

Real-Time Water Quality Report Waterford River at Kilbride

Deployment Period
December 6, 2021 to February 1, 2022

Government of Newfoundland & Labrador Department of Environment & Climate Change Water Resources Management Division

Water Resources Management Division Department of Environment & Climate Change 4th Floor, Confederation Building, West Block PO Box 8700, St. John's NL A1B 4J6

TABLE OF CONTENTS

QUALITY ASSURANCE AND QUALITY CONTROL	
DATA INTERPRETATION	7
Water Temperature	
pH	
Specific Conductivity & Total Dissolved Solids	9
Dissolved Oxygen	
Turbidity	11
Stage and Precipitation	13
APPENDIX A : MEAN DAILY AIR TEMPERATURE AND AVERAGE WATER TEMPERATURE	14
APPENDIX B : QA/QC GRAB SAMPLE FIELD RESULTS	16

GENERAL

The Water Resources Management Division (WRMD), in partnership with Water Survey of Canada -Environment and Climate Change Canada (WSC-ECCC), maintain a real-time water quality and water quantity monitoring station on Waterford River at Kilbride.

The purpose of the real-time water quality station is to monitor, process and publish real-time water quality data. This deployment report discusses water quality related events occurring at this station from instrument deployment on August 3, 2021 until removal on December 6, 2021.

Figure 1: Waterford River at Kilbride Real-Time Water Quality and Quantity Station.

QUALITY ASSURANCE AND QUALITY CONTROL

As part of the Quality Assurance and Quality Control protocol (QA/QC), an assessment of the reliability of data recorded by an instrument is made at the beginning and end of the deployment period. The procedure is based on the approach used by the United States Geological Survey (Table 1).

At deployment and removal, a QA/QC Sonde is temporarily deployed adjacent to the Field Sonde. Values for temperature, pH, conductivity, dissolved oxygen and turbidity are compared between the two instruments. Based on the degree of difference between the parameters on the Field Sonde and QA/QC Sonde at deployment and at removal, a qualitative statement is made on the data quality (Table 2).

WRMD staff at the Department of Environment & Climate Change (ECC) are responsible for maintaining and calibrating the water quality instrument, as well as grooming, analyzing and reporting on water quality data recorded at the station.

WSC staff are responsible for the data logging/communication aspect of the network and maintenance of the water quantity monitoring equipment. WSC staff visit the site regularly to ensure the data logging and data transmitting equipment are working properly, and are responsible for handling stage and streamflow data issues. The water quantity data is transmitted via satellite and published online with the water quality data on the WRMD website. Water quantity data has not been corrected or groomed when published online or used in the monthly reports for the stations. WSC is responsible for QA/QC of water quantity data. Corrected stage and streamflow data can be obtained upon request to WSC.

Table 1: Instrument Performance Ranking classifications for deployment and removal

	Rank								
Parameter	Excellent	Good	Fair	Marginal	Poor				
Temperature (°C)	<=+/-0.2	>+/-0.2 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	<+/-1				
pH (unit)	<=+/-0.2	>+/-0.2 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	>+/-1				
Sp. Conductance (μS/cm)	<=+/-3	>+/-3 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20				
Sp. Conductance > 35 μS/cm (%)	<=+/-3	>+/-3 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20				
Dissolved Oxygen (mg/L) (% Sat)	<=+/-0.3	>+/-0.3 to 0.5	>+/-0.5 to 0.8	>+/-0.8 to 1	>+/-1				
Turbidity <40 NTU (NTU)	<=+/-2	>+/-2 to 5	>+/-5 to 8	>+/-8 to 10	>+/-10				
Turbidity > 40 NTU (%)	<=+/-5	>+/-5 to 10	>+/-10 to 15	>+/-15 to 20	>+/-20				

It should be noted that the temperature sensor on any sonde is the most important. All other parameters can be divided into subgroups of: temperature dependent, temperature compensated and temperature independent. Due to the temperature sensor's location on the sonde, the entire sonde must be at a constant temperature before the temperature sensor will stabilize. The values may take some time to climb to the appropriate reading; if a reading is recorded to early it may not accurately portray the water body.

