring further assessment, risk assessment and/or risk management:

- PHCs, PAHs and metals in soil;
- · PHCs in sediment; and
- PHCs and Metals in surface water.

7.3.4 Confirmation/Refutation of APECs

A summary of the initial testing program is provided in Table 7.1. Based on the results, each APEC has either been confirmed as an area of potential concern, or has been ruled out as no environmental concerns were identified.

Table 7.1 Confirmation / Refutation of AECs

	APEC Assessment Results		Conclusion
Number	Description	Assessment Results	Conclusion
1	AST (Upper site)	Four surface soil samples were analyzed for PHCs and PAHs. Concentrations were below guidelines.	No environmental concern in soil. ACM debris confirmed.
2	AST (Lower site)	Five surface soil samples were analyzed for PHCs and PAHs, and metals. SS_CT_48 and SS_CT_49 exceeded the PHC guidelines. Concentrations of PAHs and metals were below guidelines.	Confirmed APEC (F2, F3, modified TPH in soil).
3	Aboveground Fuel Line	Five surface soil samples were analyzed for PHCs. Two samples exceeded for F3 and modified TPH. Concentrations of PHCs and PAHs were below guidelines.	Confirmed APEC (F3 and modified TPH in soil)
4	USAF Quarry and Dump	Four surface soil samples were analyzed for PHCs, VOCs, metals, and PCBs. (Meet for PHC) Three samples exceeded the F4 guidelines.	Confirmed APEC (F4 in soil).

Table 7.1 Confirmation / Refutation of AECs

	APEC	A Bto	Outskalan	
Number	Description	Assessment Results	Conclusion	
5	1987 Landfill/Bury Site (assumed location)	Four surface soil samples were analyzed for PHCs, PAHs, metals, and PCBS.	No environmental concern. Based on the results, it is possible that this area was not in fact a former landfill/bury Site.	
6	1987 Landfill/Bury Site (assumed location)	Four surface soil samples were analyzed for PHCs, PAHs, metals, and PCBs. PHCs, PAHs, and PCBs were below the guidelines. Two samples exceeded the nickel and/or chromium guidelines.	Confirmed APEC (modified TPH in soil).	
6A	Landfill/Bury Site (identified during the 2017 Site reconnaissance)	Four surface soil samples were analyzed for PHCs, PAHs, metals, PCBs. SS_CT_60 and SS_CT_62 exceeded the PHC and metals guidelines. Metals exceedances were also confirmed in SS_CT_61.	Confirmed APEC (Chromium, copper, nickel, F2, F3, F4, modified TPH)	
7	Helicopter Pad	Four surface soil samples were analyzed for PHCs, PAHs, metals, PCBs. Measured concentrations were below the referenced guidelines.	No environmental concern.	
		Four surface soil samples were analyzed for PHCs and PAHs. Concentrations in soil were below the guidelines.		
8	Water Source	West side: one soil and one sediment sample were collected. The sediment sample was analysed for PHC, PAH, Metals, PCBs and VOCs. The surface water sample was analyzed for PHC, PAH, Metals, PCBs and general chemistry. Modified TPH in sediment exceeds the guideline. Aluminum and iron in surface water exceeded the guidelines.	Confirmed APEC (modified TPH in sediment, aluminum ¹ , and iron ¹ in surface water)	
	Se P (w	East side: one surface water and a sediment sample were analyzed P PAHs, metals, and general chemic (water only). Modified TPH in sedimexceeds the guideline. Aluminum iron in surface water exceeded the guidelines.		
9	Pump House	Four surface soil samples were analyzed for PHCs and PAHs. Samples SS_CT_52 and SS_CT_53 contained PHCs above the referenced guidelines.	Confirmed APEC (F3, modified TPH in soil). ACM debris confirmed	

Table 7.1 Confirmation / Refutation of AECs

	APEC	Accessment Descrite	Complysion
Number	Description	Assessment Results	Conclusion
10	Main Building and Motor Pool	Four surface soil samples were analyzed for PHC, PAHs, PCBs, VOCs, and metals. The concentration of zinc in SS_CT_01 exceeded the referenced SQG _E , while SS_CT_02 and SS_CT_03 contained concentrations of several PAHs, metals, and PHCs above the guidelines	Confirmed APEC (arsenic, copper, chromium, lead, nickel, zinc, F2, F3, acenapthene, fluorine, naphthalene, phenanthrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, ideno(1,2,3-cd)pyrene, and B(a)P TPE in soil). ACM debris confirmed.
11	Disaster Shack (Upper Site)	Four surface soil samples were analyzed for PHC, PAHs, and metals. Measured concentrations were below the referenced guidelines.	No environmental concern.
12	Storage Building	Four surface soil samples were analyzed for PHC, PAHs and metals. Measured concentrations were below the referenced guidelines with the exception of F4 in SS_CT_24.	Confirmed APEC (F4 in soil)
13	Former Catch Basin	Four surface soil samples were analyzed for PHC and metals. Concentrations were below the referenced screening levels with the exception of PHCs in SS_CT26 and SS_CT_29	Confirmed APEC (F2, F3, and modified TPH in soil)
14	Waterbody (northeast of the Helicopter Pad)	One surface water and one sediment were analyzed for PHCs, PAHs, metals, PCBs, and/or VOCs. Concentrations were below the referenced guidelines with the exception of copper and aluminum in the surface water sample. The detection limit for modified TPH in surface water exceeds the referenced guideline.	Confirmed APEC (copper, aluminum ¹ , and modified TPH ² in surface water).
15	Waterbody (north of water source)	One surface water and one sediment were analyzed for PHCs, PAHs, metals, PCBs, and/or VOCs. Concentrations were below the referenced guideline with the exception of aluminum and iron in the surface water. The detection limit for modified TPH in surface water exceeds the referenced guideline.	Confirmed APEC (iron ¹ , aluminum ¹ , and modified TPH ² in surface water)

Table 7.1 Confirmation / Refutation of AECs

	APEC	Assessment Results	Conclusion
Number	Description	Assessment Results	Conclusion
NI-4			

Notes:

ACM = asbestos-containing materials

- 1) iron and aluminum are commonly naturally found in freshwater surface water bodies. As these parameters exceeded the guidelines also in the background samples, iron and aluminum here may be naturally occurring and not attributable to historical USAF site activities.
- 2.) parameter not detected, however the detection limit was greater than the screening level; further assessment is recommended.

7.3.5 Estimated Area and Volume of Impacts

The aerial extent of contamination in generally estimated by either measuring the distance from an impacted sample to the next clean sample, or by halfway to the next clean sample. As the Initial Testing Program was limited in scope, and generally included only four to six samples per APEC; the next clean sample could be located hundreds of metres away within a separate APEC. Further, the Site is characterized by frequent bedrock outcropping, which may limit the spread of contaminants between samples. Supplemental data from Future Detailed Testing Program(s), if conducted, would help to refine these estimate. Often detailed testing programs involve "stepping out" beyond an impacted sample to delineate the aerial extent of the impacts. In absence of obstruction such as buildings, cliffs, *etc.*, this "stepping out" is generally done on an approximately 10 m scale. As such, for the purpose of calculating preliminary estimates of extent of impacts, GEMTEC has applied the following approach (in order of preference) to demarcate the estimated limits of impacts (whichever is the smaller distance):

- Distance to nearest bedrock outcrop/foundation remains;
- Halfway to the nearest clean sample within the same APEC;
- Distance to the edge of the APEC (or waterbody in the case of surface water and sediment); or
- 10 m.

Depth of impacts has preliminarily been assumed to be equal to the depth of overburden in each APEC. The depth of overburden was estimated/inferred based on field observations at each APEC. Although the depth of the waterbodies was not confirmed as part of this mandate (boat access would have been required to do so), for the purposes of these preliminary estimates a 0.5 m depth has been assumed based on the Site observations at the sampling locations, which were generally shallow water along the waterbody's edge.

To determine volumes of asbestos, due to the small pieces of asbestos containing materials, it was conservatively assumed that 0.05 m of soil over a 10 m² area would be inadvertently removed with the asbestos during remediation, if completed. The area of impacts were identified based on

field information. As such, the volume estimates for asbestos are identified as asbestos/soil mixtures.

Table 7.2 provides a summary of sample results that exceeded a human health and/or ecological guideline (provincial and/or federal) for one or more COPC. Estimated impacted areas are shown on Drawings19-22 (Appendix A).

 Table 7.2
 Preliminary Estimates of Impacted Areas

	0000		Pre	eliminary Estin	nates
Sample ID	COPC	Matrix	Depth ¹	Area (m²)	Volume (m³)
APEC #1 (AS	T (Upper Site))				
BS_CT_02A	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	2200	110
APEC #2 (AS	T, Lower site)				
SS_CT_48, SS_CT_49	F2, F3, modified TPH	Soil	0.10	400	40
APEC #3 (Abo	APEC #3 (Aboveground Fuel Line)				
SS_CT_15	F3, modified TPH	Soil	0.10	250	30
SS_CT_54	modified TPH	Soil	0.10	250	30
APEC #4 (US	AF Quarry and Dump)				
SS_CT_41, SS_CT_42, SS_CT_44	nickel, chromium	Soil	0.10	1100	110
APEC #6 (198	7 Landfill/Bury Site)				
SS_CT_08	F3, F4	Soil	0.90	50	50
SS_CT_09	F4	Soil	0.90	150	140
APEC #6A (La	andfill/Bury Site)				
SS_CT_62, SS_CT_61, SS_CT_60	chromium, copper, nickel, F2, F3, F4, modified TPH	Soil	0.60	900	540

 Table 7.2
 Preliminary Estimates of Impacted Areas

Commis ID	COPC	Metric	Preliminary Estimates		
Sample ID	COPC	Matrix	Depth ¹	Area (m²)	Volume (m³)
APEC #8 (Wat	ter Source)				
BS_CT_01C	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	400	20
SW_CT_02	aluminum, iron	Surface Water	0.50	150	80
300_01_02	modified TPH	Sediment	0.15	150	30
SW CT 03	aluminum, iron	Surface Water	0.50	250	130
SW_CT_03	modified TPH	Sediment	0.15	150	30
APEC #9 (Pur	APEC #9 (Pump House)				
BS_CT_01D	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	400	20
SS_CT_52, SS_CT_53	F3, modified TPH	Soil	0.10	200	20
APEC #10 (Ma	ain Building and Motor Pool)				
BS_CT_01B	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	2,200	110
SS_CT_02, SS_CT_03	Several PAHs, arsenic, copper, chromium, lead, nickel, zinc,	Soil	0.10	500	50
SS_CT_01	Zinc	Soil	0.10	200	20
APEC #11 (Di	saster Shack)				
BS_CT_01B	Chrysotile Asbestos	Asbestos/Soil Mixture	0.05	450	30
APEC #12 (Fo	rmer Storage Building)				
SS_CT_24	F4	Soil	0.10	100	10

Table 7.2 Preliminary Estimates of Impacted Areas

Sample ID	COPC	Matrix	Pre	eliminary Estin	nates
Sample ID	COPC	Watrix	Depth ¹	Area (m²)	Volume (m³)
APEC #13 (Fo	ormer Catch Basin)				
SS_CT_26, SS_CT_27, SS_CT_28	F2, F3, modified TPH	Soil	0.30	600	180
APEC #14 (W	aterbody, northeast of the Heli	copter Pad)			
SW_CT_04	Copper, aluminum	Surface Water	0.50	250	130
APEC #15 (W	aterbody, north of water sourc	e)			
SW_CT_01	aluminum, iron	Surface Water	0.50	200	100
Total Estimated Volume of Impacted Soil at the Site					1,220
	То	tal Estimated Vol	ume of Asbest	os/Soil Mixture	290
	Total Estimated Volume of Impacted Sediment at the Site				60
	Total Estimated Volume of Surface Water at the Site				440

Notes:

m = metres; $m^2 = square metres$; and $m^3 = cubic metres$

¹⁾ Depth inferred on an APEC by APEC basis is based on observations made at the time of sampling; however, impacts were not delineated vertically during the Step 3 Initial Testing Program. These depths are estimates only. 2) Area estimates were determined on a number of factors presented in Section 7.3.5.

³⁾ Volume estimates are preliminary at this stage as delineation was not achieved during the Step 3 Initial Testing Program. As such, the presented volume estimates have been rounded up to the nearest 10 m³ (e.g., 22.5 is rounded to 30 m³).

⁴⁾ All estimates presented herein should be revised following completion of a Step 5 Detailed Testing Program.

8.0 NCSCS CLASSIFICATION

The National Classification System for Contaminated Sites (NCSCS) process provides a uniform approach to evaluating need for further action at Sites to protect human health and the environment. The evaluation form was developed by the CCME in March 1992 (updated 2008, 2010 v1.2) and the process generally considers contaminant sources, exposure pathways, and potential human and environmental receptors, but is not intended to be used as a risk assessment tool. The scoring system reflects the concentrations and potential exposures of contaminants in relation to generic CCME remediation criteria. NCSCS Site Score categories are shown in Table 8.1.

Table 8.1 NCSCS Scoring Summary

Total Score	Class	Priority for Action
>70	Class 1	High
50-69.9	Class 2	Medium
37-49.9	Class 3	Low
<37	Class N	Not a priority
>15% of Responses are "Do not know"	Class INS	Insufficient Information

Based on the information gathered during the Initial Testing Program Investigation, a NCSCS score was calculated for the Site. The calculated NCSCS score is 73.4, a breakdown of the score is presented in Table 8.2. Based on this score, the Site is classified as Class 1, indicating a High Priority for action. The detailed NCSCS evaluation form is presented in Appendix F.

Table 8.2 NCSCS Score Breakdown

25.6
23.5
24.4
75%
73.4

Note:

¹⁾ As provided in the NCSCS output. The apparent discrepancy between this value and the sum of the category scores is based on intermediate rounding of category scores.

9.0 SUMMARY

GEMTEC conducted an Initial Testing Program and NCSCS Classification at the former USAF manned Pinetree Line Radar Station located on Cut Throat Island, Labrador. The following is a summary of the results of the Initial Testing Program:

APECs:

- Based on a document review, 15 preliminary APECs were identified for field investigation;
 and
- Following a Site Reconnaissance, the locations and COPCs were adjusted for some APECs, and an additional APEC (#6A, presumed landfill) was identified.

Field Program/Testing Program

- A total of 66 surface soil (0-0.05 m) samples (including 5 field duplicates), 5 sediment samples and 5 surface water samples were collected from the Site in September, 2017; and
- Concentrations of COPCs were compared to the applicable Provincial (PHCs only) and Federal screening levels. The regulatory framework includes residential guidelines, due to the proximity of the Lower Site to a nearby seasonal community (fishing sheds) and commercial for the Upper Site, non-groundwater use/non-potable, and coarse-grained soil. Concentrations of COPCs were compared to the applicable ecological and human health guidelines.

Data Evaluation:

- Based on the results of the analytical program, the following were identified at concentrations exceeding the referenced screening levels:
 - Soil (Upper and Lower Site): PHCs, PAHs, and metals;
 - Sediment (Upper Site): PHCs; and
 - Surface water (Upper Site): PHCs, and metals;
- Asbestos containing debris (cement board, vinyl floor tiles, and mastic) was confirmed at the Site; and
- Delineation of the impacts has generally not been achieved based on the Initial Testing Program.

NCSCS Scoring and GIS Database:

- The calculated NCSCS score for the Site is 73.4. Based on this score, the Site is classified as Class 1, indicating a High priority for action; and
- The DND Environmental GIS Data Template was updated with all data collected as part
 of this mandate.

10.0 RECOMMENDATIONS

Based on the information gathered in the Step 3 Initial Testing Program and Site 4 Site Classification, and taking into consideration the anticipated land use (vacant, adjacent to fishing sheds (Lower Site)), the following work plan is recommended to further delineate and characterize the APECs and to further refine and prioritize the contaminant risk to:

- Additional data gathering including:
 - Interviews with seasonal residents (if possible) at Cut Throat Island, to determine
 the source of drinking water in the area (groundwater, surface water, and/or offisland source). As the USAF used surface water for drinking, current use of surface
 water for potable purposes has not been ruled out.
- Additional field data gathering including:
 - Supplemental background soil sampling to determine background conditions outside the influence of the former Site activities.
 - Collecting surface and subsurface (if applicable) soil samples, sediment samples, and surface water samples to delineate the extent of the identified contaminants;
 and
 - Geophysical survey of landfills (suspected and confirmed) to determine the volume of debris.
- Complete data analysis and evaluation:
 - Analysis of the degree of contamination on the Site (compare data to applicable pathway specific provincial and federal guidelines for human health and ecological health);
 - Refine/update the preliminary assessment of exposure pathways (Human Health and Ecological Conceptual Site Models (CSMs));
 - Update the DND Environmental GIS Data Template with all data collected as part of the mandate;
 - Determine the need for additional environmental site assessment and/or risk assessment work (if any); and
 - Identifying any management actions that may be necessary.
- Complete the FACS Step 6 Site Re-Classification using the CCME NCSCS.

A cost estimate to complete the Step 5 Detailed Testing Program is provided under separate cover. Actual costs to complete additional phases of work at the Site will be dictated by Site conditions, the scope of the programs completed, and market values (for professional fees, analytical testing and transportation) at the time the work is completed.

11.0 CLOSURE

The information and conclusions presented represent the best technical judgment of GEMTEC Consulting Engineers and Scientists Limited based on current engineering and scientific practices and environmental standards at the time the work was performed. The conclusions are based on the Site conditions encountered at the time the work was performed at the sampling locations, and can only be extrapolated to an undefined limited area around these locations. Soil and groundwater conditions including Site history will dictate the extent of the limited area. In addition, analysis was only performed for a limited number of chemical parameters and media, and it should not be inferred that other chemical compounds are not present on the Site. Due to the nature of the investigation and to the limited data available, GEMTEC Consulting Engineers and Scientists Limited cannot warrant against undiscovered environmental liabilities.

Should additional information become available, GEMTEC Consulting Engineers and Scientists Limited requests that this information be brought to our attention so that we may re-assess the conclusions presented herein. This report was prepared by Melanie Langille, M.Env.Sc. and Shaun Pelkey, M.Sc.E, P.Eng., and was reviewed by Abigail Garnett, M.Sc.Eng., P.Eng. and Steve Livingstone, M.Sc., P.Geo. on behalf of GEMTEC Consulting Engineers and Scientists Limited.

Shaun Pelkey, M.Sc.E., P.Eng. Senior Environmental Engineer

Environmental Scientist

Melanie Langille, M.Env.Sc.

Steve Livingstone, M.Sc., P.Geo. Senior Environmental Geoscientist

Abigail Garnett, M.Sc.Eng., P.Eng Senior Environmental Engineer / Hydrogeologist

12.0 REFERENCES

AECOM. 2013. Hydrogeology of Labrador. Prepared for the Government of Newfoundland and Labrador, Department of Environment and Conservation – Water Resources Management Division. March, 2013.

Alberta Environment Tier I Soil Remediation Guidelines (AENV, 2016).

Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (Atlantic PIRI). 2012 with 2015 updates. Atlantic RBCA (Risk-Based Correction Action) for Petroleum Impacted Sites in Atlantic Canada. Version 3. User Guidance.

Canadian Council of Ecological Areas (CCEA). 2018. Conservation Areas Reporting and Tracking System (CARTS) online database. Accessed at http://www.ccea.org/carts/ January 2018.

Canadian Council of Ministers of the Environment (CCME). 2006. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines.

Canadian Council of Ministers of the Environment (CCME). 2008a. Canada-Wide Standard for Petroleum Hydrocarbons in Soil.

Canadian Council of Ministers of the Environment (CCME). 2008b. National Classification System for Contaminated Sites. Guidance Document.

Canadian Council of Ministers of the Environment (CCME). 1999 with updates obtained from the online database http://ceqg-rcqe.ccme.ca/en/index.html in September 2017. Soil Quality Guidelines (SQG) for the Protection of Environmental and Human Health.

Contaminated Sites Management Working Group. 1999. A Federal Approach to Contaminated Sites.

Defence Construction Canada. 2017. Statement of Work. Initial Testing Program and NCSCS Classification. Two Former Pinetree Line Radar Stations, One Former Weather Station, Labrador. DCC Project Number: NL17AS01. Dated June 2017.

Environment Canada. 2018. Canadian Climate Normals. http://climate.weather.gc.ca/climate normals/. Accessed online: May, 2018.

Fulton, R.J. 1986. Surficial geology, Cartwright, Labrador, Newfoundland, Geological Survey of Canada, Map 1620A, Scale 1:500,000.

GEMTEC Consulting Engineers and Scientist Limited (GEMTEC). 2017. Proposed Work Plan. Step 3 Initial Testing Program. Two Former Pinetree Line Radar Stations, One Former Weather Station, Labrador. DCC Project Number: NL17AS01. Dated August 22, 2017.

GHD Limited (GHD). 2016. Phase I Environmental Site Assessment. Former United States Military Site. Cut Throat Island, NL. Prepared for the Department of Environment and Conservation (Newfoundland and Labrador).

Government of Newfoundland and Labrador, Mineral Development Division, Department of Mines and Energy. 1986. Based on Geology by C.F. Gower, T. A. Nostrand, G. McRoberts, L. Crisby and S. Prevec, 1985.

C.F. Gower. 1979. Geology on northside of Groswater Bay. Geology of remainder of area by C.F. Gower, N. Noel and R.T. Gillispie, 1980. Data from Stevenson (1970; G.S.C. Paper 69-48) have also been incorporated into the map.

Ecological Stratification Working Group (ESWG) 1996. Ecoregions of Labrador. Accessed from: http://www.heritage.nf.ca/environment/ecoregionas-lab.html#maplab.

Government of Canada. 2015. Federal Contaminated Sites Action Plan (FCSAP). Guidance Document of Federal Interim Groundwater Quality Guidelines for Federal Contaminated Sites.

Health Canada. 2010. Federal Contaminated Site Risk Assessment in Canada. Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA), Version 2.0.

Health Canada. 2008. Guidance Manual for Environmental Site Characterization in Support of Human Health Risk Assessment. Volume 1 Technical Guidance.

Klassen, R.A., Paradis, S., Bolduc, A.M., and Thomas, R.D., 1992. Glacial Landforms and Deposits, Labrador, Newfoundland and eastern Quebec. Geological Survey of Canada, Map 1814A, scale 1:1,000,000.

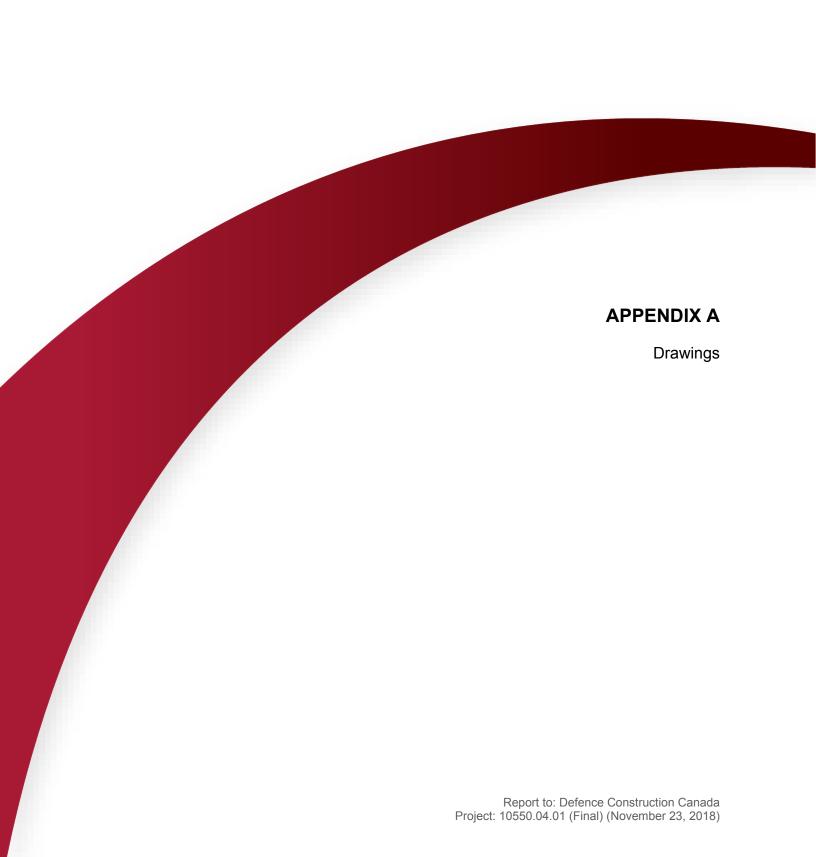
Natural Resources Canada. 1995. The National Atlas of Canada, 5th Edition. Canada Permafrost.

Natural Resources Canada. 2017. The Atlas of Canada – Toporama. Accessed online, November 2017.

Nova Scotia Environment: 2013. PRO:100. Notification of Contamination Protocol. Adopted by the Minister of Environment, Pursuant to the Contaminated Sites Regulations.

Ontario Ministry of the Environment (MOE) Soil Standards for Use under Part XV.1 of the Environmental Protection Act (OMOE, 2011).

Province of Newfoundland and Labrador. 2010. Environmental Standards for Construction and Demolition Waste Disposal Sites (GD-PPD-050.3).



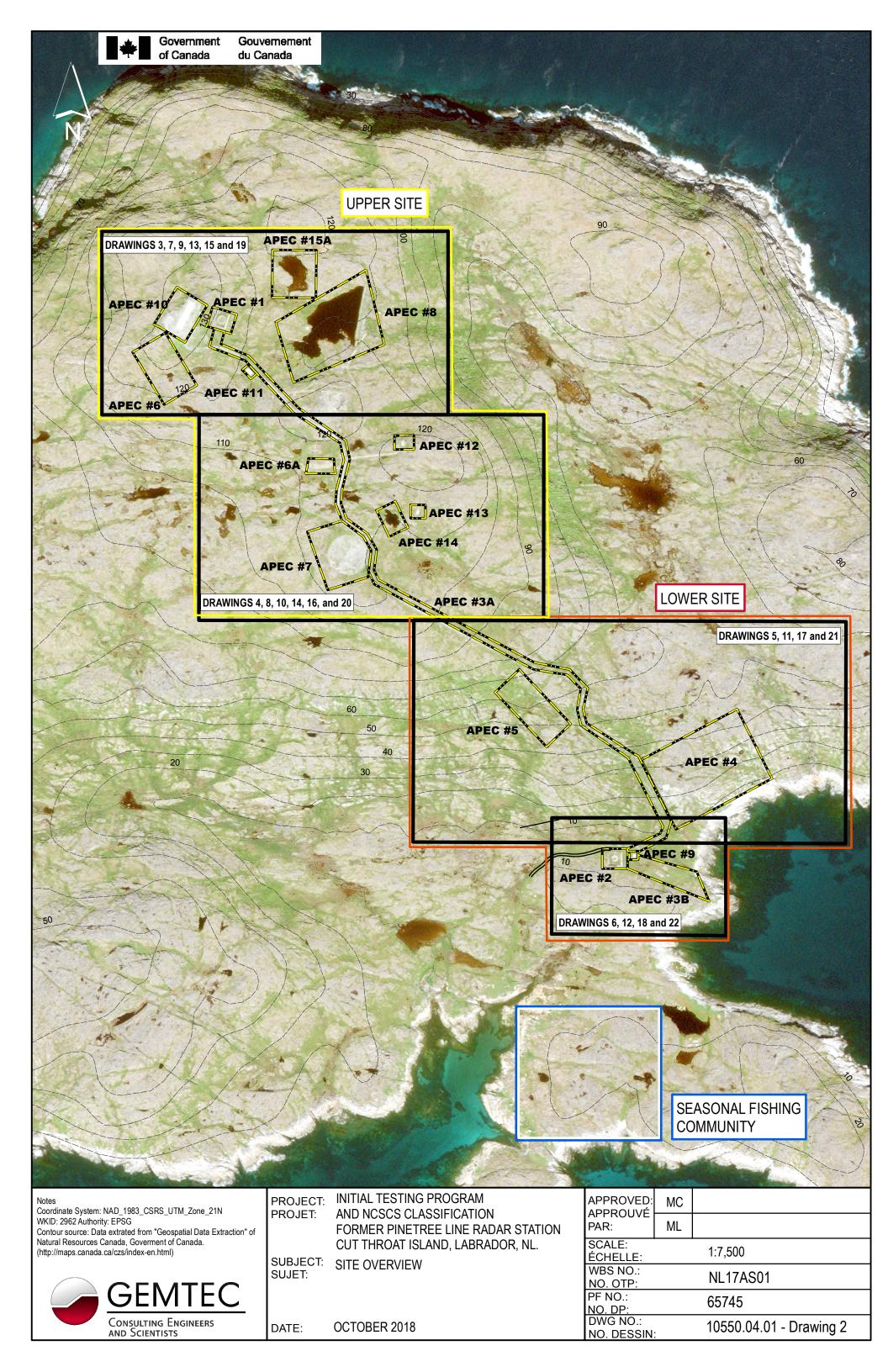
Province of Newfoundland and Labrador. Fisheries and Land Resources. Species At Risk. Accessed online at https://www.flr.gov.nl.ca/wildlife/endangeredspecies/index.html in October, 2018.

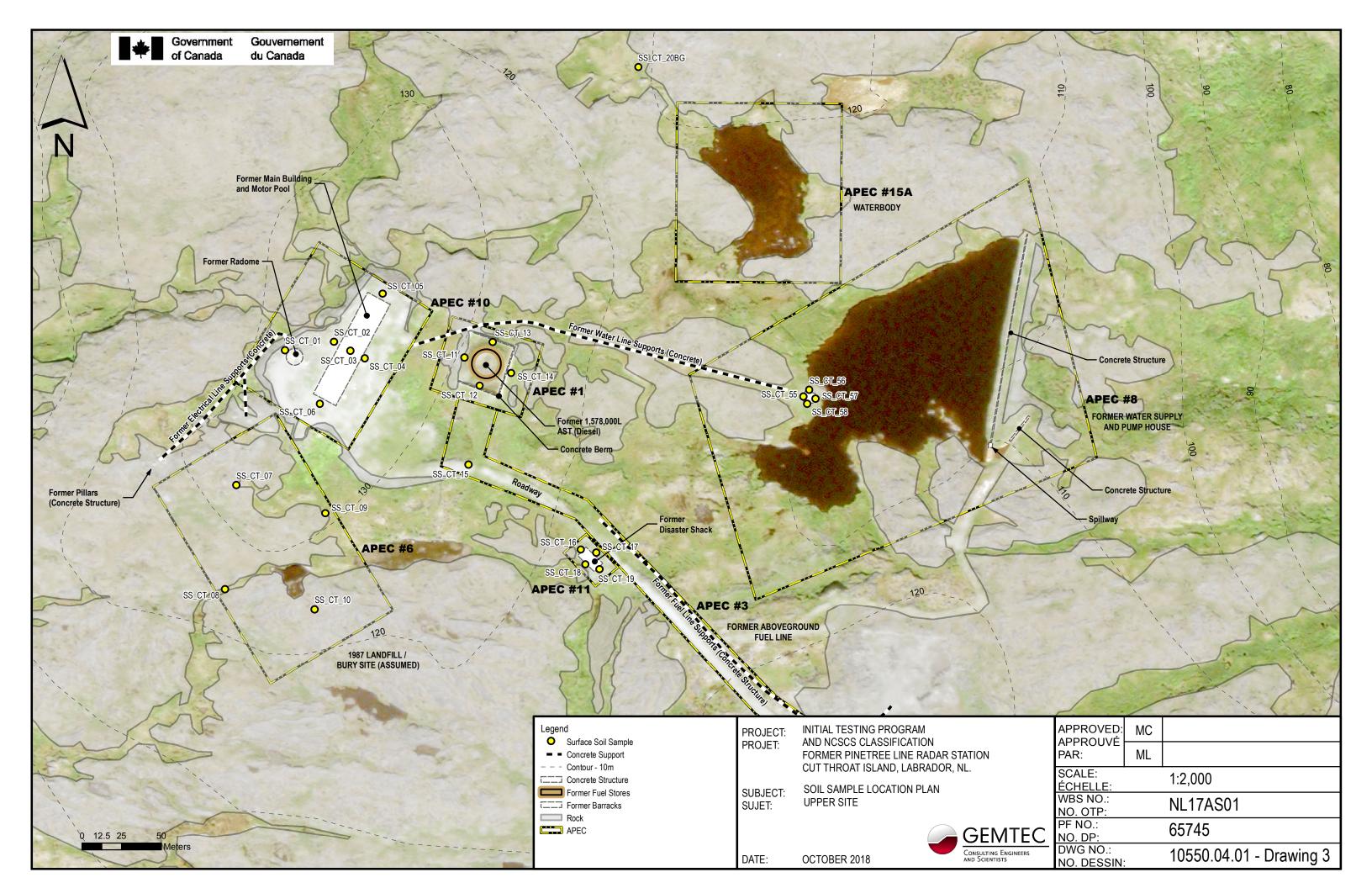
Province of Newfoundland and Labrador. 2012. Occupational Health and Safety Regulations, under the Occupational Health and Safety Act (O.C. 2012-005).

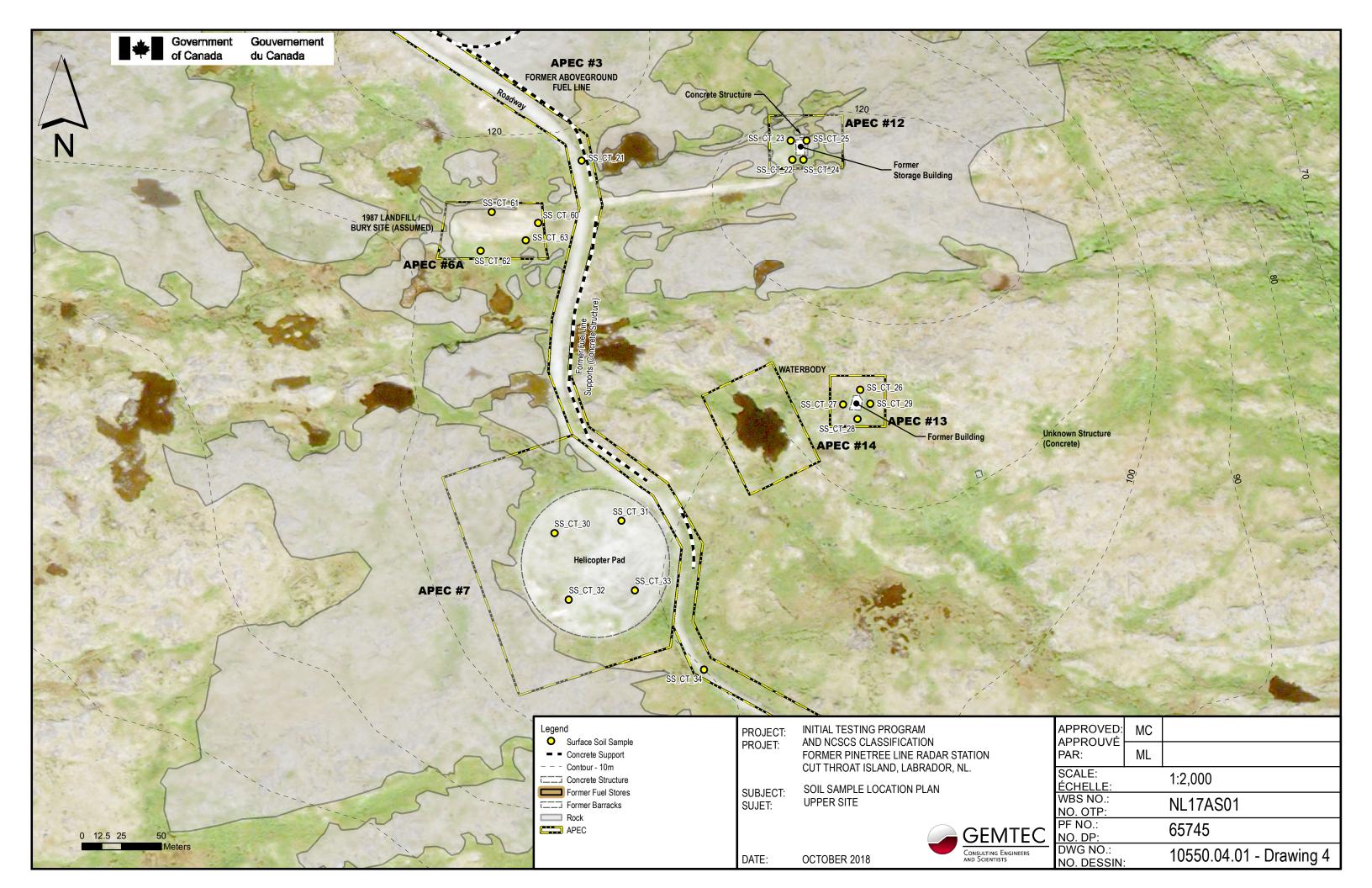
World Health Organization. 2006. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds.

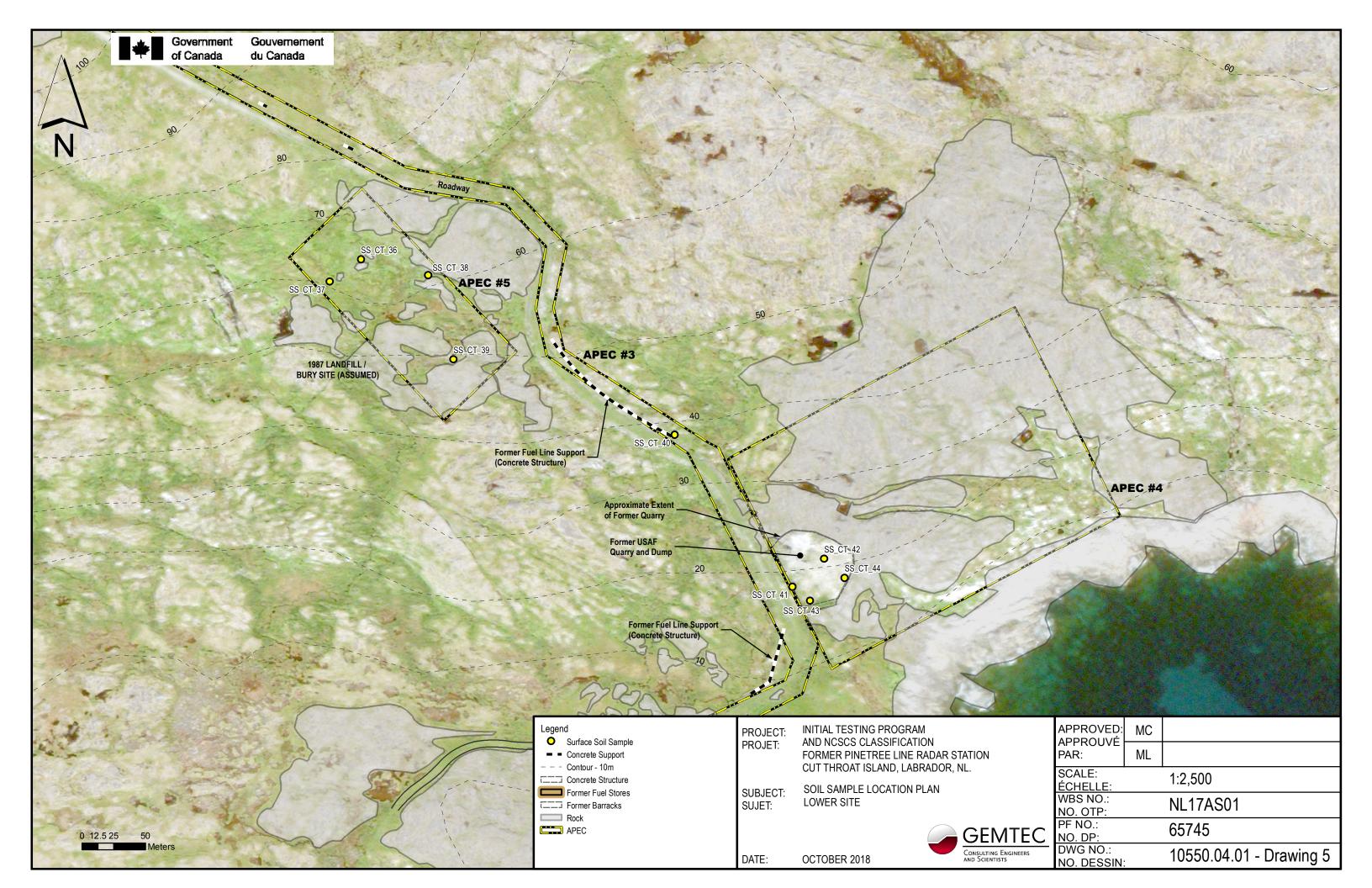
PROJET: AND NCSCS CLASSIFICATION

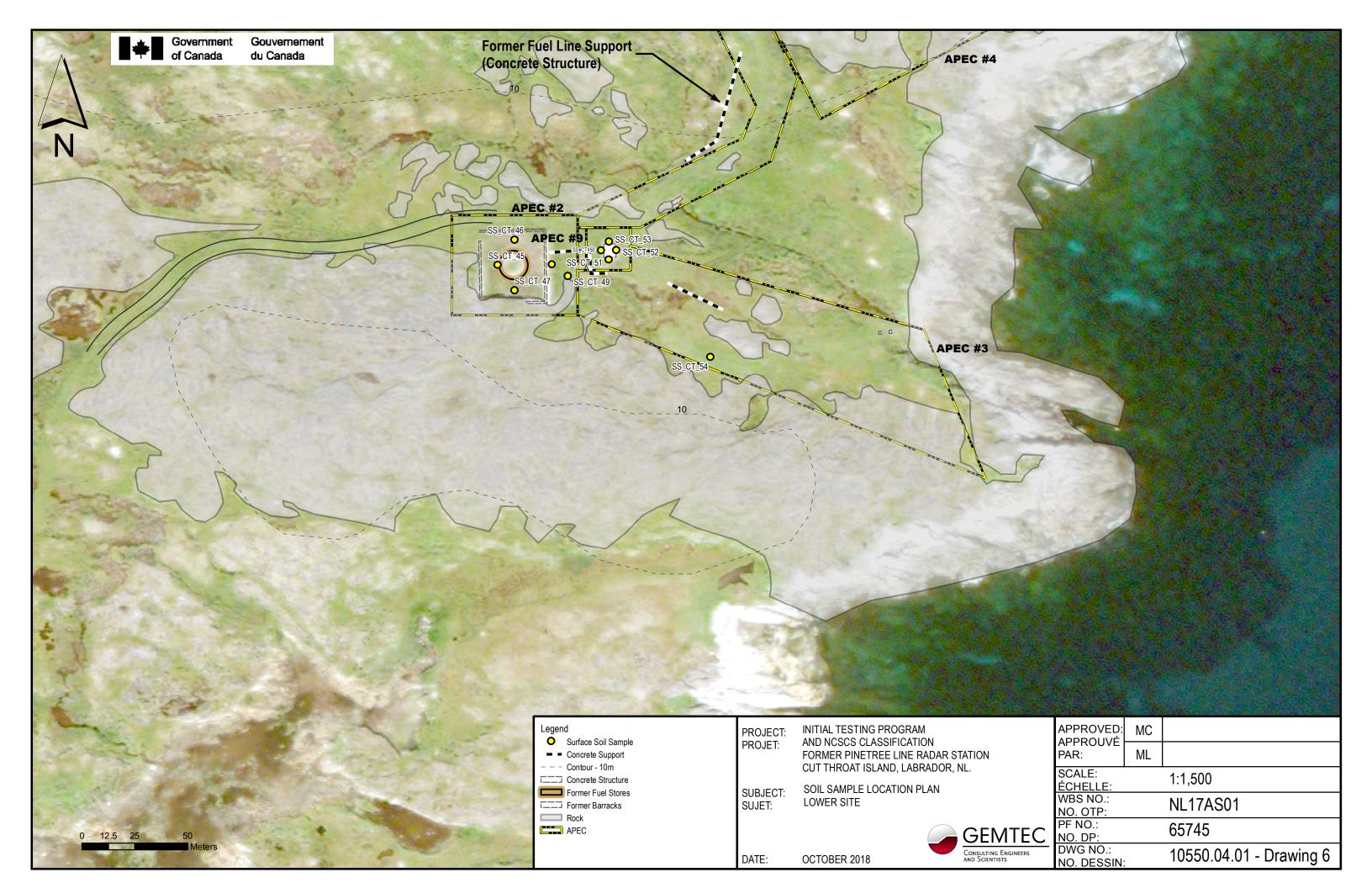
OCTOBER 2018

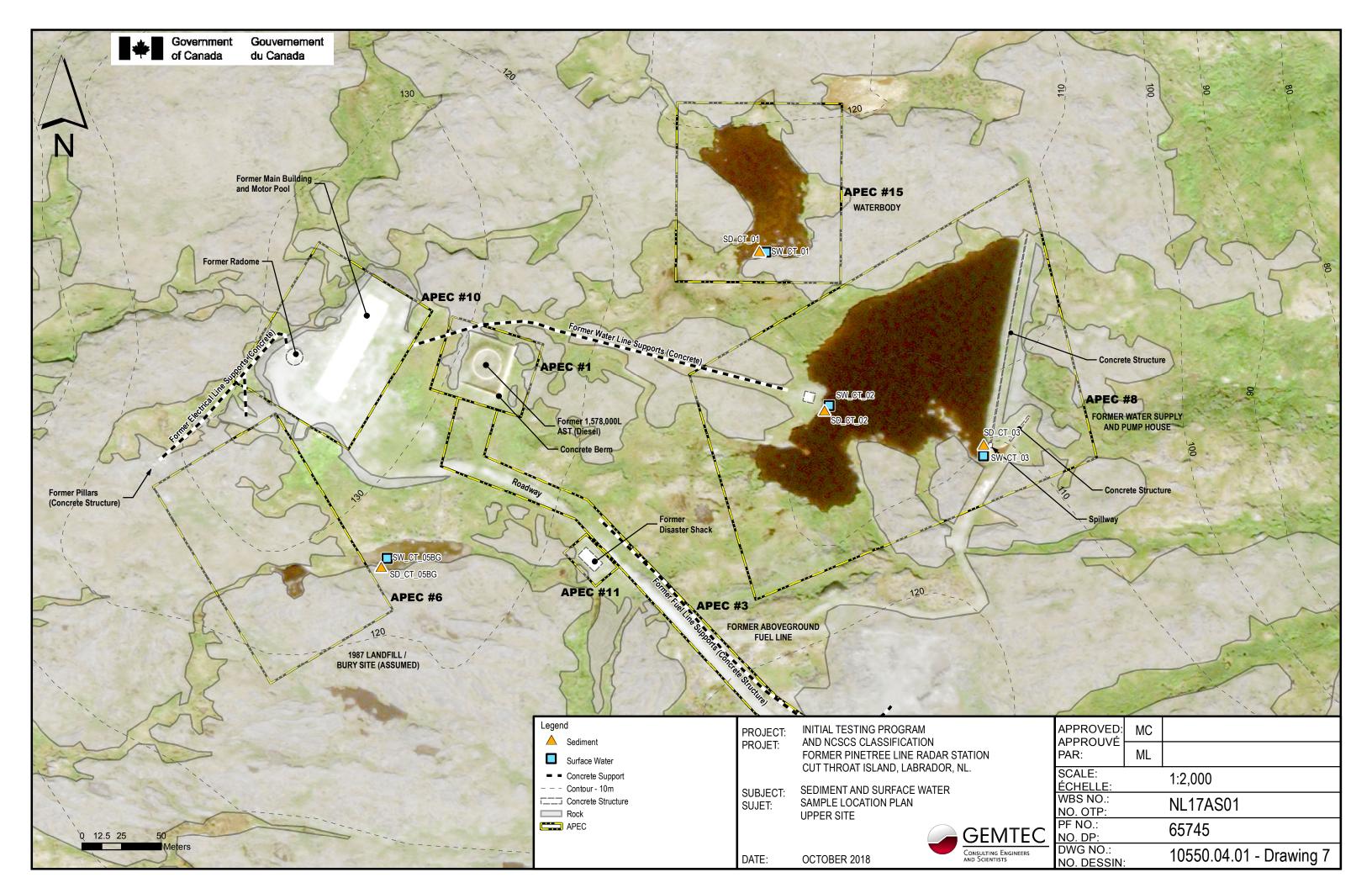

FORMER PINE TREE LINE RADAR STATION CUT THROAT ISLAND, LABRADOR, NL.

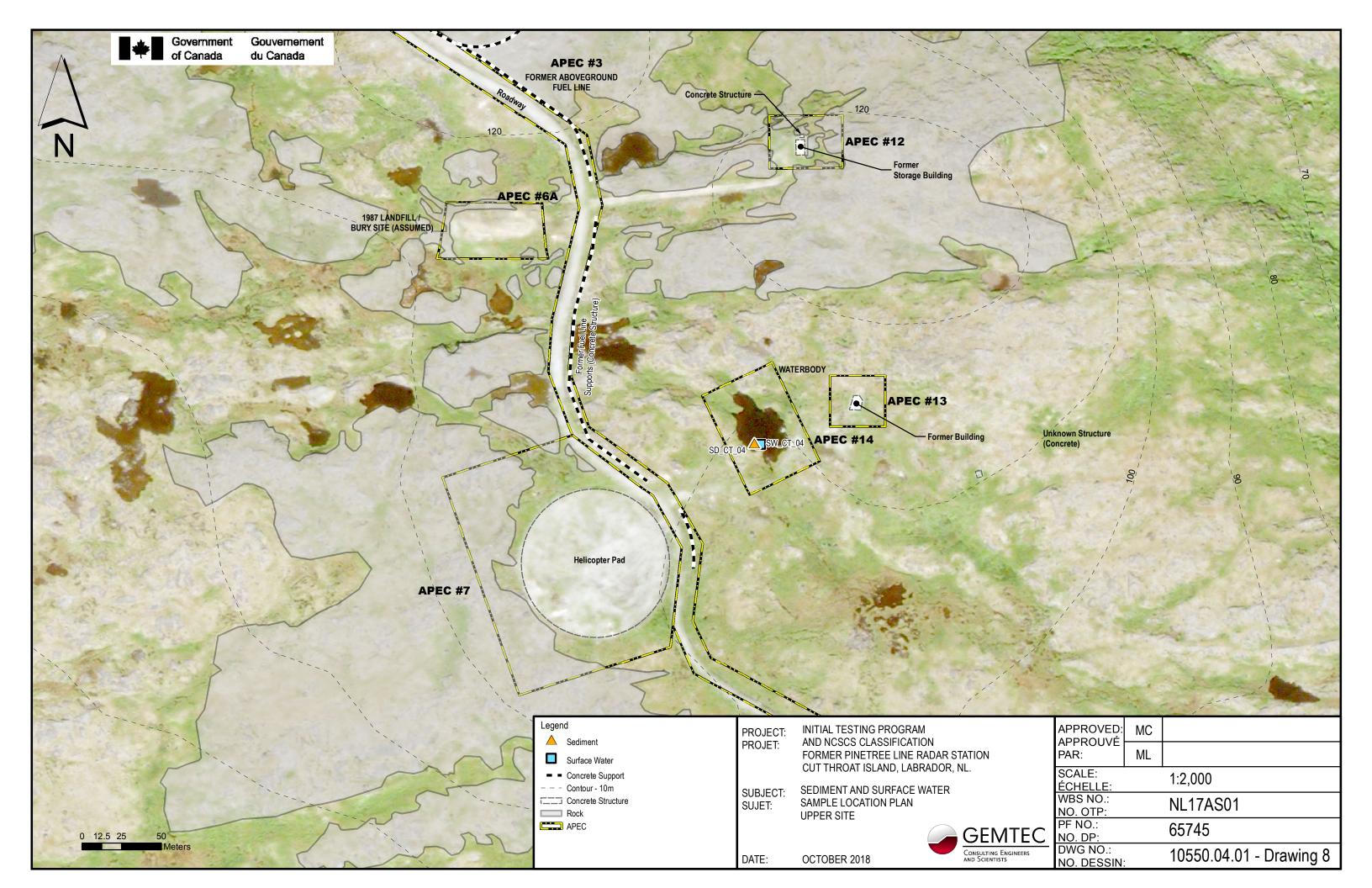

SUBJECT: SITE LOCATION PLAN

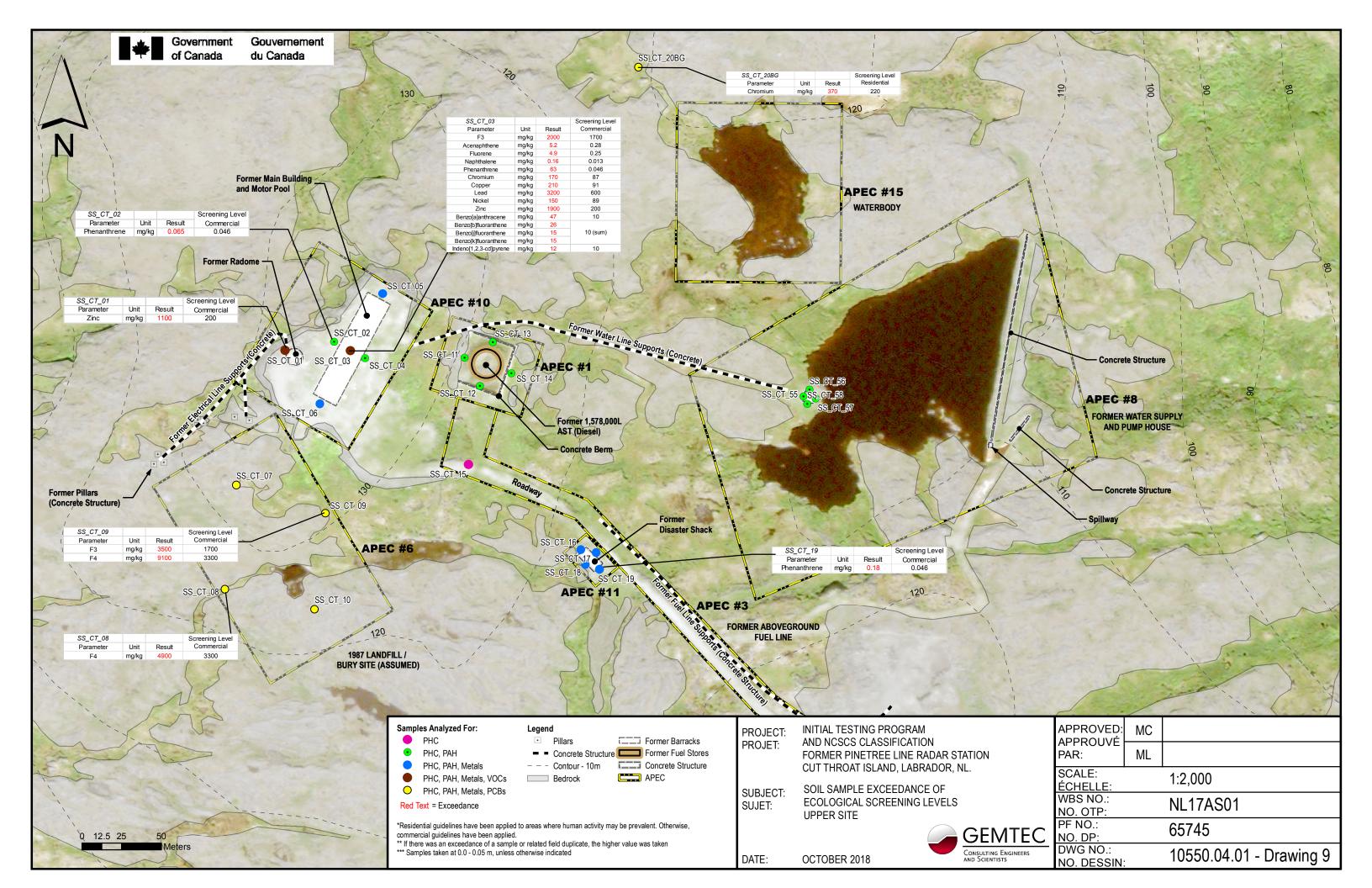

SUJET:


DATE:

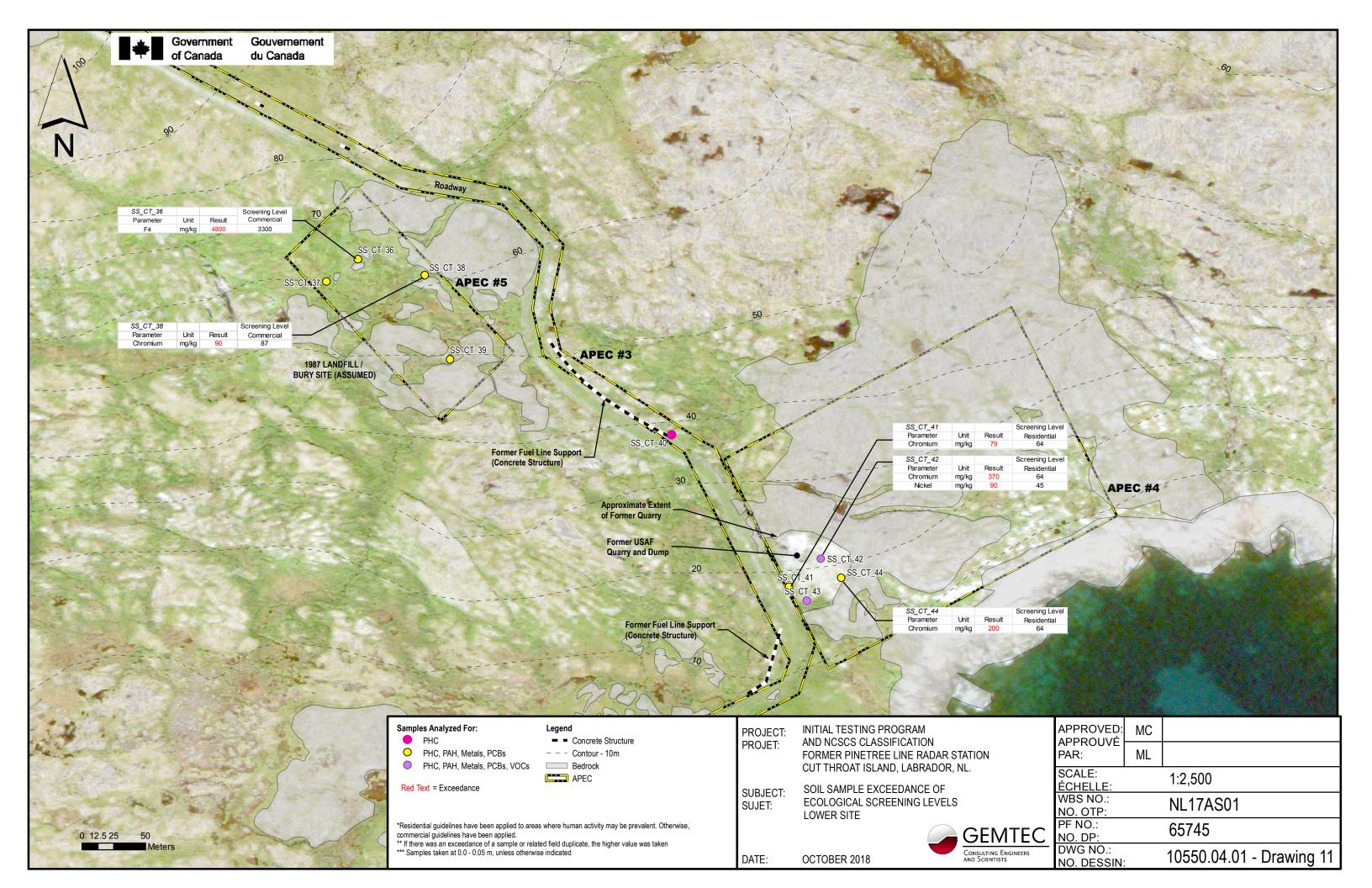

APPROVED: APPROUVÉ PAR:	MC	
	ML	
SCALE: ÉCHELLE:		1:50,000
WBS NO.: NO. OTP:		NL17AS01
PF NO.: NO. DP:		65745
DWG NO.: NO. DESSIN:		10550.04.01 - Drawing 1

