

Real-Time Water Quality Deployment Report

Iron Ore Company of Canada Labrador West Network

> June 7 to July 13, 2023

Government of Newfoundland & Labrador Department of Environment and Climate Change Water Resources Management Division

Contents

General	3
Data Interpretation	7
Wabush Lake Network	7
Dumbell Stream	14
Conclusions	21
Appendix 1 – Air Temperature and Precipitation	22
Appendix 2 – QA/QC Grab Sample Results	23

General

- The Water Resources Management Division, in partnership with the Iron Ore Company of Canada (IOC) and Environment and Climate Change Canada (ECCC), maintain two real-time water quality (RTWQ) and water quantity stations at Wabush Lake.
- The official name of each station is Wabush Lake at Dolomite Road and Wabush Lake at Lake Outlet, hereafter referred to as the Dolomite Road station and the Julienne Narrows station.
- These stations are situated upstream (Dolomite Road) and downstream (Julienne Narrows) of the IOC tailings disposal area in Wabush Lake.
- On June 8th, 2016, an additional station was commissioned under this agreement. This station is located at *Dumbell Stream above Dumbell Lake*, hereafter referred to as Dumbell Stream.
- On June 12th, 2017 a new station was commissioned under this agreement. This station is located at *Pumphouse Stream above Drum Lake*, hereafter referred to as Pumphouse Stream.
- Water Resources Management Division staff monitor the real-time graphs regularly. They will inform IOC of any significant water quality events by email notification and by monthly deployment reports.
- On June 7th, clean and calibrated real-time water quality-monitoring instruments were deployed at three IOC stations. The instruments were deployed for a period of 35-36 days at each station. The instruments were removed on July 12th and 13th. This was the first deployment of 2023 for these stations.
- An instrument was not deployed at Pumphouse Stream in June, as site access was restricted to essential needs only.

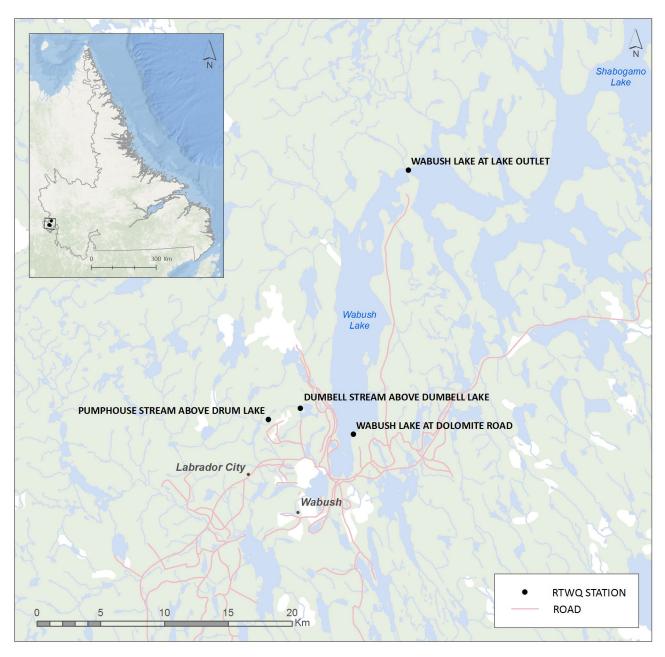


Figure 1: RTWQ Monitoring Stations in Labrador West

Quality Assurance and Quality Control

As part of the Quality Assurance and Quality Control protocol (QA/QC), an assessment of the reliability of
data recorded by an instrument is made at the beginning and end of each deployment period. The
procedure is based on the approach used by the United States Geological Survey.

At deployment and removal, a QA/QC Sonde is temporarily deployed adjacent to the Field Sonde. Values for temperature, pH, conductivity, dissolved oxygen and turbidity are compared between the two instruments. Based on the degree of difference between parameters recorded by the Field Sonde and QA/QC Sonde at deployment and at removal, a qualitative statement is made on the data quality (Table 1).

Table 1: Ranking classifications for deployment and removal

		Rank								
Parameter	Excellent	Good	Fair	Marginal	Poor					
Temperature (°C)	<=+/-0.2	>+/-0.2 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	<+/-1					
pH (unit)	<=+/-0.2	>+/-0.2 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	>+/-1					
Sp. Conductance (μS/cm)	<=+/-3	>+/-3 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20					
Sp. Conductance > 35 μS/cm (%)	<=+/-3	>+/-3 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20					
Dissolved Oxygen (mg/L) (% Sat)	<=+/-0.3	>+/-0.3 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	>+/-1					
Turbidity <40 NTU (NTU)	<=+/-2	>+/-2 to 5	>+/-5 to 8	>+/-8 to 10	>+/-10					
Turbidity > 40 NTU (%)	<=+/-5	>+/-5 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20					

- It should be noted that the temperature sensor on any sonde is the most important. All other parameters can be broken down into three groups: temperature dependent, temperature compensated and temperature independent. Because the temperature sensor is not isolated from the rest of the sonde, the entire sonde must be at the same temperature before the sensor will stabilize. The values may take some time to climb to the appropriate reading; if a reading is taken too soon it may not accurately portray the water body.
- Deployment and removal comparison rankings for the IOC water quality stations deployed between June
 7 and July 12-13, 2023 are summarized in Table 2.

Table 2: QA/QC comparison rankings for IOC stations between June 7 and July 12-13, 2023.

Station	Data	Action		Comparison Ranking							
	Date	Action	Temperature	рН	Conductivity	Dissolved Oxygen	Turbidity				
Dolomite	Jun 7, 2023	Deployment	Good	Good	Good Excellent Good		Good				
Road	Jul 13, 2023	13, 2023 Removal Marginal Excellent		Excellent	Good	Good Excellent					
Julienne	Jun 7, 2023	Deployment	Excellent	Good	Excellent	Good	<mark>Marginal</mark>				
Narrows	Jul 13, 2023	Removal	Good	Excellent	Good	Excellent	Good				
Dumbell	Jun 7, 2023	Deployment	Excellent	Excellent	Excellent Excellent		Excellent				
Stream	Jul 12, 2023	Removal	Excellent	Good	Good	Excellent	Excellent				

Dolomite Road

At deployment, all parameters ranked either 'excellent' or 'good'.

