ENVIRONMENTAL PREVIEW REPORT PURSUANT TO THE NEWFOUNDLAND AND LABRADOR ENVIRONMENTAL PROTECTION ACT

AGS Fluorspar Project St. Lawrence, NL Volume 2, Appendix E-1

Submitted to:

Newfoundland and Labrador Department of Environment and Conservation, Environmental Assessment Division

Submitted by:

September 2015

AGS FLUORSPAR PROJECT - ENVIRONMENTAL PREVIEW REPORT

APPENDIX E-1

Phase 1 Hydrogeology Program

January 2015

PROPOSED AGS MINE PROJECT

Phase 1 Hydrogeology Study Canada Fluorspar Inc. St. Lawrence, NL (Rev 0)

Submitted to:

Canada Fluorspar Inc. PO Box 337 1 Clarke's Pond Road St. Lawrence, NL A0E 2V0

REPORT

Report Number: 1407707: Rpt ID-0007 (Rev 0) Distribution: 1 PDF Copy - Canada Fluorspar Inc. 1 PDF Copy - Golder Associates Ltd.

Executive Summary

This report presents the results of an initial phase (Phase 1) of hydrogeological and hydrological site investigations to provide the data necessary to support an Environmental Impact Assessment (EIA) for the AGS Mine Project (the Project), a proposed fluorite mine to be located on the Burin Peninsula 1 km south of the Town of St. Lawrence, Newfoundland (Figure 1), owned by Canada Fluorspar (NL) Inc. (CFI).

The mining concept being developed will likely comprise:

- Shallow surface mining with the later development of an underground mine; or
- Underground mining only

Given that the hydrogeological program to assess inflows and environmental effects will be quite different for these two mining concepts, Phase 1 program focused on information requirements generally applicable to both mining concepts with a later phase of the program tailored more specifically the proposed mining plan when developed.

The study area targeted an assumed general outline of the surface mine as shown on Figure 2, considering a project footprint in which Grebes Nest pond would be removed during mining and John Fitzpatrick Pond to the north and Upper Island Pond to the east would not be disturbed.

The scope of work can be summarized as follows:

- Limited hydrological measurements and limited sampling of surface water and groundwater including
 - Test pit excavation and shallow upper bedrock borehole drilling completed with monitoring well installations;
 - Monitoring well development, groundwater sampling and in-situ hydraulic conductivity testing;
 - Staff gauge stream flow measurements and surface water sampling;
 - Collection of relevant climate data and the locations of nearby municipal water wells sources; and
 - General geology information.

The report text presents the results of these investigations including with limited interpretations. Supporting factual data are provided in Appendices A through I.

Table of Contents

1.0	INTRO		4
2.0	SCOPE	OF WORK	4
3.0	ВАСКО	ROUND	4
4.0	FIELD	NVESTIGATION	5
	4.1	Rationale	6
	4.2	Methodology	6
	4.2.1	Test pit Excavation and Borehole Drilling	6
	4.2.2	Monitoring Well Installation	7
	4.2.3	Well Development	8
	4.2.4	Groundwater Sampling	8
	4.2.5	Monitoring Well Coordinates	8
	4.2.6	Hydraulic Conductivity Testing	9
	4.2.7	Surface Water Monitoring (Staff Gauges and Stream Flow Measurements)	9
	4.2.7.1	Staff Gauge	9
	4.2.7.2	Stream Flow Measurements	10
	4.2.8	Surface Water Sampling	10
	4.2.9	Long Term Groundwater Monitoring	11
5.0	RESUL	TS	11
	5.1	Physiography	11
	5.2	Climate	12
	5.3	Water use	14
	5.4	Geology	14
	5.4.1	Regional Geology	14
	5.4.2	Site Geology	14
	5.4.3	Borehole Stratigraphy	15
	5.4.4	Hydraulic Response Testing	16
	5.4.5	Groundwater Elevations	18
	5.4.6	Groundwater Flow Directions	19

HYDROGEOLOGY PHASE 1 INVESTIGATION (REV 0)

7.0	REFERENCES					
6.0	CLOSURE		24			
	5.4.10	Surface water Quality	22			
	5.4.9	Groundwater Quality	21			
	5.4.8	Shallow groundwater-surface water interaction	19			
	5.4.7	Surface Water Flow Monitoring	19			

TABLES

Table 1: Monitoring Well Details Summary

Table 2-1: Monthly Mean Total Precipitation for the Environment Canada meteorological station near St.Lawrence, NL

Table 2-2: Monthly Mean Total Precipitation (mm) for the Environment Canada meteorological Station

Table 3: Hydraulic Conductivity Estimates based upon single well response tests and pumping tests

Table 4: Input Parameters and Hydraulic Conductivity Estimates

Table 5: Hydraulic Conductivity Estimates based upon Hazen methos for grain size rsults

Table 6: Groundwater Elevations

Table 7: Measured Water Level and Stream flow

Table 8: Groundwater Quality Field Measurements

Table 9: Surface Water Quality Field Measurements

FIGURES

Figure 1 Site Plan

Figure 2 Phase 1 Hydrogeological Work Plan

Figure 3 Surficial Geology

Figure 4 Municipal Water Sources

Figure 5 Bedrock Geology

Figure 6 Geological Cross-Section

Figure 7 Watershed Boundaries

APPENDICES

APPENDIX A

Borehole Record; Rock Core Images; Geophysics Borehole Survey

APPENDIX B

Test pit Record and Images; Gradation Curves

APPENDIX C

Monitoring Well Installation Record; Monitoring Well Completion Images; Monitoring Well/Stream Gauge Survey Data

APPENDIX D Water Quality Analysis Report

APPENDIX E Hydraulic Conductivity Analysis

APPENDIX F Staff Gauge Completion Images

APPENDIX G Surface Water and Groundwater Hydrographs

APPENDIX H Stream Flow Transect Images and Discharge Profile

APPENDIX I Surface Water Sampling Locations Images

1.0 INTRODUCTION

This report presents the results of an initial phase of hydrogeological and hydrological site investigations to provide the data necessary to support an Environmental Impact Assessment (EIA) for the AGS Mine Project (the Project), a proposed fluorite mine located on the Burin Peninsula 1 km south of the Town of St. Lawrence, Newfoundland (Figure 1), owned by Canada Fluorspar (NL) Inc. (CFI).

2.0 SCOPE OF WORK

CFI retained Golder Associates Ltd (Golder) to carry out these investigations. The scope of work is outlined in Golder's Hydrogeology field work – Memorandum dated October 1, 2014 and can be summarized as follows.

- Limited hydrological measurements and limited sampling of surface water and groundwater.
- For the purpose of developing this program we have assumed a general outline of the surface mine as shown on Figure 2; wherein Grebes Nest pond would be removed during mining and John Fitzpatrick Pond to the north and Upper Island Pond to the east would not be disturbed.
- Thus the focus of this program is the hydrogeological and hydrological conditions in the vicinity of these ponds located immediately down gradient of the assumed surface mine footprint.

3.0 BACKGROUND

The granite hosted veins have been operated by several owners over the past seven decades; before 1957 by the St. Lawrence Corporation and between 1940 and 1978 by Alcan. During the period 1979 to 1984 the mine was idle until operation was resumed in 1986 by St. Lawrence Fluorspar Limited, a subsidiary of Minworth. The mine has been out of operation since 1991 (Scott, 2009).

The site is a former Aluminum Company of Canada (ALCAN) fluorspar mine which closed down its operations in 1977. Limited production was reported between 1986 and 1991 by St. Lawrence Fluorspar.

The mineralized rock at the AGS vein is hosted in meta-sediments and rhyolites, in a ratio of approximately 70:30 meta-sediments to rhyolite that are variably fractured with some fine-grained intrusive(s) of granitic composition (i.e. rhyolites). The mineralized zone is subvertical with thicknesses ranging from about 3 to 25 metres (m). Groundwater levels are reported to be close to ground surface and drill water circulation is lost close to surface in many boreholes. Drillers report some indication of drill water reporting to surface at nearby boreholes prior to these being grouted. Further east, the previously mined deposits comprising the Tarefare, Director and Blue Beach veins, are hosted predominantly in granites with limited occurrences of meta-sedimentary rocks. These mines were each reported to have groundwater inflows of about 2,000 to 3,000 gallons per minute (gpm).

In parallel, Golder has completed water quality sampling at various water courses and streams at the Project site. Several of the groundwater monitoring installations were completed to integrate the assessment of groundwater / surface water interactions.

4.0 FIELD INVESTIGATION

This phase of the program comprises the limited assessment of baseline hydrogeological, limited hydrological conditions and baseline water quality. It can be summarized as follows.

- Four (4) test pit excavation of overburden materials, completed with 38.1 millimetres (mm) Inner diameter (ID) standpipes placed in the backfill.
 - Soil sampling for grain size analysis from test pit samples.
- Borehole drilling and rock core logging at four (4) locations adjacent to the test pits completed with ID 38.1 mm standpipe shallow bedrock monitoring wells.
- Well development, water level measurements, hydraulic response (slug) testing at all 8 monitoring wells.
- Hydraulic response (slug) testing and pumps testing at two existing exploration boreholes.
- Completion of three river staff gauge installations.
- Water quality sampling at 8 streams and 4 ponds.
- Groundwater sampling from 4 monitoring wells and two exploration boreholes (open holes).

Monitoring well, staff gauge locations along with surface water sampling locations are shown on Figure 1. A summary of monitoring well details is provided in Table 1. Borehole logs are provided in Appendix A.

The test pit and borehole locations were selected according to the assumed footprint of a possible open pit. The test pits were excavated to refusal. The shallow drilling depths of 3 m into rock was with specific purpose to compare overburden and near surface bedrock water levels and water quality for hydraulic connection and gradients.

Well ID	GPS Easting WGS84	GPS Northing WGS84	Hole Diameter (mm) Or test pit	Well Depth (mbgs)	Screen Top (mbgs)	Top of Bedrock	Screened Geologic Unit	Water Level (mbgs)	Vertical Gradient (m/m)	
MW14-01A	617,458	5,195,561	96	6.4	4.9	6.8	Overburden 0.28		0.03	
MW14-01B	617,465	5,195,550	Test pit	1.9	0.4	-	Overburden	0.41	-0.03	
MW14-02A	617,096	5,196,293	75.7	8.5	7.0	4.8	Meta-sediments	2.90		
MW14-02B	617,101	5,196,293	Test pit	1.8	0.3	-	Overburden	0.74	0.32	
MW14-03A	616,285	5,196,552	75.7	5.5	4.0	2.4	Meta-sediments	0.60		
MW14-03B	616,284	5,196,552	Test pit	1.8	0.3	-	Overburden	0.14	0.12	
MW14-04A	615,673	5,196,695	75.7	6.4	4.9	2.0	Meta-sediments	0.49	0.49	
MW14-04B	615,671	5,196,693	Test pit	1.6	0.1	-	Overburden	0.03	0.10	

Table 1: Monitoring Well Summary Details

Note: "A" denotes well in borehole and

"B" refers to well in test pit

The following subsections provide details on the rationale, methodology, and results of the field investigation.

4.1 Rationale

The field investigation was developed to support the estimate of groundwater inflows to the proposed AGS mine and the assessment of effects on the surface environment.

We understand the mining concept being developed will likely comprise:

- Shallow surface mining with the later development of an underground mine; or
- Underground mining only.

Given that the hydrogeological program to assess inflows and environmental effects will be quite different for these two mining concepts, we have proposed a staged program with the Phase 1 program focusing on information requirements generally applicable to both mining concepts with a later phase of the program tailored more specifically the proposed mining plan when developed.

The Phase 1 program was established to assess baseline hydrogeological conditions generally at the assumed perimeter of the surface mine footprint, the limited hydrogeology studies were conducted in the following areas:

- At the assumed perimeter of the surface mine footprint (MW14-4, MW-14-3, PGS-93b, PGS-124). See Figure 2.
- In the vicinity of John Fitzpatrick Pond and Upper Island Pond located immediately down-gradient of the assumed surface mine footprint (MW14-1, MW14-2).

In order to assess the interaction of the surface water features with the shallow table and to augment the bioscience work program, we have included:

- The installation of three staff gauges and collection of flow measurements in local streams at locations shown on Figure 1.
- Limited hydrological sampling of surface water bodies WQ STA-1, WQ STA-7, WQ STA-3, WQ STA-4, WQ STA-8, and WQ STA-9, shown on Figure 1.
- Due to overlapping aquatic and water quality programs with this Phase 1 program, additional sampling was carried out at the following locations: WS-2, WS-5, WS-10, WQ STA-5, WQ STA-6, and WQ STA-2.

In order to assess these areas, a total of four well clusters consisting of two monitoring wells ("deep" – A-series and "shallow" – B-series) were completed, resulting in total of 8 wells (Figure 1). Table 1 provides a specific location and construction detail for each well cluster. Prior to drilling, each location was first visited and approved by CFI staff.

4.2 Methodology

4.2.1 Test pit Excavation and Borehole Drilling

Test pit and borehole drilling activities occurred between October 20, 2014 and October 24, 2014. Excavation and drilling was undertaken by Springdale Diamond Drilling contractor, an affiliate of Springdale Forest Resources, Inc. Test pit excavation of overburden materials and adjacent borehole drilled to approximately 3 m

into rock were completed; for a total of four test pits and four adjacent boreholes. All test pit excavation and drilling activities were overseen by a Golder field geologist.

Test pit locations were selected in the field to avoid shallow depths to rock so as to characterize the overburden materials below the organic soil cover. Test pits were excavated by Springdale Drilling using a CAT 320B backhoe. The pits ranged in depth from 1.6 to 2.0 m and were in back filled with cutting the same day. Overburden samples were recovered from the excavator bucket and examined at surface and one sample of granular material from each excavation submitted for grain size analysis.

Boreholes were drilled by Springdale Drilling using a track mounted, Duralite 800 diamond drill. The boreholes ranged in depth from 5.5 m to 8.8 m with a total of 27.8 m drilled. Borehole was drilled with NQ rods with a nominal hole diameter of approximately 76 mm. A continuous core of bedrock was obtained by Springdale Drilling. After drilling, the core was stored in CFI core shack and logged and photographed by Golder.

Springdale Drilling used a biodegradable drilling additive, called Poly-Plus, while drilling the boreholes to raise drill cuttings and to maintain stability of borehole wall during drilling. Immediately after drilling to depth, fresh and clean water was circulated for about 30 minutes to wash any additive out of the borehole.

Borehole logs are presented in Appendix A. Test pit logs and images are presented in Appendix B.

4.2.2 Monitoring Well Installation

All well installations were completed by Springdale Drilling and overseen by a Golder field geologist. A total of four monitoring well clusters consisting of two holes ("deep" – A-series and "shallow" – B-series) were completed, resulting in a total of eight monitoring well standpipe piezometers.

A typical well installation involved the following procedure:

Following the excavation of the test pit a standpipe piezometer was placed into the excavation backfilled with nominal compaction of the excavated materials. The "shallow" – B-series monitoring well consists of a 1.5m long PVC well screen (number 10 slot size, 38.1 mm diameter), with riser pipe extending about 1 m above ground surface.

At the completion of the drilled borehole, the NQ rods were removed and a 1.5 m long PVC well screen (number 10 slot size, 38.1 mm diameter), was lowered down the borehole. About 1 m of riser pipe was left extending above ground surface. Silica filter sand was used to fill the annular space to a selected depth above the screen, followed by bentonite pellets (hole plug) and completed with an above ground protective steel casing. With the exception of MW14-01, the HQ surface casing was left in the borehole to provide an anchor for the protective surface casing.

Monitoring well installation record along with photos of completed well installations is presented in Appendix C.

4.2.3 Well Development

The screened intervals in each of the B-series monitoring well were developed by air-lifting for about one hour to improve the hydraulic connection between the well intake screen and the surrounding host unit by removing sediment and residual materials from drilling and well installation activities.

The water level in the well was allowed to rise to a static condition following to well development (air lift), whereupon a depth to water measurement was recorded.

A full round of stabilized groundwater levels were manually measured by Golder on November 1, 2014. Water levels are presented in Table 1. A water level probe was utilized for all water level measurement events.

4.2.4 Groundwater Sampling

Groundwater samples were collected from the 4 monitoring wells installed in bedrock and the 2 exploration boreholes for a total of six groundwater sample suites. With the exception of MW14-04A which was sampled with a disposable bailer, samples were collected using air lift techniques.