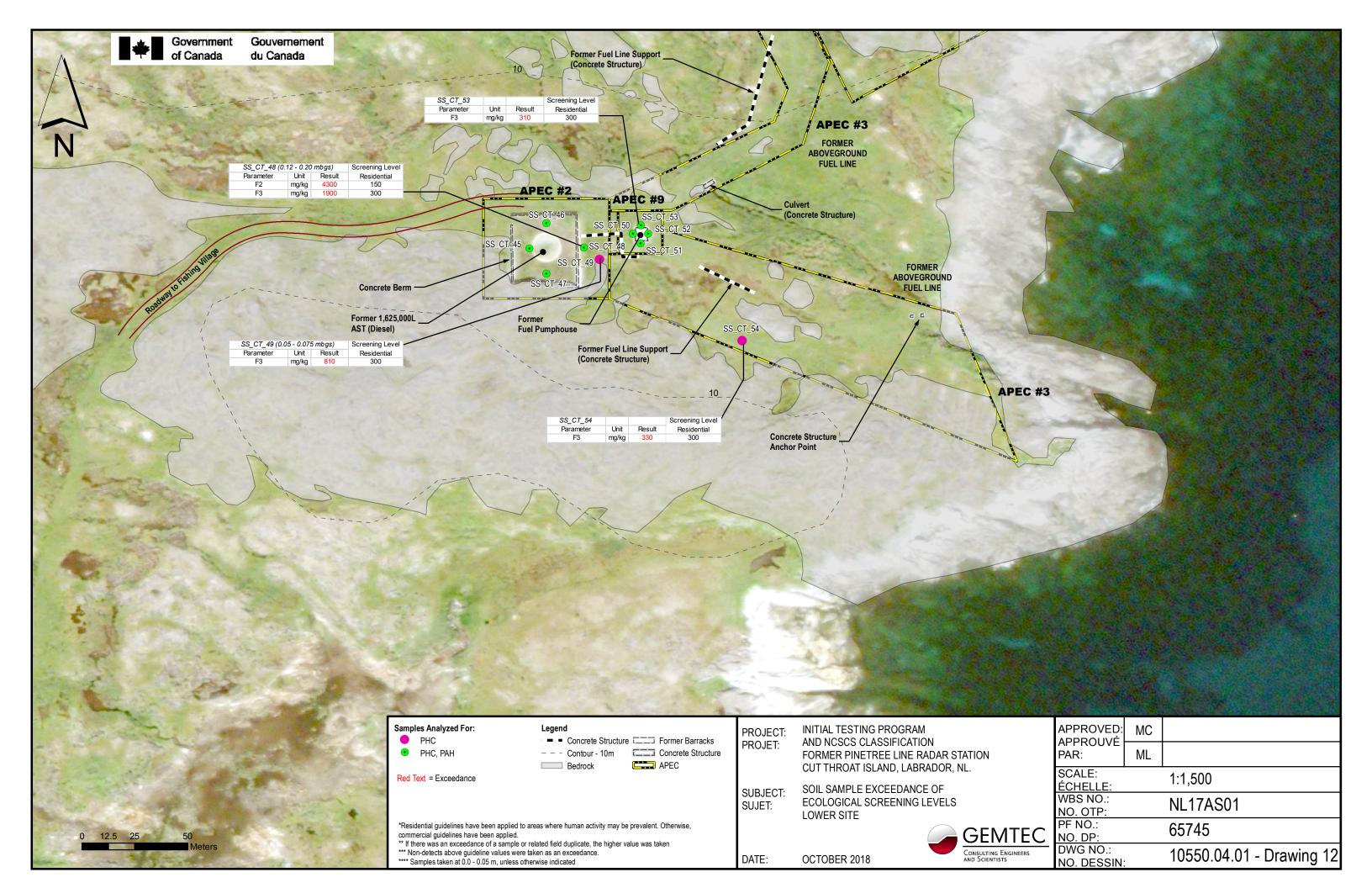


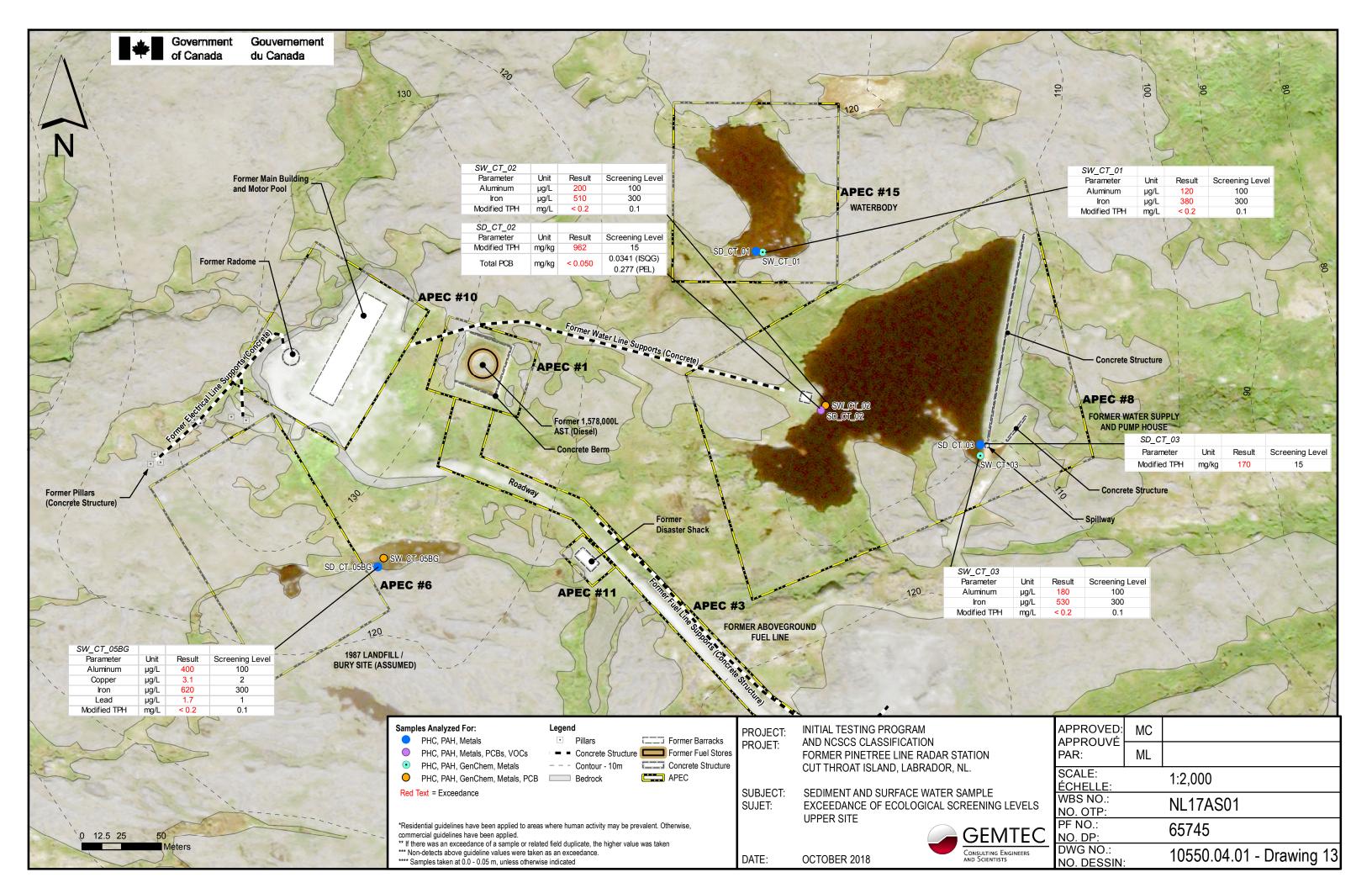


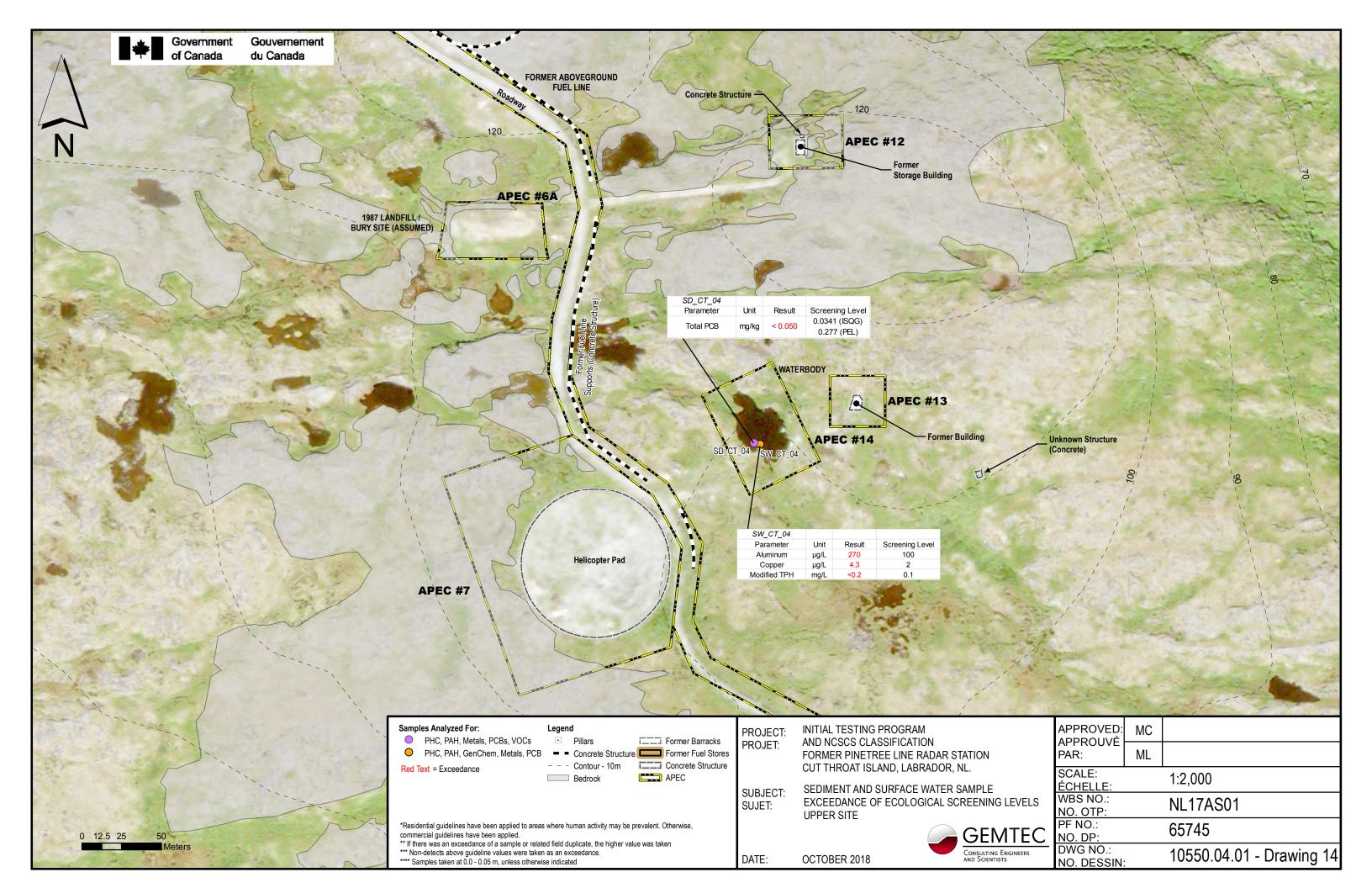


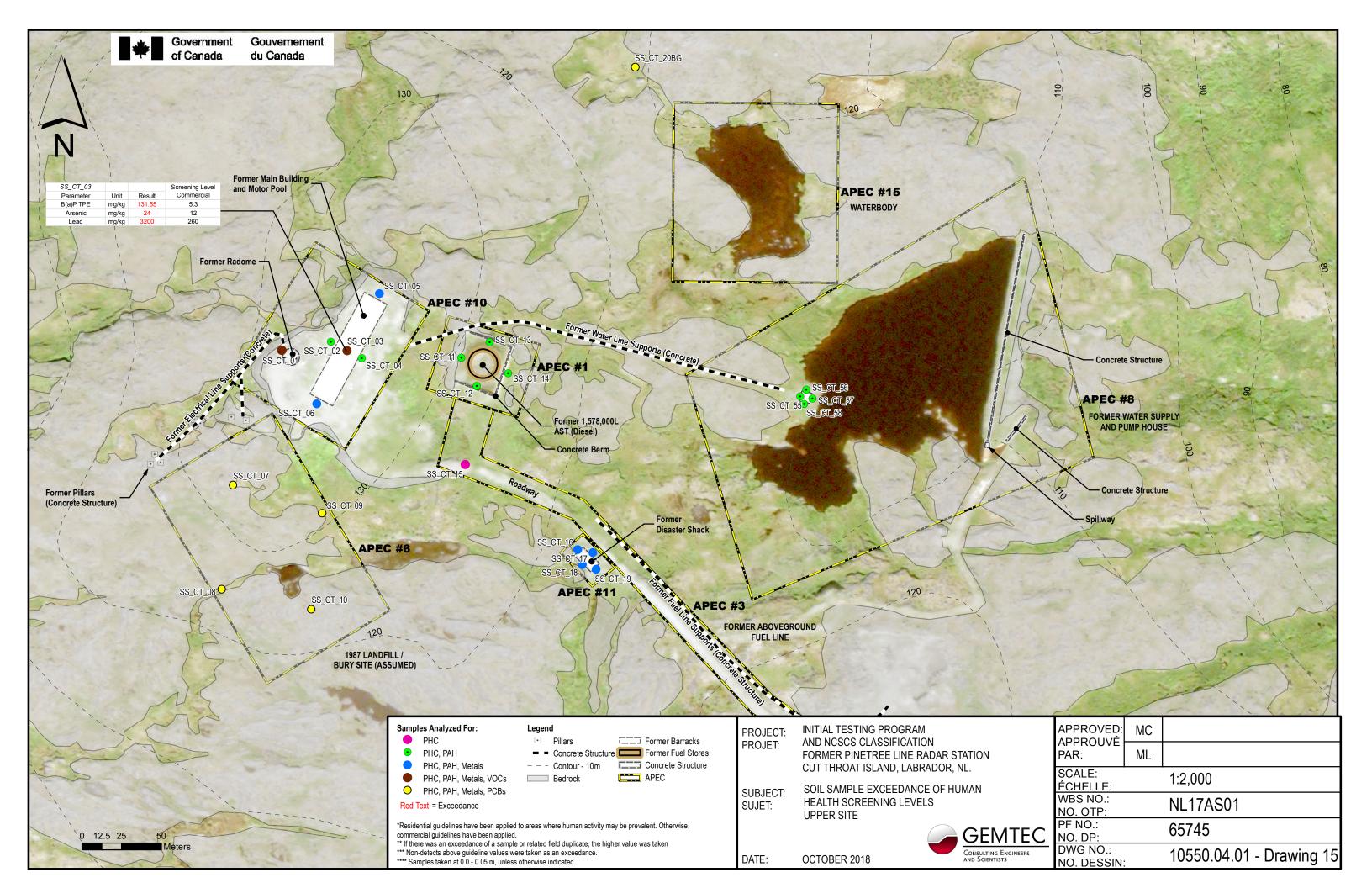


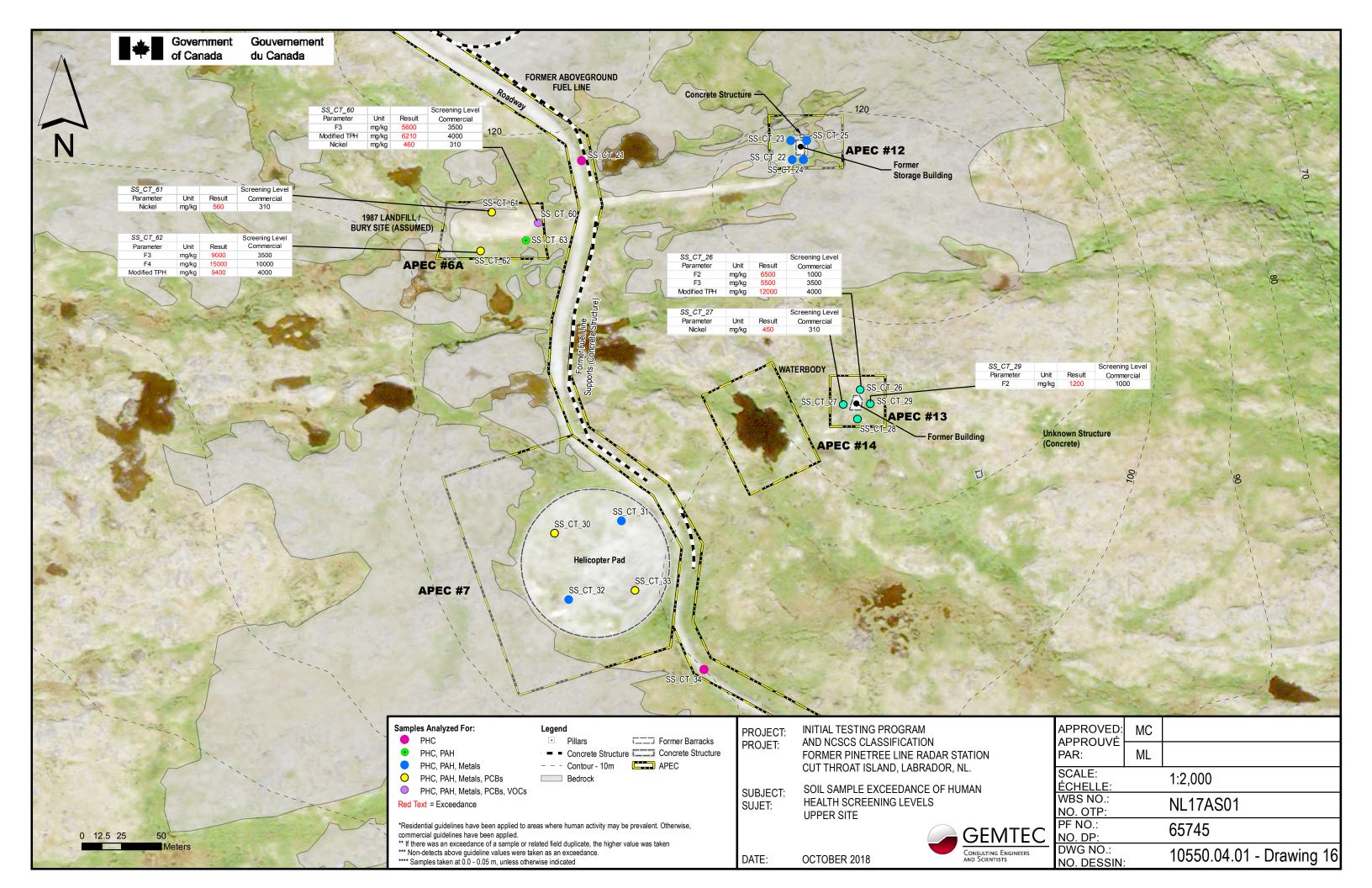


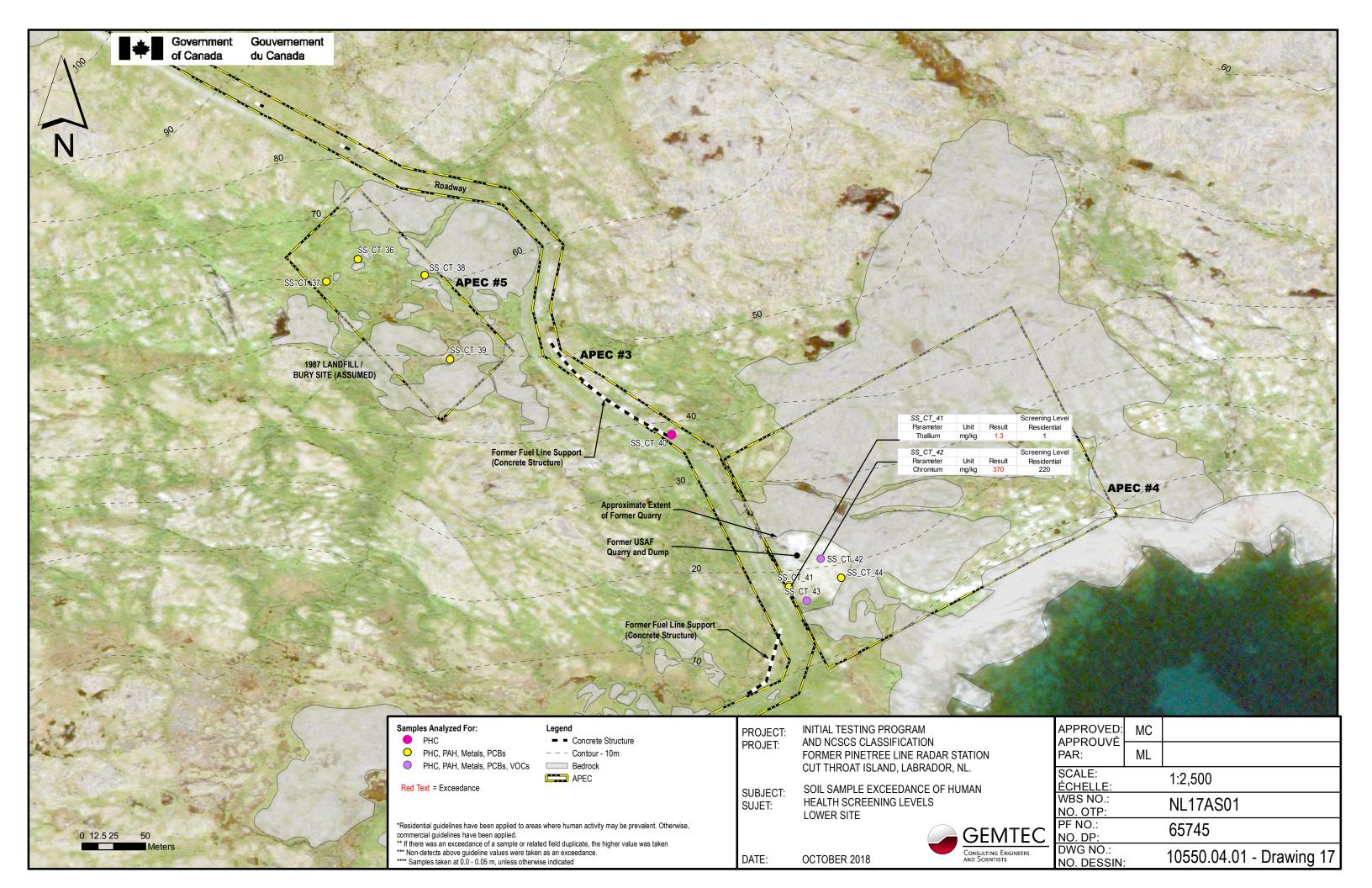


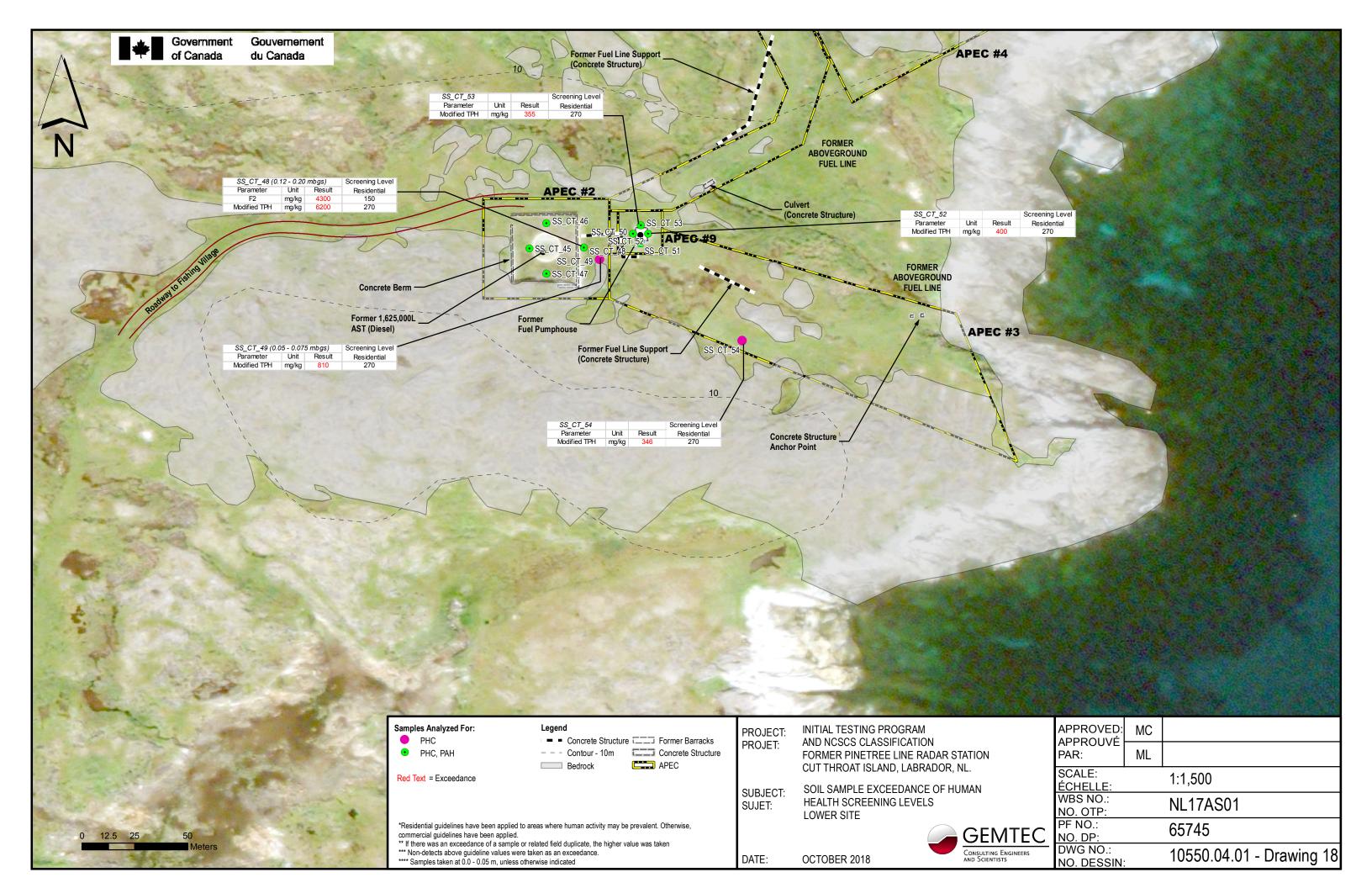


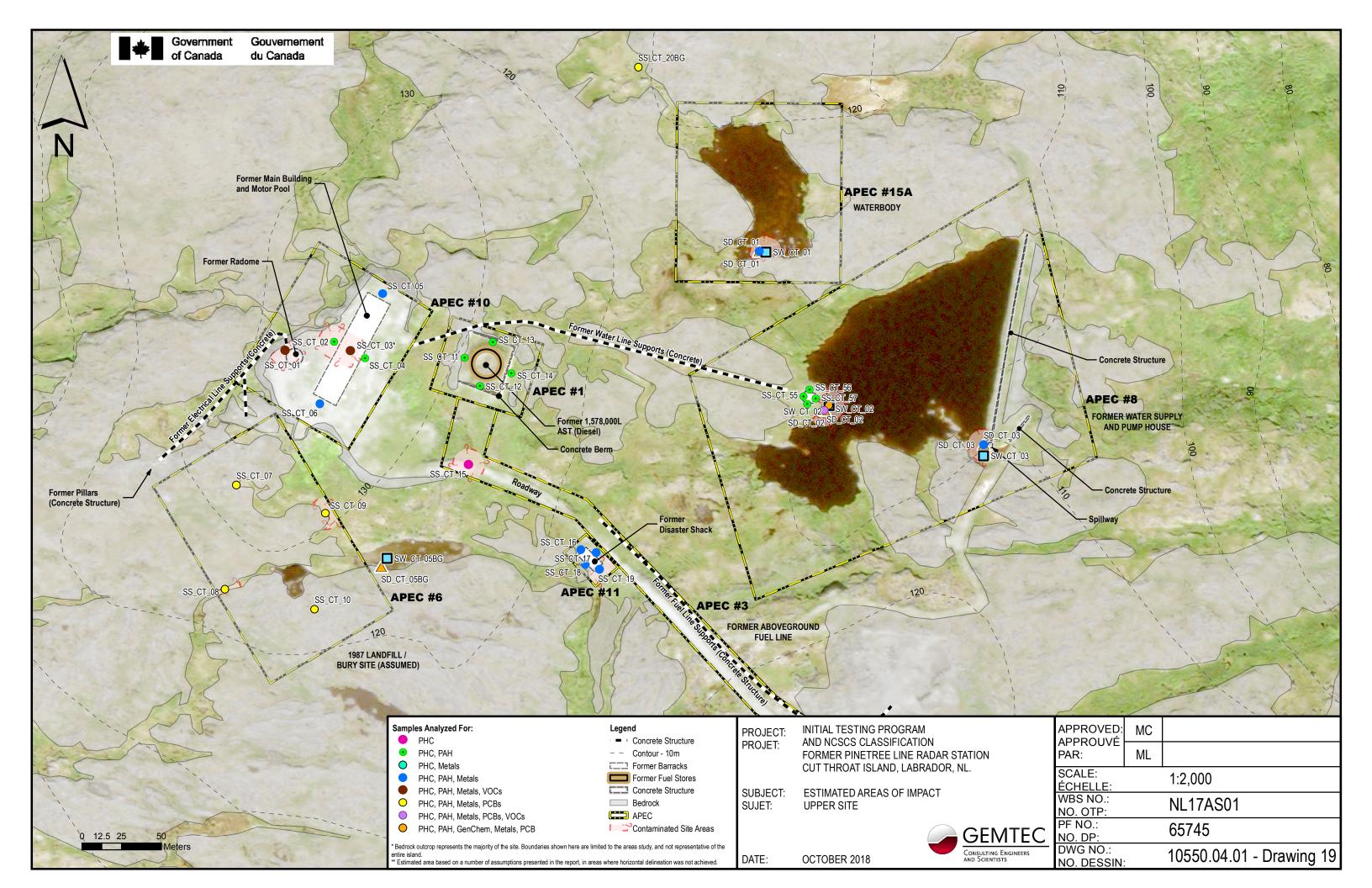


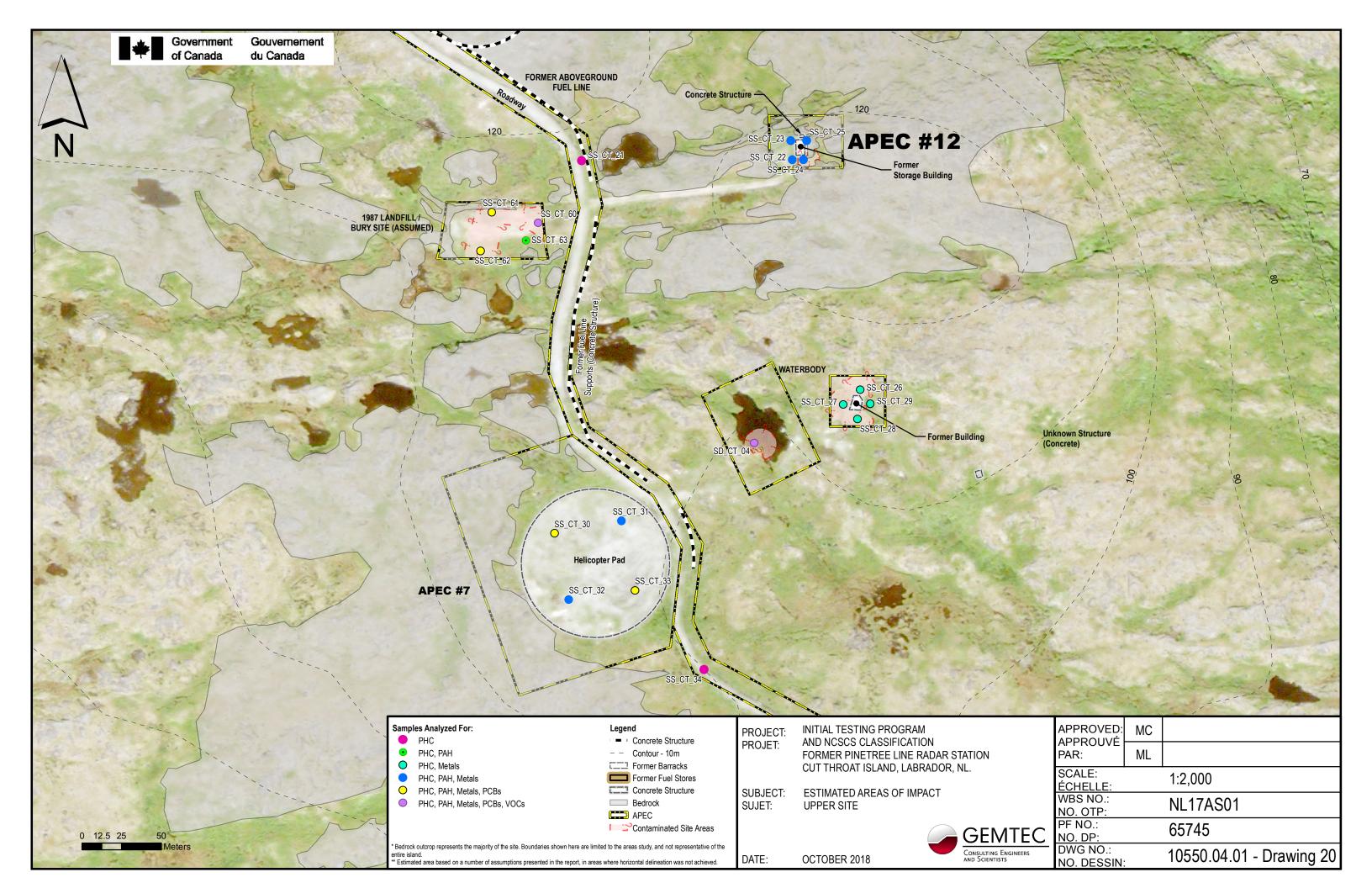


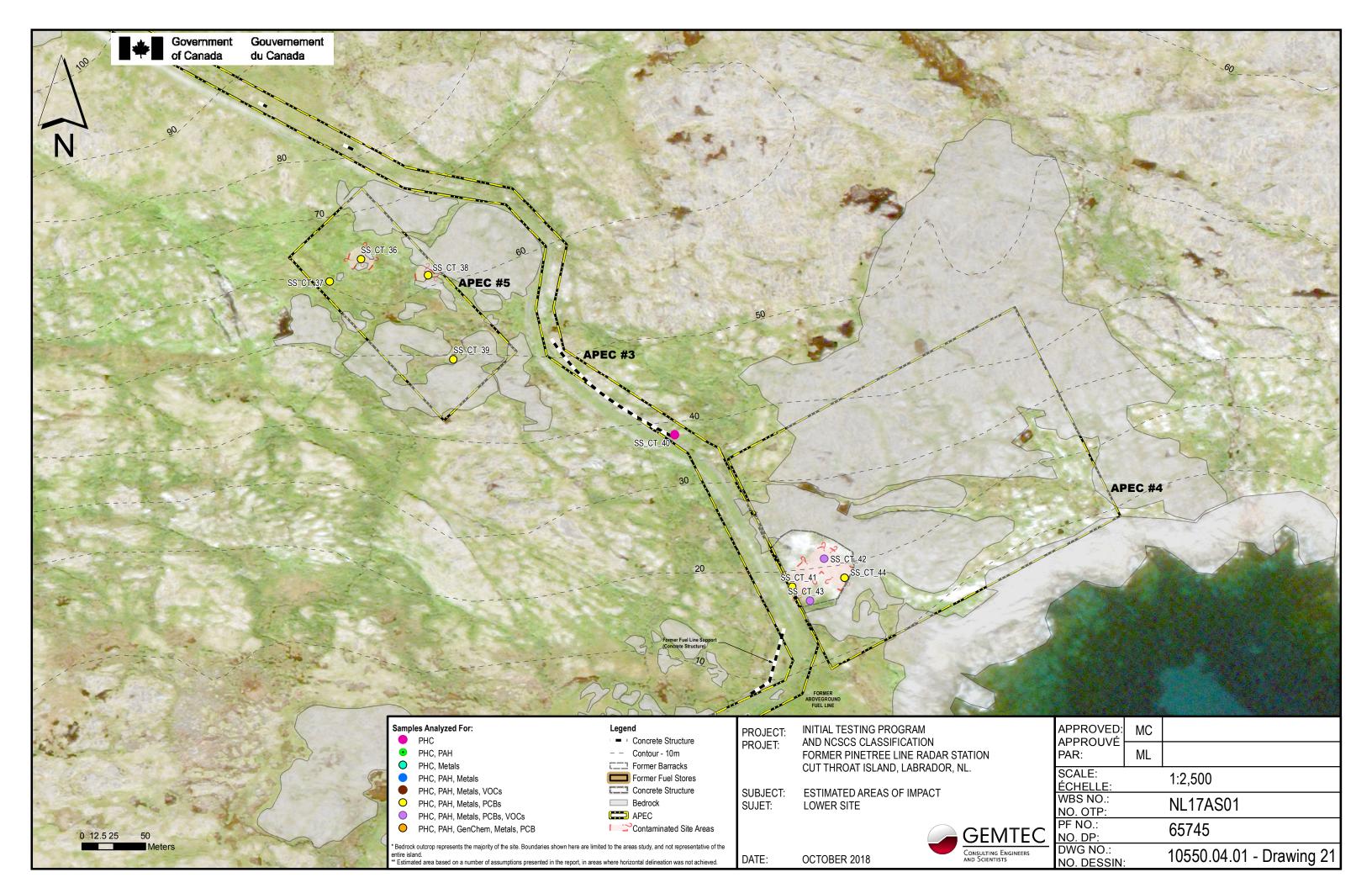


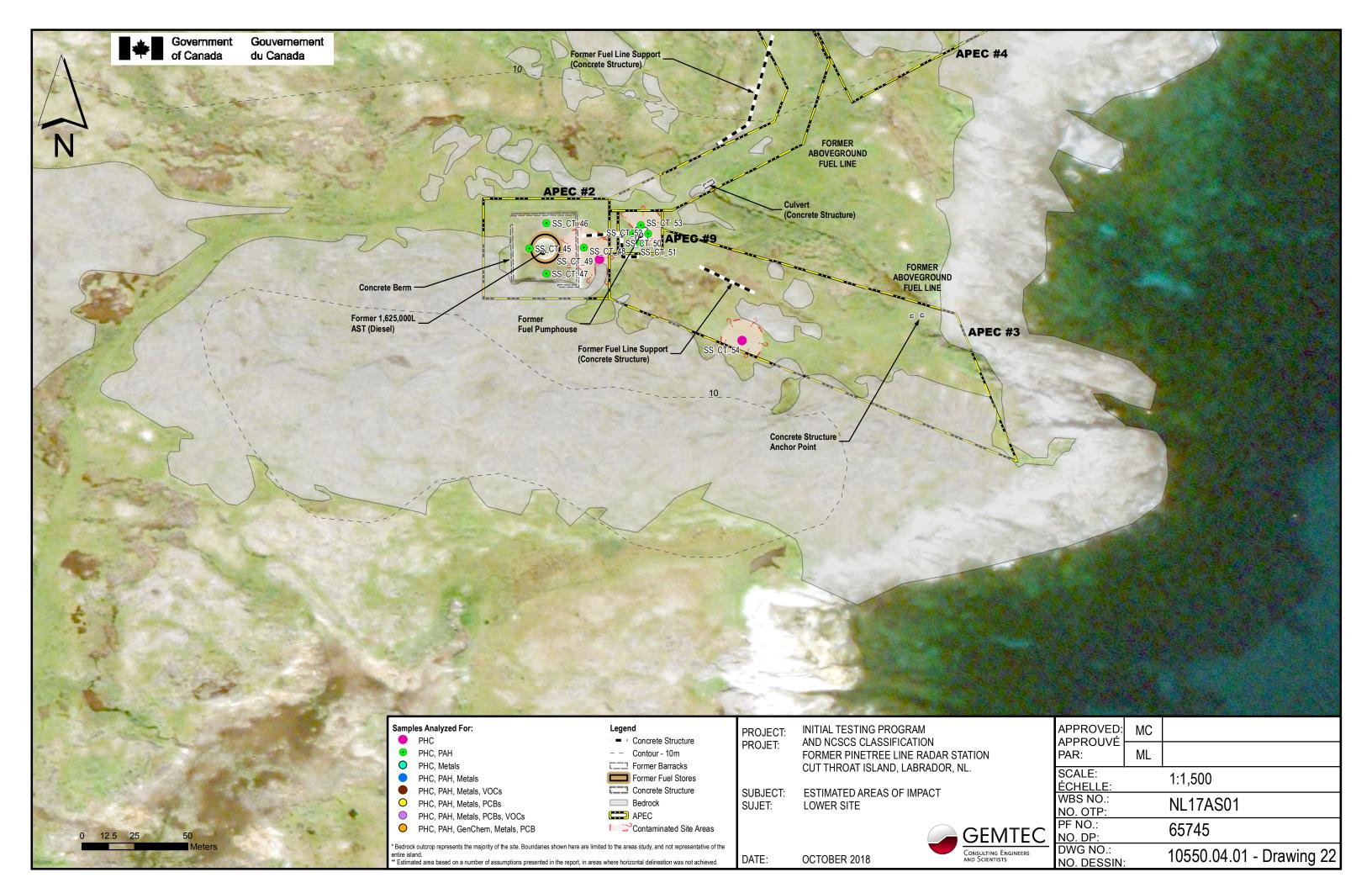














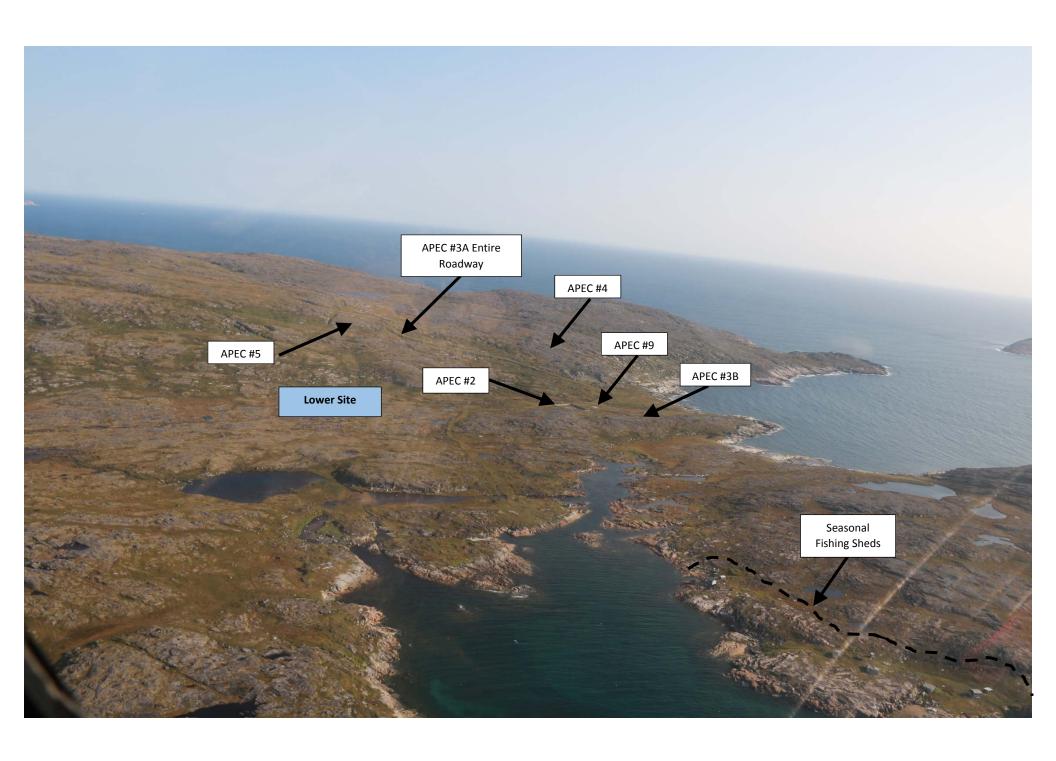


PHOTO 1 - Aerial view facing northwest of Cut Throat Island). Former water source and spillway located in foreground. (September, 2017)

PHOTO 2 - Aerial view facing west of former AST (Upper Site) and main building and motor pool foundations. (September, 2017)

PHOTO 3 - Aerial view facing northeast of former AST (Lower Site) foundation. (September, 2017)

PHOTO 4 - Aerial view facing northeast of fishing sheds located southwest of the Lower Site. (September, 2017)

PHOTO 5 - APEC #1: View of concrete berm (in the background). (September, 2017)

PHOTO 6 - APEC #1: View of piece of rebar on the ground. (September, 2017)

PHOTO 7 - APEC #1: View of inside the berm wall of the former Upper Site AST. (September, 2017)

PHOTO 8 - APEC #1: View facing northeast of concrete blocks used to support piping for the water supply. (September, 2017)

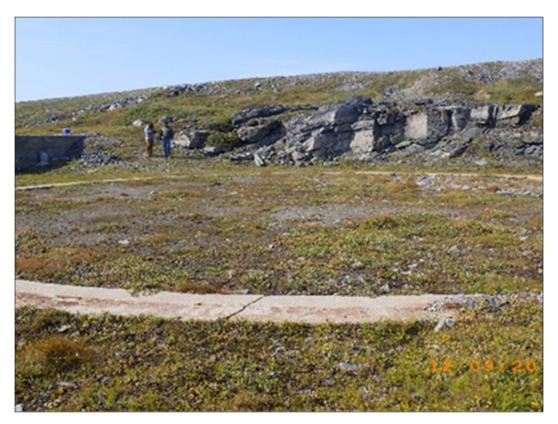


PHOTO 9 - APEC #1: View of the bedrock outcrop used as a natural berm on one side. (September, 2017)

PHOTO 10 - APEC #1: View of the pipe, likely for draining water through the concrete berm. (September, 2017)

PHOTO 11 - APEC #1: View of concrete block. (September, 2017)

PHOTO 12 - APEC #1: View of concrete blocks. (September, 2017)

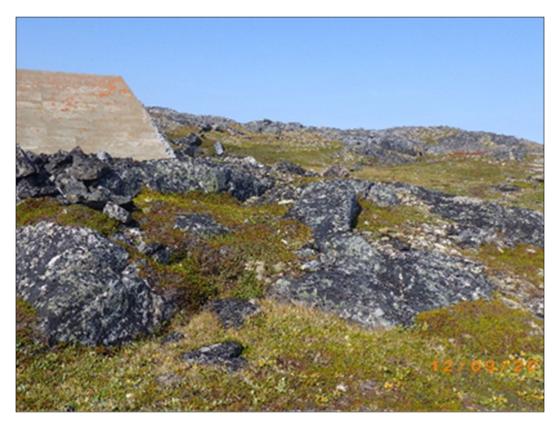


PHOTO 13 - APEC #1: View of concrete berm looking uphill; bedrock outcrops are evident throughout the area. (September, 2017)

PHOTO 14 - APEC #1: View of the concrete berm. Berm in good condition. (September, 2017)

PHOTO 15 - APEC #2: View of inside the berm wall of the former Lower Site AST. (September, 2017)

PHOTO 16 - APEC #2: Drain pipe in the berm of the former Lower Site AST. Other black caulking analyzed at the site was found to be asbestos-containing. (September, 2017)

PHOTO 17 - APEC #2: View of concrete berm. Moss and lichen growing on bedrock is observed in the forefront. (September, 2017)

PHOTO 18 - APEC #2: Outflow of drainpipe and area of stressed vegetation. (September, 2017)

PHOTO 19 - APEC #2: View of pipe, likely for draining water through the concrete berm. (September, 2017)

PHOTO 20 - APEC #2: View of APEC #2 from the top of the bedrock berm wall. (September, 2017)

PHOTO 21 - APEC #2: View of rebar coming out of the vegetation. (September, 2017)

PHOTO 22 - APEC #3: Former location of aboveground fuel line. (September, 2017)

PHOTO 23 - APEC #3: View of roadway towards the Upper Site (helicopter pad and main building). (September, 2017)

PHOTO 24 - APEC #3: View of roadway towards the Lower Site. (September, 2017)

PHOTO 25 - APEC #3: Rebar (debris). (September, 2017)

PHOTO 26 - APEC #3: Metal pipe in ground. (September, 2017)

PHOTO 27 - APEC 3: Rebar (debris). (September, 2017)

PHOTO 28 - APEC #3: Metal anchor near coast. (September, 2017)

PHOTO 29 - APEC #3: Concrete block with steel coming out at coast. (September, 2017)

PHOTO 30 - APEC #3: Metal piping debris along coast. (September, 2017)

PHOTO 31- APEC #3: Former roadway/location of pipeline, now grown over with short vegetation. (September, 2017)

PHOTO 32 - APEC #3: Former roadway/location of pipeline. (September, 2017)

PHOTO 33 - APEC #3: Former roadway/location of pipeline. (September, 2017)

PHOTO 34 - APEC #4: View of gradient of the quarry. (September, 2017)

PHOTO 35 - APEC #4: View of USAF Quarry. No signs of dumping were visible during the 2017 site visit. (September, 2017)

PHOTO 36 - APEC #4: View of rock wall at Quarry. Drill holes observed in the rock. (September, 2017)

PHOTO 37 - APEC #5: View of Potential Landfill / Bury Site. No signs of dumping were visible during the 2017 site visit other than the one barrel identified. (September, 2017)

PHOTO 38 - APEC #5: Close-up of drum (45 gallons). (September, 2017)

PHOTO 39 - APEC #5: Area of APEC #5. (September, 2017)

PHOTO 40 - APEC #5: Area of APEC #5. (September, 2017)

PHOTO 41 - APEC #6: View of APEC #6. (September, 2017)

PHOTO 42 - APEC #6: View of wood waste. (September, 2017)

PHOTO 43 - APEC #6: View of APEC #6. (September, 2017)

PHOTO 44 - APEC #6A: Metal waste on bedrock at APEC #6. (September, 2017)

PHOTO 45 - APEC #6: View of Potential Landfill / Bury Site. No signs of dumping were visible during the 2017 site visit. It is unlikely that this location was used as a landfill site, however a more intrusive investigation would be required to confirm. (September, 2017)

PHOTO 46 - APEC #6: Test pit at APEC #6. (September, 2017)

PHOTO 47 - APEC #6A: View of various small pieces of debris. (September, 2017)

PHOTO 48 - APEC #6A: View of dumpsite located during the September 2017 site visit. This area is located north of the helicopter pad, and has limited / stressed vegetation. (September, 2017)

PHOTO 49 - APEC #6A: View of various small pieces of debris. (September, 2017)

PHOTO 50 - APEC #6A: View of various small pieces of debris. (September, 2017)

PHOTO 51 - APEC #6A: Piece of metal pipe. (September, 2017)

PHOTO 52 - APEC #6A: View of subsurface vegetation on bedrock. (September, 2017)

PHOTO 53 - APEC #6A: Piece of metal pipes (debris). (September, 2017)

PHOTO 54 - APEC #6A: Piece of wood debris. (September, 2017)

PHOTO 55 - APEC #6A: Test pit. (September, 2017)

PHOTO 56 - APEC #6A: Test pit. (September, 2017)

PHOTO 57 - APEC #6A: Test pit. (September, 2017)

PHOTO 58 - APEC #6A: View potential ACMs (transited board pieces) located at the dumpsite. (September, 2017)

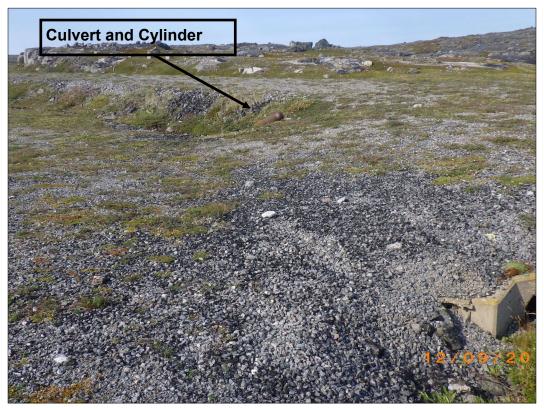


PHOTO 59 - APEC #7: View potential concrete culvert and metal cylinder. (September, 2017)

PHOTO 60 - APEC #7: Metal cylinder debris. (September, 2017)

PHOTO 61 - APEC #7: Gravel helicopter pad. (September, 2017)

PHOTO 62 - APEC #7: Helicopter (GEMTEC's transportation to the Site) on the gravel landing pad. (September, 2017)

PHOTO 63 - APEC #7: View looking toward APEC #7 from the gravel access roadway. (September, 2017)

PHOTO 64 - APEC #7: View of helicopter pad. (September, 2017)

PHOTO 65 - APEC #7: Surface water/concrete foundation of the former pump house. (September, 2017)

PHOTO 66 - APEC #8: View of water source and spillway. (September, 2017)

PHOTO 67 - APEC #8: View of spillway leading from water source. (September, 2017)

PHOTO 68 - APEC #8: View of foundation of former pump house at the Upper Site. (September, 2017)

PHOTO 69 - APEC #8: Former pump house concrete slab. (September, 2017)

PHOTO 70 - APEC #8: View of concrete blocks used to support water piping uphill. (September, 2017)

PHOTO 71 - APEC #8: Shore of water body. (September, 2017)

PHOTO 72 - APEC #8: Piece of transited board. (September, 2017)

PHOTO 73 - APEC #8: Metal debris. (September, 2017)

PHOTO 74 - APEC #8: Wood debris. (September, 2017)

PHOTO 75 - APEC #8: Concrete drainage channel. (September, 2017)

PHOTO 76 - APEC #8: End of concrete drainage channel. (September, 2017)

PHOTO 77 - APEC #8: View of APEC #8, looking from an area of high ground towards the former pump house concrete foundation. (September, 2017)

PHOTO 78 - APEC #8: A metal buoy located along the shore. (September, 2017)

PHOTO 79 - APEC #9: Former shack concrete foundation. (September, 2017)

PHOTO 80 - APEC #10: Pipe in concrete shack foundation. (September, 2017)

PHOTO 81 - APEC #9: Pipes in concrete shack foundation. (September, 2017)

PHOTO 82 - APEC #9: Transite board. (September, 2017)

PHOTO 83 - APEC #9: View of foundation of former pump house located at the Lower Site. (September, 2017)

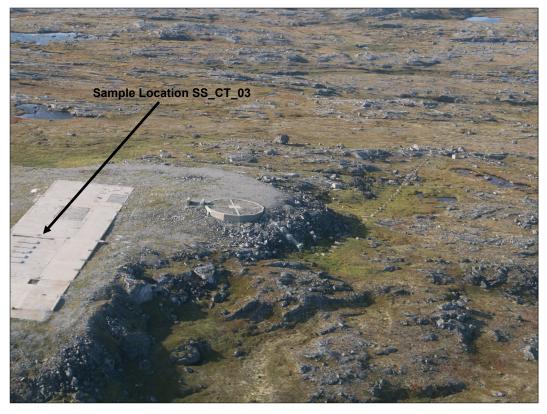


PHOTO 84 - APEC #10: Aerial view of main building and radiomen foundations. (September, 2017)

PHOTO 85 - APEC #10: View toward the Labrador Sea. (September, 2017)



PHOTO 86 - APEC #10: Former concrete curbing for the radiomen to the west of the main building. (September, 2017)

PHOTO 87 - APEC #10: Metal pipe partially buried. (September, 2017)

PHOTO 88 - APEC #10: Piece of rebar coming out of the ground. (September, 2017)

PHOTO 89 - APEC #10: Close-up of one of the concrete curbing for the radome. (September, 2017)

PHOTO 90 - APEC #10: Another one of the concrete curbing for the radiomen. (September, 2017)

PHOTO 91 - APEC #10: Hydraulic oil container (debris). (September, 2017)

PHOTO 92 - APEC #10: Former main building concrete foundation. (September, 2017)

PHOTO 93 - APEC #10: Various pieces of debris. (September, 2017)

PHOTO 94 - APEC #10: Former main building concrete foundation. (September, 2017)

PHOTO 95 - APEC #10: Concrete slab of former main building foundation. Soil is exposed in various location within the slab. (September, 2017)

PHOTO 96 - APEC #10: Various debris was located over APEC including gaskets, various sizes of metal pieces, batteries, transited board and wood. (September, 2017)

PHOTO 97 - APEC #10: Metal debris. (September, 2017)

PHOTO 98 - APEC #10: Other debris. (September, 2017)

PHOTO 99 - APEC #10: Foundation of former radiomen. (September, 2017)

PHOTO 100 - APEC #10: Foundation of former trailer communication tower. (September, 2017)

PHOTO 101 - APEC #10: Debris in vegetation at the base of rock pile. (September, 2017)

PHOTO 102 - APEC #10: Metal protruding out of the former main building concrete slab. (September, 2017)

PHOTO 103 - APEC #10: Vegetation growing out of what appears to be a drain in the former main building concrete slab. (September, 2017)

PHOTO 104 - APEC #10: Metal structure in the former main building concrete slab. (September, 2017)

PHOTO 105 - APEC #11: View facing northwest of the former disaster shack foundation. (September, 2017)

PHOTO 106 - APEC #11: Concrete foundation of former disaster shack. (September, 2017)

PHOTO 107 - APEC #12: Gravel road leading to APEC #12. (September, 2017)

PHOTO 108 - APEC #12: View facing west of gravel roadway leading to the former storage building. (September, 2017)

PHOTO 109 - APEC #12: View former storage building foundation. A potential track is located in the floor. (September, 2017)

PHOTO 110 - APEC #12: Piece of wood debris. (September, 2017)

PHOTO 111 - APEC #12: View from the concrete foundation looking toward the Labrador Sea. (September, 2017)

PHOTO 112 - APEC #12: Pipes in a piece of concrete. (September, 2017)

PHOTO 113 - APEC #12: View from the concrete foundation looking toward the Labrador Sea. (September, 2017)

PHOTO 114 - APEC #13: View facing north from the area that was previously identified as the former catch basin. The concrete slab was disintegrated. (September, 2017)

PHOTO 115 - APEC #13: View from the disintegrated concrete foundation looking toward the Labrador Sea. (September, 2017)

PHOTO 116 - APEC #13: View from the disintegrated concrete foundation looking toward the Labrador Sea. (September, 2017)

PHOTO 117 - APEC #13: View of a surface water body from the disintegrated concrete foundation. (September, 2017)

PHOTO 118 - APEC #13: Large concrete block (approximately 2 m high). Unknown use. (September, 2017)

PHOTO 119 - APEC #13: Large concrete block (approximately 2 m high). (September, 2017)

PHOTO 120 - APEC #14: View of waterbody located northeast of the helicopter pad. (September, 2017)

PHOTO 121 - APEC #15A: Pipe of unknown age and purpose, inside of waterbody located north of the water source. Not identified as being a water source for the USAF.

PHOTO 122 - View of an upper quarry identified during the 2017 Site visit. (September, 2017)

(September, 2017)

PHOTO 123 - View of an upper quarry identified during the 2017 Site visit. (September, 2017)

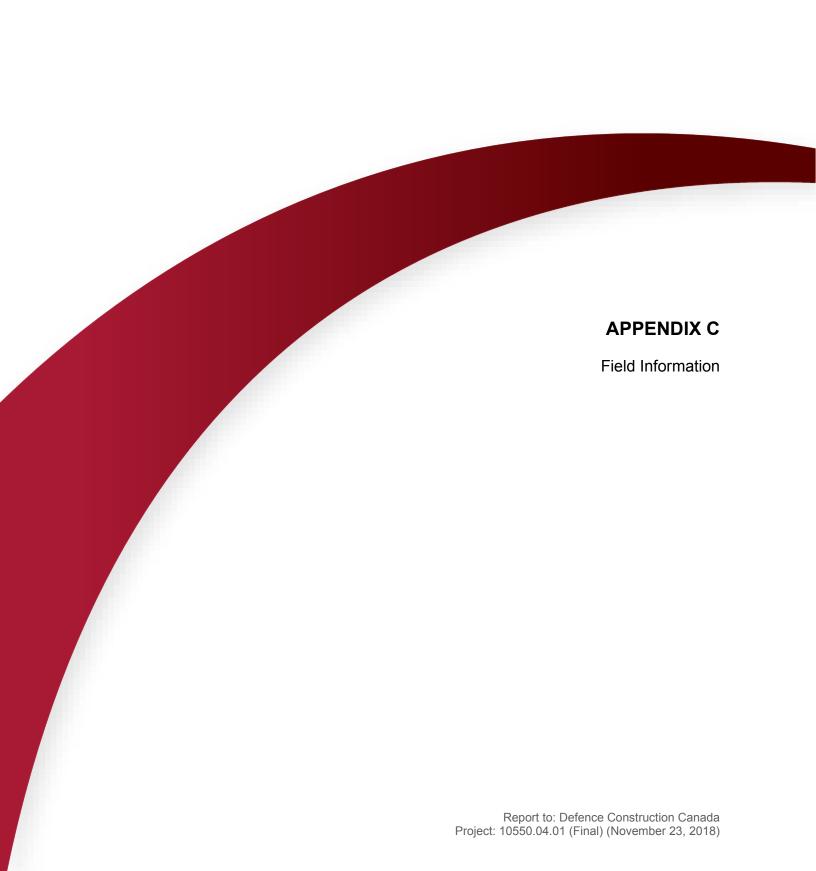


Table C1 - Soil Descriptions

Sample Location	Depth (mbgs)	Easting NAD83 (CSRS)	Northing NAD83 (CSRS)	Zone	Colour	Description	Fill Y/N	Stains Y/N	Petroleum Odours Y/N	VOC Reading (ppm)	Debris Type Present / Comment
SS_CT_01	0-0.05	490911.93040	6039035.98780	21 N	Brown	Sand and gravel				0.0	
SS_CT_02	0-0.05	490942.70460	6039041.26590	21 N	Brown	Silty sand and gravel				0.0	
SS_CT_03	0-0.05	490953.06870	6039035.62650	21 N	Brown	Sand and gravel				0.0	
SS_CT_04	0-0.05	490962.23910	6039030.94530	21 N	Brown	Sand and gravel				0.0	
SS_CT_05	0-0.05	490973.41510	6039071.52790	21 N	Brown	Sand and gravel				0.0	
SS_CT_06	0-0.05	490933.85050	6039002.33810	21 N	Brown	Sand and gravel				0.0	
SS_CT_07	0-0.05	490881.27490	6038951.12980	21 N	Black	Sand and peat				0.0	Organics
SS_CT_08	0-0.05	490874.10960	6038885.68180	21 N	Black	Organics				0.0	Organics
SS_CT_09	0-0.05	490937.34900	6038933.34730	21 N	Black	Organics				0.0	Organics
SS_CT_10	0-0.05	490930.44830	6038872.99770	21 N	Black	Sand and peat				0.0	Organics
SS_CT_11	0-0.05	491024.76890	6039031.38510	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_12	0-0.05	491034.47070	6039013.72800	21 N	Brown	Sand and gravel		Υ	N	0.0	Organics
SS_CT_13	0-0.05	491042.51280	6039041.11260	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_14	0-0.05	491054.19620	6039021.67420	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_15	0-0.05	491027.40330	6038964.08040	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_16	0-0.05	491098.12730	6038910.49340	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_17	0-0.05	491107.84600	6038908.67680	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_18	0-0.05	491100.96970	6038901.14310	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_19	0-0.05	491109.88490	6038898.21520	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_20BG	0-0.05	491134.29660	6039214.12630	21 N		Peat, with sand and silt				0.0	
SS_CT_21	0-0.05	491328.45620	6038725.42070	21 N	Brown	Sand and Gravel				0.0	Organics
SS_CT_22	0-0.05	491461.00000	6038726.00000	21 N	Brown	Gravel and silty sand				0.0	Organics
SS_CT_23	0-0.05	491460.00000	6038738.00000	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_24	0-0.05	491468.00000	6038726.00000	22 N	Brown	Sand and gravel				0.0	

Table C1 - Soil Descriptions

Sample Location	Depth (mbgs)	Easting NAD83 (CSRS)	Northing NAD83 (CSRS)	Zone	Colour	Description	Fill Y/N	Stains Y/N	Petroleum Odours Y/N	VOC Reading (ppm)	Debris Type Present / Comment
SS_CT_25	0-0.05	491470.00000	6038738.00000	21 N	Brown	Sand with trace gravel				0.0	
SS_CT_26	0-0.05	491503.70620	6038581.16140	21 N	Brown	Sand and gravel				0.0	
SS_CT_27	0-0.05	491493.03660	6038571.93360	21 N	Brown	Sand and gravel				0.0	
SS_CT_28	0.02-0.20	491501.97590	6038562.70590	21 N	Brown	Sand and gravel			Y	0.0	
SS_CT_29	0.05-0.075	491510.05020	6038572.51040	21 N	Brown	Peat and root material			N	0.0	
SS_CT_30	0-0.05	491311.25310	6038490.98270	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_31	0-0.05	491353.53390	6038498.84300	21 N	Brown	Gravel, silt, and sand				0.0	Organics
SS_CT_32	0-0.05	491320.33220	6038449.12640	21 N	Brown	Gravel, silt, and sand				0.0	Organics
SS_CT_33	0-0.05	491362.00870	6038454.97410	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_34	0-0.05	491405.54880	6038405.07600	21 N	Brown	Sand and Gravel				0.0	Organics
SS_CT_36	0-0.05	491740.56080	6038145.55940	21 N	Black	Organics				0.0	Organics
SS_CT_37	0-0.05	491715.77180	6038128.05710	21 N	Black	Organics				0.0	Organics
SS_CT_38	0-0.05	491793.28740	6038133.14940	21 N	Black	Organics				0.0	Organics
SS_CT_39	0-0.05	491813.26300	6038066.98460	21 N	Black	Organics				0.0	Organics
SS_CT_40	0-0.05	491987.36470	6038007.58290	21 N	Brown	Sand and Gravel				0.0	Organics
SS_CT_41	0-0.05	492080.00000	6037888.00000	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_42	0-0.05	492105.00000	6037910.00000	21 N	Brown	Gravel and silty sand				0.0	
SS_CT_43	0-0.05	492094.00000	6037877.00000	21 N	Brown	Gravel and silty sand				0.0	Organics
SS_CT_44	0-0.05	492121.00000	6037895.00000	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_45	0-0.05	491958.51460	6037754.70350	21 N	Brown	Sand, silt, and gravel	Y			0.0	
SS_CT_46	0-0.05	491966.58960	6037766.64580	21 N	Brown	Sand and gravel	Y			0.0	Organics
SS_CT_47	0-0.05	491966.53040	6037742.74180	21 N	Brown	Gravel and silty sand	Υ			0.0	Organics
SS_CT_48	0.12-0.20	491984.23050	6037755.04030	21 N	Brown	Sand, some gravel	Υ			0.0	
SS_CT_49	0.05-0.075	491991.69950	6037749.47570	21 N	Brown	Sand and gravel				0.0	

Table C1 - Soil Descriptions

Sample Location	Depth (mbgs)	Easting NAD83 (CSRS)	Northing NAD83 (CSRS)	Zone	Colour	Description	Fill Y/N	Stains Y/N	Petroleum Odours Y/N	VOC Reading (ppm)	Debris Type Present / Comment
SS_CT_50	0-0.05	492007.48610	6037761.66010	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_51	0-0.05	492011.02920	6037757.28060	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_52	0-0.05	492014.57620	6037761.70290	21 N	Brown	Gravel and silty sand				0.0	Organics
SS_CT_53	0-0.05	492011.08820	6037765.74950	21 N	Brown	Sand and gravel				0.0	Organics
SS_CT_54	0-0.05	492059.00850	6037711.29730	21 N	Black	Organics, some sand				0.0	Organics
SS_CT_55	0-0.05	491238.22740	6039006.86740	21 N	Brown	Sand and gravel				0.0	
SS_CT_56	0-0.05	491241.97940	6039011.07320	21 N	Brown	Sand and gravel				0.0	
SS_CT_57	0-0.05	491245.78450	6039005.52910	21 N	Brown	Sand and gravel				0.0	
SS_CT_58	0-0.05	491240.61630	6039002.39630	21 N	Brown	Sand and gravel				0.0	
SS_CT_60	0-0.05	491300.97260	6038686.29210	21 N	Gray-brown	Sand and silt			Υ	0.0	
SS_CT_61	0-0.05	491271.83960	6038693.02400	21 N	ark gray-brov	Sand and silt			N	0.0	
SS_CT_62	0-0.05	491264.66820	6038668.55840	21 N	wn-dark bro	Sand and silt			N	0.0	
SS_CT_63	0-0.05	491293.17910	6038675.18000	21 N	wn-dark bro	Sand and silt			N	0.0	

Notes: BG = background sample FD = field duplicate

Table C2 - Test Pit Logs-Cut Throat Island

APEC	Sample Location	Depth (mbgs)	Easting NAD83 (CSRS)	Northing NAD83 (CSRS)	Zone	Colour	Description	Fill Y/N	Stains Y/N	Petroleum Odours Y/N	VOC Reading (ppm)	Debris Type Present / Comment
APEC 1	SS_CT_14	0-0.1	491054.19620	6039021.67420	21 N	Brown	Sand and gravel				0.0	Organics
		0.1					Bedrock ecountered					
APEC 2	SS_CT_48	0-0.025	491984.23050	6037755.04030	21 N	Brown	Sand	Y			0.0	
		0.025-0.12				Brown	Sand with gravel	Y				
		0.12-0.20				Brown	Sand, some gravel	Y			0.0	
		0.2					Bedrock ecountered					
APEC 2	SS_CT_49	0-0.05	491991.69950	6037749.47570	21 N	Brown	Peat and root material				0.0	
		0.05-0.075				Brown	Sand and gravel				0.0	
		0.075					Bedrock ecountered					
APEC 3	SS_CT_15	0-0.1	491027.40330	6038964.08040	21 N	Brown	Sand and gravel				0.0	Organics
		0.1					Bedrock ecountered					
APEC 4	SS_CT_42	0-0.1	492105.00000	6037910.00000	21 N	Brown	Gravel and silty sand				0.0	
		0.1					Bedrock ecountered					
APEC 5	SS_CT_37	0-0.1	491715.77180	6038128.05710	21 N	Black	Organics				0.0	Organics
		0.1					Bedrock ecountered					
APEC 6	SS_CT_09	0-0.06	490937.34900	6038933.34730	21 N	Black	Organics (Peat)				0.0	Organics
		0.06-0.09				Dark brown	wet sand (slurry)					
		0.09				Black	Bedrock ecountered					
APEC 6A	SS_CT_61	0-0.09	491271.83960	6038693.02400	21 N	Dark gray-brown	Sand and silt			N	0.0	
		0.09					Bedrock ecountered					
APEC 7	SS_CT_32	0-0.1	491320.33220	6038449.12640	21 N	Brown	Gravel, silt, and sand				0.0	Organics
		0.1					Bedrock ecountered					
APEC 8	SS_CT_56	0-0.1	491241.97940	6039011.07320	21 N	Brown	Sand and gravel				0.0	
		0.1					Bedrock ecountered					
APEC 9	SS_CT_52	0-0.1	492014.57620	6037761.70290	21 N	Brown	Gravel and silty sand				0.0	Organics
		0.1					Bedrock ecountered					
APEC 10	SS_CT_04	0-0.1	490962.23910	6039030.94530	21 N	Brown	Sand and gravel				0.0	
		0.1					Bedrock ecountered			_		

Table C2 - Test Pit Logs-Cut Throat Island

APEC	Sample Location	Depth (mbgs)	Easting NAD83 (CSRS)	Northing NAD83 (CSRS)	Zone	Colour	Description	Fill Y/N	Stains Y/N	Petroleum Odours Y/N	VOC Reading (ppm)	Debris Type Present / Comment
APEC 11	SS_CT_16	0-0.1	491098.12730	6038910.49340	21 N	Brown	Sand and gravel				0.0	Organics
		0.1					Bedrock ecountered					
APEC 12	SS_CT_24	0-0.1	491468.00000	6038726.00000	22 N	Brown	Sand and gravel				0.0	
		0.1					Bedrock ecountered					
APEC 13	SS_CT_28	0.02-0.20	491501.97590	6038562.70590	21 N	Brown	Sand and gravel			Y	0.0	
		0.20-0.3				Brown	Sand and gravel					
		0.3					Bedrock ecountered					

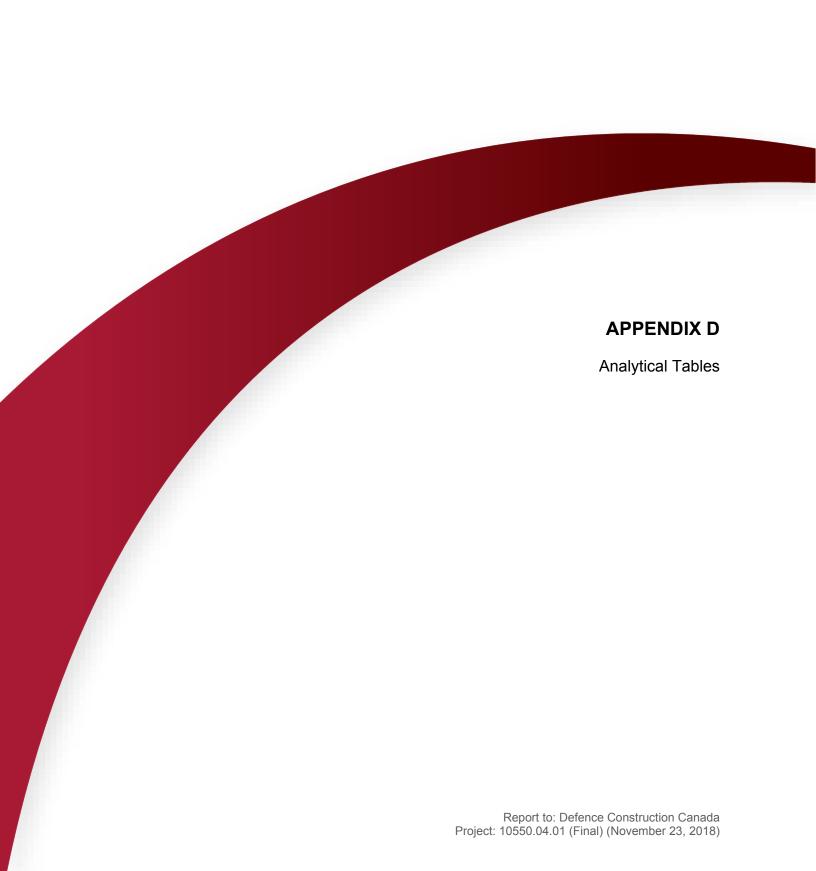


Table D1-1 Petroleum Hydrocarbons in Soil (mg/kg) (Residential)

	Sample								Total I	Petroleum	Hydrocar	bons	
Sample ID	Depth (mbgs)	Sample Date	В	т	E	x	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₅₀ ⁴	C _{>50} ⁵	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁷
							F1 ³	F2	F3	-	-	F4 ⁶	
Provincial Screening Levels ¹			ı					ı	1	-		T	
Human Health			0.099	77	30	8.8	-	-	-	-	-	-	270
Ecological			31	75	55	95	210	150	300	2800	-	2800	-
Federal Screening Levels ² Human Health			110	22000	10000	150000	30	150	2500	_ [_	10000	_
Ecological			31	75	120	95	210	150	300	-	-	2800	-
SS_CT_20 BG	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	55	<50	-	<50	55
SS_CT_20 BG_LD	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	63	<50	-	<50	63
SS_CT_21	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_34	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_40	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	78	<50	-	<50	78
SS_CT_40_LD	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	54	<50		<50	54
SS_CT_41	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	110	<50	-	<50	110
SS_CT_42	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_43	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	97	<50	-	<50	97
SS_CT_44	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	110	84	150	150	110
SS_CT_45	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	28	150	<50	-	<50	178
SS_CT_45_FD	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	31	150	<50	-	<50	181
SS_CT_46	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	30	94	<50	-	<50	124
SS_CT_47	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	56	120	<50		<50	176
SS_CT_48	0.12-0.20	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	4300	1900	66	-	66	<u>6200</u>
SS_CT_49	0.05-0.075	13-Sep-17	<0.012	<0.040	<0.020	<0.040	<20	<20	620	350	1200	1200	<u>620</u>
SS_CT_49_FD	0-0.05	13-Sep-17	<0.018	<0.060	<0.030	<0.060	<30	<20	810	570	830	830	<u>810</u>

Table D1-1 Petroleum Hydrocarbons in Soil (mg/kg) (Residential)

	Sample								Total I	Petroleum	Hydrocar	bons	
Sample ID	Depth (mbgs)	Sample Date	В	т	E	x	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₅₀ ⁴	C _{>50} ⁵	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁷
							F1 ³	F2	F3	-	-	F4 ⁶	
Provincial Screening Levels ¹													
Human Health						8.8	-	-	-	-	-	-	270
Ecological					55	95	210	150	300	2800	-	2800	-
Federal Screening Levels ²													
Human Health				22000	10000	150000	30	150	2500	-	-	10000	-
Ecological			31	75	120	95	210	150	300	-	-	2800	-
SS_CT_50	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	100	<50	-	<50	100
SS_CT_51	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_52	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	100	300	73	160	160	<u>400</u>
SS_CT_53	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	45	310	100	480	480	<u>355</u>
SS_CT_53 LD	0-0.05	13-Sep-17	-	-	-	-	-	-	-	-	390	390	-
SS_CT_54	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	16	330	180	410	410	<u>346</u>

- 3. Does not include BTEX compounds
- Where the chromatogram returns to baseline following the C_{>34}-C₅₀ analysis, additional hydrocarbons in the C_{>50} range are not expected, and the preliminary F4 (C_{>34}-C₅₀) analysis is deemed an appropriate approximation of CCME F4 (C_{>34}) hydrocarbons.
- 5. Where the chromatogram did not return to baseline following the C>34-C50 analysis, additional anlysis (F4 Gravimetric method) was conducted to quantify hydrocarbons in the C350 range.
- 6. CCME hydrocarbon range F4 presented here is the greater value of C₃₄-C₅₀ and C_{>50} (where analyzed. See notes 4 and 5).

Modified TPH calculated from the sum of the detected parameters of the CWS F1-F3 fractions. Though generally consistent with the Atlantic RBCA Guidelines for Laboratories (V3.1, 2016), the

7. Atlantic RBCA modified TPH represents C_{>6}-C₃₂, while the CWS represents C_{>6}-C₃₄. Thus the calculated mTPH concentration presented here is a slight over estimate of mTPH in the Atlantic RBCA context.

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are Bolded.

Exceedances of Atlantic RBCA Human Health Screening Levels are underlined.

Exceedances of the Atlantic RBCA Ecological Screening Levels are italicized.

NA = not applicable

Tier I RBSLs and ESLs for a residential/parkland, non-potable site with coarse-grained soil, and diesel fuel impacts. Soil ESL for the Protection of Plants and Soil Invertebrates; Direct Soil ... Contact (mg/kg dry weight) (Atlantic PIRI, 2015).

CCME Canadian Soil Quality Guidelines for the Protection of Environmentaland Human Health and Canada Wide Standard (CWS) for Petroleum Hydrocarbons (PHC) in Soil (residential, coarse-grained surface soil, (cancer risk: 10-5 (benzene), (Management Limit and Eco Soil Contact (CWS))

[&]quot;-" = Not available/ Not analyzed.

Table D1-2 Petroleum Hydrocarbons in Soil (mg/kg) (Commercial)

	Comple								Total l	Petroleum	Hydrocar	bons	
Sample ID	Sample Depth (mbgs)	Sample Date	В	т	E	x	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₅₀ ⁴	C _{>50} ⁵	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁶
							F1 ³	F2	F3	-	-	F4 ⁶	
Provincial Screening Levels 1													
Human Health			2.5	10000	10000	110	-	-	-	-	-	-	4000
Ecological			180	250	300	350	320	260	1700	3300	-	3300	-
Federal Screening Levels ²													_
Human Health			0.03	0.37	0.082	11	700	1000	3500	-	-	10000	-
Ecological			180	250	300	350	320	260	1700	-	-	3300	-
SS_CT_01	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_02	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	58	<50	-	<50	58
SS_CT_03	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	46	2000	520	-	520	2046
SS_CT_03_LD	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	-	-	-	-	-	-
SS_CT_04	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_05	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	73	<50	-	<50	73
SS_CT_05_FD	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	52	<50	-	<50	52
SS_CT_06	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_07	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<20	920	770	2400	2400	920
SS_CT_07 FD	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	270	190	810	810	270
SS_CT_07 FD LD	0-0.05	12-Sep-17	-	-	-	-	-	-	-	-	720	720	-
SS_CT_08	0-0.05	12-Sep-17	<0.018	<0.060	<0.030	<0.060	<30	<40	1700	1300	4900	4900	1700
SS_CT_09	0-0.05	12-Sep-17	<0.024	<0.080	<0.040	<0.080	<40	80	3500	2800	9100	9100	3580
SS_CT_10	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<20	180	170	290	290	180
SS_CT_11	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	77	460	70	-	70	537
SS_CT_12	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	11	160	64	<100	64	171
SS_CT_13	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	130	73	150	150	130
SS_CT_14	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	10	120	<50	-	<50	130

Table D1-2 Petroleum Hydrocarbons in Soil (mg/kg) (Commercial)

	Sample								Total I	Petroleum	Hydrocar	bons	
Sample ID	Depth (mbgs)	Sample Date	В	т	E	х	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₅₀ ⁴	C _{>50} ⁵	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁶
							F1 ³	F2	F3	-	-	F4 ⁶	
Provincial Screening Levels 1			•				ı	1				T	
Human Health			2.5	10000	10000	110	-	-	-	-	-	-	4000
Ecological			180	250	300	350	320	260	1700	3300	-	3300	
Federal Screening Levels ²							1	•		-			
Human Health			0.03	0.37	0.082	11	700	1000	3500	-	-	10000	-
Ecological			180	250	300	350	320	260	1700	-	-	3300	-
SS_CT_15	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	13	470	78	660	660	483
SS_CT_16	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	140	89	240	240	140
SS_CT_17	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	20	65	<50	-	<50	85
SS_CT_18	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_18_LD	0-0.05	12-Sep-17	-	-	-	-	-	<10	<50	<50	-	<50	-
SS_CT_19	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	53	53	330	330	53
SS_CT_20 BG	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	55	<50	-	<50	55
SS_CT_20 BG_LD	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	63	<50	-	<50	63
SS_CT_22	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_22_FD	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	59	<50	-	<50	59
SS_CT_23	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_24	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	260	1200	4500	4500	260
SS_CT_25	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	57	<50	-	<50	57
SS_CT_26	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	6500	5500	<50	-	<50	12000
SS_CT_27	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_28	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	150	58	270	270	150
SS_CT_29	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	1200	490	170	750	750	1690
SS_CT_30	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_31	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50

Table D1-2 Petroleum Hydrocarbons in Soil (mg/kg) (Commercial)

							ı		T - 4 - 1 1	D . 1 1	11		
Sample ID	Sample Depth (mbgs)	Sample Date	В	т	E	х	C ₆ -C ₁₀	C ₁₀ -C ₁₆		Petroleum C ₃₄ -C ₅₀ ⁴	C _{>50}	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁶
							F1 ³	F2	F3	-	-	F4 ⁶	
Provincial Screening Levels 1													
Human Health			2.5	10000	10000	110	-	-	-	-	-	-	4000
Ecological			180	250	300	350	320	260	1700	3300	-	3300	-
Federal Screening Levels ²													
Human Health			0.03	0.37	0.082	11	700	1000	3500	-	ı	10000	-
Ecological			180	250	300	350	320	260	1700	-	-	3300	-
SS_CT_32	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	ı	<50	<50
SS_CT_33	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	ı	<50	<50
SS_CT_36	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<20	980	860	4800	4800	980
SS_CT_37	0-0.05	13-Sep-17	<0.012	<0.040	<0.020	<0.040	<20	<30	590	460	480	480	590
SS_CT_38	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	150	100	170	170	150
SS_CT_39	0-0.05	13-Sep-17	<0.012	<0.040	<0.020	<0.040	<20	<40	970	520	2000	2000	970
SS_CT_55	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	70	<50	1	<50	70
SS_CT_56	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_57	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_58	0-0.05	12-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_60	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	610	5600	2400	-	2400	<u>6210</u>
SS_CT_61	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SS_CT_62	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	400	9000	4900	15000	15000	9400
SS_CT_63	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	64	<50	-	<50	64

Tier 1 RBSLs and ESLs for a commercial, non-potable site with coarse-grained soil, and diesel impacts, Soil ESL for Protection of Plants and Soil Invertebrates, Direct Soil Contact (mg/kg dry weight) (Atlantic PIRI, 2015).

CCME Canadian Soil Quality Guidelines for the Protection of Environmentaland Human Health and Canada Wide Standard (CWS) for Petroleum Hydrocarbons (PHC) in Soil (commercial, coarse-grained surface soil, (cancer risk: 10-5 (benzene), (Management Limit and Eco Soil Contact (CWS))

^{3.} Does not include BTEX compounds

Table D1-2 Petroleum Hydrocarbons in Soil (mg/kg) (Commercial)

	Sample								Total	Petroleum	Hydrocar	bons	
Sample ID	Depth (mbgs)	Sample Date	В	т	E	x	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₅₀ ⁴	C _{>50} ⁵	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁶
							F1 ³	F2	F3	-	-	F4 ⁶	
Provincial Screening Levels ¹													
Human Health	•					110	-	-	-	-	1	-	4000
Ecological					300	350	320	260	1700	3300	1	3300	-
Federal Screening Levels ²													
Human Health			0.03	0.37	0.082	11	700	1000	3500	-	1	10000	-
Ecological			180	250	300	350	320	260	1700	-	-	3300	-

Where the chromatogram returns to baseline following the $C_{>34}$ - C_{50} analysis, additional hydrocarbons in the $C_{>50}$ range are not expected, and the preliminary F4 ($C_{>34}$ - C_{50}) analysis is deemed an appropriate approximation of CCME F4 ($C_{>34}$) hydrocarbons.

6. CCME hydrocarbon range F4 presented here is the greater value of C₃₄-C₅₀ and C_{>50} (where analyzed. See notes 4 and 5).

Modified TPH calculated from the sum of the detected parameters of the CWS F1-F3 fractions. Though generally consistent with the Atlantic RBCA Guidelines for Laboratories (V3.1, 2016), the

7. Atlantic RBCA modified TPH represents C_{>6}-C₃₂, while the CWS represents C>₆-C₃₄. Thus the calculated mTPH concentration presented here is a slight over estimate of mTPH in the Atlantic RBCA context.

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are Bolded.

Exceedances of Provincial Human Health Screening Levels are underlined.

Exceedances of the Provincial Ecological Screening Levels are italicized.

NA = not applicable

^{5.} Where the chromatogram did not return to baseline following the C>24-C50 analysis, additional anlysis (F4 Gravimetric method) was conducted to quantify hydrocarbons in the C>50 range.

[&]quot;-" = Not available/ Not analyzed.

Table D2-1 PAH Concentrations in Soil (mg/kg) (Residential)

						Concentration (mg/k	g)		
Parameter	Human He	alth	CCME Ecological			Sample Identification	1		
T drameter	NSE TIER 1 EQS (Residential)	B(a)P PEF	Guideline	SS_CT_20 BG	SS_CT_41	SS_CT_42	SS_CT_43	SS_CT_44	SS_CT_44_LD
Non-Carcinogenic PAHs	3	•			•	•	•	•	
Acenaphthene	3900	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	4.5	-	320	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	24000	-	2.5	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Fluoranthene	3500	-	50	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Fluorene	2700	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	2.2	-	0.013	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Perylene	-	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	-	-	0.046	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Pyrene	2100	-	10	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
1-Methylnaphthalene	72	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
2-Methylnaphthalene	72	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Carcinogenic PAHs									
Benzo[a]anthracene	-	0.1	1	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
Benzo[a]pyrene	-	1	20	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Benzo[b]fluoranthene	-	0.1	1 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(b/j)fluoranthene	-	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	-
Benzo[ghi]perylene	-	0.01	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[j]fluoranthene	-	0.1	-	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Benzo[k]fluoranthene	-	0.1	1 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Chrysene	-	0.01	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Dibenz[a,h]anthracene	-	1	1 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
B(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹
		Sa	mple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

If the concentration was less than the detection limit, then 1/2 the detection limit was used in B(a)P TPE calculations.