Table 2: Instrument performance rankings for Waterford River at Kilbride

			Comparison Ranking						
Station	Date	Action	Temperature	рН	Conductivity	Dissolved Oxygen	Turbidity		
	December 6,	Deployment	Good	Poor	Good	Fair	Excellent		
Waterford River @	2021	Grab Sample # 1935	N/A	Marginal	Excellent	N/A	Excellent		
Kilbride	February 1, 2022	Removal	Good	Fair	Fair	Good	Poor		

Waterford River at Kilbride, Newfoundland and Labrador

Upon deployment, all sensors ranked 'Excellent'. The grab sample #1999 measured parameters ranked 'Excellent' in comparison to the field sonde.

At removal of the instrument, all parameters ranked 'Excellent' against the QA/QC sonde, despite the long deployment period of 126 days.

Deployment Note

At 126 days, this deployment period was significantly longer than normal due to COVID-19 restrictions and issues with removing the instrument from its casing.

DATA INTERPRETATION

Water Temperature

Water temperature ranged from 3.35 °C to 23.39 °C during this deployment period (Figure 2).

Over the duration of the deployment period, the water temperature in correlation with air temperatures decreased into and throughout fall season (see Appendix A). Water temperatures dip during and for a short time after higher stage events, which is likely the result of cool rainfall.

Water temperature values display a natural diurnal pattern with temperatures increasing during the day and temperatures decreasing overnight. All brooks and ambient waterways have natural diurnal patterns.

Please note the stage data is raw data. It has not been corrected for backwater effect. WSC is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request to WSC.

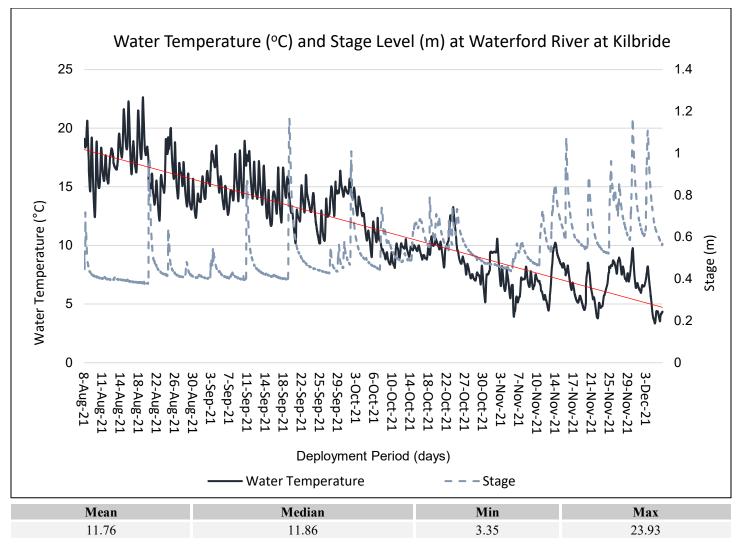
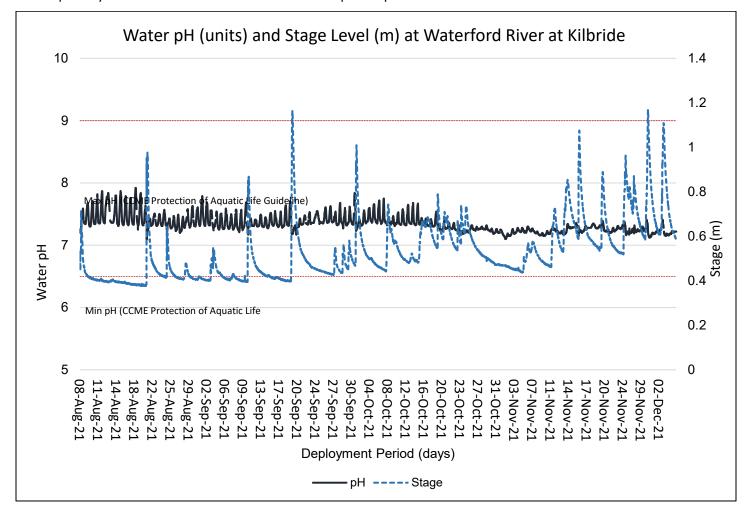


Figure 2: Water temperature (°C) and Stage (m) values at Waterford River at Kilbride

pН


Throughout the deployment period, pH values were relatively stable and ranged between 6.85 pH units and 7.92 pH units, with a mean of 7.35 and median of 7.33 pH units (Figure 3).