Groundwater quality sample were collected from monitoring wells:

- MW14-01A, MW14-02A, MW14-03A, immediately following well development on October 24, 2014.
- MW14-04A, on November 4, 2104. The following day after well was purged dry.
- PGS-93b, and PGS-124, immediately following constant rate pump test on October 25 and 26, 2014.

Field measurements were collected at the time the sample was taken with a pH/temperature metre and a conductivity/temperature metre. The results are outlined in section 5.

Sampling was conducted in accordance with standard practices to obtain a representative sample and to avoid cross contamination between monitoring locations. Chemical analysis was carried out by Maxxam and one blind duplicate sample was taken for QA/QC purposes.

The groundwater samples were analyzed for a general suite of inorganic parameters including pH, conductivity, major ions and heavy metals, TDS, TSS, nitrates, nitrites and ammonia following the same suite as for surface water. The test results were compared to the Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, 2014. These analytical results will provide a limited and general characterization of the bulk hydrogeological conditions of the rock encountered over the length of each borehole.

Maxxam's Laboratory water quality analysis report can be found in Appendix D.

4.2.5 Monitoring Well Coordinates

Well locations were obtained Golder using a hand-held Garmin Geographical positioning Device Model No 60Sx. The average accuracy of this device is within 3 m (Garmin, 2014). Well locations were surveyed on November 19, 2014, by Edward and Associates Ltd. under contract with Canada Fluorspar Inc. Well coordinates are presented in Table 1 and Appendix C and well locations shown in Figure 1.

4.2.6 Hydraulic Conductivity Testing

Hydraulic conductivity testing is used to characterize groundwater flow through soil or rock. Hydraulic conductivity (K) describes the ease with which groundwater can move through pore spaces or fractures. Localized estimates of hydraulic conductivity may be obtained through the analysis of in-situ hydraulic response tests or pumping tests of groundwater wells.

In-situ rising or falling head tests were completed at each well by Golder to estimate the hydraulic conductivity of screened units at the site. In some cases multiple (confirmatory) tests were performed. The hydraulic testing involved establishing a static water level depth and then instantaneously removing or adding a known volume (a "slug") to the well to observe the hydraulic head response over time. Recovering water levels were measured using automatic groundwater data loggers set to record time, pressure and temperature at a time interval selected based on the rate of recovery during well development. Water levels were measured manually to determine the end of the test and the data logger removed and downloaded. The hydraulic response data was processed in the software package Aqtesolv Pro (HydroSOLVE Inc., 2014) and interpreted using the Hvorslev mathematical solution (Hvorslev, 1951). Details of these tests are presented in Appendix E.

The open hole pumping tests were conducted in two exploration holes that were at least 150m deep, with the pump set no deeper than 15m downhole. Exploration hole pGS-93b (GS-14-113) was pumped at approximately 2 L/min for about 75 minutes. While exploration hole pGS-124 (GS-14-94) was pumped at approximately 9 L/min for about 140 minutes. These short-term pumping tests were evaluated using the Thiem (1906) solution for steady-state flow to a well, which is a high-level hydrogeological method used to provide preliminary quantitative characterization. Details of these tests are presented in Appendix E.

4.2.7 Surface Water Monitoring (Staff Gauges and Stream Flow Measurements)

The surface water monitoring program was undertaken to assess the interaction of the surface water features with the shallow groundwater table and to augment the bioscience work program. The limited baseline surface water program consisted of two components:

- 1) Water level monitoring at the outlet from each pond (Fitzpatrick Pond, Upper Island Pond, and un-named pond) via periodic staff gauge measurements.
- 2) Field stream surveys for stream characterization.

The locations of the surface water monitoring have been selected to coincide with the monitoring locations in the aquatics program as appropriate.

4.2.7.1 Staff Gauge

Three staff gauges SW-1, SW-2, and SW-3 with locations coinciding with surface monitoring stations WQ STA-1, WQ STA-3, and WQ STA-9 were installed on October 29, 2014, by Golder field staff in local streams at locations shown on Figure 1. A data logger was installed in the stream, adjacent to each staff gauge to develop a continuous record of water levels and water temperatures at these locations. Data loggers were installed on October 29, 2014, before streams begin freezing.

Each station involved stakes (T-Posts) installed at the approximate channel mid-point with a pressure transducer data logger (Schlumberger DIVER DI501) attached near the base of the T-Posts using a karabiner and eye bolt, and a stainless steel cable, to secure the data logger at a fixed position above the channel bed. A level survey was completed to reference these stations. A removable acrylonitrile butadiene styrene (ABS) plastic casing was fitted to the T-Posts at both stations to prevent water level disturbance (by turbulence and/or debris).

Photographs of staff gauge completion are presented in Appendix F and surface water hydrographs are shown in Appendix G.

4.2.7.2 Stream Flow Measurements

Stream surveys were carried out by Golder field staff, with the assistance of CFI personnel on October 31, 2014.

The stream flow surveys were carried out the following surface monitoring stations, which were established downstream of the corresponding Ponds (Figure 1):

- WQ STA-1: The surface monitoring station is located about 86 m downstream of Upper Island Pond. One transect, or cross-section, located 13 m downstream of staff gauge SW-1 was surveyed.
- WQ STA-3: The surface monitoring station is located about 36 m downstream of John Fitzpatrick Pond. Two transects, were surveyed: One transect positioned at staff gauge SW-2 and the second transect at approximately 18 m downstream of staff gauge SW-2.
- WQ STA-9: The surface monitoring station is located about 41 m downstream of the pond inlet. Two transects, were surveyed: One transect positioned at staff gauge SW-3 and the second transect at approximately 3.4 m downstream of staff gauge SW-2.

Streamflow measurements were estimated using the velocity-area method. A tape measure was extended the length of a representative cross-section during measurement. Streamflow velocities and corresponding water depths were collected at various intervals along the cross-section (0.1 m to 0.2 m). Current velocities were recorded using a Flo-Mate2000 Electromagnetic Flow Meter (EM Flow Meter) at 60% of the total water depth (for water depths less than 0.50 m) or at the 20% and 80% depths and then averaged (for water depths greater than 0.50 m). The sum of the flows in all segments yields the total flow at the station at the time of each measurement. Stream flow transect photos and discharge calculations are presented in Appendix H.

4.2.8 Surface Water Sampling

Surface water quality sampling was conducted from November 3 to 4, 2014 to provide a limited baseline of the existing surface water quality against future potential impacts to the surface water as a result of the proposed mining operations. As part of the hydrogeological phase 1 investigation, sampling occurred at six locations: WQ STA-1, WQ STA-7, WQ STA-3, WQ STA-4, WQ STA-8, and WQ STA-9. Due to overlapping aquatic and water quality programs, additional sampling was carried out at the following locations: WS-2, WS-5, WS-10, WQ STA-5, WQ STA-6, and WQ STA-2. Sampling locations are shown on Figure 1 and sampling location images are presented in Appendix I.

Field measurements were collected at the time sample was taken with a pH/temperature metre and a conductivity/temperature metre. The results are outlined in Section 5.

Sampling was conducted in accordance with standard practices to obtain a representative sample and to avoid cross contamination between monitoring locations. As with the groundwater sampling, chemical analysis was carried out by Maxxam.

The surface water samples were analyzed for a broad suite of inorganic parameters including pH, conductivity, major ions and heavy metals, TDS, TSS, nitrates, nitrites and ammonia following the same suite as for groundwater. The test results were compared to the Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ), Health Canada, 2014.

Maxxam's Laboratory water quality analysis report can be found in Appendix D.

4.2.9 Long Term Groundwater Monitoring

Golder installed pressure transducer data logger (Schlumberger DIVER DI502) in four monitoring wells completed in bedrock and two exploration boreholes to collect a continuous record of water levels: MW14-01A, MW14-02A, MW14-03A, MW14-04A PGS-93a and PGS-124. Loggers were installed in their corresponding wells on November 1, 2014, and then removed from the well on November 20, 2015, the data uploaded and then placed back in the corresponding wells the following day. A barometric pressure data logger (Schlumberger DIVER DI500) was installed inside the protective casing of MW14-01A to provide atmospheric pressure compensation for the water level loggers.

The loggers were set to record data every hour, which allows for more than a year data collection between data logger downloads. Given that loggers can sometimes fail, it is advisable to download the loggers quarterly as access allows.

Daily precipitation and temperature records for the monitoring period were obtained from the Environment Canada meteorological station, which is located approximately 1 km east of the town of St. Lawrence. Results are presented along with the hydrographs in Appendix G.

5.0 RESULTS

5.1 Physiography

The Project topography is generally controlled by underlying bedrock geology and the effects of glaciation and associated soil deposits, ranging from 80 m above sea level (masl) to over 150 masl (Figure 3). The majority of the area is hummocky with small ponds and drainage systems with relatively low gradients over much of their lengths.

The area surrounding the Site is covered with hummocks of grasses, many ponds and drainage brooks. There are abundant outcrops and peat bogs in the low lying areas.

With the exception of the Project access road and exploration drill roads, the surrounding countryside is accessible only by footpaths and/or All-Terrain Vehicle (ATV).

5.2 Climate

The Project area climate is marked by foggy, cool summers and short relatively moderate winters. The mean annual temperature is approximately 5.5°C. The mean summer temperature is 11.5°C and the mean winter temperature is -1°C. The mean annual precipitation ranges 1200 to over 1600 mm (Transport Canada, 2010).

Environment Canada meteorological station, which is located approximately 1 km east of the town of St. Lawrence, and assumes to be the nearest source of suitable precipitation data. Meteorological records are available-online:

http://climate.weather.gc.ca/climateData/dailydata_e.html?timeframe=2&Prov=NL%20%20&StationID=45567&dlyRange =2006-12-01|2014-09-18&Year=2014&Month=7&Day=18

The monthly mean precipitation normal for St. Lawrence are provided in Table 2-1. Based on 2014 precipitation data, a total of 1350.3 mm of precipitation fell up to November 23rd. Precipitation occurs all year round as rain with some snow in winter. The long term average rainfall (1971-2000) over the area was 1564.1 mm ranging between 1000 mm and 1650 mm per year (Scott, 2009).

Table 2-1: Monthly Mean Total Precipitati	on for the Environment Canada meteorological station near
St. Lawrence, NL	

Month	Total Precip. (mm)	Days Missing
Jan-14	227.9	1
Feb-14	118.3	0
Mar-14	148.8	0
Apr-14	91.3	1
May-14	143.2	0
Jun-14	131.1	0
Jul-14	86.3	0
Aug-14	108.7	0
Sep-14	31	0
Oct-14	119	1
Nov-14	144.7	8
Dec-14	0	31

Station	Code ¹	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Mean Annual
St. Lawrence	А	140.2	121.6	122.7	118.9	118.5	133.1	109.4	106.1	157.4	157.4	146.4	132.4	1564.0

Table 2-2: Monthly Mean Total Precipitation (mm) for the Environment Canada Meteorological Station

Note:

1. The minimum number of years used to calculate normals are indicated by a "code" defined as:

- "A": No more than 3 consecutive or 5 total missing years between 1971 to 2000.

Source: Environment Canada Meteorological Data website, date modified 08/08/14.

5.3 Water use

The St. Lawrence potable water supply system draws from the intake (WS-S-0699) in the St. Lawrence River located approximately 7 km northeast of the AGS Site, as shown on Figure 4. The nearby communities of Lawn and Little St. Lawrence obtain their potable water from intakes at Brazil Pond and Butler's Brook, respectively. Brazil Pond intake (WS-S-0406) is located approximately 9 km northwest of the AGS Site while two intakes exists for Butler's Brook (WS-S-0421) located about 7 km east of the AGS Site (refer to Figure 4).

Community	LGP Number	Serviced A	SA Number	Source Name	WS Number
Little St. Lawrence	2885	Little St. Lawrence	Sa-0433	Butler's Brook	WS-S-0421
Little St. Lawrence	2885	Little St. Lawrence	Sa-0433	Butler's Brook	WS-S-0421
Lawn	2745	Lawn – PWDU	SA-0936	Brazil Pond	WS-S-0406
Lawn	2745	Lawn – PWDU	SA-0936	Brazil Pond	WS-S-0406
Little St. Lawrence	4435	Little St. Lawrence – PWDU	SA-0910	St. Lawrence River	WS-S-0699
Little St. Lawrence	4435	Little St. Lawrence	SA-0724	St. Lawrence River	WS-S-0699

Source data

5.4 Geology

5.4.1 Regional Geology

The St. Lawrence fluorspar deposits are situated within the Avalonian belt of the Appalachian mountain system which is more than 200 km wide on land and extends more than 400 km offshore. The bedrock is characterized by widespread sections of thick volcanic rocks and marine to terrestrial clastic sedimentary rocks of Pre-Cambrian age. These are locally overlain by predominantly shallow marine sedimentary rocks of Cambrian age. Both sequences are locally overlain with angular unconformity by Carboniferous age sedimentary and volcanic rocks. There are several Late Precambrian and Late Devonian to Carboniferous granite intrusions throughout the Avalonian belt system in eastern Newfoundland (Scott, April 2009).

The geology of the area is described in detail by the Mineral Development Division of Newfoundland and Labrador's Department of Mines and Energy (Scott, 2009).

5.4.2 Site Geology

Geological reports and maps indicate that the Site is underlain by gravel and sand deposits of glacial outwash and fluvial origin and Till veneer (refer to Figure 3). The geological sequence in the overburden typically consists of a thin layer (~1m) of surficial organic soils, underlain by glacial till comprised of silty sand and gravel with varying percentages of cobbles and boulders. Based on the results of the subsurface investigation, superficial material is observed to be up to 5 metres in thickness and absent in places where the bedrock is exposed.

Shallow rock types observed at the AGS Site are typically meta-sedimentary rocks and some fine-grained intrusive(s) of granitic composition (i.e. rhyolites). These rocks form part of the Pre-Cambrian Burin Group which is comprised of sedimentary and meta-sedimentary rocks and subordinate volcanic flows consisting of pillowed and massive basaltic and andesitic flows and aquagene tuffs (Howse A, et all, 1983).

Outcrops of felsic rocks of the intrusive St. Lawrence batholith were observed at the AGS Site but only metasediments were intercepted in the investigation boreholes. The St Lawrence batholith is comprised of leucocratic granites (Scott, Oct. 2009). Figure 5 shows the bedrock geology which includes a 200 to 500 m wide belt of Plutonic Felsic rock consisting mainly of rhyolite of the St. Lawrence batholith, trending northwest through Gerbes Nest Pond and flanked by siliciclasitic marine shale or meta-sediments of the Burin Group.

Geological cross section along NE-SW direction is presented in Figure 6. The fluorite veins at the AGS Site are hosted in meta-sediments and are genetically and spatially associated with the rhyolite sills which form part of the St. Lawrence batholith (refer to Figure 6) As shown in Figure 6, the mineralized zone, veins, are subvertical and tend to follow fault system.

St. Lawrence Fluorspar occurs as a hydrothermic deposit in the fissures in the fine-grained intrusives of granitic composition. The veins were reported to persist for many hundreds of metres with lengths ranging from less than 100 m to over 2,100 m and thicknesses of several metres, averaging 11 m (Harris A, et al. 1999).

5.4.3 Borehole Stratigraphy

Test pit log records (including test pit images) and gradation curves are provided in Appendix B.

Surficial soil conditions observed during excavation of test pits are summarized as follows:

- A layer of organic soil ranging in thickness from 0.5 to 1.0 m was encountered in all four test pits. The organic soil comprised of dark brown silty clay with rootlets, moss and/or peat. Test pit, TP-01, also contained some cobbles and sparse boulders.
- This was underlain by glacial outwash deposits (observed in TP-03 and TP-04) composed of varying proportions of sand and gravel (~30% to 90% gravel), with less than 10% silt. The unit thickness varied between 1 to 1.5 m.
- In test pits, TP-01 and TP-02, a compact till was encountered underlying the organic soil. The till layer is at least 1 mr thick and contains 30% to 80% matrix (sand size or finer), and 80% to 20% clasts (greater than sand size).

Gradation analysis carried out on 4 representative samples generally confirmed the interpretation of the main stratigraphic units. Laboratory testing used the Unified Soils Classification System (USCS) to label the soil. The till material obtained from TP-01 and TP-02 labelled SM contained 32.6% to 40.4% gravel, 40.8% to 41.6% sand and 18.8% to 25.8% fines (silt/Clay). The till material obtained from TP-03 and TP-04, labelled GP-GM and GW respectively, contained 67.4% to 68.9% gravel, 23.8% to 29.6% sand and 1.5% to 8.5% fines (silt/Clay).