At removal, all parameters except temperature ranked either 'good' or 'excellent'. Temperature ranked 'marginal'. The field instrument read a value of 21.08°C, while the QA/QC instrument read a value of 21.90 °C.

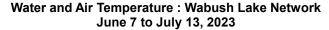
Julienne Narrows

At deployment, all parameters except turbidity ranked either 'excellent' or 'good'. Turbidity ranked 'marginal'. The field instrument read a value of 14.7 NTU, while the QA/QC instrument read a value of 24.6 NTU. If the field instrument is compared to the QA/QC grab sample, the ranking is 'fair'. The turbidity value of the QA/QC sample was 9.3 NTU.

At removal, all parameters ranked either 'excellent' or 'good'.

Dumbell Stream

At deployment and removal, all parameters ranked either 'excellent' or 'good'.


There are a few circumstances which may cause less than ideal QA/QC rankings to be obtained. These include: the placement of the QA/QC sonde in relation to the field sonde; the amount of time each sonde was given to stabilize before readings were recorded; and deteriorating performance of one or more of the sensors.

Data Interpretation

- The following graphs and discussion illustrate water quality-related events from June 7 to July 12-13, 2023 at the IOC RTWQ monitoring stations in Labrador West.
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs
 and subsequent discussion below adhere to this stringent QA/QC protocol. Water Survey of Canada is
 responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Wabush Lake Network

- Water temperature ranged from 8.33 to 25.71°C at Dolomite Road and 5.70 to 22.56°C at Julienne Narrows during this deployment period (Figure 2).
- Water temperature at both stations increased during this deployment period, as water temperature warmed into summer. Water temperature corresponded to increases/decreases in ambient air temperature trends (Figure 2).

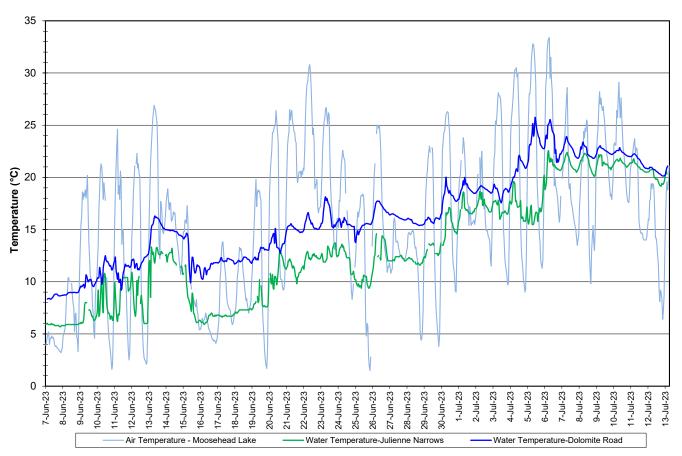


Figure 2: Water and Air Temperature - Wabush Lake network

- PH ranges from 7.23 to 8.51 pH units at Dolomite Road, and from 7.64 to 8.26 pH units at Julienne Narrows throughout the deployment period (Figure 3). The median pH is 7.75 and 7.81 units respectively.
- At Julienne Narrows and Dolomite Road, all values during the deployment are within the CCME Guidelines
 for the Protection of Aquatic Life (between 6.5 and 9 pH units). pH fluctuates slightly throughout the day
 and night.
- pH increases slightly at Dolomite Road during the first week of July, then gradually decreases.
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Water pH and Stage: Wabush Lake Network June 7 to July 13, 2023

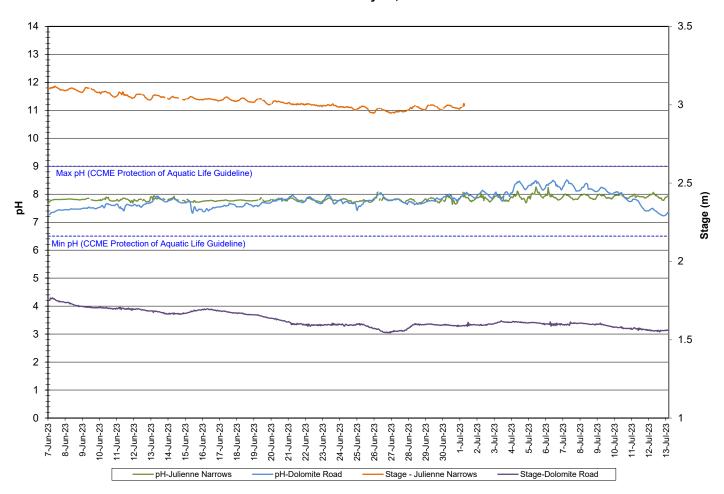


Figure 3: Water pH and Stage-Wabush Lake network

- Specific conductivity ranged from 46.0 to 76.0 μs/cm at Dolomite Road and from 73.9 to 120.2 μs/cm at Julienne Narrows throughout the deployment period (Figure 4).
- Daily fluctuations are evident at the Julienne Narrows station. This can be attributed to varying contributions of iron ore tailings deposited into Wabush Lake upstream of Julienne Narrows and downstream of Dolomite Road. This can also explain the difference in specific conductivity levels between the two stations, as conductance values are generally higher at Julienne Narrows.
- Specific conductivity values at Julienne Narrows trended slightly downwards, while values at Dolomite Road increased.
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Specific Conductivity and Stage: Wabush Lake Network June 7 to July 13, 2023