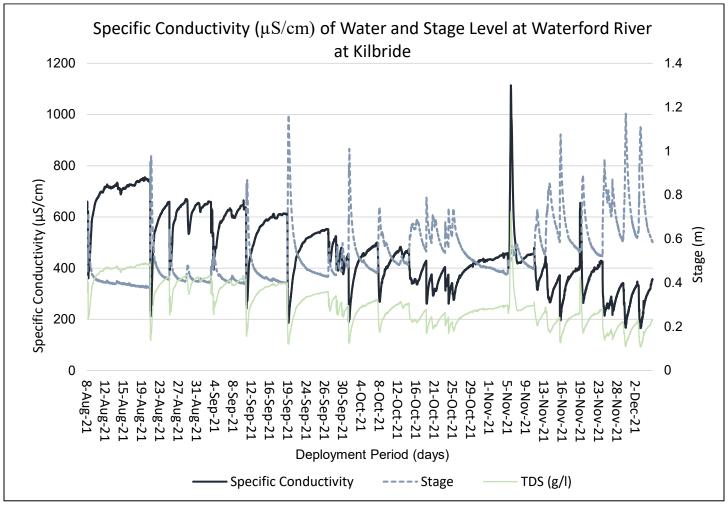
The CCME guideline for the protection of aquatic life states the requirement of a minimum pH value of 6.5 and max value of 9.0. The CCME guideline provides a basis by which to judge the overall health of the brook. Waterford River pH values remained within the guidelines for the duration of the long deployment.

pH values are temperature dependant as well as influenced by photosynthesis and respiration by aquatic organisms. The concentration of dissolved carbon dioxide in the water throughout the day, especially overnight when oxygen production is reduced relative to carbon dioxide levels. Carbon dioxide dissolved in water yields a slightly acidic solution.

The diurnal variation pattern was visible throughout the deployment period. The magnitude of variation decreased over time in correlation to the smaller daily water temperature range and length of days as expected at this time of the year.

Please note the stage data is raw data. It has not been corrected for backwater effect. WSC is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request to WSC.

Mean	Median	Min	Max
7.35	7.33	6.85	7.92


Figure 3: pH (pH units) and stage level (m) values at Waterford River at Kilbride.

Specific Conductivity & Total Dissolved Solids

The conductivity concentration levels were within 166 μ S/cm and 1114 μ S/cm during this deployment period. TDS (a calculated value) ranged from 0.1080 g/L to 0.7240 g/L (Figure 4).

Throughout the deployment period conductivity levels at Waterford decreased during high stage events before rebounding slightly. This is likely a result of the minerals and dissolved material present in the brook being diluted and flushed for a short period of time before returning to background levels. Larger than normal spikes in conductivity were observed on November 6th and 19th. These may be a result of road salts being washed into the brook (See Figure 7). Given the location, the river is highly influenced by urban roads, residential housing and pedestrian traffic.

Please note the stage data is raw. It is not corrected for backwater effect. WSC is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request to WSC.

	Mean	Median	Min	Max
Specific Conductivity (µS/cm)	483.1	452.0	166.0	1114.0
TDS (mg/L)	0.3140	0.2940	0.1080	0.7240

Figure 4: Specific conductivity (μS/cm), TDS (g/L) and stage (m) values at Waterford River at Kilbride.

Dissolved Oxygen

Dissolved oxygen is a metabolic requirement of aquatic plants and animals. The concentration of oxygen in water depends on many factors, especially temperature – the saturation of oxygen in water is inversely proportional to water temperature. Oxygen concentrations also tend to be higher in flowing water compared to still, lake environments. Low oxygen concentrations can give an indication of excessive decomposition of organic matter or the presence of oxidizing materials.

The water quality instrument measures dissolved oxygen (mg/L) with the dissolved oxygen probe. The instrument then calculates percent saturation (% Sat) taking into account the water temperature.