It should be noted that both TP-03 and TP-04 had a visually estimated larger rate of groundwater seepage into the pit than TP-01 and TP-02. This can be attributed to the coarser grained material exposed.

Borehole log records, including rock core photos and geophysical logs of selected exploration wells are provided in Appendix A.

The bedrock geology at the four new monitoring wells consisted of Grey-green, fresh, medium strong, Metasediment rock with weak chlorite alteration. The depth to top of bedrock ranges from 2.0 m to 6.8 m below ground surface.

At borehole BH14-01, large cobbles and boulders in the surficial material made drilling difficult and drilling was terminated after drilling 20 centimeters (cm) into bedrock. Bedrock was observed to contain numerous fractures within the first 2 m with fractures becoming less frequent with depth. The Rock Quality Designation (RQD) presented in the borehole field logs is a quantitative index of the rock quality with 100% RQD representing the highest quality (little to no fractures). The RQD values for the first 1.5 metre run in boreholes BH14-02, BH14-03, and BH14-04 are 50%, 77%, and 88%, respectively.

The geophysical log results for PGS-93b and PGS-124 are provided on the borehole records in Appendix A. The logs generally confirmed the stratigraphy and identified depth of large fractures along with fracture frequency. There significant rock fractures effect on the caliper and televiewer log response at 6.06 and 7 metres below surface and in the very near surface in borehole PGS-93b. Similarly, log shows significant rock fractures in borehole PGS-124, from 5.6 to 13.6 metres below surface.

5.4.4 Hydraulic Response Testing

This section provides a summary of the shallow overburden and bedrock hydraulic conductivity in the area of the AGS mine. These hydraulic conductivities are from 8 single well response tests and also from 4 grain size analysis which were completed that were also used to determine the hydraulic conductivity via the Hazen method.

The hydraulic parameter used to characterize groundwater flow through soil or rock is hydraulic conductivity. Hydraulic conductivity (K) describes the ease with which groundwater can move through pore spaces or fractures. Localized estimates of these parameters may be obtained through the analysis of in-situ hydraulic response tests, or slug tests, of groundwater monitoring wells.

In-situ rising and falling head tests were completed at each monitoring well to estimate the hydraulic conductivity of screened units at the site. In some cases multiple (confirmatory) tests were performed. The hydraulic testing involved establishing a static water level and then instantaneously removing or adding a known volume (a "slug") to the well to observe the water level response over time. Recovering water levels were measured using data loggers set to record pressure at a 0.5 or 10 second time interval. In addition, water levels were manually measured to determine the end of the test; afterwards the data logger was removed and the data uploaded to a computer. Golder conducted slug testing on the four monitoring wells installed in October 2014 and in two existing exploration boreholes. The hydraulic response data was processed in the software package Aqtesolv Pro (HydroSOLV Inc., 2014) and interpreted using the Hvorslev Solution.

The pumping test was conducted for the two exploration holes PGS-93b and PGS-124. Short-term pumping tests were evaluated using the Thiem (1906) solution for steady-state flow to a well, which is a high-level hydrogeological method used to provide preliminary quantitative characterization. To account for uncertainties in the length of the borehole that contributes flow (b) and the radius of influence from pumping (R), these parameters were varied in a sensitivity analysis. Corrections for borehole inclination were also used to test the sensitivity of the results. Estimates of hydraulic conductivity were corrected for input parameters and associated estimates of K for PGS-93b and PGS-124 are presented in Table 3.

Parameter	Borehole PGS-93b	Borehole PGS-124
Flow Rate (Q), in m ³ /s	3.3*10 ⁻⁵	1.5*10 ⁻⁴
Constant Head Drawdown (s), in m	0.93	4.8
Radius of Well (R_w), in m	0.03785	0.03785
Borehole Length Contributing Flow (b), in m	10 – 20	10 – 20
Radius of Influence (R), in m	1 – 100	1 – 100
Hydraulic Conductivity (K), in m/s	8*10 ⁻⁷ – 4*10 ⁻⁶	7*10 ⁻⁷ – 4*10 ⁻⁶

Table 3: Input Parameters and Hydraulic Conductivity Estimates

After cessation of airlifting / pumping, there were several occasions where water was heard to be entering the borehole from above, possibly at the base of the surface casing. If this is the case, and water was recharging the borehole from the bedrock / overburden interface, the above hydraulic conductivity estimates would be invalid.

The core logging and geophysics records shown in Appendix A, indicate that the permeability of the bedrock is primarily related to open, near surface, bedding/joint partings within the rock. Therefore, the hydraulic conductivity values determined during slug tests are considered to primarily reflect a secondary permeability along the open bedding/joint partings.

Table 4 summarizes the hydraulic conductivities estimated from the results of the rising and falling head tests, the pumping test of the two exploration holes. Table 5 summarizes the Hazen method hydraulic conductivities estimated from the results of the grain size analysis. The complete pumping test and rising head test results can be found in Appendix E.

Table 4: Hydraulic Conductivity Estimates

Borehole ID	Screened Material	Single well response test Estimated Hydraulic Conductivity (m/s)	Pumping test Estimated Hydraulic Conductivity (m/s)
MW14-01a	Gravel and cobbles	2 x 10 ⁻⁵	-
MW14-02a	Bedrock	2 x 10⁻⁵	-
MW14-03a	Bedrock	5 x 10⁻⁵	-
MW14-04a	Bedrock	6 x 10 ⁻⁹	-
PGS-93b	Bedrock	-	8 x 10 ⁻⁷ to 4 x 10 ⁻⁶
PGS-124	Bedrock	-	7 x 10 ⁻⁷ to 4 x 10 ⁻⁸

Borehole ID	Screened Material	Hazen Method Estimated Hydraulic Conductivity (m/s)
MW14-01b	SAND & GRAVEL; some silt (SM)	3 x 10⁻ ⁶
MW14-02b	Gravelly; silty SAND (SM)	2 x 10 ⁻⁷
MW14-03b	Sandy GRAVEL; trace silt (GP-GM)	2 x 10 ⁻⁴
MW14-04b	Sandy GRAVEL; trace silt (GW)	6 x 10 ⁻³

Table 5: Hydraulic Conductivity Estimates based upon Hazen Method

5.4.5 Groundwater Elevations

Top of standpipe at each groundwater monitoring well location were surveyed and ground surface elevation calculated. Water levels in each monitoring well were recorded on November 1, 2014 after well installation and well development.

The reference and ground surface elevations of the monitoring wells are listed in Table 9. These elevations were used, along with depths to water measured by Golder, to calculate groundwater elevations.

Monitoring Well ID	Top of Pipe Elevation (m asl)	Ground Surface Elevation (m asl)	Sample Date (dd/mm/yy)	Water Level (m bgs)	Groundwater Elevation (m asl)
MW14-1A	113.534	112.924	1/11/14	0.28	112.644
MW14-1B	113.918	112.768	1/11/14	0.41	112.358
MW14-2A	111.874	111.074	1/11/14	2.90	108.174
MW14-2B	111.976	110.726	1/11/14	0.74	109.986
MW14-3A	119.554	118.564	1/11/14	0.06	118.504
MW14-3B	119.554	118.304	1/11/14	0.14	118.164
MW14-4A	94.857	93.887	1/11/14	0.49	93.397
MW14-4B	94.915	93.515	1/11/14	0.03	93.485
PGS-93b	123.190	122.80	1/11/14	3.43	119.761
PGS-124	123.347	122.567	1/11/14	1.76	120.807

Table 6: Groundwater Elevations

Note:

m asl = metres above sea level

m btop = metres below top of pipe

Groundwater levels in monitoring wells were observed to be near ground surface and groundwater levels of the ponds likely represent groundwater levels to a certain extent.

5.4.6 Groundwater Flow Directions

Insufficient data were collected to determine the deep ground water flow directions. The working assumption is that shallow bedrock flow directions are same as surface water flows (Figure 7).

5.4.7 Surface Water Flow Monitoring

Limited surface water flow monitoring was conducted at a total of 3 locations as described in Section 4 and shown on Figure 1. The instantaneous flow measurements were compiled to provide a baseline characterization of the stream flows at the AGS Site.

Stream flow survey data is contained in Appendix H which includes discharge estimates at five transects locations. Table 7 presents field measured water level at staff gauge and flow at the monitoring stations, during the October 31, 2014 monitoring period.

Station	Staff Gauge (m)	Flow (L/s)
WQ STA-1	0.44	30
WQ STA-3	0.38	77
WQ STA-9	0.32	3

Table 7: Measured Water Level and Stream flow

Note: 1. Water Flows based on October 31, 2014, survey.

Monitoring locations WQ STA-1, WQ STA-3 and WQ STA-9 are all located downstream of a lake or water body. A lake/water body can cause a decrease (attenuation) in flow from upstream to downstream depending on the available storage within the water body; therefore, the flows measured at WQ STA-1, WQ STA-3 and WQ STA-9 may be influenced by the upstream lakes.

5.4.8 Shallow groundwater-surface water interaction

The majority of the bedrock within the study area contains little if any primary permeability. In crystalline rock, the primary porosity may be as low as 0.05% while a typical sand aquifer usually has a porosity of 30% or greater (Novakiowski, 2000). Therefore, bedrock with secondary permeability through fracture systems generally predominates. Water levels shown in Table 1 indicate a downward gradient from the shallow groundwater system (overburden) to the fractured bedrock groundwater system.

Groundwater levels are fairly close to ground surface in both the bedrock and overburden (refer to Table 1). The shallow aquifer system will be largely controlled by surface runoff and local recharge.

Hydrographs for the groundwater monitoring wells (MW14-01A, MW14-02A, MW14-03A, and MW14-04A) and surface water stations (WQ STA-7, WQ STA-3, and WQ STA-9) are presented in Appendix G for the period of November 1 to 20, 2014. Data loggers were re-installed in their corresponding wells on November 21, 2014, in continuation with monitoring program. The graph also plots daily precipitation, using data provided by the Environment Canada meteorological station.

With reference to groundwater hydrograph figures in Appendix G, the following is noted:

- Groundwater fluctuations generally reflect climatic conditions suggesting hydraulic connection between systems. Three rain events on November 2, 7, and 17 had a direct correlation with peaks in the groundwater system. Further evidence of the hydraulic connectivity between shallow bedrock aquifer and highly permeable overburden aquifer system is likely the result of the abundant fractures from the shallow bedrock observed within the top 10 m of the geophysics logs (refer to Appendix A). In order to quantify the magnitude of the hydraulic gradient on the bedrock groundwater system, further testing is necessary through pump test.
- The highest influence occurred in monitoring well PGS-124 with a groundwater elevation spike of about 0.75 m and lowest groundwater elevation spike in MW-02A. Topography may be driving groundwater flows in which groundwater flows from higher-elevation recharge to lower-elevation discharge areas resulting in higher groundwater spikes following a storm event.
- The exception of MW14-02A, all hydrographs for monitoring wells show that there is a slight downward groundwater trend during non-rain events.
- Large rhythmic fluctuations was observed in the hydrograph fro well PGS-93b (Figure G-2). These groundwater fluctuations are not observed in any of the other monitoring wells and are likely due to a malfunction of the data logger.
- Based on the observed groundwater elevations at the monitoring wells located near ponds where water elevation in the pond is near that of the groundwater, the pond appears to provide a moderate hydraulic buffer that can influence local groundwater levels.

With reference to surface water hydrograph figures in Appendix G, the following is noted:

- Surface water level fluctuations are reflective of climatic conditions.
- Water levels at WQ STA-1, WQ STA-3 and WQ STA-9 showed similar responses to precipitation events. Following a 32.7 mm rainfall event on November 2, 2014 water levels at STA-1, STA-3, and STA-9, increased by 0.30m, 0.30m, and 0.24m following the start of the rain event, peaking at elevations 111.01 masl, 108.25 masl, and 116.18 masl, respectively. A smaller peak occurred on November 8, 2014, following a rainfall of 16.7 mm, resulting in water levels at STA-1, STA-3, and STA-9 peaking at 110.89 masl, 108.12 masl, and 116.11 masl. A large peak occurred on November 18, 2014, following a two day rainfall of 23.5 mm, resulting in water levels at STA-1, STA-3, and STA-9 peaking at 110.96 masl, 108.14 masl, and 116.15 masl.
- An example from Appendix G illustrating this response is shown below:

- Following precipitation events, water levels at STA-1 returned to an elevation of approximately 110.7 masl. Likewise, water levels at STA-3 typically returned to an elevation of approximately 108 masl. Water levels at STA-09 returned to an elevation of approximately 116 masl.
- 16.7 mm rainfall event on November 7 and a 23.5 mm rainfall event on November 18⁻
- Surface water level fluctuations mirrors that of the groundwater indicating that groundwater flow systems in the study area are closely tied to surface water systems.
- The close connection between surface water and groundwater, with lack of substantial storage, make groundwater levels very sensitive to dry periods.

5.4.9 Groundwater Quality

Water quality results are provided below and compared to Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ). Under Aesthetic Objectives (AO), water quality results showed elevated concentrations of colour, aluminium, iron and total manganese in deep bedrock wells. Shallow wells screened in the overburden were not sampled.

Groundwater sample collected from MW14-04A has a pH value of 6.22 which is below the guideline for drinking water of 6.5-8.5 pH units (Health Canada, 2014).

Field measurements were collected at the time the sample was taken with a pH/temperature metre and a conductivity/temperature metre. The results are shown in Table 8 and compared to laboratory results.

Station	Field Measurements		Laboratory Results		
	рН	Conductivity (mS)	рН	Conductivity (mS)	
MW14-01A	7.38	0.10	7.36	0.12	
MW14-02A	7.69	0.17	7.63	0.18	
MW14-03A	6.65	0.07	6.51	0.08	
MW14-04A	6.22	0.22	6.22	0.25	
PGS-93b	8.05	0.16	8.02	0.18	
PGS-124	6.50	0.12	6.80	0.13	

Table 8: Groundwater Quality Field Measurements

The physical quality of the water with regards to colour exceeded (SGCDWQ) acceptable concentrations of 15 true colour units (TCU) in MW14-03A and PGS-124. Colour value recorded for MW14-03A and PGS-124 is 160 TCU and 95 TCU, respectively.

Samples from all monitoring wells exceeded the 0.3 mg/L drinking water guideline for iron. Bedrock wells MW14-02A, MW14-03A and MW14-04A, open in the Meta-sediment rock, showed elevated iron concentrations above SGCDWQ, ranging from 0.49 to 15.0 milligrams per liter (mg/L). Deep exploration bedrock boreholes PGS-93a and PGS-124 showed elevated concentrations of iron of 0.58 mg/L and 39 mg/L, respectively. Iron concentrations are primarily an aesthetic objective and do not present a health concern unless in excessive concentrations.

With the exception of MW14-01A and PGS-93b, all monitoring wells exceeded the 0.05 mg/L drinking water guideline for manganese. Elevated manganese concentrations range from 0.12 mg/L to 1.1 mg/L. Manganese concentrations are primarily an aesthetic objective and do not present a health concern unless in excessive concentrations.

Samples from all monitoring wells exceeded the 0.1 mg/L drinking water guideline for aluminium. Elevated aluminum concentrations range from 0.18 mg/L to 39.0 mg/L.

5.4.10 Surface water Quality

Water quality results are provided below and compared to Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ). Under Aesthetic Objectives (AO), water quality results showed elevated concentrations of colour, aluminium, iron and total manganese.

Field measurements were collected at the time the sample was taken with a pH/temperature metre and a conductivity/temperature metre. The results are shown in Table 9 and compared to laboratory results.

Station	Field Measurements		Laboratory Results		
Station	рН	Conductivity (mS)	рН	Conductivity (mS)	
WS-2	6.00	0.10	7.29	0.099	
WS-5	6.23	0.13	7.28	0.110	
WS-10	6.11	0.06	6.50	0.055	
WQ STA-1	5.92	0.04	5.88	0.056	
WQ STA-2	5.95	0.04	6.15	0.054	
WQ STA-3	4.69	0.04	5.65	0.092	
WQ STA-4	4.76	0.02	5.65	0.052	
WQ STA-5	5.53	0.01	6.03	0.039	
WQ STA-6	5.68	0.01	6.02	0.040	
WQ STA-7	5.94	0.04	5.92	0.054	
WQ STA-8	3.94	0.04	4.98	0.053	
WQ STA-9	3.70	0.04	5.16	0.054	
Note: Highlighted results were collected as part of the Phase 1 Hydrogeological Investigation.					