" -" = no guideline available, not analysed

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

Table D2-1 PAH Concentrations in Soil (mg/kg) (Residential)

Parameter				Concentration (mg/kg)					
	Human Health		CCME Ecological	Sample Identification					
	NSE TIER 1 EQS (Residential)	B(a)P PEF	Guideline	SS_CT_45	SS_CT_45_FD	SS_CT_46	SS_CT_47	SS_CT_48	
Non-Carcinogenic PAHs	· }	•			•				
Acenaphthene	3900	-	0.28	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
Acenaphthylene	4.5	-	320	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.025	
Anthracene	24000	-	2.5	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	
Fluoranthene	3500	-	50	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	
Fluorene	2700	-	0.25	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	
Naphthalene	2.2	-	0.013	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Perylene	-	-		<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	
Phenanthrene	-	-	0.046	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.013	
Pyrene	2100	-	10	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
1-Methylnaphthalene	72	-	-	<0.0050	< 0.0050	<0.0050	<0.0050	<0.018	
2-Methylnaphthalene	72	-	-	<0.0050	< 0.0050	<0.0050	<0.0050	<0.018	
Carcinogenic PAHs									
Benzo[a]anthracene	-	0.1	1	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	
Benzo[a]pyrene	-	1	20	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
Benzo[b]fluoranthene	-	0.1	1 ²	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
Benzo(b/j)fluoranthene	-	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	
Benzo[ghi]perylene	-	0.01	-	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
Benzo[j]fluoranthene	-	0.1	-	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	
Benzo[k]fluoranthene	-	0.1	1 ²	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	
Chrysene	-	0.01	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Dibenz[a,h]anthracene	-	1	1 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
Indeno[1,2,3-cd]pyrene	-	0.1	1	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
B(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	
•	mple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0.12-0.20			
			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

If the concentration was less than the detection limit, then 1/2 the detection limit was used in B(a)P TPE calculations.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

Parameter				Concentration (mg/kg)					
	Human Health			Sample Identification					
	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_01	SS_CT_02	SS_CT_03	SS_CT_04	SS_CT_05	
Non-Carcinogenic PAHs	i	1				l .	l .		
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	5.2	<0.0050	< 0.0050	
Acenaphthylene	66	-	320	<0.0050	<0.0050	<0.049	<0.0050	< 0.0050	
Anthracene	37000	-	32	0.0053	0.0093	9.3	< 0.0050	< 0.0050	
Fluoranthene	5300	-	180	0.017	0.16	120	0.026	0.009	
Fluorene	4100	-	0.25	< 0.0050	<0.0050	4.9	< 0.0050	<0.0050	
Naphthalene	25	-	0.013	<0.0050	<0.0050	0.16	<0.0050	< 0.0050	
Perylene	-	-	-	<0.0050	0.015	7.5	< 0.0050	< 0.0050	
Phenanthrene	-	-	0.046	0.0058	0.065	63	0.008	< 0.0050	
Pyrene	3200	-	100	0.014	0.12	85	0.021	0.0094	
1-Methylnaphthalene	560	-	-	< 0.0050	<0.0050	0.15	< 0.0050	<0.0050	
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	0.12	<0.0050	< 0.0050	
Carcinogenic PAHs	•	•			•	•	•		
Benzo[a]anthracene	-	0.1	10	<0.0050	0.07	47	0.014	0.0062	
Benzo[a]pyrene	-	1	72	<0.0050	0.06	28	0.013	<0.0050	
Benzo[b]fluoranthene	-	0.1	10 ²	0.0089	0.064	26	0.013	<0.0050	
Benzo(b/j)fluoranthene	-	-	-	<0.010	0.1	41	0.02	<0.010	
Benzo[ghi]perylene	-	0.01	-	0.0079	0.034	12	0.0094	0.021	
Benzo[j]fluoranthene	-	0.1	-	<0.0050	0.036	15	0.0062	< 0.0050	
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	0.036	15	0.0072	< 0.0050	
Chrysene	-	0.01	-	0.011	0.067	43	0.016	0.0057	
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	0.0093	3.8	<0.0050	< 0.0050	
Indeno[1,2,3-cd]pyrene	-	0.1	10	0.0059	0.032	12	0.0085	0.01	
B(a)P TPE	-	-	5.3	0.02 ¹	0.28 ¹	131.55 ¹	0.06 ¹	0.02 ¹	
		Sa	imple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

If the concentration was less than the detection limit, then 1/2 the detection limit was used in B(a)P TPE calculations.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

					(Concentration (mg/k	g)	
	Human He	alth				Sample Identification	n	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_05_FD	SS_CT_06	SS_CT_07	SS_CT_07 FD	SS_CT_08
Non-Carcinogenic PAHs	i	1		Į.				
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Anthracene	37000	-	32	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	5300	-	180	0.0055	0.0058	<0.0050	<0.0050	< 0.0050
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	25	-	0.013	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Perylene	-	-	-	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Phenanthrene	-	-	0.046	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Pyrene	3200	-	100	<0.0050	0.0058	<0.0050	<0.0050	<0.0050
1-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Carcinogenic PAHs	-	•						
Benzo[a]anthracene	-	0.1	10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[a]pyrene	-	1	72	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo[ghi]perylene	-	0.01	-	0.013	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo[j]fluoranthene	-	0.1	-	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Chrysene	-	0.01	-	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	0.007	<0.0050	<0.0050	< 0.0050	<0.0050
B(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	0.02 1
	<u> </u>	Sa	ample Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

					•	Concentration (mg/kg	1)	
	Human He	alth				Sample Identification	1	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_09	SS_CT_10	SS_CT_10_LD	SS_CT_11	SS_CT_12
Non-Carcinogenic PAHs	i	I						
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Anthracene	37000	-	32	0.12	<0.0050	< 0.0050	<0.0050	< 0.0050
Fluoranthene	5300	-	180	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Naphthalene	25	-	0.013	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
Perylene	-	-	-	<0.0050	<0.0050	< 0.0050	0.013	< 0.0050
Phenanthrene	-	-	0.046	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Pyrene	3200	-	100	<0.0050	<0.0050	<0.0050	0.0069	< 0.0050
1-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Carcinogenic PAHs	•	•						
Benzo[a]anthracene	-	0.1	10	<0.0050	<0.0050	< 0.0050	0.0081	< 0.0050
Benzo[a]pyrene	-	1	72	<0.0050	<0.0050	< 0.0050	0.082	< 0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	< 0.0050	0.018	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	<0.010	<0.010	-	0.018	<0.010
Benzo[ghi]perylene	-	0.01	-	<0.0050	<0.0050	<0.0050	0.27	< 0.0050
Benzo[j]fluoranthene	-	0.1	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Chrysene	-	0.01	-	<0.0050	<0.0050	<0.0050	0.016	< 0.0050
Dibenz[a,h]anthracene	-	1	10 ²	< 0.0050	<0.0050	<0.0050	0.016	< 0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	<0.0050	<0.0050	<0.0050	0.031	< 0.0050
B(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.02 ¹	0.32 ¹	0.02 ¹
•		Sa	imple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

					C	Concentration (mg/k	g)	
	Human He	alth			,	Sample Identificatio	n	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_13	SS_CT_14	SS_CT_16	SS_CT_17	SS_CT_18
Non-Carcinogenic PAHs	 ;							I.
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Anthracene	37000	-	32	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Fluoranthene	5300	-	180	0.023	<0.0050	0.0130	<0.0050	< 0.0050
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Naphthalene	25	-	0.013	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Perylene	-	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Phenanthrene	-	-	0.046	0.008	<0.0050	<0.0050	<0.0050	< 0.0050
Pyrene	3200	-	100	0.019	<0.0050	0.013	<0.0050	< 0.0050
1-Methylnaphthalene	560	-	-	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Carcinogenic PAHs	•	•					•	•
Benzo[a]anthracene	-	0.1	10	0.012	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[a]pyrene	-	1	72	0.011	<0.0050	<0.0050	<0.0050	< 0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	0.012	<0.0050	0.02	<0.0050	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	0.018	<0.010	0.03	<0.010	<0.010
Benzo[ghi]perylene	-	0.01	-	<0.0050	<0.0050	0.013	<0.0050	< 0.0050
Benzo[j]fluoranthene	-	0.1	-	0.0062	<0.0050	0.01	<0.0050	< 0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	0.0062	<0.0050	0.0083	<0.0050	< 0.0050
Chrysene	-	0.01	-	0.013	<0.0050	0.015	<0.0050	< 0.0050
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	<0.0050	< 0.0050	0.011	<0.0050	< 0.0050
(a)P TPE	-	-	5.3	0.05 ¹	0.02 ¹	0.03 ¹	0.02 ¹	0.02 ¹
		Sa	mple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

						Concentration (mg/kg	3)	
	Human He	alth				Sample Identification	1	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_19	SS_CT_20 BG	SS_CT_22	SS_CT_22_FD	SS_CT_23
Non-Carcinogenic PAHs	i	I						
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	37000	-	32	0.037	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	5300	-	180	0.4	<0.0050	0.056	0.023	<0.0050
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	25	-	0.013	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Perylene	-	-	-	0.047	<0.0050	< 0.0050	<0.0050	< 0.0050
Phenanthrene	-	-	0.046	0.18	<0.0050	0.008	0.012	< 0.0050
Pyrene	3200	-	100	0.29	<0.0050	0.044	0.017	< 0.0050
1-Methylnaphthalene	560	-	-	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050
Carcinogenic PAHs	•						•	
Benzo[a]anthracene	-	0.1	10	0.18	<0.0050	0.011	<0.0050	< 0.0050
Benzo[a]pyrene	-	1	72	0.16	<0.0050	0.014	<0.0050	< 0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	0.17	<0.0050	0.029	0.01	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	0.26	<0.010	0.046	0.01	< 0.010
Benzo[ghi]perylene	-	0.01	-	0.1	<0.0050	0.014	0.0066	< 0.0050
Benzo[j]fluoranthene	-	0.1	-	0.085	<0.0050	0.016	<0.0050	< 0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	0.093	<0.0050	0.016	<0.0050	< 0.0050
Chrysene	-	0.01	-	0.2	<0.0050	0.029	0.011	<0.0050
Dibenz[a,h]anthracene	-	1	10 ²	0.027	<0.0050	<0.0050	<0.0050	< 0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	0.09	<0.0050	0.012	<0.0050	< 0.0050
B(a)P TPE	-	-	5.3	0.76 ¹	0.02 ¹	0.08 ¹	0.02 ¹	0.02 1
	Sample Depth (mbgs)				0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

						Concentration (mg/kg)	
	Human He	alth				Sample Identification	1	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_24	SS_CT_25	SS_CT_30	SS_CT_31	SS_CT_32
Non-Carcinogenic PAHs								
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Anthracene	37000	-	32	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Fluoranthene	5300	-	180	0.012	0.017	< 0.0050	<0.0050	0.0064
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Naphthalene	25	-	0.013	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Perylene	-	-	-	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Phenanthrene	-	-	0.046	0.0085	0.012	< 0.0050	<0.0050	< 0.0050
Pyrene	3200	-	100	0.0096	0.011	< 0.0050	<0.0050	< 0.0050
1-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Carcinogenic PAHs	•	•			•	•	•	•
Benzo[a]anthracene	-	0.1	10	0.006	0.0079	<0.0050	<0.0050	< 0.0050
Benzo[a]pyrene	-	1	72	0.0082	0.0071	<0.0050	<0.0050	< 0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	0.014	0.0073	<0.0050	<0.0050	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	0.014	<0.010	<0.010	<0.010	<0.010
Benzo[ghi]perylene	-	0.01	-	0.018	<0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo[j]fluoranthene	-	0.1	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Chrysene	-	0.01	-	0.02	0.01	<0.0050	<0.0050	< 0.0050
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
B(a)P TPE	-	-	5.3	0.04 ¹	0.04 ¹	0.02 ¹	0.02 ¹	0.02 1
•	Sample Depth (mbgs)				0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

						Concentration (mg/kg)	
	Human He	alth				Sample Identification		
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_33	SS_CT_36	SS_CT_37	SS_CT_38	SS_CT_39
Non-Carcinogenic PAHs	 ;				L	<u> </u>		l
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	37000	-	32	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Fluoranthene	5300	-	180	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	25	-	0.013	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Perylene	-	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Phenanthrene	-	-	0.046	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Pyrene	3200	-	100	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
1-Methylnaphthalene	560	-	-	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Carcinogenic PAHs					•	•	•	•
Benzo[a]anthracene	-	0.1	10	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Benzo[a]pyrene	-	1	72	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo[ghi]perylene	-	0.01	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[j]fluoranthene	-	0.1	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Chrysene	-	0.01	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Dibenz[a,h]anthracene	-	1	10 ²	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹
	Sample Depth (mbgs)				0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

						Concentration (mg/kg)	
	Human He	alth				Sample Identification	1	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_50	SS_CT_51	SS_CT_52	SS_CT_53	SS_CT_55
Non-Carcinogenic PAHs	<u> </u>	ı			I			
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Anthracene	37000	-	32	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Fluoranthene	5300	-	180	0.014	<0.0050	<0.0050	<0.0050	0.0069
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Naphthalene	25	-	0.013	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Perylene	-	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	-	-	0.046	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Pyrene	3200	-	100	0.012	<0.0050	< 0.0050	<0.0050	0.0088
1-Methylnaphthalene	560	-	-	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Carcinogenic PAHs		•			•	•	•	•
Benzo[a]anthracene	-	0.1	10	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050
Benzo[a]pyrene	-	1	72	<0.0050	<0.0050	<0.0050	<0.0050	0.013
Benzo[b]fluoranthene	-	0.1	10 ²	0.014	<0.0050	< 0.0050	0.0088	0.013
Benzo(b/j)fluoranthene	-	-	-	0.014	<0.010	<0.010	<0.010	0.019
Benzo[ghi]perylene	-	0.01	-	<0.0050	<0.0050	<0.0050	<0.0050	0.039
Benzo[j]fluoranthene	-	0.1	-	<0.0050	<0.0050	<0.0050	<0.0050	0.0056
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Chrysene	-	0.01	-	0.022	<0.0050	<0.0050	<0.0050	0.012
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	<0.0050	<0.0050	<0.0050	<0.0050	0.0089
(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.02 ¹	0.02 ¹	0.06 ¹
		Sa	imple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	12-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

						Concentration (mg/kg	1)	
	Human He	alth				Sample Identification	1	
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_56	SS_CT_57	SS_CT_58	SS_CT_60	SS_CT_61
Non-Carcinogenic PAHs	i	ı			I			
Acenaphthene	8000	-	0.28	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthylene	66	-	320	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Anthracene	37000	-	32	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Fluoranthene	5300	-	180	<0.0050	<0.0050	0.032	<0.0050	< 0.0050
Fluorene	4100	-	0.25	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	25	-	0.013	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Perylene	-	-	-	<0.0050	<0.0050	0.0068	<0.0050	<0.0050
Phenanthrene	-	-	0.046	<0.0050	<0.0050	0.01	<0.0050	< 0.0050
Pyrene	3200	-	100	<0.0050	<0.0050	0.032	0.028	< 0.0050
1-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Carcinogenic PAHs	•	•					•	•
Benzo[a]anthracene	-	0.1	10	<0.0050	<0.0050	0.011	<0.0050	<0.0050
Benzo[a]pyrene	-	1	72	<0.0050	<0.0050	0.032	<0.0050	<0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	0.044	0.014	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	<0.010	<0.010	0.062	0.014	<0.010
Benzo[ghi]perylene	-	0.01	-	<0.0050	0.0071	0.088	<0.0050	<0.0050
Benzo[j]fluoranthene	-	0.1	-	<0.0050	<0.0050	0.018	<0.0050	<0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050	0.017	<0.0050	<0.0050
Chrysene	-	0.01	-	<0.0050	<0.0050	0.038	0.09	<0.0050
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	<0.0050	0.0071	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	<0.0050	<0.0050	0.025	<0.0050	<0.0050
(a)P TPE	-	-	5.3	0.02 ¹	0.02 ¹	0.16 ¹	0.02 ¹	0.02 ¹
		Sa	mple Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	13-Sep-17	13-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D2-2 PAH Concentrations in Soil (mg/kg) (Commercial)

				Concentrat	on (mg/kg)
	Human He	alth		Sample Ide	entification
Parameter	NSE TIER 1 EQS (Commercial)	B(a)P PEF	CCME Ecological Guideline	SS_CT_62	SS_CT_63
Non-Carcinogenic PAHs	i				
Acenaphthene	8000	-	0.28	<0.0050	< 0.0050
Acenaphthylene	66	-	320	<0.0050	< 0.0050
Anthracene	37000	-	32	<0.0050	< 0.0050
Fluoranthene	5300	-	180	0.022	< 0.0050
Fluorene	4100	-	0.25	<0.0050	< 0.0050
Naphthalene	25	-	0.013	<0.0050	< 0.0050
Perylene	-	-	-	<0.0050	<0.0050
Phenanthrene	-	-	0.046	<0.0050	< 0.0050
Pyrene	3200	-	100	0.042	< 0.0050
1-Methylnaphthalene	560	-	-	<0.0050	< 0.0050
2-Methylnaphthalene	560	-	-	<0.0050	< 0.0050
Carcinogenic PAHs	•	•			
Benzo[a]anthracene	-	0.1	10	<0.0050	< 0.0050
Benzo[a]pyrene	-	1	72	<0.0050	< 0.0050
Benzo[b]fluoranthene	-	0.1	10 ²	0.03	< 0.0050
Benzo(b/j)fluoranthene	-	-	-	0.039	<0.010
Benzo[ghi]perylene	-	0.01	-	<0.0050	< 0.0050
Benzo[j]fluoranthene	-	0.1	-	0.0085	< 0.0050
Benzo[k]fluoranthene	-	0.1	10 ²	<0.0050	<0.0050
Chrysene	-	0.01	-	0.22	<0.0050
Dibenz[a,h]anthracene	-	1	10 ²	<0.0050	< 0.0050
Indeno[1,2,3-cd]pyrene	-	0.1	10	<0.0050	< 0.0050
(a)P TPE	-	-	5.3	0.04 ¹	0.02 ¹
<u> </u>		Sa	mple Depth (mbgs)	0-0.05	0-0.05
			Sample Date	13-Sep-17	13-Sep-17

NSE TIER 1 EQS = Nova Scotia Environment Tier 1 Environmental Quality Standards (2013)

B(a)P PEF = Benzo(a)pyrene potency equivalency factor

Exceedances of the Federal Human Health Screening Levels or Detection Limits greater than the Federal Human Health Screening Levels are shaded red.

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

¹ Uncertainty factor of 3 was used as the PAH source is expected to be creosote.

² Guideline is for the sum of Benzo [b+j+k]fluoranthene

[&]quot; -" = no guideline available, not analysed

Table D3-1 Metals in Soil (mg/kg) (Residential)

		CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_20 BG	SS_CT_41	SS_CT_42	SS_CT_43	SS_CT_44
Aluminum	-	-	-	14000	25000	19000	12000	14000
Antimony	-	-	20	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	17	-	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	6800	500	-	67	230	210	130	110
Beryllium	75	4	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	=	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	=	=	<50	<50	<50	<50	<50
Cadmium	14	10	-	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Chromium	220	64	-	68	79	370	61	200
Cobalt	-	-	50	16	13	17	7.9	10
Copper	1100	63	-	17	18	25	32	19
Iron	-	-	-	28000	50000	30000	26000	25000
Lead	140	300	-	2.7	8.9	5.7	9.3	8.3
Lithium	-	-	-	15	45	27	22	20
Manganese	-	-	-	270	900	470	430	370
Mercury	6.6	12	-	<0.10	<0.10	<0.10	<0.10	<0.10
Molybdenum	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	200	45	-	32	19	90	19	43
Rubidium	-	-	-	25	190	83	84	69
Selenium	80	1	-	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	-	40	-	< 0.50	< 0.50	<0.50	<0.50	< 0.50
Strontium	-	-	=	13	12	11	8.3	7.5
Thallium	1	1.4	-	0.21	1.3	0.63	0.66	0.53
Tin	-	-	50	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	23	500	-	0.53	1.9	1.3	1.5	0.66
Vanadium	-	130	-	43	44	40	23	25
Zinc	-	200	-	42	160	73	81	68
		-	depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
4. Consider Council of Minister			Sample Date	12-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (residential site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

	(J J) (CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_01	SS_CT_03	SS_CT_05	SS_CT_05_FD	SS_CT_06
Aluminum	-	-	-	9500	6600	9600	9500	11000
Antimony	-	-	40	<2.0	4.7	<2.0	<2.0	<2.0
Arsenic	12	26	-	2.1	24	2.2	<2.0	<2.0
Barium	10000	2000	-	100	75	110	110	120
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	=	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	<50
Cadmium	49	22	-	1.3	5.3	0.52	< 0.30	< 0.30
Chromium	630	87	-	34	170	33	23	38
Cobalt	-	-	300	11	35	9.4	7.7	7.5
Copper	4000	91	-	27	210	26	24	22
Iron	-	-	-	33000	270000	27000	27000	28000
Lead	260	600	-	77	3200	52	48	7.5
Lithium	-	-	=	17	14	17	18	19
Manganese	-	-	=	410	1500	380	370	410
Mercury	24	50	=	<0.10	0.29	<0.10	<0.10	<0.10
Molybdenum	-	-	-	<2.0	18	2.3	<2.0	<2.0
Nickel	310	89	-	24	150	22	11	14
Rubidium	-	-	-	52	16	61	64	75
Selenium	125	2.9	-	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	-	40	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Strontium	-	-	-	10	78	14	9.6	7.5
Thallium	1	3.6	-	0.41	0.17	0.44	0.46	0.59
Tin	-	-	300	<2.0	39	<2.0	<2.0	<2.0
Uranium	33	2000	-	0.31	0.61	0.28	0.25	0.45
Vanadium	-	130	-	19	24	19	18	20
Zinc	-	200	=	1100	1900	200	180	93
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

	3 3, (CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_06_LD	SS_CT_07	SS_CT_07 FD	SS_CT_08	SS_CT_09
Aluminum	-	-	-	11000	3900	4200	4300	6800
Antimony	-	-	40	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	26	-	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	10000	2000	-	120	13	13	45	52
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	<50
Cadmium	49	22	-	< 0.30	< 0.30	< 0.30	< 0.30	0.31
Chromium	630	87	-	40	11	13	4.4	4.5
Cobalt	-	-	300	7.4	1.6	2.0	<1.0	1.1
Copper	4000	91	-	21	3.2	3.5	12	11
Iron	-	-	=	29000	12000	15000	8700	2300
Lead	260	600	=	11	3.9	3.9	5.2	3.9
Lithium	-	-	=	20	<2.0	<2.0	<2.0	<2.0
Manganese	-	-	=	440	68	91	8.3	12
Mercury	24	50	=	<0.10	0.12	<0.10	0.18	0.11
Molybdenum	-	-	-	2.6	2.9	3.5	<2.0	<2.0
Nickel	310	89	-	15	2.4	3.00	2.4	3.1
Rubidium	-	-	-	80	18	21	2.8	<2.0
Selenium	125	2.9	-	<1.0	<1.0	<1.0	2.1	1.2
Silver	-	40	-	< 0.50	< 0.50	<0.50	<0.50	< 0.50
Strontium	-	-	-	8.0	7.9	7.00	24	32
Thallium	1	3.6	-	0.6	0.12	0.13	<0.10	<0.10
Tin	-	-	300	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	33	2000	-	0.47	0.52	0.49	1.8	1.3
Vanadium	-	130	-	21	25	33	2.7	3.1
Zinc	-	200	=	100	15	15	10	37
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

		CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_10	SS_CT_16	SS_CT_17	SS_CT_18	SS_CT_19
Aluminum	-	-	-	4500	10000	9100	4700	12000
Antimony	-	-	40	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	26	-	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	10000	2000	-	15	95	99	33	120
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	<50
Cadmium	49	22	-	< 0.30	0.34	1.0	< 0.30	2.1
Chromium	630	87	-	6.8	38	18	14	72
Cobalt	-	-	300	1.3	7.7	6.2	3.6	13
Copper	4000	91	-	3.5	20	20	16	40
Iron	-	-	-	12000	27000	26000	9900	38000
Lead	260	600	-	3.3	26	14	2.3	52
Lithium	-	-	-	<2.0	16	17	4.4	16
Manganese	-	-	=	79	380	360	130	460
Mercury	24	50	-	0.11	<0.10	<0.10	<0.10	<0.10
Molybdenum	-	-	-	2.8	<2.0	<2.0	<2.0	2.4
Nickel	310	89	-	<2.0	18	8.3	7.5	61
Rubidium	-	-	-	30	62	63	8.4	57
Selenium	125	2.9	-	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	-	40	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Strontium	-	-	-	6.4	9.6	7.9	8.9	16
Thallium	1	3.6	=	0.19	0.49	0.46	<0.10	0.44
Tin		-	300	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	33	2000	-	0.72	0.55	0.24	0.65	0.62
Vanadium	-	130	-	19	20	17	17	25
Zinc	-	200	=	17	94	92	18	120
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

		CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_20 BG	SS_CT_22	SS_CT_22_FD	SS_CT_23	SS_CT_24
Aluminum	-	-	-	14000	11000	11000	12000	11000
Antimony	-	-	40	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	26	-	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	10000	2000	-	67	98	93	120	83
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	88
Cadmium	49	22	-	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Chromium	630	87	-	68	28	31	41	28
Cobalt	-	-	300	16	7.1	7.2	8.1	6.8
Copper	4000	91	-	17	18	19	21	23
Iron	-	-	=	28000	26000	27000	30000	30000
Lead	260	600	=	2.7	8.3	7.9	7.0	15
Lithium	-	-	=	15	13	14	20	14
Manganese	-	-	-	270	440	460	470	570
Mercury	24	50	-	<0.10	<0.10	<0.10	<0.10	<0.10
Molybdenum	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	310	89	-	32	12	12	15	13
Rubidium	-	-	-	25	49	50	78	47
Selenium	125	2.9	-	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	-	40	-	< 0.50	< 0.50	<0.50	<0.50	<0.50
Strontium	-	_	=	13	11	11	9.7	9.4
Thallium	1	3.6	-	0.21	0.35	0.38	0.59	0.36
Tin	-	-	300	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	33	2000	-	0.53	0.39	0.38	0.48	0.50
Vanadium	-	130	-	43	23	22	20	15
Zinc	-	200	-	42	76	77	92	190
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
	·	·	Sample Date	12-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

	(3 3) (CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_25	SS_CT_26	SS_CT_27	SS_CT_28	SS_CT_29
Aluminum	-	-	-	13000	12000	7400	7900	17000
Antimony	-	-	40	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	26	-	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	10000	2000	-	110	120	35	35	90
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	<50
Cadmium	49	22	-	< 0.30	< 0.30	<0.30	< 0.30	< 0.30
Chromium	630	87	-	23	11	310	190	52
Cobalt	-	-	300	10	11	120	76	14
Copper	4000	91	-	28	60	87	130	24
Iron	-	-	-	24000	23000	75000	49000	27000
Lead	260	600	-	7.3	2.3	1.1	13	2.8
Lithium	-	-	-	13	11	3.3	4.3	25
Manganese	-	-	-	280	190	1100	700	360
Mercury	24	50	-	<0.10	<0.10	<0.10	<0.10	<0.10
Molybdenum	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	310	89	-	8.2	8.8	450	280	19
Rubidium	-	-	-	35	13	<2.0	7.7	19
Selenium	125	2.9	-	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	-	40	-	<0.50	< 0.50	<0.50	< 0.50	< 0.50
Strontium	-	-	-	32	8.8	19	21	14
Thallium	1	3.6	-	0.25	0.12	<0.10	0.10	0.13
Tin	-	-	300	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	33	2000	-	0.35	0.21	<0.10	0.16	0.33
Vanadium	-	130	-	44	50	12	17	46
Zinc	-	200	-	50	27	65	60	59
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

	CCME ¹							
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_30	SS_CT_31	SS_CT_32	SS_CT_33	SS_CT_36
Aluminum	-	-	-	10000	12000	11000	12000	2000
Antimony	-	-	40	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	26	-	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	10000	2000	-	110	130	110	130	17
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	<50
Cadmium	49	22	-	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Chromium	630	87	-	32	37	28	35	33
Cobalt	-	-	300	7.7	7.4	6.7	8.7	1.7
Copper	4000	91	-	36	22	19	23	3.3
Iron	-	-	-	27000	30000	27000	32000	5300
Lead	260	600	-	3.4	9.8	8.8	6.0	1.9
Lithium	-	-	-	19	20	19	21	<2.0
Manganese	-	-	-	380	450	410	450	22
Mercury	24	50	-	<0.10	<0.10	<0.10	<0.10	0.12
Molybdenum	-	-	-	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	310	89	-	11	11	10	14	3.7
Rubidium	-	-	-	66	80	78	85	<2.0
Selenium	125	2.9	-	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	-	40	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Strontium	-	-	-	9.4	8.7	8.2	8.3	13
Thallium	1	3.6	-	0.5	0.61	0.56	0.64	<0.10
Tin	-	-	300	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	33	2000	-	0.24	0.59	0.48	0.40	0.86
Vanadium	-	130	-	17	20	19	21	8.2
Zinc	-	200	-	83	96	87	97	<5.0
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
4. Canadian Caunail of Minister			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

	(3 3) (CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_37	SS_CT_38	SS_CT_39	SS_CT_60	SS_CT_61
Aluminum	-	-	-	4300	6100	11000	8000	9200
Antimony	-	-	40	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	12	26	-	<2.0	<2.0	2.4	<2.0	<2.0
Barium	10000	2000	-	49	61	190	18	23
Beryllium	110	8	-	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	=	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	-	<50	<50	<50	<50	<50
Cadmium	49	22	-	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Chromium	630	87	-	23	90	20	200	430
Cobalt	-	-	300	6.2	6.4	3.1	97	120
Copper	4000	91	-	15	3.8	74	130	170
Iron	-	-	-	28000	9000	12000	65000	79000
Lead	260	600	=	22	1.1	3.6	1.4	1.9
Lithium	-	-	=	<2.0	3.0	8.1	2.4	3.1
Manganese	-	-	=	130	95	150	870	1100
Mercury	24	50	=	0.21	<0.10	0.28	<0.10	<0.10
Molybdenum	-	-	-	3.8	<2.0	8.6	<2.0	<2.0
Nickel	310	89	-	12	5.3	6.7	460	560
Rubidium	-	-	-	7.6	17	63	<2.0	<2.0
Selenium	125	2.9	-	1.6	<1.0	2.8	<1.0	<1.0
Silver	-	40	-	< 0.50	< 0.50	0.70	< 0.50	< 0.50
Strontium	-	-	-	30	7.2	28	26	25
Thallium	1	3.6	-	0.14	0.11	0.47	<0.10	<0.10
Tin	-	-	300	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	33	2000	-	1.9	<0.10	7.3	<0.10	<0.10
Vanadium	-	130	-	28	36	9.8	12	11
Zinc	-	200	=	13	17	38	58	66
			depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
			Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D3-2 Metals in Soil (mg/kg) (Commercial)

		CCME ¹						
Parameter	Human Health	Ecological Health	Generic ²	SS_CT_62				
Aluminum	-	-	-	15000				
Antimony	-	-	40	<2.0				
Arsenic	12	26	-	<2.0				
Barium	10000	2000	-	160				
Beryllium	110	8	-	<2.0				
Bismuth	-	-	-	<2.0				
Boron	-	-	-	<50				
Cadmium	49	22	-	< 0.30				
Chromium	630	87	-	310				
Cobalt	-	-	300	19				
Copper	4000	91	-	14				
Iron	-	-	-	18000				
Lead	260	600	-	1.8				
Lithium	-	-	-	11				
Manganese	-	-	-	230				
Mercury	24	50	-	<0.10				
Molybdenum	-	-	-	<2.0				
Nickel	310	89	-	24				
Rubidium	-	-	-	19				
Selenium	125	2.9	-	<1.0				
Silver	-	40	-	< 0.50				
Strontium	-	-	-	14				
Thallium	1	3.6	-	0.14				
Tin	-	-	300	<2.0				
Uranium	33	2000	-	<0.10				
Vanadium	-	130	-	39				
Zinc	-	200	-	32				
	•	•	depth (m)	0-0.05				
			Sample Date	13-Sep-17				

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

Exceedances of the Federal Ecological Screening Levels or Detection Limits greater than the Federal Ecological Screening Levels are **Bolded**.

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based

Table D4-1 PCBs in Soil (mg/kg) (Residential)

CCME ¹								
Parameter	Human Health	Ecological Health	SS_CT_20 BG	SS_CT_20 BG	SS_CT_41	SS_CT_42	SS_CT_43	SS_CT_44
Aroclor 1016	-	-	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1221	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050
Aroclor 1232	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050
Aroclor 1248	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050
Aroclor 1242	-	-	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Aroclor 1254	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050
Aroclor 1260	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Calculated Total PCB	5	1.3	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
		Sample Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
	·	Sample Date	12-Sep-17	12-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (residential site)

⁼ no guideline, or parameter not analyzed

Table D4-2 PCBs in Soil (mg/kg) (Commercial)

	CME 1							
Parameter	Human Health	Ecological Health	SS_CT_07	SS_CT_07_LD	SS_CT_07 FD	SS_CT_08	SS_CT_09	SS_CT_10
Aroclor 1016	-	-	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050
Aroclor 1221	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Aroclor 1232	-	-	< 0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050
Aroclor 1248	-	-	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Aroclor 1242	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Aroclor 1254	-	-	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Aroclor 1260	-	-	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050
Calculated Total PCB	50	33	<0.050	-	< 0.050	< 0.050	<0.050	<0.050
		Sample Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
		Sample Date	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

⁼ no guideline, or parameter not analyzed

Table D4-2 PCBs in Soil (mg/kg) (Commercial)

	CME 1							
Parameter	Human Health	Ecological Health	SS_CT_20 BG	SS_CT_30	SS_CT_33	SS_CT_36	SS_CT_37	SS_CT_38
Aroclor 1016	-	-	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1221	-	-	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1232	-	-	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1248	-	-	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1242	-	-	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1254	-	-	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Aroclor 1260	-	-	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
Calculated Total PCB	50	33	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050
		Sample Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
		Sample Date	12-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

⁼ no guideline, or parameter not analyzed

Table D4-2 PCBs in Soil (mg/kg) (Commercial)

	CC	ME ¹				
Parameter	Human Health	Ecological Health	SS_CT_39	SS_CT_60	SS_CT_61	SS_CT_62
Aroclor 1016	-	-	<0.050	<0.050	<0.050	<0.050
Aroclor 1221	-	-	< 0.050	<0.050	< 0.050	<0.050
Aroclor 1232	-	-	< 0.050	< 0.050	< 0.050	<0.050
Aroclor 1248	-	-	< 0.050	<0.050	< 0.050	<0.050
Aroclor 1242	-	-	< 0.050	<0.050	< 0.050	<0.050
Aroclor 1254	-	-	< 0.050	2.3	< 0.050	6.0
Aroclor 1260	-	-	< 0.050	1.4	< 0.050	3.7
Calculated Total PCB	50	33	< 0.050	3.6	<0.050	9.7
		Sample Depth (mbgs)	0-0.05	0-0.05	0-0.05	0-0.05
		Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

⁼ no guideline, or parameter not analyzed

Table D5-1 Volatile Organic Compounds (Excluding BTEX) Concentrations in Soil (µg/kg) (Residential)

		CCME 1			
Parameter (other names for the same compound)	Human Health	Ecological Health	Generic ²	SS_CT_42	SS_CT_43
1,1,1-Trichloroethane	-	-	5000	<25	<25
1,1,2,2-Tetrachlorethane	-	-	200	<25	<25
1,1,2-Trichloroethane	-	-	5000	<25	<25
1,1-Dichloroethane	-	-	5000	<25	<25
1,1-Dichloroethene (Dichloroethylene)	-	-	5000	<25	<25
1,2-Dichloroethane	-	-	5000	<25	<25
1,2-Dichloropropane	-	-	5000	<25	<25
1,3-Dichlorobenzene	-	-	1000	<25	<25
1,4-Dichlorobenzene	-	-	1000	<25	<25
Bromodichloromethane (Dichlorobromomethane)	-	-	-	<25	<25
Bromoform (Tribromomethane)	-	-	-	<25	<25
Bromomethane (Monobromomethane, Methyl Bromide)	-	-	-	<50	<50
Carbon Tetrachloride (Tetrachloromethane)	-	-	5000	<25	<25
Chlorobenzene (Monochlorobenzene)	-	-	1000	<25	<25
Chloroethane (Monochloroethane, Ethyl Chloride)	-	-	-	<200	<200
cis-1,2-Dichloroethene (1,2-Dichloroethylene)	-	-	5000	<25	<25
Dibromochloromethane	-	-	-	<25	<25
Methyl t-butyl ether (MTBE)	-	-	-	<25	<25
Methylene Chloride (Dichloromethane)	-	-	5000	<50	<50
Styrene	-	-	5000	<25	<25
Tetrachloroethylene (1,1,2,2- Tetrachloroethene, PCE)	200	3800	-	<25	<25
trans-1,2-Dichloroethylene (1,2-Dichloroethylene)	-	-	-	<25	<25
trans-1,3-Dichloropropene	-	-	-	<25	<25
Trichloroethylene (1,1,2-Trichloroethene, TCE)	10	50	-	<10	<10
Trichlorofluoromethane (Freon 11)	-	-	-	<25	<25
Vinyl Chloride	-	-	-	<20	<20
			Sample Date	13-Sep-17	13-Sep-17
1. Canadian Council of Ministers of the Environment Soil Quali			Depth (mbgs)		0-0.05

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (residential site)

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based NC = None calculated

^{- =} no guideline, or parameter not analyzed

Table D5-2 Volatile Organic Compounds (Excluding BTEX) Concentrations in Soil (µg/kg) (Commercial)

		CCME 1				
Parameter (other names for the same compound)	Human Health	Ecological Health	Generic ²	SS_CT_01	SS_CT_03	SS_CT_60
1,1,1-Trichloroethane	-	-	50000	<25	<25	<25
1,1,2,2-Tetrachlorethane	-	-	500	<25	<25	<25
1,1,2-Trichloroethane	-	-	50000	<25	<25	<25
1,1-Dichloroethane	-	-	50000	<25	<25	<25
1,1-Dichloroethene (Dichloroethylene)	-	-	50000	<25	<25	<25
1,2-Dichloroethane	-	-	50000	<25	<25	<25
1,2-Dichloropropane	-	-	50000	<25	<25	<25
1,3-Dichlorobenzene	-	-	10000	<25	<25	<25
1,4-Dichlorobenzene	-	-	10000	<25	<25	<25
Bromodichloromethane (Dichlorobromomethane)	-	-	-	<25	<25	<25
Bromoform (Tribromomethane)	-	-	-	<25	<25	<25
Bromomethane (Monobromomethane, Methyl Bromide)	-	-	-	<50	<50	<50
Carbon Tetrachloride (Tetrachloromethane)	-	-	50000	<25	<25	<25
Chlorobenzene (Monochlorobenzene)	-	-	10000	<25	<25	<25
Chloroethane (Monochloroethane, Ethyl Chloride)	-	-	-	<200	<200	<200
cis-1,2-Dichloroethene (1,2-Dichloroethylene)	-	-	50000	<25	<25	<25
Dibromochloromethane	-	-	-	<25	<25	<25
Methyl t-butyl ether (MTBE)	-	-	-	<25	<25	<25
Methylene Chloride (Dichloromethane)	-	-	50000	<50	<50	<50
Styrene	-	-	50000	<25	<25	<25
Tetrachloroethylene (1,1,2,2- Tetrachloroethene, PCE)	500	34000	-	<25	<25	<25
trans-1,2-Dichloroethylene (1,2-Dichloroethylene)	-	-	-	<25	<25	<25
trans-1,3-Dichloropropene	-	-	-	<25	<25	<25
Trichloroethylene (1,1,2-Trichloroethene, TCE)	10	50	-	<10	<10	<10
Trichlorofluoromethane (Freon 11)	-	-	-	<25	<25	<25
Vinyl Chloride	-	-		<20	<20	<20
		Commis	Sample Date Depth (mbgs)	12-Sep-17 0-0.05	12-Sep-17 0-0.05	13-Sep-17 0-0.05

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (commercial site)

^{2.} Generic CCME guideline: no distinction regarding whether derivation is human health or ecologically based NC = None calculated

^{- =} no guideline, or parameter not analyzed

Table D6 Concentrations of Furans, and Dioxin-like Compounds in Soil (ng/kg)

CCME 1 TEF² **Human Health Ecological Health** Parameter **SS CT 63** 2,3,7,8-Tetra CDD * < 0.107 1,2,3,7,8-Penta CDD * 1 < 0.117 1,2,3,4,7,8-Hexa CDD * 0.1 < 0.113 1,2,3,6,7,8-Hexa CDD * 0.1 0.209 1,2,3,7,8,9-Hexa CDD * 0.1 < 0.116 1,2,3,4,6,7,8-Hepta CDD * 0.01 2.69 Octa CDD * 0.0003 22.3 Total Tetra CDD * < 0.107 Total Penta CDD * < 0.141 Total Hexa CDD * 1.35 Total Hepta CDD * 5.67 2,3,7,8-Tetra CDF ** 0.1 < 0.143 1,2,3,7,8-Penta CDF ** 0.03 < 0.099 2,3,4,7,8-Penta CDF ** 0.3 0.233 1,2,3,4,7,8-Hexa CDF ** 0.1 0.156 1.2.3.6.7.8-Hexa CDF ** 0.1 0.344 2,3,4,6,7,8-Hexa CDF ** 0.1 0.327 1,2,3,7,8,9-Hexa CDF ** 0.1 < 0.100 1,2,3,4,6,7,8-Hepta CDF ** 0.01 1.95 1,2,3,4,7,8,9-Hepta CDF ** 0.01 < 0.097 Octa CDF ** 0.0003 2.46 Total Tetra CDF ** 6.68 Total Penta CDF ** 13.5 Total Hexa CDF ** 5.07 Total Hepta CDF ** 3.29 **Toxic Equivalency Quotient (TEQ)** 1000 4 0.365 Sample Date 13-Sep-17 Depth (m) 0-0.05

^{1.} Canadian Council of Ministers of the Environment Soil Quality Guidelines for the Protection of Environmental and Human Health (residential site)

^{2.} Toxic equivalency factors (Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds per World Health Organization, 2005)

^{*} CDD = Chloro Dibenzo-p-Dioxin

^{**} CDF = Chloro Dibenzo-p-Furan

^{- =} no guideline, or parameter not analyzed

Table D7 Petroleum Hydrocarbons in Sediment (mg/kg)

									Total	Petroleum	Uvdroos	hone	
Sample ID	Sample Depth	Sample Date	В	т	E	X	C ₆ -C ₁₀	C ₁₀ -C ₁₆		C ₃₄ -C ₅₀	C _{>50}	C> ₃₄	Modified TPH (C ₆ -C ₃₂) ⁵
							F1 ³	F2	F3	-	-	F4 ⁴	
Provincial Screening Levels ¹			1.2	1.4	1.2	1.3	ı	-	-	-		-	15
Federal Screening Levels ²			-	-	-	-	-	-	-	-		-	-
SD_CT_01	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50	-	<50	<50
SD_CT_02	0-0.05	13-Sep-17	<0.012	<0.040	<0.020	<0.040	<20	52	910	720	2200	2920	962
SD_CT_02_LD	0-0.05	13-Sep-17	-	-	-	-	-	-	-	-	2600	2600	-
SD_CT_02_FD	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	100	69	<100	69	100
SD_CT_03	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	170	110	440	550	170
SD_CT_04	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<10	<50	<50		<50	<50
SD_CT_05_BG	0-0.05	13-Sep-17	<0.0060	<0.020	<0.010	<0.020	<10	<20	<100	<100	-	<100	<100

- 1. Tier I ESLs for "typical" sediment (Atlantic PIRI, 2015), gasoline fuel type (most conservative)
- 2. CCME does not provide Sediment Quality Guidelines for these parameters
- 3. Does not include BTEX compounds
- 4. Where the chromatogram did not return to baseline following the C_{>34}-C₅₀ analysis, F4G analysis was conducted to quantify hydrocarbons in the Q₅₀ range. The sum of the two analyses, where applicable, is compared to the F4 guideline.
- 5. Modified TPH calculated from the sum of the detected parameters of the CWS F1-F3 fractions. Though generallyconsistent with the Atlantic RBCA Guidelines for Laboratories (V3.1, 2016), the Atlantic RBCA modified TPH represents C_{>6}-C₃₂, while the CWS represents C_{>6}-C₃₄. Thus the calculated mTPH concentration presented here is a slight over estimate of mTPH in the Atlantic RBCA context.

Exceedances of the Atlantic RBCA Ecological Screening Levels are italicized.

NA = not applicable

[&]quot;-" = Not available/ Not analyzed.

Table D8 PAHs in Sediment (mg/kg)

Contaminant of Potential	co	CME			Samı	ole ID		
Concern	ISQG	PEL	SD_CT_01	SD_CT_02	SD_CT_03	SD_CT_04	SD_CT_04_LD	SD_CT_05_BG
1-Methylnaphthalene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
2-Methylnaphthalene	0.0202	0.201	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Acenaphthene	0.00671	0.0889	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050
Acenaphthylene	0.00587	0.128	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	0.0469	0.245	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benz(a)anthracene	0.0317	0.385	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(a)pyrene	0.0319	0.782	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(b)fluoranthene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(q,h,i)perylene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(j)fluoranthene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Benzo(k)fluoranthene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Chrysene/Triphenylene	0.0571	0.862	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Dibenz(a,h)anthracene	0.00622	0.135	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	0.111	2.355	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Fluorene	0.0212	0.144	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Indeno(1,2,3-c,d)pyrene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	0.0346	0.391	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Perylene	-	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	0.0419	0.515	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Pyrene	0.053	0.875	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Notes		Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

CCME = Canadian Council of Ministers of the Environment Sediment Quality Guidelines for the Protection of Aquatic Life - Freshwater (1998).

ISQG = Interim Sediment Quality Guideline

PEL = Probable Effects Level

[&]quot;-" = no guideline available or parameter not analyzed

Table D9 Metals in Sediment (mg/kg)

Parameter	CCME ISQG ¹	CCME PEL ²	SD_CT_01	SD_CT_02	SD_CT_03	SD_CT_04	SD CT 05 BG	SD CT 05 BG LD
T didiliotoi	COME 1000	CONILILL	05_01_01	05_01_02	05_01_00	05_01_04	05_01_00_50	05_01_00_50_25
Aluminum	-	-	7800	4300	6600	5800	10000	9300
Antimony	-	-	<2.0	<2.0	<2.0	<2.0	5.7	5.5
Arsenic	5.9	17	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	-	-	46	31	70	66	52	48
Beryllium	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	-	-	<50	<50	<50	<50	<50	<50
Cadmium	0.6	3.5	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Chromium	37.3	90	15	6.2	32	18	22	19
Cobalt	-	-	3.4	<1.0	7.5	5.1	5.5	4.5
Copper	36	197	9.1	5.0	15	12	25	23
Iron	-	-	12000	1900	18000	13000	28000	25000
Lead	35	91.3	3.7	2.2	3.8	2.4	15	15
Lithium	-	-	7.9	<2.0	9.5	11	15	14
Manganese	-	-	180	12	230	130	200	180
Mercury	0.17	0.486	<0.10	<0.10	<0.10	<0.10	0.11	<0.10
Molybdenum	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	-	-	7.0	2.6	22	9.4	7.3	6.9
Rubidium	-	-	19	<2.0	29	9.6	30	26
Selenium	-	-	<1.0	<1.0	<1.0	<1.0	1.4	1.3
Silver	-	-	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50
Strontium	-	-	10	13	8.6	9.0	13	11
Thallium	-	-	0.15	<0.10	0.23	<0.10	0.24	0.22
Tin	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium	-	-	0.56	3.1	0.46	0.38	1.2	1.2
Vanadium	-	-	24	5.5	20	26	25	23
Zinc	123	315	42	<5.0	45	25	78	71
		depth (m)	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05
		Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} Canadian Council of Ministers of the Environment Interim Sediment Quality Guidelines (ISQGs) for the Protection of Freshwater Aquatic Life

^{2.} Canadian Council of Ministers Probable Effects Level (PELs) for the Protection of Freshwater Aquatic Life

^{- =} no guideline, or parameter not analyzed

Table D10 PCBs in Sediment (mg/kg)

Table DTO TODS III Ocalinei	able 210 1 023 in Counter (mg/kg)										
Parameter	CCME ISQG ¹	CCME PEL ²	SD_CT_02	SD_CT_04							
Aroclor 1016	-	-	<0.050	< 0.050							
Aroclor 1221	-	-	<0.050	<0.050							
Aroclor 1232	-	-	<0.050	<0.050							
Aroclor 1248	-	-	<0.050	<0.050							
Aroclor 1242	-	-	<0.050	< 0.050							
Aroclor 1254	0.06	0.34	<0.050	< 0.050							
Aroclor 1260	-	-	<0.050	< 0.050							
Calculated Total PCB	0.0341	0.277	<0.050	<0.050							
		Sample Depth (mbgs)	0-0.05	0-0.05							
		Sample Date	13-Sep-17	13-Sep-17							

^{1.} Canadian Council of Ministers of the Environment Interim Sediment Quality Guidelines (ISQGs) for the Protection of Freshwater Aquatic Life 2. Canadian Council of Ministers Probable Effects Level (PELs) for the Protection of Freshwater Aquatic Life

NC = None calculated

^{- =} no guideline, or parameter not analyzed Exceedances of the ISQG are **Bolded**.

Table D11 Volatile Organic Compounds (Excluding BTEX) Concentrations in Sediment (µg/kg)

1,1,1-Trichloroethane 1,1,2,2-Tetrachlorethane 1,1,2-Trichloroethane		-	<25	<25
	-	-		1
1,1,2-Trichloroethane	-		<25	<25
		-	<25	<25
1,1-Dichloroethane	-	-	<25	<25
1,1-Dichloroethene (Dichloroethylene)	-	-	<25	<25
1,2-Dichloroethane	-	-	<25	<25
1,2-Dichloropropane	-	-	<25	<25
1,3-Dichlorobenzene	-	-	<25	<25
1,4-Dichlorobenzene	-	-	<25	<25
Bromodichloromethane (Dichlorobromomethane)	-	-	<25	<25
Bromoform (Tribromomethane)	-	-	<25	<25
Bromomethane (Monobromomethane, Methyl Bromide)	-	-	<50	<50
Carbon Tetrachloride (Tetrachloromethane)	-	-	<25	<25
Chlorobenzene (Monochlorobenzene)	-	-	<25	<25
Chloroethane (Monochloroethane, Ethyl Chloride)	-	-	<200	<200
cis-1,2-Dichloroethene (1,2-Dichloroethylene)	-	-	<25	<25
Dibromochloromethane	-	-	<25	<25
Methyl t-butyl ether (MTBE)	-	-	<25	<25
Methylene Chloride (Dichloromethane)	-	-	<50	<50
Styrene	-	-	<25	<25
Tetrachloroethylene (1,1,2,2- Tetrachloroethene, PCE)	-	-	<25	<25
trans-1,2-Dichloroethylene (1,2-Dichloroethylene)	-	-	<25	<25
trans-1,3-Dichloropropene	-	-	<25	<25
Trichloroethylene (1,1,2-Trichloroethene, TCE)	-	-	<10	<10
Trichlorofluoromethane (Freon 11)	-	-	<25	<25
Vinyl Chloride	-	-	<20	<20
	0	Sample Date	13-Sep-17 0-0.05	13-Sep-17 0-0.05

^{1.} Canadian Council of Ministers of the Environment Interim Sediment Quality Guidelines (ISQGs) for the Protection of Freshwater Aquatic Life

^{2.} Canadian Council of Ministers Probable Effects Level (PELs) for the Protection of Freshwater Aquatic Life CCME does not provide Sediment Quality Guidelines for these parameters

Table D12 Petroleum Hydrocarbons in Surface Water (mg/L)

Sample ID						Total Petroleum Hydrocarbons					
	Sample Date	В	ВТ	E	х	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₃₄	C ₃₄ -C ₅₀	Modfied TPH	
						F1	F2	F3	F4		
Provincial Screening Levels ¹		2.1	0.77	0.32	0.33	ı	ı	•	-	0.10	
Federal Screening Levels ²		0.37	0.002	0.09	1				-	-	
SW_CT_01	13-Sep-17	<0.0002	<0.0002	<0.0002	<0.0004	<0.025	<0.10	<0.20	<0.20	<0.20	
SW_CT_02	13-Sep-17	<0.0002	<0.0002	<0.0002	<0.0004	<0.025	<0.10	<0.20	<0.20	<0.20	
SW_CT_02_FD	13-Sep-17	<0.0002	<0.0002	<0.0002	<0.0004	<0.025	<0.10	<0.20	<0.20	<0.20	
SW_CT_03	13-Sep-17	<0.0002	<0.0002	<0.0002	<0.0004	<0.025	<0.10	<0.20	<0.20	<0.20	
SW_CT_04	13-Sep-17	<0.0002	<0.0002	<0.0002	<0.0004	<0.025	<0.10	<0.20	<0.20	<0.20	
SW_CT_05_BG	13-Sep-17	<0.0002	<0.0002	<0.0002	<0.0004	<0.025	<0.10	<0.20	<0.20	<0.20	

Exceedances of the Atlantic RBCA Screening Levels / or Detection Limits Greater than the Provincial Guidelines are **Bolded**.

^{1.} Tier I ESLs for Surface Water (Atlantic PIRI, 2015), diesel/lube oil type (most conservative)

^{2.} CCME Water Quality Guidelines for the Protection of Aquatic Life

[&]quot;-" = parameter not analyzed

Table D13 PAHs in Surface Water (µg/L)

Contaminant of Potential Concern	CCME FWAL 1	SW_CT_01	SW_CT_02	SW_CT_03	SW_CT_04	SW_CT_05_BG
1-Methylnaphthalene	-	<0.050	<0.050	<0.050	<0.050	<0.050
2-Methylnaphthalene	-	<0.050	<0.050	<0.050	<0.050	<0.050
Acenaphthene	5.8	<0.010	<0.010	<0.010	<0.010	<0.010
Acenaphthylene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Acridine	4.4	<0.050	<0.050	<0.050	<0.050	<0.050
Anthracene	0.012	<0.010	<0.010	<0.010	<0.010	<0.010
Benz(a)anthracene	0.018	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	0.015	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b)fluoranthene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b/j)fluoranthene	-	<0.020	<0.020	<0.020	<0.020	<0.020
Benzo(g,h,i)perylene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(j)fluoranthene		<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(k)fluoranthene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Chrysene/Triphenylene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Dibenz(a,h)anthracene		<0.010	<0.010	<0.010	<0.010	<0.010
Fluoranthene	0.04	<0.010	<0.010	<0.010	<0.010	<0.010
Fluorene	3	<0.010	<0.010	<0.010	<0.010	<0.010
Indeno(1,2,3-c,d)pyrene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Naphthalene	1.1	<0.20	<0.20	<0.20	<0.20	<0.20
Perylene	-	<0.010	<0.010	<0.010	<0.010	<0.010
Phenanthrene	0.4	<0.010	<0.010	<0.010	<0.010	<0.010
Pyrene	0.025	<0.010	<0.010	<0.010	<0.010	<0.010
Quinoline	3.4	<0.050	<0.050	<0.050	<0.050	<0.050
Notoe	Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} CCME = Canadian Council of Ministers of the Environment Water Quality Guidelines for the Protection of Aquatic Life - Freshwater

^{- =} no guideline, or parameter not analyzed

Table D14 General Chemistry Concentrations in Surface Water

Parameter	Units	CCME FAL	SW_CT_01	SW_CT_02	SW_CT_03	SW_CT_04	SW_CT_05_BG
Calculated Parameters	•			•	•	•	•
Anion Sum	me/L	-	0.580	0.620	0.600	0.650	0.700
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	7.1	8.7	8.9	15	9.8
Calculated TDS	mg/L	-	33	36	35	37	41
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	<1.0	<1.0	<1.0	<1.0	<1.0
Cation Sum	me/L	-	0.640	0.620	0.620	0.700	0.730
Hardness (CaCO3)	mg/L	-	8.9	12	12	14	13
Ion Balance (% Difference)	%	-	4.92	0.00	1.64	3.70	2.10
Langelier Index (@ 20C)	N/A	-	-3.24	-3.06	-2.68	-2.39	-2.71
Langelier Index (@ 4C)	N/A	-	-3.50	-3.31	-2.93	-2.64	-2.96
Nitrate (N)	mg/L	13	<0.050	0.079	<0.050	<0.050	<0.050
Saturation pH (@ 20C)	N/A	-	10.3	9.93	9.93	9.68	9.84
Saturation pH (@ 4C)	N/A	-	10.6	10.2	10.2	9.94	10.1
Inorganics					•		
Total Alkalinity (Total as CaCO3)	mg/L	-	7.1	8.8	8.9	15	9.8
Dissolved Chloride (CI)	mg/L	120	16	12	12	13	15
Colour	TCU	-	66	73	70	86	45
Nitrate + Nitrite	mg/L	-	<0.050	0.079	<0.050	<0.050	<0.050
Nitrite (N)	mg/L	0.06	<0.010	<0.010	<0.010	<0.010	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	0.5	0.096	<0.050	<0.050	<0.050	0.24
Total Organic Carbon (C)	mg/L	-	8.1	8.3	8.6	9.5	9.5
Orthophosphate (P)	mg/L	-	<0.010	<0.010	<0.010	<0.010	<0.010
рН	pН	6.5 to 9	7.08	6.88	7.25	7.29	7.13
Reactive Silica (SiO2)	mg/L	-	<0.50	0.83	0.70	1.3	0.58
Dissolved Sulphate (SO4)	mg/L	-	<2.0	4.4	4.2	<2.0	4.000
Turbidity	NTU	-	0.61	5.2	1.6	1.8	1.1
Conductivity	uS/cm	-	71	72	70	74	77
		Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

^{1.} CCME FAL = Canadian Council of Ministers of the Environment Environmental Quality Guidelines for the Protection of Freshwater Aquatic Life.

^{- =} no guideline, or parameter not analyzed

Table D15 Metals in Surface Water (µg/L)

Contaminant of Potential Concern	CCME FWAL	SW_CT_01	SW_CT_02	SW_CT_03	SW_CT_04	SW_CT_05_BG
Aluminum ¹	5-100	120	200	180	270	400
Aluminum (Sample-Specific Guideline)		100	100	100	100	100
Antimony	-	<1.0	<1.0	<1.0	<1.0	4.4
Arsenic	5	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	-	4.4	6.3	6.1	9.0	7.5
Beryllium	-	<1.0	<1.0	<1.0	<1.0	<1.0
Bismuth	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	1500	<50	<50	<50	<50	<50
Cadmium	0.04	<0.010	< 0.010	<0.010	< 0.010	0.013
Cadmium (Sample-Specific Guideline)		0.04	0.04	0.04	0.04	0.04
Calcium	-	1300	2700	2600	2800	3000
Chromium	8.9	<1.0	<1.0	<1.0	1.1	<1.0
Cobalt	-	< 0.40	<0.40	<0.40	< 0.40	< 0.40
Copper ¹	2	<2.0	<2.0	2.0	4.3	3.1
Copper (Sample-Specific Guideline)		2	2	2	2	2
Iron	300	380	510	530	250	620
Lead ¹	1	<0.50	<0.50	<0.50	< 0.50	1.7
Lead (Sample-Specific Guideline)		1	1	1	1	1
Magnesium	-	1400	1400	1400	1700	1400
Manganese	-	2.4	6.0	6.1	<2.0	10
Mercury	0.026	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013
Molybdenum	73	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel ¹	25	<2.0	<2.0	<2.0	2.1	<2.0
Nickel (Sample-Specific Guideline)	-	25	25	25	25	25
Phosphorus	-	<100	<100	<100	<100	<100
Potassium	-	590	790	810	740	900
Selenium	1	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	0.25	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	-	9800	7700	7600	8900	9400
Strontium	-	9.3	14	13	12	16
Thallium	8.0	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	-	<2.0	<2.0	<2.0	<2.0	<2.0
Titanium	-	<2.0	11	5.8	3.1	15
Uranium	15	<0.10	<0.10	<0.10	<0.10	<0.10
Vanadium	-	<2.0	<2.0	<2.0	<2.0	<2.0
Zinc	30	<5.0	<5.0	<5.0	<5.0	<5.0
pH (Laboratory)	6.5-9	7.08	6.88	7.25	7.29	7.13
Hardness		8.9	12	12	14	13
	Sample Date	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17	13-Sep-17

Exceedances of the Federal Screening Levels are shaded red.

Guidelines for aluminum, copper, lead, and nickel are dependent on pH and/or hardness. The most conservative values are provided for reference, while sample-specific guidelines were also calculated and presented based on the pH and hardness measured by the lab CCME FAL = Canadian Council of Ministers of the Environment Environmental Quality Guidelines for the Protection of Freshwater Aquatic Life (Long-Term).

^{- =} no guideline, or parameter not analyzed

Table D16 PCBs in Surface Water (µg/L)

Parameter	CCME FAL Guideline	SW_CT_02	SW_CT_04	
Aroclor 1016	-	<0.050	< 0.050	
Aroclor 1221	-	< 0.050	< 0.050	
Aroclor 1232	-	<0.050	<0.050	
Aroclor 1248	-	< 0.050	< 0.050	
Aroclor 1242	-	< 0.050	< 0.050	
Aroclor 1254	-	< 0.050	< 0.050	
Aroclor 1260	-	< 0.050	< 0.050	
Calculated Total PCB	-	< 0.050	< 0.050	
	Sample Date	13-Sep-17	13-Sep-17	

^{1.} CCME FAL = Canadian Council of Ministers of the Environment Environmental Quality Guidelines for the Protection of Freshwater Aquatic Life.

CCME does not provide surface water quality guidelines for these parameters

^{- =} no guideline, or parameter not analyzed

Table D17 Asbestos Fibres in Building Materials (%)

APEC	Sample ID	Sample Date	Description	Color	Concentration	Asbestos Type
10	BS_CT_01A TRANSITE BOARD	12-Sep-17	TRANSITE	GREY	15	Chrysotile
11	BS_CT_01B TRANSITE BOARD	12-Sep-17	TRANSITE	GREY	15	Chrysotile
8	BS_CT_01C TRANSITE BOARD	12-Sep-17	TRANSITE	GREY	15	Chrysotile
9	BS_CT_01D TRANSITE BOARD	13-Sep-17	TRANSITE	GREY	15	Chrysotile
1	BS_CT_02A BLACK CAULKING	12-Sep-17	CAULKING	BLACK	6.0	Chrysotile
11	BS_CT_02B BLACK CAULKING	12-Sep-17	CAULKING	BLACK	<0.5	-
8	BS_CT_03A ASPHALT SHEET ROOFING	12-Sep-17	ASPHALT	BLACK	<0.5	-

Under Newfoundland and Labrador Regulation 111/98 (Asbestos Abatement Regulations, 1998 under the Occupational Health and Safety Act (O.C. 98-730)), Abestos Containing Material is defined as having >1% asbestos fibres by weight.

Asbestos Containing Materials are shaded red

Table D18 VOCs in Water - Quality Control Sample (µg/L)

Parameter	Trip Blank
1,2-Dichlorobenzene	<0.50
1,3-Dichlorobenzene	<1.0
1,4-Dichlorobenzene	<1.0
Chlorobenzene	<1.0
1,1,1-Trichloroethane	<1.0
1,1,2,2-Tetrachloroethane	<0.50
1,1,2-Trichloroethane	<1.0
1,1-Dichloroethane	<2.0
1,1-Dichloroethylene	<0.50
1,2-Dichloroethane	<1.0
1,2-Dichloropropane	<0.50
Benzene	<1.0
Bromodichloromethane	<1.0
Bromoform	<1.0
Bromomethane	<0.50
Carbon Tetrachloride	<0.50
Chloroethane	<8.0
Chloromethane	<8.0
cis-1,3-Dichloropropene	<0.50
Ethylene Dibromide	<0.20
Methyl t-butyl ether (MTBE)	<2.0
Methylene Chloride(Dichloromethane)	<3.0
o-Xylene	<1.0
p+m-Xylene	<2.0
Styrene	<1.0
Total Trihalomethanes	<1.0
Total Xylenes	<1.0
trans-1,2-Dichloroethylene	<0.50
trans-1,3-Dichloropropene	<0.50
Trichloroethylene	<1.0
Trichlorofluoromethane (FREON 11) Vinyl Chloride	<8.0 <0.50

Your Project #: 10550.04 Your C.O.C. #: 627210-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/09/29

Report #: R4746326 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8817 Received: 2017/09/20, 10:00

Sample Matrix: SOLID # Samples Received: 7

		Date	Date		
Analyses	Quantity	/ Extracted	Analyzed	Laboratory Method	Reference
200 Point Count by PLM (1, 2)	7	N/A	2017/09/28	3 CAM SOP-00475	EPA/600/R-93/116

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) Maxxam Analytics' Asbestos Laboratory is accredited by NVLAP for bulk asbestos analysis by polarized light microscopy, NVLAP Code 600136-0.

This report may not be reproduced, except in full, without the written approval of Maxxam Analytics. This report may not be used by the client to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Maxxam Analytics' scope of accreditation includes EPA-600/M4-82-020: "Interim Method for the Determination of Asbestos in Bulk Insulation Samples" and EPA-600/R-93/116: "Method for the Determination of Asbestos in Bulk Building Materials".

Your Project #: 10550.04 Your C.O.C. #: 627210-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/09/29

Report #: R4746326 Version: 1 - Final

version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K8817 Received: 2017/09/20, 10:00

Encryption Key

Sara Mason Project Manager Assistant 29 Sep 2017 17:39:59

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Heather Macumber, Project Manager Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Job #: B7K8817 Report Date: 2017/09/29 GEMTEC LIMITED Client Project #: 10550.04

ASBESTOS (SOLID)

Maxxam ID		FEK886	FEK887	FEK888	FEK889		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627210-01-01	627210-01-01	627210-01-01	627210-01-01		
	UNITS	BS_CT_01A TRANSITE BOARD	BS_CT_02A BLACK CAULKING	BS_CT_02B BLACK CAULKING	BS_CT_01B TRANSITE BOARD	RDL	QC Batch
Number of Layers	%	1.0	1.0	1.0	1.0		5186612
Layer 1 Homogenous?	%	Yes	Yes	Yes	Yes		5186612
Layer 1 Colour	%	GREY	BLACK	BLACK	GREY		5186612
Layer 1 Description	%	TRANSITE	CAULKING	CAULKING	TRANSITE		5186612
Layer 1 Asbestos	%	DETECTED	DETECTED	<0.5	DETECTED	0.5	5186612
Layer 1 Chrysotile	%	15	6.0		15	0.5	5186612
Layer 1 Cellulose	%			20		0.5	5186612
Layer 1 Non Fibrous Material	%	20	94	80	85	0.5	5186612
RDL = Reportable Detection Li	mit			•		•	•

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		FEK890	FEK891	FEK892		
Sampling Date		2017/09/12	2017/09/13	2017/09/12		
COC Number		627210-01-01	627210-01-01	627210-01-01		
	UNITS	BS_CT_01C TRANSITE BOARD	BS_CT_01D TRANSITE BOARD	BS_CT_03A ASPHALT SHEET ROOFING	RDL	QC Batch
Number of Layers	%	1.0	1.0	1.0		5186612
Layer 1 Homogenous?	%	Yes	Yes	Yes		5186612
Layer 1 Colour	%	GREY	GREY	BLACK		5186612
Layer 1 Description	%	TRANSITE	TRANSITE	ASPHALT		5186612
Layer 1 Asbestos	%	DETECTED	DETECTED	<0.5	0.5	5186612
Layer 1 Chrysotile	%	15	15		0.5	5186612
Layer 1 Non Fibrous Material	%	85	85	100	0.5	5186612

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B7K8817 Report Date: 2017/09/29 GEMTEC LIMITED Client Project #: 10550.04

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt										
	Package 1	3.2°C								
200 Pc	ASBESTOS (SOLID) 200 Point Count by PLM: VFT = Vinyl Floor Tile									
Result	Results relate only to the items tested.									

Maxxam Job #: B7K8817 Report Date: 2017/09/29 GEMTEC LIMITED
Client Project #: 10550.04

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Banu Gurgen-Keough, Supervisor

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 10550.04

Site Location: CUT THROAT ISALND

Your C.O.C. #: 627212-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/10/17

Report #: R4787614 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7K3259 Received: 2017/09/18, 09:09

Sample Matrix: Soil # Samples Received: 68

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Benzo(b/j)fluoranthene Sum (LL soil)	10	N/A	2017/09/28	N/A	Auto Calc.
Benzo(b/j)fluoranthene Sum (LL soil)	20	N/A	2017/09/29	N/A	Auto Calc.
Benzo(b/j)fluoranthene Sum (LL soil)	26	N/A	2017/10/02	N/A	Auto Calc.
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	8	2017/09/22	2017/09/23	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	13	2017/09/23	2017/09/25	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	7	2017/09/23	2017/09/26	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	40	2017/09/25	2017/09/26	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	3	2017/09/27	2017/09/27	CAM SOP-00316	CCME PHC-CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	23	2017/09/29	2017/09/29	CAM SOP-00316	CCME PHC-CWS m
Metals Solids Acid Extr. ICPMS	38	2017/09/22	2017/09/22	ATL SOP 00058	EPA 6020A R1 m
Metals Solids Acid Extr. ICPMS	2	2017/09/22	2017/09/25	ATL SOP 00058	EPA 6020A R1 m
Metals Solids Acid Extr. ICPMS	1	2017/09/26	2017/09/26	ATL SOP 00058	EPA 6020A R1 m
Moisture	31	N/A	2017/09/20	ATL SOP 00001	OMOE Handbook 1983 m
Moisture	25	N/A	2017/09/21	ATL SOP 00001	OMOE Handbook 1983 m
Moisture (1)	12	N/A	2017/09/23	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH in sediment by GC/MS (Low Level) (3)	2	2017/09/20	2017/09/29	ATL SOP 00102	EPA 8270D 2014 m
PAH in sediment by GC/MS (Low Level) (3)	1	2017/09/20	2017/09/30	ATL SOP 00102	EPA 8270D 2014 m
PAH in sediment by GC/MS (Low Level) (3)	10	2017/09/22	2017/09/28	ATL SOP 00102	EPA 8270D 2014 m
PAH in sediment by GC/MS (Low Level) (3)	18	2017/09/23	2017/09/29	ATL SOP 00102	EPA 8270D 2014 m
PAH in sediment by GC/MS (Low Level) (3)	6	2017/09/25	2017/09/29	ATL SOP 00102	EPA 8270D 2014 m
PAH in sediment by GC/MS (Low Level) (3)	19	2017/09/25	2017/09/30	ATL SOP 00102	EPA 8270D 2014 m
PCBs in soil by GC/ECD (3)	18	2017/09/21	2017/09/26	ATL SOP 00106	EPA 8082A 2007 m
PCB Aroclor sum (soil)	18	N/A	2017/09/26	N/A	Auto Calc.
Volatile Organic Compounds and F1 PHCs (1)	6	N/A	2017/09/23	CAM SOP-00230	EPA 8260 m
Volatile Organic Compounds and F1 PHCs (1)	21	N/A	2017/09/25	CAM SOP-00230	EPA 8260 m
Volatile Organic Compounds and F1 PHCs (1)	41	N/A	2017/09/26	CAM SOP-00230	EPA 8260 m
VOCs in Soil - Field Preserved (4)	6	N/A	2017/09/20	ATL SOP 00133	EPA 8260C R3 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

Your Project #: 10550.04

Site Location: CUT THROAT ISALND

Your C.O.C. #: 627212-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/10/17

Report #: R4787614 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7K3259 Received: 2017/09/18, 09:09

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.
- (3) Soils are reported on a dry weight basis unless otherwise specified.
- (4) No lab extraction date is given for C6-C10/BTEX and VOC samples that are field preserved with methanol. Extraction date is date sampled unless otherwise stated.

Encryption Key

Sara Mason Project Manager Assistant 17 Oct 2017 15:51:21

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Heather Macumber, Senior Project Manager

Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ATLANTIC VOC IN SOIL (FIELD PRES.)

		i		1	1		1	1	
Maxxam ID		FDL023	FDL023	FDL025		FDL067	FDL068		
Sampling Date		2017/09/12	2017/09/12	2017/09/12		2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_01	SS_CT_01 Lab-Dup	SS_CT_03	QC Batch	SS_CT_42	SS_CT_43	RDL	QC Batch
Inorganics									
Moisture	%	4.7	4.5	34	5170876	20	11	1.0	5173520
Volatile Organics	•				•				•
1,1,1-Trichloroethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,1,2,2-Tetrachloroethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,1,2-Trichloroethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,1-Dichloroethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,1-Dichloroethylene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,2-Dichlorobenzene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,2-Dichloroethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,2-Dichloropropane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,3-Dichlorobenzene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
1,4-Dichlorobenzene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Benzene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Bromodichloromethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Bromoform	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Bromomethane	ug/kg	<50		<50	5172674	<50	<50	50	5172674
Carbon Tetrachloride	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Chlorobenzene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Chloroethane	ug/kg	<200		<200	5172674	<200	<200	200	5172674
Chloroform	ug/kg	<25		<25	5172674	<25	<25	25	5172674
cis-1,2-Dichloroethylene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
cis-1,3-Dichloropropene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Dibromochloromethane	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Ethylbenzene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Ethylene Dibromide	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Methyl t-butyl ether (MTBE)	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Methylene Chloride(Dichloromethane)	ug/kg	<50		<50	5172674	<50	<50	50	5172674
o-Xylene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
p+m-Xylene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Styrene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Tetrachloroethylene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Toluene	ug/kg	<25		<25	5172674	<25	<25	25	5172674
Total Xylenes	ug/kg	<50		<50	5172674	<50	<50	50	5172674
trans-1,2-Dichloroethylene	ug/kg	<25		<25	5172674	<25	<25	25	5172674

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ATLANTIC VOC IN SOIL (FIELD PRES.)

	FDL023	FDL023	FDL025		FDL067	FDL068		
	2017/09/12	2017/09/12	2017/09/12		2017/09/13	2017/09/13		
	627212-01-01	627212-01-01	627212-01-01		627212-01-01	627212-01-01		
UNITS	SS_CT_01	SS_CT_01 Lab-Dup	SS_CT_03	QC Batch	SS_CT_42	SS_CT_43	RDL	QC Batch
ug/kg	<25		<25	5172674	<25	<25	25	5172674
ug/kg	<10		<10	5172674	<10	<10	10	5172674
ug/kg	<25		<25	5172674	<25	<25	25	5172674
ug/kg	<20		<20	5172674	<20	<20	20	5172674
								,
%	101		101	5172674	101	100		5172674
%	109 (1)		111	5172674	118	112 (1)		5172674
%	95		96	5172674	92	93		5172674
%	101		101	5172674	102	102		5172674
	ug/kg ug/kg ug/kg ug/kg % %	2017/09/12 627212-01-01 UNITS SS_CT_01 ug/kg <25 ug/kg <10 ug/kg <25 ug/kg <20 % 101 % 109 (1) % 95	2017/09/12 2017/09/12 627212-01-01 627212-01-01 UNITS SS_CT_01 SS_CT_01 Lab-Dup ug/kg <25 ug/kg <10 ug/kg <25 ug/kg <25 ug/kg <9 4 101 5 109 (1) 6 95	2017/09/12 2017/09/12 2017/09/12 627212-01-01 627212-01-01 627212-01-01 UNITS SS_CT_01 SS_CT_01 Lab-Dup SS_CT_03 ug/kg <25 <25 <10 ug/kg <25 <25 ug/kg <25 <25 ug/kg <25 <25 ug/kg <25 <25 ug/kg <20 <20 % 101 101 % 109 (1) 111 % 95 96	2017/09/12 2017/09/12 2017/09/12	2017/09/12 2017/09/12 2017/09/12 2017/09/13 627212-01-01 627212-01-01 627212-01-01 627212-01-01 UNITS SS_CT_01 SS_CT_01 Lab-Dup SS_CT_03 QC Batch SS_CT_42 ug/kg <25 <25 5172674 <25 ug/kg <10 <10 5172674 <10 ug/kg <25 <25 5172674 <25 ug/kg <25 <25 5172674 <20 ug/kg <25 <20 5172674 <20 W/W <20 101 5172674 101 W 109 (1) 111 5172674 118 W 95 96 5172674 92	2017/09/12 2017/09/12 2017/09/12 2017/09/13 2017/09/13 2017/09/13 627212-01-01 627212-01-01 627212-01-01 627212-01-01 627212-01-01 627212-01-01 UNITS SS_CT_01	2017/09/12 2017/09/12 2017/09/12 2017/09/13 2017/09/13 2017/09/13 627212-01-01 6

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) VOC samples were extracted using a flat-bed shaker instead of the accelerated mechanical shaker due to matrix incompatibility.

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ATLANTIC VOC IN SOIL (FIELD PRES.)

Maxxam ID		FDL087	FDL090		
Sampling Date		2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01		
	UNITS	SD_CT_02	SD_CT_04	RDL	QC Batch
Inorganics					
Moisture	%	64	16	1.0	5173520
Volatile Organics	•			•	•
1,1,1-Trichloroethane	ug/kg	<25	<25	25	5172674
1,1,2,2-Tetrachloroethane	ug/kg	<25	<25	25	5172674
1,1,2-Trichloroethane	ug/kg	<25	<25	25	5172674
1,1-Dichloroethane	ug/kg	<25	<25	25	5172674
1,1-Dichloroethylene	ug/kg	<25	<25	25	5172674
1,2-Dichlorobenzene	ug/kg	<25	<25	25	5172674
1,2-Dichloroethane	ug/kg	<25	<25	25	5172674
1,2-Dichloropropane	ug/kg	<25	<25	25	5172674
1,3-Dichlorobenzene	ug/kg	<25	<25	25	5172674
1,4-Dichlorobenzene	ug/kg	<25	<25	25	5172674
Benzene	ug/kg	<25	<25	25	5172674
Bromodichloromethane	ug/kg	<25	<25	25	5172674
Bromoform	ug/kg	<25	<25	25	5172674
Bromomethane	ug/kg	<50	<50	50	5172674
Carbon Tetrachloride	ug/kg	<25	<25	25	5172674
Chlorobenzene	ug/kg	<25	<25	25	5172674
Chloroethane	ug/kg	<200	<200	200	5172674
Chloroform	ug/kg	230	<25	25	5172674
cis-1,2-Dichloroethylene	ug/kg	<25	<25	25	5172674
cis-1,3-Dichloropropene	ug/kg	<25	<25	25	5172674
Dibromochloromethane	ug/kg	<25	<25	25	5172674
Ethylbenzene	ug/kg	<25	<25	25	5172674
Ethylene Dibromide	ug/kg	<25	<25	25	5172674
Methyl t-butyl ether (MTBE)	ug/kg	<25	<25	25	5172674
Methylene Chloride(Dichloromethane)	ug/kg	<50	<50	50	5172674
o-Xylene	ug/kg	<25	<25	25	5172674
p+m-Xylene	ug/kg	<25	<25	25	5172674
Styrene	ug/kg	<25	<25	25	5172674
Tetrachloroethylene	ug/kg	<25	<25	25	5172674
Toluene	ug/kg	<25	<25	25	5172674
Total Xylenes	ug/kg	<50	<50	50	5172674
trans-1,2-Dichloroethylene	ug/kg	<25	<25	25	5172674
trans-1,3-Dichloropropene	ug/kg	<25	<25	25	5172674
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ATLANTIC VOC IN SOIL (FIELD PRES.)