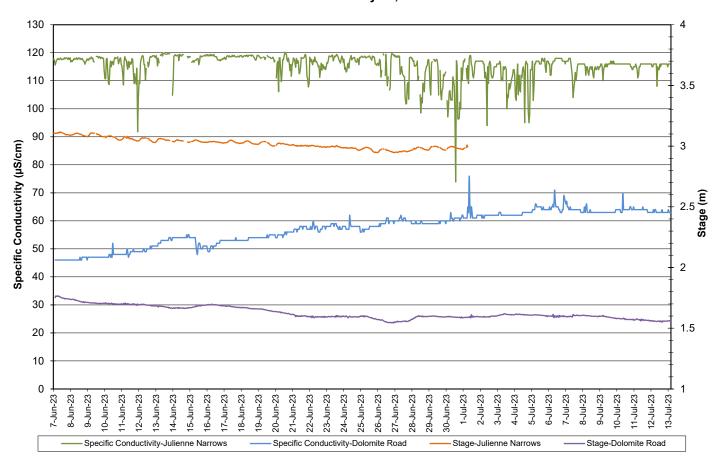


Figure 4: Specific Conductivity and Stage - Wabush Lake network

- At the Dolomite Road station, the saturation of dissolved oxygen ranged from 90.2 to 115.5% while the dissolved oxygen content ranged from 8.18 to 11.05 mg/l with a median value of 9.82 mg/l (Figure 5).
- At the Julienne Narrows station, the saturation of dissolved oxygen ranged from 92.7 to 117.1% while the dissolved oxygen content ranged from 8.38 to 12.16 mg/l with a median value of 10.70 mg/l (Figure 5).
- All values recorded at Julienne Narrows and Dolomite Road were above the CCME Guideline for the Protection of Aquatic Life for Cold Water Biota of Other Life Stages of 6.5 mg/l. The majority of the values were above the CCME Guideline for the Protection of Aquatic Life for Cold Water Biota of Early Life Stages of 9.5 mg/l. The guidelines are indicated in blue on Figure 5.
- Dissolved oxygen decreased gradually over the course of the remainder of the deployment period due to increasing water temperatures. Dissolved oxygen fluctuated daily with decreases observed at night.

Dissolved Oxygen and Percent Saturation : Wabush Lake Network June 7 to July 13, 2023

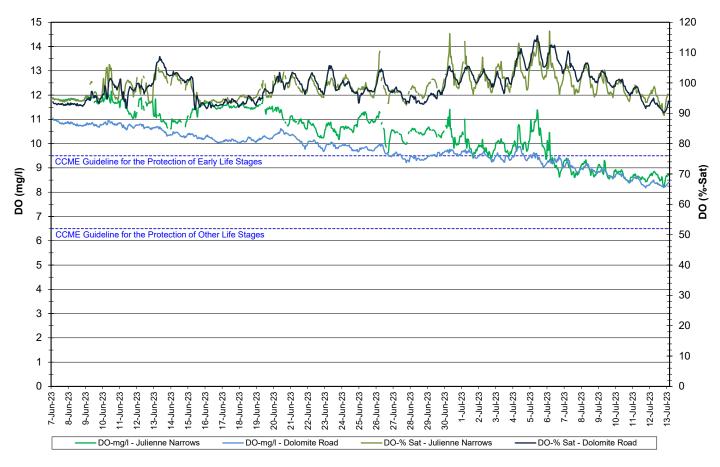


Figure 5: Dissolved Oxygen and Percent Saturation – Wabush Lake Network

- At the Julienne Narrows station, turbidity values range from 0.0 NTU to 22.9 NTU throughout the deployment period (Figure 6). The median value was 1.0 NTU, indicating low background turbidity levels.
- Overall, turbidity values increased during this deployment period.

Water Turbidity and Precipitation: Julienne Narrows June 7 to July 13, 2023

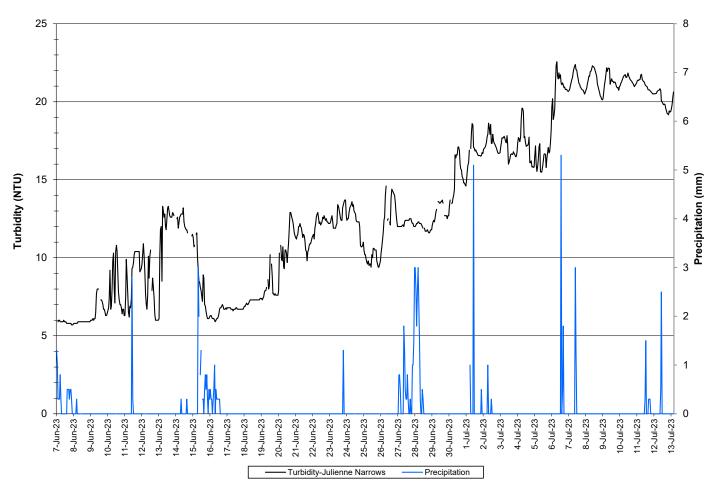


Figure 6: Turbidity and Precipitation - Julienne Narrows

• At the Dolomite Road station, turbidity values range from 0.0 NTU to 0.8 NTU throughout the deployment period (Figure 7). The median value was 0.0 NTU.

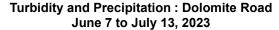


Figure 7: Turbidity and Precipitation – Dolomite Road

- Stage and precipitation are graphed below to show the relationship between rainfall and water level at Dolomite Road and Julienne Narrows (Figure 8).
- Stage decreased at both Julienne Narrows and Dolomite Road during this deployment period. There is a portion of data missing from Julienne Narrows.
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Stage and Precipitation: Wabush Lake Network June 7 to July 13, 2023

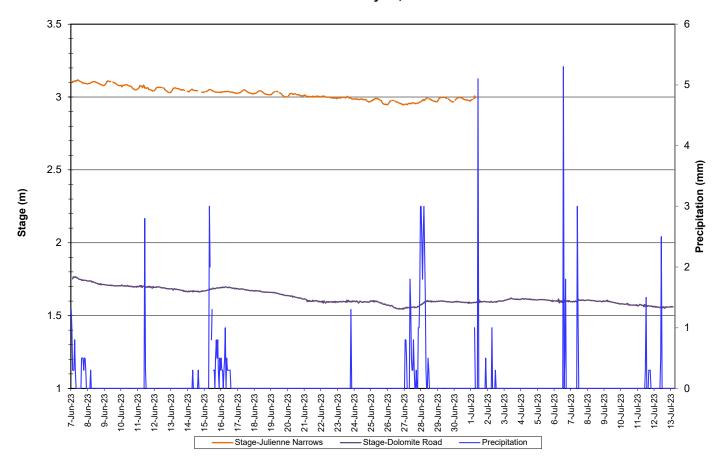
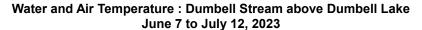



Figure 8: Stage and Precipitation – Wabush Lake Network

(Weather data collected at climate station located near Moosehead Lake)

Dumbell Stream

- Water temperature ranged from 2.81 to 7.96°C during this deployment period (Figure 9).
- Water temperature fluctuated within a small range during this deployment period. Water temperature at Dumbell Stream is typically much lower than other stations (Figure 9).