During the deployment, the dissolved oxygen concentration levels ranged within a minimum of 8.43 mg/L to a maximum of 13.61 mg/L. The percent saturation levels for dissolved oxygen ranged within 91.5 % Saturation to 111.2 % Saturation (Figure 5).

The majority of the dissolved oxygen values remained above the CCME Guideline for the Protection of Early life stages (9.5mg/L) and other life stages (6.5 mg/L), dropping below 9.5 mg/L in late summer when water temperatures were warmest.

A considerable increase in dissolved oxygen was observed in early October, in correlation with a significant decrease in water temperature at this time (Figure 2). This is considered a natural occurrence as the transition from fall/winter season begins.

Diurnal variation was most visible from August through the middle of October. The magnitude of variation from the beginning of October throughout the remainder of the deployment period decreased in correlation to the lowering daily water/air temperature range and the length of days.

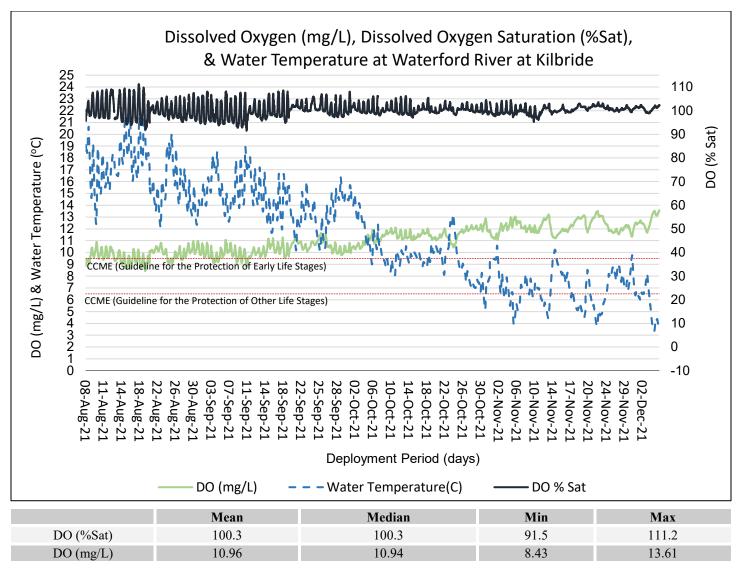
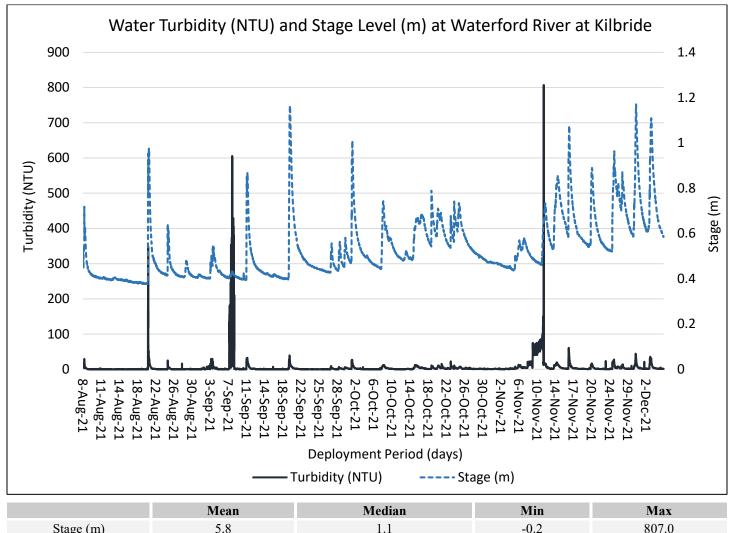


Figure 5: Dissolved Oxygen (mg/L & Percent Saturation) values at Waterford River at Kilbride.

Turbidity


Turbidity levels during the deployment ranged within -0.2 NTU and 807.0 NTU, with a mean of 5.8 NTU and median of 1.1 NTU (Figure 6).