Maxxam ID		FDL087	FDL090		
Sampling Date		2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01		
	UNITS	SD_CT_02	SD_CT_04	RDL	QC Batch
Trichloroethylene	ug/kg	<10	<10	10	5172674
Trichlorofluoromethane (FREON 11)	ug/kg	<25	<25	25	5172674
Vinyl Chloride	ug/kg	<20	<20	20	5172674
Surrogate Recovery (%)	•				•
4-Bromofluorobenzene	%	102	101		5172674
D10-o-Xylene	%	86	97		5172674
D4-1,2-Dichloroethane	%	92	95		5172674
D8-Toluene	%	101	102		5172674
RDL = Reportable Detection Limit	•	•	•	•	•
QC Batch = Quality Control Batch					

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL023	FDL024	FDL025	FDL025	FDL026	FDL027		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_01	SS_CT_02	SS_CT_03	SS_CT_03 Lab-Dup	SS_CT_04	SS_CT_05	RDL	QC Batch
Volatile Organics									
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	5176461
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5176461
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5176461
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5176461
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5176461
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5176461
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	5176461
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	5176461
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	46		<10	<10	10	5180367
F3 (C16-C34 Hydrocarbons)	ug/g	<50	58	2000		<50	73	50	5180367
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	520		<50	<50	50	5180367
Reached Baseline at C50	ug/g	Yes	Yes	Yes		Yes	Yes		5180367
Surrogate Recovery (%)									
o-Terphenyl	%	94	100	100		95	98		5180367
4-Bromofluorobenzene	%	92	91	93	92	93	92		5176461
D10-o-Xylene	%	88	80	92	92	94	88		5176461
D4-1,2-Dichloroethane	%	98	100	100	101	100	99		5176461
D8-Toluene	%	99	98	97	98	97	98		5176461

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL028	FDL029		FDL030		FDL031		
Sampling Date		2017/09/12	2017/09/12		2017/09/12		2017/09/12		
COC Number		627212-01-01	627212-01-01		627212-01-01		627212-01-01		
	UNITS	SS_CT_05_FD	SS_CT_06	RDL	SS_CT_07	RDL	SS_CT_07 FD	RDL	QC Batch
Volatile Organics									
Benzene	ug/g	<0.0060	<0.0060	0.0060	<0.0060	0.0060	<0.0060	0.0060	5176461
Ethylbenzene	ug/g	<0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	5176461
Toluene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	5176461
p+m-Xylene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	5176461
o-Xylene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	5176461
Total Xylenes	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	0.020	5176461
F1 (C6-C10)	ug/g	<10	<10	10	<10	10	<10	10	5176461
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	<10	10	<10	10	5176461
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	<20	20	<10	10	5180367
F3 (C16-C34 Hydrocarbons)	ug/g	52	<50	50	920	100	270	50	5180367
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	770	100	190	50	5180367
Reached Baseline at C50	ug/g	Yes	Yes		No		No		5180367
Surrogate Recovery (%)									
o-Terphenyl	%	99	98		97		99		5180367
4-Bromofluorobenzene	%	91	92		93		92		5176461
D10-o-Xylene	%	90	85		73		75		5176461
D4-1,2-Dichloroethane	%	101	100		101		100		5176461
D8-Toluene	%	99	97		97		98		5176461
RDL = Reportable Detection L									
QC Batch = Quality Control Ba	atch								

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL032		FDL033		FDL034		FDL035		
Sampling Date		2017/09/12		2017/09/12		2017/09/12		2017/09/12		
COC Number		627212-01-01		627212-01-01		627212-01-01		627212-01-01		
	UNITS	SS_CT_08	RDL	SS_CT_09	RDL	SS_CT_10	RDL	SS_CT_11	RDL	QC Batch
Volatile Organics										
Benzene	ug/g	<0.018	0.018	<0.024	0.024	<0.0060	0.0060	<0.0060	0.0060	5176461
Ethylbenzene	ug/g	<0.030	0.030	<0.040	0.040	<0.010	0.010	<0.010	0.010	5176461
Toluene	ug/g	<0.060	0.060	<0.080	0.080	<0.020	0.020	<0.020	0.020	5176461
p+m-Xylene	ug/g	<0.060	0.060	<0.080	0.080	<0.020	0.020	<0.020	0.020	5176461
o-Xylene	ug/g	<0.060	0.060	<0.080	0.080	<0.020	0.020	<0.020	0.020	5176461
Total Xylenes	ug/g	<0.060	0.060	<0.080	0.080	<0.020	0.020	<0.020	0.020	5176461
F1 (C6-C10)	ug/g	<30	30	<40	40	<10	10	<10	10	5176461
F1 (C6-C10) - BTEX	ug/g	<30	30	<40	40	<10	10	<10	10	5176461
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<40	40	80	40	<20	20	77	10	5180367
F3 (C16-C34 Hydrocarbons)	ug/g	1700	200	3500	200	180	100	460	50	5180367
F4 (C34-C50 Hydrocarbons)	ug/g	1300	200	2800	200	170	100	70	50	5180367
Reached Baseline at C50	ug/g	No		No		No		Yes		5180367
Surrogate Recovery (%)										
o-Terphenyl	%	93		93		96		99		5180367
4-Bromofluorobenzene	%	92		91		90		91		5176461
D10-o-Xylene	%	62		81		92		82		5176461
D4-1,2-Dichloroethane	%	101		101		102		103		5176461
D8-Toluene	%	98		97		98		98		5176461

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL036	FDL037	FDL038	FDL039	FDL040	FDL041		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	· · ·	627212-01-01	627212-01-01			
	UNITS	SS_CT_12	SS_CT_13	SS_CT_14	SS_CT_15	SS_CT_16	SS_CT_17	RDL	QC Batcl
Inorganics	•	•							
Moisture	%				27			1.0	5179389
Volatile Organics		•	•	1		1			l .
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	5176463
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5176463
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	517646:
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	517646
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	517646
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	517646
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	517646
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	5176463
F2-F4 Hydrocarbons		•							
F2 (C10-C16 Hydrocarbons)	ug/g	11	<10	10	13	<10	20	10	518036
F3 (C16-C34 Hydrocarbons)	ug/g	160	130	120	470	140	65	50	518036
F4 (C34-C50 Hydrocarbons)	ug/g	64	73	<50	78	89	<50	50	518036
Reached Baseline at C50	ug/g	No	No	Yes	No	No	Yes		518036
Surrogate Recovery (%)	•	•							
o-Terphenyl	%	95	98	100	95	94	94		518036
4-Bromofluorobenzene	%	91	91	91	91	92	92		517646
D10-o-Xylene	%	95	86	91	89	90	91		517646:
D4-1,2-Dichloroethane	%	101	102	101	102	102	103		517646:
D8-Toluene	%	99	99	98	98	97	97		517646

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL042	FDL042		FDL043	FDL044	FDL044		
Sampling Date		2017/09/12	2017/09/12		2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01		627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_18	SS_CT_18 Lab-Dup	QC Batch	SS_CT_19	SS_CT_20 BG	SS_CT_20 BG Lab-Dup	RDL	QC Batch
Volatile Organics									
Benzene	ug/g	<0.0060		5176461	<0.0060	<0.0060	<0.0060	0.0060	5177768
Ethylbenzene	ug/g	<0.010		5176461	<0.010	<0.010	<0.010	0.010	5177768
Toluene	ug/g	<0.020		5176461	<0.020	<0.020	<0.020	0.020	5177768
p+m-Xylene	ug/g	<0.020		5176461	<0.020	<0.020	<0.020	0.020	5177768
o-Xylene	ug/g	<0.020		5176461	<0.020	<0.020	<0.020	0.020	5177768
Total Xylenes	ug/g	<0.020		5176461	<0.020	<0.020	<0.020	0.020	5177768
F1 (C6-C10)	ug/g	<10		5176461	<10	<10	<10	10	5177768
F1 (C6-C10) - BTEX	ug/g	<10		5176461	<10	<10	<10	10	5177768
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	5180367	<10	<10	<10	10	5180371
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	5180367	53	55	63	50	5180371
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	5180367	53	<50	<50	50	5180371
Reached Baseline at C50	ug/g	Yes	Yes	5180367	No	Yes	Yes		5180371
Surrogate Recovery (%)									
o-Terphenyl	%	94	96	5180367	102	98	94		5180371
4-Bromofluorobenzene	%	92		5176461	91	90	89		5177768
D10-o-Xylene	%	90		5176461	74	83	83		5177768
D4-1,2-Dichloroethane	%	102		5176461	98	100	100		5177768
D8-Toluene	%	98		5176461	99	98	98		5177768

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL045	FDL046	FDL047	FDL048	FDL049	FDL050		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_21	SS_CT_22	SS_CT_22_FD	SS_CT_23	SS_CT_24	SS_CT_25	RDL	QC Batch
Inorganics	•				-			•	•
Moisture	%	25						1.0	5179389
Volatile Organics				•	•			•	
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	5177768
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5177768
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5177768
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5177768
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5177768
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5177768
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	5177768
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	5177768
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	<10	10	5180371
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	59	<50	260	57	50	5180371
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	1200	<50	50	5180371
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	No	Yes		5180371
Surrogate Recovery (%)	•			•	-				-
o-Terphenyl	%	95	92	100	96	96	96		5180371
4-Bromofluorobenzene	%	88	87	88	89	90	89		5177768
D10-o-Xylene	%	94	77	100	89	76	75		5177768
D4-1,2-Dichloroethane	%	99	101	101	100	100	101		5177768
D8-Toluene	%	98	99	99	99	99	99		5177768
RDL = Reportable Detection L	imit								
laaa									

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL051	FDL052	FDL053	FDL053	FDL054	FDL055		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_26	SS_CT_27	SS_CT_28	SS_CT_28 Lab-Dup	SS_CT_29	SS_CT_30	RDL	QC Batch
Inorganics									
Moisture	%	23	24	23	22	28		1.0	5179389
Volatile Organics									
Benzene	ug/g	<0.0060	<0.0060	<0.0060		<0.0060	<0.0060	0.0060	5177768
Ethylbenzene	ug/g	<0.010	<0.010	<0.010		<0.010	<0.010	0.010	5177768
Toluene	ug/g	<0.020	<0.020	<0.020		<0.020	<0.020	0.020	5177768
p+m-Xylene	ug/g	<0.020	<0.020	<0.020		<0.020	<0.020	0.020	5177768
o-Xylene	ug/g	<0.020	<0.020	<0.020		<0.020	<0.020	0.020	5177768
Total Xylenes	ug/g	<0.020	<0.020	<0.020		<0.020	<0.020	0.020	5177768
F1 (C6-C10)	ug/g	<10	<10	<10		<10	<10	10	5177768
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10		<10	<10	10	5177768
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	6500	<10	<10		1200	<10	10	5180371
F3 (C16-C34 Hydrocarbons)	ug/g	5500	<50	150		490	<50	50	5180371
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	58		170	<50	50	5180371
Reached Baseline at C50	ug/g	Yes	Yes	No		No	Yes		5180371
Surrogate Recovery (%)	•	•	•	•	-	•	•	•	
o-Terphenyl	%	118	96	95		101	100		5180371
4-Bromofluorobenzene	%	90	93	92		93	92		5177768
D10-o-Xylene	%	80	96	85		68	96		5177768
D4-1,2-Dichloroethane	%	101	98	99		100	98		5177768
D8-Toluene	%	100	99	99		98	99		5177768
DDI Damantalala Dataatian I	I and I de								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL056	FDL057	FDL058	FDL059		FDL061		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13		2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01		627212-01-01		
	UNITS	SS_CT_31	SS_CT_32	SS_CT_33	SS_CT_34	RDL	SS_CT_36	RDL	QC Batch
Inorganics									-
Moisture	%				8.8	1.0		1.0	5179389
Volatile Organics									
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	<0.0060	0.0060	5177768
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	5177768
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.020	0.020	5177768
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.020	0.020	5177768
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.020	0.020	5177768
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.020	0.020	5177768
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	<10	10	5177768
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	<10	10	5177768
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	10	<20	20	5180371
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	50	980	100	5180371
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	50	860	100	5180371
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		No		5180371
Surrogate Recovery (%)		•	•		•		•		,
o-Terphenyl	%	99	97	99	97		98		5180371
4-Bromofluorobenzene	%	92	92	91	90		91		5177768
D10-o-Xylene	%	100	118	90	76		61		5177768
D4-1,2-Dichloroethane	%	98	99	98	99		100		5177768
D8-Toluene	%	99	99	99	99		98		5177768

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL062		FDL063			FDL064		FDL065		
Sampling Date		2017/09/13		2017/09/13			2017/09/13		2017/09/13		
COC Number		627212-01-01		627212-01-01			627212-01-01		627212-01-01		
	UNITS	SS_CT_37	RDL	SS_CT_38	RDL	QC Batch	SS_CT_39	RDL	SS_CT_40	RDL	QC Batch
Inorganics	•	•	•	•	•	•	•	•	•	•	•
Moisture	%		1.0		1.0	5179389		1.0	12	1.0	5179389
Volatile Organics											
Benzene	ug/g	<0.012	0.012	<0.0060	0.0060	5177768	<0.012	0.012	<0.0060	0.0060	5178025
Ethylbenzene	ug/g	<0.020	0.020	<0.010	0.010	5177768	<0.020	0.020	<0.010	0.010	5178025
Toluene	ug/g	<0.040	0.040	<0.020	0.020	5177768	<0.040	0.040	<0.020	0.020	5178025
p+m-Xylene	ug/g	<0.040	0.040	<0.020	0.020	5177768	<0.040	0.040	<0.020	0.020	5178025
o-Xylene	ug/g	<0.040	0.040	<0.020	0.020	5177768	<0.040	0.040	<0.020	0.020	5178025
Total Xylenes	ug/g	<0.040	0.040	<0.020	0.020	5177768	<0.040	0.040	<0.020	0.020	5178025
F1 (C6-C10)	ug/g	<20	20	<10	10	5177768	<20	20	<10	10	5178025
F1 (C6-C10) - BTEX	ug/g	<20	20	<10	10	5177768	<20	20	<10	10	5178025
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<30	30	<10	10	5180371	<40	40	<10	10	5180399
F3 (C16-C34 Hydrocarbons)	ug/g	590	150	150	50	5180371	970	200	78	50	5180399
F4 (C34-C50 Hydrocarbons)	ug/g	460	150	100	50	5180371	520	200	<50	50	5180399
Reached Baseline at C50	ug/g	No		No		5180371	No		Yes		5180399
Surrogate Recovery (%)	•	•	•	•		•	•		•	•	•
o-Terphenyl	%	97		96		5180371	118		117		5180399
4-Bromofluorobenzene	%	92		91		5177768	95		94		5178025
D10-o-Xylene	%	76		77		5177768	72		84		5178025
D4-1,2-Dichloroethane	%	100		99		5177768	92		94		5178025
D8-Toluene	%	98		99		5177768	93		94		5178025
RDL = Reportable Detection L QC Batch = Quality Control Ba											

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL065	FDL066	FDL067	FDL068	FDL069	FDL070		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_40 Lab-Dup	SS_CT_41	SS_CT_42	SS_CT_43	SS_CT_44	SS_CT_45	RDL	QC Batch
Volatile Organics									
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	5178025
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5178025
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5178025
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5178025
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5178025
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5178025
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	5178025
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	5178025
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	28	10	5180399
F3 (C16-C34 Hydrocarbons)	ug/g	54	110	<50	97	110	150	50	5180399
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	84	<50	50	5180399
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	No	Yes		5180399
Surrogate Recovery (%)									
o-Terphenyl	%	124	121	118	122	118	124		5180399
4-Bromofluorobenzene	%	94	94	94	92	93	93		5178025
D10-o-Xylene	%	83	82	79	73	71	75		5178025
D4-1,2-Dichloroethane	%	94	94	93	95	96	95		5178025
D8-Toluene	%	94	94	94	95	93	93		5178025

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL071	FDL072	FDL073	FDL074		FDL075		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13		2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01		627212-01-01		
	UNITS	SS_CT_45_FD	SS_CT_46	SS_CT_47	SS_CT_48	RDL	SS_CT_49	RDL	QC Batch
Inorganics								•	
Moisture	%					1.0	59	1.0	5179389
Volatile Organics		•		•					
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	<0.012	0.012	5178025
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	<0.020	0.020	5178025
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.040	0.040	5178025
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.040	0.040	5178025
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.040	0.040	5178025
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	<0.040	0.040	5178025
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	<20	20	5178025
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	<20	20	5178025
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	31	30	56	4300	10	<20	20	5180399
F3 (C16-C34 Hydrocarbons)	ug/g	150	94	120	1900	50	620	100	5180399
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	66	50	350	100	5180399
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes		No		5180399
Surrogate Recovery (%)		•		•					
o-Terphenyl	%	122	116	120	130		123		5180399
4-Bromofluorobenzene	%	94	93	92	101		92		5178025
D10-o-Xylene	%	78	80	75	115		74		5178025
D4-1,2-Dichloroethane	%	96	96	94	95		94		5178025
D8-Toluene	%	93	93	95	90		94		5178025

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL076		FDL077	FDL078	FDL079	FDL080		
Sampling Date		2017/09/13		2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01		627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_49_FD	RDL	SS_CT_50	SS_CT_51	SS_CT_52	SS_CT_53	RDL	QC Batch
Inorganics		•	•			-		•	-
Moisture	%	62	1.0					1.0	5179389
Volatile Organics	•							•	-
Benzene	ug/g	<0.018	0.018	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	5178025
Ethylbenzene	ug/g	<0.030	0.030	<0.010	<0.010	<0.010	<0.010	0.010	5178025
Toluene	ug/g	<0.060	0.060	<0.020	<0.020	<0.020	<0.020	0.020	5178025
p+m-Xylene	ug/g	<0.060	0.060	<0.020	<0.020	<0.020	<0.020	0.020	5178025
o-Xylene	ug/g	<0.060	0.060	<0.020	<0.020	<0.020	<0.020	0.020	5178025
Total Xylenes	ug/g	<0.060	0.060	<0.020	<0.020	<0.020	<0.020	0.020	5178025
F1 (C6-C10)	ug/g	<30	30	<10	<10	<10	<10	10	5178025
F1 (C6-C10) - BTEX	ug/g	<30	30	<10	<10	<10	<10	10	5178025
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<20	20	<10	<10	100	45	10	5180399
F3 (C16-C34 Hydrocarbons)	ug/g	810	100	100	<50	300	310	50	5180399
F4 (C34-C50 Hydrocarbons)	ug/g	570	100	<50	<50	73	100	50	5180399
Reached Baseline at C50	ug/g	No		Yes	Yes	No	No		5180399
Surrogate Recovery (%)		•	•	•	•	-	•	•	-
o-Terphenyl	%	128		121	117	122	119		5180399
4-Bromofluorobenzene	%	93		93	92	91	93		5178025
D10-o-Xylene	%	80		73	74	82	81		5178025
D4-1,2-Dichloroethane	%	94		95	95	96	94		5178025
D8-Toluene	%	94		94	94	94	94		5178025
RDL = Reportable Detection I									
QC Batch = Quality Control B	atch								

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL081	FDL082	FDL083		FDL084	FDL085		
Sampling Date		2017/09/12	2017/09/12	2017/09/12		2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_54	SS_CT_55	SS_CT_56	QC Batch	SS_CT_57	SS_CT_58	RDL	QC Batch
Inorganics	•				•	•			
Moisture	%	22			5179389			1.0	5179389
Volatile Organics		•	1	•			•		
Benzene	ug/g	<0.0060	<0.0060	<0.0060	5178025	<0.0060	<0.0060	0.0060	5175707
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	5178025	<0.010	<0.010	0.010	5175707
Toluene	ug/g	<0.020	<0.020	<0.020	5178025	<0.020	<0.020	0.020	5175707
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	5178025	<0.020	<0.020	0.020	5175707
o-Xylene	ug/g	<0.020	<0.020	<0.020	5178025	<0.020	<0.020	0.020	5175707
Total Xylenes	ug/g	<0.020	<0.020	<0.020	5178025	<0.020	<0.020	0.020	5175707
F1 (C6-C10)	ug/g	<10	<10	<10	5178025	<10	<10	10	5175707
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	5178025	<10	<10	10	5175707
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	16	<10	<10	5180399	<10	<10	10	5178865
F3 (C16-C34 Hydrocarbons)	ug/g	330	70	<50	5180399	<50	<50	50	5178865
F4 (C34-C50 Hydrocarbons)	ug/g	180	<50	<50	5180399	<50	<50	50	5178865
Reached Baseline at C50	ug/g	No	Yes	Yes	5180399	Yes	Yes		5178865
Surrogate Recovery (%)	•					•		•	
o-Terphenyl	%	120	110	111	5180399	98	96		5178865
4-Bromofluorobenzene	%	93	93	93	5178025	86	87		5175707
D10-o-Xylene	%	76	76	78	5178025	79	67		5175707
D4-1,2-Dichloroethane	%	94	94	93	5178025	115	118		5175707
D8-Toluene	%	94	93	94	5178025	97	97		5175707
RDL = Reportable Detection L	.imit								
OC Batch = Quality Control Ba	atch								

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL086		FDL087		FDL088	FDL089	FDL090		
Sampling Date		2017/09/13		2017/09/13		2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01		627212-01-01		627212-01-01	627212-01-01	627212-01-01		
	UNITS	SD_CT_01	RDL	SD_CT_02	RDL	SD_CT_02_FD	SD_CT_03	SD_CT_04	RDL	QC Batch
Inorganics										
Moisture	%		1.0		1.0	16			1.0	5179389
Volatile Organics										
Benzene	ug/g	<0.0060	0.0060	<0.012	0.012	<0.0060	<0.0060	<0.0060	0.0060	5175707
Ethylbenzene	ug/g	<0.010	0.010	<0.020	0.020	<0.010	<0.010	<0.010	0.010	5175707
Toluene	ug/g	<0.020	0.020	<0.040	0.040	<0.020	<0.020	<0.020	0.020	5175707
p+m-Xylene	ug/g	<0.020	0.020	<0.040	0.040	<0.020	<0.020	<0.020	0.020	5175707
o-Xylene	ug/g	<0.020	0.020	<0.040	0.040	<0.020	<0.020	<0.020	0.020	5175707
Total Xylenes	ug/g	<0.020	0.020	<0.040	0.040	<0.020	<0.020	<0.020	0.020	5175707
F1 (C6-C10)	ug/g	<10	10	<20	20	<10	<10	<10	10	5175707
F1 (C6-C10) - BTEX	ug/g	<10	10	<20	20	<10	<10	<10	10	5175707
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	52	30	<10	<10	<10	10	5178865
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	910	150	100	170	<50	50	5178865
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	720	150	69	110	<50	50	5178865
Reached Baseline at C50	ug/g	Yes		No		No	No	Yes		5178865
Surrogate Recovery (%)										
o-Terphenyl	%	96		95		96	96	98		5178865
4-Bromofluorobenzene	%	87		92		92	86	87		5175707
D10-o-Xylene	%	73		84		51 (1)	69	73		5175707
D4-1,2-Dichloroethane	%	120		103		104	119	120		5175707
D8-Toluene	%	95		101		101	96	96		5175707

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The recovery for the surrogate compound was below the control limit for duplicate analyses of the soil sample. This likely indicates the presence of a sample matrix effect. As a result, there is an increased level of uncertainty associated with the values reported for this sample.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDL091		
Sampling Date		2017/09/13		
COC Number		627212-01-01		
	UNITS	SD_CT_05_BG	RDL	QC Batch
Volatile Organics				
Benzene	ug/g	<0.0060	0.0060	5175707
Ethylbenzene	ug/g	<0.010	0.010	5175707
Toluene	ug/g	<0.020	0.020	5175707
p+m-Xylene	ug/g	<0.020	0.020	5175707
o-Xylene	ug/g	<0.020	0.020	5175707
Total Xylenes	ug/g	<0.020	0.020	5175707
F1 (C6-C10)	ug/g	<10	10	5175707
F1 (C6-C10) - BTEX	ug/g	<10	10	5175707
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<20	20	5178865
F3 (C16-C34 Hydrocarbons)	ug/g	<100	100	5178865
F4 (C34-C50 Hydrocarbons)	ug/g	<100	100	5178865
Reached Baseline at C50	ug/g	Yes		5178865
Surrogate Recovery (%)	•		•	
o-Terphenyl	%	97		5178865
4-Bromofluorobenzene	%	86		5175707
D10-o-Xylene	%	64		5175707
D4-1,2-Dichloroethane	%	119		5175707
D8-Toluene	%	97		5175707
RDL = Reportable Detection I QC Batch = Quality Control B				

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FDL024	FDL026	FDL027		FDL028	FDL028		
Sampling Date		2017/09/12	2017/09/12	2017/09/12		2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_02	SS_CT_04	SS_CT_05	QC Batch	SS_CT_05_FD	SS_CT_05_FD Lab-Dup	RDL	QC Batch
Inorganics									
Moisture	%	18	15	11	5170876	8.6	7.8	1.0	5172886
RDL = Reportable Detection	Limit	-							

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		FDL029	FDL030	FDL031	FDL032	FDL033	FDL034				
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12				
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01				
	UNITS	SS_CT_06	SS_CT_07	SS_CT_07 FD	SS_CT_08	SS_CT_09	SS_CT_10	RDL	QC Batch		
Inorganics											
Moisture	%	8.0	61	31	76	74	59	1.0	5172886		
RDL = Reportable Detection Limit											

QC Batch = Quality Control Batch

Maxxam ID		FDL035	FDL036	FDL037	FDL038	FDL040	FDL041		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_11	SS_CT_12	SS_CT_13	SS_CT_14	SS_CT_16	SS_CT_17	RDL	QC Batch
Inorganics									
Moisture	%	20	23	17	20	22	17	1.0	5172886

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		FDL042	FDL043	FDL044	FDL046	FDL047	FDL048		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_18	SS_CT_19	SS_CT_20 BG	SS_CT_22	SS_CT_22_FD	SS_CT_23	RDL	QC Batch
Inorganics									
Moisture	%	15	16	10	13	16	9.5	1.0	5172886

RDL = Reportable Detection Limit

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

RESULTS OF ANALYSES OF SOIL

	FDL049		FDL050	FDL055	FDL056	FDL057		
	2017/09/13		2017/09/13	2017/09/13	2017/09/13	2017/09/13		
	627212-01-01		627212-01-01	627212-01-01	627212-01-01	627212-01-01		
JNITS	SS_CT_24	QC Batch	SS_CT_25	SS_CT_30	SS_CT_31	SS_CT_32	RDL	QC Batch
%	11	5172886	16	12	18	13	1.0	5172699
nit								
	NITS	627212-01-01 NITS SS_CT_24 % 11	627212-01-01 NITS SS_CT_24 QC Batch % 11 5172886	627212-01-01 627212-01-01 NITS SS_CT_24 QC Batch SS_CT_25 % 11 5172886 16	627212-01-01 627212-01-01 627212-01-01 NITS SS_CT_24 QC Batch SS_CT_25 SS_CT_30 % 11 5172886 16 12	627212-01-01 627212-01-01 627212-01-01 627212-01-01 NITS SS_CT_24 QC Batch SS_CT_25 SS_CT_30 SS_CT_31 % 11 5172886 16 12 18	627212-01-01 627212-01-01<	627212-01-01 627212-01-01 627212-01-01 627212-01-01 627212-01-01 627212-01-01 627212-01-01 Page 1 NITS SS_CT_24 QC Batch SS_CT_25 SS_CT_30 SS_CT_31 SS_CT_32 RDL % 11 5172886 16 12 18 13 1.0

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FDL058		FDL061		FDL062		FDL063				
Sampling Date		2017/09/13		2017/09/13		2017/09/13		2017/09/13				
COC Number		627212-01-01		627212-01-01		627212-01-01		627212-01-01				
	UNITS	SS_CT_33	QC Batch	SS_CT_36	QC Batch	SS_CT_37	QC Batch	SS_CT_38	RDL	QC Batch		
Inorganics												
Inorganics												
Inorganics Moisture	%	9.0	5172699	55	5173520	72	5172699	24	1.0	5173520		
		9.0	5172699	55	5173520	72	5172699	24	1.0	5173520		

Maxxam ID		FDL063	FDL064	FDL066	FDL069	FDL070	FDL071		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_38 Lab-Dup	SS_CT_39	SS_CT_41	SS_CT_44	SS_CT_45	SS_CT_45_FD	RDL	QC Batch
Inorganics									
Moisture	%	23	77	31	14	22	23	1.0	5173520

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		FDL072		FDL073	FDL073	FDL074	FDL077		
Sampling Date		2017/09/13		2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01		627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_46	QC Batch	SS_CT_47	SS_CT_47 Lab-Dup	SS_CT_48	SS_CT_50	RDL	QC Batch
Inorganics									
Moisture	%	20	5173520	22	18	21	20	1.0	5174913

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

		I	I	I				l	
Maxxam ID		FDL078	FDL079	FDL080	FDL082	FDL083	FDL084		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_51	SS_CT_52	SS_CT_53	SS_CT_55	SS_CT_56	SS_CT_57	RDL	QC Batch
Inorganics									
Moisture	%	18	23	37	10	17	23	1.0	5174913
RDI = Reportable Detection I	innit								

RDL = Reportable Detection Limit

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FDL085		FDL086	FDL089	FDL091		
Sampling Date		2017/09/12		2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01		627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_58	QC Batch	SD_CT_01	SD_CT_03	SD_CT_05_BG	RDL	QC Batch
Inorganics								
Moisture	%	6.7	5174913	26	22	41	1.0	5173520
RDL = Reportable Detection L	imit							

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		FDL023			FDL025		FDL027	FDL028		
Sampling Date		2017/09/12			2017/09/12		2017/09/12	2017/09/12		
COC Number		627212-01-01			627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_01	RDL	QC Batch	SS_CT_03	RDL	SS_CT_05	SS_CT_05_FD	RDL	QC Batch
Metals										
Acid Extractable Aluminum (AI)	mg/kg	9500	10	5182130	6600	10	9600	9500	10	5177171
Acid Extractable Antimony (Sb)	mg/kg	<2.0	2.0	5182130	4.7	2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Arsenic (As)	mg/kg	2.1	2.0	5182130	24	2.0	2.2	<2.0	2.0	5177171
Acid Extractable Barium (Ba)	mg/kg	100	5.0	5182130	75	5.0	110	110	5.0	5177171
Acid Extractable Beryllium (Be)	mg/kg	<2.0	2.0	5182130	<2.0	2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	2.0	5182130	<2.0	2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Boron (B)	mg/kg	<50	50	5182130	<50	50	<50	<50	50	5177171
Acid Extractable Cadmium (Cd)	mg/kg	1.3	0.30	5182130	5.3	0.30	0.52	<0.30	0.30	5177171
Acid Extractable Chromium (Cr)	mg/kg	34	2.0	5182130	170	2.0	33	23	2.0	5177171
Acid Extractable Cobalt (Co)	mg/kg	11	1.0	5182130	35	1.0	9.4	7.7	1.0	5177171
Acid Extractable Copper (Cu)	mg/kg	27	2.0	5182130	210	2.0	26	24	2.0	5177171
Acid Extractable Iron (Fe)	mg/kg	33000	50	5182130	270000	500	27000	27000	50	5177171
Acid Extractable Lead (Pb)	mg/kg	77	0.50	5182130	3200	0.50	52	48	0.50	5177171
Acid Extractable Lithium (Li)	mg/kg	17	2.0	5182130	14	2.0	17	18	2.0	5177171
Acid Extractable Manganese (Mn)	mg/kg	410	2.0	5182130	1500	2.0	380	370	2.0	5177171
Acid Extractable Mercury (Hg)	mg/kg	<0.10	0.10	5182130	0.29	0.10	<0.10	<0.10	0.10	5177171
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	2.0	5182130	18	2.0	2.3	<2.0	2.0	5177171
Acid Extractable Nickel (Ni)	mg/kg	24	2.0	5182130	150	2.0	22	11	2.0	5177171
Acid Extractable Rubidium (Rb)	mg/kg	52	2.0	5182130	16	2.0	61	64	2.0	5177171
Acid Extractable Selenium (Se)	mg/kg	<1.0	1.0	5182130	<1.0	1.0	<1.0	<1.0	1.0	5177171
Acid Extractable Silver (Ag)	mg/kg	<0.50	0.50	5182130	<0.50	0.50	<0.50	<0.50	0.50	5177171
Acid Extractable Strontium (Sr)	mg/kg	10	5.0	5182130	78	5.0	14	9.6	5.0	5177171
Acid Extractable Thallium (TI)	mg/kg	0.41	0.10	5182130	0.17	0.10	0.44	0.46	0.10	5177171
Acid Extractable Tin (Sn)	mg/kg	<2.0	2.0	5182130	39	2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Uranium (U)	mg/kg	0.31	0.10	5182130	0.61	0.10	0.28	0.25	0.10	5177171
Acid Extractable Vanadium (V)	mg/kg	19	2.0	5182130	24	2.0	19	18	2.0	5177171
Acid Extractable Zinc (Zn)	mg/kg	1100	5.0	5182130	1900	5.0	200	180	5.0	5177171
RDL = Reportable Detection Limit										

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		FDL029	FDL029	FDL030	FDL031	FDL032		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_06	SS_CT_06 Lab-Dup	SS_CT_07	SS_CT_07 FD	SS_CT_08	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	11000	11000	3900	4200	4300	10	5177171
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Barium (Ba)	mg/kg	120	120	13	13	45	5.0	5177171
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	5177171
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	5177171
Acid Extractable Chromium (Cr)	mg/kg	38	40	11	13	4.4	2.0	5177171
Acid Extractable Cobalt (Co)	mg/kg	7.5	7.4	1.6	2.0	<1.0	1.0	5177171
Acid Extractable Copper (Cu)	mg/kg	22	21	3.2	3.5	12	2.0	5177171
Acid Extractable Iron (Fe)	mg/kg	28000	29000	12000	15000	8700	50	5177171
Acid Extractable Lead (Pb)	mg/kg	7.5	11 (1)	3.9	3.9	5.2	0.50	5177171
Acid Extractable Lithium (Li)	mg/kg	19	20	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Manganese (Mn)	mg/kg	410	440	68	91	8.3	2.0	5177171
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	0.12	<0.10	0.18	0.10	5177171
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	2.6	2.9	3.5	<2.0	2.0	5177171
Acid Extractable Nickel (Ni)	mg/kg	14	15	2.4	3.0	2.4	2.0	5177171
Acid Extractable Rubidium (Rb)	mg/kg	75	80	18	21	2.8	2.0	5177171
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	2.1	1.0	5177171
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5177171
Acid Extractable Strontium (Sr)	mg/kg	7.5	8.0	7.9	7.0	24	5.0	5177171
Acid Extractable Thallium (TI)	mg/kg	0.59	0.60	0.12	0.13	<0.10	0.10	5177171
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Uranium (U)	mg/kg	0.45	0.47	0.52	0.49	1.8	0.10	5177171
Acid Extractable Vanadium (V)	mg/kg	20	21	25	33	2.7	2.0	5177171
Acid Extractable Zinc (Zn)	mg/kg	93	100	15	15	10	5.0	5177171

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Poor RPD due to sample inhomogeneity. < 10 % of compounds in multi-component analysis in violation.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		FDL033	FDL034	FDL040	FDL041	FDL042		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_09	SS_CT_10	SS_CT_16	SS_CT_17	SS_CT_18	RDL	QC Batch
Metals								
Acid Extractable Aluminum (Al)	mg/kg	6800	4500	10000	9100	4700	10	5177171
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Barium (Ba)	mg/kg	52	15	95	99	33	5.0	5177171
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	5177171
Acid Extractable Cadmium (Cd)	mg/kg	0.31	<0.30	0.34	1.0	<0.30	0.30	5177171
Acid Extractable Chromium (Cr)	mg/kg	4.5	6.8	38	18	14	2.0	5177171
Acid Extractable Cobalt (Co)	mg/kg	1.1	1.3	7.7	6.2	3.6	1.0	5177171
Acid Extractable Copper (Cu)	mg/kg	11	3.5	20	20	16	2.0	5177171
Acid Extractable Iron (Fe)	mg/kg	2300	12000	27000	26000	9900	50	5177171
Acid Extractable Lead (Pb)	mg/kg	3.9	3.3	26	14	2.3	0.50	5177171
Acid Extractable Lithium (Li)	mg/kg	<2.0	<2.0	16	17	4.4	2.0	5177171
Acid Extractable Manganese (Mn)	mg/kg	12	79	380	360	130	2.0	5177171
Acid Extractable Mercury (Hg)	mg/kg	0.11	0.11	<0.10	<0.10	<0.10	0.10	5177171
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	2.8	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Nickel (Ni)	mg/kg	3.1	<2.0	18	8.3	7.5	2.0	5177171
Acid Extractable Rubidium (Rb)	mg/kg	<2.0	30	62	63	8.4	2.0	5177171
Acid Extractable Selenium (Se)	mg/kg	1.2	<1.0	<1.0	<1.0	<1.0	1.0	5177171
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5177171
Acid Extractable Strontium (Sr)	mg/kg	32	6.4	9.6	7.9	8.9	5.0	5177171
Acid Extractable Thallium (TI)	mg/kg	<0.10	0.19	0.49	0.46	<0.10	0.10	5177171
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177171
Acid Extractable Uranium (U)	mg/kg	1.3	0.72	0.55	0.24	0.65	0.10	5177171
Acid Extractable Vanadium (V)	mg/kg	3.1	19	20	17	17	2.0	5177171
Acid Extractable Zinc (Zn)	mg/kg	37	17	94	92	18	5.0	5177171
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Manuary ID		ED1043	EDI 044	EDI 04C	EDI 0.47	ED1040		
Maxxam ID		FDL043	FDL044	FDL046	FDL047	FDL048	-	
Sampling Date		2017/09/12	2017/09/12	2017/09/13	2017/09/13	2017/09/13	-	
COC Number		627212-01-01			627212-01-01	627212-01-01		
	UNITS	SS_CT_19	SS_CT_20 BG	SS_CT_22	SS_CT_22_FD	SS_CT_23	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	12000	14000	11000	11000	12000	10	5177173
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Barium (Ba)	mg/kg	120	67	98	93	120	5.0	5177173
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	5177173
Acid Extractable Cadmium (Cd)	mg/kg	2.1	<0.30	<0.30	<0.30	<0.30	0.30	5177173
Acid Extractable Chromium (Cr)	mg/kg	72	68	28	31	41	2.0	5177173
Acid Extractable Cobalt (Co)	mg/kg	13	16	7.1	7.2	8.1	1.0	5177173
Acid Extractable Copper (Cu)	mg/kg	40	17	18	19	21	2.0	5177173
Acid Extractable Iron (Fe)	mg/kg	38000	28000	26000	27000	30000	50	5177173
Acid Extractable Lead (Pb)	mg/kg	52	2.7	8.3	7.9	7.0	0.50	5177173
Acid Extractable Lithium (Li)	mg/kg	16	15	13	14	20	2.0	5177173
Acid Extractable Manganese (Mn)	mg/kg	460	270	440	460	470	2.0	5177173
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5177173
Acid Extractable Molybdenum (Mo)	mg/kg	2.4	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Nickel (Ni)	mg/kg	61	32	12	12	15	2.0	5177173
Acid Extractable Rubidium (Rb)	mg/kg	57	25	49	50	78	2.0	5177173
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5177173
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5177173
Acid Extractable Strontium (Sr)	mg/kg	16	13	11	11	9.7	5.0	5177173
Acid Extractable Thallium (TI)	mg/kg	0.44	0.21	0.35	0.38	0.59	0.10	5177173
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Uranium (U)	mg/kg	0.62	0.53	0.39	0.38	0.48	0.10	5177173
Acid Extractable Vanadium (V)	mg/kg	25	43	23	22	20	2.0	5177173
Acid Extractable Zinc (Zn)	mg/kg	120	42	76	77	92	5.0	5177173
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	_							<u>.</u>
Maxxam ID		FDL049	FDL050	FDL051	FDL052	FDL053		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_24	SS_CT_25	SS_CT_26	SS_CT_27	SS_CT_28	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	11000	13000	12000	7400	7900	10	5177173
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Barium (Ba)	mg/kg	83	110	120	35	35	5.0	5177173
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Boron (B)	mg/kg	88	<50	<50	<50	<50	50	5177173
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	5177173
Acid Extractable Chromium (Cr)	mg/kg	28	23	11	310	190	2.0	5177173
Acid Extractable Cobalt (Co)	mg/kg	6.8	10	11	120	76	1.0	5177173
Acid Extractable Copper (Cu)	mg/kg	23	28	60	87	130	2.0	5177173
Acid Extractable Iron (Fe)	mg/kg	30000	24000	23000	75000	49000	50	5177173
Acid Extractable Lead (Pb)	mg/kg	15	7.3	2.3	1.1	13	0.50	5177173
Acid Extractable Lithium (Li)	mg/kg	14	13	11	3.3	4.3	2.0	5177173
Acid Extractable Manganese (Mn)	mg/kg	570	280	190	1100	700	2.0	5177173
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5177173
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Nickel (Ni)	mg/kg	13	8.2	8.8	450	280	2.0	5177173
Acid Extractable Rubidium (Rb)	mg/kg	47	35	13	<2.0	7.7	2.0	5177173
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5177173
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5177173
Acid Extractable Strontium (Sr)	mg/kg	9.4	32	8.8	19	21	5.0	5177173
Acid Extractable Thallium (Tl)	mg/kg	0.36	0.25	0.12	<0.10	0.10	0.10	5177173
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Uranium (U)	mg/kg	0.50	0.35	0.21	<0.10	0.16	0.10	5177173
Acid Extractable Vanadium (V)	mg/kg	15	44	50	12	17	2.0	5177173
Acid Extractable Zinc (Zn)	mg/kg	190	50	27	65	60	5.0	5177173
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	_							

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Mayyam ID		FDL054	FDL055	FDL056	FDL057	FDL058		
Maxxam ID								
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01			627212-01-01	627212-01-01		
	UNITS	SS_CT_29	SS_CT_30	SS_CT_31	SS_CT_32	SS_CT_33	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	17000	10000	12000	11000	12000	10	5177173
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Barium (Ba)	mg/kg	90	110	130	110	130	5.0	5177173
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	5177173
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	5177173
Acid Extractable Chromium (Cr)	mg/kg	52	32	37	28	35	2.0	5177173
Acid Extractable Cobalt (Co)	mg/kg	14	7.7	7.4	6.7	8.7	1.0	5177173
Acid Extractable Copper (Cu)	mg/kg	24	36	22	19	23	2.0	5177173
Acid Extractable Iron (Fe)	mg/kg	27000	27000	30000	27000	32000	50	5177173
Acid Extractable Lead (Pb)	mg/kg	2.8	3.4	9.8	8.8	6.0	0.50	5177173
Acid Extractable Lithium (Li)	mg/kg	25	19	20	19	21	2.0	5177173
Acid Extractable Manganese (Mn)	mg/kg	360	380	450	410	450	2.0	5177173
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5177173
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Nickel (Ni)	mg/kg	19	11	11	10	14	2.0	5177173
Acid Extractable Rubidium (Rb)	mg/kg	19	66	80	78	85	2.0	5177173
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5177173
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5177173
Acid Extractable Strontium (Sr)	mg/kg	14	9.4	8.7	8.2	8.3	5.0	5177173
Acid Extractable Thallium (Tl)	mg/kg	0.13	0.50	0.61	0.56	0.64	0.10	5177173
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177173
Acid Extractable Uranium (U)	mg/kg	0.33	0.24	0.59	0.48	0.40	0.10	5177173
Acid Extractable Vanadium (V)	mg/kg	46	17	20	19	21	2.0	5177173
Acid Extractable Zinc (Zn)	mg/kg	59	83	96	87	97	5.0	5177173
RDL = Reportable Detection Limit QC Batch = Quality Control Batch								

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	_							
Maxxam ID		FDL061	FDL062	FDL063	FDL064	FDL066		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_36	SS_CT_37	SS_CT_38	SS_CT_39	SS_CT_41	RDL	QC Batch
Metals								
Acid Extractable Aluminum (Al)	mg/kg	2000	4300	6100	11000	25000	10	5177372
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	2.4	<2.0	2.0	5177372
Acid Extractable Barium (Ba)	mg/kg	17	49	61	190	230	5.0	5177372
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	5177372
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	5177372
Acid Extractable Chromium (Cr)	mg/kg	33	23	90	20	79	2.0	5177372
Acid Extractable Cobalt (Co)	mg/kg	1.7	6.2	6.4	3.1	13	1.0	5177372
Acid Extractable Copper (Cu)	mg/kg	3.3	15	3.8	74	18	2.0	5177372
Acid Extractable Iron (Fe)	mg/kg	5300	28000	9000	12000	50000	50	5177372
Acid Extractable Lead (Pb)	mg/kg	1.9	22	1.1	3.6	8.9	0.50	5177372
Acid Extractable Lithium (Li)	mg/kg	<2.0	<2.0	3.0	8.1	45	2.0	5177372
Acid Extractable Manganese (Mn)	mg/kg	22	130	95	150	900	2.0	5177372
Acid Extractable Mercury (Hg)	mg/kg	0.12	0.21	<0.10	0.28	<0.10	0.10	5177372
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	3.8	<2.0	8.6	<2.0	2.0	5177372
Acid Extractable Nickel (Ni)	mg/kg	3.7	12	5.3	6.7	19	2.0	5177372
Acid Extractable Rubidium (Rb)	mg/kg	<2.0	7.6	17	63	190	2.0	5177372
Acid Extractable Selenium (Se)	mg/kg	<1.0	1.6	<1.0	2.8	<1.0	1.0	5177372
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	0.70	<0.50	0.50	5177372
Acid Extractable Strontium (Sr)	mg/kg	13	30	7.2	28	12	5.0	5177372
Acid Extractable Thallium (TI)	mg/kg	<0.10	0.14	0.11	0.47	1.3	0.10	5177372
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Uranium (U)	mg/kg	0.86	1.9	<0.10	7.3	1.9	0.10	5177372
Acid Extractable Vanadium (V)	mg/kg	8.2	28	36	9.8	44	2.0	5177372
Acid Extractable Zinc (Zn)	mg/kg	<5.0	13	17	38	160	5.0	5177372
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

				_	_			<u>.</u>
Maxxam ID		FDL067	FDL068	FDL069	FDL086	FDL087		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_42	SS_CT_43	SS_CT_44	SD_CT_01	SD_CT_02	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	19000	12000	14000	7800	4300	10	5177372
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Barium (Ba)	mg/kg	210	130	110	46	31	5.0	5177372
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	5177372
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	5177372
Acid Extractable Chromium (Cr)	mg/kg	370	61	200	15	6.2	2.0	5177372
Acid Extractable Cobalt (Co)	mg/kg	17	7.9	10	3.4	<1.0	1.0	5177372
Acid Extractable Copper (Cu)	mg/kg	25	32	19	9.1	5.0	2.0	5177372
Acid Extractable Iron (Fe)	mg/kg	30000	26000	25000	12000	1900	50	5177372
Acid Extractable Lead (Pb)	mg/kg	5.7	9.3	8.3	3.7	2.2	0.50	5177372
Acid Extractable Lithium (Li)	mg/kg	27	22	20	7.9	<2.0	2.0	5177372
Acid Extractable Manganese (Mn)	mg/kg	470	430	370	180	12	2.0	5177372
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5177372
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Nickel (Ni)	mg/kg	90	19	43	7.0	2.6	2.0	5177372
Acid Extractable Rubidium (Rb)	mg/kg	83	84	69	19	<2.0	2.0	5177372
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5177372
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5177372
Acid Extractable Strontium (Sr)	mg/kg	11	8.3	7.5	10	13	5.0	5177372
Acid Extractable Thallium (TI)	mg/kg	0.63	0.66	0.53	0.15	<0.10	0.10	5177372
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5177372
Acid Extractable Uranium (U)	mg/kg	1.3	1.5	0.66	0.56	3.1	0.10	5177372
Acid Extractable Vanadium (V)	mg/kg	40	23	25	24	5.5	2.0	5177372
Acid Extractable Zinc (Zn)	mg/kg	73	81	68	42	<5.0	5.0	5177372
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	_							

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

						<u> </u>		
Maxxam ID		FDL089	FDL090		FDL091	FDL091		
Sampling Date		2017/09/13	2017/09/13		2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SD_CT_03	SD_CT_04	QC Batch	SD_CT_05_BG	SD_CT_05_BG Lab-Dup	RDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	6600	5800	5177372	10000	9300	10	5177173
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	5177372	5.7	5.5	2.0	5177173
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	5177372	<2.0	<2.0	2.0	5177173
Acid Extractable Barium (Ba)	mg/kg	70	66	5177372	52	48	5.0	5177173
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	5177372	<2.0	<2.0	2.0	5177173
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	5177372	<2.0	<2.0	2.0	5177173
Acid Extractable Boron (B)	mg/kg	<50	<50	5177372	<50	<50	50	5177173
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	<0.30	5177372	<0.30	<0.30	0.30	5177173
Acid Extractable Chromium (Cr)	mg/kg	32	18	5177372	22	19	2.0	5177173
Acid Extractable Cobalt (Co)	mg/kg	7.5	5.1	5177372	5.5	4.5	1.0	5177173
Acid Extractable Copper (Cu)	mg/kg	15	12	5177372	25	23	2.0	5177173
Acid Extractable Iron (Fe)	mg/kg	18000	13000	5177372	28000	25000	50	5177173
Acid Extractable Lead (Pb)	mg/kg	3.8	2.4	5177372	15	15	0.50	5177173
Acid Extractable Lithium (Li)	mg/kg	9.5	11	5177372	15	14	2.0	5177173
Acid Extractable Manganese (Mn)	mg/kg	230	130	5177372	200	180	2.0	5177173
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	5177372	0.11	<0.10	0.10	5177173
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	5177372	<2.0	<2.0	2.0	5177173
Acid Extractable Nickel (Ni)	mg/kg	22	9.4	5177372	7.3	6.9	2.0	5177173
Acid Extractable Rubidium (Rb)	mg/kg	29	9.6	5177372	30	26	2.0	5177173
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	5177372	1.4	1.3	1.0	5177173
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	5177372	<0.50	<0.50	0.50	5177173
Acid Extractable Strontium (Sr)	mg/kg	8.6	9.0	5177372	13	11	5.0	5177173
Acid Extractable Thallium (TI)	mg/kg	0.23	<0.10	5177372	0.24	0.22	0.10	5177173
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	5177372	<2.0	<2.0	2.0	5177173
Acid Extractable Uranium (U)	mg/kg	0.46	0.38	5177372	1.2	1.2	0.10	5177173
Acid Extractable Vanadium (V)	mg/kg	20	26	5177372	25	23	2.0	5177173
Acid Extractable Zinc (Zn)	mg/kg	45	25	5177372	78	71	5.0	5177173

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDL023	FDL024		FDL025		FDL026	FDL027		
Sampling Date		2017/09/12	2017/09/12		2017/09/12		2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01		627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_01	SS_CT_02	RDL	SS_CT_03	RDL	SS_CT_04	SS_CT_05	RDL	QC Batch
Polyaromatic Hydrocarbons										
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	0.0050	0.15	0.0050	<0.0050	<0.0050	0.0050	5178035
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	0.0050	0.12	0.0050	<0.0050	<0.0050	0.0050	5178035
Acenaphthene	mg/kg	<0.0050	<0.0050	0.0050	5.2	0.0050	<0.0050	<0.0050	0.0050	5178035
Acenaphthylene	mg/kg	<0.0050	<0.0050	0.0050	<0.049 (1)	0.049	<0.0050	<0.0050	0.0050	5178035
Anthracene	mg/kg	0.0053	0.0093	0.0050	9.3 (2)	0.25	<0.0050	<0.0050	0.0050	5178035
Benzo(a)anthracene	mg/kg	<0.0050	0.070	0.0050	47 (2)	0.25	0.014	0.0062	0.0050	5178035
Benzo(a)pyrene	mg/kg	<0.0050	0.060	0.0050	28 (2)	0.25	0.013	<0.0050	0.0050	5178035
Benzo(b)fluoranthene	mg/kg	0.0089	0.064	0.0050	26 (2)	0.25	0.013	<0.0050	0.0050	5178035
Benzo(b/j)fluoranthene	mg/kg	<0.010	0.10	0.010	41	0.50	0.020	<0.010	0.010	5170394
Benzo(g,h,i)perylene	mg/kg	0.0079	0.034	0.0050	12 (2)	0.25	0.0094	0.021	0.0050	5178035
Benzo(j)fluoranthene	mg/kg	<0.0050	0.036	0.0050	15 (2)	0.25	0.0062	<0.0050	0.0050	5178035
Benzo(k)fluoranthene	mg/kg	<0.0050	0.036	0.0050	15 (2)	0.25	0.0072	<0.0050	0.0050	5178035
Chrysene	mg/kg	0.011	0.067	0.0050	43 (2)	0.25	0.016	0.0057	0.0050	5178035
Dibenz(a,h)anthracene	mg/kg	<0.0050	0.0093	0.0050	3.8 (2)	0.25	<0.0050	<0.0050	0.0050	5178035
Fluoranthene	mg/kg	0.017	0.16	0.0050	120 (2)	0.25	0.026	0.0090	0.0050	5178035
Fluorene	mg/kg	<0.0050	<0.0050	0.0050	4.9	0.0050	<0.0050	<0.0050	0.0050	5178035
Indeno(1,2,3-cd)pyrene	mg/kg	0.0059	0.032	0.0050	12 (2)	0.25	0.0085	0.010	0.0050	5178035
Naphthalene	mg/kg	<0.0050	<0.0050	0.0050	0.16	0.0050	<0.0050	<0.0050	0.0050	5178035
Perylene	mg/kg	<0.0050	0.015	0.0050	7.5 (2)	0.25	<0.0050	<0.0050	0.0050	5178035
Phenanthrene	mg/kg	0.0058	0.065	0.0050	63 (2)	0.25	0.0080	<0.0050	0.0050	5178035
Pyrene	mg/kg	0.014	0.12	0.0050	85 (2)	0.25	0.021	0.0094	0.0050	5178035
Surrogate Recovery (%)										
D10-Anthracene	%	104	116		101		123	109		5178035
D14-Terphenyl	%	103	96		66		116	109		5178035
D8-Acenaphthylene	%	100	102		53		110	99		5178035
DDI Decembelele Detection I										

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

⁽¹⁾ Elevated PAH RDL(s) due to matrix / co-extractive interference.

⁽²⁾ Elevated PAH RDL(s) due to sample dilution.

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

Maxxam ID		FDL028	FDL029	FDL030	FDL031	FDL032		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_05_FD	SS_CT_06	SS_CT_07	SS_CT_07 FD	SS_CT_08	RDL	QC Batch
Polyaromatic Hydrocarbons								
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Benzo(b)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Benzo(b/j)fluoranthene	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5170394
Benzo(g,h,i)perylene	mg/kg	0.013	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Chrysene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Fluoranthene	mg/kg	0.0055	0.0058	<0.0050	<0.0050	<0.0050	0.0050	5178035
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Indeno(1,2,3-cd)pyrene	mg/kg	0.0070	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5178035
Pyrene	mg/kg	<0.0050	0.0058	<0.0050	<0.0050	<0.0050	0.0050	5178035
Surrogate Recovery (%)								
D10-Anthracene	%	102	128	116	107	83		5178035
D14-Terphenyl	%	110	98	98	113	96		5178035
D8-Acenaphthylene	%	98	97	87	99	118		5178035
RDL = Reportable Detection L								
QC Batch = Quality Control Ba	atch							

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDL033	FDL034	FDL034	FDL035	FDL036	FDL037		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
COC Number	UNITS	SS_CT_09	SS_CT_10	SS_CT_10 Lab-Dup	SS_CT_11	SS_CT_12	SS_CT_13	RDL	QC Batch
Polyaromatic Hydrocarbons									
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Anthracene	mg/kg	0.12	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	0.0081	<0.0050	0.012	0.0050	5179748
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	0.082	<0.0050	0.011	0.0050	5179748
Benzo(b)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	0.018	<0.0050	0.012	0.0050	5179748
Benzo(b/j)fluoranthene	mg/kg	<0.010	<0.010		0.018	<0.010	0.018	0.010	5170394
Benzo(g,h,i)perylene	mg/kg	<0.0050	<0.0050	<0.0050	0.27	<0.0050	<0.0050	0.0050	5179748
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0062	0.0050	5179748
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0062	0.0050	5179748
Chrysene	mg/kg	<0.0050	<0.0050	<0.0050	0.016	<0.0050	0.013	0.0050	5179748
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	0.016	<0.0050	<0.0050	0.0050	5179748
Fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.023	0.0050	5179748
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	0.031	<0.0050	<0.0050	0.0050	5179748
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	0.013	<0.0050	<0.0050	0.0050	5179748
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0080	0.0050	5179748
Pyrene	mg/kg	<0.0050	<0.0050	<0.0050	0.0069	<0.0050	0.019	0.0050	5179748
Surrogate Recovery (%)									
D10-Anthracene	%	69	85	98	99	79	76		5179748
D14-Terphenyl	%	84	96	110	93	84	81		5179748
D8-Acenaphthylene	%	88	87	96	106	91	89		5179748
i									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDL038	FDL040	FDL041	FDL042	FDL043	FDL044		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_14	SS_CT_16	SS_CT_17	SS_CT_18	SS_CT_19	SS_CT_20 BG	RDL	QC Batch
Polyaromatic Hydrocarbons	S								
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.037	<0.0050	0.0050	5179748
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.18	<0.0050	0.0050	5179748
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.16	<0.0050	0.0050	5179748
Benzo(b)fluoranthene	mg/kg	<0.0050	0.020	<0.0050	<0.0050	0.17	<0.0050	0.0050	5179748
Benzo(b/j)fluoranthene	mg/kg	<0.010	0.030	<0.010	<0.010	0.26	<0.010	0.010	5170394
Benzo(g,h,i)perylene	mg/kg	<0.0050	0.013	<0.0050	<0.0050	0.10	<0.0050	0.0050	5179748
Benzo(j)fluoranthene	mg/kg	<0.0050	0.010	<0.0050	<0.0050	0.085	<0.0050	0.0050	5179748
Benzo(k)fluoranthene	mg/kg	<0.0050	0.0083	<0.0050	<0.0050	0.093	<0.0050	0.0050	5179748
Chrysene	mg/kg	<0.0050	0.015	<0.0050	<0.0050	0.20	<0.0050	0.0050	5179748
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.027	<0.0050	0.0050	5179748
Fluoranthene	mg/kg	<0.0050	0.013	<0.0050	<0.0050	0.40	<0.0050	0.0050	5179748
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	0.011	<0.0050	<0.0050	0.090	<0.0050	0.0050	5179748
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.047	<0.0050	0.0050	5179748
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.18	<0.0050	0.0050	5179748
Pyrene	mg/kg	<0.0050	0.013	<0.0050	<0.0050	0.29	<0.0050	0.0050	5179748
Surrogate Recovery (%)									
D10-Anthracene	%	80	103	93	81	117	89		5179748
D14-Terphenyl	%	85	106	98	87	121	92		5179748
D8-Acenaphthylene	%	95	98	96	89	107	91		5179748
RDL = Reportable Detection									
QC Batch = Quality Control I	oattii								

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

Maxxam ID		FDL046	FDL047	FDL048	FDL049	FDL050	FDL055		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_22	SS_CT_22_FD	SS_CT_23	SS_CT_24	SS_CT_25	SS_CT_30	RDL	QC Batch
Polyaromatic Hydrocarbons									
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Benzo(a)anthracene	mg/kg	0.011	<0.0050	<0.0050	0.0060	0.0079	<0.0050	0.0050	5179748
Benzo(a)pyrene	mg/kg	0.014	<0.0050	<0.0050	0.0082	0.0071	<0.0050	0.0050	5179748
Benzo(b)fluoranthene	mg/kg	0.029	0.010	<0.0050	0.014	0.0073	<0.0050	0.0050	5179748
Benzo(b/j)fluoranthene	mg/kg	0.046	0.010	<0.010	0.014	<0.010	<0.010	0.010	5170394
Benzo(g,h,i)perylene	mg/kg	0.014	0.0066	<0.0050	0.018	<0.0050	<0.0050	0.0050	5179748
Benzo(j)fluoranthene	mg/kg	0.016	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Benzo(k)fluoranthene	mg/kg	0.016	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Chrysene	mg/kg	0.029	0.011	<0.0050	0.020	0.010	<0.0050	0.0050	5179748
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Fluoranthene	mg/kg	0.056	0.023	<0.0050	0.012	0.017	<0.0050	0.0050	5179748
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Indeno(1,2,3-cd)pyrene	mg/kg	0.012	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5179748
Phenanthrene	mg/kg	0.0080	0.012	<0.0050	0.0085	0.012	<0.0050	0.0050	5179748
Pyrene	mg/kg	0.044	0.017	<0.0050	0.0096	0.011	<0.0050	0.0050	5179748
Surrogate Recovery (%)									
D10-Anthracene	%	79	80	70	76	90	93		5179748
D14-Terphenyl	%	96	85	88	91	92	95		5179748
D8-Acenaphthylene	%	98	96	101	94	93	93		5179748
RDL = Reportable Detection L									
QC Batch = Quality Control Ba	atch								

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

Maxxam ID		FDL056	FDL057	FDL058		FDL061	FDL062		
Sampling Date		2017/09/13	2017/09/13	2017/09/13		2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_31	SS_CT_32	SS_CT_33	QC Batch	SS_CT_36	SS_CT_37	RDL	QC Batch
Polyaromatic Hydrocarbons									
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Benzo(b)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Benzo(b/j)fluoranthene	mg/kg	<0.010	<0.010	<0.010	5170394	<0.010	<0.010	0.010	5170394
Benzo(g,h,i)perylene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Chrysene	mg/kg	< 0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Fluoranthene	mg/kg	<0.0050	0.0064	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Pyrene	mg/kg	<0.0050	<0.0050	<0.0050	5179748	<0.0050	<0.0050	0.0050	5180475
Surrogate Recovery (%)									
D10-Anthracene	%	74	97	95	5179748	69	55		5180475
D14-Terphenyl	%	90	101	96	5179748	73	63		5180475
D8-Acenaphthylene	%	98	94	98	5179748	82	74		5180475
RDL = Reportable Detection L	imit								
QC Batch = Quality Control Ba	atch								

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

Maxxam ID		FDL063	FDL064	FDL066	FDL067		FDL068		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13		2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01		627212-01-01		
	UNITS	SS_CT_38	SS_CT_39	SS_CT_41	SS_CT_42	QC Batch	SS_CT_43	RDL	QC Batch
Polyaromatic Hydrocarbons									
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Benzo(b)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Benzo(b/j)fluoranthene	mg/kg	<0.010	<0.010	<0.010	<0.010	5170394	<0.010	0.010	5170588
Benzo(g,h,i)perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Chrysene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	5180475	<0.0050	0.0050	5180475
Surrogate Recovery (%)									
D10-Anthracene	%	57	65	56	86	5180475	86		5180475
D14-Terphenyl	%	79	63	73	90	5180475	89		5180475
D8-Acenaphthylene	%	77	71	86	89	5180475	87		5180475
RDL = Reportable Detection L QC Batch = Quality Control Ba								_	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDL069	FDL069	FDL070	FDL071	FDL072	FDL073		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_44	SS_CT_44 Lab-Dup	SS_CT_45	SS_CT_45_FD	SS_CT_46	SS_CT_47	RDL	QC Batch
Polyaromatic Hydrocarbons	5								
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(b)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(b/j)fluoranthene	mg/kg	<0.010		<0.010	<0.010	<0.010	<0.010	0.010	5170588
Benzo(g,h,i)perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Chrysene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Surrogate Recovery (%)									
D10-Anthracene	%	85	87	58	75	73	84		5180475
D14-Terphenyl	%	87	89	75	73	74	83		5180475
D8-Acenaphthylene	%	89	88	87	92	87	87		5180475
1		· · · · · · · · · · · · · · · · · · ·							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDL074		FDL077	FDL078	FDL079	FDL080		
Sampling Date		2017/09/13		2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01		627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_48	RDL	SS_CT_50	SS_CT_51	SS_CT_52	SS_CT_53	RDL	QC Batch
Polyaromatic Hydrocarbons									
1-Methylnaphthalene	mg/kg	<0.018 (1)	0.018	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
2-Methylnaphthalene	mg/kg	<0.018 (1)	0.018	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Acenaphthene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Acenaphthylene	mg/kg	<0.025 (1)	0.025	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Anthracene	mg/kg	<0.010 (1)	0.010	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(a)anthracene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(a)pyrene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(b)fluoranthene	mg/kg	<0.0050	0.0050	0.014	<0.0050	<0.0050	0.0088	0.0050	5180475
Benzo(b/j)fluoranthene	mg/kg	<0.010	0.010	0.014	<0.010	<0.010	<0.010	0.010	5170588
Benzo(g,h,i)perylene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(j)fluoranthene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Benzo(k)fluoranthene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Chrysene	mg/kg	<0.0050	0.0050	0.022	<0.0050	<0.0050	<0.0050	0.0050	5180475
Dibenz(a,h)anthracene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Fluoranthene	mg/kg	<0.0050	0.0050	0.014	<0.0050	<0.0050	<0.0050	0.0050	5180475
Fluorene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Naphthalene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Perylene	mg/kg	<0.0050	0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Phenanthrene	mg/kg	<0.013 (1)	0.013	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180475
Pyrene	mg/kg	<0.0050	0.0050	0.012	<0.0050	<0.0050	<0.0050	0.0050	5180475
Surrogate Recovery (%)									
D10-Anthracene	%	85		84	85	87	89		5180475
D14-Terphenyl	%	87		87	87	88	92		5180475
D8-Acenaphthylene	%	120		88	86	89	88		5180475
DDI Danastalala Datastian I									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Elevated PAH RDL(s) due to matrix / co-extractive interference.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

Maxxam ID		FDL082	FDL083	FDL084		FDL085	FDL086		
Sampling Date		2017/09/12	2017/09/12	2017/09/12		2017/09/12	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_55	SS_CT_56	SS_CT_57	QC Batch	SS_CT_58	SD_CT_01	RDL	QC Batch
Polyaromatic Hydrocarbons									
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	0.011	<0.0050	0.0050	5180479
Benzo(a)pyrene	mg/kg	0.013	<0.0050	<0.0050	5180475	0.032	<0.0050	0.0050	5180479
Benzo(b)fluoranthene	mg/kg	0.013	<0.0050	<0.0050	5180475	0.044	<0.0050	0.0050	5180479
Benzo(b/j)fluoranthene	mg/kg	0.019	<0.010	<0.010	5170588	0.062	<0.010	0.010	5170588
Benzo(g,h,i)perylene	mg/kg	0.039	<0.0050	0.0071	5180475	0.088	<0.0050	0.0050	5180479
Benzo(j)fluoranthene	mg/kg	0.0056	<0.0050	<0.0050	5180475	0.018	<0.0050	0.0050	5180479
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	0.017	<0.0050	0.0050	5180479
Chrysene	mg/kg	0.012	<0.0050	<0.0050	5180475	0.038	<0.0050	0.0050	5180479
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	0.0071	<0.0050	0.0050	5180479
Fluoranthene	mg/kg	0.0069	<0.0050	<0.0050	5180475	0.032	<0.0050	0.0050	5180479
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
Indeno(1,2,3-cd)pyrene	mg/kg	0.0089	<0.0050	<0.0050	5180475	0.025	<0.0050	0.0050	5180479
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	<0.0050	<0.0050	0.0050	5180479
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	0.0068	<0.0050	0.0050	5180479
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	5180475	0.010	<0.0050	0.0050	5180479
Pyrene	mg/kg	0.0088	<0.0050	<0.0050	5180475	0.032	<0.0050	0.0050	5180479
Surrogate Recovery (%)									
D10-Anthracene	%	89	72	68	5180475	90	64		5180479
D14-Terphenyl	%	87	71	87	5180475	91	86		5180479
D8-Acenaphthylene	%	90	89	88	5180475	93	77		5180479
RDL = Reportable Detection L QC Batch = Quality Control Ba									

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDL087	FDL089	FDL090	FDL090	FDL091		
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SD_CT_02	SD_CT_03	SD_CT_04	SD_CT_04 Lab-Dup	SD_CT_05_BG	RDL	QC Batch
Polyaromatic Hydrocarbon	ıs							
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Benzo(b)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Benzo(b/j)fluoranthene	mg/kg	<0.010	<0.010	<0.010		<0.010	0.010	5170588
Benzo(g,h,i)perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Chrysene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	5180479
Surrogate Recovery (%)								
D10-Anthracene	%	71	84	80	80	61		5180479
D14-Terphenyl	%	82	89	98	88	95		5180479
D8-Acenaphthylene	%	60	89	87	83	88		5180479
RDL = Reportable Detection	n Limit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		FDL030		FDL031	FDL031		FDL032	FDL033		
Sampling Date		2017/09/12		2017/09/12	2017/09/12		2017/09/12	2017/09/12		
COC Number		627212-01-01		627212-01-01	627212-01-01		627212-01-01	627212-01-01		
	UNITS	SS_CT_07	RDL	SS_CT_07 FD	SS_CT_07 FD Lab-Dup	RDL	SS_CT_08	SS_CT_09	RDL	QC Batch
F2-F4 Hydrocarbons										
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2400	250	810	720	100	4900	9100	400	5188959

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		FDL034		FDL036	FDL037	FDL039	FDL040		
Sampling Date		2017/09/12		2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01		627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_10	RDL	SS_CT_12	SS_CT_13	SS_CT_15	SS_CT_16	RDL	QC Batch
F2-F4 Hydrocarbons									
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	290	210	<100	150	660	240	100	5188959
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Maxxam ID		FDL043	FDL049	FDL053	FDL054		FDL061		
Sampling Date		2017/09/12	2017/09/13	2017/09/13	2017/09/13		2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01		627212-01-01		
	UNITS	SS_CT_19	SS_CT_24	SS_CT_28	SS_CT_29	RDL	SS_CT_36	RDL	QC Batch
F2-F4 Hydrocarbons									
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	330	4500	270	750	100	4800	200	5188959
RDL = Reportable Detection Limit									
OC Batch = Quality Control Batch									

		1								
Maxxam ID		FDL062		FDL063		FDL064		FDL069		
Sampling Date		2017/09/13		2017/09/13		2017/09/13		2017/09/13		
COC Number		627212-01-01		627212-01-01		627212-01-01		627212-01-01		
	UNITS	SS_CT_37	RDL	SS_CT_38	RDL	SS_CT_39	RDL	SS_CT_44	RDL	QC Batch
F2-F4 Hydrocarbons										
			_					_		
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	480	350	170	100	2000	410	150	100	5188959
F4G-sg (Grav. Heavy Hydrocarbons) RDL = Reportable Detection Limit	ug/g	480	350	170	100	2000	410	150	100	5188959

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		FDL075	FDL076			FDL079	FDL080				
Sampling Date		2017/09/13	2017/09/13			2017/09/13	2017/09/13				
COC Number		627212-01-01	627212-01-01			627212-01-01	627212-01-01				
	UNITS	SS_CT_49	SS_CT_49_FD	RDL	QC Batch	SS_CT_52	SS_CT_53	RDL	QC Batch		
F2-F4 Hydrocarbons											
rz-r4 nyurocarbons											
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	1200	830	250	5188959	160	480	100	5189073		
,	ug/g	1200	830	250	5188959	160	480	100	5189073		

Maxxam ID		FDL080	FDL081			FDL087	FDL087		
Sampling Date		2017/09/13	2017/09/12			2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01			627212-01-01	627212-01-01		
	UNITS	SS_CT_53 Lab-Dup	SS_CT_54	RDL	QC Batch	SD_CT_02	SD_CT_02 Lab-Dup	RDL	QC Batch
F2-F4 Hydrocarbons									
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	390	410	100	5189073	2200	2600	300	5184457

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		FDL088	FDL089		
Sampling Date		2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01		
	UNITS	SD_CT_02_FD	SD_CT_03	RDL	QC Batch
Г					
F2-F4 Hydrocarbons					
F2-F4 Hydrocarbons F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	<100	440	100	5184457
•	ug/g	<100	440	100	5184457

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		FDL030	FDL030	FDL031	FDL032	FDL033	FDL034		
Sampling Date		2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12	2017/09/12		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_07	SS_CT_07 Lab-Dup	SS_CT_07 FD	SS_CT_08	SS_CT_09	SS_CT_10	RDL	QC Batch
PCBs									
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1260	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Calculated Total PCB	ug/g	<0.050		<0.050	<0.050	<0.050	<0.050	0.050	5170591
Surrogate Recovery (%)									
Decachlorobiphenyl	%	94	94	98	76	70	114		5174986
			•						

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Maxxam ID		FDL044	FDL055	FDL058	FDL061	FDL062	FDL063		
Sampling Date		2017/09/12	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13		
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01		
	UNITS	SS_CT_20 BG	SS_CT_30	SS_CT_33	SS_CT_36	SS_CT_37	SS_CT_38	RDL	QC Batch
PCBs									
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Aroclor 1260	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986
Calculated Total PCB	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5170591
Surrogate Recovery (%)									
Decachlorobiphenyl	%	87	97	93	96	96	97		5174986
RDL = Reportable Detection L	imit								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		FDL064	FDL066	FDL067	FDL068	FDL069	FDL087				
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13				
COC Number		627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01	627212-01-01				
	UNITS	SS_CT_39	SS_CT_41	SS_CT_42	SS_CT_43	SS_CT_44	SD_CT_02	RDL	QC Batch		
PCBs											
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Aroclor 1260	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5174986		
Calculated Total PCB	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5170591		
Surrogate Recovery (%)	Surrogate Recovery (%)										
Decachlorobiphenyl	%	88	100	99	101	96	99		5174986		
RDL = Reportable Detection	n Limit										

QC Batch = Quality Control Batch

Maxxam ID		FDL090		
Sampling Date		2017/09/13		
COC Number		627212-01-01		
	UNITS	SD_CT_04	RDL	QC Batch
PCBs				
Aroclor 1016	ug/g	<0.050	0.050	5174986
Aroclor 1221	ug/g	<0.050	0.050	5174986
Aroclor 1232	ug/g	<0.050	0.050	5174986
Aroclor 1248	ug/g	<0.050	0.050	5174986
Aroclor 1242	ug/g	<0.050	0.050	5174986
Aroclor 1254	ug/g	<0.050	0.050	5174986
Aroclor 1260	ug/g	<0.050	0.050	5174986
Calculated Total PCB	ug/g	<0.050	0.050	5170591
Surrogate Recovery (%)				
Decachlorobiphenyl	%	96		5174986
RDL = Reportable Detectio	n Limit		•	
QC Batch = Quality Contro	l Batch			

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 5.4°C

Revised report: issued report including lab duplicates as per request from Melanie. HM Oct 17/17

Sample FDL024 [SS_CT_02]: VOC Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDL030 [SS_CT_07]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL032 [SS CT 08]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

VOC/F1 Analysis: Detection limits were raised due to high moisture content. F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL033 [SS CT 09]: VOC/F1 Analysis: Detection limits were raised due to high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL034 [SS CT 10]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL051 [SS_CT_26]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDL061 [SS CT 36]: F2-F4 Analysis: Detection limits were adjusted for high moisture content

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL062 [SS CT 37]: VOCF1 Analysis: Detection limits were raised due to high moisture content of soil provided.

F2-F4 Analysis: Detection limits were adjusted for high moisture content

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL064 [SS CT 39]: VOC-F1 Analysis: Detection limits were raised due to high moisture content of soil provided.

F2-F4 Analysis: Detection limits were adjusted for high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL075 [SS_CT_49]: VOC-F1 Analysis: Detection limits were raised due to high moisture content and low weight of soil provided.

F2-F4 Analysis: Detection limits were adjusted for high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL076 [SS_CT_49_FD]: VOC-F1 Analysis: Detection limits were raised due to high moisture content and low weight of soil provided.

F2-F4 Analysis: Detection limits were adjusted for high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL086 [SD_CT_01]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

Sample FDL087 [SD_CT_02]: VOCF1 Analysis: Detection limits were raised due to high moisture content.

F4G Analysis: Due to high moisture content the detection limit was adjusted.

Sample FDL089 [SD_CT_03]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDL090 [SD_CT_04]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDL091 [SD CT 05 BG]: F2-F4: Detection limits were adjusted for high moisture content.

