APPENDIX A: INDIAN HEAD HATCHERY 2011 ENVIRONMENTAL REGISTRATION AND RELEASE

Construction Of Indian Head Salmon Hatchery Stephenville, NL

PROJECT DESCRIPTION AND REGISTRATION

This document is being prepared for the Newfoundland and Labrador Department of Environment and Conservation (Project Registration), pursuant to the Newfoundland and Labrador Environmental Protection Act, and the Canadian Environmental Assessment Agency (Project Description), pursuant to the Canadian Environmental Assessment Act

Prepared By:

Silk Stevens Limited 35 Main Street St. George, NB E5C 3H9

November 2010

Table of Contents

PREFACEiv							
EXECUTIVE SUMMARYv							
1.0	IN	FROD	UCTION	۸	1		
2.0	GE	NERA	L INFO	RMATION	2		
	2.1	Propo	nent Cor	tact Information	2		
	2.2	Natur	e of the U	Jndertaking	3		
	2.3	Purpo	se / Ratio	onale for the Hatchery	3		
	2.4	Autho	rizations	Required / Approval of the Undertaking	3		
	2.5	Public	c Consult	ations	3		
3.0	3.0 DESCRIPTION OF THE UNDERTAKING4						
	3.1	Geogra	aphical L	ocation	4		
		3.1.1	Site Lo	cation	4		
		3.1.2	Site De	scription Including Boundaries	4		
		3.1.3	Current	and Historical Land Use	4		
	3.2	Physic	cal Featu	res	5		
		3.2.1	Major F	hysical Features			
	3.3	Projec	et Compo	onents and Activities	5		
		3.3.1	Fresh W	/ater Supply	5		
		3.3.2	Marine	Infrastructure and Transportation	5		
		3.3.3	Related	Municipal Infrastructure	6		
			3.3.3.1	Municipal Water System	6		
			3.3.3.2	Municipal Road System	6		
		3.3.4	Electric	al Services	6		
		3.3.5	Area to	Be Affected By the Hatchery	6		
		3.3.6	Enviror	mental Protection During Construction	6		
			3.3.6.1	Construction Duration and Period	7		
			3.3.6.2	Potential Sources of Pollutants during Construction	7		
			3.3.6.3	Air Emissions	7		
			3.3.6.4	Liquid Effluents	7		
			3.3.6.5	Solid Waste Materials	8		
			3.3.6.6	Equipment Operations and Dust Control	8		
			3.3.6.7	Sediment Erosion Control and Natural Drainage	8		
			3.3.6.8	Waste Management	9		
		3.3.7	Potentia	I Causes of Resource Conflicts	9		
		3.3.8	Operati	on	10		
			3.3.8.1	Description of Operation	10		
			3.3.8.2	Estimated Period of Operation	11		
			3.3.8.3	Potential Sources of Pollutants during Operation	11		
				3.3.8.3.1 Hatchery Effluent	11		

		3.3.8.3.2 Waste Materials	11				
		3.3.8.3.3 Noise Pollution	11				
	3.3.9 Hatchery Effluent Monitoring						
	3.3.10 Waste Management						
		3.3.11 Noise Control	12				
		3.3.12 Quality and Eco Standards	13				
	3.4	Employment and Human Resources	13				
		3.4.1 Enumeration and Breakdown for Construction	13				
		3.4.2 Enumeration and Breakdown for Operation	13				
		3.4.3 Workforce, Contractor and Spin-Off Activities	13				
		3.4.4 Employment Equity (Age and Gender)	14				
	3.5	Alternatives Considered	14				
4.0	MA	ARINE AND TERRESTRIAL BIOLOGICAL ENVIRONMENTS	15				
	4.1	Water Bodies and Drainage Basins	15				
	4.2	Topography, Surficial Geology, Bedrock Geology and Hydrogeology	15				
	4.3	Vegetation	15				
	4.4	Wildlife Species	16				
5 0	60		10				
5.0	50	CIO-ECONOMIC ENVIRONMENT					
	5.1	Demography	18				
60	TA	ΝΟΙΝΕΟΡΜΑΤΙΟΝ	10				
0.0	61	Zone Information	17 10				
	6.2	L and Ownership	17				
	0.2		1)				
7.0	SC	HEDULE	20				
8.0	FU	NDING					
9.0	RE	FERENCES					

LIST OF APPENDICES

- Appendix B Floor Plans, Elevations & Building Sections
- Appendix C Survey Drawing & Land Description
- Appendix D Water Supply Information
- Appendix E Eco-Regions, Regions & Species at Risk Distribution Maps
- Appendix F Surficial Geology, Bedrock Geology & Hydrogeology

PREFACE

This document was prepared by Silk Stevens Ltd., (SSL) of St. George, NB on behalf of Northern Harvest Sea Farms Newfoundland Ltd., (NHSF/NL) with the assistance of various Northern Harvest Sea Farms (NHSF) staff in New Brunswick, Newfoundland and Chile, Barry Coates, Town Manager for the Town of Stephenville and Joline Keys, BSc.