Turbidity measurements over the majority of the deployment period indicated very low turbidity including negative values. This situation is most likely to happen when measuring low-level turbidity. Natural variations in all measurements, instrument and non-instrument related, can lead to a negative result. Some other turbidimeters are designed to round up a negative number to 0.00 NTU, since a result of less than 0.00 NTU is theoretically impossible. However, in practice, these results are actually quite meaningful. The problem could be operator technique or sonde error. It could also indicate a problem with the low turbidity/turbidity-free water used for a blank or a problem with the calibration. If the meter rounds the negative result to 0.00 NTU, the user will not be alerted to a potential problem.

The higher turbidity events correlate with increases in stage. Rainfall was recorded during all of the high stage increases (see Figure 7). Precipitation can increase the presence of suspended material in water through the movement of soil and

sediment from nearby urban areas. Sediments and debris can temporarily become lodged within the sonde casing during precipitation events and cause spikes in turbidity values. This may be what occurred on November 11, 2021.

Please note the stage data is raw. It has not been corrected for backwater effect. WSC is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request to WSC.

-0.2 807.0 Stage (m) 5.8

Figure 6: Turbidity (NTU) and stage level (m) values at Waterford River at Kilbride.

Stage and Precipitation

Please note the stage data graphed below is raw data. It has not been corrected for backwater effect. WSC is responsible for QA/QC of water quantity data. Corrected data is available upon request to WSC.

Stage is an estimation of water level at the station and can explain some of the events that are occurring with other parameters (i.e. Specific Conductivity, DO, turbidity). Stage will increase during rainfall events (Figure 7) and during any surrounding snow or ice melt, as runoff will collect in the brooks. However, direct snowfall will not cause stage to rise significantly.

During the deployment period, the stage values ranged from 0.38m to 1.17m. The larger peaks in stage correspond with substantial rainfall events as noted on Figure 7. Precipitation data was collected by Environment Canada's St. John's International Airport weather station. Daily Total Precipitation ranges for the deployment period were a minimum of 0.0 mm and a maximum of 48.4 mm on September 19, 2021.

An increase in the daily average stage trend was observed throughout the deployment period as a result of consistent precipitation events throughout the deployment period.

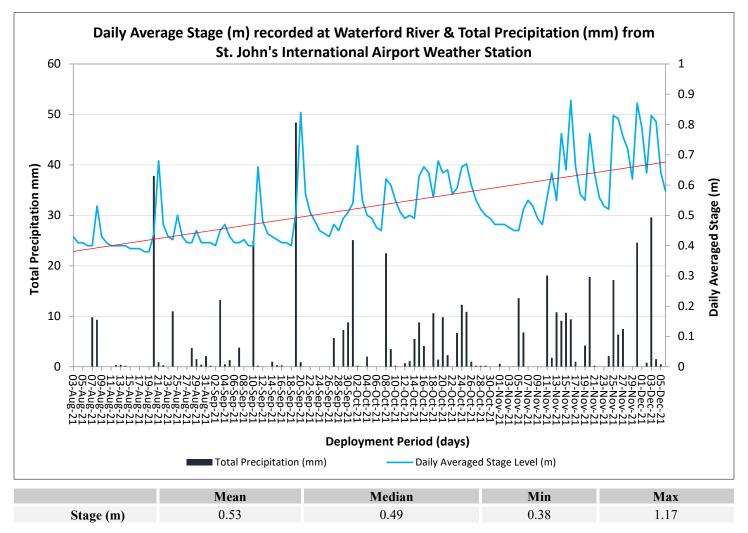
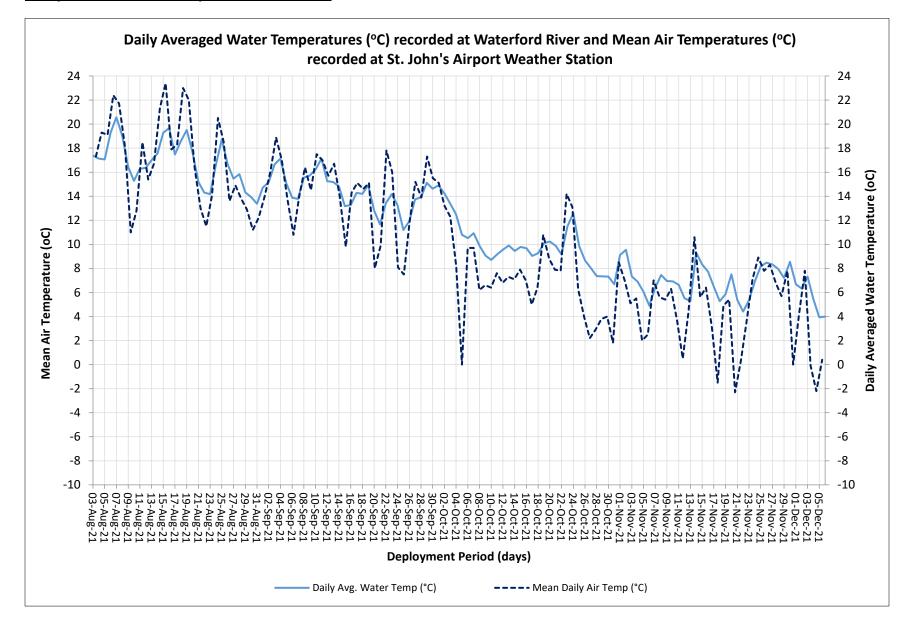