Results relate only to the items tested.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5170876	DBF	RPD [FDL023-02]	Moisture	2017/09/20	4.3	· · · · · · · · · · · · · · · · · · ·	%	25
5172674	ASL	Matrix Spike	4-Bromofluorobenzene	2017/09/20		104	%	60 - 140
			D10-o-Xylene	2017/09/20		97 (1)	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/20		96	%	60 - 140
			D8-Toluene	2017/09/20		100	%	60 - 140
			1,1,1-Trichloroethane	2017/09/20		105	%	60 - 140
			1,1,2,2-Tetrachloroethane	2017/09/20		90	%	60 - 140
			1,1,2-Trichloroethane	2017/09/20		90	%	60 - 140
			1,1-Dichloroethane	2017/09/20		104	%	60 - 140
			1,1-Dichloroethylene	2017/09/20		108	%	60 - 140
			1,2-Dichlorobenzene	2017/09/20		90	%	60 - 140
			1,2-Dichloroethane	2017/09/20		94	%	60 - 140
			1,2-Dichloropropane	2017/09/20		93	%	60 - 140
			1,3-Dichlorobenzene	2017/09/20		90	%	60 - 140
			1,4-Dichlorobenzene	2017/09/20		89	%	60 - 140
			Benzene	2017/09/20		97	%	60 - 140
			Bromodichloromethane	2017/09/20		96	%	60 - 140
			Bromoform	2017/09/20		96	%	60 - 140
			Bromomethane	2017/09/20		90	%	60 - 140
			Carbon Tetrachloride	2017/09/20		103	%	60 - 140
			Chlorobenzene	2017/09/20		98	%	60 - 140
			Chloroethane	2017/09/20		91	%	60 - 140
			Chloroform	2017/09/20		94	%	60 - 140
			cis-1,2-Dichloroethylene	2017/09/20		101	%	60 - 140
			cis-1,3-Dichloropropene	2017/09/20		95	%	60 - 140
			Dibromochloromethane	2017/09/20		94	%	60 - 140
			Ethylbenzene	2017/09/20		105	%	60 - 140
			Ethylene Dibromide	2017/09/20		89	%	60 - 140
			Methyl t-butyl ether (MTBE)	2017/09/20		105	%	60 - 140
			Methylene Chloride(Dichloromethane)	2017/09/20		99	%	60 - 140
			o-Xylene	2017/09/20		101	%	60 - 140
			p+m-Xylene	2017/09/20		103	%	60 - 140
			Styrene	2017/09/20		104	%	60 - 140
			Tetrachloroethylene	2017/09/20		102	%	60 - 140
			Toluene	2017/09/20		100	%	60 - 140
			trans-1,2-Dichloroethylene	2017/09/20		104	%	60 - 140
			trans-1,3-Dichloropropene	2017/09/20		81	%	60 - 140
			Trichloroethylene	2017/09/20		103	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2017/09/20		95	%	60 - 140
			Vinyl Chloride	2017/09/20		96	%	60 - 140
5172674	ASL	Spiked Blank	4-Bromofluorobenzene	2017/09/20		100	%	60 - 140
3172071	7132	Spined Blank	D10-o-Xylene	2017/09/20		99	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/20		99	%	60 - 140
			D8-Toluene	2017/09/20		100	%	60 - 140
			1,1,1-Trichloroethane	2017/09/20		108	%	60 - 130
			1,1,2,2-Tetrachloroethane	2017/09/20		95	%	60 - 130
			1,1,2-Trichloroethane	2017/09/20		98	%	60 - 130
			1,1-Dichloroethane	2017/09/20		108	%	60 - 130
			1,1-Dichloroethylene	2017/09/20		111	%	60 - 130
			1,2-Dichlorobenzene	2017/09/20		94	%	60 - 130
			1,2-Dichlorobenzene 1,2-Dichloroethane	2017/09/20		101	%	60 - 130
			1,2-Dichloropernane	2017/09/20		101	%	60 - 130
				2017/09/20				
			1,3-Dichlorobenzene	2017/03/20		96	%	60 - 13

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limi
			1,4-Dichlorobenzene	2017/09/20		95	%	60 - 13
			Benzene	2017/09/20		102	%	60 - 13
			Bromodichloromethane	2017/09/20		102	%	60 - 13
			Bromoform	2017/09/20		98	%	60 - 13
			Bromomethane	2017/09/20		94	%	60 - 14
			Carbon Tetrachloride	2017/09/20		106	%	60 - 13
			Chlorobenzene	2017/09/20		101	%	60 - 1
			Chloroethane	2017/09/20		93	%	60 - 1
			Chloroform	2017/09/20		99	%	60 - 1
			cis-1,2-Dichloroethylene	2017/09/20		105	%	60 - 1
			cis-1,3-Dichloropropene	2017/09/20		105	%	60 - 1
			Dibromochloromethane	2017/09/20		101	%	60 - 1
			Ethylbenzene	2017/09/20		106	%	60 - 1
			Ethylene Dibromide	2017/09/20		97		60 - 1
			Methyl t-butyl ether (MTBE)	2017/09/20		112		60 - 1
			Methylene Chloride(Dichloromethane)	2017/09/20		105		60 - 1
			o-Xylene	2017/09/20		104		60 - 3
			p+m-Xylene	2017/09/20		105		60 - 3
			Styrene	2017/09/20		104		60 - :
			Tetrachloroethylene	2017/09/20		108		60 - :
			Toluene	2017/09/20		106		60 -
			trans-1,2-Dichloroethylene	2017/09/20		107		60 - 1
			trans-1,3-Dichloropropene	2017/09/20		92		60 -
			Trichloroethylene	2017/09/20		107		60 - 1
			Trichlorofluoromethane (FREON 11)	2017/09/20		98		60 -
			Vinyl Chloride	2017/09/20		98		
72674	ASL	Method Blank	4-Bromofluorobenzene	2017/09/20		100		60 - 3
/20/4	ASL	METHOR PIGHK					% % % % % % % %	60 - 1
			D10-o-Xylene	2017/09/20		101		60 - 1
			D4-1,2-Dichloroethane	2017/09/20		95		60 -
			D8-Toluene	2017/09/20	-25	101		60 -
			1,1,1-Trichloroethane	2017/09/20	<25			
			1,1,2,2-Tetrachloroethane	2017/09/20	<25			
			1,1,2-Trichloroethane	2017/09/20	<25			
			1,1-Dichloroethane	2017/09/20	<25			
			1,1-Dichloroethylene	2017/09/20	<25			
			1,2-Dichlorobenzene	2017/09/20	<25			
			1,2-Dichloroethane	2017/09/20	<25			
			1,2-Dichloropropane	2017/09/20	<25			
			1,3-Dichlorobenzene	2017/09/20	<25			
			1,4-Dichlorobenzene	2017/09/20	<25			
			Benzene	2017/09/20	<25			
			Bromodichloromethane	2017/09/20	<25			
			Bromoform	2017/09/20	<25		ug/kg	
			Bromomethane	2017/09/20	<50		ug/kg	
			Carbon Tetrachloride	2017/09/20	<25			
			Chlorobenzene	2017/09/20	<25		ug/kg	
			Chloroethane	2017/09/20	<200		ug/kg	
			Chloroform	2017/09/20	<25		ug/kg	
			cis-1,2-Dichloroethylene	2017/09/20		ug/kg		
			cis-1,3-Dichloropropene	2017/09/20	<25			
			Dibromochloromethane	2017/09/20	<25			
			Ethylbenzene	2017/09/20	<25			
			Ethylene Dibromide	2017/09/20	<25		ug/kg	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Methyl t-butyl ether (MTBE)	2017/09/20	<25	•	ug/kg	
			Methylene Chloride(Dichloromethane)	2017/09/20	<50		ug/kg	
			o-Xylene	2017/09/20	<25		ug/kg	
			p+m-Xylene	2017/09/20	<25		ug/kg	
			Styrene	2017/09/20	<25		ug/kg	
			Tetrachloroethylene	2017/09/20	<25		ug/kg	
			Toluene	2017/09/20	<25		ug/kg	
			Total Xylenes	2017/09/20	<50		ug/kg	
			trans-1,2-Dichloroethylene	2017/09/20	<25		ug/kg	
			trans-1,3-Dichloropropene	2017/09/20	<25		ug/kg	
			Trichloroethylene	2017/09/20	<10		ug/kg	
			Trichlorofluoromethane (FREON 11)	2017/09/20	<25		ug/kg	
			Vinyl Chloride	2017/09/20	<20		ug/kg	
172674	ASL	RPD	1,1,1-Trichloroethane	2017/09/20	NC		%	50
	7.02	2	1,1,2,2-Tetrachloroethane	2017/09/20	NC		%	50
			1,1,2-Trichloroethane	2017/09/20	NC		%	50
			1,1-Dichloroethane	2017/09/20	NC		%	50
			1,1-Dichloroethylene	2017/09/20	NC		%	50
			1,2-Dichlorobenzene	2017/09/20	NC		%	50
			1,2-Dichloroethane	2017/09/20	NC		%	50
			1,2-Dichloropropane	2017/09/20	NC		%	50
			1,3-Dichlorobenzene	2017/09/20	NC		%	50
			1,4-Dichlorobenzene	2017/09/20	NC		%	50
			Benzene	2017/09/20	NC		%	50
			Bromodichloromethane	2017/09/20	NC		%	50
			Bromoform	2017/09/20	NC		%	50
			Bromomethane	2017/09/20	NC		%	50
			Carbon Tetrachloride	2017/09/20	NC		%	50
			Chlorobenzene	2017/09/20	NC		%	50
			Chloroethane	2017/09/20	NC		%	50
			Chloroform	2017/09/20	NC		%	50
			cis-1,2-Dichloroethylene	2017/09/20	NC		%	50
			cis-1,3-Dichloropropene	2017/09/20	NC		%	50
			Dibromochloromethane	2017/09/20	NC		% %	50
				2017/09/20	NC		%	50
			Ethylpenzene				%	50 50
			Ethylene Dibromide	2017/09/20 2017/09/20	NC NC		%	50 50
			Methylana Chlorida (Dichlaramathana)					
			Methylene Chloride(Dichloromethane)	2017/09/20	NC		%	50
			o-Xylene	2017/09/20	NC		%	50 50
			p+m-Xylene	2017/09/20	NC		%	50
			Styrene	2017/09/20	NC		%	50
			Tetrachloroethylene	2017/09/20	NC		%	50
			Toluene	2017/09/20	NC		%	50
			Total Xylenes	2017/09/20	NC		%	50
			trans-1,2-Dichloroethylene	2017/09/20	NC		%	50
			trans-1,3-Dichloropropene	2017/09/20	NC		%	50
			Trichloroethylene	2017/09/20	NC		%	50
			Trichlorofluoromethane (FREON 11)	2017/09/20	NC		%	50
	_		Vinyl Chloride	2017/09/20	NC		%	50
172699	DBF	RPD	Moisture	2017/09/20	3.1		%	25
172886	DBF	RPD [FDL028-02]	Moisture	2017/09/20	9.8		%	25
173520	DBF	RPD [FDL063-02]	Moisture	2017/09/21	5.1		%	25
5174913	DBF	RPD [FDL073-02]	Moisture	2017/09/21	21		%	25

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5174986	CBR	Matrix Spike [FDL030-02]	Decachlorobiphenyl	2017/09/26		90	%	30 - 130
017.1000	05.1	maam opme (1 2 2000 oz.)	Aroclor 1254	2017/09/26		85	%	30 - 130
5174986	CBR	Spiked Blank	Decachlorobiphenyl	2017/09/26		92	%	30 - 130
			Aroclor 1254	2017/09/26		84	%	30 - 130
5174986	CBR	Method Blank	Decachlorobiphenyl	2017/09/26		97	%	30 - 130
517 .500	05	method Blank	Aroclor 1016	2017/09/26	< 0.050	3,	ug/g	50 100
			Aroclor 1221	2017/09/26	<0.050		ug/g	
			Aroclor 1232	2017/09/26	<0.050		ug/g	
			Aroclor 1248	2017/09/26	<0.050		ug/g	
			Aroclor 1242	2017/09/26	<0.050		ug/g	
			Aroclor 1254	2017/09/26	< 0.050		ug/g	
			Aroclor 1260	2017/09/26	< 0.050		ug/g	
5174986	CBR	RPD [FDL030-02]	Aroclor 1016	2017/09/26	NC		%	50
		,	Aroclor 1221	2017/09/26	NC		%	50
			Aroclor 1232	2017/09/26	NC		%	50
			Aroclor 1248	2017/09/26	NC		%	50
			Aroclor 1242	2017/09/26	NC		%	50
			Aroclor 1254	2017/09/26	NC		%	50
			Aroclor 1260	2017/09/26	NC		%	50
5175707	DR1	Matrix Spike	4-Bromofluorobenzene	2017/09/23		100	%	60 - 140
		•	D10-o-Xylene	2017/09/23		99	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/23		121	%	60 - 140
			D8-Toluene	2017/09/23		104	%	60 - 140
			Benzene	2017/09/23		111	%	60 - 140
			Ethylbenzene	2017/09/23		83	%	60 - 140
			, Toluene	2017/09/23		93	%	60 - 140
			p+m-Xylene	2017/09/23		88	%	60 - 140
			o-Xylene	2017/09/23		93	%	60 - 140
			F1 (C6-C10)	2017/09/23		NC	%	60 - 140
5175707	DR1	Spiked Blank	4-Bromofluorobenzene	2017/09/22		92	%	60 - 140
		·	D10-o-Xylene	2017/09/22		84	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/22		118	%	60 - 140
			D8-Toluene	2017/09/22		105	%	60 - 140
			Benzene	2017/09/22		108	%	60 - 130
			Ethylbenzene	2017/09/22		81	%	60 - 130
			Toluene	2017/09/22		96	%	60 - 130
			p+m-Xylene	2017/09/22		81	%	60 - 130
			o-Xylene	2017/09/22		84	%	60 - 130
			F1 (C6-C10)	2017/09/22		100	%	80 - 120
5175707	DR1	Method Blank	4-Bromofluorobenzene	2017/09/22		85	%	60 - 140
			D10-o-Xylene	2017/09/22		75	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/22		118	%	60 - 140
			D8-Toluene	2017/09/22		96	%	60 - 140
			Benzene	2017/09/22	< 0.0060		ug/g	
			Ethylbenzene	2017/09/22	< 0.010		ug/g	
			Toluene	2017/09/22	< 0.020		ug/g	
			p+m-Xylene	2017/09/22	<0.020		ug/g	
			o-Xylene	2017/09/22	<0.020		ug/g	
			Total Xylenes	2017/09/22	<0.020		ug/g	
			F1 (C6-C10)	2017/09/22	<10		ug/g	
			F1 (C6-C10) - BTEX	2017/09/22	<10		ug/g	
5175707	DR1	RPD	Benzene	2017/09/23	NC		%	50
			Ethylbenzene	2017/09/23	NC		%	50

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Dato		ασ . γρο	Toluene	2017/09/23	NC		%	50
			p+m-Xylene	2017/09/23	NC		%	50
			o-Xylene	2017/09/23	NC		%	50
			Total Xylenes	2017/09/23	NC		%	50
			F1 (C6-C10)	2017/09/23	7.9		%	30
			F1 (C6-C10) - BTEX	2017/09/23	7.9		%	30
5176461	KH2	Matrix Spike [FDL025-05]	4-Bromofluorobenzene	2017/09/25		96	%	60 - 140
			D10-o-Xylene	2017/09/25		95	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		100	%	60 - 140
			D8-Toluene	2017/09/25		101	%	60 - 140
			Benzene	2017/09/25		98	%	60 - 140
			Ethylbenzene	2017/09/25		89	%	60 - 140
			Toluene	2017/09/25		90	%	60 - 140
			p+m-Xylene	2017/09/25		87	%	60 - 140
			o-Xylene	2017/09/25		87	%	60 - 140
			F1 (C6-C10)	2017/09/25		96	%	60 - 140
5176461	KH2	Spiked Blank	4-Bromofluorobenzene	2017/09/25		96	%	60 - 140
			D10-o-Xylene	2017/09/25		89	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		100	%	60 - 140
			D8-Toluene	2017/09/25		101	%	60 - 140
			Benzene	2017/09/25		100	%	60 - 130
			Ethylbenzene	2017/09/25		92	%	60 - 130
			Toluene	2017/09/25		92	%	60 - 130
			p+m-Xylene	2017/09/25		90	%	60 - 130
			o-Xylene	2017/09/25		90	%	60 - 130
			F1 (C6-C10)	2017/09/25		91	%	80 - 120
5176461	KH2	Method Blank	4-Bromofluorobenzene	2017/09/25		91	%	60 - 140
			D10-o-Xylene	2017/09/25		84	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		99	%	60 - 140
			D8-Toluene	2017/09/25		98	%	60 - 140
			Benzene	2017/09/25	< 0.0060	30	ug/g	00 1.0
			Ethylbenzene	2017/09/25	< 0.010		ug/g	
			Toluene	2017/09/25	<0.020		ug/g	
			p+m-Xylene	2017/09/25	<0.020		ug/g	
			o-Xylene	2017/09/25	<0.020		ug/g	
			Total Xylenes	2017/09/25	<0.020		ug/g	
			F1 (C6-C10)	2017/09/25	<10		ug/g	
			F1 (C6-C10) - BTEX	2017/09/25	<10		ug/g	
5176461	KH2	RPD [FDL025-05]	Benzene	2017/09/25	NC		%	50
3170101	11112	111 D [1 D2023 03]	Ethylbenzene	2017/09/25	NC		%	50
			Toluene	2017/09/25	NC		%	50
			p+m-Xylene	2017/09/25	NC		%	50
			o-Xylene	2017/09/25	NC		%	50
			Total Xylenes	2017/09/25	NC		%	50
			F1 (C6-C10)	2017/09/25	NC		%	30
			F1 (C6-C10) - BTEX	2017/09/25	NC		%	30
5177171	BAN	Matrix Spike [FDL029-03]	Acid Extractable Antimony (Sb)	2017/09/25		101	%	75 - 125
J.,,1,1	DAIN		Acid Extractable Antimony (55) Acid Extractable Arsenic (As)	2017/09/25		103	%	75 - 125
			Acid Extractable Arsellic (As) Acid Extractable Barium (Ba)	2017/09/25		NC	%	75 - 125
			Acid Extractable Barryllium (Be)	2017/09/25		102	%	75 - 125
			Acid Extractable Beryllidin (Be) Acid Extractable Bismuth (Bi)	2017/09/25		102	%	75 - 125 75 - 125
			Acid Extractable Bismuth (Bi) Acid Extractable Boron (B)	2017/09/25		97	%	75 - 125
			TICIA ENTIACTABLE DOTOIT (D)	2011/03/23		31	/0	15-125

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Chromium (Cr)	2017/09/25		100	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/25		101	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/25		97	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/25		99	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/25		105	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/25		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/25		101	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/25		106	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/25		104	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/25		103	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/25		107	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/25		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/25		102	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/25		104	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/25		108	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/25		99	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/25		95	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/25		NC	%	75 - 125
5177171	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2017/09/22		101	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/22		105	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/22		102	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/22		105	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/22		102	%	75 - 125
			Acid Extractable Boron (B)	2017/09/22		109	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/22		103	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/22		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/22		104	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/22		102	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		103	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/22		105	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		105	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		107	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		103	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		104	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		103	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		105	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		104	%	75 - 125
			Acid Extractable Thallium (Tl)	2017/09/22		104	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/22		108	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/22		106	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/22		104	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/22		108	%	75 - 125
5177171	BAN	Method Blank	Acid Extractable Aluminum (Al)	2017/09/22	<10		mg/kg	
			Acid Extractable Antimony (Sb)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Arsenic (As)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Barium (Ba)	2017/09/22	<5.0		mg/kg	
			Acid Extractable Beryllium (Be)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Bismuth (Bi)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Boron (B)	2017/09/22	<50		mg/kg	
			Acid Extractable Cadmium (Cd)	2017/09/22	<0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2017/09/22	<1.0		mg/kg	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Copper (Cu)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2017/09/22	<50		mg/kg	
			Acid Extractable Lead (Pb)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Manganese (Mn)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Mercury (Hg)	2017/09/22	< 0.10		mg/kg	
			Acid Extractable Molybdenum (Mo)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Nickel (Ni)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Rubidium (Rb)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Selenium (Se)	2017/09/22	<1.0		mg/kg	
			Acid Extractable Silver (Ag)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Strontium (Sr)	2017/09/22	<5.0		mg/kg	
			Acid Extractable Thallium (TI)	2017/09/22	< 0.10		mg/kg	
			Acid Extractable Tin (Sn)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Uranium (U)	2017/09/22	< 0.10		mg/kg	
			Acid Extractable Vanadium (V)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Zinc (Zn)	2017/09/22	<5.0		mg/kg	
5177171	BAN	RPD [FDL029-03]	Acid Extractable Aluminum (Al)	2017/09/22	2.7		%	35
			Acid Extractable Antimony (Sb)	2017/09/22	NC		%	35
			Acid Extractable Arsenic (As)	2017/09/22	NC		%	35
			Acid Extractable Barium (Ba)	2017/09/22	5.3		%	35
			Acid Extractable Beryllium (Be)	2017/09/22	NC		%	35
			Acid Extractable Bismuth (Bi)	2017/09/22	NC		%	35
			Acid Extractable Boron (B)	2017/09/22	NC		%	35
			Acid Extractable Cadmium (Cd)	2017/09/22	NC		%	35
			Acid Extractable Chromium (Cr)	2017/09/22	4.2		%	35
			Acid Extractable Cobalt (Co)	2017/09/22	0.29		%	35
			Acid Extractable Copper (Cu)	2017/09/22	0.39		%	35
			Acid Extractable Iron (Fe)	2017/09/22	6.7		%	35
			Acid Extractable Lead (Pb)	2017/09/22	36 (2)		%	35
			Acid Extractable Lithium (Li)	2017/09/22	3.8		%	35
			Acid Extractable Manganese (Mn)	2017/09/22	6.8		%	35
			Acid Extractable Mercury (Hg)	2017/09/22	NC		%	35
			Acid Extractable Molybdenum (Mo)	2017/09/22	26		%	35
			Acid Extractable Nickel (Ni)	2017/09/22	12		%	35
			Acid Extractable Rubidium (Rb)	2017/09/22	6.3		%	35
			Acid Extractable Selenium (Se)	2017/09/22	NC		%	35
			Acid Extractable Silver (Ag)	2017/09/22	NC		%	35
			Acid Extractable Strontium (Sr)	2017/09/22	6.7		%	35
			Acid Extractable Thallium (TI)	2017/09/22	0.74		%	35
			Acid Extractable Tin (Sn)	2017/09/22	NC		%	35
			Acid Extractable Uranium (U)	2017/09/22	4.5		%	35
			Acid Extractable Vanadium (V)	2017/09/22	5.2		%	35
			Acid Extractable Zinc (Zn)	2017/09/22	7.8		%	35
5177173	BAN	Matrix Spike [FDL091-03]	Acid Extractable Antimony (Sb)	2017/09/22		NC	%	75 - 125
	.	232p.no [1 22002 00]	Acid Extractable Arsenic (As)	2017/09/22		104	%	75 - 12 5
			Acid Extractable Barium (Ba)	2017/09/22		NC	%	75 - 125 75 - 125
			Acid Extractable Baridin (Ba) Acid Extractable Beryllium (Be)	2017/09/22		107	%	75 - 125
			Acid Extractable Berymum (Be) Acid Extractable Bismuth (Bi)	2017/09/22		109	%	75 - 125
			Acid Extractable Bismuth (B) Acid Extractable Boron (B)	2017/09/22		109	%	75 - 125
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2017/09/22		105	%	75 - 125 75 - 125
			Acid Extractable Cadmium (Cd) Acid Extractable Chromium (Cr)	2017/09/22		103	% %	75 - 125 75 - 125
			Acid Extractable Ciriofficini (Cr) Acid Extractable Cobalt (Co)	2017/09/22		102	%	75 - 125 75 - 125

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Copper (Cu)	2017/09/22		99	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		103	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/22		104	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		102	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		97	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		103	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		100	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		106	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		104	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/22		106	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/22		110	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/22		108	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/22		103	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/22		NC	%	75 - 125
5177173	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2017/09/22		107	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/22		105	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/22		107	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/22		107	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/22		107	%	75 - 125
			Acid Extractable Boron (B)	2017/09/22		105	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/22		104	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/22		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/22		103	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/22		101	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		105	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/22		109	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		105	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		106	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		105	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		104	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		104	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		106	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		105	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		103	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/22		105	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/22		114	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/22		108	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/22		105	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/22		104	%	75 - 125
5177173	BAN	Method Blank	Acid Extractable Aluminum (AI)	2017/09/22	<10		mg/kg	
			Acid Extractable Antimony (Sb)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Arsenic (As)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Barium (Ba)	2017/09/22	<5.0		mg/kg	
			Acid Extractable Beryllium (Be)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Bismuth (Bi)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Boron (B)	2017/09/22	<50		mg/kg	
			Acid Extractable Cadmium (Cd)	2017/09/22	< 0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2017/09/22	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2017/09/22	<50		mg/kg	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC		007		D . A . L . L	V 1		LINUTS	001
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Lead (Pb)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Manganese (Mn)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Mercury (Hg)	2017/09/22	<0.10		mg/kg	
			Acid Extractable Molybdenum (Mo)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Nickel (Ni)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Rubidium (Rb)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Selenium (Se)	2017/09/22	<1.0		mg/kg	
			Acid Extractable Silver (Ag)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Strontium (Sr)	2017/09/22	<5.0		mg/kg	
			Acid Extractable Thallium (TI)	2017/09/22	<0.10		mg/kg	
			Acid Extractable Tin (Sn)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Uranium (U)	2017/09/22	<0.10		mg/kg	
			Acid Extractable Vanadium (V)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Zinc (Zn)	2017/09/22	<5.0		mg/kg	
5177173	BAN	RPD [FDL091-03]	Acid Extractable Aluminum (Al)	2017/09/22	8.7		%	35
			Acid Extractable Antimony (Sb)	2017/09/22	3.5		%	35
			Acid Extractable Arsenic (As)	2017/09/22	NC		%	35
			Acid Extractable Barium (Ba)	2017/09/22	8.0		%	35
			Acid Extractable Beryllium (Be)	2017/09/22	NC		%	35
			Acid Extractable Bismuth (Bi)	2017/09/22	NC		%	35
			Acid Extractable Boron (B)	2017/09/22	NC		%	35
			Acid Extractable Cadmium (Cd)	2017/09/22	NC		%	35
			Acid Extractable Chromium (Cr)	2017/09/22	11		%	35
			Acid Extractable Cobalt (Co)	2017/09/22	19		%	35
			Acid Extractable Copper (Cu)	2017/09/22	9.2		%	35
			Acid Extractable Iron (Fe)	2017/09/22	11		%	35
			Acid Extractable Lead (Pb)	2017/09/22	4.7		%	35
			Acid Extractable Lithium (Li)	2017/09/22	6.9		%	35
			Acid Extractable Manganese (Mn)	2017/09/22	8.2		%	35
			Acid Extractable Mercury (Hg)	2017/09/22	6.0		%	35
			Acid Extractable Molybdenum (Mo)	2017/09/22	NC		%	35
			Acid Extractable Nickel (Ni)	2017/09/22	6.3		%	35
			Acid Extractable Rubidium (Rb)	2017/09/22	17		%	35
			Acid Extractable Selenium (Se)	2017/09/22	6.6		%	35
			Acid Extractable Silver (Ag)	2017/09/22	NC		%	35
			Acid Extractable Strontium (Sr)	2017/09/22	16		%	35
			Acid Extractable Thallium (TI)	2017/09/22	8.9		%	35
			Acid Extractable Tin (Sn)	2017/09/22	NC		%	35
			Acid Extractable Uranium (U)	2017/09/22	0.51		%	35
			Acid Extractable Vanadium (V)	2017/09/22	8.5		%	35
			Acid Extractable Zinc (Zn)	2017/09/22	9.5		%	35
5177372	BAN	Matrix Spike	Acid Extractable Antimony (Sb)	2017/09/22		93	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/22		99	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/22		95	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/22		100	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/22		102	%	75 - 125
			Acid Extractable Boron (B)	2017/09/22		100	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/22		101	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/22		92	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/22		100	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/22		98	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		96	%	75 - 125

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Lithium (Li)	2017/09/22		102	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		99	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		100	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		99	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		101	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		104	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		101	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		101	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/22		100	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/22		98	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/22		97	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/22		85	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/22		98	%	75 - 125
5177372	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2017/09/22		98	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/22		103	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/22		96	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/22		100	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/22		103	%	75 - 125
			Acid Extractable Boron (B)	2017/09/22		103	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/22		102	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/22		102	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/22		100	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/22		99	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		98	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/22		102	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		104	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		110	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		108	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		104	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		101	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		104	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		98	%	75 - 12!
			Acid Extractable Strontium (Sr)	2017/09/22		99	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/22		102	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/22		101	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/22		98	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/22		101	%	75 - 125
			Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2017/09/22		102	%	75 - 125
5177372	BAN	Method Blank	Acid Extractable Aluminum (Al)	2017/09/25	<10	102	mg/kg	75-125
31//3/2	DAN	Wethou blank	Acid Extractable Antimony (Sb)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Aritimony (3b) Acid Extractable Arsenic (As)	2017/09/25	<2.0			
			Acid Extractable Arsenic (AS) Acid Extractable Barium (Ba)	2017/09/25			mg/kg mg/kg	
			Acid Extractable Barium (Ba) Acid Extractable Beryllium (Be)	2017/09/25	<5.0 <2.0			
							mg/kg	
			Acid Extractable Bismuth (Bi)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Boron (B)	2017/09/25	<50 <0.20		mg/kg	
			Acid Extractable Cadmium (Cd)	2017/09/25	<0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2017/09/25	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2017/09/25	<50		mg/kg	
			Acid Extractable Lead (Pb)	2017/09/25	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2017/09/25	<2.0		mg/kg	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Data Analyzod	Value	Pocovory	UNITS	QC Limits
Dattii	IIIIL	QC туре	Acid Extractable Manganese (Mn)	Date Analyzed 2017/09/25	<2.0	Recovery	mg/kg	QC LIIIIIS
			Acid Extractable Manganese (Min) Acid Extractable Mercury (Hg)	2017/09/25	<0.10		mg/kg	
			Acid Extractable Melculy (fig) Acid Extractable Molybdenum (Mo)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Molybuerium (Mo) Acid Extractable Nickel (Ni)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Nicker (Ni) Acid Extractable Rubidium (Rb)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Rubidium (Rb) Acid Extractable Selenium (Se)	2017/09/25	<1.0		mg/kg	
			Acid Extractable Selement (3e) Acid Extractable Silver (Ag)	2017/09/25	<0.50		mg/kg	
			Acid Extractable Silver (Ag) Acid Extractable Strontium (Sr)	2017/09/25	<5.0		mg/kg	
			Acid Extractable Strontium (SI) Acid Extractable Thallium (TI)	2017/09/25	<0.10			
			Acid Extractable Triallidit (11) Acid Extractable Tin (Sn)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Till (Sil) Acid Extractable Uranium (U)	2017/09/25	<0.10		mg/kg	
			Acid Extractable Oranidin (0) Acid Extractable Vanadium (V)	2017/09/25	<2.0		mg/kg	
			Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2017/09/25	<5.0		mg/kg	
F177272	DAN	DDD	, ,	• •			mg/kg	25
5177372	BAN	RPD	Acid Extractable Aluminum (Al)	2017/09/22	0.37		%	35 25
			Acid Extractable Antimony (Sb)	2017/09/22 2017/09/22	NC NC		% %	35 35
			Acid Extractable Arsenic (As)	2017/09/22	NC			
			Acid Extractable Barium (Ba)	2017/09/22	11 NG		%	35 25
			Acid Extractable Beryllium (Be) Acid Extractable Bismuth (Bi)		NC NC		%	35 25
			Acid Extractable Bismuth (BI) Acid Extractable Boron (B)	2017/09/22			%	35
			()	2017/09/22	NC		%	35
			Acid Extractable Cadmium (Cd)	2017/09/22	NC		%	35
			Acid Extractable Chromium (Cr)	2017/09/22 2017/09/22	12		%	35 35
			Acid Extractable Cobalt (Co)		3.0		%	
			Acid Extractable Copper (Cu)	2017/09/22	12		%	35
			Acid Extractable Iron (Fe)	2017/09/22	20		%	35
			Acid Extractable Lead (Pb)	2017/09/22 2017/09/22	5.9		%	35 35
			Acid Extractable Lithium (Li)	• •	10		%	
			Acid Extractable Manganese (Mn)	2017/09/22	5.8		%	35
			Acid Extractable Mercury (Hg)	2017/09/22	NC		%	35
			Acid Extractable Molybdenum (Mo)	2017/09/22	NC		%	35 25
			Acid Extractable Nickel (Ni)	2017/09/22	3.1		%	35 25
			Acid Extractable Rubidium (Rb)	2017/09/22	12 NG		%	35
			Acid Extractable Selenium (Se)	2017/09/22	NC		%	35
			Acid Extractable Silver (Ag)	2017/09/22	NC		%	35
			Acid Extractable Strontium (Sr)	2017/09/22	3.7		%	35
			Acid Extractable Thallium (TI)	2017/09/22	NC		%	35
			Acid Extractable Tin (Sn)	2017/09/22	NC		%	35
			Acid Extractable Uranium (U)	2017/09/22	3.7		%	35
			Acid Extractable Vanadium (V)	2017/09/22	19		%	35
F477760			Acid Extractable Zinc (Zn)	2017/09/22	2.4	0.5	%	35
5177768	XJI	Matrix Spike [FDL044-04]	4-Bromofluorobenzene	2017/09/25		95	%	60 - 140
			D10-o-Xylene	2017/09/25		83	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		100	%	60 - 140
			D8-Toluene	2017/09/25		102	%	60 - 140
			Benzene	2017/09/25		105	%	60 - 140
			Ethylbenzene	2017/09/25		97	%	60 - 140
			Toluene	2017/09/25		98	%	60 - 140
			p+m-Xylene	2017/09/25		94	%	60 - 140
			o-Xylene	2017/09/25		94	%	60 - 140
			F1 (C6-C10)	2017/09/25		91	%	60 - 140
5177768	XJI	Spiked Blank	4-Bromofluorobenzene	2017/09/25		96	%	60 - 140
			D10-o-Xylene	2017/09/25		84	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		103	%	60 - 140

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			D8-Toluene	2017/09/25		96	%	60 - 140
			Benzene	2017/09/25		103	%	60 - 130
			Ethylbenzene	2017/09/25		90	%	60 - 130
			Toluene	2017/09/25		91	%	60 - 130
			p+m-Xylene	2017/09/25		88	%	60 - 130
			o-Xylene	2017/09/25		88	%	60 - 130
			F1 (C6-C10)	2017/09/25		97	%	80 - 120
5177768	XJI	Method Blank	4-Bromofluorobenzene	2017/09/25		91	%	60 - 140
			D10-o-Xylene	2017/09/25		82	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		98	%	60 - 140
			D8-Toluene	2017/09/25		99	%	60 - 140
			Benzene	2017/09/25	< 0.0060		ug/g	
			Ethylbenzene	2017/09/25	< 0.010		ug/g	
			Toluene	2017/09/25	< 0.020		ug/g	
			p+m-Xylene	2017/09/25	< 0.020		ug/g	
			o-Xylene	2017/09/25	< 0.020		ug/g	
			Total Xylenes	2017/09/25	<0.020		ug/g	
			F1 (C6-C10)	2017/09/25	<10		ug/g	
			F1 (C6-C10) - BTEX	2017/09/25	<10		ug/g	
5177768	XJI	RPD [FDL044-04]	Benzene	2017/09/25	NC		%	50
			Ethylbenzene	2017/09/25	NC		%	50
			Toluene	2017/09/25	NC		%	50
			p+m-Xylene	2017/09/25	NC		%	50
			o-Xylene	2017/09/25	NC		%	50
			Total Xylenes	2017/09/25	NC		%	50
			F1 (C6-C10)	2017/09/25	NC		%	30
			F1 (C6-C10) - BTEX	2017/09/25	NC		%	30
5178025	YY	Matrix Spike [FDL065-03]	4-Bromofluorobenzene	2017/09/25		101	%	60 - 140
			D10-o-Xylene	2017/09/25		96	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		90	%	60 - 140
			D8-Toluene	2017/09/25		104	%	60 - 140
			Benzene	2017/09/25		102	%	60 - 140
			Ethylbenzene	2017/09/25		95	%	60 - 140
			Toluene	2017/09/25		101	%	60 - 140
			p+m-Xylene	2017/09/25		99	%	60 - 140
			o-Xylene	2017/09/25		97	%	60 - 140
			F1 (C6-C10)	2017/09/25		100	%	60 - 140
5178025	YY	Spiked Blank	4-Bromofluorobenzene	2017/09/25		102	%	60 - 140
01/0010	•	opined sidim	D10-o-Xylene	2017/09/25		106	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		90	%	60 - 140
			D8-Toluene	2017/09/25		104	%	60 - 140
			Benzene	2017/09/25		101	%	60 - 130
			Ethylbenzene	2017/09/25		96	%	60 - 130
			Toluene	2017/09/25		100	%	60 - 130
			p+m-Xylene	2017/09/25		100	%	60 - 130
			o-Xylene	2017/09/25		98	%	60 - 130
			F1 (C6-C10)	2017/09/25		89	%	80 - 120
5178025	YY	Method Blank	4-Bromofluorobenzene	2017/09/25		95	%	60 - 140
J17002J		Wiethor Dialik	D10-o-Xylene	2017/09/25		82	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/25		93	%	60 - 140
			D8-Toluene	2017/09/25		93 94	%	60 - 140
			Benzene	2017/09/25	<0.0060	94	% ug/g	00 - 140
			Ethylbenzene	2017/09/25	<0.000		ug/g ug/g	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC		007						001: ::
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Toluene	2017/09/25	<0.020		ug/g	
			p+m-Xylene	2017/09/25	<0.020		ug/g	
			o-Xylene	2017/09/25	<0.020		ug/g	
			Total Xylenes	2017/09/25	<0.020		ug/g	
			F1 (C6-C10)	2017/09/25	<10		ug/g	
			F1 (C6-C10) - BTEX	2017/09/25	<10		ug/g	
5178025	YY	RPD [FDL065-03]	Benzene	2017/09/26	NC		%	50
			Ethylbenzene	2017/09/26	NC		%	50
			Toluene	2017/09/26	NC		%	50
			p+m-Xylene	2017/09/26	NC		%	50
			o-Xylene	2017/09/26	NC		%	50
			Total Xylenes	2017/09/26	NC		%	50
			F1 (C6-C10)	2017/09/26	NC		%	30
			F1 (C6-C10) - BTEX	2017/09/26	NC		%	30
5178035	GTH	Matrix Spike	D10-Anthracene	2017/09/27		103	%	50 - 130
			D14-Terphenyl	2017/09/27		110	%	50 - 130
			D8-Acenaphthylene	2017/09/27		101	%	50 - 130
			1-Methylnaphthalene	2017/09/27		90	%	30 - 130
			2-Methylnaphthalene	2017/09/27		96	%	30 - 130
			Acenaphthene	2017/09/27		97	%	30 - 130
			Acenaphthylene	2017/09/27		106	%	30 - 130
			Anthracene	2017/09/27		90	%	30 - 130
			Benzo(a)anthracene	2017/09/27		NC	%	30 - 13
			Benzo(a)pyrene	2017/09/27		105	%	30 - 13
			Benzo(b)fluoranthene	2017/09/27		107	%	30 - 13
			. ,					
			Benzo(g,h,i)perylene	2017/09/27		104	%	30 - 130
			Benzo(j)fluoranthene	2017/09/27		106	%	30 - 130
			Benzo(k)fluoranthene	2017/09/27		108	%	30 - 13
			Chrysene	2017/09/27		97	%	30 - 13
			Dibenz(a,h)anthracene	2017/09/27		104	%	30 - 13
			Fluoranthene	2017/09/27		NC	%	30 - 13
			Fluorene	2017/09/27		107	%	30 - 13
			Indeno(1,2,3-cd)pyrene	2017/09/27		103	%	30 - 13
			Naphthalene	2017/09/27		92	%	30 - 13
			Perylene	2017/09/27		107	%	30 - 13
			Phenanthrene	2017/09/27		NC	%	30 - 13
			Pyrene	2017/09/27		NC	%	30 - 13
178035	GTH	Spiked Blank	D10-Anthracene	2017/09/27		119	%	50 - 13
			D14-Terphenyl	2017/09/27		98	%	50 - 13
			D8-Acenaphthylene	2017/09/27		91	%	50 - 13
			1-Methylnaphthalene	2017/09/27		85	%	30 - 13
			2-Methylnaphthalene	2017/09/27		91	%	30 - 13
			Acenaphthene	2017/09/27		92	%	30 - 13
			Acenaphthylene	2017/09/27		95	%	30 - 13
			Anthracene	2017/09/27		106	%	30 - 13
			Benzo(a)anthracene	2017/09/27		98	%	30 - 13
			Benzo(a)pyrene	2017/09/27		87	%	30 - 13
			Benzo(b)fluoranthene	2017/09/27		91	%	30 - 13
			Benzo(g,h,i)perylene	2017/09/27		80	%	30 - 13
			Benzo(j)fluoranthene	2017/09/27		89	%	30 - 13
			Benzo(k)fluoranthene	2017/09/27		84	%	30 - 13
						93	%	
			Chrysene	2017/09/27				30 - 130
			Dibenz(a,h)anthracene	2017/09/27		80	%	30 - 13

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		•	Fluoranthene	2017/09/27		106	%	30 - 130
			Fluorene	2017/09/27		94	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2017/09/27		79	%	30 - 130
			Naphthalene	2017/09/27		92	%	30 - 130
			Perylene	2017/09/27		88	%	30 - 130
			Phenanthrene	2017/09/27		98	%	30 - 130
			Pyrene	2017/09/27		101	%	30 - 130
5178035	GTH	Method Blank	D10-Anthracene	2017/09/27		90	%	50 - 130
			D14-Terphenyl	2017/09/27		87	%	50 - 130
			D8-Acenaphthylene	2017/09/27		92	%	50 - 130
			1-Methylnaphthalene	2017/09/27	< 0.0050		mg/kg	
			2-Methylnaphthalene	2017/09/27	< 0.0050		mg/kg	
			Acenaphthene	2017/09/27	< 0.0050		mg/kg	
			Acenaphthylene	2017/09/27	< 0.0050		mg/kg	
			Anthracene	2017/09/27	< 0.0050		mg/kg	
			Benzo(a)anthracene	2017/09/27	< 0.0050		mg/kg	
			Benzo(a)pyrene	2017/09/27	< 0.0050		mg/kg	
			Benzo(b)fluoranthene	2017/09/27	< 0.0050		mg/kg	
			Benzo(g,h,i)perylene	2017/09/27	< 0.0050		mg/kg	
			Benzo(j)fluoranthene	2017/09/27	< 0.0050		mg/kg	
			Benzo(k)fluoranthene	2017/09/27	< 0.0050		mg/kg	
			Chrysene	2017/09/27	< 0.0050		mg/kg	
			Dibenz(a,h)anthracene	2017/09/27	< 0.0050		mg/kg	
			Fluoranthene	2017/09/27	< 0.0050		mg/kg	
			Fluorene	2017/09/27	<0.0050		mg/kg	
			Indeno(1,2,3-cd)pyrene	2017/09/27	<0.0050		mg/kg	
			Naphthalene	2017/09/27	<0.0050		mg/kg	
			Perylene	2017/09/27	<0.0050		mg/kg	
			Phenanthrene	2017/09/27	<0.0050		mg/kg	
			Pyrene	2017/09/27	<0.0050		mg/kg	
5178035	GTH	RPD	1-Methylnaphthalene	2017/09/27	NC		%	50
			2-Methylnaphthalene	2017/09/27	35		%	50
			Acenaphthene	2017/09/27	7.6		%	50
			Acenaphthylene	2017/09/27	NC		%	50
			Anthracene	2017/09/27	37		%	50
			Benzo(a)anthracene	2017/09/27	36		%	50
			Benzo(a)pyrene	2017/09/27	41		%	50
			Benzo(b)fluoranthene	2017/09/27	48		%	50
			Benzo(g,h,i)perylene	2017/09/27	46		%	50
			Benzo(j)fluoranthene	2017/09/27	36		%	50
			Benzo(k)fluoranthene	2017/09/27	49		%	50
			Chrysene	2017/09/27	40		%	50
			Dibenz(a,h)anthracene	2017/09/27	NC		%	50
			Fluoranthene	2017/09/27	6.1		%	50
			Fluorene	2017/09/27	13		%	50
			Indeno(1,2,3-cd)pyrene	2017/09/27			%	50
			Naphthalene	2017/09/27	51 (3) NC		%	50 50
			Perylene	2017/09/27	29		% %	50 50
			-	2017/09/27				
			Phenanthrene		20		%	50 50
-17006-	A 1/C	Mahain Codin	Pyrene	2017/09/27	11	00	%	50
5178865	AKS	Matrix Spike	o-Terphenyl	2017/09/23		99	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/23		92	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/23		95	%	50 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	OC Typo	Darameter	Date Analyzed	Value	Pacayany	UNITS	QC Limits
Dattii	Init	QC Type	Parameter F4 (C34-C50 Hydrocarbons)	2017/09/23	value	Recovery 104	%	50 - 130
5178865	AKS	Spiked Blank	o-Terphenyl	2017/09/23		93	%	60 - 130
3170003	ANS	Spiked blatik	F2 (C10-C16 Hydrocarbons)	2017/09/23		88	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2017/09/23		94	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2017/09/23		97	%	80 - 120
5178865	AKS	Method Blank	o-Terphenyl	2017/09/23		97	%	60 - 130
3170003	ANS	Wethou Blank	F2 (C10-C16 Hydrocarbons)	2017/09/23	<10	37	ug/g	00 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/23	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2017/09/23	<50		ug/g	
5178865	AKS	RPD	F2 (C10-C16 Hydrocarbons)	2017/09/23	NC		ч _Б / _Б %	30
3170003	AKS	III D	F3 (C16-C34 Hydrocarbons)	2017/09/23	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2017/09/23	NC		%	30
5179389	GG2	RPD [FDL053-01]	Moisture	2017/09/23	3.6		%	20
5179748	GTH	Matrix Spike [FDL034-02]	D10-Anthracene	2017/09/29	3.0	82	%	50 - 130
31/3/40	GIII	Matrix Spike [FDL034-02]	D14-Terphenyl	2017/09/29		103	%	50 - 130
			D8-Acenaphthylene	2017/09/29		98	%	50 - 130
			1-Methylnaphthalene	2017/09/29		99	%	30 - 130
			2-Methylnaphthalene	2017/09/29		107	%	30 - 130
			Acenaphthene	2017/09/29		107	%	30 - 130
			Acenaphthylene	2017/09/29		102	%	30 - 130
			Anthracene	2017/09/29		94	%	30 - 130
			Benzo(a)anthracene	2017/09/29		92	%	30 - 130
			Benzo(a)pyrene	2017/09/29		71	%	30 - 130
			Benzo(b)fluoranthene	2017/09/29		86	%	30 - 130
			• •	2017/09/29		52	%	30 - 130
			Benzo(g,h,i)perylene Benzo(j)fluoranthene	2017/09/29		85	%	
						89	%	30 - 130 30 - 130
			Benzo(k)fluoranthene	2017/09/29 2017/09/29		84	%	
			Chrysene Dibenz(a,h)anthracene	2017/09/29		67	%	30 - 130 30 - 130
			Fluoranthene	2017/09/29 2017/09/29		96 106	% %	30 - 130
			Fluorene			106		30 - 130
			Indeno(1,2,3-cd)pyrene	2017/09/29 2017/09/29		60	%	30 - 130
			Naphthalene	2017/09/29		104	%	30 - 130
			Perylene			67	%	30 - 130
			Phenanthrene	2017/09/29		95	%	30 - 130
F470740	CTU	Called Disal	Pyrene	2017/09/29		91	%	30 - 130
5179748	GTH	Spiked Blank	D10-Anthracene	2017/09/29		91	%	50 - 130
			D14-Terphenyl	2017/09/29		95	%	50 - 130
			D8-Acenaphthylene	2017/09/29		103	%	50 - 130
			1-Methylnaphthalene	2017/09/29		99	%	30 - 130
			2-Methylnaphthalene	2017/09/29		107	%	30 - 130
			Acenaphthene	2017/09/29		104	%	30 - 130
			Acenaphthylene	2017/09/29		103	%	30 - 130
			Anthracene	2017/09/29		100	%	30 - 130
			Benzo(a)anthracene	2017/09/29		93	%	30 - 130
			Benzo(a)pyrene	2017/09/29		103	%	30 - 130
			Benzo(b)fluoranthene	2017/09/29		111	%	30 - 130
			Benzo(g,h,i)perylene	2017/09/29		105	%	30 - 130
			Benzo(j)fluoranthene	2017/09/29		112	%	30 - 130
			Benzo(k)fluoranthene	2017/09/29		110	%	30 - 130
			Chrysene	2017/09/29		88	%	30 - 130
			Dibenz(a,h)anthracene	2017/09/29		103	%	30 - 130
			Fluoranthene	2017/09/29		97	%	30 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Fluorene	2017/09/29		106	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2017/09/29		100	%	30 - 130
			Naphthalene	2017/09/29		104	%	30 - 130
			Perylene	2017/09/29		107	%	30 - 130
			Phenanthrene	2017/09/29		104	%	30 - 130
			Pyrene	2017/09/29		96	%	30 - 130
5179748	GTH	Method Blank	D10-Anthracene	2017/09/29		93	%	50 - 130
			D14-Terphenyl	2017/09/29		96	%	50 - 130
			D8-Acenaphthylene	2017/09/29		101	%	50 - 130
			1-Methylnaphthalene	2017/09/29	< 0.0050		mg/kg	
			2-Methylnaphthalene	2017/09/29	< 0.0050		mg/kg	
			Acenaphthene	2017/09/29	< 0.0050		mg/kg	
			Acenaphthylene	2017/09/29	< 0.0050		mg/kg	
			Anthracene	2017/09/29	< 0.0050		mg/kg	
			Benzo(a)anthracene	2017/09/29	< 0.0050		mg/kg	
			Benzo(a)pyrene	2017/09/29	< 0.0050		mg/kg	
			Benzo(b)fluoranthene	2017/09/29	< 0.0050		mg/kg	
			Benzo(g,h,i)perylene	2017/09/29	< 0.0050		mg/kg	
			Benzo(j)fluoranthene	2017/09/29	< 0.0050		mg/kg	
			Benzo(k)fluoranthene	2017/09/29	< 0.0050		mg/kg	
			Chrysene	2017/09/29	< 0.0050		mg/kg	
			Dibenz(a,h)anthracene	2017/09/29	< 0.0050		mg/kg	
			Fluoranthene	2017/09/29	< 0.0050		mg/kg	
			Fluorene	2017/09/29	< 0.0050		mg/kg	
			Indeno(1,2,3-cd)pyrene	2017/09/29	< 0.0050		mg/kg	
			Naphthalene	2017/09/29	< 0.0050		mg/kg	
			Perylene	2017/09/29	< 0.0050		mg/kg	
			Phenanthrene	2017/09/29	< 0.0050		mg/kg	
			Pyrene	2017/09/29	< 0.0050		mg/kg	
5179748	GTH	RPD [FDL034-02]	1-Methylnaphthalene	2017/09/29	NC		%	50
			2-Methylnaphthalene	2017/09/29	NC		%	50
			Acenaphthene	2017/09/29	NC		%	50
			Acenaphthylene	2017/09/29	NC		%	50
			Anthracene	2017/09/29	NC		%	50
			Benzo(a)anthracene	2017/09/29	NC		%	50
			Benzo(a)pyrene	2017/09/29	NC		%	50
			Benzo(b)fluoranthene	2017/09/29	NC		%	50
			Benzo(g,h,i)perylene	2017/09/29	NC		%	50
			Benzo(j)fluoranthene	2017/09/29	NC		%	50
			Benzo(k)fluoranthene	2017/09/29	NC		%	50
			Chrysene	2017/09/29	NC		%	50
			Dibenz(a,h)anthracene	2017/09/29	NC		%	50
			Fluoranthene	2017/09/29	NC		%	50
			Fluorene	2017/09/29	NC		%	50
			Indeno(1,2,3-cd)pyrene	2017/09/29	NC		%	50
			Naphthalene	2017/09/29	NC		%	50
			Perylene	2017/09/29	NC		%	50
			Phenanthrene	2017/09/29	NC		%	50
			Pyrene	2017/09/29	NC		%	50
5180367	MKS	Matrix Spike [FDL042-01]	o-Terphenyl	2017/09/26		86	%	60 - 130
2100007			F2 (C10-C16 Hydrocarbons)	2017/09/26		91	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/26		91	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2017/09/26		81	%	50 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5180367	MKS	Spiked Blank	o-Terphenyl	2017/09/26	value	97	%	60 - 130
3100307	iviito	эриса ванк	F2 (C10-C16 Hydrocarbons)	2017/09/26		98	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2017/09/26		98	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2017/09/26		88	%	80 - 120
5180367	MKS	Method Blank	o-Terphenyl	2017/09/26		100	%	60 - 130
3100307	IVIKS	Wethod Diank	F2 (C10-C16 Hydrocarbons)	2017/09/26	<10	100	ug/g	00 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/26	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2017/09/26	<50		ug/g	
5180367	MKS	RPD [FDL042-01]	F2 (C10-C16 Hydrocarbons)	2017/09/26	NC		ч _Б / _Б %	30
3100307	IVIKS	N D [1 DL042-01]	F3 (C16-C34 Hydrocarbons)	2017/09/26	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2017/09/26	NC		%	30
5180371	ZZ	Matrix Spike [FDL044-01]	o-Terphenyl	2017/09/25	NC	95	%	60 - 130
31003/1	22	Matrix Spike [1 DL044-01]	F2 (C10-C16 Hydrocarbons)	2017/09/25		95 95	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/25		93	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2017/09/25		91	%	50 - 130
5180371	ZZ	Spiked Blank	o-Terphenyl	2017/09/25		93	%	60 - 130
31003/1	22	эрікей Біатік	F2 (C10-C16 Hydrocarbons)	2017/09/25		95 95	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2017/09/25		93	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2017/09/25		90	%	80 - 120
5180371	ZZ	Method Blank	o-Terphenyl	2017/09/25		98	%	60 - 130
31003/1	22	WELLIOU DIATIK	F2 (C10-C16 Hydrocarbons)	2017/09/25	<10	38		00 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/25	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2017/09/25	<50		ug/g	
5180371	ZZ	RPD [FDL044-01]	F2 (C10-C16 Hydrocarbons)	2017/09/25	NC		ug/g %	30
31003/1	22	KPD [FDL044-01]		2017/09/25	14		%	30
			F3 (C16-C34 Hydrocarbons)	• •			%	
F190200	KLI	Matrix Spika [FDI 06F 01]	F4 (C34-C50 Hydrocarbons)	2017/09/25	NC	94	%	30
5180399	KLI	Matrix Spike [FDL065-01]	o-Terphenyl	2017/09/26 2017/09/26		96	%	60 - 130
			F2 (C16-C24 Hydrocarbons)					50 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/26		88	%	50 - 130
F190200	VI.I	Spiked Blank	F4 (C34-C50 Hydrocarbons)	2017/09/26		92	%	50 - 130
5180399	KLI	эрікей віатік	o-Terphenyl	2017/09/26		91	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/26		93	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2017/09/26		90	%	80 - 120
F400000	121.1	M :	F4 (C34-C50 Hydrocarbons)	2017/09/26		89	%	80 - 120
5180399	KLI	Method Blank	o-Terphenyl	2017/09/26	-10	122	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/26	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2017/09/26	<50		ug/g	
E400200	1/1.1	DDD [EDLOCE 04]	F4 (C34-C50 Hydrocarbons)	2017/09/26	<50		ug/g	20
5180399	KLI	RPD [FDL065-01]	F2 (C10-C16 Hydrocarbons)	2017/09/26	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2017/09/26	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2017/09/26	NC	2.5	%	30
5180475	GTH	Matrix Spike [FDL069-02]	D10-Anthracene	2017/09/29		86	%	50 - 130
			D14-Terphenyl	2017/09/29		87	%	50 - 130
			D8-Acenaphthylene	2017/09/29		92	%	50 - 130
			1-Methylnaphthalene	2017/09/29		84	%	30 - 130
			2-Methylnaphthalene	2017/09/29		90	%	30 - 130
			Acenaphthene	2017/09/29		91	%	30 - 130
			Acenaphthylene	2017/09/29		87	%	30 - 130
			Anthracene	2017/09/29		83	%	30 - 130
			Benzo(a)anthracene	2017/09/29		97	%	30 - 130
			Benzo(a)pyrene	2017/09/29		87	%	30 - 130
			Benzo(b)fluoranthene	2017/09/29		92	%	30 - 130
			Benzo(g,h,i)perylene	2017/09/29		92	%	30 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

'H Spiked Blank	Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Anthracene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		91 92 90 91 96 91 88 87 106 94 85 84 91 83	% % % % % % % %	30 - 130 30 - 130 50 - 130 50 - 130
'H Spiked Blank	Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		90 91 96 91 88 87 106 94 85 84 91	% % % % % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 50 - 130 50 - 130
H Spiked Blank	Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		91 96 91 88 87 106 94 85 84 91	% % % % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 50 - 130 50 - 130
H Spiked Blank	Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		96 91 88 87 106 94 85 84 91	% % % % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 50 - 130 50 - 130 50 - 130
H Spiked Blank	Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene Acenaphthene Acenaphthylene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		91 88 87 87 106 94 85 84 91	% % % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 50 - 130 50 - 130
'H Spiked Blank	Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		88 87 87 106 94 85 84 91	% % % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 50 - 130 50 - 130
'H Spiked Blank	Naphthalene Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		87 87 106 94 85 84 91	% % % % %	30 - 130 30 - 130 30 - 130 30 - 130 50 - 130 50 - 130
H Spiked Blank	Perylene Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		87 106 94 85 84 91 83	% % % % %	30 - 130 30 - 130 30 - 130 50 - 130 50 - 130
'H Spiked Blank	Phenanthrene Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		106 94 85 84 91 83	% % % %	30 - 130 30 - 130 50 - 130 50 - 130
'H Spiked Blank	Pyrene D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		94 85 84 91 83	% % %	30 - 130 50 - 130 50 - 130 50 - 130
H Spiked Blank	D10-Anthracene D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		85 84 91 83	% % %	50 - 130 50 - 130 50 - 130
H Spiked Blank	D14-Terphenyl D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29 2017/09/29		84 91 83	% %	50 - 130 50 - 130
	D8-Acenaphthylene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29 2017/09/29		91 83	%	50 - 130
	1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29 2017/09/29		83		
	2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	2017/09/29 2017/09/29			%	20 42
	Acenaphthene Acenaphthylene Anthracene	2017/09/29		90		30 - 130
	Acenaphthylene Anthracene			50	%	30 - 130
	Anthracene	2017/09/29		91	%	30 - 130
				85	%	30 - 13
	B () 11	2017/09/29		92	%	30 - 13
	Benzo(a)anthracene	2017/09/29		81	%	30 - 13
	Benzo(a)pyrene	2017/09/29		67	%	30 - 13
	Benzo(b)fluoranthene	2017/09/29		77	%	30 - 13
	Benzo(g,h,i)perylene	2017/09/29		60	%	30 - 13
	Benzo(j)fluoranthene	2017/09/29		76	%	30 - 13
	Benzo(k)fluoranthene	2017/09/29		71	%	30 - 13
	Chrysene	2017/09/29		77	%	30 - 13
	Dibenz(a,h)anthracene	2017/09/29		50	%	30 - 13
	Fluoranthene	2017/09/29		96	%	30 - 13
	Fluorene	2017/09/29		89	%	30 - 13
						30 - 13
						30 - 13
						30 - 13
	•					30 - 13
						30 - 13
H Method Blank	•	• •				50 - 13
TI WELTOG BIGTIK						50 - 13
	• •					50 - 13
	• •		<0.0050	05		30 13
	• •					
	•					
	. ,					
	. ,					
	•					
TH.	H Method Blank	Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	Indeno(1,2,3-cd)pyrene 2017/09/29 Naphthalene 2017/09/29 Perylene 2017/09/29 Phenanthrene 2017/09/29 Pyrene 2017/09/29 Pyrene 2017/09/29 Pyrene 2017/09/29 D14-Terphenyl 2017/09/29 D8-Acenaphthylene 2017/09/29 1-Methylnaphthalene 2017/09/29 2-Methylnaphthalene 2017/09/29 Acenaphthylene 2017/09/29 Acenaphthylene 2017/09/29 Acenaphthylene 2017/09/29 Acenaphthylene 2017/09/29 Anthracene 2017/09/29 Benzo(a)anthracene 2017/09/29 Benzo(b)fluoranthene 2017/09/29 Benzo(g,h,i)perylene 2017/09/29 Benzo(k)fluoranthene 2017/09/29 Benzo(k)fluoranthene 2017/09/29 Chrysene 2017/09/29 Dibenz(a,h)anthracene 2017/09/29 Fluoranthene 2017/09/29	Indeno(1,2,3-cd)pyrene 2017/09/29 Naphthalene 2017/09/29 Perylene 2017/09/29 Phenanthrene 2017/09/29 Phenanthrene 2017/09/29 Pyrene Pyrene 2017/09/29 Pyrene 2017/09/29 Pyrene Pyren	Indeno(1,2,3-cd)pyrene 2017/09/29 50 Naphthalene 2017/09/29 87 Perylene 2017/09/29 70 Phenanthrene 2017/09/29 90 Pyrene 2017/09/29 96 Method Blank D10-Anthracene 2017/09/29 88 D8-Acenaphthylene 2017/09/29 88 D8-Acenaphthylene 2017/09/29 89 1-Methylnaphthalene 2017/09/29 <0.0050 2-Methylnaphthalene 2017/09/29 <0.0050 Acenaphthylene 2017/09/29 <0.0050 Benzo(a)anthracene 2017/09/29 <0.0050 Benzo(b)fluoranthene 2017/09/29 <0.0050	Indeno(1,2,3-cd)pyrene 2017/09/29 50

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Naphthalene	2017/09/29	<0.0050		mg/kg	
			Perylene	2017/09/29	<0.0050		mg/kg	
			Phenanthrene	2017/09/29	<0.0050		mg/kg	
			Pyrene	2017/09/29	< 0.0050		mg/kg	
5180475	GTH	RPD [FDL069-02]	1-Methylnaphthalene	2017/09/29	NC		%	50
			2-Methylnaphthalene	2017/09/29	NC		%	50
			Acenaphthene	2017/09/29	NC		%	50
			Acenaphthylene	2017/09/29	NC		%	50
			Anthracene	2017/09/29	NC		%	50
			Benzo(a)anthracene	2017/09/29	NC		%	50
			Benzo(a)pyrene	2017/09/29	NC		%	50
			Benzo(b)fluoranthene	2017/09/29	NC		%	50
			Benzo(g,h,i)perylene	2017/09/29	NC		%	50
			Benzo(j)fluoranthene	2017/09/29	NC		%	50
			Benzo(k)fluoranthene	2017/09/29	NC		%	50
			Chrysene	2017/09/29	NC		%	50
			Dibenz(a,h)anthracene	2017/09/29	NC		%	50
			Fluoranthene	2017/09/29	NC		%	50
			Fluorene	2017/09/29	NC		%	50
			Indeno(1,2,3-cd)pyrene	2017/09/29	NC		%	50
			Naphthalene	2017/09/29	NC		%	50
			Perylene	2017/09/29	NC		%	50
			Phenanthrene	2017/09/29	NC		%	50
			Pyrene	2017/09/29	NC		%	50
5180479	GTH	Matrix Spike [FDL090-02]	D10-Anthracene	2017/09/30		88	%	50 - 130
			D14-Terphenyl	2017/09/30		91	%	50 - 130
			D8-Acenaphthylene	2017/09/30		89	%	50 - 130
			1-Methylnaphthalene	2017/09/30		81	%	30 - 130
			2-Methylnaphthalene	2017/09/30		88	%	30 - 130
			Acenaphthene	2017/09/30		90	%	30 - 130
			Acenaphthylene	2017/09/30		86	%	30 - 130
			Anthracene	2017/09/30		98	%	30 - 130
			Benzo(a)anthracene	2017/09/30		99	%	30 - 130
			Benzo(a)pyrene	2017/09/30		90	%	30 - 130
			Benzo(b)fluoranthene	2017/09/30		94	%	30 - 130
			Benzo(g,h,i)perylene	2017/09/30		98	%	30 - 130
			Benzo(j)fluoranthene	2017/09/30		92	%	30 - 130
			Benzo(k)fluoranthene	2017/09/30		93	%	30 - 130
			Chrysene	2017/09/30		92	%	30 - 130
			Dibenz(a,h)anthracene	2017/09/30		94	%	30 - 130
			Fluoranthene	2017/09/30		98	%	30 - 130
			Fluorene	2017/09/30		89	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2017/09/30		93	%	30 - 130
			Naphthalene	2017/09/30		84	%	30 - 130
			Perylene	2017/09/30		90	% %	30 - 130
			Phenanthrene	2017/09/30		90 89	% %	30 - 130
				·				30 - 130
5180479	GT⊔	Spiked Blank	Pyrene D10-Anthracene	2017/09/30 2017/09/30		97 83	% %	50 - 130
J1004/9	σιп	Shiven piglik					%	50 - 130
			D14-Terphenyl	2017/09/30		87		
			D8-Acenaphthylene	2017/09/30		91	%	50 - 130
			1-Methylnaphthalene	2017/09/30		81	%	30 - 130
			2-Methylnaphthalene	2017/09/30		87	%	30 - 130
			Acenaphthene	2017/09/30		90	<u>%</u>	30 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

GTH	QC Type Method Blank	Parameter Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(j)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	Date Analyzed 2017/09/30	Value	84 95 94 84 89 88 87 87 87 81 96 88 81 75 85	WITS % % % % % % % % % % % % %	QC Limits 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130
GТН	Method Blank	Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		95 94 84 89 88 87 87 87 81 96 88 81 75	% % % % % % % % %	30 - 130 30 - 130
GТН	Method Blank	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		94 84 89 88 87 87 87 81 96 88 81 75	% % % % % % % % %	30 - 130 30 - 130
GТН	Method Blank	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		84 89 88 87 87 87 81 96 88 81 75	% % % % % % % %	30 - 130 30 - 130
GТН	Method Blank	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		89 88 87 87 87 81 96 88 81 75	% % % % % % %	30 - 130 30 - 130
GTH	Method Blank	Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		88 87 87 87 81 96 88 81 75	% % % % % % %	30 - 130 30 - 130
GТН	Method Blank	Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		87 87 87 81 96 88 81 75	% % % % % %	30 - 130 30 - 130
GТН	Method Blank	Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		87 87 81 96 88 81 75	% % % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130
GТН	Method Blank	Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		87 81 96 88 81 75	% % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130
GТН	Method Blank	Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		81 96 88 81 75 85	% % % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130 30 - 130
GTH	Method Blank	Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		96 88 81 75 85	% % % %	30 - 130 30 - 130 30 - 130 30 - 130 30 - 130
GТН	Method Blank	Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30 2017/09/30		88 81 75 85	% % %	30 - 130 30 - 130 30 - 130 30 - 130
GTH	Method Blank	Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30 2017/09/30		81 75 85	% % %	30 - 130 30 - 130 30 - 130
GTH	Method Blank	Naphthalene Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30 2017/09/30		75 85	% %	30 - 130 30 - 130
GTH	Method Blank	Perylene Phenanthrene Pyrene	2017/09/30 2017/09/30		85	%	30 - 130
GTH	Method Blank	Phenanthrene Pyrene	2017/09/30				
GTH	Method Blank	Pyrene			77	%	30 - 130
GTH	Method Blank	-	2017/09/30				
GTH	Method Blank	D10 Amthumanu -	2017/03/30		94	%	30 - 130
		D10-Anthracene	2017/09/30		88	%	50 - 130
		D14-Terphenyl	2017/09/30		88	%	50 - 130
		D8-Acenaphthylene	2017/09/30		93	%	50 - 130
		1-Methylnaphthalene	2017/09/30	< 0.0050		mg/kg	
		2-Methylnaphthalene	2017/09/30	< 0.0050		mg/kg	
		Acenaphthene	2017/09/30	< 0.0050		mg/kg	
				< 0.0050			
		-					
		. ,	• •				
		•					
			• •				
		•					
GTH	RPD [EDI 090-02]	•					50
0111	W D [1 D2030 02]						50
		• •					50
							50
							50
							50 50
		• •					50 50
			• •				50 50
							50 50
							50 50
			• •				50 50
		•					50 50
-	S TH	GTH RPD [FDL090-02]	Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(j)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Perylene Phenanthrene Pyrene	Acenaphthylene 2017/09/30 Anthracene 2017/09/30 Benzo(a)anthracene 2017/09/30 Benzo(a)pyrene 2017/09/30 Benzo(b)fluoranthene 2017/09/30 Benzo(g,h,i)perylene 2017/09/30 Benzo(j)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Chrysene 2017/09/30 Dibenz(a,h)anthracene 2017/09/30 Fluoranthene 2017/09/30 Fluorene 2017/09/30 Indeno(1,2,3-cd)pyrene 2017/09/30 Naphthalene 2017/09/30 Perylene 2017/09/30 Phenanthrene 2017/09/30 Phenanthrene 2017/09/30 Pyrene 2017/09/30 Pyrene 2017/09/30 Acenaphthylene 2017/09/30 Acenaphthylene 2017/09/30 Acenaphthylene 2017/09/30 Anthracene 2017/09/30 Benzo(a)anthracene 2017/09/30 Benzo(a)pyrene 2017/09/30 Benzo(a)pyrene 2017/09/30 Benzo(b)fluoranthene 2017/09/30 Benzo(j)fluoranthene 2017/09/30 Benzo(j)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30 Benzo(k)fluoranthene 2017/09/30	Acenaphthylene 2017/09/30 <0.0050 Anthracene 2017/09/30 <0.0050 Benzo(a)anthracene 2017/09/30 <0.0050 Benzo(a)pyrene 2017/09/30 <0.0050 Benzo(b)fluoranthene 2017/09/30 <0.0050 Benzo(b)fluoranthene 2017/09/30 <0.0050 Benzo(j)fluoranthene 2017/09/30 <0.0050 Benzo(j)fluoranthene 2017/09/30 <0.0050 Benzo(j)fluoranthene 2017/09/30 <0.0050 Benzo(j)fluoranthene 2017/09/30 <0.0050 Chrysene 2017/09/30 <0.0050 Chrysene 2017/09/30 <0.0050 Fluoranthene 2017/09/30 <0.0050 Fluoranthene 2017/09/30 <0.0050 Fluorene 2017/09/30 <0.0050 Indeno(1,2,3-cd)pyrene 2017/09/30 <0.0050 Naphthalene 2017/09/30 <0.0050 Perylene 2017/09/30 <0.0050 Phenanthrene 2017/09/30 <0.0050 Phenanthrene 2017/09/30 <0.0050 Phenanthrene 2017/09/30 <0.0050 Pyrene 2017/09/30 <0.0050 Pyrene 2017/09/30 <0.0050 Acenaphthene 2017/09/30 NC Acenaphthylene 2017/09/30 NC Acenaphthylene 2017/09/30 NC Acenaphthylene 2017/09/30 NC Benzo(a)pyrene 2017/09/30 NC Benzo(a)pyrene 2017/09/30 NC Benzo(b)fluoranthene 2017/09/30 NC Benzo(j)fluoranthene 2017/09/30 NC Chrysene 2017/09/30 NC	Acenaphthylene 2017/09/30 <0.0050 Anthracene 2017/09/30 <0.0050 Benzo(a)anthracene 2017/09/30 <0.0050 Benzo(a)prene 2017/09/30 <0.0050 Benzo(b)fluoranthene 2017/09/30 <0.0050 Benzo(b)fluoranthene 2017/09/30 <0.0050 Benzo(b)fluoranthene 2017/09/30 <0.0050 Benzo(g)hiloranthene 2017/09/30 <0.0050 Benzo(k)fluoranthene 2017/09/30 <0.0050 Benzo(k)fluoranthene 2017/09/30 <0.0050 Chrysene 2017/09/30 <0.0050 Chrysene 2017/09/30 <0.0050 Fluoranthene 2017/09/30 <0.0050 Fluoranthene 2017/09/30 <0.0050 Fluoranthene 2017/09/30 <0.0050 Fluorene 2017/09/30 <0.0050 Indeno(1,2,3-cd)pyrene 2017/09/30 <0.0050 Naphthalene 2017/09/30 <0.0050 Perylene 2017/09/30 <0.0050 Perylene 2017/09/30 <0.0050 Phenanthrene 2017/09/30 <0.0050 Prene 2017/09/30 <0.0050 Prene 2017/09/30 <0.0050 Prene 2017/09/30 NC Acenaphthene 2017/09/30 NC Acenaphthene 2017/09/30 NC Acenaphthylene 2017/09/30 NC Acenaphthylene 2017/09/30 NC Benzo(a)pyrene 2017/09/30 NC Benzo(b)fluoranthene 2017/09/30 NC	Acenaphthylene 2017/09/30 <0.0050 mg/kg Anthracene 2017/09/30 <0.0050 mg/kg Anthracene 2017/09/30 <0.0050 mg/kg Benzo(a)anthracene 2017/09/30 <0.0050 mg/kg Benzo(a)pyrene 2017/09/30 <0.0050 mg/kg Benzo(b)fluoranthene 2017/09/30 <0.0050 mg/kg Chrysene 2017/09/30 <0.0050 mg/kg Dibenz(a,h)anthracene 2017/09/30 NC % Acenaphthene 2017/09/30 NC % Acenaphthene 2017/09/30 NC % Acenaphthylene 2017/09/30 NC % Acenaphthylene 2017/09/30 NC % Benzo(a)pyrene 2017/09/30 NC % Benzo(a)pyrene 2017/09/30 NC % Benzo(b)fluoranthene 2017/09/30 NC %

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Fluoranthene	2017/09/30	NC		%	50
			Fluorene	2017/09/30	NC		%	50
			Indeno(1,2,3-cd)pyrene	2017/09/30	NC		%	50
			Naphthalene	2017/09/30	NC		%	50
			Perylene	2017/09/30	NC		%	50
			Phenanthrene	2017/09/30	NC		%	50
			Pyrene	2017/09/30	NC		%	50
5182130	BAN	Matrix Spike	Acid Extractable Antimony (Sb)	2017/09/27		100	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/27		NC	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/27		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/27		109	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/27		108	%	75 - 125
			Acid Extractable Boron (B)	2017/09/27		90	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/27		105	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/27		107	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/27		108	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/27		103	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/27		NC	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/27		115	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/27		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/27		103	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/27		104	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/27		103	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/27		102	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/27		102	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/27		105	%	75 - 12 5
			Acid Extractable Strontium (Sr)	2017/09/27		109	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/27		109	%	75 - 12 5
			Acid Extractable Tin (Sn)	2017/09/27		111	%	75 - 12 5
			Acid Extractable Uranium (U)	2017/09/27		111	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/27		104	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/27		NC	%	75 - 12 5
5182130	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2017/09/26		106	%	75 - 125
3102130	D/ ((*	эрткей Бійтк	Acid Extractable Arsenic (As)	2017/09/26		102	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/26		104	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/26		106	%	75 - 12 5
			Acid Extractable Bismuth (Bi)	2017/09/26		104	%	75 - 125
			Acid Extractable Boron (B)	2017/09/26		108	%	75 - 12 5
			Acid Extractable Cadmium (Cd)	2017/09/26		103	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/26		100	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/26		101	%	75 - 12 5
			Acid Extractable Copper (Cu)	2017/09/26		97	%	75 - 125
			Acid Extractable Copper (Cd) Acid Extractable Lead (Pb)	2017/09/26		103	%	75 - 125
			Acid Extractable Lead (1 b) Acid Extractable Lithium (Li)	2017/09/26		107	%	75 - 125
			Acid Extractable Elithum (El) Acid Extractable Manganese (Mn)	2017/09/26		107	%	75 - 125
			Acid Extractable Manganese (Min) Acid Extractable Mercury (Hg)	2017/09/26		102	%	75 - 125 75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/26		105	%	75 - 125 75 - 125
			Acid Extractable Molybdenum (Mo) Acid Extractable Nickel (Ni)	2017/09/26		103	%	75 - 125 75 - 125
			Acid Extractable Nicker (NI) Acid Extractable Rubidium (Rb)	2017/09/26		101	%	75 - 125 75 - 125
			Acid Extractable Rubididin (Rb) Acid Extractable Selenium (Se)	2017/09/26		103	%	75 - 125 75 - 125
			` '					
			Acid Extractable Silver (Ag) Acid Extractable Strontium (Sr)	2017/09/26 2017/09/26		101 104	% %	75 - 125 75 - 125
			Acid Extractable Thallium (Tl)	2017/09/26		106	%	75 - 125

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Datti	IIIIC	QC туре	Acid Extractable Tin (Sn)	2017/09/26	value	106	%	75 - 125
			Acid Extractable Trif (511) Acid Extractable Uranium (U)	2017/09/26		105	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/26		103	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/26		104	%	75 - 125
5182130	BAN	Method Blank	Acid Extractable Aluminum (Al)	2017/09/26	<10	104	mg/kg	75 125
3102130	DAN	Wiethod Blank	Acid Extractable Antimony (Sb)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Arsenic (As)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Barium (Ba)	2017/09/26	<5.0		mg/kg	
			Acid Extractable Beryllium (Be)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Bismuth (Bi)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Bismuth (B) Acid Extractable Boron (B)	2017/09/26	<50		mg/kg	
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2017/09/26	<0.30			
			` '	• •			mg/kg	
			Acid Extractable Chromium (Cr)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2017/09/26 2017/09/26	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2017/09/26	<2.0 <50		mg/kg	
			Acid Extractable Iron (Fe)	• •			mg/kg	
			Acid Extractable Lead (Pb)	2017/09/26	<0.50		mg/kg	
			Acid Extractable Lithium (Li) Acid Extractable Manganese (Mn)	2017/09/26	<2.0 <2.0		mg/kg	
			5 , ,	2017/09/26			mg/kg	
			Acid Extractable Mercury (Hg)	2017/09/26	<0.10		mg/kg	
			Acid Extractable Molybdenum (Mo)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Nickel (Ni)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Rubidium (Rb)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Selenium (Se)	2017/09/26	<1.0		mg/kg	
			Acid Extractable Silver (Ag)	2017/09/26	<0.50		mg/kg	
			Acid Extractable Strontium (Sr)	2017/09/26	<5.0		mg/kg	
			Acid Extractable Thallium (TI)	2017/09/26	<0.10		mg/kg	
			Acid Extractable Tin (Sn)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Uranium (U)	2017/09/26	<0.10		mg/kg	
			Acid Extractable Vanadium (V)	2017/09/26	<2.0		mg/kg	
			Acid Extractable Zinc (Zn)	2017/09/26	<5.0		mg/kg	
5182130	BAN	RPD	Acid Extractable Aluminum (Al)	2017/09/27	0.77		%	35
			Acid Extractable Antimony (Sb)	2017/09/27	NC		%	35
			Acid Extractable Arsenic (As)	2017/09/27	11		%	35
			Acid Extractable Barium (Ba)	2017/09/27	0.21		%	35
			Acid Extractable Beryllium (Be)	2017/09/27	NC		%	35
			Acid Extractable Bismuth (Bi)	2017/09/27	NC		%	35
			Acid Extractable Boron (B)	2017/09/27	NC		%	35
			Acid Extractable Cadmium (Cd)	2017/09/27	NC		%	35
			Acid Extractable Chromium (Cr)	2017/09/27	0.12		%	35
			Acid Extractable Cobalt (Co)	2017/09/27	1.4		%	35
			Acid Extractable Copper (Cu)	2017/09/27	0.63		%	35
			Acid Extractable Iron (Fe)	2017/09/27	3.0		%	35
			Acid Extractable Lead (Pb)	2017/09/27	4.2		%	35
			Acid Extractable Lithium (Li)	2017/09/27	1.5		%	35
			Acid Extractable Manganese (Mn)	2017/09/27	0.94		%	35
			Acid Extractable Mercury (Hg)	2017/09/27	18		%	35
			Acid Extractable Molybdenum (Mo)	2017/09/27	NC		%	35
			Acid Extractable Nickel (Ni)	2017/09/27	3.3		%	35
			Acid Extractable Rubidium (Rb)	2017/09/27	1.2		%	35
			Acid Extractable Selenium (Se)	2017/09/27	NC		%	35
			Acid Extractable Silver (Ag)	2017/09/27	NC		%	35
			Acid Extractable Strontium (Sr)	2017/09/27	5.9		%	35

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISALND

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Thallium (TI)	2017/09/27	NC		%	35
			Acid Extractable Tin (Sn)	2017/09/27	15		%	35
			Acid Extractable Uranium (U)	2017/09/27	4.7		%	35
			Acid Extractable Vanadium (V)	2017/09/27	5.0		%	35
			Acid Extractable Zinc (Zn)	2017/09/27	34		%	35
5184457	DDS	Matrix Spike	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27		NC	%	65 - 135
5184457	DDS	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27		101	%	65 - 135
5184457	DDS	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27	<100		ug/g	
5184457	DDS	RPD [FDL087-01]	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27	15		%	50
5188959	DDS	Matrix Spike [FDL030-01]	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29		NC	%	65 - 135
5188959	DDS	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29		100	%	65 - 135
5188959	DDS	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29	<100		ug/g	
5188959	DDS	RPD [FDL031-01]	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29	12		%	50
5189073	DDS	Matrix Spike [FDL079-01]	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29		106	%	65 - 135
5189073	DDS	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29		100	%	65 - 135
5189073	DDS	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29	<100		ug/g	
5189073	DDS	RPD [FDL080-01]	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/29	22		%	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) VOC samples were extracted using a flat-bed shaker instead of the accelerated mechanical shaker due to matrix incompatibility.
- (2) Poor RPD due to sample inhomogeneity. < 10 % of compounds in multi-component analysis in violation.
- (3) Duplicate: < 10 % of compounds in multi-component analysis in violation.