Table 9: Surface Water Quality Field Measurements

Note: Highlighted results were collected as part of the Phase 1 Hydrogeological Investigation. The remainder, collected at the same time for the concurrent surface water program, are also presented for completeness.

Nine of the thirteen surface water samples collected had pH values below the guideline for drinking water of 6.5-8.5 pH units (Health Canada, 2014). Low pH values are typical of surface waters in Newfoundland and Labrador, due to large amounts of organic materials produced by bogs, swamps and boreal forest (Amec 2013). Low pH values can also be attributed to granitic rocks that tend to make groundwater slightly acidic and the lack of limestone to buffer the acidity.

The physical quality of the water with regards to colour exceeded (SGCDWQ) acceptable concentrations of 15 TCU in all surface water samples. Concentration values ranged from 31 to 160 TCU. High colour values are typical of surface waters near wetlands in Newfoundland. High levels of colour to surface runoff is contributed by wetland drainage; whereas exposed bedrock in a basin or less organic soils contribute little to no colour.

Surface samples from WQ STA-1 and WQ STA-7 out of the six WQ stations in the phase 1 study have iron concentrations of exceeded the 0.3 mg/L drinking water guideline for iron ranging from 0.52 to 0.66 mg/L. With the exception of W2, surface samples collected outside the phase 1 program showed elevated iron concentrations above SGCDWQ, ranging from 0.13 to 0.62 mg/L.

Only two surface samples from outside the phase 1 program, W5 and W10, showed elevated manganese concentrations of 0.64 mg/L and 0.75 mg/L, above the 0.05 mg/L drinking water guideline.

All surface water samples exceeded the 0.1 mg/L drinking water guideline for aluminium. The results for aluminum ranged from 0.17 mg/L to 0.61 mg/L for samples collected within the phase 1 program. The remainder of the samples showed aluminum concentrations ranging from 0.13 mg/L to 0.43 mg/L.

6.0 CLOSURE

The report presented the factual results of the Phase 1 hydrogeological investigation. We trust that this report meets your requirements. If you have any questions, please do not hesitate to contact the undersigned.

Report Signature Page

Phyllis macrindle

Phyllis McCrindle, M.Sc., P.Geo. Associate, Senior Hydrogeologist

Mare Rougier

Marc Rougier, P.Eng (NFLD) Principal

ADI/PMMC/MR/lag

\\golder.gds\gal\Montreal\Actif\2014\1250\1407707 Canada Fluorspar-EA-AGS mine St-Lawrence\6 DELIVERABLES ISSUED

7.0 REFERENCES

Amec (2013), Hydrogeology of Eastern Newfoundland, January 2013.

Aqtesolv Pro (HydroSOLVE Inc., 2014) software design and analysis of aquifer tests (pumping tests, slug tests, constant-head tests) in confined, leaky, unconfined and fractured aquifers. http://www.aqtesolv.com

Environment Canada Meteorological Data website, date modified 08/08/14.

Website:

http://climate.weather.gc.ca/climateData/dailydata_e.html?timeframe=2&Prov=NL%20%20&StationID=45567&d lyRange=2006-12-01|2014-09-18&Year=2014&Month=7&Day=18

- Garmin (2014). *How Accurate Is GPS*? Retrieved from http://www8.garmin.com/aboutGPS/ on August 18, 2014.
- Health Canada, 2014. Summary of Guidelines for Canadian Drinking Water Quality (SGCDWQ)
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.

Scott Wilson Ltd (October, 2009), St Lawrence Fluorspar Mine PFS - Hydrological Aspects, October 2009

Scott Wilson Ltd (April, 2009), Technical Report on the St. Lawrence Fluorspar Project, St. Lawrence, Newfoundland & Labrador, April 2009

Transport Canada (2010), Environmental Assessment Screening Report, October 26, 2010

FIGURES

N

100

LEGEND

Sampling Locations

- Surface Water Gauge
- Water Quality
- 8 Water Quality and Aquatic
- Vertical Borehole, Test Pit and Monitoring Well
- Exploration Hole for Groundwater Sampling and Geophysics Hole
- 🔶 Geophysics Hole
- Drillhole Other
- AGS 2013 Grid Extension
- ---- AGS Magnetic Linears Targets 2014
- ----- GN Field Grid
- GN Veins Surface
- ---- Mine Cove Vein Linear
- Mine Lease Boundary
- Minerial Licenses Existing
- --- Road
- ----- Water Feature
- Assumed Surface Mine Footprint

REFERENCE

Surface Plan provided by the Clie		
Projection: Transverse Mercator	Datum: NAD 83	Coordinate System: UTM Zone 21N

	250	12	5 ()	250	
		SCALE	1:10,000	METR	ES	
PROJEC	T	AGS PROPERTY NEWFOUNDLAND				
TITLE	F	PHASE I HYDROGEOLOGICAL WORK PLAN				
	1000		DDO JECT	NO 1407707	SCALE AS SHOWN	DEV 0.0

 Golder ssociates
 DESIGN GIS
 SO
 2 Sep. 2014 GIS
 SO
 2 Sep. 2014 GIS
 SO
 10 Dec. 2014 DESIGN
 DESIGN
 SO
 10 Dec. 2014 DESIGN
 DESIGN
 PM
 10 Dec. 2014 DESIGN
 <thDESIGN</th>
 DESIGN
 <thDESIGN

FIGURE: 2

Golder

LEGEND

N

519

Sampling Locations

- Surface Water Gauge
- Water Quality
- 8 Water Quality and Aquatic
- Vertical Borehole, Test Pit and Monitoring Well
- Exploration Hole for -•
- Groundwater Sampling and Geophysics Hole
- Geophysics Hole
- • Minerial Licenses Existing
- ---- Roads
- Contour 50m Interval
- Contour 2m Inverval
- River/Stream
- Waterbody

Surficial Geology

- RC, Rock Concealed
- TV, Till Veneer

5195000

REFERENCE

Basedata - CanVec 2009, Government of

Newfoundland Geoscience Atlas (http://geoatlas.gov.nl.ca/Default.htm)

Contours (2m Interval) provided by the CIF

(Filename: St.Lawrence property map_v14.dwg) Projection: Transverse Mercator Datum: NAD 83 Coordinate System: UTM Zone 21N

FIGURE: 3

LEGEND

- Town
- Public Water Intakes/Wellheads
- Exploration Hole for Groundwater Sampling and Geophysics Hole
- Geophysics Hole
- Minerial Licenses Existing
- River/Stream

REFERENCE

Surface Plan provided by the Client (August 2014) Projection: Transverse Mercator Datum: NAD 83 Coordinate System: UTM Zone 21N

Geophysical Anomaly Mag-EM Geophysical Anomaly Mag-EM Geophysical Anomaly Geophysical Anomaly Geophysical Anomaly Mag-EM Mag Mag GS-14-68 Trench 2 5.52m @ 84.38% Channel Samples GS-14-64 GS-14-61b GS-14-66, GS-14-52 GS-13-07 SW GS-14-57 1100 m 16191 3.01m @ 5.715 CaF2 Valating Fault and Breccia Zones Strong Chlorite & Gouge 15m @ 20.1% 644 12m @-81.935 6.95m ((89.50% ~ 2.28m @-40.02% CaF 1000 m 5.58m @42.47% 3.74m @ 48.56% 1.96m @47.03% 900 m LEGEND Diamond Drill Hole (Complete) . Diamond Drill Hole (Planned) Geophysical Anomaly Rhyolite Sills Fluorite Veins Meta-sediments - Fault Zones

REFERENCE

Cross-section of line 6 recieved via email from CFI October 8, 2014

LEGEND

Sampling Locations

- Surface Water Gauge
- Water Quality
- 8 Water Quality and Aquatic
- ◆ Vertical Borehole, Test Pit and Monitoring Well
- Exploration Hole for \bullet
- Groundwater Sampling and Geophysics Hole
- 🔶 Geophysics Hole
- Flow Direction
- Minerial Licenses Existing
- ---- Roads

519

- Contour 50m Interval
- Contour 2m Inverval
- River/Stream
- Waterbody
- Watershed Boundary

REFERENCE

Basedata - CanVec 2009, Government of Newfoundland Geoscience Atlas (http://geoatlas.gov.nl.ca/Default.htm) Contours (2m Interval) provided by the CIF (Filename: St.Lawrence property map_v14.dwg) Projection: Transverse Mercator Datum: NAD 83 Coordinate System: UTM Zone 21N

PROJECT

AGS PROPERTY NEWFOUNDLAND

TITLE

õ

51950

WATERSHED BOUNDARIES

APPENDIX A

Borehole Record; Rock Core Images; Geophysics Borehole Survey

H Location	Azimuth Azimuth Type of Rig. D. be Tube Bit Drillcore Dia Jale Drilling	on uralite <i>Boe</i> Design <i>GC</i> mm	(Obtained From
A.Q.D. – Rock Quality Designation (%. Core Run > 0.1m Long) C.R. – Solid Core Recovery (% Cylindrical) C.R. – Total Core Recovery 1. – Fracture Index (Fractures /)	F.R Fracture (Undefinitiated) S.A Sample C.A Casing W.L Water Level B.C Broken Core	B. – Bedding F.O. – Foliation / S CL. – Cleavage SH. – Shear Plat VN. – Vein F. – Fault	P Poished F.L Flexured Schistosity S Slickensided UE Uneven SM - Smooth W Wavy ne / Zone R Ridged / Rough C Curved CO Contact ST Stepped J Joint PL Planar
Core & Depth Date / Time Casing & Depth Recent Flush Recont Flush Run, min. Rate / min)	A Participation of the second	DISCONTINUITIES DIP * Type & 5 V.R.T. Surface 5 Description 6 XxIs	CORE DESCRIPTION ROCK MATERIAL EPTH FROM : TO – Weathering ; Structure (Bedding Foliation, Jointing) Colour ; Grain Size & Texture ; Alteration State ; Cementation ; Rock Name ; Rock Formation
BEFORENCE. BEFORENCE. SPECIAL NOTES / SKETCH Nonitoring Well Car	2- 3- 3- - - - - - - - - - - - - -	BLE MATERIALS USED	D-Im dark brown Storganic Spil. I TO 603 m. Sitty Sand and gravel with varying percentages Of collects and boulders. Cared through collects and boulders the composed of probassediments and pypolite (who Derry unstalle borehole wall. Destrock from 6.8 TO 7.0m. Red 2 100% SG C 285% > 20cm section. To R - 100% Crem Matasediment fresh, medium Strong rock. Results OF IN SITU

JOB NO. 1407707 DRILLHOLE NO. BH 14-01 DEPTH D TO 7-

FORM UPBATED BY P.P.C. COTOPER, 2009, FROM FORM & UPAT

FIELD	DRIL	LHOLE	LOG
-------	------	-------	-----

Јођ	No	140	170	<u>, 1</u>		ЈоЬ	Nar	ne	<u>C</u> ~	~~	de	\overline{F}	u	255	pal	Inc.	Pho	nse I	Dat	e Octz	1,2012	Orillho	le No. BH14-0	2
DH (_ocat	ion											Е	leva	tion			((Obtained I	From) Datum. 41.65 2	72
Incli	natio	n		94	2						Azi	mut	h					A	Along Ho	ole Total L	ength .			
Туре	e of D	rilling		D	<u>)</u>	~0	اوب			•	Тур	e of	Riç	<u>,</u> , , ,)ur	white:	800	F	- Flush	writer	- Fe	ed	1.5m	
Туре	e of C	ore B	arrel	<i>و</i> جريب	<i>wi</i> d	sk	- 4	nb	C					Bit	Des	ign					Bi	it No		
Drill	hole	Dia	<u>N</u>	9	- 7	6	m	<u>.</u>	•••••		Drii	lcor	еD)ia, <i>,</i>		76-	- 60	inas	.Casing	Dia	89 m	-		
Con	tracto	or?	ק. <i>ך</i> .ך	ùn,	a.d.	le	Γ	<u> </u>	<i>11.</i>	in	b .:.								D	riller				
Tem	perat	ure .	••••••	6	.°c.	We	eath	er			ren.	Carl.	;+						E	naineer	AI	VAN	ofF	
R.Q.	D. – Roc	ck Quality	Design	ation				F.I	ک -	Fracts	Jre (Ur	diffentia	a(ed)			В.	- Bedding	,		P	Polished		E L. Elevured	
S.C.I T.C.I F.I.	(% 0 R. – Soli (13 0 R. – Tota – Frac	Core Run > Id Core Re Cylindrical) al Core Re ture Index	0.1m Lor ecovery ecovery covery	ng) res /	ì	,		S. C. W. B.	A A .L .C	Samp Casin Water Broke	lle g Level en Cor	8				F.C CL SH VN F	D. – Foliatio Cleavag I. – Shear I I. – Vein	n / Schist ge Plane / Z CO.	tosity Cone La Contact	S	Slickensided Smooth Ridged / Rol Stepped	ugh	UE Uneven W Wavy C Curved	
е Ę	Ę.		ц.	Pane	tration		7	*5 ci	R	ECOV	ERY	(Cor Quali	e ity						CORE	DESCR		1	
/ Tim 5, Dec	/ Time Ø, Del	Levels	t Flus turn		(uju			Sun N	T.C	.R.	S.C.R	. R.(2. D.	- <u>s</u> h	DIP	SCONTINUI	TIES			ROC	K MATE	RIAL		
Corte 6	Date Casing I	& pm	Percen Ret	Time For Run, <i>min</i>	Rate (/n		Depth (Drilling F Length	LENGTH	%	Prevette	LENGTH	%	Fracture Per O.2	W.R.T. Core Axis	Surface Description	Formation	DEPTH	FROM : TO - فرقی ا	– Weathering ; S & Texture ; Altera	tructure (Ber tion State ; (dding Foliat Cementatio	ion, Jointing) Colour ; Grain n ; Rock Name ; Rock Form	Size ation
							<u>-</u>	•											3-4.2	3m 0:	verbu	vde	^	
							-										-		4.3-	5.2 ;	Lost	Corc	> Damacel	
							-	-									-	5	23-5	75 B	<u> </u>			
							-	1										6	iom 7	N, EOV	IN, RC), Paj	-3mm silt.	
							0_								}		-	-7		IN. TO	•			
							Ĺ.														0	-		
							-														- 1	1	IN - CMSMIS	
							2											-0-	• \6		120	PC.	grey-white silt.	
							- 											<u> </u>						
							-																	
			'				- נו										-						·	
							1 -	-									-							
						48	-											<u> </u>		1. 60				
						5.2	5-	0					T		PL		-1				Jee			<u> </u>
								-				M		10	er	·	_		Grey	-areen	m	etas	ediment	
							-		5	90	0.71	Not	5 m	10,	5		-		fred	h me	Edium	stro	NA FOCK.	
							6-]0	1.5	00	1.5	1)	2.0	1112		—						
							·								- 0°0'N		-	—	Ma	nitorin	wrll	Cong	struction Det	mats
	2				-	67	+ -	-	-				+				-	-	În	Excel	docu	merit	· .	
							7-		1	0-	. 1			1 -	7.57	350	-							
								[3]	P	0	1.01	୍ୟୁଷ୍		۲.	1									
									ליון	0	1.5	2/1.	50	ĭ⊢	1		-							
						22	0					9			8.0	140		 						
						10.1		┦─					+-		8.1	- 1-3								
								10	0.6	~	06	00		ζ <u>Γ</u>		65	-	-			-			
							-	-10	06	100	06	0	6	2	-		EOH	 						
						23									1		8.8m							
<u>SP</u>		<u>. NOT</u>	ES /	SKE	тсн	IES							co	NSUM	ABLEN		USED	No.	RESU	DATE	DEF	PTHS	RESULTS	
																		\vdash				<u> </u>		
			<u></u>																					
DEP	FH – Fro	m	t	o		, £	Dates.					., TIM	E – N	loving	& Set-l	Jp	hrs.							
Drillir	ıg	hrs	, Testir	ig etc		h	rs, D	elayed			S	tand-b	y		hrs.,	Productive	hrs.							