Figure 7: Stage values recorded at Waterford River at Kilbride and daily total precipitation from St. John's Airport Weather Station.

Waterford River at Kilbride, Newfoundland and Labrador	
APPENDIX A : MEAN DAILY AIR TEMPERATURE AND AVERAGE WATER TEMPERATUR	Ε

Waterford River at Kilbride,	Newfoundland	and Labrador
------------------------------	--------------	--------------

APPENDIX B: QA/QC GRAB SAMPLE FIELD RESULTS

Your P.O. #: 220028978-5

Your C.O.C. #: N/A, 2021-1935-00-SI-SP

Attention: Robert Richard Harvey

NL Department of Environment, Climate Change and Municipalities Water Resources PO Box 8700 St. John's, NL CANADA A1B 4J6

Report Date: 2022/01/31

Report #: R6984327

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1AA423 Received: 2021/12/07, 11:06

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity	1	N/A	2021/12/13	ATL SOP 00013	EPA 310.2 R1974 m
Anions (1)	1	N/A	2022/01/27	CAM SOP-00435	SM 23 4110 B m
Colour	1	N/A	2022/12/13	ATL SOP 00020	SM 23 2120C m
Organic carbon - Diss (DOC) (2)	1	N/A	2021/12/11	ATL SOP 00203	SM 23 5310B m
Conductance - water	1	N/A	2021/12/09	ATL SOP 00004	SM 23 2510B m
Fluoride	1	N/A	2021/12/09	ATL SOP 00043	SM 23 4500-F- C m
Hardness (calculated as CaCO3)	1	N/A	2022/01/18	ATL SOP 00048	Auto Calc
Mercury - Total (CVAA,LL)	1	2022/01/06	2022/01/06	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Total MS	1	2021/12/08	2021/12/09	ATL SOP 00058	EPA 6020B R2 m
Nitrogen Ammonia - water	1	N/A	2021/12/09	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	1	N/A	2021/12/13	ATL SOP 00016	USGS I-2547-11m
Nitrogen - Nitrite	1	N/A	2021/12/13	ATL SOP 00017	SM 23 4500-NO2- B m
Nitrogen - Nitrate (as N)	1	N/A	2022/01/16	ATL SOP 00018	ASTM D3867-16
pH (3)	1	N/A	2021/12/09	ATL SOP 00003	SM 23 4500-H+ B m
Calculated TDS (DW Pkg)	1	N/A	2021/12/23	N/A	Auto Calc
Total Kjeldahl Nitrogen in Water (1)	1	2021/12/13	2021/12/14	CAM SOP-00938	OMOE E3516 m
Organic carbon - Total (TOC) (2)	1	N/A	2021/12/10	ATL SOP 00203	SM 23 5310B m
Total Phosphorus (Colourimetric) (1)	1	2021/12/10	2021/12/14	CAM SOP-00407	SM 23 4500 P B H m
Total Suspended Solids	1	2021/12/10	2021/12/15	ATL SOP 00007	SM 23 2540D m
Turbidity	1	N/A	2021/12/09	ATL SOP 00011	EPA 180.1 R2 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