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISALND

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

- Sell	
Brad Newman, Scientific Service Specialist	
ak Ciaima	
Eric Dearman, Scientific Specialist	
Philips Deven	
Phil Deveau, Scientific Specialist (Organics)	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Site Location: CUT THROAT ISLAND Your C.O.C. #: 627211-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/11/02

Report #: R4819279 Version: 4 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K2737 Received: 2017/09/18, 09:09

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Benzo(b/j)fluoranthene Sum (LL soil)	4	N/A	2017/09/28	N/A	Auto Calc.
Dioxins/Furans in Soil (EPS 1/RM/23) (1, 2)	1	2017/10/25	2017/10/30	BRL SOP-00410	EPS 1/RM/23 m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	3	2017/09/22	2017/09/23	CAM SOP-00316	CCME CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	1	2017/09/22	2017/09/25	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	1	2017/09/27	2017/09/27	CAM SOP-00316	CCME PHC-CWS m
Metals Solids Acid Extr. ICPMS	3	2017/09/22	2017/09/22	ATL SOP 00058	EPA 6020A R1 m
Moisture	4	N/A	2017/09/18	ATL SOP 00001	OMOE Handbook 1983 m
PAH in sediment by GC/MS (Low Level) (4)	2	2017/09/22	2017/09/27	ATL SOP 00102	EPA 8270D 2014 m
PAH in sediment by GC/MS (Low Level) (4)	2	2017/09/22	2017/09/28	ATL SOP 00102	EPA 8270D 2014 m
PCBs in soil by GC/ECD (4)	3	2017/09/19	2017/09/20	ATL SOP 00106	EPA 8082A 2007 m
PCB Aroclor sum (soil)	3	N/A	2017/09/20	N/A	Auto Calc.
Volatile Organic Compounds and F1 PHCs (1)	3	N/A	2017/09/23	CAM SOP-00230	EPA 8260 m
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2017/09/26	CAM SOP-00230	EPA 8260 m
VOCs in Soil - Field Preserved (5)	1	N/A	2017/09/20	ATL SOP 00133	EPA 8260C R3 m

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2017/09/20	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	3	N/A	2017/09/21	N/A	SM 22 4500-CO2 D
Alkalinity	1	N/A	2017/09/25	ATL SOP 00013	EPA 310.2 R1974 m
Alkalinity	4	N/A	2017/09/26	ATL SOP 00013	EPA 310.2 R1974 m
Benzo(b/j)fluoranthene Sum (water)	1	N/A	2017/09/26	N/A	Auto Calc.
Benzo(b/j)fluoranthene Sum (water)	4	N/A	2017/09/28	N/A	Auto Calc.
Chloride	1	N/A	2017/09/25	ATL SOP 00014	SM 22 4500-Cl- E m
Chloride	4	N/A	2017/09/26	ATL SOP 00014	SM 22 4500-Cl- E m
Colour	1	N/A	2017/09/26	ATL SOP 00020	SM 22 2120C m
Colour	4	N/A	2017/09/27	ATL SOP 00020	SM 22 2120C m
Conductance - water	2	N/A	2017/09/20	ATL SOP 00004	SM 22 2510B m
Conductance - water	3	N/A	2017/09/21	ATL SOP 00004	SM 22 2510B m

Site Location: CUT THROAT ISLAND

Your C.O.C. #: 627211-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/11/02

Report #: R4819279 Version: 4 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K2737 Received: 2017/09/18, 09:09

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Water (1)	6	N/A	2017/09/26	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 3)	6	2017/09/25	2017/09/26	CAM SOP-00316	CCME PHC-CWS m
Hardness (calculated as CaCO3)	5	N/A	2017/09/21	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	2	2017/09/22	2017/09/25	ATL SOP 00026	EPA 245.1 R3 m
Mercury - Total (CVAA,LL)	3	2017/09/22	2017/09/26	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Total MS	5	2017/09/20	2017/09/20	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	5	N/A	2017/09/27	N/A	Auto Calc.
Anion and Cation Sum	5	N/A	2017/09/27	N/A	Auto Calc.
Nitrogen Ammonia - water	5	N/A	2017/09/26	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	1	N/A	2017/09/25	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrate + Nitrite	4	N/A	2017/09/26	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite	1	N/A	2017/09/25	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrite	4	N/A	2017/09/27	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	1	N/A	2017/09/26	ATL SOP 00018	ASTM D3867-16
Nitrogen - Nitrate (as N)	4	N/A	2017/09/27	ATL SOP 00018	ASTM D3867-16
PAH (FWAL) in Water (A/Q) by GC/MS (SIM) (6)	1	2017/09/20	2017/09/26	ATL SOP 00103	EPA 8270D 2007 m
PAH (FWAL) in Water (A/Q) by GC/MS (SIM) (6)	4	2017/09/20	2017/09/28	ATL SOP 00103	EPA 8270D 2007 m
PCBs in water by GC/ECD	2	2017/09/20	2017/09/21	ATL SOP 00107	EPA 8082A m
PCB Aroclor sum (water)	2	N/A	2017/09/21	N/A	Auto Calc.
pH (7)	2	N/A	2017/09/20	ATL SOP 00003	SM 22 4500-H+ B m
pH (7)	3	N/A	2017/09/21	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	1	N/A	2017/09/25	ATL SOP 00021	SM 22 4500-P E m
Phosphorus - ortho	4	N/A	2017/09/26	ATL SOP 00021	SM 22 4500-P E m
Sat. pH and Langelier Index (@ 20C)	5	N/A	2017/09/27	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	5	N/A	2017/09/27	ATL SOP 00049	Auto Calc.
Reactive Silica	5	N/A	2017/09/26	ATL SOP 00022	EPA 366.0 m
Sulphate	1	N/A	2017/09/25	ATL SOP 00023	ASTM D516-16 m
Sulphate	4	N/A	2017/09/26	ATL SOP 00023	ASTM D516-16 m
Total Dissolved Solids (TDS calc)	5	N/A	2017/09/27	N/A	Auto Calc.
Organic carbon - Total (TOC) (8)	5	N/A	2017/09/27	ATL SOP 00037	SM 22 5310C m

Site Location: CUT THROAT ISLAND

Your C.O.C. #: 627211-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/11/02

Report #: R4819279 Version: 4 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K2737 Received: 2017/09/18, 09:09

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Turbidity	1	N/A	2017/09/20	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	4	N/A	2017/09/21	ATL SOP 00011	EPA 180.1 R2 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Site Location: CUT THROAT ISLAND

Your C.O.C. #: 627211-01-01

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Report Date: 2017/11/02

Report #: R4819279 Version: 4 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B7K2737 Received: 2017/09/18, 09:09

- (1) This test was performed by Maxxam Analytics Mississauga
- (2) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

- (4) Soils are reported on a dry weight basis unless otherwise specified.
- (5) No lab extraction date is given for C6-C10/BTEX and VOC samples that are field preserved with methanol. Extraction date is date sampled unless otherwise stated.
- (6) Acridine and Quinoline parameters are not accredited.
- (7) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.
- (8) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

Encryption Key

Maxxam Project Manager Assistant 02 Nov 2017 17:55:17

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Heather Macumber, Senior Project Manager

Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FDH273		FDH274		FDH276			
Sampling Date		2017/09/13		2017/09/13		2017/09/13			
COC Number		627211-01-01		627211-01-01		627211-01-01			
	UNITS	SW_CT_01	QC Batch	SW_CT_02	QC Batch	SW_CT_03	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.580	5168553	0.620	5168553	0.600	N/A	N/A	5168553
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	7.1	5168550	8.7	5168550	8.9	1.0	0.20	5168550
Calculated TDS	mg/L	33	5168558	36	5168558	35	1.0	0.20	5168558
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	5168550	<1.0	5168550	<1.0	1.0	0.20	5168550
Cation Sum	me/L	0.640	5168553	0.620	5168553	0.620	N/A	N/A	5168553
Hardness (CaCO3)	mg/L	8.9	5168551	12	5168551	12	1.0	1.0	5168551
Ion Balance (% Difference)	%	4.92	5168552	0.00	5168552	1.64	N/A	N/A	5168552
Langelier Index (@ 20C)	N/A	-3.24	5168556	-3.06	5168556	-2.68			5168556
Langelier Index (@ 4C)	N/A	-3.50	5168557	-3.31	5168557	-2.93			5168557
Nitrate (N)	mg/L	<0.050	5168554	0.079	5168554	<0.050	0.050	N/A	5168554
Saturation pH (@ 20C)	N/A	10.3	5168556	9.93	5168556	9.93			5168556
Saturation pH (@ 4C)	N/A	10.6	5168557	10.2	5168557	10.2			5168557
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	7.1	5182179	8.8	5177495	8.9	5.0	N/A	5182179
Dissolved Chloride (CI)	mg/L	16	5182181	12	5177498	12	1.0	N/A	5182181
Colour	TCU	66 (1)	5182183	73 (1)	5177507	70 (1)	25	N/A	5182183
Nitrate + Nitrite (N)	mg/L	<0.050	5182187	0.079	5177513	<0.050	0.050	N/A	5182187
Nitrite (N)	mg/L	<0.010	5182190	<0.010	5177516	<0.010	0.010	N/A	5182190
Nitrogen (Ammonia Nitrogen)	mg/L	0.096	5182405	<0.050	5182405	<0.050	0.050	N/A	5182405
Total Organic Carbon (C)	mg/L	8.1	5184415	8.3	5185065	8.6	0.50	N/A	5185065
Orthophosphate (P)	mg/L	<0.010	5182186	<0.010	5177512	<0.010	0.010	N/A	5182186
рН	рН	7.08	5172648	6.88	5174860	7.25	N/A	N/A	5172648
Reactive Silica (SiO2)	mg/L	<0.50	5182184	0.83	5177504	0.70	0.50	N/A	5182184
Dissolved Sulphate (SO4)	mg/L	<2.0	5182182	4.4	5177502	4.2	2.0	N/A	5182182
Turbidity	NTU	0.61	5172696	5.2	5174921	1.6	0.10	0.10	5174924
Conductivity	uS/cm	71	5172649	72	5174861	70	1.0	N/A	5172649
Metals									
Total Aluminum (Al)	ug/L	120	5172924	200	5172924	180	5.0	N/A	5172924
Total Antimony (Sb)	ug/L	<1.0	5172924	<1.0	5172924	<1.0	1.0	N/A	5172924
Total Arsenic (As)	ug/L	<1.0	5172924	<1.0	5172924	<1.0	1.0	N/A	5172924
Total Barium (Ba)	ug/L	4.4	5172924	6.3	5172924	6.1	1.0	N/A	5172924
	O,						I *		
Total Beryllium (Be)	ug/L	<1.0	5172924	<1.0	5172924	<1.0	1.0	N/A	5172924
Total Beryllium (Be) Total Bismuth (Bi)	<u> </u>	<1.0 <2.0	5172924 5172924	<1.0 <2.0	5172924 5172924	<1.0 <2.0	2.0	N/A N/A	5172924 5172924

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FDH273		FDH274		FDH276			
Sampling Date		2017/09/13		2017/09/13		2017/09/13			
COC Number		627211-01-01		627211-01-01		627211-01-01			
	UNITS	SW_CT_01	QC Batch	SW_CT_02	QC Batch	SW_CT_03	RDL	MDL	QC Batch
Total Cadmium (Cd)	ug/L	<0.010	5172924	<0.010	5172924	<0.010	0.010	N/A	5172924
Total Calcium (Ca)	ug/L	1300	5172924	2700	5172924	2600	100	N/A	5172924
Total Chromium (Cr)	ug/L	<1.0	5172924	<1.0	5172924	<1.0	1.0	N/A	5172924
Total Cobalt (Co)	ug/L	<0.40	5172924	<0.40	5172924	<0.40	0.40	N/A	5172924
Total Copper (Cu)	ug/L	<2.0	5172924	<2.0	5172924	2.0	2.0	N/A	5172924
Total Iron (Fe)	ug/L	380	5172924	510	5172924	530	50	N/A	5172924
Total Lead (Pb)	ug/L	<0.50	5172924	<0.50	5172924	<0.50	0.50	N/A	5172924
Total Magnesium (Mg)	ug/L	1400	5172924	1400	5172924	1400	100	N/A	5172924
Total Manganese (Mn)	ug/L	2.4	5172924	6.0	5172924	6.1	2.0	N/A	5172924
Total Molybdenum (Mo)	ug/L	<2.0	5172924	<2.0	5172924	<2.0	2.0	N/A	5172924
Total Nickel (Ni)	ug/L	<2.0	5172924	<2.0	5172924	<2.0	2.0	N/A	5172924
Total Phosphorus (P)	ug/L	<100	5172924	<100	5172924	<100	100	N/A	5172924
Total Potassium (K)	ug/L	590	5172924	790	5172924	810	100	N/A	5172924
Total Selenium (Se)	ug/L	<1.0	5172924	<1.0	5172924	<1.0	1.0	N/A	5172924
Total Silver (Ag)	ug/L	<0.10	5172924	<0.10	5172924	<0.10	0.10	N/A	5172924
Total Sodium (Na)	ug/L	9800	5172924	7700	5172924	7600	100	N/A	5172924
Total Strontium (Sr)	ug/L	9.3	5172924	14	5172924	13	2.0	N/A	5172924
Total Thallium (TI)	ug/L	<0.10	5172924	<0.10	5172924	<0.10	0.10	N/A	5172924
Total Tin (Sn)	ug/L	<2.0	5172924	<2.0	5172924	<2.0	2.0	N/A	5172924
Total Titanium (Ti)	ug/L	<2.0	5172924	11	5172924	5.8	2.0	N/A	5172924
Total Uranium (U)	ug/L	<0.10	5172924	<0.10	5172924	<0.10	0.10	N/A	5172924
Total Vanadium (V)	ug/L	<2.0	5172924	<2.0	5172924	<2.0	2.0	N/A	5172924
Total Zinc (Zn)	ug/L	<5.0	5172924	<5.0	5172924	<5.0	5.0	N/A	5172924

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

	-		_				_		_
Maxxam ID		FDH277			FDH278	FDH278			
Sampling Date		2017/09/13			2017/09/13	2017/09/13			
COC Number		627211-01-01			627211-01-01	627211-01-01			
	UNITS	SW_CT_04	RDL	QC Batch	SW_CT_05_BG	SW_CT_05_BG Lab-Dup	RDL	MDL	QC Batch
Calculated Parameters									
Anion Sum	me/L	0.650	N/A	5168553	0.700		N/A	N/A	5168553
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	15	1.0	5168550	9.8		1.0	0.20	5168550
Calculated TDS	mg/L	37	1.0	5168558	41		1.0	0.20	5168558
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5168550	<1.0		1.0	0.20	5168550
Cation Sum	me/L	0.700	N/A	5168553	0.730		N/A	N/A	5168553
Hardness (CaCO3)	mg/L	14	1.0	5168551	13		1.0	1.0	5168551
Ion Balance (% Difference)	%	3.70	N/A	5168552	2.10		N/A	N/A	5168552
Langelier Index (@ 20C)	N/A	-2.39		5168556	-2.71				5168556
Langelier Index (@ 4C)	N/A	-2.64		5168557	-2.96				5168557
Nitrate (N)	mg/L	<0.050	0.050	5168554	<0.050		0.050	N/A	5168554
Saturation pH (@ 20C)	N/A	9.68		5168556	9.84				5168556
Saturation pH (@ 4C)	N/A	9.94		5168557	10.1				5168557
Inorganics				•				•	
Total Alkalinity (Total as CaCO3)	mg/L	15	5.0	5182179	9.8		5.0	N/A	5182179
Dissolved Chloride (CI)	mg/L	13	1.0	5182181	15		1.0	N/A	5182181
Colour	TCU	86 (1)	25	5182183	45 (1)		10	N/A	5182183
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	5182187	<0.050		0.050	N/A	5182187
Nitrite (N)	mg/L	<0.010	0.010	5182190	<0.010		0.010	N/A	5182190
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5182405	0.24		0.050	N/A	5182405
Total Organic Carbon (C)	mg/L	9.5	0.50	5185065	9.5	9.9	0.50	N/A	5185065
Orthophosphate (P)	mg/L	<0.010	0.010	5182186	<0.010		0.010	N/A	5182186
рН	рН	7.29	N/A	5174860	7.13		N/A	N/A	5174860
Reactive Silica (SiO2)	mg/L	1.3	0.50	5182184	0.58		0.50	N/A	5182184
Dissolved Sulphate (SO4)	mg/L	<2.0	2.0	5182182	4.0		2.0	N/A	5182182
Turbidity	NTU	1.8	0.10	5174921	1.1		0.10	0.10	5174914
Conductivity	uS/cm	74	1.0	5174861	77		1.0	N/A	5174861
Metals	•	•	•	•	•		•		•
Total Aluminum (Al)	ug/L	270	5.0	5172924	400		5.0	N/A	5172924
Total Antimony (Sb)	ug/L	<1.0	1.0	5172924	4.4		1.0	N/A	5172924
Total Arsenic (As)	ug/L	<1.0	1.0	5172924	<1.0		1.0	N/A	5172924
Total Barium (Ba)	ug/L	9.0	1.0	5172924	7.5		1.0	N/A	5172924
Total Beryllium (Be)	/1	-1.0	1.0	F172024	<1.0		1.0	NI/A	5172924
Total Bismuth (Bi)	ug/L	<1.0	1.0	5172924	<1.0		1.0	N/A	3172324

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FDH277			FDH278	FDH278			
Sampling Date		2017/09/13			2017/09/13	2017/09/13			
COC Number		627211-01-01			627211-01-01	627211-01-01			
	UNITS	SW_CT_04	RDL	QC Batch	SW_CT_05_BG	SW_CT_05_BG Lab-Dup	RDL	MDL	QC Batch
Total Boron (B)	ug/L	<50	50	5172924	<50		50	N/A	5172924
Total Cadmium (Cd)	ug/L	<0.010	0.010	5172924	0.013		0.010	N/A	5172924
Total Calcium (Ca)	ug/L	2800	100	5172924	3000		100	N/A	5172924
Total Chromium (Cr)	ug/L	1.1	1.0	5172924	<1.0		1.0	N/A	5172924
Total Cobalt (Co)	ug/L	<0.40	0.40	5172924	<0.40		0.40	N/A	5172924
Total Copper (Cu)	ug/L	4.3	2.0	5172924	3.1		2.0	N/A	5172924
Total Iron (Fe)	ug/L	250	50	5172924	620		50	N/A	5172924
Total Lead (Pb)	ug/L	<0.50	0.50	5172924	1.7		0.50	N/A	5172924
Total Magnesium (Mg)	ug/L	1700	100	5172924	1400		100	N/A	5172924
Total Manganese (Mn)	ug/L	<2.0	2.0	5172924	10		2.0	N/A	5172924
Total Molybdenum (Mo)	ug/L	<2.0	2.0	5172924	<2.0		2.0	N/A	5172924
Total Nickel (Ni)	ug/L	2.1	2.0	5172924	<2.0		2.0	N/A	5172924
Total Phosphorus (P)	ug/L	<100	100	5172924	<100		100	N/A	5172924
Total Potassium (K)	ug/L	740	100	5172924	900		100	N/A	5172924
Total Selenium (Se)	ug/L	<1.0	1.0	5172924	<1.0		1.0	N/A	5172924
Total Silver (Ag)	ug/L	<0.10	0.10	5172924	<0.10		0.10	N/A	5172924
Total Sodium (Na)	ug/L	8900	100	5172924	9400		100	N/A	5172924
Total Strontium (Sr)	ug/L	12	2.0	5172924	16		2.0	N/A	5172924
Total Thallium (TI)	ug/L	<0.10	0.10	5172924	<0.10		0.10	N/A	5172924
Total Tin (Sn)	ug/L	<2.0	2.0	5172924	<2.0		2.0	N/A	5172924
Total Titanium (Ti)	ug/L	3.1	2.0	5172924	15		2.0	N/A	5172924
Total Uranium (U)	ug/L	<0.10	0.10	5172924	<0.10		0.10	N/A	5172924
Total Vanadium (V)	ug/L	<2.0	2.0	5172924	<2.0		2.0	N/A	5172924
Total Zinc (Zn)	ug/L	<5.0	5.0	5172924	<5.0		5.0	N/A	5172924
	_	_	_				_		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ATLANTIC VOC IN SOIL (FIELD PRES.)

Maxxam ID		FDH279			
Sampling Date		2017/09/13			
COC Number		627211-01-01			
	UNITS	SS_CT_60	RDL	MDL	QC Batc
Volatile Organics					
1,1,1-Trichloroethane	ug/kg	<25	25	0.00010	517267
1,1,2,2-Tetrachloroethane	ug/kg	<25	25	0.00040	517267
1,1,2-Trichloroethane	ug/kg	<25	25	0.00040	517267
1,1-Dichloroethane	ug/kg	<25	25	0.00010	517267
1,1-Dichloroethylene	ug/kg	<25	25	0.00010	517267
1,2-Dichlorobenzene	ug/kg	<25	25	0.00020	517267
1,2-Dichloroethane	ug/kg	<25	25	0.00010	517267
1,2-Dichloropropane	ug/kg	<25	25	0.00020	517267
1,3-Dichlorobenzene	ug/kg	<25	25	0.00020	517267
1,4-Dichlorobenzene	ug/kg	<25	25	0.00030	517267
Benzene	ug/kg	<25	25	0.00010	517267
Bromodichloromethane	ug/kg	<25	25	0.00020	517267
Bromoform	ug/kg	<25	25	0.00030	517267
Bromomethane	ug/kg	<50	50	0.00040	517267
Carbon Tetrachloride	ug/kg	<25	25	0.00010	517267
Chlorobenzene	ug/kg	<25	25	0.00010	517267
Chloroethane	ug/kg	<200	200	0.00030	517267
Chloroform	ug/kg	<25	25	0.00010	517267
cis-1,2-Dichloroethylene	ug/kg	<25	25	0.00010	517267
cis-1,3-Dichloropropene	ug/kg	<25	25	0.00020	517267
Dibromochloromethane	ug/kg	<25	25	0.00030	517267
Ethylbenzene	ug/kg	<25	25	0.00010	517267
Ethylene Dibromide	ug/kg	<25	25	0.00040	517267
Methyl t-butyl ether (MTBE)	ug/kg	<25	25	0.00010	517267
Methylene Chloride(Dichloromethane)	ug/kg	<50	50	0.00040	517267
o-Xylene	ug/kg	<25	25	0.00010	517267
p+m-Xylene	ug/kg	<25	25	0.00010	517267
Styrene	ug/kg	<25	25	0.00020	517267
Tetrachloroethylene	ug/kg	<25	25	0.00030	517267
Toluene	ug/kg	<25	25	0.00010	517267
Total Xylenes	ug/kg	<50	50	N/A	517267
trans-1,2-Dichloroethylene	ug/kg	<25	25	0.00020	517267
trans-1,3-Dichloropropene	ug/kg	<25	25	0.00030	517267
Trichloroethylene	ug/kg	<10	10	0.00020	5172674

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ATLANTIC VOC IN SOIL (FIELD PRES.)

Maxxam ID		FDH279			
Sampling Date		2017/09/13			
COC Number		627211-01-01			
	UNITS	SS_CT_60	RDL	MDL	QC Batch
Trichlorofluoromethane (FREON 11)	ug/kg	<25	25	0.00030	5172674
Vinyl Chloride	ug/kg	<20	20	0.00020	5172674
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	98			5172674
D10-o-Xylene	%	110			5172674
D4-1,2-Dichloroethane	%	95			5172674
D8-Toluene	%	101			5172674
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

CCME PETROLEUM HYDROCARBONS SOIL (SOIL)

Maxxam ID		FDH279	FDH280	FDH281	FDH282			
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01	627211-01-01	627211-01-01			
	UNITS	SS_CT_60	SS_CT_61	SS_CT_62	SS_CT_63	RDL	MDL	QC Batch
Volatile Organics								
Benzene	ug/g	<0.0060	<0.0060	<0.0060	<0.0060	0.0060	0.0060	5175707
Ethylbenzene	ug/g	<0.010	<0.010	<0.010	<0.010	0.010	0.010	5175707
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	0.020	5175707
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	0.020	5175707
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	0.020	5175707
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	0.020	0.020	5175707
F1 (C6-C10)	ug/g	<10	<10	<10	<10	10	N/A	5175707
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	10	N/A	5175707
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	610	<10	400	<10	10	5.0	5178585
F3 (C16-C34 Hydrocarbons)	ug/g	5600	<50	9000	64	50	5.0	5178585
F4 (C34-C50 Hydrocarbons)	ug/g	2400	<50	4900	<50	50	10	5178585
Reached Baseline at C50	ug/g	Yes	Yes	No	Yes			5178585
Surrogate Recovery (%)	•		•			•		-
o-Terphenyl	%	104	92	103	91			5178585
4-Bromofluorobenzene	%	86	89	90	88			5175707
D10-o-Xylene	%	87	109	90	124			5175707
D4-1,2-Dichloroethane	%	119	117	117	104			5175707
D8-Toluene	%	95	96	96	102			5175707
RDL = Reportable Detection L	imit							

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

CCME PETROLEUM HYDROCARBONS IN WATER (WATER)

Maxxam ID		FDH273	FDH274	FDH275	FDH276	FDH277			
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01	627211-01-01	627211-01-01	627211-01-01			
	UNITS	SW_CT_01	SW_CT_02	SW_CT_02_FD	SW_CT_03	SW_CT_04	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.00020	0.000040	5180469
Toluene	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.00020	0.000040	5180469
Ethylbenzene	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.00020	0.000040	5180469
o-Xylene	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.00020	0.000040	5180469
p+m-Xylene	mg/L	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	0.00040	0.000080	5180469
Total Xylenes	mg/L	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	0.00040	0.000080	5180469
F1 (C6-C10)	mg/L	<0.025	<0.025	<0.025	<0.025	<0.025	0.025	0.020	5180469
F1 (C6-C10) - BTEX	mg/L	<0.025	<0.025	<0.025	<0.025	<0.025	0.025	0.020	5180469
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	0.050	5181282
F3 (C16-C34 Hydrocarbons)	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.070	5181282
F4 (C34-C50 Hydrocarbons)	mg/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	0.050	5181282
Reached Baseline at C50	mg/L	Yes	Yes	Yes	Yes	Yes			5181282
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	100	102	102	103	104			5180469
4-Bromofluorobenzene	%	97	97	94	96	96			5180469
D10-Ethylbenzene	%	84	84	84	86	86			5180469
D4-1,2-Dichloroethane	%	96	99	94	97	98			5180469
o-Terphenyl	%	102	102	102	102	103			5181282
RDL = Reportable Detection L									

QC Batch = Quality Control Batch

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

CCME PETROLEUM HYDROCARBONS IN WATER (WATER)

Maxxam ID		FDH278			
Sampling Date		2017/09/13			
COC Number		627211-01-01			
	UNITS	SW_CT_05_BG	RDL	MDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	mg/L	<0.00020	0.00020	0.000040	5180469
Toluene	mg/L	<0.00020	0.00020	0.000040	5180469
Ethylbenzene	mg/L	<0.00020	0.00020	0.000040	5180469
o-Xylene	mg/L	<0.00020	0.00020	0.000040	5180469
p+m-Xylene	mg/L	<0.00040	0.00040	0.000080	5180469
Total Xylenes	mg/L	<0.00040	0.00040	0.000080	5180469
F1 (C6-C10)	mg/L	<0.025	0.025	0.020	5180469
F1 (C6-C10) - BTEX	mg/L	<0.025	0.025	0.020	5180469
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	mg/L	<0.10	0.10	0.050	5181282
F3 (C16-C34 Hydrocarbons)	mg/L	<0.20	0.20	0.070	5181282
F4 (C34-C50 Hydrocarbons)	mg/L	<0.20	0.20	0.050	5181282
Reached Baseline at C50	mg/L	Yes			5181282
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	101			5180469
4-Bromofluorobenzene	%	95			5180469
D10-Ethylbenzene	%	84			5180469
D4-1,2-Dichloroethane	%	96			5180469
o-Terphenyl	%	105			5181282
RDL = Reportable Detection L QC Batch = Quality Control Ba					

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

RESULTS OF ANALYSES OF SOIL

Maxxam ID		FDH279	FDH280	FDH281	FDH282			
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01	627211-01-01	627211-01-01			
	UNITS	SS_CT_60	SS_CT_61	SS_CT_62	SS_CT_63	RDL	MDL	QC Batch
Inorganics								
Moisture	%	19	19	22	19	1.0	0.20	5168858
RDL = Reportable Detec	ction Limit							-
OC Batch = Quality Con	trol Batch							

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		FDH279		FDH280	FDH281			
Sampling Date		2017/09/13		2017/09/13	2017/09/13			
COC Number		627211-01-01		627211-01-01	627211-01-01			
	UNITS	SS_CT_60	QC Batch	SS_CT_61	SS_CT_62	RDL	MDL	QC Batch
Metals								
Acid Extractable Aluminum (AI)	mg/kg	8000	5177365	9200	15000	10	N/A	5177171
Acid Extractable Antimony (Sb)	mg/kg	<2.0	5177365	<2.0	<2.0	2.0	N/A	5177171
Acid Extractable Arsenic (As)	mg/kg	<2.0	5177365	<2.0	<2.0	2.0	N/A	5177171
Acid Extractable Barium (Ba)	mg/kg	18	5177365	23	160	5.0	N/A	5177171
Acid Extractable Beryllium (Be)	mg/kg	<2.0	5177365	<2.0	<2.0	2.0	N/A	5177171
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	5177365	<2.0	<2.0	2.0	N/A	5177171
Acid Extractable Boron (B)	mg/kg	<50	5177365	<50	<50	50	N/A	5177171
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	5177365	<0.30	<0.30	0.30	N/A	5177171
Acid Extractable Chromium (Cr)	mg/kg	200	5177365	430	310	2.0	N/A	5177171
Acid Extractable Cobalt (Co)	mg/kg	97	5177365	120	19	1.0	N/A	5177171
Acid Extractable Copper (Cu)	mg/kg	130	5177365	170	14	2.0	N/A	5177171
Acid Extractable Iron (Fe)	mg/kg	65000	5177365	79000	18000	50	N/A	5177171
Acid Extractable Lead (Pb)	mg/kg	1.4	5177365	1.9	1.8	0.50	N/A	5177171
Acid Extractable Lithium (Li)	mg/kg	2.4	5177365	3.1	11	2.0	N/A	5177171
Acid Extractable Manganese (Mn)	mg/kg	870	5177365	1100	230	2.0	N/A	5177171
Acid Extractable Mercury (Hg)	mg/kg	<0.10	5177365	<0.10	<0.10	0.10	N/A	5177171
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	5177365	<2.0	<2.0	2.0	N/A	5177171
Acid Extractable Nickel (Ni)	mg/kg	460	5177365	560	24	2.0	N/A	5177171
Acid Extractable Rubidium (Rb)	mg/kg	<2.0	5177365	<2.0	19	2.0	N/A	5177171
Acid Extractable Selenium (Se)	mg/kg	<1.0	5177365	<1.0	<1.0	1.0	N/A	5177171
Acid Extractable Silver (Ag)	mg/kg	<0.50	5177365	<0.50	<0.50	0.50	N/A	5177171
Acid Extractable Strontium (Sr)	mg/kg	26	5177365	25	14	5.0	N/A	5177171
Acid Extractable Thallium (Tl)	mg/kg	<0.10	5177365	<0.10	0.14	0.10	N/A	5177171
Acid Extractable Tin (Sn)	mg/kg	<2.0	5177365	<2.0	<2.0	2.0	N/A	5177171
Acid Extractable Uranium (U)	mg/kg	<0.10	5177365	<0.10	<0.10	0.10	N/A	5177171
Acid Extractable Vanadium (V)	mg/kg	12	5177365	11	39	2.0	N/A	5177171
Acid Extractable Zinc (Zn)	mg/kg	58	5177365	66	32	5.0	N/A	5177171
RDL = Reportable Detection Limit								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		FDH279	FDH280	FDH281	FDH282	1			
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13				
COC Number	LINUTS	627211-01-01	627211-01-01	627211-01-01	627211-01-01	- DDI	B 4 D :	000-4	
	UNITS	SS_CT_60	SS_CT_61	SS_CT_62	SS_CT_63	RDL	IVIDL	QC Batch	
Polyaromatic Hydrocarbon	s								
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
2-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Benzo(b)fluoranthene	mg/kg	0.014	<0.0050	0.030	<0.0050	0.0050	N/A	5178035	
Benzo(b/j)fluoranthene	mg/kg	0.014	<0.010	0.039	<0.010	0.010	N/A	5168848	
Benzo(g,h,i)perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Benzo(j)fluoranthene	mg/kg	<0.0050	<0.0050	0.0085	<0.0050	0.0050	N/A	5178035	
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Chrysene	mg/kg	0.090	<0.0050	0.22	<0.0050	0.0050	N/A	5178035	
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Fluoranthene	mg/kg	<0.0050	<0.0050	0.022	<0.0050	0.0050	N/A	5178035	
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Perylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	N/A	5178035	
Pyrene	mg/kg	0.028	<0.0050	0.042	<0.0050	0.0050	N/A	5178035	
Surrogate Recovery (%)	•						•		
D10-Anthracene	%	115	128	117	130			5178035	
D14-Terphenyl	%	112	104	128	104			5178035	
D8-Acenaphthylene	%	85	97	85	99			5178035	
RDL = Reportable Detection	Limit	•	•	•	•	•			
*	QC Batch = Quality Control Batch								
N/A = Not Applicable									

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		FDH281			
Sampling Date		2017/09/13			
COC Number		627211-01-01			
	UNITS	SS_CT_62	RDL	MDL	QC Batch
F2-F4 Hydrocarbons					
F2-F4 Hydrocarbons F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	15000	100	100	5184457
•	ug/g	15000	100	100	5184457

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		FDH279	FDH280	FDH281			
Sampling Date		2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01	627211-01-01			
	UNITS	SS_CT_60	SS_CT_61	SS_CT_62	RDL	MDL	QC Batch
PCBs							
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	0.050	N/A	5170405
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	0.050	N/A	5170405
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	0.050	N/A	5170405
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	0.050	N/A	5170405
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	0.050	N/A	5170405
Aroclor 1254	ug/g	2.3	<0.050	6.0	0.050	N/A	5170405
Aroclor 1260	ug/g	1.4	<0.050	3.7	0.050	N/A	5170405
Calculated Total PCB	ug/g	3.6	<0.050	9.7	0.050	N/A	5168850
Surrogate Recovery (%)	-	•		•	•	•	
Decachlorobiphenyl	%	77	96	80			5170405
BDI - Banartable Detection	Limit	•	•	•	•	•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		FDH282							
Sampling Date		2017/09/13							
COC Number		627211-01-01				TOXIC EQU	IVALENCY	# of	
	UNITS	SS_CT_63	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Dioxins & Furans									
2,3,7,8-Tetra CDD *	pg/g	<0.107	0.107	0.996	N/A	1.00	0.107		5238099
1,2,3,7,8-Penta CDD *	pg/g	<0.117	0.117	0.996	N/A	1.00	0.117		5238099
1,2,3,4,7,8-Hexa CDD *	pg/g	<0.113	0.113	0.996	N/A	0.100	0.0113		5238099
1,2,3,6,7,8-Hexa CDD *	pg/g	0.209	0.117	0.996	N/A	0.100	0.0209		5238099
1,2,3,7,8,9-Hexa CDD *	pg/g	<0.116 (1)	0.116	0.996	N/A	0.100	0.0116		5238099
1,2,3,4,6,7,8-Hepta CDD *	pg/g	2.69	0.0846	0.996	N/A	0.0100	0.0269		5238099
Octa CDD *	pg/g	22.3	0.116	9.96	N/A	0.000300	0.00669		5238099
Total Tetra CDD *	pg/g	<0.107	0.107	0.996	N/A			0	5238099
Total Penta CDD *	pg/g	<0.141 (1)	0.141	0.996	N/A			0	5238099
Total Hexa CDD *	pg/g	1.35	0.108	0.996	N/A			4	5238099
Total Hepta CDD *	pg/g	5.67	0.0846	0.996	N/A			2	5238099
2,3,7,8-Tetra CDF **	pg/g	<0.143 (1)	0.143	0.996	N/A	0.100	0.0143		5238099
1,2,3,7,8-Penta CDF **	pg/g	<0.0992	0.0992	0.996	N/A	0.0300	0.00298		5238099
2,3,4,7,8-Penta CDF **	pg/g	0.233	0.0979	0.996	N/A	0.300	0.0699		5238099
1,2,3,4,7,8-Hexa CDF **	pg/g	0.156	0.0953	0.996	N/A	0.100	0.0156		5238099
1,2,3,6,7,8-Hexa CDF **	pg/g	0.344	0.0936	0.996	N/A	0.100	0.0344		5238099
2,3,4,6,7,8-Hexa CDF **	pg/g	0.327	0.102	0.996	N/A	0.100	0.0327		5238099
1,2,3,7,8,9-Hexa CDF **	pg/g	<0.100	0.100	0.996	N/A	0.100	0.0100		5238099
1,2,3,4,6,7,8-Hepta CDF **	pg/g	1.95	0.0862	0.996	N/A	0.0100	0.0195		5238099
1,2,3,4,7,8,9-Hepta CDF **	pg/g	<0.0967	0.0967	0.996	N/A	0.0100	0.000967		5238099
Octa CDF **	pg/g	2.46	0.112	9.96	N/A	0.000300	0.000738		5238099
Total Tetra CDF **	pg/g	6.68	0.104	0.996	N/A			5	5238099
Total Penta CDF **	pg/g	13.5	0.0985	0.996	N/A			6	5238099
Total Hexa CDF **	pg/g	5.07	0.0977	0.996	N/A			6	5238099
Total Hepta CDF **	pg/g	3.29	0.0911	0.996	N/A			2	5238099
TOTAL TOXIC EQUIVALENCY	pg/g						0.502		

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

N/A = Not Applicable

** CDF = Chloro Dibenzo-p-Furan

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		FDH282							
Sampling Date		2017/09/13							
COC Number		627211-01-01				TOXIC EQU	JIVALENCY	# of	
	UNITS	SS_CT_63	EDL	RDL	MDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)									
C13-1234678 HeptaCDD *	%	97							5238099
C13-1234678 HeptaCDF **	%	109							5238099
C13-123678 HexaCDD *	%	94							5238099
C13-123678 HexaCDF **	%	107							5238099
C13-12378 PentaCDD *	%	90							5238099
C13-12378 PentaCDF **	%	98							5238099
C13-2378 TetraCDD *	%	89							5238099
C13-2378 TetraCDF **	%	128							5238099
C13-OCDD *	%	95							5238099

EDL = Estimated Detection Limit

RDL = Reportable Detection Limit

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin

** CDF = Chloro Dibenzo-p-Furan

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		FDH273	FDH274		FDH276	FDH277	FDH278			
Sampling Date		2017/09/13	2017/09/13		2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01		627211-01-01	627211-01-01	627211-01-01			
	UNITS	SW_CT_01	SW_CT_02	QC Batch	SW_CT_03	SW_CT_04	SW_CT_05_BG	RDL	MDL	QC Batch

Metals										
Total Mercury (Hg)	ug/L	<0.013	<0.013	5177332	<0.013	<0.013	<0.013	0.013	N/A	5180636

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		FDH273	FDH274	FDH276	FDH277	FDH278			
Sampling Date		2017/09/13	2017/09/13	2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01	627211-01-01	627211-01-01	627211-01-01			
	UNITS	SW_CT_01	SW_CT_02	SW_CT_03	SW_CT_04	SW_CT_05_BG	RDL	MDL	QC Batch
Polyaromatic Hydrocarbon	s								
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	5180356
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	5180356
Acenaphthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Acenaphthylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Acridine	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	5180356
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Benzo(a)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Benzo(b)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Benzo(b/j)fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	N/A	5168849
Benzo(g,h,i)perylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Benzo(j)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Benzo(k)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Chrysene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Dibenz(a,h)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Fluorene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Naphthalene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	N/A	5180356
Perylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Phenanthrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	N/A	5180356
Quinoline	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	N/A	5180356
Surrogate Recovery (%)									
D10-Anthracene	%	64	80	84	83	70			5180356
D14-Terphenyl	%	62	88	82	92	79			5180356
D8-Acenaphthylene	%	59	78	80	83	87			5180356
RDL = Reportable Detection	Limit								
QC Batch = Quality Control	Batch								

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		FDH274	FDH274	FDH277			
Sampling Date		2017/09/13	2017/09/13	2017/09/13			
COC Number		627211-01-01	627211-01-01	627211-01-01			
	UNITS	SW_CT_02	SW_CT_02 Lab-Dup	SW_CT_04	RDL	MDL	QC Batch
PCBs							
Aroclor 1016	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Aroclor 1221	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Aroclor 1232	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Aroclor 1248	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Aroclor 1242	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Aroclor 1254	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Aroclor 1260	ug/L	<0.050	<0.050	<0.050	0.050	N/A	5172679
Calculated Total PCB	ug/L	<0.050		<0.050	0.050	N/A	5168851
Surrogate Recovery (%)							
Decachlorobiphenyl	%	70	67	77			5172679

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

TEST SUMMARY

Maxxam ID: FDH273 Sample ID: SW_CT_01 Matrix: Water Collected:

2017/09/13

Shipped: Received:

d: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	5168550	N/A	2017/09/20	Automated Statchk
Alkalinity	KONE	5182179	N/A	2017/09/26	Nancy Rogers
Benzo(b/j)fluoranthene Sum (water)	CALC	5168849	N/A	2017/09/26	Automated Statchk
Chloride	KONE	5182181	N/A	2017/09/26	Nancy Rogers
Colour	KONE	5182183	N/A	2017/09/27	Nancy Rogers
Conductance - water	AT	5172649	N/A	2017/09/20	Julia McGovern
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5180469	N/A	2017/09/26	Ravinder Gaidhu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5181282	2017/09/25	2017/09/26	Zhiyue (Frank) Zhu
Hardness (calculated as CaCO3)		5168551	N/A	2017/09/21	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	5177332	2017/09/22	2017/09/25	Arlene Rossiter
Metals Water Total MS	CICP/MS	5172924	2017/09/20	2017/09/20	Mike Leblanc
Ion Balance (% Difference)	CALC	5168552	N/A	2017/09/27	Automated Statchk
Anion and Cation Sum	CALC	5168553	N/A	2017/09/27	Automated Statchk
Nitrogen Ammonia - water	KONE	5182405	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	5182187	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrite	KONE	5182190	N/A	2017/09/27	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	5168554	N/A	2017/09/27	Automated Statchk
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	GC/MS	5180356	2017/09/20	2017/09/26	Gina Thompson
рН	AT	5172648	N/A	2017/09/20	Julia McGovern
Phosphorus - ortho	KONE	5182186	N/A	2017/09/26	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	5168556	N/A	2017/09/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5168557	N/A	2017/09/27	Automated Statchk
Reactive Silica	KONE	5182184	N/A	2017/09/26	Nancy Rogers
Sulphate	KONE	5182182	N/A	2017/09/26	Cecilia (Kate) Barrett
Total Dissolved Solids (TDS calc)	CALC	5168558	N/A	2017/09/27	Automated Statchk
Organic carbon - Total (TOC)	TECH	5184415	N/A	2017/09/27	Soraya Merchant - Inactive
Turbidity	TURB	5172696	N/A	2017/09/20	Julia McGovern

Maxxam ID: FDH274
Sample ID: SW_CT_02
Matrix: Water

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	5168550	N/A	2017/09/21	Automated Statchk
Alkalinity	KONE	5177495	N/A	2017/09/25	Nancy Rogers
Benzo(b/j)fluoranthene Sum (water)	CALC	5168849	N/A	2017/09/28	Automated Statchk
Chloride	KONE	5177498	N/A	2017/09/25	Nancy Rogers
Colour	KONE	5177507	N/A	2017/09/26	Nancy Rogers
Conductance - water	AT	5174861	N/A	2017/09/21	Julia McGovern
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5180469	N/A	2017/09/26	Ravinder Gaidhu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5181282	2017/09/25	2017/09/26	Zhiyue (Frank) Zhu
Hardness (calculated as CaCO3)		5168551	N/A	2017/09/21	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	5177332	2017/09/22	2017/09/25	Arlene Rossiter
Metals Water Total MS	CICP/MS	5172924	2017/09/20	2017/09/20	Mike Leblanc
Ion Balance (% Difference)	CALC	5168552	N/A	2017/09/27	Automated Statchk

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

TEST SUMMARY

Maxxam ID: FDH274 Sw_CT_02

Collected:

2017/09/13

Matrix: Water

Shipped: Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Anion and Cation Sum	CALC	5168553	N/A	2017/09/27	Automated Statchk
Nitrogen Ammonia - water	KONE	5182405	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	5177513	N/A	2017/09/25	Nancy Rogers
Nitrogen - Nitrite	KONE	5177516	N/A	2017/09/25	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	5168554	N/A	2017/09/26	Automated Statchk
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	GC/MS	5180356	2017/09/20	2017/09/28	Gina Thompson
PCBs in water by GC/ECD	GC/ECD	5172679	2017/09/20	2017/09/21	Chloe Bramble
PCB Aroclor sum (water)	CALC	5168851	N/A	2017/09/21	Automated Statchk
рН	AT	5174860	N/A	2017/09/21	Julia McGovern
Phosphorus - ortho	KONE	5177512	N/A	2017/09/25	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	5168556	N/A	2017/09/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5168557	N/A	2017/09/27	Automated Statchk
Reactive Silica	KONE	5177504	N/A	2017/09/26	Nancy Rogers
Sulphate	KONE	5177502	N/A	2017/09/25	Nancy Rogers
Total Dissolved Solids (TDS calc)	CALC	5168558	N/A	2017/09/27	Automated Statchk
Organic carbon - Total (TOC)	TECH	5185065	N/A	2017/09/27	Soraya Merchant - Inactive
Turbidity	TURB	5174921	N/A	2017/09/21	Julia McGovern

Maxxam ID: FDH274 Dup Sample ID: SW_CT_02 Matrix: Water **Collected:** 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PCBs in water by GC/ECD	GC/ECD	5172679	2017/09/20	2017/09/21	Chloe Bramble

Maxxam ID: FDH275 Sample ID: SW_CT_02_FD

Water

Matrix:

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5180469	N/A	2017/09/26	Ravinder Gaidhu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5181282	2017/09/25	2017/09/26	Zhiyue (Frank) Zhu

Maxxam ID: FDH276
Sample ID: SW_CT_03
Matrix: Water

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	5168550	N/A	2017/09/20	Automated Statchk
Alkalinity	KONE	5182179	N/A	2017/09/26	Nancy Rogers
Benzo(b/j)fluoranthene Sum (water)	CALC	5168849	N/A	2017/09/28	Automated Statchk
Chloride	KONE	5182181	N/A	2017/09/26	Nancy Rogers
Colour	KONE	5182183	N/A	2017/09/27	Nancy Rogers
Conductance - water	AT	5172649	N/A	2017/09/20	Julia McGovern
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5180469	N/A	2017/09/26	Ravinder Gaidhu

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

TEST SUMMARY

Maxxam ID: FDH276 Sample ID: SW_CT_03 Matrix: Water

Collected:

2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5181282	2017/09/25	2017/09/26	Zhiyue (Frank) Zhu
Hardness (calculated as CaCO3)		5168551	N/A	2017/09/21	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	5180636	2017/09/22	2017/09/26	Arlene Rossiter
Metals Water Total MS	CICP/MS	5172924	2017/09/20	2017/09/20	Mike Leblanc
Ion Balance (% Difference)	CALC	5168552	N/A	2017/09/27	Automated Statchk
Anion and Cation Sum	CALC	5168553	N/A	2017/09/27	Automated Statchk
Nitrogen Ammonia - water	KONE	5182405	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	5182187	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrite	KONE	5182190	N/A	2017/09/27	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	5168554	N/A	2017/09/27	Automated Statchk
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	GC/MS	5180356	2017/09/20	2017/09/28	Gina Thompson
pH	AT	5172648	N/A	2017/09/20	Julia McGovern
Phosphorus - ortho	KONE	5182186	N/A	2017/09/26	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	5168556	N/A	2017/09/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5168557	N/A	2017/09/27	Automated Statchk
Reactive Silica	KONE	5182184	N/A	2017/09/26	Nancy Rogers
Sulphate	KONE	5182182	N/A	2017/09/26	Cecilia (Kate) Barrett
Total Dissolved Solids (TDS calc)	CALC	5168558	N/A	2017/09/27	Automated Statchk
Organic carbon - Total (TOC)	TECH	5185065	N/A	2017/09/27	Soraya Merchant - Inactive
Turbidity	TURB	5174924	N/A	2017/09/21	Julia McGovern

Maxxam ID: FDH277 Sample ID: SW_CT_04 Matrix: Water

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	5168550	N/A	2017/09/21	Automated Statchk
Alkalinity	KONE	5182179	N/A	2017/09/26	Nancy Rogers
Benzo(b/j)fluoranthene Sum (water)	CALC	5168849	N/A	2017/09/28	Automated Statchk
Chloride	KONE	5182181	N/A	2017/09/26	Nancy Rogers
Colour	KONE	5182183	N/A	2017/09/27	Nancy Rogers
Conductance - water	AT	5174861	N/A	2017/09/21	Julia McGovern
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5180469	N/A	2017/09/26	Ravinder Gaidhu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5181282	2017/09/25	2017/09/26	Zhiyue (Frank) Zhu
Hardness (calculated as CaCO3)		5168551	N/A	2017/09/21	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	5180636	2017/09/22	2017/09/26	Arlene Rossiter
Metals Water Total MS	CICP/MS	5172924	2017/09/20	2017/09/20	Mike Leblanc
Ion Balance (% Difference)	CALC	5168552	N/A	2017/09/27	Automated Statchk
Anion and Cation Sum	CALC	5168553	N/A	2017/09/27	Automated Statchk
Nitrogen Ammonia - water	KONE	5182405	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	5182187	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrite	KONE	5182190	N/A	2017/09/27	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	5168554	N/A	2017/09/27	Automated Statchk
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	GC/MS	5180356	2017/09/20	2017/09/28	Gina Thompson
PCBs in water by GC/ECD	GC/ECD	5172679	2017/09/20	2017/09/21	Chloe Bramble

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

TEST SUMMARY

Maxxam ID: FDH277 Sample ID: SW_CT_04

Matrix: Water

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PCB Aroclor sum (water)	CALC	5168851	N/A	2017/09/21	Automated Statchk
рН	AT	5174860	N/A	2017/09/21	Julia McGovern
Phosphorus - ortho	KONE	5182186	N/A	2017/09/26	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	5168556	N/A	2017/09/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5168557	N/A	2017/09/27	Automated Statchk
Reactive Silica	KONE	5182184	N/A	2017/09/26	Nancy Rogers
Sulphate	KONE	5182182	N/A	2017/09/26	Cecilia (Kate) Barrett
Total Dissolved Solids (TDS calc)	CALC	5168558	N/A	2017/09/27	Automated Statchk
Organic carbon - Total (TOC)	TECH	5185065	N/A	2017/09/27	Soraya Merchant - Inactive
Turbidity	TURB	5174921	N/A	2017/09/21	Julia McGovern

Maxxam ID: FDH278 Sample ID: SW_CT_05_BG

Matrix: Water

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Carbonate, Bicarbonate and Hydroxide	CALC	5168550	N/A	2017/09/21	Automated Statchk
Alkalinity	KONE	5182179	N/A	2017/09/26	Nancy Rogers
Benzo(b/j)fluoranthene Sum (water)	CALC	5168849	N/A	2017/09/28	Automated Statchk
Chloride	KONE	5182181	N/A	2017/09/26	Nancy Rogers
Colour	KONE	5182183	N/A	2017/09/27	Nancy Rogers
Conductance - water	AT	5174861	N/A	2017/09/21	Julia McGovern
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	5180469	N/A	2017/09/26	Ravinder Gaidhu
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5181282	2017/09/25	2017/09/26	Zhiyue (Frank) Zhu
Hardness (calculated as CaCO3)		5168551	N/A	2017/09/21	Automated Statchk
Mercury - Total (CVAA,LL)	CV/AA	5180636	2017/09/22	2017/09/26	Arlene Rossiter
Metals Water Total MS	CICP/MS	5172924	2017/09/20	2017/09/20	Mike Leblanc
Ion Balance (% Difference)	CALC	5168552	N/A	2017/09/27	Automated Statchk
Anion and Cation Sum	CALC	5168553	N/A	2017/09/27	Automated Statchk
Nitrogen Ammonia - water	KONE	5182405	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	5182187	N/A	2017/09/26	Nancy Rogers
Nitrogen - Nitrite	KONE	5182190	N/A	2017/09/27	Nancy Rogers
Nitrogen - Nitrate (as N)	CALC	5168554	N/A	2017/09/27	Automated Statchk
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	GC/MS	5180356	2017/09/20	2017/09/28	Gina Thompson
pH	AT	5174860	N/A	2017/09/21	Julia McGovern
Phosphorus - ortho	KONE	5182186	N/A	2017/09/26	Nancy Rogers
Sat. pH and Langelier Index (@ 20C)	CALC	5168556	N/A	2017/09/27	Automated Statchk
Sat. pH and Langelier Index (@ 4C)	CALC	5168557	N/A	2017/09/27	Automated Statchk
Reactive Silica	KONE	5182184	N/A	2017/09/26	Nancy Rogers
Sulphate	KONE	5182182	N/A	2017/09/26	Cecilia (Kate) Barrett
Total Dissolved Solids (TDS calc)	CALC	5168558	N/A	2017/09/27	Automated Statchk
Organic carbon - Total (TOC)	TECH	5185065	N/A	2017/09/27	Soraya Merchant - Inactive
Turbidity	TURB	5174914	N/A	2017/09/21	Julia McGovern

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

TEST SUMMARY

Maxxam ID: FDH278 Dup

Sample ID: SW_CT_05_BG

Matrix: Water

Collected: 2017/09/13

Shipped: Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Organic carbon - Total (TOC)	TECH	5185065	N/A	2017/09/27	Soraya Merchant - Inactive

Maxxam ID: FDH279

Sample ID: SS_CT_60

Matrix: Soil

Shipped:

Collected: 2017/09/13

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Benzo(b/j)fluoranthene Sum (LL soil)	CALC	5168848	N/A	2017/09/28	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5178585	2017/09/22	2017/09/23	Zhiyue (Frank) Zhu
Metals Solids Acid Extr. ICPMS	ICP/MS	5177365	2017/09/22	2017/09/22	Mike Leblanc
Moisture	BAL	5168858	N/A	2017/09/18	Jacob Henley
PAH in sediment by GC/MS (Low Level)	GC/MS	5178035	2017/09/22	2017/09/27	Gina Thompson
PCBs in soil by GC/ECD	GC/ECD	5170405	2017/09/19	2017/09/20	Chloe Bramble
PCB Aroclor sum (soil)	CALC	5168850	N/A	2017/09/20	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	5175707	N/A	2017/09/23	Denis Reid
VOCs in Soil - Field Preserved	HS/MS	5172674	N/A	2017/09/20	Amanda Swales

Maxxam ID: FDH280 Sample ID: SS CT 61 Matrix: Soil

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Benzo(b/j)fluoranthene Sum (LL soil)	CALC	5168848	N/A	2017/09/28	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5178585	2017/09/22	2017/09/23	Zhiyue (Frank) Zhu
Metals Solids Acid Extr. ICPMS	ICP/MS	5177171	2017/09/22	2017/09/22	Bryon Angevine
Moisture	BAL	5168858	N/A	2017/09/18	Jacob Henley
PAH in sediment by GC/MS (Low Level)	GC/MS	5178035	2017/09/22	2017/09/27	Gina Thompson
PCBs in soil by GC/ECD	GC/ECD	5170405	2017/09/19	2017/09/20	Chloe Bramble
PCB Aroclor sum (soil)	CALC	5168850	N/A	2017/09/20	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	5175707	N/A	2017/09/23	Denis Reid

Maxxam ID: FDH281 Sample ID: SS_CT_62 Matrix: Soil

Collected: 2017/09/13

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Benzo(b/j)fluoranthene Sum (LL soil)	CALC	5168848	N/A	2017/09/28	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5178585	2017/09/22	2017/09/23	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	5184457	2017/09/27	2017/09/27	Debra Deslandes
Metals Solids Acid Extr. ICPMS	ICP/MS	5177171	2017/09/22	2017/09/22	Bryon Angevine
Moisture	BAL	5168858	N/A	2017/09/18	Jacob Henley
PAH in sediment by GC/MS (Low Level)	GC/MS	5178035	2017/09/22	2017/09/28	Gina Thompson
PCBs in soil by GC/ECD	GC/ECD	5170405	2017/09/19	2017/09/20	Chloe Bramble
PCB Aroclor sum (soil)	CALC	5168850	N/A	2017/09/20	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MS	5175707	N/A	2017/09/23	Denis Reid

Matrix: Soil

Maxxam Job #: B7K2737 Report Date: 2017/11/02 **GEMTEC LIMITED**

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

TEST SUMMARY

Maxxam ID: FDH282 **Collected:** 2017/09/13 Sample ID: SS_CT_63

Shipped:

Received: 2017/09/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Benzo(b/j)fluoranthene Sum (LL soil)	CALC	5168848	N/A	2017/09/28	Automated Statchk
Dioxins/Furans in Soil (EPS 1/RM/23)	HRMS/MS	5238099	2017/10/25	2017/10/30	Cathy Xu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5178585	2017/09/22	2017/09/25	Zhiyue (Frank) Zhu
Moisture	BAL	5168858	N/A	2017/09/18	Jacob Henley
PAH in sediment by GC/MS (Low Level)	GC/MS	5178035	2017/09/22	2017/09/28	Gina Thompson
Volatile Organic Compounds and F1 PHCs	GC/MS	5175707	N/A	2017/09/26	Denis Reid

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatur	es taken at receipt		
	Package 1	5.4°C				
		•	_			
Result	s relate only to th	ne items tested.				

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5168858	JHY	RPD - Sample/Sample Dup	Moisture	2017/09/18	6.2		%	25
5170405	CBR	Matrix Spike	Decachlorobiphenyl	2017/09/20		107	%	30 - 130
			Aroclor 1254	2017/09/20		80	%	30 - 130
5170405	CBR	Spiked Blank	Decachlorobiphenyl	2017/09/20		99	%	30 - 130
			Aroclor 1254	2017/09/20		91	%	30 - 130
5170405	CBR	Method Blank	Decachlorobiphenyl	2017/09/20		100	%	30 - 130
			Aroclor 1016	2017/09/20	<0.050		ug/g	
			Aroclor 1221	2017/09/20	<0.050		ug/g	
			Aroclor 1232	2017/09/20	<0.050		ug/g	
			Aroclor 1248	2017/09/20	<0.050		ug/g	
			Aroclor 1242	2017/09/20	<0.050		ug/g	
			Aroclor 1254	2017/09/20	<0.050		ug/g	
			Aroclor 1260	2017/09/20	<0.050		ug/g	
5170405	CBR	RPD - Sample/Sample Dup	Aroclor 1016	2017/09/20	NC		%	50
			Aroclor 1221	2017/09/20	NC		%	50
			Aroclor 1232	2017/09/20	NC		%	50
			Aroclor 1248	2017/09/20	NC		%	50
			Aroclor 1242	2017/09/20	NC		%	50
			Aroclor 1254	2017/09/20	NC		%	50
			Aroclor 1260	2017/09/20	NC		%	50
5172648	JMV	QC Standard	pH	2017/09/20		101	%	97 - 103
5172648	JMV	RPD - Sample/Sample Dup	рН	2017/09/20	1.2		%	N/A
5172649	JMV	Spiked Blank	Conductivity	2017/09/20		100	%	80 - 120
5172649	JMV	Method Blank	Conductivity	2017/09/20	1.2, RDL=1.0		uS/cm	
5172649	JMV	RPD - Sample/Sample Dup	Conductivity	2017/09/20	0.33		%	25
5172674	ASL	Matrix Spike	4-Bromofluorobenzene	2017/09/20		104	%	60 - 140
			D10-o-Xylene	2017/09/20		97 (1)	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/20		96	%	60 - 140
			D8-Toluene	2017/09/20		100	%	60 - 140
			1,1,1-Trichloroethane	2017/09/20		105	%	60 - 140
			1,1,2,2-Tetrachloroethane	2017/09/20		90	%	60 - 140
			1,1,2-Trichloroethane	2017/09/20		90	%	60 - 140
			1,1-Dichloroethane	2017/09/20		104	%	60 - 140
			1,1-Dichloroethylene	2017/09/20		108	%	60 - 140
			1,2-Dichlorobenzene	2017/09/20		90	%	60 - 140
			1,2-Dichloroethane	2017/09/20		94	%	60 - 140
			1,2-Dichloropropane	2017/09/20		93	%	60 - 140
			1,3-Dichlorobenzene	2017/09/20		90	%	60 - 140
			1,4-Dichlorobenzene	2017/09/20		89	%	60 - 140
			Benzene	2017/09/20		97	%	60 - 140
			Bromodichloromethane	2017/09/20		96	%	60 - 140
			Bromoform	2017/09/20		96	%	60 - 140
			Bromomethane	2017/09/20		90	%	60 - 140
			Carbon Tetrachloride	2017/09/20		103	%	60 - 140
			Chlorobenzene	2017/09/20		98	%	60 - 140
			Chloroethane	2017/09/20		91	%	60 - 140
			Chloroform	2017/09/20		94	%	60 - 140
			cis-1,2-Dichloroethylene	2017/09/20		101	%	60 - 140
			cis-1,3-Dichloropropene	2017/09/20		95	%	60 - 140
			Dibromochloromethane	2017/09/20		94	%	60 - 140
			Ethylbenzene	2017/09/20		105	%	60 - 140
			Ethylene Dibromide	2017/09/20		89	%	60 - 140

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Methyl t-butyl ether (MTBE)	2017/09/20		105	%	60 - 140
			Methylene Chloride(Dichloromethane)	2017/09/20		99	%	60 - 140
			o-Xylene	2017/09/20		101	%	60 - 140
			p+m-Xylene	2017/09/20		103	%	60 - 140
			Styrene	2017/09/20		104	%	60 - 140
			Tetrachloroethylene	2017/09/20		102	%	60 - 140
			Toluene	2017/09/20		100	%	60 - 140
			trans-1,2-Dichloroethylene	2017/09/20		104	%	60 - 140
			trans-1,3-Dichloropropene	2017/09/20		81	%	60 - 140
			Trichloroethylene	2017/09/20		103	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2017/09/20		95	%	60 - 140
			Vinyl Chloride	2017/09/20		96	%	60 - 140
5172674	ASL	Spiked Blank	4-Bromofluorobenzene	2017/09/20		100	%	60 - 140
			D10-o-Xylene	2017/09/20		99	%	60 - 130
			D4-1,2-Dichloroethane	2017/09/20		99	%	60 - 140
			D8-Toluene	2017/09/20		100	%	60 - 140
			Methyl - butyl ether (MTBE) 2017/09/20 105 % 60 Methylene Chioride(Dichloromethane) 2017/09/20 101 % 60 o - Xylene 2017/09/20 103 % 60 Styrene 2017/09/20 104 % 60 Tetrachloroethylene 2017/09/20 100 % 60 Toluene 2017/09/20 104 % 60 trans-1,2-Dichloropropene 2017/09/20 81 % 60 Trichlorothylene 2017/09/20 95 % 60 Trichlorothylene 2017/09/20 95 % 60 Trichlorothylene 2017/09/20 96 % 60 Trichlorothylene 2017/09/20 96 % 60 Trichlorothylene 2017/09/20 96 % 60 Jank 4-Bromofluorobenzene 2017/09/20 99 % 60 Jank 4-Bromofluorobenzene 2017/09/20 99 % 60	60 - 130				
			1,1,2,2-Tetrachloroethane	2017/09/20		95	%	60 - 130
				2017/09/20			%	60 - 130
			1,1-Dichloroethane	2017/09/20		108	%	60 - 130
			1,1-Dichloroethylene			111	%	60 - 130
			•	2017/09/20		94	%	60 - 130
			1,2-Dichloroethane	2017/09/20		101	%	60 - 130
			•				%	60 - 130
							%	60 - 130
								60 - 130
								60 - 130
								60 - 130
								60 - 130
								60 - 140
								60 - 130
								60 - 130
								60 - 140
								60 - 130
								60 - 130
				• •				60 - 130
			• •					60 - 130
								60 - 130
			•					60 - 130
			•					60 - 130
								60 - 130
								60 - 130
			•					60 - 130
								60 - 130
			•					60 - 130
			•					60 - 130
								60 - 130
			•					60 - 130
			• • •					
			Trichloroethylene	2017/09/20		107	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2017/09/20		98	%	60 - 140
E473674	4.01	Mathad District	Vinyl Chloride	2017/09/20		98	%	60 - 140
5172674	ASL	Method Blank	4-Bromofluorobenzene	2017/09/20		100	%	60 - 140
			D10-o-Xylene	2017/09/20		101	%	60 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC		OC T	Development	D-1. 1. 1.		0/ 5	1100=0	0011
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
			D4-1,2-Dichloroethane	2017/09/20		95	%	60 - 140
			D8-Toluene	2017/09/20		101	%	60 - 140
			1,1,1-Trichloroethane	2017/09/20	<25		ug/kg	
			1,1,2,2-Tetrachloroethane	2017/09/20	<25		ug/kg	
			1,1,2-Trichloroethane	2017/09/20	<25		ug/kg	
			1,1-Dichloroethane	2017/09/20	<25		ug/kg	
			1,1-Dichloroethylene	2017/09/20	<25		ug/kg	
			1,2-Dichlorobenzene	2017/09/20	<25		ug/kg	
			1,2-Dichloroethane	2017/09/20	<25		ug/kg	
			1,2-Dichloropropane	2017/09/20	<25		ug/kg	
			1,3-Dichlorobenzene	2017/09/20	<25		ug/kg	
			1,4-Dichlorobenzene	2017/09/20	<25		ug/kg	
			Benzene	2017/09/20	<25		ug/kg	
			Bromodichloromethane	2017/09/20	<25		ug/kg	
			Bromoform	2017/09/20	<25		ug/kg	
			Bromomethane	2017/09/20	<50		ug/kg	
			Carbon Tetrachloride	2017/09/20	<25		ug/kg	
			Chlorobenzene	2017/09/20	<25		ug/kg	
			Chloroethane	2017/09/20	<200		ug/kg	
			Chloroform	2017/09/20	<25		ug/kg	
			cis-1,2-Dichloroethylene	2017/09/20	<25		ug/kg	
			cis-1,3-Dichloropropene	2017/09/20	<25		ug/kg	
			Dibromochloromethane	2017/09/20	<25		ug/kg	
			Ethylbenzene	2017/09/20	<25		ug/kg	
			Ethylene Dibromide	2017/09/20	<25		ug/kg	
			Methyl t-butyl ether (MTBE)	2017/09/20	<25		ug/kg	
			Methylene Chloride(Dichloromethane)	2017/09/20	<50		ug/kg	
			o-Xylene	2017/09/20	<25		ug/kg	
			p+m-Xylene	2017/09/20	<25		ug/kg	
				2017/09/20	<25			
			Styrene	• •	<25		ug/kg	
			Tetrachloroethylene	2017/09/20			ug/kg	
			Toluene	2017/09/20	<25		ug/kg	
			Total Xylenes	2017/09/20	<50		ug/kg	
			trans-1,2-Dichloroethylene	2017/09/20	<25		ug/kg	
			trans-1,3-Dichloropropene	2017/09/20	<25		ug/kg	
			Trichloroethylene	2017/09/20	<10		ug/kg	
			Trichlorofluoromethane (FREON 11)	2017/09/20	<25		ug/kg	
			Vinyl Chloride	2017/09/20	<20		ug/kg	
172674	ASL	RPD - Sample/Sample Dup	1,1,1-Trichloroethane	2017/09/20	NC		%	50
			1,1,2,2-Tetrachloroethane	2017/09/20	NC		%	50
			1,1,2-Trichloroethane	2017/09/20	NC		%	50
			1,1-Dichloroethane	2017/09/20	NC		%	50
			1,1-Dichloroethylene	2017/09/20	NC		%	50
			1,2-Dichlorobenzene	2017/09/20	NC		%	50
			1,2-Dichloroethane	2017/09/20	NC		%	50
			1,2-Dichloropropane	2017/09/20	NC		%	50
			1,3-Dichlorobenzene	2017/09/20	NC		%	50
			1,4-Dichlorobenzene	2017/09/20	NC		%	50
			Benzene	2017/09/20	NC		%	50
			Bromodichloromethane	2017/09/20	NC		%	50
			Bromoform	2017/09/20	NC		%	50
			Bromomethane	2017/09/20	NC		%	50
			Carbon Tetrachloride	2017/09/20	NC		%	50

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Chlorobenzene	2017/09/20	NC		%	50
			Chloroethane	2017/09/20	NC		%	50
			Chloroform	2017/09/20	NC		%	50
			cis-1,2-Dichloroethylene	2017/09/20	NC		%	50
			cis-1,3-Dichloropropene	2017/09/20	NC		%	50
			Dibromochloromethane	2017/09/20	NC		%	50
			Ethylbenzene	2017/09/20	NC		%	50
			Ethylene Dibromide	2017/09/20	NC		%	50
			Methyl t-butyl ether (MTBE)	2017/09/20	NC		%	50
			Methylene Chloride(Dichloromethane)	2017/09/20	NC		%	50
			o-Xylene	2017/09/20	NC		%	50
			p+m-Xylene	2017/09/20	NC		%	50
			Styrene	2017/09/20	NC		%	50
			Tetrachloroethylene	2017/09/20	NC		%	50
			Toluene	2017/09/20	NC		%	50
			Total Xylenes	2017/09/20	NC		%	50
			trans-1,2-Dichloroethylene	2017/09/20	NC		%	50
			trans-1,3-Dichloropropene	2017/09/20	NC		%	50
			Trichloroethylene	2017/09/20	NC		%	50
			Trichlorofluoromethane (FREON 11)	2017/09/20	NC		%	50
			Vinyl Chloride	2017/09/20	NC		%	50
5172679	CBR	Matrix Spike(FDH277)	Decachlorobiphenyl	2017/09/21		73	%	30 - 130
			Aroclor 1254	2017/09/21		92	%	30 - 130
5172679	CBR	Spiked Blank	Decachlorobiphenyl	2017/09/21		90	%	30 - 130
			Aroclor 1254	2017/09/21		95	%	30 - 130
5172679	CBR	Method Blank	Decachlorobiphenyl	2017/09/21		88	%	30 - 130
			Aroclor 1016	2017/09/21	< 0.050		ug/L	
			Aroclor 1221	2017/09/21	< 0.050		ug/L	
			Aroclor 1232	2017/09/21	< 0.050		ug/L	
			Aroclor 1248	2017/09/21	< 0.050		ug/L	
			Aroclor 1242	2017/09/21	< 0.050		ug/L	
			Aroclor 1254	2017/09/21	< 0.050		ug/L	
			Aroclor 1260	2017/09/21	< 0.050		ug/L	
5172679	CBR	RPD - Sample/Sample Dup	Aroclor 1016	2017/09/21	NC		%	40
			Aroclor 1221	2017/09/21	NC		%	40
			Aroclor 1232	2017/09/21	NC		%	40
			Aroclor 1248	2017/09/21	NC		%	40
			Aroclor 1242	2017/09/21	NC		%	40
			Aroclor 1254	2017/09/21	NC		%	40
			Aroclor 1260	2017/09/21	NC		%	40
5172696	JMV	QC Standard	Turbidity	2017/09/20		97	%	80 - 120
5172696	JMV	Spiked Blank	Turbidity	2017/09/20		92	%	80 - 120
5172696	JMV	Method Blank	Turbidity	2017/09/20	< 0.10		NTU	
5172696	JMV	RPD - Sample/Sample Dup	Turbidity	2017/09/20	2.7		%	20
5172924	MLB	Matrix Spike	Total Aluminum (Al)	2017/09/20		102	%	80 - 120
			Total Antimony (Sb)	2017/09/20		100	%	80 - 120
			Total Arsenic (As)	2017/09/20		96	%	80 - 120
			Total Barium (Ba)	2017/09/20		95	%	80 - 120
			Total Beryllium (Be)	2017/09/20		97	%	80 - 120
			Total Bismuth (Bi)	2017/09/20		100	%	80 - 120
			Total Boron (B)	2017/09/20		101	%	80 - 120
			Total Cadmium (Cd)	2017/09/20		98	%	80 - 120
			Total Calcium (Ca)	2017/09/20		102	%	80 - 120