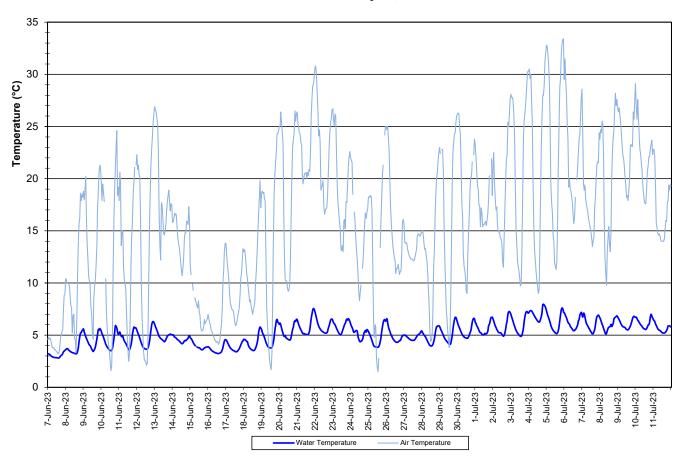


Figure 9: Water and Air Temperature - Dumbell Stream

- pH ranged from 7.46 to 7.71 pH units (Figure 10). The median pH was 7.58.
- All values are within the CCME Guidelines for the Protection of Aquatic Life (between 6.5 and 9 pH units). pH fluctuates slightly throughout the day and night.
- A portion of the data was removed due to sensor drift.
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Water pH and Stage : Dumbell Stream above Dumbell Lake June 7 to July 12, 2023

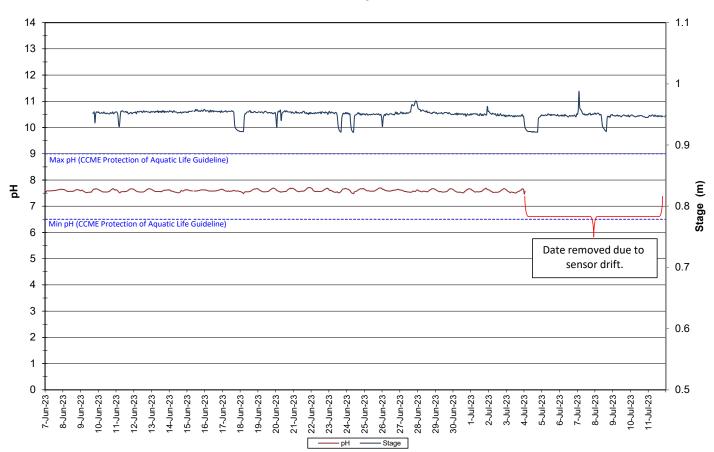


Figure 10: Water pH and Stage - Dumbell Stream

- Specific conductivity ranged from 134.4 to 231.0 μs/cm, throughout the deployment period (Figure 11).
- Overall, specific conductivity fluctuated slightly over the deployment period, with periodic decreases occurring infrequently.
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Specific Conductivity of Water and Precipitation: Dumbell Stream above Dumbell Lake June 7 to July 12, 2023

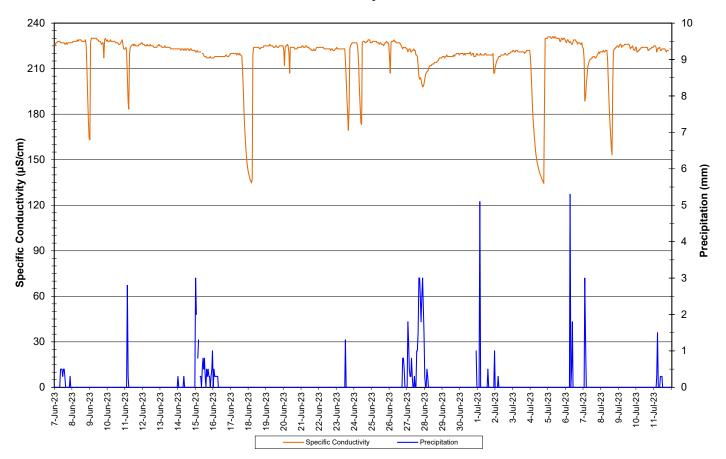


Figure 11: Specific conductivity and stage - Dumbell Stream

- The saturation of dissolved oxygen ranged from 89.6% to 93.7% while the dissolved oxygen content ranged from 10.87 to 12.58 mg/l with a median value of 11.70 mg/l (Figure 12).
- All values recorded at Dumbell Stream were above the CCME Guideline for the Protection of Aquatic Life for Cold Water Biota of Other Life Stages of 6.5 mg/l, and the CCME Guideline for the Protection of Aquatic Life for Cold Water Biota of Early Life Stages of 9.5 mg/. The guidelines are indicated in blue on Figure 12.
- Overall, dissolved oxygen decreased slightly over this deployment period. Dissolved oxygen fluctuated daily with decreases observed at night.

Dissolved Oxygen Concentration and Saturation : Dumbell Stream at Dumbell Lake June 7 to July 12, 2023

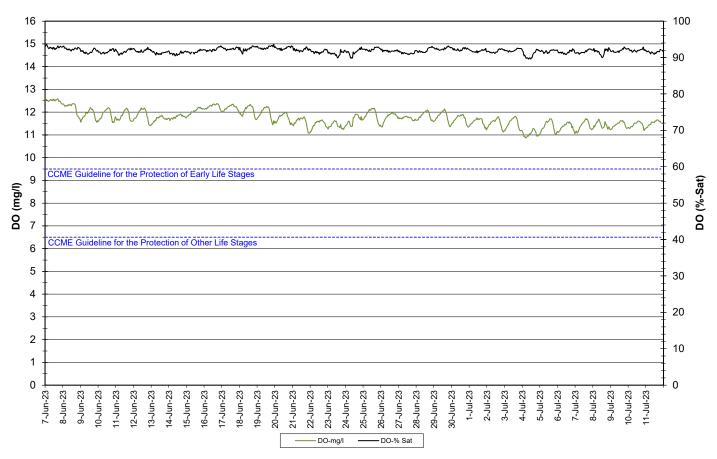


Figure 12: Dissolved oxygen - Dumbell Stream

- Turbidity values ranged from 0.0 NTU to 774.0 NTU throughout the deployment period (Figure 13a). The median value was 0.6 NTU, indicating low background turbidity levels overall.
- There was a significant spike in turbidity values July 5th until July 8th. This could be due to a number of different reasons.
- Graph 13b is included to give a better view of the background turbidity levels.