⁽¹⁾ This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8

⁽²⁾ TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

⁽³⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

Your P.O. #: 220028978-5

Your C.O.C. #: N/A, 2021-1935-00-SI-SP

Attention: Robert Richard Harvey

NL Department of Environment, Climate Change and Municipalities Water Resources PO Box 8700 St. John's, NL CANADA A1B 4J6

Report Date: 2022/01/31

Report #: R6984327 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1AA423 Received: 2021/12/07, 11:06

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Maryann Comeau, Customer Experience Supervisor/PM

Email: Maryann.COMEAU@bureauveritas.com

Phone# (902)420-0203 Ext:298

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Bureau Veritas Job #: C1AA423 Report Date: 2022/01/31 NL Department of Environment, Climate Change and Municipalities

Your P.O. #: 220028978-5

Sample Details/Parameters	MAC	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
RLF626 2021-1935-00-SI-SP								
Sampling Date 2021/12/06 12:30								
Matrix W								
Sample # EMERG-3181								
RESULTS OF ANALYSES OF WATER								
Calculated Parameters								
Hardness (CaCO3)	-	27	1.0	mg/L	N/A	2022/01/18		7744543
Nitrate (N)	10	1.0	0.050	mg/L	N/A	2022/01/16		7744546
Total dissolved solids (calc., EC)	-	200	1.0	mg/L	N/A	2021/12/23		7745017
Inorganics								
Conductivity	-	360	1.0	uS/cm	N/A	2021/12/09	SHW	7751074
Chloride (CI-)	-	87	1.0	mg/L	N/A	2022/01/27	FD	7802909
Bromide (Br-)	-	ND	1.0	mg/L	N/A	2022/01/27	FD	7802909
Sulphate (SO4)	-	12	1.0	mg/L	N/A	2022/01/27	FD	7802909
Total Alkalinity (Total as CaCO3)	-	19	5.0	mg/L	N/A	2021/12/13	EMT	7779130
Colour	-	26	5.0	TCU	N/A	2022/12/13	EMT	7779160
Dissolved Fluoride (F-)	1.5	ND	0.10	mg/L	N/A	2021/12/09	SHW	7751076
Total Kjeldahl Nitrogen (TKN)	-	0.15	0.10	mg/L	2021/12/13	2021/12/14	RTY	7763509
Nitrate + Nitrite (N)	-	1.0	0.050	mg/L	N/A	2021/12/13	EMT	7779165
Nitrite (N)	1	ND	0.010	mg/L	N/A	2021/12/13	EMT	7779168
Nitrogen (Ammonia Nitrogen)	-	ND	0.050	mg/L	N/A	2021/12/09	MKY	7762103
Dissolved Organic Carbon (C)	-	4.3	0.50	mg/L	N/A	2021/12/11	NGI	7760546
Total Organic Carbon (C)	-	4.6	0.50	mg/L	N/A	2021/12/10	NGI	7757790
рН		7.21		pН	N/A	2021/12/09	SHW	7751072
Total Phosphorus	-	ND	0.020	mg/L	2021/12/10	2021/12/14	SSV	7768411
Total Suspended Solids	-	2.2	1.0	mg/L	2021/12/10	2021/12/15	BBD	7763578
Turbidity	-	2.0	0.10	NTU	N/A	2021/12/09	SHW	7724908

(1) Mercury analyzed past recommended hold time.

MAC: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, September 2020.

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

If Screening Levels (SL) for gross alpha or gross beta are exceeded then concentration of the specific radionuclides of the CWQG should be analyzed.

Note 1 Turbidity guideline value of 0.3 NTU based on conventional treatment system. For slow sand or diatomaceous earth filtration 1.0 NTU and for membrane filtration 0.1 NTU.

Note 2 Aluminum guideline value of 0.1 mg/L is for treatment plants using aluminum-based coagulants, 0.2mg/L applies to other types of treatment systems.