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
		• •	Total Chromium (Cr)	2017/09/20		97	%	80 - 120
			Total Cobalt (Co)	2017/09/20		99	%	80 - 120
			Total Copper (Cu)	2017/09/20		NC	%	80 - 120
			Total Iron (Fe)	2017/09/20		102	%	80 - 120
			Total Lead (Pb)	2017/09/20		97	%	80 - 120
			Total Magnesium (Mg)	2017/09/20		105	%	80 - 120
			Total Manganese (Mn)	2017/09/20		100	%	80 - 120
			Total Molybdenum (Mo)	2017/09/20		102	%	80 - 120
			Total Nickel (Ni)	2017/09/20		98	%	80 - 120
			Total Phosphorus (P)	2017/09/20		103	%	80 - 120
			Total Potassium (K)	2017/09/20		105	%	80 - 120
			Total Selenium (Se)	2017/09/20		100	%	80 - 120
			Total Silver (Ag)	2017/09/20		98	%	80 - 120
			Total Sodium (Na)	2017/09/20		103	%	80 - 120
			Total Strontium (Sr)	2017/09/20		98	%	80 - 120
			Total Thallium (TI)	2017/09/20		101	%	80 - 120
			Total Tin (Sn)	2017/09/20		103	%	80 - 120
			Total Titanium (Ti)	2017/09/20		101	%	80 - 120
			Total Uranium (U)	2017/09/20		103	%	80 - 120
			Total Vanadium (V)	2017/09/20		99	%	80 - 120
			Total Zinc (Zn)	2017/09/20		98	%	80 - 120
5172924	MLB	Spiked Blank	Total Aluminum (Al)	2017/09/20		102	%	80 - 120
			Total Antimony (Sb)	2017/09/20		99	%	80 - 120
			Total Arsenic (As)	2017/09/20		96	%	80 - 120
			Total Barium (Ba)	2017/09/20		96	%	80 - 120
			Total Beryllium (Be)	2017/09/20		96	%	80 - 120
			Total Bismuth (Bi)	2017/09/20		101	%	80 - 120
			Total Boron (B)	2017/09/20		98	%	80 - 120
			Total Cadmium (Cd)	2017/09/20		98	%	80 - 120
			Total Calcium (Ca)	2017/09/20		102	%	80 - 120
			Total Chromium (Cr)	2017/09/20		99	%	80 - 120
			Total Cobalt (Co)	2017/09/20		100	%	80 - 120
			Total Copper (Cu)	2017/09/20		99	%	80 - 120
			Total Iron (Fe)	2017/09/20		103	%	80 - 120
			Total Lead (Pb)	2017/09/20		96	%	80 - 120
			Total Magnesium (Mg)	2017/09/20		105	%	80 - 120
			Total Manganese (Mn)	2017/09/20		99	%	80 - 120
			Total Molybdenum (Mo)	2017/09/20		104	%	80 - 120
			Total Nickel (Ni)	2017/09/20		99	%	80 - 120
			Total Phosphorus (P)	2017/09/20		102	%	80 - 120
			Total Potassium (K)	2017/09/20		104	%	80 - 120
			Total Selenium (Se)	2017/09/20		97	%	80 - 120
			Total Silver (Ag)	2017/09/20		98	%	80 - 120
			Total Sodium (Na)	2017/09/20		104	%	80 - 120
			Total Strontium (Sr)	2017/09/20		99	%	80 - 120
			Total Thallium (TI)	2017/09/20		100	%	80 - 120
			Total Tin (Sn)	2017/09/20		103	%	80 - 120
			Total Till (311) Total Titanium (Ti)	2017/09/20		100	%	80 - 120 80 - 120
			Total Tranium (T) Total Uranium (U)	2017/09/20		100	%	80 - 120
			Total Vanadium (V)	2017/09/20		99	%	80 - 120 80 - 120
				2017/09/20		99		
5172924	MLB	Method Blank	Total Zinc (Zn) Total Aluminum (Al)	2017/09/20	<5.0	99	% ug/l	80 - 120
J11 ZJZ4	IVILD	IVICUIOU DIAIIK					ug/L	
			Total Antimony (Sb)	2017/09/20	<1.0		ug/L	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								_
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Arsenic (As)	2017/09/20	<1.0		ug/L	
			Total Barium (Ba)	2017/09/20	<1.0		ug/L	
			Total Beryllium (Be)	2017/09/20	<1.0		ug/L	
			Total Bismuth (Bi)	2017/09/20	<2.0		ug/L	
			Total Boron (B)	2017/09/20	<50		ug/L	
			Total Cadmium (Cd)	2017/09/20	< 0.010		ug/L	
			Total Calcium (Ca)	2017/09/20	<100		ug/L	
			Total Chromium (Cr)	2017/09/20	<1.0		ug/L	
			Total Cobalt (Co)	2017/09/20	< 0.40		ug/L	
			Total Copper (Cu)	2017/09/20	<2.0		ug/L	
			Total Iron (Fe)	2017/09/20	<50		ug/L	
			Total Lead (Pb)	2017/09/20	< 0.50		ug/L	
			Total Magnesium (Mg)	2017/09/20	<100		ug/L	
			Total Manganese (Mn)	2017/09/20	<2.0		ug/L	
			Total Molybdenum (Mo)	2017/09/20	<2.0		ug/L	
			Total Nickel (Ni)	2017/09/20	<2.0		ug/L	
			Total Phosphorus (P)	2017/09/20	<100		ug/L	
			Total Potassium (K)	2017/09/20	<100		ug/L	
			Total Selenium (Se)	2017/09/20	<1.0		ug/L	
			Total Silver (Ag)	2017/09/20	<0.10		ug/L	
			Total Sodium (Na)	2017/09/20	<100		ug/L	
			Total Strontium (Sr)	2017/09/20	<2.0		ug/L	
			Total Thallium (TI)	2017/09/20	<0.10		ug/L	
			Total Tin (Sn)	2017/09/20	<2.0		ug/L	
			Total Titanium (Ti)	2017/09/20	<2.0		ug/L	
			Total Uranium (U)	2017/09/20	<0.10		ug/L	
			Total Vanadium (V)	2017/09/20	<2.0		ug/L	
			Total Zinc (Zn)	2017/09/20	<5.0		ug/L	
5172924	MLB	RPD - Sample/Sample Dup	Total Aluminum (Al)	2017/09/20	NC		%	20
3172324	IVILD	M D Sample/Sample Dup	Total Antimony (Sb)	2017/09/20	NC		%	20
			Total Arsenic (As)	2017/09/20	3.8		%	20
			Total Barium (Ba)	2017/09/20	0.54		%	20
			Total Boron (B)	2017/09/20	NC		%	20
			Total Cadmium (Cd)	2017/09/20	NC		%	20
			Total Calcium (Ca)	2017/09/20	0.0037		%	20
			Total Chromium (Cr)	2017/09/20	0.0037 NC		% %	20
			Total Copper (Cu)	2017/09/20	0.62		%	20
			Total Iron (Fe)	2017/09/20	NC			20
				2017/09/20			%	
			Total Magnesium (Mg)		NC 0.13		% %	20
			Total Magnesium (Mg)	2017/09/20	0.13			20
			Total Manganese (Mn)	2017/09/20 2017/09/20	0.64		%	20
			Total Nickel (Ni)		NC		%	20
			Total Potassium (K)	2017/09/20	3.4		%	20
			Total Selenium (Se)	2017/09/20	NC 0.00		%	20
			Total Sodium (Na)	2017/09/20	0.99		%	20
			Total Uranium (Sr)	2017/09/20	0.51		%	20
			Total Uranium (U)	2017/09/20	NC 0.F6		%	20
E474000	18.43.7	OC Standard	Total Zinc (Zn)	2017/09/20	0.56	404	%	20
5174860	JMV	QC Standard	pH	2017/09/21	0.00	101	%	97 - 103
5174860	JMV	RPD - Sample/Sample Dup	pH	2017/09/21	0.83	4.00	%	N/A
5174861	JMV	Spiked Blank	Conductivity	2017/09/21	4.0	103	%	80 - 120
5174861	JMV	Method Blank	Conductivity	2017/09/21	1.3,		uS/cm	
					RDL=1.0			

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

Batch Init QC Type Parameter Date Analyzed Value % Recovery UNIT 5174861 JMV RPD - Sample/Sample Dup Conductivity 2017/09/21 1.2 % 5174914 JMV QC Standard Turbidity 2017/09/21 97 % 5174914 JMV Spiked Blank Turbidity 2017/09/21 <0.10 NT 5174914 JMV Method Blank Turbidity 2017/09/21 2.1 % 5174914 JMV RPD - Sample/Sample Dup Turbidity 2017/09/21 2.1 % 5174914 JMV Spiked Blank Turbidity 2017/09/21 2.1 % 5174911 JMV Spiked Blank Turbidity 2017/09/21 <0.10 NT 5174921 JMV Method Blank Turbidity 2017/09/21 <0.10 NT 5174924 JMV Spiked Blank Turbidity 2017/09/21 <0.10 NT 5174924 JMV Spiked Blank	25 80 - 120
5174914 JMV QC Standard Turbidity 2017/09/21 97 % 5174914 JMV Spiked Blank Turbidity 2017/09/21 <0.10	80 - 120
5174914 JMV Spiked Blank Turbidity 2017/09/21 92 % 5174914 JMV Method Blank Turbidity 2017/09/21 <0.10	
5174914 JMV Method Blank Turbidity 2017/09/21 <0.10	00 400
5174914 JMV RPD - Sample/Sample Dup Turbidity 2017/09/21 2.1 % 5174921 JMV QC Standard Turbidity 2017/09/21 97 % 5174921 JMV Spiked Blank Turbidity 2017/09/21 <0.10	80 - 120
5174921 JMV QC Standard Turbidity 2017/09/21 97 % 5174921 JMV Spiked Blank Turbidity 2017/09/21 <0.10	J
5174921 JMV Spiked Blank Turbidity 2017/09/21 92 % 5174921 JMV Method Blank Turbidity 2017/09/21 <0.10	20
5174921 JMV Method Blank Turbidity 2017/09/21 <0.10	80 - 120
5174921 JMV RPD - Sample/Sample Dup Turbidity 2017/09/21 18 % 5174924 JMV QC Standard Turbidity 2017/09/21 96 % 5174924 JMV Spiked Blank Turbidity 2017/09/21 92 % 5174924 JMV Method Blank Turbidity 2017/09/21 <0.10	80 - 120
5174924 JMV QC Standard Turbidity 2017/09/21 96 % 5174924 JMV Spiked Blank Turbidity 2017/09/21 92 % 5174924 JMV Method Blank Turbidity 2017/09/21 <0.10	J
5174924 JMV Spiked Blank Turbidity 2017/09/21 92 % 5174924 JMV Method Blank Turbidity 2017/09/21 <0.10	20
5174924 JMV Method Blank Turbidity 2017/09/21 <0.10	80 - 120
5174924 JMV RPD - Sample/Sample Dup Turbidity 2017/09/21 3.2 %	80 - 120
5175707 DR1 Matrix Spike 4-Bromofluorobenzene 2017/09/23 100 %	20
	60 - 140
D10-o-Xylene 2017/09/23 99 %	60 - 130
D4-1,2-Dichloroethane 2017/09/23 121 %	60 - 140
D8-Toluene 2017/09/23 104 %	60 - 140
Benzene 2017/09/23 111 %	60 - 140
Ethylbenzene 2017/09/23 83 %	60 - 140
Toluene 2017/09/23 93 %	60 - 140
p+m-Xylene 2017/09/23 88 %	60 - 140
o-Xylene 2017/09/23 93 %	60 - 140
F1 (C6-C10) 2017/09/23 NC %	60 - 140
5175707 DR1 Spiked Blank 4-Bromofluorobenzene 2017/09/22 92 %	60 - 140
D10-o-Xylene 2017/09/22 84 %	60 - 130
D4-1,2-Dichloroethane 2017/09/22 118 %	60 - 140
D8-Toluene 2017/09/22 105 % Benzene 2017/09/22 108 %	60 - 140
	60 - 130
Ethylbenzene 2017/09/22 81 % Toluene 2017/09/22 96 %	60 - 130 60 - 130
p+m-Xylene 2017/09/22 81 %	60 - 130
o-Xylene 2017/09/22 84 %	60 - 130
F1 (C6-C10) 2017/09/22 100 %	80 - 120
5175707 DR1 Method Blank 4-Bromofluorobenzene 2017/09/22 85 %	60 - 140
D10-o-Xylene 2017/09/22 75 %	60 - 130
D10-0-Aylerie 2017/09/22 73 78 78 78 78 78 78 78 78 78 78 78 78 78	60 - 140
D8-Toluene 2017/09/22 96 %	60 - 140
Benzene 2017/09/22 <0.0060 ug/	
Ethylbenzene 2017/09/22 <0.010 ug/	
Toluene 2017/09/22 <0.020 ug/	
p+m-Xylene 2017/09/22 <0.020 ug/	
o-Xylene 2017/09/22 <0.020 ug/	
Total Xylenes 2017/09/22 <0.020 ug/	
F1 (C6-C10) 2017/09/22 <10 ug/	
F1 (C6-C10) - BTEX 2017/09/22 <10 ug/	
5175707 DR1 RPD - Sample/Sample Dup Benzene 2017/09/23 NC %	50
Ethylbenzene 2017/09/23 NC %	50
Toluene 2017/09/23 NC %	50
p+m-Xylene 2017/09/23 NC %	50
o-Xylene 2017/09/23 NC %	50
Total Xylenes 2017/09/23 NC %	50
F1 (C6-C10) 2017/09/23 7.9 %	30
F1 (C6-C10) - BTEX 2017/09/23 7.9 %	30

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5177171	BAN	Matrix Spike	Acid Extractable Antimony (Sb)	2017/09/25		101	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/25		103	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/25		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/25		102	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/25		105	%	75 - 125
			Acid Extractable Boron (B)	2017/09/25		97	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/25		103	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/25		100	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/25		101	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/25		97	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/25		99	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/25		105	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/25		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/25		101	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/25		106	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/25		104	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/25		103	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/25		107	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/25		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/25		102	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/25		104	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/25		108	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/25		99	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/25		95	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/25		NC	%	75 - 125
5177171	BAN	Spiked Blank	Acid Extractable Antimony (Sb)	2017/09/22		101	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/22		105	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/22		102	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/22		105	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/22		102	%	75 - 125
			Acid Extractable Boron (B)	2017/09/22		109	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/22		103	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/22		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/22		104	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/22		102	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		103	%	75 - 12 5
			Acid Extractable Lithium (Li)	2017/09/22		105	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		105	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		107	%	75 - 12 5
			Acid Extractable Molybdenum (Mo)	2017/09/22		103	%	75 - 12 5
			Acid Extractable Nickel (Ni)	2017/09/22		104	%	75 - 12 5
			Acid Extractable Rubidium (Rb)	2017/09/22		103	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		105	%	75 - 12 5
			Acid Extractable Silver (Ag)	2017/09/22		103	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		104	%	75 - 125
			Acid Extractable Strontium (SI)	2017/09/22		104	%	75 - 125 75 - 125
			Acid Extractable Trialium (11) Acid Extractable Tin (Sn)	2017/09/22		104	%	75 - 125 75 - 125
			Acid Extractable Till (31) Acid Extractable Uranium (U)	2017/09/22		106	% %	75 - 125 75 - 125
			Acid Extractable Granium (0) Acid Extractable Vanadium (V)	2017/09/22		100	% %	75 - 125 75 - 125
			Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2017/09/22		104	%	75 - 125 75 - 125
5177171	BAN	Method Blank	Acid Extractable Aluminum (AI)	2017/09/22	<10	100		13-125
21/11/1	DAN	IVICUIOU DIAIIK					mg/kg	
			Acid Extractable Antimony (Sb) Acid Extractable Arsenic (As)	2017/09/22 2017/09/22	<2.0 <2.0		mg/kg mg/kg	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
Daten	111110	де турс	Acid Extractable Barium (Ba)	2017/09/22	<5.0	70 NECOVERY	mg/kg	QC LITTICS
			Acid Extractable Beryllium (Be)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Bismuth (Bi)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Boron (B)	2017/09/22	<50		mg/kg	
			Acid Extractable Cadmium (Cd)	2017/09/22	<0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2017/09/22	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2017/09/22	<50		mg/kg	
			Acid Extractable Lead (Pb)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Manganese (Mn)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Mercury (Hg)	2017/09/22	<0.10		mg/kg	
			Acid Extractable Molybdenum (Mo)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Nickel (Ni)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Rubidium (Rb)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Selenium (Se)	2017/09/22	<1.0		mg/kg	
			Acid Extractable Silver (Ag)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Strontium (Sr)	2017/09/22	<5.0		mg/kg	
			Acid Extractable Thallium (TI)	2017/09/22	<0.10		mg/kg	
			Acid Extractable Tin (Sn)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Uranium (U)	2017/09/22	<0.10		mg/kg	
			Acid Extractable Vanadium (V)	2017/09/22	<2.0		mg/kg	
	Acid Extractable Zinc (Zn)	2017/09/22	<5.0		mg/kg			
177171 BAN RPD - Sample/Sample Dup	Acid Extractable Aluminum (Al)	2017/09/22	2.7		%	35		
,,,,,,	177171 BAN RPD - Sample/Sample Dup	in B Sample, Sample Bup	Acid Extractable Antimony (Sb)	2017/09/22	NC		%	35
			Acid Extractable Arsenic (As)	2017/09/22	NC		%	35
			Acid Extractable Parium (Ba)	2017/09/22	5.3		%	35
			Acid Extractable Beryllium (Be)	2017/09/22	NC		%	35
			Acid Extractable Bismuth (Bi)	2017/09/22	NC		%	35
			Acid Extractable Bismuth (Bi) Acid Extractable Boron (B)	2017/09/22	NC		%	35
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2017/09/22	NC		%	35
			Acid Extractable Cadman (Ca) Acid Extractable Chromium (Cr)	2017/09/22	4.2		%	35
			Acid Extractable Cirioffidir (Cr) Acid Extractable Cobalt (Co)	2017/09/22	0.29		%	35
			Acid Extractable Copper (Cu)	2017/09/22	0.29		%	35
			Acid Extractable Copper (Cu) Acid Extractable Iron (Fe)	2017/09/22	6.7		%	35
			Acid Extractable from (Fe) Acid Extractable Lead (Pb)	2017/09/22	36 (2)		%	35
			Acid Extractable Lead (FB) Acid Extractable Lithium (Li)	2017/09/22	3.8		%	35
			Acid Extractable Ettilum (El) Acid Extractable Manganese (Mn)	2017/09/22	6.8		%	35
			Acid Extractable Manganese (Min) Acid Extractable Mercury (Hg)	2017/09/22	NC		%	35
			Acid Extractable Melecury (rig) Acid Extractable Molybdenum (Mo)	2017/09/22	26		%	35
			Acid Extractable Molybuerium (Mo) Acid Extractable Nickel (Ni)	2017/09/22	12		%	35
			Acid Extractable Nicker (NI) Acid Extractable Rubidium (Rb)	2017/09/22	6.3		%	35 35
			Acid Extractable Rubidium (Rb) Acid Extractable Selenium (Se)	2017/09/22	NC		%	35 35
			, ,	2017/09/22				
			Acid Extractable Silver (Ag) Acid Extractable Strontium (Sr)	2017/09/22	NC 6.7		% %	35 35
			, ,	2017/09/22				
			Acid Extractable Thallium (Tl)		0.74 NC		%	35 25
			Acid Extractable Uranium (U)	2017/09/22	NC 4 E		%	35 25
			Acid Extractable Uranium (U)	2017/09/22	4.5		%	35 25
			Acid Extractable Vanadium (V)	2017/09/22	5.2		%	35
-177222	ADC	Motriy Coiles	Acid Extractable Zinc (Zn)	2017/09/22	7.8	104	%	35
5177332	ARS	Matrix Spike	Total Marcury (Hg)	2017/09/25		104	%	80 - 120
5177332	ARS	Spiked Blank	Total Mercury (Hg)	2017/09/25		104	%	80 - 12

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
5177332	ARS	Method Blank	Total Mercury (Hg)	2017/09/25	<0.013		ug/L	
5177332	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/09/25	NC		%	20
5177365	MLB	Matrix Spike	Acid Extractable Antimony (Sb)	2017/09/22		97	%	75 - 125
			Acid Extractable Arsenic (As)	2017/09/22		97	%	75 - 125
			Acid Extractable Barium (Ba)	2017/09/22		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2017/09/22		103	%	75 - 125
			Acid Extractable Bismuth (Bi)	2017/09/22		103	%	75 - 125
			Acid Extractable Boron (B)	2017/09/22		104	%	75 - 125
			Acid Extractable Cadmium (Cd)	2017/09/22		102	%	75 - 125
			Acid Extractable Chromium (Cr)	2017/09/22		111	%	75 - 125
			Acid Extractable Cobalt (Co)	2017/09/22		101	%	75 - 125
			Acid Extractable Copper (Cu)	2017/09/22		99	%	75 - 125
			Acid Extractable Lead (Pb)	2017/09/22		103	%	75 - 125
			Acid Extractable Lithium (Li)	2017/09/22		106	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		99	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		104	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		103	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		103	%	75 - 125
			Acid Extractable Nashdiam (NS) Acid Extractable Selenium (Se)	2017/09/22		105	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		102	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		99	%	75 - 125
			Acid Extractable Strontiam (SI) Acid Extractable Thallium (TI)	2017/09/22		102	%	75 - 125
			Acid Extractable Trialium (Tr) Acid Extractable Tin (Sn)	2017/09/22		125	%	75 - 125
			Acid Extractable Till (31) Acid Extractable Uranium (U)	2017/09/22		98	%	75 - 125 75 - 125
			Acid Extractable Grandin (G) Acid Extractable Vanadium (V)	2017/09/22		104	%	75 - 125 75 - 125
			Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2017/09/22		NC	%	75 - 125 75 - 125
5177365	MLB	Spiked Blank	Acid Extractable 2inc (2ii) Acid Extractable Antimony (Sb)	2017/09/22		92	%	75 - 125
3177303	IVILD	эрікей Біатік	Acid Extractable Aritimony (35) Acid Extractable Arsenic (As)	2017/09/22		99	%	75 - 125 75 - 125
			Acid Extractable Arsenic (As) Acid Extractable Barium (Ba)	2017/09/22		97	%	75 - 125 75 - 125
			Acid Extractable Baridin (Ba) Acid Extractable Beryllium (Be)	2017/09/22		101	%	75 - 125 75 - 125
			Acid Extractable Berymum (Be) Acid Extractable Bismuth (Bi)	2017/09/22		99	%	75 - 125 75 - 125
			Acid Extractable Bismuth (B) Acid Extractable Boron (B)	2017/09/22		104	% %	75 - 125 75 - 125
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2017/09/22			% %	
			,	2017/09/22		100		75 - 125 75 - 125
			Acid Extractable Chromium (Cr)			100 99	%	75 - 125 75 - 125
			Acid Extractable Cobalt (Co) Acid Extractable Copper (Cu)	2017/09/22 2017/09/22		99	% %	75 - 125 75 - 125
			**	2017/09/22				75 - 125 75 - 125
			Acid Extractable Lead (Pb)			95	%	
			Acid Extractable Lithium (Li)	2017/09/22		102	%	75 - 125
			Acid Extractable Manganese (Mn)	2017/09/22		102	%	75 - 125
			Acid Extractable Mercury (Hg)	2017/09/22		106	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2017/09/22		100	%	75 - 125
			Acid Extractable Nickel (Ni)	2017/09/22		100	%	75 - 125
			Acid Extractable Rubidium (Rb)	2017/09/22		100	%	75 - 125
			Acid Extractable Selenium (Se)	2017/09/22		103	%	75 - 125
			Acid Extractable Silver (Ag)	2017/09/22		100	%	75 - 125
			Acid Extractable Strontium (Sr)	2017/09/22		96	%	75 - 125
			Acid Extractable Thallium (TI)	2017/09/22		100	%	75 - 125
			Acid Extractable Tin (Sn)	2017/09/22		104	%	75 - 125
			Acid Extractable Uranium (U)	2017/09/22		96	%	75 - 125
			Acid Extractable Vanadium (V)	2017/09/22		98	%	75 - 125
			Acid Extractable Zinc (Zn)	2017/09/22		98	%	75 - 125
5177365	MLB	Method Blank	Acid Extractable Aluminum (AI)	2017/09/22	<10		mg/kg	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Acid Extractable Antimony (Sb)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Arsenic (As)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Barium (Ba)	2017/09/22	<5.0		mg/kg	
			Acid Extractable Beryllium (Be)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Bismuth (Bi)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Boron (B)	2017/09/22	<50		mg/kg	
			Acid Extractable Cadmium (Cd)	2017/09/22	<0.30		mg/kg	
			Acid Extractable Chromium (Cr)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Cobalt (Co)	2017/09/22	<1.0		mg/kg	
			Acid Extractable Copper (Cu)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Iron (Fe)	2017/09/22	<50		mg/kg	
			Acid Extractable Lead (Pb)	2017/09/22	<0.50		mg/kg	
			Acid Extractable Lithium (Li)	2017/09/22	<2.0		mg/kg	
			Acid Extractable Manganese (Mn)	2017/09/22	<2.0		mg/kg	
		Acid Extractable Mercury (Hg)	2017/09/22	<0.10		mg/kg		
		Acid Extractable Molybdenum (Mo)	2017/09/22	<2.0		mg/kg		
		Acid Extractable Nickel (Ni)	2017/09/22	<2.0		mg/kg		
		Acid Extractable Rubidium (Rb)	2017/09/22	<2.0		mg/kg		
		Acid Extractable Selenium (Se)	2017/09/22	<1.0		mg/kg		
		Acid Extractable Silver (Ag)	2017/09/22	<0.50		mg/kg		
		Acid Extractable Strontium (Sr)	2017/09/22	<5.0		mg/kg		
		Acid Extractable Thallium (TI)	2017/09/22	<0.10		mg/kg		
		Acid Extractable Tin (Sn)	2017/09/22	<2.0		mg/kg		
		Acid Extractable Uranium (U)	2017/09/22	<0.10		mg/kg		
		Acid Extractable Vanadium (V)	2017/09/22	<2.0		mg/kg		
			Acid Extractable Zinc (Zn)	2017/09/22	<5.0		mg/kg	
5177365	MLB	RPD - Sample/Sample Dup	Acid Extractable Aluminum (Al)	2017/09/22	6.3		%	35
			Acid Extractable Antimony (Sb)	2017/09/22	NC		%	35
			Acid Extractable Arsenic (As)	2017/09/22	NC		%	35
			Acid Extractable Barium (Ba)	2017/09/22	8.1		%	35
			Acid Extractable Beryllium (Be)	2017/09/22	NC		%	35
			Acid Extractable Bismuth (Bi)	2017/09/22	NC		%	35
			Acid Extractable Boron (B)	2017/09/22	NC		%	35
			Acid Extractable Cadmium (Cd)	2017/09/22	NC		%	35
			Acid Extractable Chromium (Cr)	2017/09/22	7.2		%	35
			Acid Extractable Cobalt (Co)	2017/09/22	8.7		%	35
			Acid Extractable Copper (Cu)	2017/09/22	2.6		%	35
			Acid Extractable Iron (Fe)	2017/09/22	13		%	35
			Acid Extractable Lead (Pb)	2017/09/22	5.3		%	35
			Acid Extractable Lithium (Li)	2017/09/22	2.6		%	35
			Acid Extractable Manganese (Mn)	2017/09/22	13		%	35
			Acid Extractable Mercury (Hg)	2017/09/22	NC		%	35
			Acid Extractable Molybdenum (Mo)	2017/09/22	NC		%	35
			Acid Extractable Nickel (Ni)	2017/09/22	6.9		%	35
			Acid Extractable Rubidium (Rb)	2017/09/22	9.7		%	35
			Acid Extractable Selenium (Se)	2017/09/22	NC		%	35
			Acid Extractable Silver (Ag)	2017/09/22	NC		%	35
			Acid Extractable Strontium (Sr)	2017/09/22	6.9		%	35
			Acid Extractable Thallium (TI)	2017/09/22	NC		%	35
			Acid Extractable Tin (Sn)	2017/09/22	8.0		%	35
			Acid Extractable Uranium (U)	2017/09/22	13		%	35
			Acid Extractable Vanadium (V)	2017/09/22	11		%	35
			Acid Extractable Zinc (Zn)	2017/09/22	8.2		%	35

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	OC Typo	Darameter	Data Analyzad	Value	0/ Posovory	LINITS	QC Limits
5177495	Init NRG	QC Type Matrix Spike	Parameter Total Alkalinity (Total as CaCO3)	Date Analyzed 2017/09/26	value	% Recovery NC	UNITS %	80 - 120
5177495	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/09/25		113	%	80 - 120
5177495	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/09/25	<5.0	113		00 - 120
5177495	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/09/25	1.6		mg/L %	25
5177498				2017/09/25	1.0	100	%	80 - 120
5177498	NRG NRG	Matrix Spike QC Standard	Dissolved Chloride (CI) Dissolved Chloride (CI)	2017/09/25		100 108	% %	80 - 120
5177498	NRG	Spiked Blank				108	%	80 - 120
5177498		Method Blank	Dissolved Chloride (CI)	2017/09/25 2017/09/25	~1.0	102		80 - 120
	NRG		Dissolved Chloride (CI)		<1.0		mg/L	25
5177498	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/09/25	8.9	00	%	25
5177502	NRG	Matrix Spike	Dissolved Sulphate (SO4)	2017/09/25		99	%	80 - 120
5177502	NRG	Spiked Blank	Dissolved Sulphate (SO4)	2017/09/25	-2.0	96	%	80 - 120
5177502	NRG	Method Blank	Dissolved Sulphate (SO4)	2017/09/25	<2.0		mg/L	25
5177502	NRG	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/09/25	2.1	0.5	%	25
5177504	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/09/26		95	%	80 - 120
5177504	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/09/25		90	%	80 - 120
5177504	NRG	Method Blank	Reactive Silica (SiO2)	2017/09/25	<0.50		mg/L	
5177504	NRG	RPD - Sample/Sample Dup	Reactive Silica (SiO2)	2017/09/26	1.3		%	25
5177507	NRG	Spiked Blank	Colour	2017/09/26	- 0	93	%	80 - 120
5177507	NRG	Method Blank	Colour	2017/09/26	<5.0		TCU	
5177507	NRG	RPD - Sample/Sample Dup	Colour	2017/09/26	NC		%	20
5177512	NRG	Matrix Spike	Orthophosphate (P)	2017/09/25		96	%	80 - 120
5177512	NRG	Spiked Blank	Orthophosphate (P)	2017/09/25		99	%	80 - 120
5177512	NRG	Method Blank	Orthophosphate (P)	2017/09/25	< 0.010		mg/L	
5177512	NRG	RPD - Sample/Sample Dup	Orthophosphate (P)	2017/09/25	NC		%	25
5177513	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/09/25		106	%	80 - 120
5177513	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/09/25		104	%	80 - 120
5177513	NRG	Method Blank	Nitrate + Nitrite (N)	2017/09/25	< 0.050		mg/L	
5177513	NRG	RPD - Sample/Sample Dup	Nitrate + Nitrite (N)	2017/09/25	3.2		%	25
5177516	NRG	Matrix Spike	Nitrite (N)	2017/09/25		102	%	80 - 120
5177516	NRG	Spiked Blank	Nitrite (N)	2017/09/25		103	%	80 - 120
5177516	NRG	Method Blank	Nitrite (N)	2017/09/25	<0.010		mg/L	
5177516	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/09/25	NC		%	25
5178035	GTH	Matrix Spike	D10-Anthracene	2017/09/27		103	%	50 - 130
			D14-Terphenyl	2017/09/27		110	%	50 - 130
			D8-Acenaphthylene	2017/09/27		101	%	50 - 130
			1-Methylnaphthalene	2017/09/27		90	%	30 - 130
			2-Methylnaphthalene	2017/09/27		96	%	30 - 130
			Acenaphthene	2017/09/27		97	%	30 - 130
			Acenaphthylene	2017/09/27		106	%	30 - 130
			Anthracene	2017/09/27		90	%	30 - 130
			Benzo(a)anthracene	2017/09/27		NC	%	30 - 130
			Benzo(a)pyrene	2017/09/27		105	%	30 - 130
			Benzo(b)fluoranthene	2017/09/27		107	%	30 - 130
			Benzo(g,h,i)perylene	2017/09/27		104	%	30 - 130
			Benzo(j)fluoranthene	2017/09/27		106	%	30 - 130
			Benzo(k)fluoranthene	2017/09/27		108	%	30 - 130
			Chrysene	2017/09/27		97	%	30 - 130
			Dibenz(a,h)anthracene	2017/09/27		104	%	30 - 130
			Fluoranthene	2017/09/27		NC	%	30 - 130
			Fluorene	2017/09/27		107	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2017/09/27		103	%	30 - 130
			Naphthalene	2017/09/27		92	%	30 - 130
1			Perylene	2017/09/27		107	%	30 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limit
			Phenanthrene	2017/09/27		NC	%	30 - 130
			Pyrene	2017/09/27		NC	%	30 - 130
178035	GTH	Spiked Blank	D10-Anthracene	2017/09/27		119	%	50 - 130
			D14-Terphenyl	2017/09/27		98	%	50 - 130
			D8-Acenaphthylene	2017/09/27		91	%	50 - 13
			1-Methylnaphthalene	2017/09/27		85	%	30 - 13
			2-Methylnaphthalene	2017/09/27		91	%	30 - 13
			Acenaphthene	2017/09/27		92	%	30 - 13
			Acenaphthylene	2017/09/27		95	%	30 - 13
			Anthracene	2017/09/27		106	%	30 - 13
			Benzo(a)anthracene	2017/09/27		98	%	30 - 13
			Benzo(a)pyrene	2017/09/27		87	%	30 - 13
			Benzo(b)fluoranthene	2017/09/27		91	%	30 - 13
			Benzo(g,h,i)perylene	2017/09/27		80	%	30 - 13
			Benzo(j)fluoranthene	2017/09/27		89	%	30 - 13
			Benzo(k)fluoranthene	2017/09/27		84	%	30 - 13
			Chrysene	2017/09/27		93	%	30 - 13
			Dibenz(a,h)anthracene	2017/09/27		80	%	30 - 13
			Fluoranthene	2017/09/27		106	%	30 - 13
			Fluorene	2017/09/27		94	%	30 - 1
			Indeno(1,2,3-cd)pyrene	2017/09/27		79	%	30 - 1
			Naphthalene	2017/09/27		92	%	30 - 1
			Perylene	2017/09/27		88	%	30 - 1
	Phenanthrene	2017/09/27		98	%	30 - 1		
		Pyrene	2017/09/27		101	%	30 - 1	
.78035	GTH	Method Blank	D10-Anthracene	2017/09/27		90	%	50 - 1
.,0033	0111	Wethou Blank	D14-Terphenyl	2017/09/27		87	%	50 - 1
			D8-Acenaphthylene	2017/09/27		92	%	50 - 1
			1-Methylnaphthalene	2017/09/27	<0.0050	32	mg/kg	30 1
			2-Methylnaphthalene	2017/09/27	<0.0050		mg/kg	
			Acenaphthene	2017/09/27	<0.0050		mg/kg	
			Acenaphthylene	2017/09/27	<0.0050		mg/kg	
			Anthracene	2017/09/27	<0.0050		mg/kg	
			Benzo(a)anthracene	2017/09/27	<0.0050		mg/kg	
			Benzo(a)pyrene	2017/09/27	<0.0050		mg/kg	
			Benzo(b)fluoranthene	2017/09/27	<0.0050		mg/kg	
				2017/09/27	<0.0050			
			Benzo(g,h,i)perylene				mg/kg	
			Benzo(j)fluoranthene	2017/09/27	<0.0050		mg/kg	
			Benzo(k)fluoranthene	2017/09/27	<0.0050		mg/kg	
			Chrysene	2017/09/27	<0.0050		mg/kg	
			Dibenz(a,h)anthracene	2017/09/27	<0.0050		mg/kg	
			Fluoranthene	2017/09/27	<0.0050		mg/kg	
			Fluorene	2017/09/27	<0.0050		mg/kg	
			Indeno(1,2,3-cd)pyrene	2017/09/27	<0.0050		mg/kg	
			Naphthalene	2017/09/27	<0.0050		mg/kg	
			Perylene	2017/09/27	<0.0050		mg/kg	
			Phenanthrene	2017/09/27	<0.0050		mg/kg	
			Pyrene	2017/09/27	<0.0050		mg/kg	
78035	GTH	RPD - Sample/Sample Dup	1-Methylnaphthalene	2017/09/27	NC		%	50
			2-Methylnaphthalene	2017/09/27	35		%	50
			Acenaphthene	2017/09/27	7.6		%	50
			Acenaphthylene	2017/09/27	NC		%	50
			Anthracene	2017/09/27	37		%	50

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Benzo(a)anthracene	2017/09/27	36		%	50
			Benzo(a)pyrene	2017/09/27	41		%	50
			Benzo(b)fluoranthene	2017/09/27	48		%	50
			Benzo(g,h,i)perylene	2017/09/27	46		%	50
			Benzo(j)fluoranthene	2017/09/27	36		%	50
			Benzo(k)fluoranthene	2017/09/27	49		%	50
			Chrysene	2017/09/27	40		%	50
			Dibenz(a,h)anthracene	2017/09/27	NC		%	50
			Fluoranthene	2017/09/27	6.1		%	50
			Fluorene	2017/09/27	13		%	50
			Indeno(1,2,3-cd)pyrene	2017/09/27	51 (3)		%	50
			Naphthalene	2017/09/27	NC		%	50
			Perylene	2017/09/27	29		%	50
			Phenanthrene	2017/09/27	20		%	50
			Pyrene	2017/09/27	11		%	50
5178585	ZZ	Matrix Spike	o-Terphenyl	2017/09/23		88	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/23		93	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/23		91	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2017/09/23		99	%	50 - 130
5178585	ZZ	Spiked Blank	o-Terphenyl	2017/09/23		89	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/23		89	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2017/09/23		89	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2017/09/23		94	%	80 - 120
178585	ZZ	Method Blank	o-Terphenyl	2017/09/23		91	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/23	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2017/09/23	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2017/09/23	<50		ug/g	
5178585	ZZ	RPD - Sample/Sample Dup	F2 (C10-C16 Hydrocarbons)	2017/09/23	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2017/09/23	15		%	30
			F4 (C34-C50 Hydrocarbons)	2017/09/23	NC		%	30
5180356	GTH	Matrix Spike(FDH273)	Benzo(j)fluoranthene	2017/09/26		71	%	30 - 130
			D10-Anthracene	2017/09/26		81	%	50 - 130
			D14-Terphenyl	2017/09/26		74	%	50 - 130
			D8-Acenaphthylene	2017/09/26		70	%	50 - 130
			1-Methylnaphthalene	2017/09/26		63	%	30 - 130
			2-Methylnaphthalene	2017/09/26		66	%	30 - 130
			Acenaphthene	2017/09/26		63	%	30 - 130
			Acenaphthylene	2017/09/26		80	%	30 - 130
			Acridine	2017/09/26		94	%	30 - 130
			Anthracene	2017/09/26		83	%	30 - 130
			Benzo(a)anthracene	2017/09/26		86	%	30 - 130
			Benzo(a)pyrene	2017/09/26		68	%	30 - 130
			Benzo(b)fluoranthene	2017/09/26		64	%	30 - 130
			Benzo(g,h,i)perylene	2017/09/26		56	%	30 - 130
			Benzo(k)fluoranthene	2017/09/26		71	%	30 - 130
			Chrysene	2017/09/26		82	%	30 - 130
			Dibenz(a,h)anthracene	2017/09/26		51	%	30 - 130
			Fluoranthene	2017/09/26		85	%	30 - 130
			Fluorene	2017/09/26		71	%	30 - 130
			Indeno(1,2,3-cd)pyrene	2017/09/26		52	%	30 - 130
			Naphthalene	2017/09/26		59	%	30 - 130
			Perylene	2017/09/26		67	%	30 - 130
								3(1 - 13)

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Lim
			Pyrene	2017/09/26		83	%	30 - 13
			Quinoline	2017/09/26		70	%	30 - 13
180356	GTH	Spiked Blank	Benzo(j)fluoranthene	2017/09/26		78	%	30 - 13
			D10-Anthracene	2017/09/26		63	%	50 - 13
			D14-Terphenyl	2017/09/26		71	%	50 - 13
			D8-Acenaphthylene	2017/09/26		73	%	50 - 1
			1-Methylnaphthalene	2017/09/26		66	%	30 - 1
			2-Methylnaphthalene	2017/09/26		68	%	30 - 1
			Acenaphthene	2017/09/26		71	%	30 - 1
			Acenaphthylene	2017/09/26		81	%	30 - 1
			Acridine	2017/09/26		92	%	30 - 1
			Anthracene	2017/09/26		79	%	30 - 1
			Benzo(a)anthracene	2017/09/26		81	%	30 - 1
			Benzo(a)pyrene	2017/09/26		75	%	30 - 1
			Benzo(b)fluoranthene	2017/09/26		67	%	30 - 1
			Benzo(g,h,i)perylene	2017/09/26		76	%	30 - 1
			Benzo(k)fluoranthene	2017/09/26		78	%	30 - 1
			Chrysene	2017/09/26		77	%	30 - :
			Dibenz(a,h)anthracene	2017/09/26		76	%	30 -
			Fluoranthene	2017/09/26		80	%	30 -
			Fluorene	2017/09/26		77	%	30 -
			Indeno(1,2,3-cd)pyrene	2017/09/26		72	%	30 -
			Naphthalene	2017/09/26		64	%	30 -
		Perylene	2017/09/26		77	%	30 -	
		Phenanthrene	2017/09/26		72	%	30 -	
			Pyrene	2017/09/26		77	%	30 -
			Quinoline	2017/09/26		65	%	30 -
80356	GTH	Method Blank	Benzo(j)fluoranthene	2017/09/26	<0.010		ug/L	
30000	• • • • • • • • • • • • • • • • • • • •	method blank	D10-Anthracene	2017/09/26	10.010	88	%	50 - :
			D14-Terphenyl	2017/09/26		89	%	50 -
			D8-Acenaphthylene	2017/09/26		79	%	50 -
			1-Methylnaphthalene	2017/09/26	<0.050	,,	ug/L	30
			2-Methylnaphthalene	2017/09/26	<0.050		ug/L	
			Acenaphthene	2017/09/26	<0.010		ug/L	
			Acenaphthylene	2017/09/26	<0.010		ug/L	
			Acridine	2017/09/26	<0.010		ug/L ug/L	
			Anthracene	2017/09/26	<0.030		ug/L	
			Benzo(a)anthracene	2017/09/26	<0.010		ug/L	
			Benzo(a)pyrene	2017/09/26	<0.010			
			Benzo(b)fluoranthene	2017/09/26	<0.010		ug/L ug/L	
			Benzo(g,h,i)perylene	2017/09/26	<0.010		ug/L	
			Benzo(k)fluoranthene	2017/09/26	<0.010			
			` '	2017/09/26	<0.010		ug/L	
			Chrysene Dibenz(a,h)anthracene	2017/09/26	<0.010		ug/L	
			Fluoranthene		<0.010		ug/L	
				2017/09/26			ug/L	
			Fluorene	2017/09/26	<0.010		ug/L	
			Indeno(1,2,3-cd)pyrene	2017/09/26	<0.010		ug/L	
			Naphthalene	2017/09/26	<0.20		ug/L	
			Perylene	2017/09/26	<0.010		ug/L	
			Phenanthrene	2017/09/26	<0.010		ug/L	
			Pyrene	2017/09/26 2017/09/26	<0.010 <0.050		ug/L	
			Quinoline				ug/L	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			2-Methylnaphthalene	2017/09/26	NC	· · · · · · · · · · · · · · · · · · ·	%	40
			Acenaphthene	2017/09/26	NC		%	40
			Acenaphthylene	2017/09/26	NC		%	40
			Acridine	2017/09/26	NC		%	40
			Anthracene	2017/09/26	NC		%	40
			Benzo(a)anthracene	2017/09/26	NC		%	40
			Benzo(a)pyrene	2017/09/26	NC		%	40
			Benzo(b)fluoranthene	2017/09/26	NC		%	40
			Benzo(g,h,i)perylene	2017/09/26	NC		%	40
			Benzo(k)fluoranthene	2017/09/26	NC		%	40
			Chrysene	2017/09/26	NC		%	40
			Dibenz(a,h)anthracene	2017/09/26	NC		%	40
			Fluoranthene	2017/09/26	NC		%	40
			Fluorene	2017/09/26	9.9		%	40
			Indeno(1,2,3-cd)pyrene	2017/09/26	NC		%	40
			Naphthalene	2017/09/26	NC		%	40
			Perylene	2017/09/26	NC		%	40
			Phenanthrene	2017/09/26	15		%	40
			Pyrene	2017/09/26	NC		%	40
			Quinoline	2017/09/26	NC		%	40
5180469	RGA	Matrix Spike	1,4-Difluorobenzene	2017/09/26		103	%	70 - 130
			4-Bromofluorobenzene	2017/09/26		97	%	70 - 130
			D10-Ethylbenzene	2017/09/26		83	%	70 - 130
			D4-1,2-Dichloroethane	2017/09/26		94	%	70 - 130
			Benzene	2017/09/26		94	%	70 - 130
			Toluene	2017/09/26		89	%	70 - 130
			Ethylbenzene	2017/09/26		88	%	70 - 130
			o-Xylene	2017/09/26		91	%	70 - 130
			p+m-Xylene	2017/09/26		87	%	70 - 130
			F1 (C6-C10)	2017/09/26		81	%	70 - 130
5180469	RGA	Spiked Blank	1,4-Difluorobenzene	2017/09/26		101	%	70 - 130
			4-Bromofluorobenzene	2017/09/26		96	%	70 - 130
			D10-Ethylbenzene	2017/09/26		80	%	70 - 130
			D4-1,2-Dichloroethane	2017/09/26		95	%	70 - 130
			Benzene	2017/09/26		90	%	70 - 130
			Toluene	2017/09/26		87	%	70 - 130
			Ethylbenzene	2017/09/26		87	%	70 - 130
			o-Xylene	2017/09/26		89	%	70 - 130
			p+m-Xylene	2017/09/26		85	%	70 - 130
			F1 (C6-C10)	2017/09/26		102	%	70 - 130
5180469	RGA	Method Blank	1,4-Difluorobenzene	2017/09/26		101	%	70 - 130
			4-Bromofluorobenzene	2017/09/26		96	%	70 - 130
			D10-Ethylbenzene	2017/09/26		84	%	70 - 130
			D4-1,2-Dichloroethane	2017/09/26		95	%	70 - 130
			Benzene	2017/09/26	<0.00020		mg/L	
			Toluene	2017/09/26	<0.00020		mg/L	
			Ethylbenzene	2017/09/26	<0.00020		mg/L	
			o-Xylene	2017/09/26	<0.00020		mg/L	
			p+m-Xylene	2017/09/26	<0.00040		mg/L	
			Total Xylenes	2017/09/26	<0.00040		mg/L	
			F1 (C6-C10)	2017/09/26	<0.025		mg/L	
			F1 (C6-C10) - BTEX	2017/09/26	<0.025		mg/L	
5180469	RGA	RPD - Sample/Sample Dup	Benzene	2017/09/26	NC		%	30

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Toluene	2017/09/26	NC		%	30
			Ethylbenzene	2017/09/26	NC		%	30
			o-Xylene	2017/09/26	NC		%	30
			p+m-Xylene	2017/09/26	NC		%	30
			Total Xylenes	2017/09/26	NC		%	30
			F1 (C6-C10)	2017/09/26	NC		%	30
			F1 (C6-C10) - BTEX	2017/09/26	NC		%	30
5180636	ARS	Matrix Spike	Total Mercury (Hg)	2017/09/26		100	%	80 - 120
5180636	ARS	Spiked Blank	Total Mercury (Hg)	2017/09/26		102	%	80 - 120
5180636	ARS	Method Blank	Total Mercury (Hg)	2017/09/26	< 0.013		ug/L	
180636	ARS	RPD - Sample/Sample Dup	Total Mercury (Hg)	2017/09/26	NC		%	20
5181282	ZZ	Matrix Spike	o-Terphenyl	2017/09/26		105	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/26		98	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/26		103	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2017/09/26		102	%	50 - 130
181282	ZZ	Spiked Blank	o-Terphenyl	2017/09/26		106	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/26		102	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2017/09/26		104	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2017/09/26		104	%	60 - 130
5181282	ZZ	Method Blank	o-Terphenyl	2017/09/26		100	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2017/09/26	< 0.10		mg/L	
			F3 (C16-C34 Hydrocarbons)	2017/09/26	<0.20		mg/L	
			F4 (C34-C50 Hydrocarbons)	2017/09/26	<0.20		mg/L	
181282	ZZ	RPD - Sample/Sample Dup	F2 (C10-C16 Hydrocarbons)	2017/09/26	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2017/09/26	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2017/09/26	NC		%	30
5182179	NRG	Matrix Spike	Total Alkalinity (Total as CaCO3)	2017/09/26		NC	%	80 - 120
182179	NRG	Spiked Blank	Total Alkalinity (Total as CaCO3)	2017/09/26		114	%	80 - 120
5182179	NRG	Method Blank	Total Alkalinity (Total as CaCO3)	2017/09/26	<5.0		mg/L	
5182179	NRG	RPD - Sample/Sample Dup	Total Alkalinity (Total as CaCO3)	2017/09/26	1.7 (4)		%	25
5182181	NRG	Matrix Spike	Dissolved Chloride (CI)	2017/09/26	. ,	97	%	80 - 120
5182181	NRG	QC Standard	Dissolved Chloride (CI)	2017/09/26		106	%	80 - 120
5182181	NRG	Spiked Blank	Dissolved Chloride (CI)	2017/09/26		100	%	80 - 120
5182181	NRG	Method Blank	Dissolved Chloride (CI)	2017/09/26	<1.0		mg/L	
5182181	NRG	RPD - Sample/Sample Dup	Dissolved Chloride (CI)	2017/09/26	1.2		%	25
5182182	KBT	Matrix Spike	Dissolved Sulphate (SO4)	2017/09/26		105	%	80 - 120
5182182	KBT	Spiked Blank	Dissolved Sulphate (SO4)	2017/09/26		98	%	80 - 120
5182182		Method Blank	Dissolved Sulphate (SO4)	2017/09/26	<2.0		mg/L	
5182182	KBT	RPD - Sample/Sample Dup	Dissolved Sulphate (SO4)	2017/09/26	0.23		%	25
5182183	NRG	Spiked Blank	Colour	2017/09/27	0.25	96	%	80 - 120
5182183	NRG	Method Blank	Colour	2017/09/27	<5.0	30	TCU	00 120
5182183	NRG	RPD - Sample/Sample Dup	Colour	2017/09/27	0.86		%	20
5182184	NRG	Matrix Spike	Reactive Silica (SiO2)	2017/09/26	0.00	NC	%	80 - 120
5182184	NRG	Spiked Blank	Reactive Silica (SiO2)	2017/09/26		98	%	80 - 120
5182184	NRG	Method Blank	Reactive Silica (SiO2)	2017/09/26	<0.50	36		00 - 120
5182186	NRG	Matrix Spike	Orthophosphate (P)	2017/09/26	\0.30	99	mg/L %	80 - 120
		•	Orthophosphate (P)	2017/09/26				
182186	NRG	Spiked Blank			<0.010	101	% mg/l	80 - 120
182186	NRG	Method Blank	Orthophosphate (P)	2017/09/26	<0.010	00	mg/L	00 430
182187	NRG	Matrix Spike	Nitrate + Nitrite (N)	2017/09/26		88	%	80 - 120
182187	NRG	Spiked Blank	Nitrate + Nitrite (N)	2017/09/26	-0.050	92	%	80 - 120
5182187	NRG	Method Blank	Nitrate + Nitrite (N)	2017/09/26	<0.050	22	mg/L	00 451
5182190	NRG	Matrix Spike	Nitrite (N)	2017/09/27		98	%	80 - 120
5182190	NRG	Spiked Blank	Nitrite (N)	2017/09/27		99	%	80 - 120

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	0/ Pocovory	UNITS	QC Limits
5182190	Init NRG	Method Blank	Parameter Nitrite (N)	2017/09/27	<0.010	% Recovery		QC LITTIES
5182190	NRG	RPD - Sample/Sample Dup	Nitrite (N)	2017/09/27	NC		mg/L %	25
5182190	NRG	Matrix Spike	Nitrogen (Ammonia Nitrogen)	2017/09/27	INC	103	%	80 - 120
5182405	NRG	Spiked Blank	Nitrogen (Ammonia Nitrogen)	2017/09/26		105	%	80 - 120
5182405	NRG	Method Blank	Nitrogen (Ammonia Nitrogen) Nitrogen (Ammonia Nitrogen)	2017/09/26	<0.050	105		80 - 120
5182405	NRG	RPD - Sample/Sample Dup	Nitrogen (Ammonia Nitrogen)	2017/09/26	NC		mg/L %	20
5182405			Total Organic Carbon (C)		INC	100	%	80 - 120
5184415	SMT	Matrix Spike Spiked Blank		2017/09/27 2017/09/27		100	%	
	SMT	Method Blank	Total Organic Carbon (C)		40 F0	103		80 - 120
5184415	SMT		Total Organic Carbon (C)	2017/09/27	<0.50		mg/L	20
5184415	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/09/27	4.6	NC	%	20
5184457	DDS	Matrix Spike(FDH281)	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27		NC	%	65 - 135
5184457	DDS	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27	.100	101	%	65 - 135
5184457	DDS	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27	<100		ug/g	
5184457	DDS	RPD - Sample/Sample Dup	F4G-sg (Grav. Heavy Hydrocarbons)	2017/09/27	15	0.5	%	50
5185065	SMT	Matrix Spike	Total Organic Carbon (C)	2017/09/27		95	%	80 - 120
5185065	SMT	Spiked Blank	Total Organic Carbon (C)	2017/09/27		99	%	80 - 120
5185065	SMT	Method Blank	Total Organic Carbon (C)	2017/09/27	<0.50		mg/L	••
5185065	SMT	RPD - Sample/Sample Dup	Total Organic Carbon (C)	2017/09/27	4.7		%	20
5238099	CXU	Matrix Spike	C13-1234678 HeptaCDD	2017/10/31		88	%	30 - 130
			C13-1234678 HeptaCDF	2017/10/31		89	%	30 - 130
			C13-123678 HexaCDD	2017/10/31		88	%	30 - 130
			C13-123678 HexaCDF	2017/10/31		91	%	30 - 130
			C13-12378 PentaCDD	2017/10/31		110	%	30 - 130
			C13-12378 PentaCDF	2017/10/31		109	%	30 - 130
			C13-2378 TetraCDD	2017/10/31		84	%	30 - 130
			C13-2378 TetraCDF	2017/10/31		121	%	30 - 130
			C13-OCDD	2017/10/31		81	%	30 - 130
			2,3,7,8-Tetra CDD	2017/10/31		112	%	80 - 140
			1,2,3,7,8-Penta CDD	2017/10/31		101	%	80 - 140
			1,2,3,4,7,8-Hexa CDD	2017/10/31		122	%	80 - 140
			1,2,3,6,7,8-Hexa CDD	2017/10/31		126	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2017/10/31		122	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDD	2017/10/31		102	%	80 - 140
			Octa CDD	2017/10/31		112	%	80 - 140
			2,3,7,8-Tetra CDF	2017/10/31		77 (5)	%	80 - 140
			1,2,3,7,8-Penta CDF	2017/10/31		98	%	80 - 140
			2,3,4,7,8-Penta CDF	2017/10/31		101	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2017/10/31		112	%	80 - 140
			1,2,3,6,7,8-Hexa CDF	2017/10/31		114	%	80 - 140
			2,3,4,6,7,8-Hexa CDF	2017/10/31		114	%	80 - 140
			1,2,3,7,8,9-Hexa CDF	2017/10/31		109	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2017/10/31		110	%	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2017/10/31		103	%	80 - 140
			Octa CDF	2017/10/31		104	%	80 - 140
5238099	CXU	Spiked Blank	C13-1234678 HeptaCDD	2017/10/30		84	%	30 - 130
			C13-1234678 HeptaCDF	2017/10/30		97	%	30 - 130
			C13-123678 HexaCDD	2017/10/30		85	%	30 - 130
			C13-123678 HexaCDF	2017/10/30		100	%	30 - 130
			C13-12378 PentaCDD	2017/10/30		95	%	30 - 130
			C13-12378 PentaCDF	2017/10/30		104	%	30 - 130
			C13-2378 TetraCDD	2017/10/30		92	%	30 - 130
			C13-2378 TetraCDF	2017/10/30		128	%	30 - 130
1			C13-OCDD	2017/10/30		83	%	30 - 130

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			2,3,7,8-Tetra CDD	2017/10/30		106	%	80 - 140
			1,2,3,7,8-Penta CDD	2017/10/30		105	%	80 - 140
			1,2,3,4,7,8-Hexa CDD	2017/10/30		132	%	80 - 140
			1,2,3,6,7,8-Hexa CDD	2017/10/30		137	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2017/10/30		137	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDD	2017/10/30		101	%	80 - 140
			Octa CDD	2017/10/30		116	%	80 - 140
			2,3,7,8-Tetra CDF	2017/10/30		86	%	80 - 140
			1,2,3,7,8-Penta CDF	2017/10/30		96	%	80 - 140
			2,3,4,7,8-Penta CDF	2017/10/30		120	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2017/10/30		111	%	80 - 140
			1,2,3,6,7,8-Hexa CDF	2017/10/30		114	%	80 - 140
			2,3,4,6,7,8-Hexa CDF	2017/10/30		121	%	80 - 140
			1,2,3,7,8,9-Hexa CDF	2017/10/30		114	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2017/10/30		101	%	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2017/10/30		89	%	80 - 140
			Octa CDF	2017/10/30		110	%	80 - 140
5238099	CXU	Spiked Blank DUP	C13-1234678 HeptaCDD	2017/10/30		90	%	30 - 130
		•	C13-1234678 HeptaCDF	2017/10/30		101	%	30 - 130
			C13-123678 HexaCDD	2017/10/30		95	%	30 - 130
			C13-123678 HexaCDF	2017/10/30		107	%	30 - 130
			C13-12378 PentaCDD	2017/10/30		95	%	30 - 130
			C13-12378 PentaCDF	2017/10/30		105	%	30 - 130
			C13-2378 TetraCDD	2017/10/30		95	%	30 - 130
			C13-2378 TetraCDF	2017/10/30		130	%	30 - 130
			C13-OCDD	2017/10/30		88	%	30 - 130
			2,3,7,8-Tetra CDD	2017/10/30		102	%	80 - 140
			1,2,3,7,8-Penta CDD	2017/10/30		102	%	80 - 140
			1,2,3,4,7,8-Hexa CDD	2017/10/30		123	%	80 - 140
			1,2,3,6,7,8-Hexa CDD	2017/10/30		135	%	80 - 140
			1,2,3,7,8,9-Hexa CDD	2017/10/30		122	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDD	2017/10/30		98	%	80 - 140
			Octa CDD	2017/10/30		111	%	80 - 140
			2,3,7,8-Tetra CDF	2017/10/30		84	%	80 - 140
			1,2,3,7,8-Penta CDF	2017/10/30		93	%	80 - 140
			2,3,4,7,8-Penta CDF	2017/10/30		108	%	80 - 140
			1,2,3,4,7,8-Hexa CDF	2017/10/30		106	%	80 - 140
			1,2,3,6,7,8-Hexa CDF	2017/10/30		110	%	80 - 140
			2,3,4,6,7,8-Hexa CDF	2017/10/30		117	%	80 - 140
			1,2,3,7,8,9-Hexa CDF	2017/10/30		107	%	80 - 140
			1,2,3,4,6,7,8-Hepta CDF	2017/10/30		98	%	80 - 140
			1,2,3,4,7,8,9-Hepta CDF	2017/10/30		88	%	80 - 140
			Octa CDF	2017/10/30		105	%	80 - 140
5238099	CXU	RPD	2,3,7,8-Tetra CDD	2017/10/30	3.8	103	%	25
	5/10	=	1,2,3,7,8-Penta CDD	2017/10/30	2.9		%	25
			1,2,3,4,7,8-Hexa CDD	2017/10/30	7.1		%	25
			1,2,3,6,7,8-Hexa CDD	2017/10/30	1.5		%	25
			1,2,3,7,8,9-Hexa CDD	2017/10/30	1.5		%	25
			1,2,3,4,6,7,8-Hepta CDD	2017/10/30	3.0		% %	25 25
			Octa CDD	2017/10/30	3.0 4.4		% %	25 25
			2,3,7,8-Tetra CDF	2017/10/30	2.4		% %	25 25
			1,2,3,7,8-Penta CDF	2017/10/30	3.2		% %	25 25
			エ,と,シ, / ,ひ‐F ԵΠΙΑ ԵՄΙ	201//10/30	٥.∠		/0	23

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			1,2,3,4,7,8-Hexa CDF	2017/10/30	4.6		%	25
			1,2,3,6,7,8-Hexa CDF	2017/10/30	3.6		%	25
			2,3,4,6,7,8-Hexa CDF	2017/10/30	3.4		%	25
			1,2,3,7,8,9-Hexa CDF	2017/10/30	6.3		%	25
			1,2,3,4,6,7,8-Hepta CDF	2017/10/30	3.0		%	25
			1,2,3,4,7,8,9-Hepta CDF	2017/10/30	1.1		%	25
			Octa CDF	2017/10/30	4.7		%	25
238099	CXU	Method Blank	C13-1234678 HeptaCDD	2017/10/30		98	%	30 - 130
			C13-1234678 HeptaCDF	2017/10/30		111	%	30 - 130
			C13-123678 HexaCDD	2017/10/30		95	%	30 - 130
		C13-123678 HexaCDF	2017/10/30		104	%	30 - 130	
			C13-12378 PentaCDD	2017/10/30		96	%	30 - 130
			C13-12378 PentaCDF	2017/10/30		103	%	30 - 130
			C13-2378 TetraCDD	2017/10/30		89	%	30 - 130
			C13-2378 TetraCDF	2017/10/30		142 (6)		30 - 130
			C13-OCDD	2017/10/30		99	%	30 - 130
			2,3,7,8-Tetra CDD	2017/10/30	<0.102, EDL=0.102		pg/g	
			1,2,3,7,8-Penta CDD	2017/10/30	<0.107, EDL=0.107		pg/g	
			1,2,3,4,7,8-Hexa CDD	2017/10/30	<0.112, EDL=0.112		pg/g	
			1,2,3,6,7,8-Hexa CDD	2017/10/30	<0.116, EDL=0.116		pg/g	
			1,2,3,7,8,9-Hexa CDD	2017/10/30	<0.0955, EDL=0.0955		pg/g	
			1,2,3,4,6,7,8-Hepta CDD	2017/10/30	0.121, EDL=0.110		pg/g	
			Octa CDD	2017/10/30	0.836, EDL=0.115		pg/g	
			Total Tetra CDD	2017/10/30	<0.107, EDL=0.107 (7)		pg/g	
			Total Penta CDD	2017/10/30	<0.107, EDL=0.107		pg/g	
			Total Hexa CDD	2017/10/30	<0.107, EDL=0.107 (7)		pg/g	
			Total Hepta CDD	2017/10/30	0.121, EDL=0.110		pg/g	
			2,3,7,8-Tetra CDF	2017/10/30	<0.0568, EDL=0.0568		pg/g	
			1,2,3,7,8-Penta CDF	2017/10/30	<0.117, EDL=0.117		pg/g	
			2,3,4,7,8-Penta CDF	2017/10/30	<0.116, EDL=0.116		pg/g	
			1,2,3,4,7,8-Hexa CDF	2017/10/30	<0.0785, EDL=0.0785		pg/g	
			1,2,3,6,7,8-Hexa CDF	2017/10/30	<0.0771, EDL=0.0771		pg/g	
			2,3,4,6,7,8-Hexa CDF	2017/10/30	<0.0841, EDL=0.0841		pg/g	
			1,2,3,7,8,9-Hexa CDF	2017/10/30	<0.0828, EDL=0.0828		pg/g	

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			1,2,3,4,6,7,8-Hepta CDF	2017/10/30	<0.103, EDL=0.103		pg/g	
			1,2,3,4,7,8,9-Hepta CDF	2017/10/30	<0.116, EDL=0.116		pg/g	
			Octa CDF	2017/10/30	<0.134, EDL=0.134 (7)		pg/g	
			Total Tetra CDF	2017/10/30	<0.0568, EDL=0.0568		pg/g	
			Total Penta CDF	2017/10/30	<0.116, EDL=0.116		pg/g	
			Total Hexa CDF	2017/10/30	<0.0805, EDL=0.0805		pg/g	
			Total Hepta CDF	2017/10/30	<0.109, EDL=0.109		pg/g	
238099	CXU	RPD - Sample/Sample Dup	2,3,7,8-Tetra CDD	2017/10/30	NC		%	25
			1,2,3,7,8-Penta CDD	2017/10/30	NC		%	25
			1,2,3,4,7,8-Hexa CDD	2017/10/30	NC (7)		%	25
			1,2,3,6,7,8-Hexa CDD	2017/10/30	24		%	25
			1,2,3,7,8,9-Hexa CDD	2017/10/30	NC		%	25
			1,2,3,4,6,7,8-Hepta CDD	2017/10/30	13		%	25
			Octa CDD	2017/10/30	13		%	25
			Total Tetra CDD	2017/10/30	NC		%	25
			Total Penta CDD	2017/10/30	8.3		%	25
			Total Hexa CDD	2017/10/30	9.6		%	25
			Total Hepta CDD	2017/10/30	14		%	25
			2,3,7,8-Tetra CDF	2017/10/30	NC		%	25
			1,2,3,7,8-Penta CDF	2017/10/30	NC		%	25
			2,3,4,7,8-Penta CDF	2017/10/30	NC		%	25
			1,2,3,4,7,8-Hexa CDF	2017/10/30	NC		%	25
			1,2,3,6,7,8-Hexa CDF	2017/10/30	NC (7)		%	25
			2,3,4,6,7,8-Hexa CDF	2017/10/30	NC		%	25
			1,2,3,7,8,9-Hexa CDF	2017/10/30	NC		%	25
			1,2,3,4,6,7,8-Hepta CDF	2017/10/30	8.9		%	25
			1,2,3,4,7,8,9-Hepta CDF	2017/10/30	1.8		%	25
			Octa CDF	2017/10/30	12		%	25
			Total Tetra CDF	2017/10/30	NC		%	25
			Total Penta CDF	2017/10/30	NC		%	25
			Total Hexa CDF	2017/10/30	13		%	25

GEMTEC LIMITED Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	% Recovery	UNITS	QC Limits
			Total Hepta CDF	2017/10/30	4.2		%	25

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) VOC samples were extracted using a flat-bed shaker instead of the accelerated mechanical shaker due to matrix incompatibility.
- (2) Poor RPD due to sample inhomogeneity. < 10 % of compounds in multi-component analysis in violation.
- (3) Duplicate: < 10 % of compounds in multi-component analysis in violation.
- (4) Elevated reporting limit due to sample matrix.
- (5) Native recovery is outside method limits.
- (6) Recovery outside method acceptance criteria. No impact on data.
- (7) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

GEMTEC LIMITED

Client Project #: 10550.04

Site Location: CUT THROAT ISLAND

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

===
Brad Newman, Scientific Service Specialist
ak Ciaima
Eric Dearman, Scientific Specialist
Kevin B. Max Donald
Kevin MacDonald, Inorganics Supervisor
Staley
Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services
Philips Deven
Phil Deveau, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 10550.04 Site Location: LABRADOR

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Your C.O.C. #: 627202-01-01, 627179-01-01, 627179-02-01, 627179-03-01, 627179-04-01, 627179-06-01, 627179-07-01

Report Date: 2018/05/30

Report #: R5183397 Version: 7 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7K6270 Received: 2017/09/20, 10:26

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Volatile Organic Compounds in Water	1	N/A	2017/09/22	2 ATL SOP 00133	EPA 8260C R3 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 10550.04 Site Location: LABRADOR

Attention: Abigail Garnett

GEMTEC LIMITED 191 Doak Rd Fredericton, NB Canada E3C 2E6

Your C.O.C. #: 627202-01-01, 627179-01-01, 627179-02-01, 627179-03-01, 627179-04-01, 627179-06-01, 627179-07-01

Report Date: 2018/05/30

Report #: R5183397 Version: 7 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7K6270 Received: 2017/09/20, 10:26

Encryption Key

Heather Macumber Senior Project Manage 30 May 2018 08:49:38

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Heather Macumber, Senior Project Manager

Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

GEMTEC LIMITED

Client Project #: 10550.04 Site Location: LABRADOR

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FDZ526		
Sampling Date		2017/09/15		
COC Number		627179-07-01		
	UNITS	TRIP BLANK	RDL	QC Batc
Chlorobenzenes				
1,2-Dichlorobenzene	ug/L	<0.50	0.50	517567
1,3-Dichlorobenzene	ug/L	<1.0	1.0	517567
1,4-Dichlorobenzene	ug/L	<1.0	1.0	517567
Chlorobenzene	ug/L	<1.0	1.0	517567
Volatile Organics	•			
1,1,1-Trichloroethane	ug/L	<1.0	1.0	517567
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	517567
1,1,2-Trichloroethane	ug/L	<1.0	1.0	517567
1,1-Dichloroethane	ug/L	<2.0	2.0	517567
1,1-Dichloroethylene	ug/L	<0.50	0.50	517567
1,2-Dichloroethane	ug/L	<1.0	1.0	517567
1,2-Dichloropropane	ug/L	<0.50	0.50	517567
Benzene	ug/L	<1.0	1.0	517567
Bromodichloromethane	ug/L	<1.0	1.0	517567
Bromoform	ug/L	<1.0	1.0	517567
Bromomethane	ug/L	<0.50	0.50	517567
Carbon Tetrachloride	ug/L	<0.50	0.50	517567
Chloroethane	ug/L	<8.0	8.0	517567
Chloroform	ug/L	<1.0	1.0	517567
Chloromethane	ug/L	<8.0	8.0	517567
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	517567
cis-1,3-Dichloropropene	ug/L	<0.50	0.50	517567
Dibromochloromethane	ug/L	<1.0	1.0	517567
Ethylbenzene	ug/L	<1.0	1.0	517567
Ethylene Dibromide	ug/L	<0.20	0.20	517567
Methyl t-butyl ether (MTBE)	ug/L	<2.0	2.0	517567
Methylene Chloride(Dichloromethane)	ug/L	<3.0	3.0	517567
o-Xylene	ug/L	<1.0	1.0	517567
p+m-Xylene	ug/L	<2.0	2.0	517567
Styrene	ug/L	<1.0	1.0	517567
Tetrachloroethylene	ug/L	<1.0	1.0	517567
Toluene	ug/L	<1.0	1.0	517567
Total Trihalomethanes	ug/L	<1.0	1.0	517567
Total Xylenes	ug/L	<1.0	1.0	517567
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	517567

GEMTEC LIMITED
Client Project #: 10550.04
Site Location: LABRADOR

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FDZ526		
Sampling Date		2017/09/15		
COC Number		627179-07-01		
	UNITS	TRIP BLANK	RDL	QC Batch
trans-1,3-Dichloropropene	ug/L	<0.50	0.50	5175677
Trichloroethylene	ug/L	<1.0	1.0	5175677
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	8.0	5175677
Vinyl Chloride	ug/L	<0.50	0.50	5175677
Surrogate Recovery (%)	•			
4-Bromofluorobenzene	%	99		5175677
D4-1,2-Dichloroethane	%	100		5175677
D8-Toluene	%	98		5175677
RDL = Reportable Detection Limit		•	•	
QC Batch = Quality Control Batch				

GEMTEC LIMITED Client Project #: 10550.04

Site Location: LABRADOR

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	3.2°C

VOCF1 Analysis: The sample extracts were transferred from the soil before 14 days. Analysis was completed within the 40 day specified hold time.

F4G analysis added to FDZ403-01, FDZ407-03, FDZ420-02, FDZ425-02, FDZ426-03, FDZ439-03, FDZ442-03, FDZ444-03, FDZ446-02, FDZ447-02 and FDZ448-02 as per request from A. Garnett. SMS 2017/10/13

Revised Report: Below samples analyszed for F4G as per request from Abigail. HM Oct 13/17

SS SP 60 - FDZ521

SS SP 37 - FDZ453

SS SP 41 - FDZ457

SS SP 44 - FDZ460

SS SP 44 FD - FDZ461

SS SP 50 – FDZ509

SS SP 14 – FDZ402

SD SP 04 - FDZ520

SS_SP_46 - FDZ505

SS_SP_13 - FDZ401

SS SP 16-FDZ404

Revised Report - Changed units for CCME Hydrocarbon in water to mg/L as per request from Terri. HWS Nov 8/17

Revised Report - Split report to include only Trip Blank sample as per request from Terri. HWS May 29/18

Revised Report - Changed location from Spotted Island to Labrador as per request from Terri. HWS May 30/18

Sample FDZ372 [SW SP 04]: RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample FDZ401 [SS SP 13]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

VOC-F1 Analysis: Detection limits were raised due to high moisture content of soil provided.

F4GGRAV-S:Due to high moisture content in the sample matrix, the DL is adjusted accordingly due to lower dry weight.

Sample FDZ402 [SS SP 14]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

VOC-F1 Analysis: Detection limits were raised due to high moisture content of soil provided.

F4GGRAV-S:Due to high moisture content in the sample matrix, the DL is adjusted accordingly due to lower dry weight.

Sample FDZ403 [SS SP 15]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

VOC-F1 Analysis: Detection limits were raised due to high moisture content of soil provided.

F4G Analysis: Due to high moisture the detection limit was adjusted.

Sample FDZ404 [SS_SP_16]: F2-F4 Analysis: Detection limits were adjusted for high moisture content.

VOC-F1 Analysis: Detection limits were raised due to high moisture content of soil provided.

F4GGRAV-S:Due to high moisture content in the sample matrix, the DL is adjusted accordingly due to lower dry weight.

Sample FDZ441 [SS_SP_30]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

GEMTEC LIMITED

Client Project #: 10550.04 Site Location: LABRADOR

Sample FDZ443 [SS_SP_32]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ444 [SS_SP_33]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ445 [SS_SP_34]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ447 [SS_SP_35]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ455 [SS_SP_39]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ505 [SS_SP_46]: F24FID-S Analysis: Detection limits were adjusted for high moisture content. F4GGRAV-S:Due to high moisture content in the sample matrix, the DL is adjusted accordingly due to lower dry weight.

Sample FDZ513 [SD_SP_01_BG]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ514 [SD_SP_02]: VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

Sample FDZ520 [SD_SP_04]: VOC-F1 Analysis: Detection limits were raised due to high moisture content. F4GGRAV-S:Due to high moisture content in the sample matrix, the DL is adjusted accordingly due to lower dry weight.

Results relate only to the items tested.