Water Turbidity and Precipitation : Dumbell Stream above Dumbell Lake June 7 to July 12, 2023

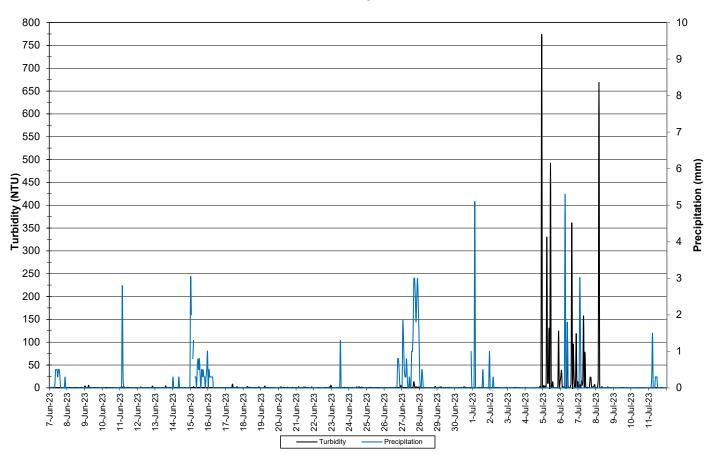


Figure 13a: Turbidity and Precipitation - Dumbell Stream

Water Turbidity <10 NTU and Precipitation : Dumbell Stream above Dumbell Lake June 7 to July 12, 2023

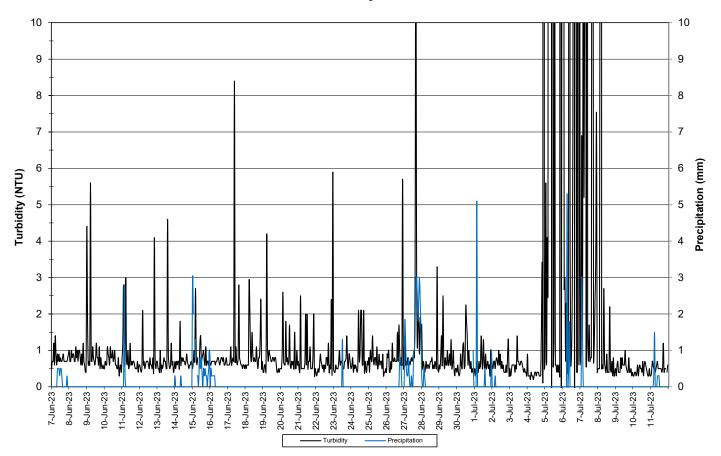


Figure 13b: Turbidity <10 NTU and Precipitation – Dumbell Stream (Weather data collected from climate station near Moosehead Lake)

- Stage and precipitation are graphed below to show the relationship between rainfall and water level at Dumbell Stream (Figure 14).
- With the exception of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Stage and Precipitation: Dumbell Stream June 7 to July 12, 2023

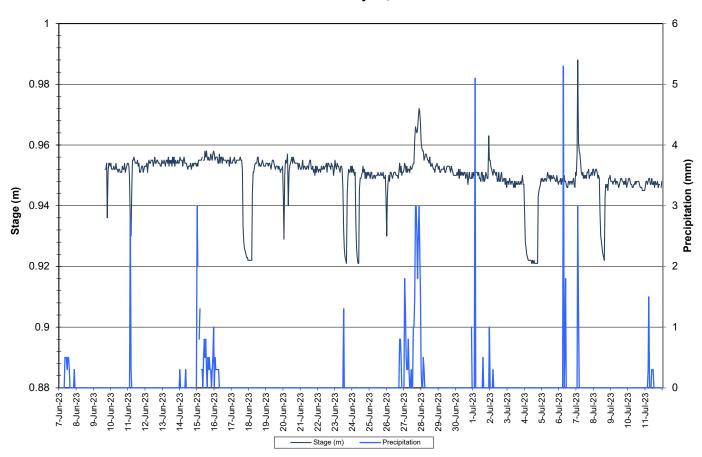
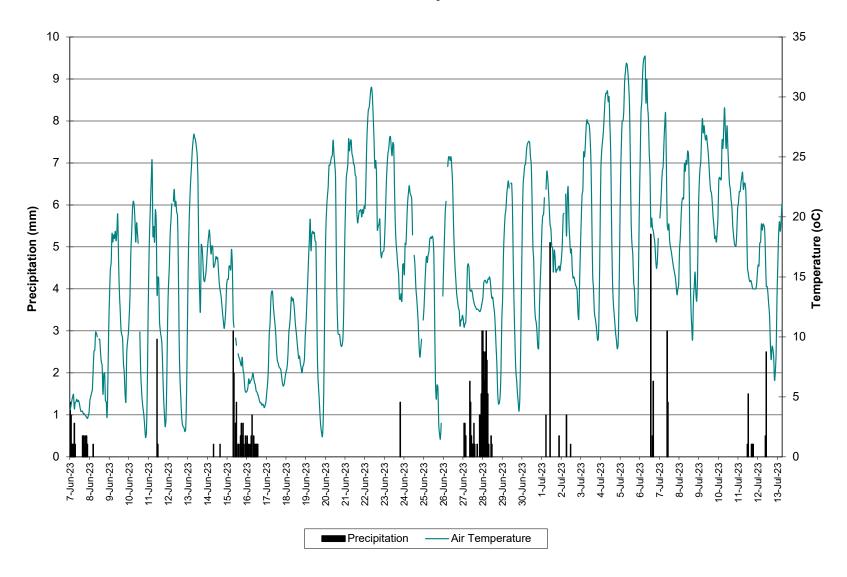