Bureau Veritas Job #: C1AA423 Report Date: 2022/01/31 NL Department of Environment, Climate Change and Municipalities

Your P.O. #: 220028978-5

Sample Details/Parameters	MAC	Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
RLF626 2021-1935-00-SI-SP						,		
Sampling Date 2021/12/06 12:30								
Matrix W								
Sample # EMERG-3181								
MERCURY BY COLD VAPOUR AA (WATER)								
Metals								
Total Mercury (Hg)	0.001	ND(1)	0.000013	mg/L	2022/01/06	2022/01/06	FJO	7766085
ELEMENTS BY ICP/MS (WATER)								
Metals								
Total Aluminum (AI)	2.9	0.12	0.0050	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Antimony (Sb)	0.006	ND	0.0010	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Arsenic (As)	0.010	ND	0.0010	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Barium (Ba)	2.0	0.011	0.0010	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Boron (B)	5	ND	0.050	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Cadmium (Cd)	0.007	0.000018	0.000010	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Calcium (Ca)	-	8.3	0.10	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Chromium (Cr)	0.05	ND	0.0010	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Copper (Cu)	2	0.0022	0.00050	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Iron (Fe)	-	0.24	0.050	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Lead (Pb)	0.005	ND	0.00050	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Magnesium (Mg)	-	1.6	0.10	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Manganese (Mn)	0.12	0.072	0.0020	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Nickel (Ni)	-	ND	0.0020	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Phosphorus (P)	-	ND	0.10	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Potassium (K)	-	1.3	0.10	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Selenium (Se)	0.05	ND	0.00050	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Sodium (Na)	-	57	0.10	mg/L	2021/12/08	2021/12/09	BAN	7782227

MAC: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, September 2020.

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

If Screening Levels (SL) for gross alpha or gross beta are exceeded then concentration of the specific radionuclides of the CWQG should be analyzed.

Note 1 Turbidity guideline value of 0.3 NTU based on conventional treatment system. For slow sand or diatomaceous earth filtration 1.0 NTU and for membrane filtration 0.1 NTU.

Note 2 Aluminum guideline value of 0.1 mg/L is for treatment plants using aluminum-based coagulants, 0.2mg/L applies to other types of treatment systems.

Bureau Veritas Job #: C1AA423 Report Date: 2022/01/31 NL Department of Environment, Climate Change and Municipalities

Your P.O. #: 220028978-5

Sample Details/Parameters		Result	RDL	UNITS	Extracted	Analyzed	Ву	Batch
RLF626 2021-1935-00-SI-SP								
Sampling Date 2021/12/06 12:30								
Matrix W								
Sample # EMERG-3181								
ELEMENTS BY ICP/MS (WATER)								
Metals								
Total Strontium (Sr)		0.032	0.0020	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Uranium (U)		ND	0.00010	mg/L	2021/12/08	2021/12/09	BAN	7782227
Total Zinc (Zn)		0.0078	0.0050	mg/L	2021/12/08	2021/12/09	BAN	7782227

MAC: Guideline - Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, September 2020.

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

MAC= Maximum Acceptable Concentration (MAC) - established for substances that are known or suspected to cause adverse effects on health.

AO= Aesthetic Objectives (AO) - apply to characteristics of drinking water that can affect its acceptance by consumers or interfere with practices for supplying good quality water.

If Screening Levels (SL) for gross alpha or gross beta are exceeded then concentration of the specific radionuclides of the CWQG should be analyzed.

Note 1 Turbidity guideline value of 0.3 NTU based on conventional treatment system. For slow sand or diatomaceous earth filtration 1.0 NTU and for membrane filtration 0.1 NTU.

Note 2 Aluminum guideline value of 0.1 mg/L is for treatment plants using aluminum-based coagulants, 0.2mg/L applies to other types of treatment systems.

NL Department of Environment, Climate Change and Municipalities Your P.O. #: 220028978-5

GENERAL COMMENTS

Eac	h temperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	9.5°C	
Res	ults relate only to th	e items tested.	

NL Department of Environment, Climate Change and Municipalities

Your P.O. #: 220028978-5

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Colleen Acker, B.Sc, Scientific Service Specialist

Mike MacGillivray, Scientific Specialist (Inorganics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.