GEMTEC LIMITED

Client Project #: 10550.04 Site Location: LABRADOR

QUALITY ASSURANCE REPORT

QA/QC Batch	lni+	OC Type	Darameter	Data Analyzad	Value	Docovoru	LINUTC	OC Limite
	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5175677	ASL	Matrix Spike	1,2-Dichlorobenzene	2017/09/22		91 91	% %	70 - 130 70 - 130
			1,3-Dichlorobenzene	2017/09/22				
			1,4-Dichlorobenzene Chlorobenzene	2017/09/22		89	%	70 - 130
				2017/09/22		96	%	70 - 130
			1,1,1-Trichloroethane	2017/09/22		104	%	70 - 130
			1,1,2,2-Tetrachloroethane	2017/09/22		101	%	70 - 130
			1,1,2-Trichloroethane	2017/09/22		102	%	70 - 130
			1,1-Dichloroethane	2017/09/22		106	%	70 - 130
			1,1-Dichloroethylene	2017/09/22		108	%	70 - 130
			1,2-Dichloroethane	2017/09/22		101	%	70 - 130
			1,2-Dichloropropane	2017/09/22		98	%	70 - 130
			4-Bromofluorobenzene	2017/09/22		100	%	70 - 130
			Benzene	2017/09/22		97	%	70 - 130
			Bromodichloromethane	2017/09/22		100	%	70 - 130
			Bromoform	2017/09/22		103	%	70 - 130
			Bromomethane	2017/09/22		100	%	60 - 140
			Carbon Tetrachloride	2017/09/22		101	%	70 - 130
			Chloroethane	2017/09/22		93	%	60 - 140
			Chloroform	2017/09/22		96	%	70 - 130
			Chloromethane	2017/09/22		78	%	60 - 140
			cis-1,2-Dichloroethylene	2017/09/22		104	%	70 - 130
			cis-1,3-Dichloropropene	2017/09/22		109	%	70 - 130
			D4-1,2-Dichloroethane	2017/09/22		101	%	70 - 130
			D8-Toluene	2017/09/22		98	%	70 - 130
			Dibromochloromethane	2017/09/22		103	%	70 - 130
			Ethylbenzene	2017/09/22		99	%	70 - 130
			Ethylene Dibromide	2017/09/22		101	%	70 - 130
			Methyl t-butyl ether (MTBE)	2017/09/22		111	%	70 - 130
			Methylene Chloride(Dichloromethane)	2017/09/22		105	%	70 - 130
			o-Xylene	2017/09/22		99	%	70 - 130
			p+m-Xylene	2017/09/22		99	%	70 - 130
			Styrene	2017/09/22		103	%	70 - 130
			Tetrachloroethylene	2017/09/22		101	%	70 - 130
			Toluene	2017/09/22		101	%	70 - 130
			trans-1,2-Dichloroethylene	2017/09/22		104	%	70 - 130
			trans-1,3-Dichloropropene	2017/09/22		100	%	70 - 130
			Trichloroethylene	2017/09/22		102	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2017/09/22		95	%	60 - 140
			Vinyl Chloride	2017/09/22		101	%	60 - 140
5175677	ASL	Spiked Blank	1,2-Dichlorobenzene	2017/09/22		91	%	70 - 130
		•	1,3-Dichlorobenzene	2017/09/22		92	%	70 - 130
			1,4-Dichlorobenzene	2017/09/22		90	%	70 - 130
			Chlorobenzene	2017/09/22		96	%	70 - 130
			1,1,1-Trichloroethane	2017/09/22		104	%	70 - 130
			1,1,2,2-Tetrachloroethane	2017/09/22		99	%	70 - 130
			1,1,2-Trichloroethane	2017/09/22		100	%	70 - 130
			1,1-Dichloroethane	2017/09/22		107	%	70 - 130
			1,1-Dichloroethylene	2017/09/22		107	%	70 - 130
			1,2-Dichloroethane	2017/09/22		109	%	70 - 130
						97		
			1,2-Dichloropropane	2017/09/22			%	70 - 130
			4-Bromofluorobenzene	2017/09/22		100	%	70 - 130
			Benzene	2017/09/22		96	%	70 - 130
			Bromodichloromethane	2017/09/22		100	%	70 - 130

GEMTEC LIMITED

Client Project #: 10550.04 Site Location: LABRADOR

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Duttil		ζο . γρο	Bromoform	2017/09/22	74.40	102	%	70 - 130
			Bromomethane	2017/09/22		98	%	60 - 140
			Carbon Tetrachloride	2017/09/22		102	%	70 - 130
			Chloroethane	2017/09/22		94	%	60 - 140
			Chloroform	2017/09/22		97	%	70 - 130
			Chloromethane	2017/09/22		94	%	60 - 140
			cis-1,2-Dichloroethylene	2017/09/22		105	%	70 - 130
			cis-1,3-Dichloropropene	2017/09/22		106	%	70 - 130
			D4-1,2-Dichloroethane	2017/09/22		101	%	70 - 130
			D8-Toluene	2017/09/22		98	%	70 - 130
			Dibromochloromethane	2017/09/22		102	%	70 - 130
			Ethylbenzene	2017/09/22		100	%	70 - 130
			Ethylene Dibromide	2017/09/22		100	%	70 - 130
			Methyl t-butyl ether (MTBE)	2017/09/22		112	%	70 - 130
			Methylene Chloride(Dichloromethane)	2017/09/22		106	%	70 - 130
			o-Xylene	2017/09/22		99	%	70 - 130
			p+m-Xylene	2017/09/22		99	%	70 - 130
			Styrene	2017/09/22		104	%	70 - 130
			Tetrachloroethylene	2017/09/22		101	%	70 - 130
			Toluene	2017/09/22		101	%	70 - 130
			trans-1,2-Dichloroethylene	2017/09/22		106	%	70 - 130
			trans-1,3-Dichloropropene	2017/09/22		96	%	70 - 130
			Trichloroethylene	2017/09/22		101	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2017/09/22		95	%	60 - 140
			Vinyl Chloride	2017/09/22		102	%	60 - 140
5175677	ASL	Method Blank	1,2-Dichlorobenzene	2017/09/22	<0.50	102	ug/L	00 - 140
31/30//	AJL	WELTIOU DIATIK	1,3-Dichlorobenzene	2017/09/22	<1.0		ug/L ug/L	
			1,4-Dichlorobenzene	2017/09/22	<1.0		ug/L	
			Chlorobenzene	2017/09/22	<1.0		ug/L	
			1,1,1-Trichloroethane	2017/09/22	<1.0		ug/L ug/L	
			1,1,2,2-Tetrachloroethane	2017/09/22	<0.50		ug/L ug/L	
			1,1,2-Trichloroethane	2017/09/22	<1.0		ug/L ug/L	
			1,1-Dichloroethane	2017/09/22	<2.0		ug/L ug/L	
			1,1-Dichloroethylene	2017/09/22	<0.50		ug/L ug/L	
			1,2-Dichloroethane	2017/09/22	<1.0			
			1,2-Dichloropernane	2017/09/22	<0.50		ug/L ug/L	
			4-Bromofluorobenzene	2017/09/22	<0.30	100	ug/L %	70 120
					~1.0	100		70 - 130
			Benzene	2017/09/22	<1.0		ug/L	
			Bromodichloromethane Bromoform	2017/09/22	<1.0		ug/L	
				2017/09/22	<1.0		ug/L	
			Bromomethane	2017/09/22	<0.50		ug/L	
			Carbon Tetrachloride	2017/09/22	<0.50		ug/L	
			Chloroethane	2017/09/22	<8.0		ug/L	
			Chloroform	2017/09/22	<1.0		ug/L	
			Chloromethane	2017/09/22	<8.0		ug/L	
			cis-1,2-Dichloroethylene	2017/09/22	<0.50		ug/L	
			cis-1,3-Dichloropropene	2017/09/22	<0.50	0=	ug/L	70 10-
			D4-1,2-Dichloroethane	2017/09/22		97	%	70 - 130
			D8-Toluene	2017/09/22		99	%	70 - 130
			Dibromochloromethane	2017/09/22	<1.0		ug/L	
			Ethylbenzene	2017/09/22	<1.0		ug/L	
			Ethylene Dibromide	2017/09/22	<0.20		ug/L	
			Methyl t-butyl ether (MTBE)	2017/09/22	<2.0		ug/L	

GEMTEC LIMITED

Client Project #: 10550.04 Site Location: LABRADOR

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Methylene Chloride(Dichloromethane)	2017/09/22	<3.0		ug/L	
			o-Xylene	2017/09/22	<1.0		ug/L	
			p+m-Xylene	2017/09/22	<2.0		ug/L	
			Styrene	2017/09/22	<1.0		ug/L	
			Tetrachloroethylene	2017/09/22	<1.0		ug/L	
			Toluene	2017/09/22	<1.0		ug/L	
			Total Trihalomethanes	2017/09/22	<1.0		ug/L	
			Total Xylenes	2017/09/22	<1.0		ug/L	
			trans-1,2-Dichloroethylene	2017/09/22	<0.50		ug/L	
			trans-1,3-Dichloropropene	2017/09/22	< 0.50		ug/L	
			Trichloroethylene	2017/09/22	<1.0		ug/L	
			Trichlorofluoromethane (FREON 11)	2017/09/22	<8.0		ug/L	
			Vinyl Chloride	2017/09/22	< 0.50		ug/L	
5175677 AS	ASL	RPD	1,2-Dichlorobenzene	2017/09/22	NC		%	40
			1,3-Dichlorobenzene	2017/09/22	NC		%	40
			1,4-Dichlorobenzene	2017/09/22	NC		%	40
			Chlorobenzene	2017/09/22	NC		%	40
			1,1,1-Trichloroethane	2017/09/22	NC		%	40
			1,1,2,2-Tetrachloroethane	2017/09/22	NC		%	40
			1,1,2-Trichloroethane	2017/09/22	NC		%	40
			1,1-Dichloroethane	2017/09/22	NC		%	40
			1,1-Dichloroethylene	2017/09/22	NC		%	40
			1,2-Dichloroethane	2017/09/22	NC		%	40
			1,2-Dichloropropane	2017/09/22	NC		%	40
			Benzene	2017/09/22	NC		%	40
			Bromodichloromethane	2017/09/22	NC		%	40
			Bromoform	2017/09/22	NC		%	40
			Bromomethane	2017/09/22	NC		%	40
			Carbon Tetrachloride	2017/09/22	NC		%	40
			Chloroethane	2017/09/22	NC		%	40
			Chloroform	2017/09/22	NC		%	40
			Chloromethane	2017/09/22	NC		%	40
			cis-1,2-Dichloroethylene	2017/09/22	NC		%	40
			cis-1,3-Dichloropropene	2017/09/22	NC		%	40
			Dibromochloromethane	2017/09/22	NC		%	40
			Ethylbenzene	2017/09/22	NC		%	40
			Ethylene Dibromide	2017/09/22	NC		%	40
			Methylene Chloride(Dichloromethane)	2017/09/22	NC		%	40
			o-Xylene	2017/09/22	NC		%	40
			p+m-Xylene	2017/09/22	NC		%	40
			Styrene	2017/09/22	NC		%	40
			Tetrachloroethylene	2017/09/22	NC		%	40
			Toluene	2017/09/22	NC		%	40
			trans-1,2-Dichloroethylene	2017/09/22	NC NC		% %	40 40
			•	2017/09/22	NC NC		%	
			trans-1,3-Dichloropropene	• •				40
			Trichloroethylene	2017/09/22	NC		%	40
			Trichlorofluoromethane (FREON 11)	2017/09/22	NC		%	40

Maxxam Job #: B7K6270 Report Date: 2018/05/30 GEMTEC LIMITED
Client Project #: 10550.04
Site Location: LABRADOR

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Vinyl Chloride	2017/09/22	NC		%	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Maxxam Job #: B7K6270 Report Date: 2018/05/30 GEMTEC LIMITED
Client Project #: 10550.04
Site Location: LABRADOR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Phil Deveau, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Pre-Screening Checklist

	Question	Response (yes / no)	Comment
1.	Are Radioactive material, Bacterial contamination or Biological hazards likely to be present at the site?	No	If yes, do not proceed through the NCSCS. Contact applicable regulatory agency immediately.
2.	Are there no contamination exceedances (known or suspected)? Determination of exceedances may be based on: 1) CCME environmental quality guidelines; 2) equivalent provincial guidelines/standards if no CCME guideline exists for a specific chemical in a relevant medium; or 3) toxicity benchmarks derived from the literature for chemicals not covered by CCME or provincial guidelines/standards.	No	If yes (i.e., there are no exceedances), do not proceed through the NCSCS.
3.	Have partial/incompleted or no environmental site investigations been conducted for the Site?	No	If yes, do not proceed through the NCSCS.
4.	Is there direct and signficant evidence of impacts to humans at the site, or off-site due to migration of contaminants from the site?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
5.	Is there direct and significant evidence of impacts to ecological receptors at the site, or off-site due to migration of contaminants from the site?	No	Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are considered to be severe, the site may be categorized as Class 1, regardless of the numerical total NCSCS score. For the purpose of application of the NCSCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threaten the viability of a population of ecological receptors at the site. Other evidence that qualifies as severe adverse effects may be determined based on professional judgement and in consultation with the relevant jurisdiction.
6.	Are there indicators of significant adverse effects in the exposure zone (i.e., the zone in which receptors may come into contact with contaminants)? Some examples are as follows: -Hydrocarbon sheen or NAPL in the exposure zone -Severely stressed biota or devoid of biota; -Presence of material at ground surface or sediment with suspected high concentration of contaminants such as ore tailings, sandblasting grit, slag, and coal tar.	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, regardless of the total score obtained should one be calculated (e.g., for comparison with other Class 1 sites).
7.	Do measured concentrations of volatiles or unexploded ordnances represent an explosion hazard ?	No	If yes, automatically rate the site as Class 1, a priority for remediation or risk management, and do not continue until the safety risks have been addressed. Consult your jurisdiction's occupational health and safety guidance or legislation on exposive hazards and measurement of lower explosive limits.

If none of the above applies, proceed with the NCSCS scoring.

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

Subject Site:	Cut Throat Island, Former United States Air Force (USAF Station), Former Pine Tree					
		Line Radar Station, Labrador				
Civic Address: (or other description of location)	Cut T	Throat Island is approximately 88 kilometers north of Cartwright off the coast of Labrador.				
Site Common Name : (if applicable)						
Site Owner or Custodian: (Organization and Contact Person)	Province of Newfoundland and Labrador					
Legal description <i>or</i> metes and bounds:						
Approximate Site area:		478,015 square meters, 118.12 acres				
PID(s): (or Parcel Identification Numbers [PIN] if untitled Crown land)		Not applicable to Newfoundland and Labrador				
Centre of site: (provide latitude/longitude or UTM coordinates)	Latitude: Longitude:	degrees min secs degrees min secs				
O TW Coordinates)	UTM Coordinate:	Northing _6038468.13 Easting491330.08				
Site Land Use:	Current:	Current-Vacant				
	Proposed:					
Site Plan	indicating th	the bounds of the Site a site plan MUST be attached. The plan must be drawn to scale he boundaries in relation to well-defined reference points and/or legal descriptions. of the contamination should also be indicated on the site plan.				
Provide a brief description of the Site:	Cartwright. 1961. Cut 7 The Site is covers app and a Lowe consisted of water pump helicopter peastern sid the Upper site during Site AST and pron-site stru	a former manned Pinetree Line Gap Filler Radar Station for the United States Air Force (USAF) Air Station. The Radar Station on Cut Throat Island was established in 1957 and operated until Throat Island is located approximately 88 kilometers north of the town of Cartwright in Labrador. Is located along the eastern coast of the island and comprises of four separate parcels of land proximately 478,015 square meters (GHD, 2016). The Site is identified as having an Upper site er site with approximately 1.5 km of gravel roadway separating the two sites. The Upper Site of: main building; radome tower; two communication antennae; disaster shack; fuel pump house; ping station; storage shed; catch basin 1,578,000 litre AST holding diesel / fuel oil; and pad. A freshwater lake, east of the Upper site was used as a source of drinking water. Along the de of the roadway was an above ground pipeline, which transferred fuel from the Lower site to site. An area of dumping / landfill associated with the USAF was identified in 2017 between the and the Lower site along the west side of the roadway. A former USAF quarry and dump used a operations was located southeast of the Upper site. The Lower site consisted of a 1,625,000 L pump house. In 1987, the Site was decommissioned, the contract for which included the razing of auctures and the burning of all materials, followed by the burying and covering of all building All material brought to the Radar Station during its construction and operation remains on-site, in				

CCME National Classification System for Contaminated Sites (2008, 2010 v 1.2) Summary of Site Conditions

Affected media and	Soil -
Contaminants of Potential	Metals
Concern (COPC):	petroleum hydrocarbons (PHC) (or petroleum oil and lubricants (POL)) polychlorinated biphenyls (PCB) polycyclic aromatic hydrocarbons (PAH) volatile organic compounds (VOCs)
	Sediment: Metals, PHC (POL), PCB, PAH, VOCs
	Surface Water:
	Metals, General Chemistry, PHC (POL), PCB, PAH, VOCs

Please fill in the "letter" that best describes the level of information available for the site being assessed:

Site Letter Grade D

If letter grade is F, do not continue, you must have a minimum of a Phase I Environmental Site Assessment or equivalent.

Scoring Completed By:	GEMTEC Consulting Engineers and Scientists Limited
Date Scoring Completed:	23-Nov-18

CCME National Classification System (2008, 2010 v 1.2)
(I) Contaminant Characteristics
Cut Throat Island, Former United States Air Force (USAF Station), Former Pine Tree Line Radar Station, Labrador

Cut Throat Island, Former United States All Force	USAF Station	n), Former Pine Tree Line Radar Station, Labrador	T	T
Definition	0	Rationale for Score	Mathed of Fredricks	Notes
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)	Method of Evaluation	Notes
Residency Media (replaces physical state)		·		l
Which of the following residency media are known (or		Exceedances of ecological guildelines petroleum hydrocarbons	The overall score is calculated by adding the individual scores from each residency media	An increasing number of residency media containing
strongly suspected) to have one or more exceedances of		(PHCs), PAHs, and metals in soil, PHCs in sediment, PHC and	(having one or more exceedance of the most conservative media specific and land-use	chemical exceedances often equates to a greater potential
the applicable CCME guidelines? yes = has an exceedance or strongly suspected to have an		metals in surface water were confirmed. Exceedances of Human	appropriate CCME guideline).	risk due to an increase in the number of potential exposure
exceedance		Health guidelines for PHC, PAH and metals in soil (GEMTEC, 2018) - Intial Testing Program.	Summary tables of the Canadian Environmental Quality Guidelines for soil, water (aquatic	pathways.
no = does not have an exceedance or strongly suspected		2010) middle rosting r rogram.	life, non-potable groundwater environments, and agricultural water uses) and sediment are	
not to have an exceedance			available on the CCME website at http://www.ccme.ca/publications/ceqg_rcqe.html?category_id=124	
A. Soil	Yes			
Yes			For potable groundwater environments, guidelines for Canadian Drinking Water Quality (for	
No			comparison with groundwater monitoring data) are available on the Health Canada website at http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/doc_sup-appui/sum_guide-	
Do Not Know	5 11 111		res recom/index e.html.	
B. Groundwater	Do Not Know			
Yes No				
Do Not Know				
C. Surface water	Yes			
Yes				
No				
Do Not Know				
D. Sediment Yes	Yes			
Yes No				
Do Not Know				
"Known" -score	6			
"Potential" - score	1			
2. Chemical Hazard				
What is the relative degree of chemical hazard of the		Lead is rated as "High" by FCSAP. Lead concentrations confirmed	The relative degree of chemical hazard should be selected based on the most hazardous	Hazard as defined in the revised NCS pertains to the
contaminant in the list of hazard rankings proposed by the Federal Contaminated Sites Action Plan (FCSAP)?	High	in soil at concentrations exceeding CCME guidelines (GEMTEC, 2018) - Initial Testing Program	contaminant known or suspected to be present at the site.	physical properties of a chemical which can cause harm.
High		2016) - Illitiai Testing Program	The degree of hazard has been defined by the Federal Contaminated Sites Action Plan	Properties can include toxic potency, propensity to biomagnify, persistence in the environment, etc. Although
Medium			(FCSAP) and a list of substances with their associated hazard (Low, Medium and High) has	there is some overlap between hazard and contaminant
Low			been provided as a separate sheet in this file.	exceedance factor below, it will not be possible to derive
Do Not Know	_		See Attached Reference Material for Contaminant Hazard Rankings.	contaminant exceedance factors for many substances which have a designated chemical hazard designation, but
"Known" -score	8		Goe Allached Nelerence Waterial for Contaminant Hazard Nankings.	don't have a CCME guideline. The purpose of this category
"Potential" - score				is to avoid missing a measure of toxic potential.
Contaminant Exceedence Factor				
What is the ratio between the measured contaminant	11: 1 (100	Maximum measured lead concentration of 3200 mg/kg compared	Ranking of contaminant "exceedance" is determined by comparing contaminant	In the event that elevated levels of a material with no
concentration and the applicable CCME guidelines (or other "standards")?	High (>100x)	to CCME guideline of 260 mg/kg (GEMTEC, 2018) - Initial Testing Program. A few parameters exceeded >100x over, but the majority	concentrations with the most conservative media-specific and land-use appropriate CCME environmental quality guidelines. Ranking should be based on contaminant with	associated CCME guidelines are present, check provincial and USEPA environmental criteria.
Mobile NAPL		were 10x to 100x.	greatest exceedance of CCME guidelines.	
High (>100x)			Ranking of contaminant hazard as high, medium and low is as follows:	Hazard Quotients (sometimes referred to as a screening
Medium (10x to 100x) Low (1x to 10x)			High = One or more measured contaminant concentration is greater than 100 X appropriate CCME quidelines	quotient in risk assessments) refer to the ratio of measured concentration to the concentration believed to be the
Do Not Know			Medium = One or more measured contaminant concentration is 10 - 99.99 X appropriate	threshold for toxicity. A similar calculation is used here to
"Known" -score	6		CCME guidelines	determine the contaminant exceedance factor (CEF).
"Potential" - score			Low = One or more measured contaminant concentration is 1 - 9.99 X appropriate CCME	Concentrations greater than one times the applicable CCME
			guidelines Mobile NAPL = Contaminant is a non-aqueous phase liquid (i.e., due to its low solubility, it	guideline (i.e., CEF=>1) indicate that risks are possible. Mobile NAPL has the highest associated score (8) because
			does not dissolve in water, but remains as a separate liquid) and is present at a sufficiently	of its highly concentrated nature and potential for increase
			high saturation (i.e., greater than residual NAPL saturation) such that there is significant	in the size of the impacted zone.
			potential for mobility either downwards or laterally.	
			Other standards may include local background concentration or published toxicity benchmarks.	
			Results of toxicity testing with site samples can be used as an alternative.	
			This approach is only relevant for contaminants that do not biomagnify in the food web, since toxicity tests would not indicate potential effects at higher trophic levels.	
			High = lethality observed.	
			Medium = no lethality, but sub lethal effects observed.	
			Low = neither lethal nor sub lethal effects observed.	
			·	<u> </u>

(I) Contaminant Characteristics

Cut Throat Island, Former United States Air Force (USAF Station), Former Pine Tree Line Radar Station, Labrador

Out Throat Island, I office Officed States All Force	JUNI SIAIIU	n), Former Pine Tree Line Radar Station, Labrador	1	T
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method of Evaluation	Notes
4. Contaminant Quantity (known or strongly suspected)				
What is the known or strongly suspected quantity of all contaminants? >10 hectare (ha) or 5000 m ³ 2 to 10 ha or 1000 to 5000 m ³ <2 ha or 1000 m ³ Do Not Know	2 to 10 ha or 1000 to 5000 m3	The delineated impacted soil volume from the Initial Testing Program is approximately 1,200 m3 (GEMTEC, 2018).	Measure or estimate the area or quantity of total contamination (i.e, all contaminants knowr or strongly suspected to be present on the site). The "Area of Contamination" is defined as the area or volume of contaminated media (soil, sediment, groundwater, surface water exceeding appropriate environmental criteria.	in a larger frequency of exposure as well as a greater
"Potential" - score				
5. Modifying Factors				
Does the chemical fall in the class of persistent chemicals based on its behavior in the environment? Yes No Do Not Know	Yes	Lead does not degrade in the environment.	Persistent chemicals, e.g., PCBs, chlorinated pesticides etc. either do not degrade or take longer to degrade, and therefore may be available to cause effects for a longer period of time. Canadian Environmental Protection Act (CEPA) classifies a chemical as persistent when it has at least one of the following characteristics: (a) in air, (i) its half-life is equal to or greater than 2 days, or (ii) it is subject to atmospheric transport from its source to a remote area;	Examples of Persistent Substances are provided in attached Reference Materials
			(b) in water, its half-life is equal to or greater than 182 days; (c) in sediments, its half-life is equal to or greater than 365 days; or (d) in soil, its half-life is equal to or greater than 182 days. This list does not include metals or metalloids, which in their elemental form do not degrade. However metals and metalloids form chemical species in the environment, many of which are not readily bioavailable.	
Are there contaminants present that could cause damage to utilities and infrastructure, either now or in the future, given their location?	No	No underground infrastructure currently present or foreseen (GEMTEC, 2018) - Initial Testing Program.		Some contaminants may react or absorb into underground utilities and infrastructure. For example, organic solvents may degrade some plastics, and salts could cause corrosion of metal.
Yes No Do Not Know				
How many different contaminant classes have representative CCME guideline exceedances? one	two to four	Inorganic substances (including metals) – Soil, Surface Water light extractable petroleum hydrocarbons (PHC F2) – Soil heavy extractable petroleum hydrocarbons (PHC F3) - Soil PAHs – Soil	For the purposes of the revised NCS ranking system, the following chemicals represent distinct chemical "classes": inorganic substances (including metals), volatile petroleum hydrocarbons, light extractable petroleum hydrocarbons, heavy extractable petroleum hydrocarbons, PAHs, phenolic substances, chlorinated hydrocarbons, halogenated	Refer to the Reference Material sheet for a list of example substances that fall under the various chemical classes.
two to four five or more Do Not Know "Known" - Score	4	(GEMTEC, 2018) - Initial Testing Program.	methanes, phthalate esters, pesticides.	
"Potential" - Score				

Contaminant Characteristic Total

Raw Total Scores- "Known"	30
Raw Total Scores- "Potential"	1
Raw Combined Total Scores	31
Total Score (Raw Combined / 40 * 33)	25.6

	_	Rationale for Score	Method Of Evaluation	Notes
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)		
Groundwater Movement				
Known COPC exceedances and an operable groundwater pathway				
ihin and/or beyond the property boundary: i) For potable groundwater environments, 1) groundwater concentrations exceed background concentrations and 1X the Guideline for Canadian Drinking Water Quality (GCDVQ) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater contamination. For non-potable environments (typically urban environments with municipal services), 1) groundwater concentrations exceed 1X the applicable non potable guidelines or modified generic guidelines (which exclude ingestion of drinking water pathway) or 2) there is known contact of contaminants with groundwater, based on physical evidence of groundwater impacts. ii) Same as (i) except the information is not known butstrongly suspected based on indirect observations. iii) Meets GCDWQ for potable environments, meets non-potable criteria or modified generic criteria (excludes ingestion of drinking water pathway) for non-potable environments. or Absence of groundwater exposure pathway (i.e., there is no aquifer (see definition at right) at the site or there is an adequate isolating (see definition at right) at the site or there is an adequate isolating layer between the aquifer and the contamination, and within 5 km of the site there are no aquatic receiving environments and the groundwater does not daylight).	9		Review chemical data and evaluate groundwater quality. The evaluation method concentrates on 1) a potable or non-potable groundwater environment; 2) the groundwater flow system and its potential to be an exposure pathway to known or potential receptors An aquifer is defined as a geologic unit that yields groundwater in usable quantities and drinking water quality. The aquifer can currently be used as a potable water supply or could have the potential for use in the future. Non-potable groundwater environments are defined as areas that are serviced with a reliable alternative water supply (most commonly provided in urban areas). The evaluation of a non-potable environment will be based on a site specific basis. Physical evidence includes significant sheens, liquid phase contamination, or contaminant saturate soils. Seeps and springs are considered part of the groundwater pathway. In Arctic environments, the potability and evaluation of the seasonal active layer (above the permafrost) as a groundwater exposure pathway will be considered on a site-specific basis.	The 1992 NCS rationale evaluated the off-site migration as a regulatory issue. The exposure assessment and classification of hazards should be evaluated regardless of properly boundaries. Someone experienced must provide a thorough description of the sources researched determine the presence/absence of a groundwater supply source in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resources such as internet links. Note that for potable groundwater that also daylights into a nearby surface water body more stringent guidelines for both drinking water and protection of aquatic life should thoroidered. Selected References Potable Environments Guidelines for Canadian Drinking Water Quality.www.hc-sc.gc.ca/ewh-semt/pubs/watesau/doc_sup-appui/sum_quide-res_recom/index_e_html Non-Potable Environments Canadian Water Quality Guidelines for Protection of Aquatic Life. CCME. 1999 www.ccme.ca Compilation and Review of Canadian Remediation Guidelines, Standards and Regulations. Science Applications International Corporation (SAIC Canada),
Score PTE: If a score is assigned here for Known COPC Exceedances, ti p Part B (Potential for groundwater pathway) and go to Section 2		Pathway)		report to Environment Canada, January 4, 2002.
Potential for groundwater pathway.				
a. Relative Mobility High Moderate Low Insignificant Do Not Know	Moderate 2	PHC and Metal impacts reported in soils -can leach to groundwater GEMTEC, 2018	Organics Metals with higher mobility Metals with higher mobility Koc (L/Kg) at aiddic conditions at aikaline conditions Koc < 500 (i.e., log Koc < 2.7)	Reference: US EPA Soil Screening Guidance (Part 5 - Table 39) If a score of zero is assigned for relative mobility, it is still recommended that the follow sections on potential for groundwater pathway be evaluated and scored. Although the of an individual contaminant may suggest that it will be relatively immobile, it is possible that, with complex mixtures, there could be enhanced mobility due to co-solvent effects therefore, the Koc cannot be relied on solely as a measure of mobility. An evaluation other factors such as containment, thickness of confining layer, hydrautic conductivities precipitation infiltration rate are still useful in preciding potential for groundwater migrat even if a contaminant is expected to have insignificant mobility based on its chemistry alone.
b. Presence of engineered sub-surface containment? No containment Partial containment Full containment Do Not Know Score	No containment 3	No engineered containment at the Site	Review the existing engineered systems or natural attenuation processes for the site and determin if full or partial containment is achieved. Full containment is defined as an engineered system or natural attenuation processes, monitored as being effective, which provide for full capture and/or treatment of contaminants. All chemicals of concern must be contained for Full Containment" scoring. Natural attenuation must have sufficient data, and reports cited with monitoring data to support steady state conditions and the attenuation processes. If there is no containment or insufficient natural attenuation process, this category is evaluated as high. If there is less than full containment or if uncertain, then evaluate as medium. In Arctic environments, permafrost will be evaluated, as appropriate, based on detailed evaluations, effectiveness and reliability to contain/control contaminant migration.	determine the containment of the source at the contaminated site. This information mu documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps, geotechnical reports or nature.
c. Thickness of confining layer over aquifer of concern or groundwate exposure pathway 3 m or less including no confining layer or discontinuous confining layer 3 to 10 m > 10 m Do Not Know	Do Not Know 0.5	No deeper subsurface investigations have been completed at the Site	The term "confining layer" refers to geologic material with little or no permeability or hydraulic conductivity (such as unfractured clay); water does not pass through this layer or the rate of movement is extremely slow. Measure the thickness and extent of materials that will impede the migration of contaminants to the groundwater exposure pathway. The evaluation of this category is based on: 1) The presence and thickness of saturated subsurface materials that impede the vertical migration of contaminants to lower aquifer units which can or are used as drinking water sources or 2). The presence and thickness of unsaturated subsurface materials that impede the vertical migration of contaminants from the source location to the saturated zone (e.g., water table aquifer, first hydrostratigraphic unit or other groundwater pathway).	
d. Hydraulic conductivity of confining layer >10 ⁴ cm/s or no confining layer 10 ⁴ to 10 ⁹ cm/s <10 ⁵ cm/s 5 cm/s Do Not Know		Discrete surface soil materials are coarse grained, but confining layer would be in the lower K bedrock. Lower hydraulic conductivities would apply	Determine the nature of geologic materials and estimate hydraulic conductivity from published material (or use "Range of Values of Hydraulic Conductivity and Perneability" figure in the Reference Material sheet). Unfractured clays should be scored low. Silts should be scored medium. Sand, gravel should be scored high. The evaluation of this category is based on: 1) The presence and hydraulic conductivity ("N") of saturated subsurface materials that impede the vertical migration of contaminants to lower aquifer units which can or are used as a drinking water source, groundwater exposure pathway or 2) The presence and nermachility ("R") of unsaturated subsurface materials that impede the vertical migration of the properties	

Cut Throat Island, Former United States Air Force (USAF States)	ation), Former F	Pine Tree Line Radar Station, Labrador		
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Score	<10-6 cm/s		migration of contaminants from the source location to the saturated water table aquifer, first hydrostratigraphic unit or other groundwater pathway.	
Potential for groundwater pathway.				
e. Precipitation infiltration rate		Based on Canadian Climate Normals (1981-2010) for Cartwright (closest station to Cape	Precipitation Refer to Environment Canada precipitation records for relevant areas. Divide annual precipitation b	
(Annual precipitation factor x surface soil relative permeability		Harrison, at similar elevation): Total annual precipitation = 1050.1 mm	1000 and round to nearest tenth (e.g., 667 mm = 0.7 score).	y
factor) High		1050.1 mm / 1000 = 1.1	Permeability	
Moderate Low		1.1 * 0.6 (sand - as observed by GEMTEC 2018)	For surface soil relative permeability (i.e., infiltration) assume: gravel (1), sand (0.6), loam (0.3) and pavement or clay (0).	
Very Low		(,,	Multiply the surface soil relative permeability factor with precipitation factor to obtain the score for	
None Do Not Know			precipitation infiltration rate.	
Score	High e 1			
f. Hydraulic conductivity of aquifer		Estimated based on unfractured grantic and granodioritic intrusive rocks	Determine the nature of geologic materials and estimate hydraulic conductivity of all aquifers of	
>10 ⁻² cm/s 10 ⁻² to 10 ⁺⁴ cm/s -10 ⁻⁴ cm/s Do Not Know			concern from published material (refer to "Range of Values of Hydraulic Conductivity and Permeability" in the Reference Material sheet).	
Score	<10-4 cm/s			
Potential groundwater pathway total	6.5			
Allowed Potential score		Note: If a "known" score is provided, the "potential" score is disallowed.		
Groundwater pathway total 2. Surface Water Movement	6.5			
A. Demonstrated migration of COPC in surface water above background	ı			
conditions		Concentrations of PHCs and metals exceeded ecological screening values, Initial Testing	Collect all available information on quality of surface water near to site. Evaluate available data	General Notes:
Known concentrations of surface water:		Program (GEMTEC 2018)	against Canadian Water Quality Guidelines (select appropriate guidelines based on local water use	Someone experienced must provide a thorough description of the sources researched to
i) Concentrations exceed background concentrations and exceed CCME CWQG for protection of aquatic life, irrigation, livestock water, and/or recreation (whichever uses are applicable at the site) by >1 X;			e.g., recreation, irrigation, aquatic life, livestock watering, etc.). The evaluation method concentrate: on the surface water flow system and its potential to be an exposure pathway. Contamination is present on the surface (above ground) and has the potential to impact surface water bodies. Surface water is defined as a water body that supports one of the following uses: recreation,	classify the surface water body in the vicinity of the contaminated site. I his information must be documented in the NCS Site Classification Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other resourc such as internet links.
or There is known contact of contaminants with surface water based on site observations.	12		irrigation, livestock watering, aquatic life.	Selected References: CCME. 1999. Canadian Water Quality Guidelines for the Protection of Aquatic Life
or In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing; or other indicator testing of exposure).				www.come.ca CCME. 1999. Canadian Water Quality Guidelines for the Protection of Agricultural Water
testing of exposure).				Uses (Irrigation and Livestock Water) <u>www.ccme.ca</u>
ii) Same as (i) except the information is not known butstrongly suspected based on indirect observations.	8			Health and Welfare Canada. 1992. Guidelines for Canadian Recreational Water Quality.
iii) Meets CWQG or absence of surface water exposure pathway (i.e., Distance to nearest surface water is > 5 km.)	0			
Score	12 12			
NOTE: If a score is assigned here for Demonstrated Migration in St skip Part B (Potential for migration of COPCs in surface water) and	urface Water, ther go to Section 3 (S	ı you can Surface Solis)		
B. Potential for migration of COPCs in surface water a Presence of containment			Review the existing engineered systems and relate these structures to site conditions and proximity	
No containment Partial containment			to surface water and determine if full containment is achieved: score low if there is full containment	
Full containment			such as capping, berms, dikes; score medium if there is partial containment such as natural barriers, trees, ditches, sedimentation ponds; score high if there are no intervening barriers between the state of the s	
Do Not Know Score	Do Not Know		the site and nearby surface water. Full containment must include containment of all chemicals.	
b. Distance to Surface Water 0 to <100 m 100 - 300 m >300 m Do Not Know			Review available mapping and survey data to determine distance to nearest surface water bodies.	
Score	Do Not Know			
c. Topography Contaminants above ground level and slope is steep Contaminants at or below ground level and slope is steep Contaminants at or below ground level and slope is intermediate Contaminants above ground level and slope is intermediate Contaminants above ground level and slope is flat			Review engineering documents on the topography of the site and the slope of surrounding terrain. Steep slope = >50% Intermediate slope = between 5 and 50% Flat slope = < 5% Note: Type of fill placement (e.g., trench, above ground, etc.).	
Containinante above ground level and slope is hat	1 1		process 1750 of all placement (e.g., action, above ground, etc.).	ı

			Method Of Evaluation	Notes
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)		
		(document any assumptions, reports, or site-specific information, provide references)		
Contaminants at or below ground level and slope is flat				
Do Not Know				
0	Do Not Know			
d. Run-off potential	1		Rainfall	Selected Sources:
High (rainfall run-off score > 0.6)			Refer to Environment Canada precipitation records for relevant areas. Divide rainfall by 1000 and	Environment Canada web page link:www.msc.ec.gc.ca
Moderate (0.4 < rainfall run-off score < 0.6)			round to nearest tenth (e.g., 667 mm = 0.7 score).	Snow to rainfall conversion apply ratio of 15 (snow):1(water)
Low (0.2 < rainfall run-off score < 0.4) Very Low (0 < rainfall run-off score < 0.2)			The former definition of "annual rainfall" did not include the precipitation as snow. This minor adjustment has been made. The second modification was the inclusion of permeability of	
None (rainfall run-off score = 0)			surface materials as an evaluation factor.	
Do Not Know				
	Do Not Know		Permeability	
Score	0.4		For infiltration assume: gravel (0), sand (0.3), loam (0.6) and pavement or clay (1).	
			Multiply the infiltration factor with precipitation factor to obtain rainfall run off score.	
e. Flood potential				
1 in 2 years			Review published data such as flood plain mapping or flood potential (e.g., spring or mountain run-	
1 in 10 years			off) and Conservation Authority records to evaluate flood potential of nearby water courses both up	
1 in 50 years			and down gradient. Rate zero if site not in flood plain.	
Not in floodplain				
Do Not Know Score	Do Not Know			
Potential surface water pathway total	6.9			
Allowed Potential score		Note: If a "known" score is provided, the "potential" score is disallowed.		
Surface water pathway total	12			
Surface Soils (potential for dust, dermal and ingestion exposure)				
A. Demonstrated concentrations of COPC in surface soils (top 1.5 m)				
		PHC, PAH and Metals exceeded Ecological and / or Human Health Screening values, Initial Testing Program (GEMTEC 2018).	Collect all available information on quality of surface soils (i.e., top 1.5 metres) at the site. Evaluate	Salastad References:
COPCs measured in surface soils exceed the CCME soil quality		resuling Flogram (GEWIEC 2016).		CCME. 1999. Canadian Soil Quality Guidelines for the Protection of Environmental and
guideline.	12		current (or proposed future) land use (i.e. agricultural, residential/parkland, commercial, or	Human Health
Strongly suspected that soils exceed guidelines			industrial), and soil texture if applicable (i.e., coarse or fine).	www.ccme.ca
COPCs in surface soils does not exceed the CCME soil quality guidel	9			
or is not present (i.e., bedrock).	0			
0	12			
Score	12			
NOTE: If a score is assigned here for Demonstrated Concentration				
NOTE: If a score is assigned here for Demonstrated Concentrati skip Part B (Potential for a surface soils migration pathway) and				
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway				The possibility of contaminants in blowing snow have not been included in the revised NC
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered?			perform a site visit.	as it is difficult to assess what constitutes an unacceptable concentration and secondly,
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed				
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped			perform a site visit.	as it is difficult to assess what constitutes an unacceptable concentration and secondly,
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved			perform a site visit.	as it is difficult to assess what constitutes an unacceptable concentration and secondly,
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped	to Section 4 (Va		perform a site visit.	as it is difficult to assess what constitutes an unacceptable concentration and secondly,
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know	Do Not Know		perform a site visit.	as it is difficult to assess what constitutes an unacceptable concentration and secondly,
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score	to Section 4 (Va		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil.	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil.	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year	Do Not Know		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 10 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total	Do Not Know Do Not Know	pour i	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score	Do Not Know Do Not Know Do Not Know 3 7		perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total	Do Not Know Do Not Know 3	pour i	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score	Do Not Know Do Not Know Do Not Know 3 7	pour i	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total	Do Not Know Do Not Know Do Not Know 3 7	Note: If a "known" score is provided, the "potential" score is disallowed	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour.	Do Not Know Do Not Know Do Not Know 3 7	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, Initial Testing	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which are always wet or covered with snow (and therefore less likely to generate dust) to those soils which are predominantly dry and not covered by snow (and therefore are more likely to generate dust).	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour	Do Not Know Do Not Know Do Not Know 3 7	Note: If a "known" score is provided, the "potential" score is disallowed	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which an	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year 10 to 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations.	Do Not Know Do Not Know A Do Not Know 12	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, Initial Testing	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year 20 Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling)	Do Not Know Do Not Know 3 7 12	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, Initial Testing	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling) Vapour has to been measured and volatile hydrocarbons have not b	Do Not Know Do Not Know 3 7 12	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, Initial Testing	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year 20 Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling)	Do Not Know Do Not Know 4 Do Not Know 12 12 9	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, Initial Testing	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
B. Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year 10 to 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling) Vapour has not been measured and volatile hydrocarbons have not b found in site soils or groundwater.	Do Not Know 4 Do Not Know 4 12 12 9 en 0	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, Initial Testing	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
skip Part B (Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year More than 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling) Vapour has not been measured and volatile hydrocarbons have not b found in site soils or groundwater.	Do Not Know 4 Va Do Not Know 4 Va	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, initial Testing Program (GEMTEC, 2018). Outdoor air pathway would apply.	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
B. Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year More than 30% of the year Soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling) Vapour has not been measured and volatile hydrocarbons have not b found in site soils or groundwater.	Do Not Know Do Not Know 4 Do Not Know 1 12 12 9 en 0 9 popur, then you car	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, initial Testing Program (GEMTEC, 2018). Outdoor air pathway would apply.	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
B. Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Pawed Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year 10 to 30% of the year Do Not Know Score Potential surface soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling) Vapour has not been measured and volatile hydrocarbons have not b found in site soils or groundwater. Score NOTE: If a score is assigned here for Demonstrated COPCs in V skip Part B (Potential for COPCs in vapour) and go to Section 5 (Do Not Know Do Not Know 4 Do Not Know 1 12 12 9 en 0 9 popur, then you car	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, initial Testing Program (GEMTEC, 2018). Outdoor air pathway would apply.	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.
B. Potential for a surface soils migration pathway) and B. Potential for a surface soils (top 1.5 m) migration pathway a. Are the soils in question covered? Exposed Vegetated Landscaped Paved Do Not Know Score b. For what proportion of the year does the site remain covered by snow? 0 to 10% of the year 10 to 30% of the year More than 30% of the year More than 30% of the year Soil pathway total Allowed Potential score Soil pathway total 4. Vapour A. Demonstrated COPCs in vapour. Vapour has been measured (indoor or outdoor) in concentrations exceeding risk based concentrations. Strongly suspected (based on observations and/or modelling) Vapour has not been measured and volatile hydrocarbons have not b found in site soils or groundwater.	Do Not Know Do Not Know 4 Do Not Know 1 12 12 9 en 0 9 popur, then you car	Note: If a "known" score is provided, the "potential" score is disallowed Exceedances of human health based guidelines for F2 and F3 hydrocarbons, initial Testing Program (GEMTEC, 2018). Outdoor air pathway would apply.	perform a site visit. Landscaped surface soils must include a minimum of 0.5 m of topsoil. Consult climatic information for the site. The increments represent the full span from soils which an always wet or covered with snow (and therefore less likely to generate dust) to those soils which as predominantly dry and not covered by snow (and therefore are more likely to generate dust). Consult previous investigations, including human health risk assessments, for reports of vapours	as it is difficult to assess what constitutes an unacceptable concentration and secondly, spills to snow or ice are most efficiently mitigated while freezing conditions remain.

(II) Migration Potential (Evaluation of contaminant migration pathways)

Cut Throat Island, Former United States Air Force (USAF Station), Former Pine Tree Line Radar Station, Labrador Method Of Evaluation Notes Rationale for Score Definition (document any assumptions, reports, or site-specific information; provide references) High (H' > 1.0E-1) Reference: US EPA Soil Screening Guidance (Part 5 - Table 36) Potential for COPCs will be automatically assigned scores of zero and you can skip to Moderate (H' = 1.0E-1 to 1.0E-3) Low (H' < 1.0E-3) Provided in Attached Reference Materials Not Volatile Do Not Know Do Not Know Score 2.5 b. What is the soil grain size? Review soil permeability data in engineering reports. The greater the permeability of soils, the Fine greater the possible movement of vapours. Coarse Do Not Know Fine-grained soils are defined as those which contain greater than 50% by mass particles less that 75 μm mean diameter (D50 < 75 μm). Coarse-grained soils are defined as those which contain Do Not Know greater than 50% by mass particles greater than 75 µm mean diameter (D50 > 75 µm). Score Review groundwater depths below grade for the site. c. Is the depth to the source less than 10m? Do Not Know Do Not Know Visit the site during dry summer conditions and/or review available photographs. Preferential pathways refer to areas where vapour migration is more likely to occur d. Are there any preferential pathways? because there is lower resistance to flow than in the surrounding materials. For example Where bedrock is present, fractures would likely act as preferential pathyways. underground conduits such as sewer and utility lines, drains, or septic systems may serve as preferential pathways. Features of the building itself that may also be preferential Do Not Know pathways include earthen floors, expansion joints, wall cracks, or foundation perforations Do Not Know for subsurface features such as utility pipes, sumps, and drains. Potential vapour pathway total 7.5 Allowed Potential score ote: If a "known" score is provided, the "potential" score is disallowed Vapour pathway total A. Demonstrated migration of sediments containing COPCs Review sediment assessment reports. Evidence of migration of contaminants in sediments must Usually not considered a significant concern in lakes/marine environments, but could be ery important in rivers where transport downstream could be significant. 12 There is evidence to suggest that sediments originally deposited to the site (exceeding the CCME sediment quality guidelines) have migrated. Strongly suspected (based on observations and/or modelling) Sediments have been contained and there is no indication that sedimen will migrate in future. Absence of sediment exposure pathway (i.e., within 5 km of the site there are no aquatic receiving environments, and therefore no sediments). Go to Potential NOTE: If a score is assigned here for Demonstrated Migration of Sediments, then you can kip Part B (Potential for Sediment Migration) and go to Section 6 (Modifying Fac Initial Testing Program (GEMTEC, 2018) . Potential for sediment migration Review existing sediment assessments. If sediment coring has been completed, it may indicate that a. Are the sediments having COPC exceedances capped with historically contaminated sediments have been covered over by newer "clean" sediments. This sediments having no exceedances ("clean sediments")? sessment will require that cores collected demonstrate a low concentration near the top and Yes higher concentration with sediment depth. Do Not Know Review existing sediment assessments. If the sediments present at the site are in a river, select b. For lakes and marine habitats, are the contaminated sediments 'no" for this question in shallow water and therefore likely to be affected by tidal action, wave action or propeller wash? Do Not Know Do Not Know c. For rivers, are the contaminated sediments in an area prone to Review existing sediment assessments. It is important that the assessment is made under worst sediment scouring? case flows (high yearly flows). Under high yearly flows, areas which are commonly depositional ma Yes Do Not Knov 0 Potential sediment pathway total Allowed Potential score ote: If a "known" score is provided, the "potential" score is disallowed Sediment pathway total . Modifying Factors No subsurface utility conduits known. Historical utilities were above ground (GEMTEC, 2018). Are there subsurface utility conduits in the area affected by consult existing engineering reports. Subsurface utilities can act as conduits for contaminant contamination? migration. Do Not Know

Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Known	0			
Potential	0			

Migration Potential Total		_
Raw "known" total	33	
Raw "potential" total	12.5	
Raw combined total	45.5	Note: If "Known" and "Potential" scores are provided, the checklist defaults to known. Therefore, the
Total (max 33)	23.5	total "Potential" Score may not reflect the sum of the individual "Potential" scores.

(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)

Marie Mari	Cut Throat Island, Former United States Air Force (USAF St	,	Rationale for Score		
Secretary of the property of t	Definition	Score	(document any assumptions, reports, or site-specific information;	Method Of Evaluation	Notes
Part	Human				
Part Control Application					
Part			Lead (highly toxic) and hydrocarbon concentrations exceeding CCME	*Where adverse effects on humans are documented, the site should be automatically designated as	Known adverse impact includes domestic and traditional food sources. Adverse effects based on food chain transfer
Markation support and passed and protection and p	ocumented adverse impact or high quantified exposure which has or vill result in an adverse effect, injury or harm or impairment of the afety to humans as a result of the contaminated site. (Class 1 Site*)	22		a Class 1 site (i.e., action required). There is no need to proceed through the NCS in this case. However, a scoring guideline (22) is provided in case a numerical score for the site is still desired	humans and/or animals can be scored in this category. However, the weight of evidence must show a direct link of a contaminated food source/supply and subsequent ingestion/transfer to humans. Any associated adverse effects to the
See	Same as above, but "Strongly Suspected" based on observations or ndirect evidence.	10		reported Hazard Quotients >1 for noncarcinogenic chemicals and incremental cancer risks that exceed acceptable levels defined by the jurisdiction for carcinogenic chemicals (for most jurisdiction	Selected References:
Part	No quantified or suspected exposures/impacts in humans.	_		this is typically either >10° or >10° b. Known impacts can also be evaluated based on blood testing (e.g. blood lead >10 ug/dL) or other health based testing.	Screening Level Risk Assessments (www.hc-sc.gc.ca/ewh-semt/pubs/contamsite/index e.htm)
Part	Score	Go to Potential		reported Hazard Quotients of less than 0.2 for non-carcinogenic chemicals and incremental lifetime cancer risks for carcinogenic chemicals that are within acceptable levels as defined by the	
Security Part of the Part of Security Part of	IOTE: If a score is assigned here for Known Evnosure, then you o			, ,	
All production of the control of the	skip Part B (Potential for Human Exposure) and go to Section 2 (Hu	man Exposure Modif	ying Factors)		
Subsidior (Contention of Contention of Conte	<u> </u>		Because there is commercial and residential land use, the most sensitive	Review zoning and land use mans over the distances indicated. If the proposed future land use is	This is the main "recentor" factor used in site scoring. A higher score implies a greater exposure and/or exposure of
Lended believed to conteminated profession of the lending profession o	scenarios) Agricultural Residential / Parkland Commercial Industrial Do Not Know		was used (GEMTEC, 2018).	more "sensitive" than the current land use, evaluate this factor assuming the proposed future use is in place Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related to the feeding and housing of animals as livestock. Residential/Parkland land uses are defined as uses of land on which dwelling on a permanent, temporary, or seasonal basis is the activity (residential), as well as uses on which the activities are recreational in nature and require th natural or human designed capability of the land to sustain that activity (parkland). Commercial/Industrial land uses are defined as land on which the activities are related to the buying selling, or trading of merchandise or services (commercial), as well as land uses which are related the production, manufacture, or storage of materials (industrial).	more sensitive human receptors (e.g., children).
all (e.g., the planting for coming in contain with contain and contain and contain with contain and contain and contain with contain and contain and contain with contain and contain with contain and contain and contain with contain with contain and contain with contain with contain and contain with contain and contain with contain and contain with contain and contain with contain with contain and contain with contain with contain with contain with contain and contain with	b. Indicate the level of accessibility to the contaminated portion of the		No barriers to accessing impacted surface soils, contaminants not covere		
Moderate passes or on informational passes or commission and contaminant and conversed from the location and contaminant and contaminant and conversed from the location and contaminant and				surrounded by a fence or in a remote location, whereas a high score should be assigned to a site the	
Controlled access or remote location and contaminants are covered Sont Mod access. Covered Sont Mod access. Covered Sont No. Referred for human expose. On Preferred for human expose. A 8 the impacted doles are near surface. direct contact and human exposer. On Court. A 8 the impacted doles are near surface. direct contact and human exposer. On Court. A 8 the impacted doles are near surface. direct contact and human exposer. On Court. A 8 the impacted doles are near surface. direct contact and human exposure of some design on contact with surface accessing plant in special exposure can play a very impacted	Moderate access or no intervening barriers, contaminants are				
Potential for human exposure Cil Potential for					
Potential for human exposurs 1) Potential for human exposurs 2) Potential for human exposurs 3) Potential for human exposurs 4) As the impacted solls are near surface, direct contact and human exposurs 5) Potential for human exposurs 5) Potential for human exposurs 5) Potential for human exposurs 6) Potential for human exposurs 7) Potential for human exposurs 6) Potential for human exposurs 7) Potential for human exposurs 8) Potential for human exposurs 8) Potential for human exposurs 8) Potential for human exposurs 9) Potential for human exposurs 1) Inhabition (i.e., inhabition of dust, vapour) 1) Potential for human head in the dust of the dust	Do Not Know	Mod. access, covered			
As he impacted softs are new of contaminated soft, water generating from the production of the state of contaminated softs or potable promoted produced in productions, described in Worksheet I (Migration Potential) yourself per patients of the state of		1			
concoursed in southered by companies pathways, as identified in Worksheet I (Migration Potential) y operable pathways, as identified in Worksheet I (Migration Potential) contact. Is dermit contact. In dermit contact. Is dermit contact. In dermit contact. Is d	•				
No buildings on Site and nearest fishing shed is approx 300 m away Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater exceeding their respectively guidelines for volatile chemicals, there is a potential of risk to human heatiff (Health Canada, Burnably, BC Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater with volatile contamination as determined in Worksheet III, (Migration Potential)? Yes No Do Not Know Score Dust - If there is contaminated surface soil (e.g. top 1.5 m), indicat whether the so contaminated surface soil is not contaminated, enter a score of zero. Fine Coarse Surface soil is not contaminated, enter a score of zero. Fine Coarse Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score The surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Coarse Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Coarse Coarse Coarse The surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Coarse Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Coarse Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Coarse Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Label Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Label Surface soil is not contaminated or absent (bedrock) Do N	operable or potentially operable pathways, as identified in Worksheet I (Migration Potential). i) direct contact Is dermal contact with contaminated surface water, groundwater, sediments or soils articipated? Yes No			contact is assumed. Exposure to surface water, non-potable groundwater or sediments exceeding their respective COME guidelines will depend not he site. Select "Yes" if dermat exposure to surfac water, non-potable groundwater or sediments is expected. For instance, dermal contact with sediments would not be expected in a active port. Only soils in the top 1.5 m are defined by CCME (2003) as surface soils. If contaminated soils are only located deeper than 1.5 m, direct contact with	exposure can play a very important component of overall exposure. Dermal exposure can occur while swimming in contaminated waters, bathing with contaminated surface water/groundwater and digging in contaminated dirt, etc.
Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater exceeding their respective plants of program (dust) and gas (vapours). Vapours can be a problem where buildings have been built on former inhabitable surfaces of usual guidelines for volatile chemicals, there is a potential of risk to human health (Health Canada, 2004). Yes No Do Not Know Do Not Know Do Score Dust - If there is contaminated surface soil (e.g. top 1.5 m), indicat whether the soil is not contaminated, enter a score of zero. Fine Coarse Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Tine Tine Tine Tine Tine Tine Tine Tin		3	No buildings City and account fabric about it accounts 200 as a second		
No Do Not Know Score Dust - If there is contaminated surface soil (e.g. top 1.5 m), indicat whether the soil is fine or coarse texture- as per Initial Testing program (GEMTEC, 2018) Dust - If there is contaminated surface soil (e.g. top 1.5 m), indicat whether the soil is fine or coarse texture- as per Initial Testing program (GEMTEC, 2018) Coarse Score Score Score Coarse Coarse Score Tile Coarse Coarse 1 Coarse Tile Coarse Coarse Tile	Vapour - Are there inhabitable buildings on the site within 30 m of soils or groundwater with volatile contamination as determined in Worksheet II (Migration Potential)?		No buildings on Site and nearest isning sited is approx 300 m away	guidelines for volatile chemicals, there is a potential of risk to human health (Health Canada, 2004). Review site investigations for location of soil samples (having exceedances of volatile substances) relative to buildings. Refer to (II) Migration Potential worksheet, 4B.a Potential for COPCs in	(dust) and gas (vapours). Vapours can be a problem where buildings have been built on former industrial sites or where volatile contaminants have migrated below buildings resulting in the potential for vapour influsion. Assesses the potential for humans to be exposed to vapours originating from site soils. The closer the receptor is to a source of volatile chemicals in soil, the greater the potential of exposure. Also, coarser-grained soil will convey vapour
soil is not contaminated, enter a score of zero. Fine Carse Surface soil is not contaminated or absent (bedrock) Do Not Know Texture Score Carse 1 Selected References; Canadian Council of Ministers of the Environment (CCME). 2006. Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. PN 1332www.ccme.ca Golder, 2004. Soil Vapour Intrusion Guidance for Health Canada Screening Level Risk Assessment (SLRA) Submitted to Health Canada, Burnaby, BC	No Do Not Know Score Dust - If there is contaminated surface soil (e.g. top 1.5 m) , indical	0	Coarse texture- as per Initial Testing program (GEMTEC, 2018)	Consult grain size data for the site. If soils (containing exceedances of the CCME soil quality guidelines) predominantly consist of fine material (having a median grain size of 75 microns; as	Someone experienced must provide a thorough description of the sources researched to determine the presence/absence of a vapour migration and/or dust generation in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification Worksheet including conta names, phone numbers, e-mail correspondence and/or reference
	soil is not contaminated, enter a score of zero. Fine Coarse Surface soil is not contaminated or absent (bedrock)				Canadian Council of Ministers of the Environment (CCME). 2006. Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. PN 1332ww.ccme.ca Golder, 2004. Soil Vapour Intrusion Guidance for Health Canada Screening Level Risk Assessment (SLRA)
	Score inhalation total				

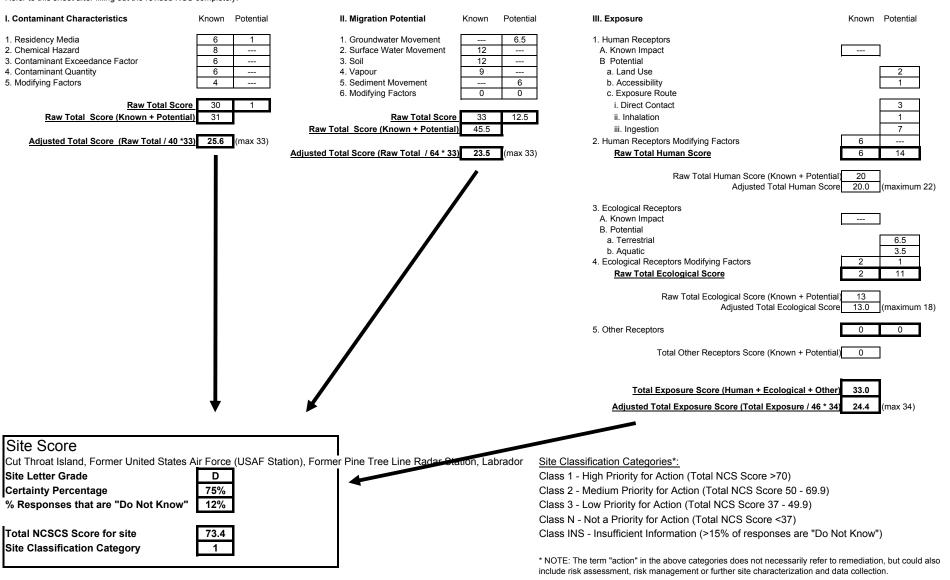
(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)

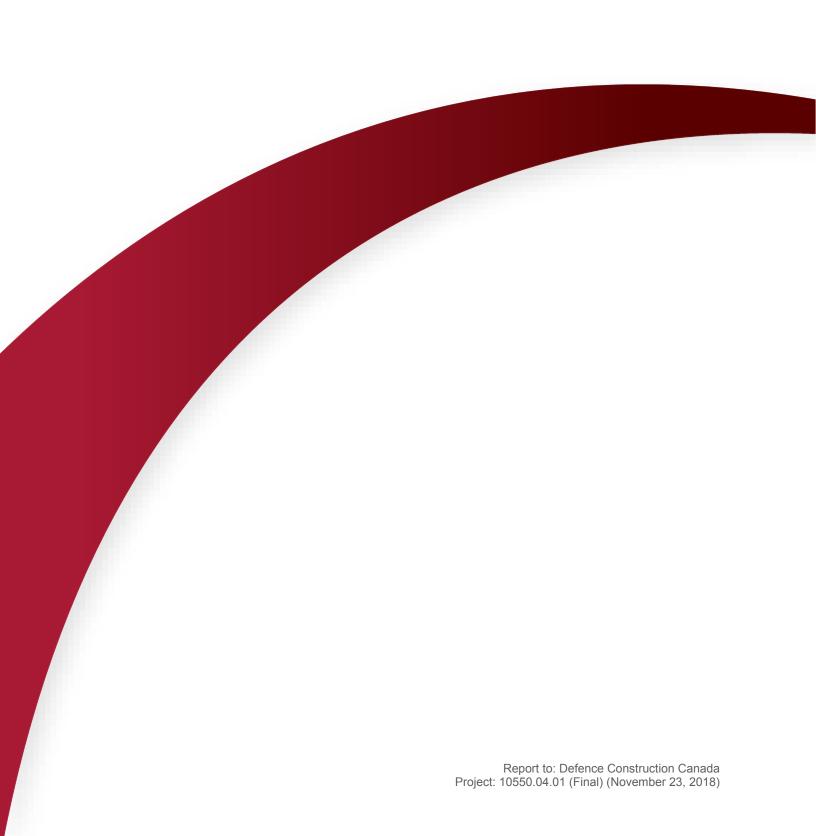
Cut Throat Island, Former United States Air Force (USAF Station), Former Pine Tree Line Radar Station, Labrador Rationale for Score Definition (document any assumptions, reports, or site-specific information; Method Of Evaluation Notes provide references) B. Potential for human exposure There is uncertainty regarding the location of the drinking water supply for elected References: iii) Ingestion (i.e., ingestion of food items, water and soils [for the adjacent community Review available site data to determine if drinking water (groundwater, surface water, private Guidelines for Canadian Drinking Water Qualitywww.hc-sc.gc.ca/hecschildren1), including traditional foods. commercial or municipal supply) is known or suspected to be contaminated above Guidelines for c/water/publications/drinking water quality quidelines/toc.htm Drinking Water: Choose a score based on the proximity to a Canadian Drinking Water Quality. If drinking water supply is known to be contaminated, some drinking water supply, to indicate the potential for contamination mmediate action (e.g., provision of alternate drinking water supply) should be initiated to reduce or Drinking water can be an extremely important exposure pathway to humans. If site groundwater or surface water is not (present or future). sed for drinking, then this pathway is considered to be inoperable 0 to 100 m 100 to 300 m The evaluation of significant potential for exceedances of the water supply in the future may be bas acconsider both wild foods such as salmon, venison, caribou, as well as agricultural sources of food items if the 300 m to 1 km on the capture zones of the drinking water wells; contaminant travel times; computer modelling of contaminated site is on or adjacent to agricultural land uses. 1 to 5 km flow and contaminant transport. No drinking water present Do Not Know 300 m to 1 km Score No municipal water infrastructure in place or anticipated Is an alternative water supply readily available? Do Not Know Score Contaminated soils are at surface f contaminated soils are located within the ton 1.5 m, it is assumed that indestion of soils is an Is human ingestion of contaminated soils possible? operable exposure pathway. Exposure to soils deeper than 1.5 m is possible, but less likely, and th uration is shorter. Refer to human health risk assessment reports for the site in question. Yes Do Not Know Yes Score 3 Assumed that wildlife harvesting and consumption of plants/berries could Use human health risk assessment reports (or others) to determine if there is significant reliance or Are food items consumed by people, such as plants, domestic traditional food sources associated with the site. Is the food item in question going to spend a large proportion of its time at the site (e.g., large mammals may spend a very small amount of time at a animals or wildlife harvested from the contaminated land and its surroundings? small contaminated site)? Human health risk assessment reports for the site in question will also provide information on potential bioaccumulation of the COPC in question. No Do Not Know Yes Ingestion total Human Health Total "Potential" Score 14 ote if a "Known" Human Health score is provided, the "Potential" score is Allowed "Potential" Score 14 2. Human Exposure Modifying Factors Based on Phase I ESA (GHD March 2016) and site observations fishing a) Strong reliance of local people on natural resources for survival shelters are located on southeastern portion of Cut Throat Island. (i.e., food, water, shelter, etc.) Yes Do Not Kno Potential Raw Human "known" tota Raw Human "potential" tota Raw Human Exposure Total Score Human Health Total (max 22) 20.0 3. Ecological A. Known exposure CCME, 1999: Canadian Water Quality Guidelines for the Protection of Aquatic Lifewww.ccme.ca Some low levels of impact to ecological receptors are considered acceptable, particularly on commercial and industrial land uses. However, if ecological effects are deemed to be severe, the CCME, 1999: Canadian Water Quality Guidelines for the Protection of Agricultural Water Useswww.ccme.ca may be categorized as class one (i.e., a priority for remediation or risk management), regardless of Sensitive receptors- review: Canadian Council on Ecological Areasyww.ccea.org the numerical total NCS score. For the purpose of application of the NCS, effects that would be considered severe include observed effects on survival, growth or reproduction which could threate Ecological effects should be evaluated at a population or community level, as opposed to at the level of individuals. For Documented adverse impact or high quantified exposure which has or will result in an adverse effect, injury or harm or impairment of the the viability of a population of ecological receptors at the site. Other evidence that qualifies as sevement, experience population-level effects could include reduced reproduction, growth or survival in a species. Community-level 18 safety to terrestrial or aquatic organisms as a result of the adverse effects may be determined based on professional judgement and in consultation with the effects could include reduced species diversity or relative abundances. Further discussion of ecological assessment relevant jurisdiction. If ecological effects are determined to be severe and an automatic Class 1 is dpoints is provided in A Framework for Ecological Risk Assessment: General Guidance (CCME 1996). contaminated site. assigned, there is no need to proceed through the NCS. However, a scoring guideline (18) is provided in case a numerical score for the site is still desired (e.g., for comparison with other Class omeone experienced must provide a thorough description of the sources researched to classify the environmental eceptors in the vicinity of the contaminated site. This information must be documented in the NCS Site Classification This category can be based on the outcomes of risk assessments and applies to studies which have Worksheet including contact names, phone numbers, e-mail correspondence and/or reference maps/reports and other reported Hazard Quotients >1. Alternatively, known impacts can also be evaluated based on a weightesource such as internet links. of evidence assessment involving a combination of site observations, tissue testing, toxicity testing Same as above, but "Strongly Suspected" based on observations or and quantitative community assessments. Scoring of adverse effects on individual rare or 12 indirect evidence endangered species will be completed on a case-by-case basis with full scientific justification. This category can be based on the outcomes of risk assessments and applies to studies which hav No quantified or suspected exposures/impacts in terrestrial or aquatic reported Hazard Quotients of less than 1 and no other observable or measurable sign of impacts. Alternatively, it can be based on a combination of other lines of evidence showing no adverse effective states of the combination of the combinati organisms such as site observations, tissue testing, toxicity testing and quantitative community assessments Go to Potential Score NOTE: If a score is assigned here for Known Exposure, then you can

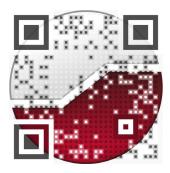
(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)
Cut Throat Island, Former United States Air Force (USAF Station), Former Pine Tree Line Radar Station, Labrador

Cut Throat Island, Former United States Air Force (USAF	Station), Former Pine			
Definition	Score	Rationale for Score (document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
Potential for ecological exposure (for the contaminated portion of the site)	ne			
a) Terrestrial i) Land use Agricultural (or Wild lands) Residential/Parkland Commercial Industrial Do Not Know	Residential/Parkland ore 2	Because there are two land uses on Site the most sensitive was selected (SEMTEC, 2018).	Review zoning and land use maps. If the proposed future land use is more 'sensitive' than the current land use, evaluate this factor assuming the proposed future use is in place (indicate in the worksheet that future land use is the consideration). Agricultural land use is defined as uses of land where the activities are related to the productive capability of the land or facility (e.g., greenhouse) and are agricultural in nature, or activities related the feeding and housing of animals as livestock. Wild lands are grouped with agricultural land due the similarities in receiptors that would be expected to occur there (e.g., herbivorous mannals and birds) and the similar need for a high level of protection to ensure ecological functioning. Residential/Parkhal and use are defined as uses of fland on which dwelling on a permanent, temporary, or seasonal basis is the activity (residential), as well as uses on which the activities are recreational in nature and require the natural or human designed capability of the land to sustain the activity (parkhan), Commercial/industrial land rules are defined as land on which the activities are related to the buying, selling, or trading of merchandise or services (commercial), as well as land uses which are related to the production, manufacture, or storage of materials (industrial).	
ii) Uptake potential		Plants community at the Site is generally healthy, and thus the invertebra community is inferred to be intact (GEMTEC, 2018).	te If contaminated soils are located within the top 1.5 m, it is assumed that direct contact of soils with	
Direct Contact - Are plants and/or soil invertebrates likely expos to contaminated soils at the site? Yes No	ed Yes	Community is interieu to be intact (GEWIEC, 2016).	in comaminated using an located within the top 1.5 ft, it is assumed that the contract of some with plants and soil invertebrates is an operable exposure pathway. Exposure to soils deeper than 1.5 n possible, but less likely.	
Do Not Know Score	1			
iii) Ingestion (i.e., wildlife or domestic animals ingesting contamina food items, solis or water) Are terrestrial animals likely to be ingesting contaminated wat the site? Yes No Do Not Know		Many on-site waterbodies (GEMTEC, 2018). Surface water impacts at a number of APECs with AI, Cu and Fe exceedances above screening leve		
Score Are terrestrial animals likely to be ingesting contaminated soils the site? Yes No Do Not Know	1 Yes	However, ingestion anticipated to be low due to low residence time of wild on Site (previously developed areas) as an abundance of suitable habitat (undeveloped / shrub/moss lands) surrounds the Site and the Site does n represent unique or special habitat (GEMTEC, 2018).		
Score Can the contamination identified bioaccumulate? Yes No Do Not Know Score Distance to sensitive terrestrial ecological area 0 to 300 m 300 m to 1 km 1 to 5 km	Yes	levels (GEMTEC, 2018). Based on the Reference Materials provided here Log(KOW) is generally above 4 for these parameters. A review of ecologically significant areas (CCEA, 2017), revealed no area ecological significance within 5 km of the Site. The nearest protected are is the Gannet Island Ecological Reserve, located approx 70 km east of th	Bioaccumulation of contaminants within food items is considered possible if: iii 1) The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) and concentrations in soils exceed the most conservative COME soil quality guideline for the intended land use, or 2) The contaminant in collected tissue samples exceeds the Canadian Tissue Residue Guidelines. of it is considered that within 300 m of a site, there is a concern for contamination. Therefore an ale environmental receptor located within this area of the site will be subject to further evaluations. It is e also considered that any environmental receptor located greater than 5 km will not be a concern for evaluation. Review Conservation Authority mapping and literature including Canadian Council on Ecological Resis link:www.ceae.org	Environmental receptors include: local, regional or provincial species of interest or significance; arctic environments a site specific basis), nature preserves, habitats for species at risk, sensitive forests, natural parks or forests.
> 5 Km Do Not Know Score	> 5 km	aboto, openico at tox ato not amorphico at the one.	Congress 1 accounts	
Raw Terrestrial Total Potential Allowed Terrestrial Total Potentia	6.5	Note if a "Known" Ecological Effects score is provided, the "Potential" score i disallowed.	is	
3. Potential for ecological exposure (for the contaminated portion of the				
ite) b) Aquatic i) Classification of aquatic environment Sensitive Typical Not Applicable (no aquatic environment present) Do Not Know	Typical	The aquatic environment is considered typical for this area	"Sensitive aquatic environments" include those in or adjacent to shellfish or fish harvesting areas, marine parks, ecological reserves and fish migration paths. Also includes those areas deemed to have ecological significance such as for fish food resources, spawning areas or having rare or endangered species. "Typical aquatic environments" include those in areas other than those listed above.	
Score	1			
ii) Uptake potential Does groundwater daylighting to an aquatic environment exceet CCME water qualify guidelines for the protection of aquatic life a the point of contact: Yes No (or Not Applicable) Do Not Know Sc	Do Not Know		Groundwater concentrations of contaminants at the point of contact with an aquatic receiving environment can be estimated in three ways: 1) by comparing collected nearshore groundwater concentrations to the CCME water quality guidelines (this will be a conservative comparison, as contaminant concentrations in groundwater often decrease between nearshore wells and the point of discharge). 2) by conducting groundwater modeling to estimate the concentration of groundwater immediately before discharge. 3) by installing water samplers, "peepers", in the sediments in the area of daylighting groundwater.	
Distance from the contaminated site to an important surface war resource 0 to 300 m 300 m to 1 km 1 to 5 km > 5 km Do Not Know	Do Not Know		It is considered that within 300 m of a site, there is a concern for contamination. Therefore an environmental receptor or important water resource located within this area of the site will be subjet for further evaluation. It is also considered that any environmental receptor located greater than 5 ks away will not be a concern for evaluation. Review Conservation Authority mapping and literature including Canadian Council on Ecological Areas linkaww.ccea.org	
Score	1.5		Bioaccumulation of food items is possible if:	

(III) Exposure (Demonstrates the presence of an exposure pathway and receptors)


Cut Throat Island, Former United States Air Force (USAF St		Rationale for Score		
Definition	Score	(document any assumptions, reports, or site-specific information; provide references)	Method Of Evaluation	Notes
A	ļ		(A) The Lead (Section 1) and the section 1 is a sec	
Are aquatic species (i.e., forage fish, invertebrates or plants) that are consumed by predatory fish or wildlife consumers, such as			 The Log(Kow) of the contaminant is greater than 4 (as per the chemical characteristics work sheet) and concentrations in sediments exceed the CCME ISQGs. 	
mammals and birds, likely to accumulate contaminants in their			The contaminant in collected tissue samples exceeds the CCME tissue quality guidelines.	
tissues?				
Yes				
No				
Do Not Know	Do Not Know			
Score	0.5			
Raw Aquatic Total Potential	3.5	Note if a "Known" Ecological Effects score is provided, the "Potential" score is		
Allowed Aquatic Total Potential	3.5	disallowed.		
Ecological Exposure Modifying Factors				
		A review of ecologically significant areas (CCEA, 2017), revealed no area	Consult any ecological risk assessment reports. If information is not present, utilize on-line databas	Species at risk include those that are extirpated, endangered, threatened, or of special concern. For a list of special concern.
a) Known occurrence of a species at risk.		ecological significance within 5 km of the Site. However, based on	such as Eco Explorer. Regional, Provincial (Environment Ministries), or Federal staff (Fisheries and	risk, consult Schedule 1 of the federal Species at Risk Act
		provincial resources	Oceans or Environment Canada) should be able to provide some guidance.	(http://www.sararegistry.gc.ca/species/schedules_e.cfm?id=1. Many provincial governments may also provide
Is there a potential for a species at risk to be present at the site?		(https://www.flr.gov.nl.ca/wildlife/endangeredspecies/index.html) the range	s	regionally applicable lists of species at risk. For example, in British Columbia, consult:
Yes		of several species at risk, including polar bear and wolverine overlap the		BCMWLAP. 2005. Endangered Species and Ecosystems in British Columbia. Provincial red and blue lists. Minist
No		Site. Other SAR could potentially also be present on the Site.		Sustainable Resource Management and Water, Land and Air Protection http://srmwww.gov.bc.ca/atrisk/red-blue.h
Do Not Know	Yes	_		
	2			
Score				
b) Potential impact of aesthetics (e.g., enrichment of a lake or tainting of	1	None observed during the site investigation		
food flavor).	1			
1-11	NI-			This Item will require some level of documentation by user, including contact names, addresses, phone numbers,
Is there evidence of aesthetic impact to receiving water bodies?	No		records.	addresses. Evidence of changes must be documented, please attach copy of report containing relevant information
Yes		1		
No	0			
Do Not Know				
Is there evidence of olfactory impact (i.e., unpleasant smell)?	No	None observed during the site investigation	Examples of olfactory change can include the smell of a COPC or an increase in the rate of decay in	h
Yes			an aquatic habitat.	
No	0			
Do Not Know				
Is there evidence of increase in plant growth in the lake or water	No	None observed during the site investigation	A distinct increase of plant growth in an aquatic environment may suggest enrichment. Nutrients	
body?	INO		e.g., nitrogen or phosphorous releases to an aquatic body can act as a fertilizer.	
Yes				
No	0			
Do Not Know				
Is there evidence that fish or meat taken from or adjacent to the site	Do Not Know		Some contaminants can result in a distinctive change in the way food gathered from the site tastes	
smells or tastes different?			smells.	
Yes				
No Do Not Know	1			
Ecological Modifying Factors Total - Knowr	2	-		
Ecological Modifying Factors Total - Rhowl	1			
Raw Ecological Total - Known	2			
Raw Ecological Total - Potential	11			
Raw Ecological Total	13	1		
Ecological Total (Max 18)	13.0			
5. Other Potential Contaminant Receptors				
		Site is not located in a permafrost zone (GEMTEC, 2018).		
	1	One is not located in a permanost 2018 (GEWIEC, 2016).		Plants and lichens provide a natural insulating layer which will help prevent thawing of the permafrost during the
				summer. Plants and lichens may also absorb less solar radiation. Solar radiation is turned into heat which can als
a) Exposure of permafrost (leading to erosion and structural concerns)	1			cause underlying permafrost to melt.
Are there improvements (roads, buildings) at the site dependant upo			Consult engineering reports, site plans or air photos of the site. When permafrost melts, the stability	
the permafrost for structural integrity?	No		of the soil decreases, leading to erosion. Human structures, such as roads and/or buildings are often	n
			dependent on the stability that the permafrost provides.	
Yes				
No Do Not Know	0	=		
DO NOT VIION		-		
	1			
	1			
Is there a physical pathway which can transport soils released by		-	Melting permafrost leads to a decreased stability of underlying soils. Wind or surface run-off erosion	
damaged permafrost to a nearby aquatic environment?	No		menting permatrost leads to a decreased stability of underlying soils. Wind or surface run-off erosion can carry soils into nearby aquatic habitats. The increased soil loadings into a river can cause an	
Yes		-	increase in total dissolved solids and a resulting decrease in aquatic habitat quality. In addition, the	
Yes No	0	-	erosion can bring contaminants from soils to aquatic environments.	
Do Not Know		-	2.2.2	
55 Not Milow		╡		
	1	1		
Other Potential Receptors Total - Known	0			
Other Potential Receptors Total - Potential	0	1		
		1	I	
Exposure Tota	I			
Raw Human Health + Ecological Total - Know				
,		Only includes "Allowed potential" - if a "Known" score was supplied under a		
Raw Human Health + Ecological Total - Potenti	al 25	and a reliable to the state of		


Exposure Total	
Raw Human Health + Ecological Total - Know	n 8
Raw Human Health + Ecological Total - Potentia	al 25
Raw Total	33
Exposure Total (max 34)	24.4


given category then the "Potential" score was not included.

CCME National Classification System (2008, 2010 v 1.2) Score Summary

Scores from individual worksheets are tallied in this worksheet. Refer to this sheet after filling out the revised NCS completely.

civil

geotechnical

environmental

field services

materials testing

civil

géotechnique

environnementale

surveillance de chantier

service de laboratoire des matériaux