JOB NO. 1407707 DRILLHOLE NO. ВНИ-02 DEPTH 0 TO 8.8-

FORW CREATED BY R.S.C. CETTISER, CON, FURMERRY GeVENC

FIELD DRILLHOLE LOG

Job No. 1407707 Job Na	me Canada Fluorspar	CInc-Phasel Date Oct 22,2014 Drillhole No. BH14-03
DH Location	Elevation	(Obtained From Garmin - GPS) Datum WGS 34
Inclination	Azimuth	Along Hole Total Length
Type of Drilling Diamone	للم Type of Rig	avite 800 Flush, Water. Feed
Type of Core BarrelSmglr.	Tub ? Bit Desig	gn Bit No
Drillhole Dia. NQ - 76	Drillcore Dia.	76 mm 60mm Casing Dia 89 mm
Contractor Sprinsdals	Drillins	Driller
Temperature	ther <u>overcust</u>	Engineer A.IVANOFF
R.Q.D. – Rock Quality Designation	F.R Fracture (Undiffentiated)	B Bedding P Polished F.L Flexured
(% Care Run > 0.1m Long) S.C.R. — Solid Core Recovery	S.A. – Sample C.A Casing	F.O Foliation / Schistosity S Slickensided UE Uneven CL Cleavage SM - Smooth W Wavy
(% <i>Cylindrical)</i> T.C.R. – Total Core Recovery	W.L. – Water Level B.C. – Broken Core	SH. - Shear Plane / Zone R. - Ridged / Rough C. - Curved VN. - Vein CO. - Contact ST Stepped
F.I Fracture Index (Fractures /)	Core	F Fault J Joint PL Planar
es s Water s Penetration		
		Type & E
epth / Area & Coreat		Surface Surface Depth FROM : TO – Weathering ; Structure (Bedding Foliation, Jointing) Colour ; Grain Size Description & Texture ; Alteration State ; Cementation ; Rock Name ; Rock Formation
- Uround July rect 0		
	-[_	Ur 2,44 Overburden
	╡╷╷╷╷╷┼┥╷	124AU 2194- 4.0m.
		2.81m JN LIN, RO, PC- Guilt
		2.92 n JW TR. RO, CC - Galt - when.
		2,48 TH TR, RO, ST - restich-orme
		3.205 JN JA. RU, CC - Solt-with within Imm
		3.48 F. WW, RO 1 TW- clay fait
		HSP 3.82 IN PL ROJEN - imm stite
	2.92	4.25 JN PL, RO, IN - Imm solt porter.
	3.65	60° 4.42 JN, PL, SM, SA, ST- (BANSM
	15 50 6 2 320	
		2.80
	1-4-45	100
	-0.5 12 1 5 142	750 Kock Ispe
	- 1.5 10° 1.50 ac 20 ac	Mat set at
		Concerning frees friend scanimed
		<u>fresh</u> medium strong rock
		POH
		5.94m
		Monstering Well Construction details.
		fend in Excel document!

SPECIAL NOTES / SKETCHES	CONSUMABLE MATERIALS USED	No. TIM	ESULTS OF IN SITU	DEPTHS	RESULTS
DEPTH - Fromto	. TIME – Moving & Set-Uphrs.				
Drillinghrs, Testing etchrs, DelayedSta	and-byhrs., Productivehrs.				

JOB NO. 1407707 DRILLHOLE NO. <u>PSH 14-03</u> DEPTH <u>0</u> то **5.**54m

FORM UNEATED BY RIP C. DOTT FER, 2000, FE DM FORM CH-FUIC

FIELD DRILLHOLE LOG

Job I	اo	40	<u>קר</u> הוק	<u>, 1</u>	J Buni	lob F	Nan 1 G	ne 1 A.	<u>Co</u> i. (.	<u>.</u> 9	<u>بط</u> و ح ،	з • •	<u>FI</u>	<u> </u> @!		<u>ea</u> s		Phas	eI Date Oct 23,2014 Drillhole No. BH14-04
DHL	ocat	ion	<u>е</u> ;		2.11.	<u>/</u>		1.23	00	?	×	3.0	·	Elev	vat	ion .	************	•••••	(Obtained From
	natio	n		d •				•••••			Az	im	uth			••••••		~ 13	Along Hole Total Length
Туре	of D	rilling	J	<u>91.19</u> 6	n mi	<u>504</u>	<u>ہ۔</u>	· · · · ·		•••	Тур	e c	of R	ig.)	2.4	16	ite a	$\rho \phi$	Flush.
Туре	of C	ore E	arre	<u>بر بر ا</u>	<u></u>	<u>ዓነድ</u> ገረ	!	. <u></u>	66	· · · · ·		••••		E	3it i	Desi	gn		Bit No.
Drill	iole I	Dia.	 	<u>7 G</u>		16		<u>m</u>		,	.Dr		ore	Dia	•••		<u>-16</u>	<u>an</u>	Ann. Casing Dia. Ha- sucher cusing - 89 mm
Cont	racto	or	5652	Nº:	<u>ide</u>	16	<i></i>).5.)	113	~~	<u>3</u>	• • • • •			;	•••••			Driller
Tem	perat	ture .		6	.°С.	We	eath	er.	••••	.Ø.\	اعا	.s.(<u>እ</u> ዓ.	£./	<u>ب</u> با.	Me	<i>ү</i>		Engineer A. IVANOFF
R.Q.E), – Rod	sk Quality	y Design	ation				F.F	₹, –	Fract	ure (C	Indifie	nhated	t)			B.	- Bedding	P Polished F.L - Flexured
S.C.R	,≫n.c . – Soi	d Core R	ecovery	ng) (C./	A A	Casr	ig						CL.	- Cleava	e SM - Smooth W Wavy
T.C.R	(% C - − Tota	al Core R	ecovery					W. 8.	C. –	• Brok	en Co	el re					VN.	– Shear – Vein	Plane / Zone R Ridged / Rough C Curved CO Conlact ST Stepped
F.I.	- Frac	iure Inde	× (Fractu	res /				త	P	FCO			С	ore			F.	- Fault	
me epth	apth	Water	ush	Pene			1	No.	TC	ECU.	SCI	_	Qu	ality	+		CONTINUIT	FS	
Ø, D	e/Tπ jØ,D	Levels am	eturn	ا ي ي	(uju			Lung I		-		<u>`</u> +	T				Туре &	5	
Core	Casing	pm	Perce	Time Fo Run, m	Rate		Depth	Driffing Length	LENGT	%	LENGT	%	LENGT	Factu	Per	W.R.T. Core Axis	Surface Description	Formatic	DEPTH FROM : TO – Weathering ; Structure (Bedding Foliation, Jointing) Colour ; Grain Size & Texture ; Atteration State ; Cementation ; Rock Name ; Rock Formation
C	ron	nd	sinr	hac	e-		Om			-	_		_∔		_				a 2 a. auschuster.
								1											
ļ							-	1				ļ		-				2	
							۱_	/					ļ		-1	ł		S	
		1] _							F				3	
							_							+	┥			Š	
ł				-			-	1										้อ	
-							2				\neg		-	-	\dashv			115-13	<u>RUN#1 (2m to 3.5m)</u>
						2	14		~ -		ľ	1		i	•	2.17.	14° un/	sm	L 2 2. Hm Lost core Rubble - Jams core bound.
l			ļ					6	1:36	20	051		20	1	-	2.42	400	R3	- 0 17 THE HALLOW SA TE- 20 T- 2
			woi!				-		15		26		1.36	2ª 1	•	282	300	10	J.(1 30 40/5M) 511 31-40 32-2
		1	1)			β <u>–</u>	1		9		2	}		_•	3.36	450	124	- green Chlorik will.
							-	1				m						wym	2.42m JN PL SM. ST-reddick-brown.
						~			r	_				Ð		207			J= 10, Ja=1, JCR=16
				Į –			4_	. -						1	-1	Ster	<u> </u>	-	282 m TN PL. SM. ST- chlorite
		1	1001				ľ.	Ø	1.5		1	ړ	1.5	,			-	R3	JE=1.0, Ja=1, JCR=16
							_		1.5	of:	1.5	×	15	≪-	_			W/AI	3.36 54 80 81
ľ		1				1	-	-)	00		8	` '	<u>8</u> F	_	ł			$T_r = 3 + T_r = 1 + J_{cr} = 25$
							5-		┞			~						<u> </u>	
							·	6						Ϋ́		5.20	830		T = 1.0, $T = 2$, $T = 1.0$
	1		Li ark	7			-	13	1.3	100	1.5	-	1.5		0			R3	
			100	1			•	-	14	200	1.5	\$	1.5	Z:	<u>)</u>		┝- ───	wi/ai	$5.20m JN. \ PL, \ KO, \ PL - churite.$
				Ì		1	6-	-	ľ	0	1	0		<u>Õ</u>)		-11:0		
				1				-		2		10		2		6-22	-iq-	-	525m UN, RO ST - yellowie h-brown.
			+		-	┼─	+	+	$\left \right $	+	-								
							\	-										EOH	6.17 MM, PAZ, ST- YALLOAVEN
							7-	-								1		6.5m	- MAN A JAZINJERU ->
								1								1		1	6.17 JEN, PL-, SM, PC-green chlorible
						1	-	٦								-	L	-	Jr= 10 Ja=2 JcR=10.
							ł	1									•		6:28 sume as above.
					ļ		-	-						ļļ		1			
	ļ												ļ			1	<u> </u>	4	Rock Type & aren-green Metasedinent.

					- fresh,	strung rock		
		RESULTS OF IN SITU						
SPECIAL NOTES / SKETCHES	CONSUMABLE MATERIALS USED	No.	TIME	DATE	DEPTHS	RESULTS		
						·		
			· · · ·			<u> </u>		
		<u> </u>			· · ·			
						·		
			-		<u> </u>	<u> </u>		
DEPTH - From to	TIME - Moving & Set-Uphrs.				<u>├</u> \			
Drillinghrs, Testing etchrs, Delayed	Stand-by							

FORM ODEATED BY THE CUIT STOBER, 2020, FROM FORM (CARENCE

JOB NO. 1467.707 DRILLHOLE NO. BH 14-04 DEPTH 0 TO 6.5 M

PROJECT	FLUORS	Par Inc. F	PROJECT	
TITLE				
Ν	IW14-02	ROCK CO	RE	
N	/W14-02	ROCK COI	RE SCALE: N/A	REV. 1
M	IW14-02	CT #: 1407707	RE SCALE: N/A	REV. 1
Colder	PROJE DESIGN ADI CHECK PM	ROCK COI	RE SCALE: N/A	REV. 1

PROJECT	FLUO	RSF	PAR INC. I	PROJECT	
TITLE					
N	WW14-	-04 F		RE	
A	DESIGN		NOVEMBER 2014	SCALE: N/A	REV. 1
Colder	CHECK	PM	NOVEMBER 2014	FIGURE	A.4
Associates	REVIEW	JMP	NOVEMBER 2014	FIGURE	A4

Depth 1m:10m	Orientation			Optical and Acoustic	Feleviewer Analysis	
	Tilt	Image-HS	3D Image I og	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° -	02 / 1000010 203	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
16.80						
17.00 -						
17.20						
17.40						
17.60					0	
17.80						
18.00						
18.20			22			
18.40						
18.60						

Depth 1m:10m	Orientation			Optical and Acoust	ic Televiewer Analysis	1
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° —		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-00	0 1200 0
23.00				一位运行		
23.20			25			
23.40						
23.60						
23.80						
24.00						
24.20						
24.40						
24.60			1			
24.80						
25.00						

Depth 1m:10m	Orientation			Optical and Acoustic 1	eleviewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60		02 mago 20g	0° 90° 180° 270° 0°	ob / locuolio Log	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
					12	
27.40						
			1. 6.			
27.60			-1			
27.60			1			
			25			
27.80					A CONTRACTOR	
			3.		1	
28.00						
			4			
28.20						
28.40						
28.60			156			
			100			
28.80						
					6	
29.00						
29.20						
			6/100			

Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60	·		0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
38.00							
38.20							
38.40							
38.60							
38.80							
39.00							
39.20							
39.40			1				
39.60				北京市卡			
39.80							
40.00			See.				

Depth 1m:10r	n Orientation	Optical and Acoustic Televiewer Analysis												
	Tilt	Image-HS	3D Image Log		Amplitu	ıde-HS Norm	nalized		3D Acoustic Log		Ce	entralized T	Т	
	0 deg 60			0°	90°	180°	270°	0°		0°	90°	180°	270°	0°
	Azimuth				F	eature Picks	S				Ret	flective Ind	ex	_
	0 deg 360	0° 90° 180° 270° 0°	265°	0°	90°	180°	270°	0°	-0 °	0			12	200 0
											Ś			
40.2	0					F		P			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
						和指		2.42						
40.4	0													
				60		打任		B C						
40.6	0		2					20						
							-							
40.8	0		20											
41 0	0					王 仆	16 11							
41 2			23											
41.2						市								
				/-	1.									
41.4				1										
								\angle			×~{			
41.6											}			
						FA								
41.8	0													
				EX.			-	F						
42.0	0							1						
								1. Contraction						

Depth 1m:10m	Orientation	on Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60			0° 90° 180° 270° 0°	g	0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
42.20 -			Par.				
			E.C.				
42.40							
42.60 -			Berl -				
				and the state of the			
42.80				and the state of the			
43.00 -			in a				
43-20							
-3.20				Contraction in the			
43.40							
43.60 -							
				Carles and Line In			
43.80 -							
44.00							
			E.				
44.20			S.C.				

Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60			0° 90° 180° 270° 0° -	-	0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
44.40							
44.60							
				BAR DAL			
44.80							
45.00							
45.20							
45.40							
45.60							
45.80				Cash Mar Dall M			
46.00							
46.20							
46.40				E and the P			

Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60			0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
					1.1		
40.00							
46.80							
47.00							
			2.6				
47.20				9		And the second se	
47.40							
			21				
47.60							
47.80							
48.00				Second State			
48.20							
			Ser 1			< I I I I I I I I I I I I I I I I I I I	
48.40							

Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60			0° 90° 180° 270° 0° —	Ŭ.	0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
48.60							
48.80			2				
49.00							
49.00				S S S S			
49.20					Set		
			1				
49.40							
				17代第二十二	81		
49.60				Contraction -			
					R. and		
49.80							
50.00							
50.20							
50.40							
50.60							
			and the second second				

Depth 1m:10m	Orientation	on Optical and Acoustic Televiewer Analysis						
	Tilt	Image-HS		Amplitude-HS Normalized	3D Acoustic Log	Centralized TT		
	0 deg 60		SD image Log	0° 90° 180° 270° 0°	SD Acoustic Log	0° 90° 180° 270° 0°		
	Azimuth			Feature Picks		Reflective Index		
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0		
50.80								
51.00								
51.20								
51.40								
51.60								
			1					
51.80			1		STATE OF			
52.00								
52.20								
- 52.40 -								
					Con B			
52 60								
52 80								

Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60			0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
53.00							
53.20			8-38				
				XOVIS			
53.40							
53.60							
53.80							
54.00							
54.20				A granter			
54.40							
		the second se					
54.60							
54.80			1-12	and the second s			

Depth 1m:10m	Ori	entation						Optica	al and Acou	istic Televie	wer Analysis	5					
		Tilt	Imac	ae-HS	3D Image Log		Amplitu	ude-HS Noi	rmalized	3D A	Acoustic Loa			Centralized	d TT b		
	0	deg 60				0 °	90°	180°	270°	0°		0 °	90°	180°	270°	0°	
	A	zimuth					F	Feature Pic	ks				I	Reflective I	ndex		_
	0	deg 360	0° 90° 18	30° 270° 0°	265°	0°	90°	180°	270°	0°	-0 °	0				1200	0
														<pre>}</pre>			
59.40														}			
									-								
59.60									Reli								
						~											
59.80						- >	2										
									1								
60.00						1											
									7					www			
60.20						2	X	Z			1						
								-						~~~~~			
60.40																	
				1			1			-	Y						
60.60							2	-						A second			
					and the	11											
60.80								21									
				1					1	4							
61.00						An In And	-	and a	14		X						
								-						m			
61.20						1	1										
				1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		X								×~			

	Depth 1m:10m	Orientation			Optical and Acoustic T	eleviewer Analysis	
		Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
		0 deg 60			0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°
		Azimuth			Feature Picks		Reflective Index
		0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
_	65.60						
						C - `	
	65.80 -						
	66.00					S-V	
	66.20						
	66.40						
	66.60						
	66.80				2 m (c)		
	67.00						
	67.20 -						
						See. I	
	67.40 -					and the	
	67 60				The set of the set		
E					And the second s	and the second second	