Figure 14: Stage and Precipitation - Dumbell Stream


Conclusions

- Instruments were deployed on June 7th, 2023, and removed by July 13th, 2023, except for the instrument at Pumphouse Stream. This was the first deployment period for this season.
- In most cases, precipitation events or increases/decreases in water level could be used to explain the data fluctuations. Most values recorded were within ranges as suggested by the CCME Guidelines for the Protection of Aquatic Life for pH and dissolved oxygen.
- Water temperature corresponded with air temperature at all stations. Temperature ranged between 2.81 and 25.71°C at these stations during deployment.
- All pH values were within the recommended CCME Guidelines for the Protection of Aquatic Life. pH ranged between 7.23 and 8.51. Fluctuations were noted between day and night. The pH sensor at dumbbell stream experienced sensor drift, thus a small portion of data was removed.
- Specific conductivity differed between the two Wabush Lake stations. This can be attributed to varying concentrations of iron ore tailings deposited between the stations. Specific conductivity ranged from 46.0 μs/cm to 120.2 μs/cm at the Wabush Lake stations and 134.4 to 231.0 μs/cm at Dumbell Stream.
- At all three stations, all dissolved oxygen values were above the minimum CCME Guideline for the Protection of Aquatic Life for Cold Water Biota at Other Life Stages of 6.5 mg/L. When dissolved oxygen values are compared to the CCME Guideline for the Protection of Aquatic Life for Cold Water Biota at Early Life Stages of 9.5 mg/L, the majority of values at Julienne Narrows, Dolomite Road and all of the values at Dumbell Stream, were above the guideline.
- Turbidity at Dolomite Road and Julienne Narrows ranged from 0.4 to 65.7 NTU.
- Turbidity at Dumbell Stream ranged from 0.0 NTU to 22.9 NTU.
- Julienne Narrows and Dolomite Road, stage decreased during the deployment period.
- At Dumbell Stream, stage decreased slightly over the course of the deployment period. There were occasional drops in the stage data; these decreases may not be accurate.
- With the exception of of water quantity data (Stage and Flow), all data used in the preparation of the graphs and subsequent discussion adhere to this stringent QA/QC protocol. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Prepared by:
Maria Murphy
Department of Environment and Climate Change
Water Resources Management Division
Phone:709.896.7981

Appendix 1

Air Temperature and Precipitation: Moosehead Lake, NL June 7 to July 13, 2023

Appendix 2 QA/QC Grab Sample Results

NL Department of Environment, Climate Change and

Municipalities

							•	
Sample Details/Parameters	Α	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
WBS582 JULIENNE NARROWS								
Sampling Date 2023/06/07 10:30 Matrix W								
Sample # 2023-6304-00-SI-SP								
Registration # SA-0000								
RESULTS OF ANALYSES OF WATER								
Calculated Parameters								
Hardness (CaCO3)	-	61	1.0	mg/L	N/A	2023/06/23		8722303
Nitrate (N)	-	0.68	0.050	mg/L	N/A	2023/06/21	İ	8722227
Total dissolved solids (calc., EC)	-	73	1.0	mg/L	N/A	2023/06/16		8722338
Inorganics								
Conductivity	-	130	1.0	uS/cm	N/A	2023/06/15	NGI	8727590
Chloride (Cl-)	-	1.7	1.0	mg/L	N/A	2023/06/19	LKH	8732150
Bromide (Br-)	-	ND	1.0	mg/L	N/A	2023/06/19	LKH	8732150
Sulphate (SO4)	-	3.7	1.0	mg/L	N/A	2023/06/19	LKH	8732150
Total Alkalinity (Total as CaCO3)	_	54	2.0	mg/L	N/A	2023/06/15	NGI	8727593
Colour	_	16	5.0	TCU	N/A	2023/06/20	TGO	8737879
Dissolved Fluoride (F-)	_	ND	0.10	mg/L	N/A	2023/06/15	NGI	8727594
 Total Kjeldahl Nitrogen (TKN)	_	0.21	0.10	mg/L	2023/06/22	2023/06/23	RTY	8746431
Nitrate + Nitrite (N)	_	0.68	0.050	mg/L	N/A	2023/06/21	TGO	8737875
Nitrite (N)	_	ND	0.010	mg/L	N/A	2023/06/20	TGO	8736712
 Nitrogen (Ammonia Nitrogen)	_	0.051	0.050	mg/L	N/A	2023/06/22	TGO	8745758
Dissolved Organic Carbon (C)	_	2.9	0.50	mg/L	N/A	2023/06/15	CPP	8729203
Total Organic Carbon (C)	_	2.7	0.50	mg/L	N/A	2023/06/20	CPP	8736659
pH	_	7.89		pH	N/A	2023/06/15	NGI	8727592
Total Phosphorus	_	0.016	0.004	mg/L	2023/06/22	2023/06/23	SPC	8746738
Total Suspended Solids	_	4.4	1.0	mg/L	2023/06/13	2023/06/15	RMK	8721816
Turbidity	_	9.3	0.10	NTU	N/A	2023/06/21	NGI	8737994
MERCURY BY COLD VAPOUR AA (WATER)		3.5	0.10	1410	IN/A	2023/00/21	'''	0737334
Metals								
Total Mercury (Hg)	_	ND	0.000013	mg/L	2023/06/19	2023/06/20	SGK	8736613
ELEMENTS BY ICP/MS (WATER)			5.555525					
Metals								
Total Aluminum (Al)	_	0.032	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Antimony (Sb)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Arsenic (As)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Barium (Ba)	_	0.0022	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Boron (B)	_	ND	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Cadmium (Cd)	-	ND ND	0.000010	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Calcium (Ca)	_	14	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Chromium (Cr)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Copper (Cu)	_	ND ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Iron (Fe)	_	0.39	0.050	mg/L	2023/00/23	2023/06/23	BCZ	8747400
Total Lead (Pb)		ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Magnesium (Mg)		6.0	0.00030	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Magnesium (Mg)	<u> </u>	0.0	0.10	l ilig/ L	2023/00/23	2023/00/23	ا تارک	0747400