Depth 1m:10m	Orientation			Optical and Acoustic	Televiewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° 	Ŭ	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
82.80					新建	
02.00						
					100	
83.00						
					1	
83.20			E 1			
83.40						
83.60						
83.80						
84.00						
84.20						
84 40						
			12.	16 22 1 5 7		
				款依据器出表 H.K		
84.60					A	

Depth 1m:10m	Orientation			Optical and Acoustic	Televiewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° -	-	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
84.80						
85.00						
85.20					18.0	
					36.5	
85.40						
85.60						
85.80						
					1	
86.00						
86.20						
86.40						
86.60						
86.80						

Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis						
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT		
	0 deg 60			0° 90° 180° 270° 0°	g	0° 90° 180° 270° 0°		
	Azimuth			Feature Picks		Reflective Index		
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0		
			25					
87.00								
87.20								
87.40					-			
					14			
87.60					A.			
87.80								
					Contraction of the	A A A A A A A A A A A A A A A A A A A		
88.00					1 Back	<u> </u>		
					(inters)			
88.20						ξ.		
			192.1			le l		
88.40								
88.60				A CONTRACTOR	3			
88.80								
89.00					1.1			

Depth 1m:10m	Orientation			Optical and Acoustic	Feleviewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° -	Ĵ	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
 91.20			1		1	
				The second s		
91.40			10			
91.60					The sta	
					1	
91.80						
51.00						
 92 00						
92.00					e state	
00.00						
92.20						
92.40						
 92.60						
92.80						
93.00						
				STAN SHORE IN U		
93.20						
			and the second se			

Depth 1m:10m	Orientation			Optical and Acoustic	Televiewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60		ob intige Log	0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
93.40						
93.60						
93.80						
- 94.00 -					1. Carl	
94 20						
04.40					0.0	
94.40						
			Sec.			
94.60 -						
94.80						
					1 total	
95.00						
95.20					The second	
95.40					1	

Depth 1m:10m	Orientation			Optical and Acoustic	Televiewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60)		0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	- 0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200
97.60)				184	
97.80						
					10710	
					No.	
98.00			Sec.			
					10.53	
98.20						
					The second	
98.40						
98.60				业长14个社		
				22		
98.80				200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2 2	
					2	S S
99.00						
99.20					ANG.	
99.40						
99.60			Re 1	N		

Depth 1m:10m	Orientation			Optical and Acoustic	Televiewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°
	Azimuth	0° 90° 180° 270° 0°	265°	Feature Picks	-0 °	Reflective Index
	0 deg 360		200	0° 90° 180° 270° 0°		0 1200 0
99.80						
100.00						
100.20						
100.40						
100.60						
100.80						
101.00						
101.20						
101.40						
101.60						

Depth 1m:10m Orientation	Optical and Acoustic Televiewer Analysis					
Tilt	Image-HS	3D Image I og	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
0 deg 60			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°	
Azimuth			Feature Picks		Reflective Index	
0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0	
102.00						
102.20						
102.40						
102.60						
			的周期的有限的。			
102.80						
		E.				
103.20		ac 1				
103.40						
				The second		
103.60				R		
					5	
103.80						

Depth 1m:10m	Orientation			Optical and Acoustic	Televiewer Analysis	
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60	·	0 0	0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
104.00						
104.20						
104.40					2m	
				S. III		
104.60						
104.80					4	
					4	
105.00						
105.20			and a second		Contraction of the second	
					A	
105.40			Contract of the second			
105.60						
105.80						
					1 A	
106.00						
			Marrielle (

Depth 1m:10m	Orientation			Optical and Acoustic	releviewer Analysis	
	Tilt	Image HS		Amplitude-HS Normalized	2D Accustic Log	Centralized TT
	0 deg 60		SD IIIage Log	0° 90° 180° 270° 0° -	3D Acoustic Log	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200
106.20			No. 101			
106.40					1	
106.60					1	
106.80						
107.00						
107.20						
107.40						
107.60						
107.80						

Depth 1m:10m	Orientation				Optical	and Acoustic	\$				
	Tilt	Image-HS	Amplitude-HS Normalized 3D Image Log			nalized	3D Acoustic Log		Centralized 1	ГТ	
	0 deg 60			0° 9	0° 180°	270° 0°	-	0°	90° 180°	270° 0°	
	Azimuth				Feature Picks	S			Reflective Ind	lex _	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 9	0° 180°	270° 0°	-0 °	0		1200	0
									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
13.00											
							ALL.		and the second		
									The second se		1
13.20						K	(III)				
							S.C.				
13.40									) E		
					Res III	13 14					_
13.60				1		1 1-			$\sim$		
			and the second			1.1			}		
13.80					-				A A A A A A A A A A A A A A A A A A A		
						12	~				
14.00						Section 1					
							-		$\left  \right\rangle$		
14.20						100	Carlos and Carlos				
			-	3		a tot	the second		Mar and		
14.40											
							at the second se				
14.60											
					Ser.			-	A A A A A A A A A A A A A A A A A A A		
14 80			State -			7	- Ca				
											_



	Depth 1m:10m		Orien	tatio	n		Optical and Acoustic Televiewer Analysis														
			Т	ïlt		Image-HS	3D Image Log		Amplitude-HS Normalized			Amplitude-HS Normalized 3D Acoustic			3D Acoustic Log	coustic Log		Centralized	тт		
		0	de	eg	60			0°	90°	180°	270° 0	• •	0°	90	° 180°	270°	0°				
			Azir	nuth					I	Feature Pick	S				Reflective In	ıdex		_			
		0	de	eg	360	0° 90° 180° 270° 0°	265°	0°	90°	180°	270° 0	() ⁰	0				1200	0			
	15.00 -									-											
	15.20 -								TIM	ATT					Ę						
												A CONTRACTOR									
	15.40 -							46	7.	-											
											1	2									
	15.60 -																				
						ALC: NO ALC: NO					$\leftarrow$										
	15 80 -										1-	1/25			4						
	10.00					The set	T'SR			1		2 4									
	16.00					T A THE AT	And I	A A			12										
	10.00																				
										SF											
	16.20								$\mathbb{R}$			E									
	16.40							N ^{ab}													
											-/-										
	16.60														5						
										- TTD											
	16.80						ALL T				ATHUM.										
	17.00									1	1										
_							States and	2-21				A DECEMBER OF			{						





	Depth 1m:10m		Orienta	ation				Ор	tical and Acoustic	;						
			Tilt		Image-HS	3D Image I og	Ar	Amplitude-HS Normalized		3D Acoustic Log		С	entralized	ТТ		
		0	deg	60			0° 90	° 180	)° 270° 0°		0 °	90°	180°	270°	0°	
			Azimu	ıth				Feature	Picks			Re	eflective In	dex		
		0	deg	360	0° 90° 180° 270° 0°	265°	0° 90	° 180	0° 270° 0°	-0 °	0				1200	0
-													{			
	19.40												~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
							-			R						
	19.60						- A			C.			$\left\{ \right\}$			
					and the second second	Contra la		1					M			
	19.80							S					$\left\langle \left\langle \right\rangle \right\rangle$			
					The Star			1	AG				Same and a second			
	20.00								1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
						Con Ser				T C						
	20.20						-									
								-	1							
	20.40							23								
					7 2 2 2	10.27										
	20.60							Y								
	20.80							R					5			
							=	5	X E							
	21.00								1				~			
									1							
	21.20							Contraction of the								
					ARGO PROVIDE TO A DO		11170-1-1			THE REAL						







Depth 1m:10m		Orier	ntatio	n		Optical and Acoustic Televiewer Analysis												
		-	Tilt		Image-HS	3D Image Log		Amplit	ude-HS Nor	malized		3D Acoustic Log			Centraliz	zed TT		
	0	C	leg	60			0°	90°	180°	270°	0°		0°	90 °	° 180	)° 270°	° 0°	
		Azi	muth						Feature Pick	٢S	_				Reflectiv	e Index		_
	0	C	leg	360	0° 90° 180° 270° 0°	265°	0°	90°	180°	270°	0°	-0 °	0				1200	0
 									モル									
 25.80																		
26.00 -						The second												
 						Pre-												
 26.20																		
											~							
26.40							×	-				x				}		
20.40						127		-	1	r						}		
								5 M		5	2	Star-						
26.60										1								
									1	1200	1				2			
26.80									2	A	$\frown$				(	}		
						1					-				ş			
 27.00 -																		
						and a												
27.20											1							
						and the second				-/=		1						
 27 40						TEX.												
21.10												A REAL			Ę			
								-			-				ć	}		•
27.60						-	<b>H</b> H	RI										
												N. I						



Depth 1m:10m	Orientation		Optical and Acoustic Televiewer Analysis									
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT						
	0 deg 60	·		0° 90° 180° 270° 0° —	-	0° 90° 180° 270° 0°						
	Azimuth			Feature Picks		Reflective Index						
	0 deg 360	0° 90° 180° 270° 0°	265 °	0° 90° 180° 270° 0°	-0 0	0 1200 0						
27.80												
					3223°	ξ.						
28.00												
			AT I									
28.20												
28.40												
				-6- 2	C. K.							
28.60												
			-24									
20 00						ξ.						
29.00												
29.20												
			<b>国</b> 副									
29.40			and a									
29.60			ALCON.									
29.80												




Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis					
	Tilt	Image-HS	3D Image I og	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT	
	0 deg 60			0° 90° 180° 270° 0° -	OD / NOOUSING LOG	0° 90° 180° 270° 0°	
	Azimuth			Feature Picks		Reflective Index	
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200	0
52.00					III.		
32.20			-				
32.40					ALC: N		
			124		×-		
32.60							
32.80							
					ALC: NO		
33.00					-		
33.20					The		
			-				
33.40							
33.60					and the second		
					MIS.		
33.80					2		
34.00					R		
					STERS		





Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° —		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
36.40						
			Carl I		12 m	
36.60				State - 12		
			the set			
36.80		South and	and a			<u>}</u>
27.00			The state			
			12			
		North Contraction		KA	2×	<pre>{</pre>
37.20						
_ 37.40						
			See.			
37.60						
37.80			10.7		15	
					and the second	
38.00						
38.20						
			and a			



Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° —		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
- 38.40				()) 马林在军 () (13 ()) 日本		
38.60						
38.80						
39.00						
39.20						
39.40						
39.60						
39.80						
40.00			- A			
40.20			14			
40.40			AN AN		1 to 194	





Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° —		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	 0° 90° 180° 270° 0°	-0 °	0 1200 0
						ž
42.80			Part of		1 alt	
						No and the second secon
42.00				AS CAL		
43.00			<b>陈春望</b> 。		-11-	
		Stor I and			1	
- 43.20						
		13 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>FRE</b>		-	
43.40						
		- servez	Bet			
- 43.60						
		$\geq$ $\leq$	2		R	
43.80						
44.00					1168	
		a ser an	-			
44.20					and the second se	
44.40			and a second			
44 60			R			
11.00			and the second s			-





Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° 		0° 90° 180° 270° 0°
	Azimuth	0.000 1000 0700 0.0	0050	Feature Picks	0.0	Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265*	0° 90° 180° 270° 0°	-0 °	0 1200
47.00			Ser and a series of the series			
47.20			A A A A A A A A A A A A A A A A A A A			
47.40					A	
47.60						Marrie
47.80						
48.00						
48.20						
48.40						
48.60						
48.80						
49.00						$\langle \langle \rangle$



Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60	·		0° 90° 180° 270° 0° 	-	0° 90° 180° 270° 0°
	Azimuth	0. 00. 190. 070. 0.	065 °	Feature Picks	0.0	Reflective Index
	0 deg 360	0 90 180 270 0	205	0° 90° 180° 270° 0°	-0 *	0 1200 ⁰
			25	and in the		la la companya da la
49.20					J.	
			17.2		1000	
49.40						
			1			
49.60			A Star			
49.80						
			a little		and the second	
50.00						
50.20						
50.40						
50.60					7	
					100	
50.80						
					1º	
51.00						
			Sec. 1			











Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° -	<u> </u>	0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
50.00						
59.80						
60.00		N PAR	and the second second			
60.20					3	
					T A	
60.40					X	
60.60					建	
					X	
60.80				SI - Jo	5-1	
61.00						
61 20						
61.40		2 2 2 2				
61.60						
61.80						



Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
62.00						
62.20						
		7 1 7 7				
62.40			Date			
					The second	
62.60			and the second se			
			<b>展示教</b>			
62 80						
63.00						
63.20						
63.40						
				1 2 33	Ć	
63.60						
				- A		
63.80						
			100 M			
			(martine)		STORE STORE	





Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image I og	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
66.20						
66.40						
66.60						
66.80						
67.00						
67.00						
67.20						
67.40			and the			
			-7			
67.60						
					ST.	
67.80						
				第二人間の		
68.00						
			*			
68.20						













Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° —		0° 90° 180° 270° 0°
	Azimuth	0. 00. 190. 070. 0.	065 °	Feature Picks	0.0	Reflective Index
	0 deg 360	0 90 180 270 0	200	0° 90° 180° 270° 0°	-0	0 1200 0
79.00						
79.20						
79.40			the second			
79.60			5			
79.80						
80.00						
80.20						
80.40						
80.60						
80.80						



















Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0°		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	- 0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
			N. M.			
98.20						
98.40						
98.60						
98.80						
99.00						
99.20						
99.40						
99.60				X-1		
99.80						
100.00						
				Page	45	



Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image I og	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60		02	0° 90° 180° 270° 0°		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
100.20						
100.40						
100.60						
100.80					-	
					A.	
101.20						
					。	
101.40						
101.60			24			
101.80			all set			
102.00						
102.20						







Depth 1m:10m	Orientation	Optical and Acoustic Televiewer Analysis				
	Tilt	Image-HS	3D Image Log	Amplitude-HS Normalized	3D Acoustic Log	Centralized TT
	0 deg 60			0° 90° 180° 270° 0° -		0° 90° 180° 270° 0°
	Azimuth			Feature Picks		Reflective Index
	0 deg 360	0° 90° 180° 270° 0°	265°	0° 90° 180° 270° 0°	-0 °	0 1200 0
106.60						
106.80						
107.00						
107.20						
107.40						
107.60						
107.80						
108.00						


										Canad	a Fluorspa	ar Incorpora	ited Diamor	nd Drill L	og Sheet				CF
	Drill Hole ID:	GS-1	4-92	UTM C	oordinates	Units:			Remark		0	Hole Colla	r Oreintation	ging			Down t	he hole Surveys	Planned Setup
	Logged By: Start Date:	Alex Chafe		-	Easting	616377.84						Azimuth:	34	UTM	Depth (m)	Azimuth	Dip	Remarks	Northing 5196086
	End Date:	26-Aug-14		-	Elevation	1123.72						Mag North:	54.3	-	2 70	33.3	-50.2		Elevation 1120
	Contractor:	Springdale Dr	illing	Grid Nort	h Coordinates	Units:			Remarks			Grid North:	0	_	3 121	. 33.6	-56.0		Azimuth 34
	Drill #:	1		-	Northing							-			4 172	33.0	-56.1		Dip -55
	Final Depth:	400		-	Elevation							Recovery:	-		6 277	35.0	-56.3		North
	Date Surveyed:			Lo	cation				_						7 334	36.1	-56.3		
	Casing:	UNREMOVED	6	m	Area	AGS Property			-						8 388	36.8	-56.1		
					Section	Line 10400L								1	10				
		Litho	logy					Struc	tural						Assays			L.	pg .
Drillhole	From (m)	To (m)	Code	Alteration	Structural	In	Sub-code	If	Width (mm)	Core Angle	RQD	Infilling	CaF ₂ and ISE	(%)			Tag #	Ren	larks
GS-14-94	0.00	5.56	ОВ	Code	coue			1	(1111)	(Degrees)	(70)	Code	(70)	(70)		1	1	Overburden.	
																		Metasediment Grev-green metasediment with weak chlor	ite alteration and m-sclae weak K alteration towards to
																		hole. Meter-scale zones of Jf=4, overall Jf=3 at 20-30°. Gre	en brecciation and reworked CaF2 vein, associated with
																		hematite alteration at 30*, surrounded by moderate chlorit	e alteration. Minor percentage of calcite veinlets
GS-14-94	5.56	42.70	MS	Chl, K	Л	1	0	3	-5560	25		Chl			_			throughout approximately parallel to jointing, actual orient	ations varibale.
GS-14-94 GS-14-94	10.91	12.70			FZ			4	1/90	25		Chl						Fracture Zone. If increases to 4, where fragments range fro Fracture Zone. If increases to 4, where fragments range fro	im 10-50 mm. Chlorite infill.
																		Green fluorite vein. Reowkred green fluorite vein associate	d with moderate hemaitization and minor calcite veinl
GS-14-94	18.40	19.10		Chl. Hem	VN				700	30		FL Ca						taken.	itization. Fluorite vein "120 mm thick. Detailed photo
				,														Metasediment-rhyolite contact At 40* sharp contact with	rm-scale moderate chlorite alteration in metasedimen
GS-14-94	52.23	52.26			ст				30	40								Rhyolite not altered.	chiscale model are chighte arteration in metasedimen
																		Pink-orange quartz-feldpsar porphyritic rhyolite. Nil to we	ak chlorite alteration and chlorite infill along moderate
GS-14-94	52.26	72.52	RHY	Chl	π	2	0	3	20260	25.5		Chi						60° throughout, trace concentration. Chlorite-filled veinlet	s throughout oriented at 60°.
																			and the state of the
																		Gey-green metasediment with increased chlorite and K alt and K-alteration is moderate and on dm-scale. Areas of K a	eration from above unit. Chlorite alteration is modera Iteration are associated with mm, to cm, scale pyrite bl
																		Bedding is at 40°. Alteration and breccia with moderate he	matization on m-scale, from 95.95-97.35 m associated
																		minor green-blue fluorite in euhedral crystals (macro-photo	s taken). Below 230.50 m, percentage of calcite veins
	72.52	05.05		<b>C</b> 1-1					22420									nil to trace green fluorite, forming a low abundance of wea	k calcite stockwork within metasediment. Dm-scale we
65-14-94	72.52	95.95	IVIS	Chi	11	2	U	3	23430	50								nematite alteration within. Minor dm-scale moderate prec	clation throughout.
																		AGS Structure lacking significant fluorite. Metasediment b	reccia associated with fracture and blue fluorite vein.
																		of alteration and brecciation within metasediment. Fractur cm-sclae and weak fragment-supported throughout. Calcity	e reaches Jt=4 on dm-scale. Breccia is matrix-supporte
																		wide blue fluorite vein with euhedral crystals up to 5 mm.	50 between 20 and 50°. Core becomes Jf=2 moving
GS-14-94	95.95	97.35	GZO		BX, VN				1400			Chl, Hem, Fl						downhole.	
	97.35	357.27	MS	Chl	л	2	0	3	259920	50								Gey-green metasedimentdimilar to the above Metasedim	ent unit.
																		Faulting and gouge. Faulting associated with hematite alte	ration and ~20 mm calcite vein with clay to fine sand,
GS-14-94	104.10	104.45			FLT, Gg				350	35		Hem						hematite-coated gouge. Vein and fault oriented at 35*. Ne	arly perpendicular to bedding with S0=50* (photo take
																		Moderate-strong brecciation. K-alteration of subangular fr	agments of fragment-supported breccia. Shear
GS-14-94	164.30	165.38			BX				1080	30								aprrozimately 30*. Interval moderate-strongly jointed with	chlorite infill.
																		Fluorite+calcite vein. Grenn-clear fluorite vein with minor	calcite, forming weal stockwork surrounding vein. Orie
GS-14-94	172.72	173.05			VN				10	15								at 15*, 10 mm thick.	· · · · · · · · · · · · · · · · · · ·
																		Fracture and fault zone above matrix-supported breccia w	ith minor green fluorite. Shear and faulting direction
																		between 25-30° with chlorite+calcite infill and fragments of	metasediment. Moderate-strong chlorite alteration
GS-14-94	218.52	221.75			FZ, BX, FLT					30		Chl, Ca			_			throughout. Fragments range from 10 mm to 100 mm outs	ide of breccia.
																		Matrix-supported breccia. Very fine-grained chlorite matri	x and <1 mm to 5 mm subrounded calcite and
GS-14-94	220.78	221.56			BX					30		Chl, Ca, X			_			metasediment fragments. Galena within <1 mm to 3 mm c	ystals in stringers ~ 20 mm thick.
GS-14-94	231.95	232.16			VN	-			210			FI						Green Tuorite vein. Green fluorite infills metasediment br	eccia, 1-3 mm thick. Variable orientations (Photo taken
																		Metasediment Breccia. Predominantly fragment-supporte	d with cm-scale matrix-supported breccia, with modera
GS-14-94	241.05	241.52			BX				470	35		Chl. Ca. Fl						fluorite vein narallel to shear (photo taken). At 35°.	ment, subrounded to angular 10 mm wide vein of gr
05 14 54	241.05	241.52			DA.				470			cill, cu, ri						ndonte ven paraner to snear (proto taken). At 55 .	
																		Metasediment breccia. Fragment- and matrix-supported v	ith chlorite matrix, moderate chloritization, and weakly
C5 1/ 01		252.55			DV.							Chi Cr						hematite altered fragments. Brecciation on m-scale. Only	minor calcite and nil fluorite. Shear orientation unclear
GS-14-94 GS-14-94	246.12	252.23			VN	-			5110	40		Fl. Ca				-		Anastomosing thin, 1-3 mm green fluorite vein with minor	alcite, around 40*.
GS-14-94	279.24	279.30			VN				5	40		Ca						Calcite vein. Thin, 5 mm calcite vein with euhedral crystals	along vuggy vein wall. Crystals ~3 mm.
GS-14-94	286.60	287.24			BX				640			Ca						Metasedimnet breccia. Minor calcite infills fragment-supp	orted weak metasediment breccia.
																		Matrix-supported metasediment breccia with calcite+fluo	ite infill. Fragments are metasediment, 3-10 mm and
GS-14-94	305.85	306.84			BX				990			Ca, Fl			_			subangular. Photo taken.	
																		Metasediment breccia. Fragment-supported weak to mod	erate breccia with vugey calcite+quartz and minor blue
GS-14-94	310.17	310.70			вх				530			Ca, Fl						fluorite. Metasediment is weakly K-altered. Photo taken.	and the state of t
																		Calcite+chlorite minor purple fluorite vein. Clear and purp	e fluorite vein with minor calcite. 20 and 150 mm thick
																		top and bottom of interval. Weak metasediment breccia w	th calcite infill. Euhedral purple fluorite up to 5 mm
GS-14-94	314.43	314.79			VN				360	20		Ca, Chl, Fl						covered in <3 mm calcite and quartz. Trace percentage of p	byrite.
																		Fluorite+calcite breccia and stock work. Fragment-support	ed metasediment breccia with green-purple fluorite wi
GS-14-94	318.57	319.19			BX				620	55		FI, Ca, X						minor calcite infill. Galena banding, 1-3 mm surrounding fl	uorite crystals. Vuggy green fluorite. Shear at 55*.

Canada Fluorspar Incorporated Diamond Drill Log Sheet																				
											Geo	ological and s	structural Log	zing						
	Drill Hole ID:	GS-:	14-92	UTM Co	ordinates	Units:			Remarks			Hole Colla	r Oreintation				Down	the hole Surveys		Planned Setup
	Logged By:	Alex Chafe			Easting	616377.84						Azimuth:	34	UTM	Depth (m)	Azimuth	Dip		Remarks	Northing 5196086
	Start Date:	20-Aug-14		_	Northing	5196081.59						Dip:	-55	_	1 19	32.2	-56.2			Easting 616381
	End Date:	26-Aug-14	illing	Cold North	Elevation	1123.72	1.1		Domosla			Mag North:	54.3	-	2 70	33.3	-55.7	-		Elevation 1120
	Drill #:	1	mmig	Grid North	Northing	Units:	1.1		Remarks			Grid North.			4 177	33.0	-56.1			Din -55
	Core Size:	NQ		-	Easting							-			5 226	5 35.3	-56.5			Grid
	Final Depth:	400			Elevation							Recovery			6 277	7 35.0	-56.3			North
	Date Surveyed:			Loc	ation							_			7 334	36.1	-56.3			
	Casing:	UNREMOVED	6	m	Area	AGS Property									8 388	36.8	-56.1			
				m	Section	Line 10+00E									9					_
		Link -						C						1	10	1	1 1			
Drillholo	From	Litho	Code	Altoration	Structural		Sub codo	Struct	Width	Coro Anglo	ROD	Infilling	CoE and Its		Assays		Tog #			Log
Header	(m)	(m)	coue	Code	Code	In	lr	If	(mm)	(Degrees)	(%)	Code	(%)	(%)			rag #			eniarks
							1													
																		Green-purple fluo	ite with metasediment breccia. Gree	en-purple fluorite infills fragment-supported breccia
GS-14-94	319.55	319.82			BX, VN				270	45		FI, Ca						surrounding green	fluorite+calcite vein. Shear ~45".	
																		Massive calcite+re	d-green fluorite vein and metasedim	ent breccia. Massive calcite+fluorite vein surrounded by
																		matrix-supported	preccia with framents subangular. 5-5	mm. Vugev wuth perfect houndstooth calcite. Trace pyrite.
GS-14-94	325.00	326.00			VN, BX				1000									Towards bottom o	f interval percentage of metasedimen	increases. Trace pyrite.
GS-14-94	327.68	327.90			VN				220	40		Ca						Vein with minor re	d-green fluorite - primarily calcite. C	riented at 40* with compositional banding.
																		Calcite-fluorite inf	illed metasediment breccia. Fragmen	t-supported breccia and calcite+fluorite stock work. Calcite-
GS-14-94	342.13	344.93			BX				2800			Ca, Fl						fluorite veins read	10 mm thick. 75% calcite, 25% greer	-clear fluorite. Overall <3% CaF2.
																		Chlorite-filled met	asediment breccia. Chlorite and weal	dy hematized infilled metasediment breccia with much less
GS-14-94	346.63	349.51			вх				2880			Chl						calcite than previo	us breccia. Microdefects cause incom	petent core. Green-dark red in colour.
																		AGS Structure lack	ing significant fluorite. Strongly chlor	ite altered and brecciated metasediment with ~5% calcite in
																		breccia infill. Brec	cia continues to 359.27 where core be	comes gravel with a major concnetration of calcite, minor
																		yellow fluorite and	bright green malachite staining. VOI	D/LOST CORE from 360.07 -360.67 m. Calcite-rich gravel-sized
GS-14-94		361.00	G20						#VALUE!			Chl, Ca, Fl						fragments continu	e to end of zone. Lower contact at 36	1.00 m is bound by gouge.
																		Metasediment-cal	cite breccia. Strongly chlorite altered	and brecciated metasediment with ~5% calcite in breccia
GS-14-94	357.27	359.27			BX, FLT				2000			Chl, Ca, Fl						infill.		
																		Calcite-fluorite gra	vel. Gravel with a major concnetration	n of calcite, minor yellow fluorite and bright green malachite
GS-14-94	359.27	360.67			VN, FLT				1400			Ca, Fl, X						staining.		
GS-14-94	360.67	360.67	VOID						0									VOID/LOST CORE.		
																		6.1.3. A		dentries and the dentries and the
CE 14.04	260.67	261.00							220			Co. FL X						Calcite-fluorite gra	vel. Gravel with a major concretration	n of calcite, minor yellow fluorite and bright green malachite
65-14-94	360.67	361.00			BX, FZ, VN, Gg				330			Ca, FI, X						staining, as above	void. Chioritized clay gouge at G2O-IV	S contact.
																		Grou groop work r	il chlorito altored motacodiment ac de	secribed above AGS structure, with minor <5% calcite upin and
																		voinlots as well as	rm ccale matrix supported brossia. To	the coarre arained theolite deket and two fine arained deket
																		on dm.scale Cm.s	cale very fine-grained anhanitix nink-	orange glassy matrix in each with nil alteration and nil
GS-14-94	361.00	400.00	MS	Chl. Ca	л				39000			Ca. Fl. X						fluorite.	cale very line Brained, apraintix pline	orange grassy matrix in each with in alteration and in
				,																
																		Coare-grained rhy	olite dyke. Coarse-grained rhyolite du	ke with porphyritic quartz and feldspar 1-5 mm. Very fine-
GS-14-94	368.35	368.45			Dyke				100									grained aphanitic	ink-orange glassy matrix. Nil alteratio	ona and nil fluorite.
																		Coare-grained rhy	olite dyke. Coarse-grained rhyolite du	ke with porphyritic quartz and feldspar 1-5 mm. Very fine-
GS-14-94	369.97	370.00			Dyke				30									grained aphanitic	oink-orange glassy matrix. Nil alteratio	ona and nil fluorite.
	204.00	202.05							4450									Metasediment bre	ccia. Matrix-supported breccia with s	ubangular fragments sized 1-15 mm. Matrix is chloritized and
65-14-94	391.80	392.95			вх				1150						-			weakiy k altered a	nd fine-grained.	
																		Faulting and block	iness. Intense jointing and faults in bl	ocky core with fragments sized 5-50 mm. Clay gouge up to 30
GS-14-94	394.62	396.22			FLT, FZ, Gg				1600									mm and chlorite in	filled along joints. Weak K alteration	thourghout.
GS-14-94																				
GS-14-94	TD: 400 m																			
GS-14-94		-													_					
GS-14-94	Samples	250 2													_		40.00	A 40 PM C		
65-14-94	358.27	359.27											minor		-		12179	U IMS BX, CC+CaF2, w	allrock sample, minor CaF2	
GS 14-94	359.27	360.07									_		15-20				12179	1 GZU, qtz+Cc+CaF2	graver, 15-20% CaF2	
GS-14-94 GS-14-94	360.07	360.67					-						15-20				121/9	3 GZ0 atz+Cc+C3E2	gravel 15-20% CaE2	
GS-14-94	361.00	362.00											minor				121/9	4 MS. CC+atz wall ro	rk minor CaE2	
GS-14-94	551.00																121/3	, conque wain ro		
GS-14-94																				
GS-14-94																				
GS-14-94																				