NL Department of Environment, Climate Change and

Municipalities

Sample Details/Parameters	Α	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
WBS582 JULIENNE NARROWS								
Sampling Date 2023/06/07 10:30								
Matrix W								
Sample # 2023-6304-00-SI-SP								
Registration # SA-0000								
ELEMENTS BY ICP/MS (WATER)								
Metals								İ
Total Manganese (Mn)	-	0.10	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Nickel (Ni)	-	ND	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Phosphorus (P)	-	ND	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Potassium (K)	-	1.2	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Selenium (Se)	-	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Sodium (Na)	-	1.5	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Strontium (Sr)	-	0.018	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Uranium (U)	-	0.00014	0.00010	mg/L	2023/06/23	2023/06/23	BCZ	8747400
Total Zinc (Zn)	-	0.052	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747400

NL Department of Environment, Climate Change and

Municipalities

		Sampler Initials: MM							
Sample Details/Parameters	А	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch	
WBS583 DOLOMITE ROAD									
Sampling Date 2023/06/07 11:40 Matrix W									
Sample # 2023-6305-00-SI-SP									
Registration # SA-0000									
RESULTS OF ANALYSES OF WATER									
Calculated Parameters									
Hardness (CaCO3)	-	24	1.0	mg/L	N/A	2023/06/26		8722303	
Nitrate (N)	-	0.14	0.050	mg/L	N/A	2023/06/28		8722227	
Total dissolved solids (calc., EC)	-	29	1.0	mg/L	N/A	2023/06/17		8722338	
Inorganics									
Conductivity	-	52	1.0	uS/cm	N/A	2023/06/16	NGI	8731153	
Dup.Conductivity	-	52	1.0	uS/cm	N/A	2023/06/16	NGI	8731153	
Chloride (Cl-)	-	ND	1.0	mg/L	N/A	2023/06/19	LKH	8732150	
Bromide (Br-)	-	ND	1.0	mg/L	N/A	2023/06/19	LKH	8732150	
Sulphate (SO4)	-	2.0	1.0	mg/L	N/A	2023/06/19	LKH	8732150	
Total Alkalinity (Total as CaCO3)	-	22	2.0	mg/L	N/A	2023/06/16	NGI	8731160	
Dup.Total Alkalinity (Total as CaCO3)	-	22	2.0	mg/L	N/A	2023/06/16	NGI	8731160	
Colour	_	38	5.0	TCU	N/A	2023/06/27	TGO	8752826	
Dissolved Fluoride (F-)	_	ND	0.10	mg/L	N/A	2023/06/16	NGI	8731161	
Dup.Dissolved Fluoride (F-)	_	ND	0.10	mg/L	N/A	2023/06/16	NGI	8731161	
Total Kjeldahl Nitrogen (TKN)	_	0.22	0.10	mg/L	2023/06/22	2023/06/23	RTY	8746431	
Nitrate + Nitrite (N)	_	0.14	0.050	mg/L	N/A	2023/06/27	TGO	8752801	
Nitrite (N)	_	ND	0.010	mg/L	N/A	2023/06/27	TGO	8752762	
Nitrogen (Ammonia Nitrogen)	_	0.050	0.050	mg/L	N/A	2023/06/22	TGO	8745758	
Dissolved Organic Carbon (C)	_	4.8	0.50	mg/L	N/A	2023/06/15	CPP	8729203	
Dup.Dissolved Organic Carbon (C)	_	4.8	0.50	mg/L	N/A	2023/06/15	CPP	8729203	
Total Organic Carbon (C)	_	5.1	0.50	mg/L	N/A	2023/06/15	CPP	8727523	
pH	_	7.47	0.50	pH	N/A	2023/06/16	NGI	8731158	
Dup.pH		7.50		pH	N/A	2023/06/16	NGI	8731158	
Total Phosphorus		0.014	0.004	mg/L	2023/06/22	2023/06/23	SPC	8746738	
Total Suspended Solids		5.2	1.0	mg/L	2023/06/13	2023/06/25	RMK	8721816	
Turbidity		2.7	0.10	NTU	N/A	2023/06/26	KMC	8747885	
Dup.Turbidity		2.8	0.10	NTU	N/A	2023/06/26	KMC	8747885	
MERCURY BY COLD VAPOUR AA (WATER)		2.0	0.10	1010	19/7	2023/00/20	KIVIC	0747003	
Metals									
Total Mercury (Hg)	_	ND	0.000013	mg/L	2023/06/19	2023/06/20	SGK	8736613	
ELEMENTS BY ICP/MS (WATER)						,,			
Metals									
Total Aluminum (Al)	_	0.051	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747406	
Dup.Total Aluminum (AI)	_	0.052	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747406	
Total Antimony (Sb)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406	
Dup.Total Antimony (Sb)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406	
Total Arsenic (As)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406	
Dup.Total Arsenic (As)	_	ND ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406	
= ap otal / 11 oci 11 o (/ 10)	<u> </u>	<u> </u>	5.5510	/''5/ L	2023,00,23	-023,00,23	502	3, 4, 400	

NL Department of Environment, Climate Change and

Municipalities

				ampler imitial				
Sample Details/Parameters	Α	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
WBS583 DOLOMITE ROAD								
Sampling Date 2023/06/07 11:40 Matrix W								
Sample # 2023-6305-00-SI-SP								
Registration # SA-0000								
ELEMENTS BY ICP/MS (WATER)								
Metals								
Total Barium (Ba)	-	0.0079	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Barium (Ba)	-	0.0079	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Boron (B)	-	ND	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Boron (B)	-	ND	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Cadmium (Cd)	-	ND	0.000010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Cadmium (Cd)	-	ND	0.000010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Calcium (Ca)	-	5.6	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Calcium (Ca)	-	5.4	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Chromium (Cr)	-	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Chromium (Cr)	-	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Copper (Cu)	_	0.00068	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Copper (Cu)	_	0.00054	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Iron (Fe)	_	0.31	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Iron (Fe)	_	0.29	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Lead (Pb)	_	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Lead (Pb)	_	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Magnesium (Mg)	_	2.4	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Magnesium (Mg)	_	2.4	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Manganese (Mn)	_	0.089	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Manganese (Mn)	_	0.088	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Nickel (Ni)	_	ND	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Nickel (Ni)	_	ND	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Phosphorus (P)	_	ND	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Phosphorus (P)	_	ND	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Potassium (K)	_	0.79	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
 Dup.Total Potassium (K)	_	0.79	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Selenium (Se)	_	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Selenium (Se)	_	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Sodium (Na)	_	0.72	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Sodium (Na)	_	0.71	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Strontium (Sr)	_	0.012	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Strontium (Sr)	_	0.012	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Uranium (U)	_	ND	0.00010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Uranium (U)	_	ND ND	0.00010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Zinc (Zn)		ND ND	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup.Total Zinc (Zn)		ND ND	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Dup. (σται Zinc (Zin)		l IND	0.0030	l lig/L	2023/00/23	2023/00/23	I DCZ	0747400

NL Department of Environment, Climate Change and

Municipalities

Site Location: LABRADOR Your P.O. #: 220028978-9 Sampler Initials: MM

	Sampler Initials: MM									
Sample Details/Parameters	А	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch		
WBS585 DUMBELL STREAM										
Sampling Date 2023/06/07 15:40										
Matrix W Sample # 2023-6307-00-SI-SP										
Sample # 2023-6307-00-SI-SP Registration # SA-0000										
RESULTS OF ANALYSES OF WATER										
Calculated Parameters										
Hardness (CaCO3)	_	100	1.0	mg/L	N/A	2023/06/26		8722303		
Nitrate (N)	_	17	1.0	mg/L	N/A	2023/06/21		8722227		
Total dissolved solids (calc., EC)	_	140	1.0	mg/L	N/A	2023/06/16		8722338		
Inorganics				8/ -	,					
Conductivity	_	250	1.0	uS/cm	N/A	2023/06/15	NGI	8727590		
Chloride (Cl-)	_	2.7	1.0	mg/L	N/A	2023/06/19	LKH	8732150		
Dup.Chloride (Cl-)	_	2.7	1.0	mg/L	N/A	2023/06/19	LKH	8732150		
Bromide (Br-)		ND	1.0	mg/L	N/A	2023/06/19	LKH	8732150		
Dup.Bromide (Br-)	_	ND ND	1.0	mg/L	N/A	2023/06/19	LKH	8732150		
Sulphate (SO4)		9.6	1.0	mg/L	N/A	2023/06/19	LKH	8732150		
Dup.Sulphate (SO4)		9.8	1.0	mg/L	N/A	2023/06/19	LKH	8732150		
Total Alkalinity (Total as CaCO3)		30	2.0	mg/L	N/A	2023/06/15	NGI	8727593		
Colour		ND	5.0	TCU	N/A	2023/06/20	TGO	8737879		
Dissolved Fluoride (F-)		ND ND	0.10	mg/L	N/A	2023/06/15	NGI	8727594		
Total Kjeldahl Nitrogen (TKN)		ND(1)	0.50	mg/L	2023/06/22	2023/06/23	RTY	8746431		
Nitrate + Nitrite (N)	_	17	1.0	mg/L	N/A	2023/06/21	TGO	8737875		
Nitrite (N)	_	0.075	0.010	mg/L	N/A	2023/06/20	TGO	8736712		
Nitrogen (Ammonia Nitrogen)		0.093	0.050	mg/L	N/A	2023/06/22	TGO	8745758		
Dissolved Organic Carbon (C)		0.83	0.50	mg/L	N/A	2023/06/15	CPP	8729203		
Total Organic Carbon (C)		0.82	0.50	mg/L	N/A	2023/06/15	CPP	8729190		
IpH		7.59	0.50	pH	N/A	2023/06/15	NGI	8727592		
Total Phosphorus		0.009	0.004	mg/L	2023/06/22	2023/06/23	SPC	8746738		
Total Suspended Solids		6.2	1.0	mg/L	2023/06/22	2023/06/25	RMK	8721816		
Turbidity		0.48	0.10	NTU	N/A	2023/06/21	NGI	8737994		
ļ '	-	0.40	0.10	INTO	IN/A	2023/00/21	NGI	0/3/334		
MERCURY BY COLD VAPOUR AA (WATER) Metals										
Total Mercury (Hg)	_	ND	0.000013	mg/L	2023/06/19	2023/06/20	SGK	8736613		
ELEMENTS BY ICP/MS (WATER)			0.000013	1116/2	2023/00/13	2023/00/20	3010	0730013		
Metals										
Total Aluminum (Al)	_	0.026	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Antimony (Sb)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Arsenic (As)	_	ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Barium (Ba)	_	0.0050	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Boron (B)	_	ND	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Cadmium (Cd)	_	ND	0.000010	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Calcium (Ca)	_	24	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
Total Chromium (Cr)		ND	0.0010	mg/L	2023/06/23	2023/06/23	BCZ	8747406		
		<u> </u>	<u> </u>	l	1,, 20, 20	1	<u> </u>			

(1) Due to a high concentration of NOx, the sample required dilution. The detection limit was adjusted accordingly.

NL Department of Environment, Climate Change and

Municipalities

Sample Details/Parameters	Α	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
WBS585 DUMBELL STREAM								
Sampling Date 2023/06/07 15:40								
Matrix W								
Sample # 2023-6307-00-SI-SP								
Registration # SA-0000								
ELEMENTS BY ICP/MS (WATER)								
Metals								
Total Copper (Cu)	-	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Iron (Fe)	-	0.080	0.050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Lead (Pb)	-	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Magnesium (Mg)	-	11	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Manganese (Mn)	-	0.0089	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Nickel (Ni)	-	ND	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Phosphorus (P)	-	ND	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Potassium (K)	-	2.0	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Selenium (Se)	-	ND	0.00050	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Sodium (Na)	-	1.1	0.10	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Strontium (Sr)	-	0.030	0.0020	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Uranium (U)	-	ND	0.00010	mg/L	2023/06/23	2023/06/23	BCZ	8747406
Total Zinc (Zn)	-	ND	0.0050	mg/L	2023/06/23	2023/06/23	BCZ	8747406