								Canad	a Fluorspa	ar Incorpora	ted Diamo	ond Drill	Log Sheet	:					CFI
							Geological and Structural Logging											•	
	Drill Hole ID:	Tular Rower	UTN	A Coordinates	Units:		Ren	narks		Hole Colla	r Oreintation	LITM	Donth (m)	A simuth	Down t	he hole Surveys	Plann	ed Setup	
	Start Date:	23-Sep-41		Northing						Dip:	-60	01141	1 19	225.7	-63.7	Nethalk3	Easting		
	End Date:	25-Sep-14		Elevation						Mag North:			2 70	218.2	-59.7		Elevation		
	Contractor:	Springdale Drilling	Grid N	orth Coordinates	Units:		Ren	narks		Grid North:		_	3 121	219	-59.6		Azimuth		
	Drill #: Core Size:	NO		Fasting	19+00F					-			4 1/2	2 219.4	-59.7		Dip	Grid	
	Final Depth:	190.35		Elevation	1119					Recovery	_		6				-	North	
	Date Surveyed:			Location						_			7				_		
	Casing:	NQ - Left in	m	Area	AGS Property								8				-		
				Section	Line 191002								10				-		
		Lithology					Structural						Assays				og		
Drillhole	From	To	Code Alterati	on Structural	le.	Sub-code	Wid	th Core Angle	e RQD	Infilling	CaF ₂ and ISE	(9/)			Tag #	Rei	marks		
GS-14-113	0.00	5.70 OB	Code	Code	1	, , , , , , , , , , , , , , , , , , ,		5700	(70)	coue	(70)	(70)		1	1	Overburden:			
		0.10																	
																Mg pink-orange qtz-fsp porphyry rhyolite; blebby and strin	ger Mt within; variably gs and	alteration/colo	our; stringers of
																purple-black in places- CaF2 within; variably magnetic; chill	ed LC; LC is altered by MS uni	t below; unit sta	arts out very
GS-14-113	5.70	14.75 RHY	r Cl					9050		Ca, Fl, Mt						dark and drastically changes to a pale pink-orange to a dar	k grey-orange colour; distinct,	but broken LC;	
GS-14-113	14./4	14.75		CI	-			10								RHY-MS contact; distinct but broken;			
																Fe dark area areas MC units uprights altered, CL + K altered	alteration conforms to hadd	na and is contro	allad bu miero
																deformation: multiple enisodes of micro-deformation with	in: very blocky unit: incomnet	ence increases	locally but
																overall unit is ~99% incompetent: multiple episodes of defe	prmation within including: fra	turing. BX'n. ve	eining: variably
																magnetic; areas of increased siliciousness; CI on fracture su	urfaces; bedding varies throug	hout; minor fg	diss Py within;
																micro-deformation - offsetting, stringers, veinlet's, faulting	- plus associated alteration l	aves MS lookin	ig chaotic in
																places (up to 79.09m); 79.08m-128.37m: Fg MS continues	; largely similar to MS seen ab	ove; stockwork	CaF ₂
																mineralization increases; seeing sections reaching 5% CaF ₂	over ~7m in BX, infill and stor	kwork; bedding	s = 50°-70° TCA
																with sections reaching 85"-90" TCA; localized sections (min	or) of incompetence, 99% co	npetent; 128.3	7m-153.00m:
65-14-113	14 75	153.00 MS	CL Hm K				13	8750		Ca EL X						and Hm alteration within: CaF. CaCO, and Otz infill through	hout: distinct I C with G70 - h	ased on degree	of BX'n change:
GS-14-113	14.75	23.00	ci, riii, k	So				8250 90°		cu, 11, X						90° TCA;		sed on degree	or bit in change,
GS-14-113	23.00	24.00		So				1000 80*								75°-80° TCA;			
GS-14-113	24.00	45.00		So			2	1000 45*								45° TCA;			
																Area of BX in MS unit; Chl + CaCO ₃ + Ca infill in BX; very bri	ttle; semi-solid Gg in areas; he	matization ove	r majority of
CE 14 112	45.50	50.14	Ci Han K	DV.				1550								Interval; multiple episodes of micro-deformation; rotation	on MS clasts; web-like minera	lization; ChI + K	. + Hm
03-14-115	43.39	50.14	CI, HIII, K	BA				4550		Cd, FI, CI						Area of foururable alteration in MC unit. Cl. 1 K alteration of	oglas sastion look BY'd altor	z), puggy in area	35,
																planes/sections of weakness in MS clasts: alteration is rim	ming clasts, along fracture su	faces and weak	6 cness areas:
GS-14-113	56.73	57.17	CI, K	ALT				440		CI						alteration is very micro-deformation controlled;			,
GS-14-113	59.41	59.50	CI	BX				90 50°		Ca, Fl, Cl						Area of BX'n in Cal + CaF ₂ vein; cg MS clasts in CaCO ₃ vein;	50° TCA; vuggy;		
GS-14-113	65.10	66.07	CI, Hm	BX				970 30°, 45°		Ca, Fl, Cl		_				Area of BX'n in MS unit; CI + Hm alteration; CaCO ₃ within; s	semi-solid in places; 30" TCA L	IC and 45° TCA	LC;
GS-14-113	68.43	68.48	CI	BX	_			50 45*		Ca		-				CaCO ₃ veinlet's surrounding BX'd MS; 45° TCA; minor-trace	CaF ₂ within;	colid BY within	- 1% - 2% CaE -
GS-14-113	76.27	78.17	Cl. Hm. K	ALT				1900 1*		Ca. Fl						multiple episodes of micro-deformation as well:	, ci + k + min alteration, semi-	solid bx within,	, 176-276 Cal 2,
																Area of BX'n in MS unit; sulphides - Py within; fg MS clasts	surrounded by CaCO ₃ + CaF ₂ ;	arge MS clasts	within as well;
GS-14-113	79.82	80.19	CI, K	BX				370 45*		Ca, Fl						vuggy; qtz within; 45° TCA U & L contacts;			
CE 14 112	01.45	01.00	Ch K Ha	DV				410		Co. El Oto						Area of BX'n in MS unit; CI, CaCO ₃ , Qtz and Ca within infill;	± chocolate brown CaF ₂ ; purp	le + GWB CaF ₂ V	within as well;
03-14-115	01.43	01.00	Ск, к, пії	DA.				410		Cd, FI, Q12						alteration is controlled by micro-deformation throughout -	Biving mint a chaotic appeara	ice, ci + k + niii	<i>.</i> ,
																CaF ₂ + CaCO ₃ + Qtz vein; 75%-85% CaF ₂ ; GWB>RYC>P; ban	ded sulphides between variati	ons in CaF ₂ (i.e.	., GWB-RYC
			-													boundary); Py, Ccp, Gn and sphalerite (spread throughout)	; ~2%-3% sulphides; visible zo	ning; distinct U	& L contacts -
GS-14-113 GS-14-113	87.41	88.20	ci	VN	-			790 45*		Ca, Fl, Qtz						UC is chaotic and LC @ 45" ICA; MS clasts/fragments with Area of increased stockwork veining: P>BYC>GWB CaE,: Ca	In; minor CaCO ₃ within; vuggy CO ₂ within; sulphide bearing	chocolate brov	wn CaF ₂ within;
GS-14-113	89.22	89.47		VN				250 35*		Ca, Fl						Area of multiple veins; CaF ₂ >CaCO ₃ ; P>RYC>GWB; 35° TCA;	Py throughout;	· 1)	
																Locally semi-massive CaF2 vein; 40° TCA; P>GWB>RYC; clay	mineral within; CaCO ₃ within	; Py + sphalerite	e as well;
GS-14-113	92.09	92.37		VN				280		Ca, Fl						chaotic in places; fracture filling purple CaF ₂ + sphalerite al	oove and below;		
GS-14-113	92.71	92.75		VN	-			40 45*		Ca, Fl						CaF ₂ >CaCO ₃ vein; purple; minor red; 45° TCA;			
																Following the definition of the second			a la stra
CE 14 447		100.00	<b>C</b> 1 <b>V</b>	141				250		Co. El Cl						Entire interval exhibits stockwork veining; BX within; increa	ise in CaF ₂ infill throughout P:	RTC>GWB; sph	aierite
GS-14-113	92.75	108.00	CI, K	VN	-		1	50 50*		Ca, FI, CI						CaCO, voin: + CaE - 50° TCA:	interation; chaotic veining/vei	net 5; "5% över	d11,
GS-14-113 GS-14-113	132.97	133.30	CI	BX				380		Ca, Qtz. Fl						CaCO ₃ + Qtz + Ca cement; BX'd throughout: mg MS clasts in	n main vein;		
GS-14-113	133.85	134.81	CI	BX				960		Ca, Qtz, Fl						CaCO ₃ + Qtz + Ca cement; as seen above with greater MS of	omponent; vuggy; GWB>RYC	•P;	
GS-14-113	134.34	134.47	CI	BX				130		Ca, Qtz, Fl						CaCO ₃ + Qtz + Ca cement;			
GS-14-113	152.99	153.00		СТ				10		-						MS-G20 contact;			
																AGS Structure; BX'd MS unit; CaCO ₃ + CaF ₂ infill; sulphide b	earing - Py, Gn, Ccp, sphalerit	e; sericite altera	ation in places;
																hematized in places; very brittle in more BX'd/altered section	ons; one locally massive RYC:	P>GWB CaF2 v	ein; overall
																Jure Car2, more of intensely BX d and in tilled mineralized	CaE within localized fractor	og like in place	is, nard to
GS-14-113	153.00	179.62 670	CL Hm K				2	5620		Ca. El. Otz. X						in main vein:	car ₂ within, localized tractur	: zones, visible :	round and RX.U
GS-14-113	179.62	190.35 MS					1	0730		cu, 11, Q(2, A						Fg dark grey-green MS unit; not a lot to say since the maio	rity is cave in and <<<10cm: P	otential VOID:	
GS-14-113	190.35	190.35 TD														Total Depth 190.35m; terminated due to poor ground;			
GS-14-113	190.35	190.35 EOF	4		-											End Of Hole 190.35m; terminated due to poor ground;			
	Samples									-				-					
GS-14-113	86.41	87.41		1	1			1.00	1	1	1	1	1	1	92939	MS unit; 1m wallrock sample; 2%-5% CaF ₂ ;			
GS-14-113	87.41	88.20						0.79			1				92940	VN unit; 75%-85% CaF ₂ ; GWB>RYC>P;			-
GS-14-113	88.20	89.16				<b>—</b>		0.96						+	92941	MS unit; 15%-25% CaF ₂ ; P>RYC>GWB; stockwork veining;			
GS-14-113	89.16	89.47						1.00	+			-			92942	MS unit; 20%-30% CaF ₂ ; P>RYC>GWB; MS unit: 1m wallrock sample: 2%-5% CaF ₂ :			
GS-14-113	152.00	153.00						1.00	1	1	1				92944	MS unit; 1m wallrock sample; 2%-3% CaF ₂ ;			-

	Canada Fluorspar Incorporated Diamond Drill Log Sheet CFI																	
										Geo	ological and S	tructural Log	gging					CII
	Drill Hole ID:		UTM Co	ordinates	Units:			Remark	s		Hole Colla	Oreintation				Down t	he hole Surveys	Planned Setup
	Logged By:	Tyler Power	_	Easting	_						Azimuth:	214	UTM	Depth (m)	) Azimuth	Dip	Remarks	Northing
	Start Date:	23-Sep-41	_	Northing							Dip:	-60	_	1 19	225.7	-63.7		Easting
	End Date:	25-Sep-14 Springdale Drilling	Grid North	Elevation	Unite			Romark			Mag North:		_	2 /0	218.2	-59.7		Azimuth
	Drill #	Rig #1	Gild North	Northing	0+705			Remark	5		Griu North.			4 177	219	-59.0		Din
	Core Size	NO	-	Fasting	19+00F						_			5 1/2	215.4	-33.7		Grid
	Final Depth:	190.35	-	Elevation	1119						Recovery:			6				North
	Date Surveyed:		Loca	ation										7				
	Casing:	NQ - Left in	m	Area	AGS Property									8				
			m	Section	Line 19+00E	E					_			9				
													1	10				
	_	Lithology				Structural								Assays			Log	
Drillhole	From	To Code	Alteration	Structural	le.	Sub-code	16	Width	Core Angle	RQD (e/)	Infilling	CaF ₂ and ISE	(9/)			Tag #	Remarks	
Header	(iii)	(11)	code	COUE				(mm)	(Degrees)	(70)	Code	(70)	(70)	1	1	-	BX/MS unit: 2%-5% CaEs: P>BYC>GWB: hematized within: mg BX	vithin in filled by cement/CaCO ₂ + Otz: minor
GS-14-113	153.00	154.00						1.00								92945	Pv/sulphides within:	
GS-14-113	154.00	154.57						0.57	,							92946	BX/MS unit; 3%-5% CaF2; P>RYC>GWB; infill/fracture filling miner	alization; altered (Cl + K); trace sphalerite;
																	BX/MS unit; 10%-18% CaF ₂ ; RYC>GWB>P; chocolate brown CaF ₂ v	vithin; fracture filling and infill; CaCO ₃ + sulphides in
GS-14-113	154.57	155.00						0.43								92947	unit; vuggy; mg rotated angular MS clasts suspended in CaF2-rich	matrix; majority of structure/vein is running //" TCA;
																	BX/MS/VN unit; 20%-23% CaF ₂ ; GWB>RYC>P; sulphide bearing; P	, Gn, and sphalerite; vuggy; Cl altered; vein is //*
GS-14-113	155.00	156.00						1.00					_			92948	TCA; continued from above;	en de selete hanne den station
65-14-113	156.00	157.00						1.00	·							92949	BX/MS unit; 5%-10% CaF ₂ ; RYC>GWB>P; Infill and fracture filling C	aF ₂ ; chocolate brown CaF ₂ within;
GS-14-113	157.00	158.00						1.00								92950	MS/BX unit: 10%-20% CaF ₃ : RYC>GWB>P: CaCO ₃ within: chocolat	e brown in areas: fracture filling mineralization:
																	MS/BX unit; 4%-8% CaF2; RYC>GWB>P; hematized throughout; fra	cture fill CaF ₂ mineralization; minor sericite
GS-14-113	158.00	159.00						1.00	)							138551	alteration within;	
GS-14-113	159.00	160.00						1.00	1							138552	MS/BX unit; 5% CaF ₂ ; P>GWB>RYC; fracture filling CaF ₂ mineraliza	tion; weakly hematized; CaCO ₃ within;
GS-14-113	160.00	161.00						1.00								138553	MS/BX unit; 2%-3% CaF ₂ ; RYC>GWB>P; CaCO ₃ + CaF ₂ + Qtz BX @	upper limit;
GS-14-113 GS-14-113	161.58	162.00						0.58								138555	MS unit; 1%-2% CaF ₂ ;	
GS-14-113	162.00	163.00						1.00	)							138556	MS unit; 3%-5% CaF ₂ ; RYC>GWB>P;	
GS-14-113	163.00	164.00						1.00	)							138557	MS unit; 5%-10% CaF ₂ ; P>RYC>GWB; stockwork and fracture fillin	g mineralization;
GS-14-113	164.00	165.00						1.00	)							138558	MS/BX unit; 5%-10% CaF ₂ ; P>RYC>GWB; stockwork and fracture f	illing mineralization;
GS-14-113	165.00	166.00						1.00	)				_			138559	MS/BX unit; 10%-15% CaF ₂ ; P>RYC>GWB; infill and fracture filling	mineralization;
GS-14-113	166.00	166.47						0.47								138560	MS unit; <2% CaF ₂ ;	
GS-14-113	166.47	167.52						1.05								138561	BX unit; 3%-5% CaF ₂ ; P>RYC>GWB; hematized; fracture filling min	eralization;
GS-14-113	167.52	168.20						0.68								138562	MS/BX unit; 15% CaF ₂ ; P>RYC>GWB; fracture filling CaCO ₃ + CaF ₂ ;	sphalerite + Py within;
GS-14-113	168.20	168.60						0.40								138563	MS/BX Unit; 5%-10% CaF ₂ ; P>RYC>GWB; sphalerite within;	
GS-14-112	105.00	105.00						0.40								128565	STANDARD	
GS-14-113	169.00	170.00						1.00								138566	MS/BX unit: 2%-3% CaE.: P: Cl + K + Hm alteration within:	
GS-14-113	170.00	171.00						1.00								138567	MS unit: 5%-8% CaF.: P>RYC>GWB: one vein @ 25* TCA: fracture	filling CaFs:
GS-14-113								0.00								138568	BLANK	0
GS-14-113	171.00	172.00						1.00								138569	MS unit; 5%-10% CaF ₃ ; P>RYC>GWB; fracture filling mineralization	; BX'd in places;
																	MS unit; 20%-25% CaF ₃ ; P>RYC>GWB; fracture filling and chaotic	veining throughout; chocolate brown CaF, within;
GS-14-113	172.00	173.00						1.00								138570	CaCO ₃ within as well;	· · · ·
GS-14-113	173.00	173.40						0.40	)							138571	BX/MS unit; 25%-30% CaF2; RYC>GWB>P; mg sub-angular rotated	clasts of MS in CaF ₂ + CaCO ₃ -rich matrix;
																	VN unit; 75%-90% CaF2; GWB>RYC>P; MS clasts/fragments within	; sulphide bearing; CaCO3 within; visible zoning
GS-14-113	173.40	174.40						1.00								138572	within; chocolate CaF ₂ within; Py + sphalerite as well;	
GS-14-113	174.40	174.88						0.48								138573	VN unit; 95+% CaF ₂ ; RYC>GWB>P; visible zoning; sulphide bearing	
GS-14-113	174.88	175.23						0.35					-	-	-	138574	VN/BX unit; 70%-80% CaF ₂ ; P>GWB>RYC; MS fragments within; C	altered; CaCO ₃ within;
											1						MS/BX unit; 20%-25% CaF ₂ ; cg rotated angular MS fragments; cho	colate brown $CaF_2$ within; 20%-25% $CaF_2$ ; fg BX as
GS-14-113	175.23	176.21						0.98						-		138575	Well; CaCO ₃ within;	
GS-14-113	176 21	177.21			+			1.00	1		+		+	+	+	1385/6	MS/BY unit: 2% 5% CaE - BYCSCW/BSB: chocolate brown CaE with	sin: cl altered:
65-14-113	170.21	178.25			1			1.00			1		+	-	+	138578	MS/BX unit: 4%-8% CaE.: RVC>GWB>P: fracture fill mineralization	CaCO, within:
GS-14-113	178.29	179.25						1.04					1			138579	MS/BX unit: 10%-12% CaEs: P>RYC>GWB:	, caces manul,
GS-14-113	179.25	179.62		İ	1			0.37	·			İ	1		1	138580	MS/BX unit; 5% CaF ₂ ; P>RYC>GWB;	
GS-14-113	179.62	180.62						1.00								138581	MS unit; 1m wallrock sample; 3%-4% CaF ₂ ;	