To ensure that required technical support is provided for the duration of the project NHSF, has assembled a team of engineering and environmental experts which includes the following:

Company	Responsibilities
Silk Stevens Limited	Provide project management and engineering services for construction of hatchery buildings, land surveying / acquisitions / permitting, and site development plans.
Carter Management Services	Provide general engineering support services for the duration of the project.
Stantec	Project hydro geologist responsible for all groundwater supply.
Barry Coates – Town Manager for the Town of Stephenville	Contributed selected components of this Project Description and Registration Report.
Joline Keys, BSc. (Zoologist)	Contributed selected components of this Project Description and Registration Report.
Fracflow Consultants Inc.	Completed Factual Report on Well Drilling and Aquifer Testing at Exploratory Test Well PW1.

Construction work is scheduled to begin in the fall of 2010 and will proceed to completion following approval of the environmental regulatory process and receipt of all necessary permits and authorizations. Site construction for the first phase of the work (Smolt Buildings No. 1 and No. 2) is scheduled to be completed by June 2011.

Since 1985, NHSF has successfully operated salmon farming in New Brunswick and Chile and currently operates farm sites in New Brunswick and Newfoundland. The Newfoundland sites are located in Fortune Bay, Harbour Breton Bay, Great Bay de L'eau and Hermitage Bay. In addition, NHSF/NL currently processes its fish at the Barry Plant in St. Alban's, NL. It is important to note that NHSF operates with modern techniques and advanced processes, all controlled by an Environmental Management System utilizing compliant standard operating procedures and manuals.

EXECUTIVE SUMMARY

This document is being prepared for the Newfoundland and Labrador Department of Environment and Conservation (Project Registration), pursuant to the Newfoundland and Labrador Environmental Protection Act, and the Canadian Environmental Assessment Agency (Project Description), pursuant to the Canadian Environmental Assessment Act, for the construction of a modern *recirc* salmon hatchery.

This document intends to provide a detailed description of the various components associated with the operation of a modern *recirc* salmon hatchery, which may be summarized as follows:

- Fresh water resources;
- Internal hatchery processes;
- Infrastructure integration;
- Waste management;
- Human resources

NHSF plans to construct a 7000m² hatchery on an 11 hectare site situated at 15 Connecticut Drive in Stephenville. The proposed site is within the Planning Area Boundary for the Town of Stephenville and is zoned as "Industrial General" (IG). Hatchery water requirements, estimated at 200m³ per day, will be supplied to the facility through a new well. Potable water for the offices will be provided by connection to existing infrastructure, operated by the town. Hydro will be provided by connection to an existing three phase distribution system, adjacent to the site. Trash and solid waste will go to an approved landfill. Water discharged from the facility will be treated to remove solids and released into a treatment pond system. Sludge will be collected in holding tanks and disposed of at an approved waste management site.

NHSF have consulted all pertinent levels of government while developing the operational plan of this undertaking. They further plan to conduct a public meeting before the end of 2010 in the Town of Stephenville to present their plans in relation to the hatchery.

NHSF plans to complete the required regulatory processes, obtain secure title to the Indian Head site, complete engineering design and commence construction during the fall of 2010.

It is anticipated that Smolt Building No.1 and No. 2 will be fully operational by mid June 2011 with an initial production of 3.5 million smolts per year, representing about 60% of NHSF's smolt production in Atlantic Canada. The Fry Building will be operational by the fall of 2010. 4.5 million smolts will be produced in year two and going forward.

The salmon hatchery will provide employment for approximately sixteen full-time/part-time employees with a range of skills. Assuming a direct-to-indirect labor ration of 1:2, this would imply that a total employment level of thirty-two jobs may be associated with this undertaking. NHSF is an equal opportunity employer with an anticipated fifty percent ratio between male and female employees in the hatchery environment.

1.0 INTRODUCTION

NHSF plans to construct and operate a modern *recirc* salmon hatchery in Stephenville, NL. Completion of the hatchery will provide the company with control of its smolt production and decrease biosecurity risks for the company and for the province's aquaculture industry overall. This project will see the construction of a 7,000m² facility on an 11 hectare site. It will utilize modern recirculation processes that reduce water use and it will have a maximum capacity to produce approximately 4.5 million smolts per year.

Section 2 of this document provides information on the proponent and presents rationale for the undertaking. Regulatory agencies and other stake holders impacted by the proposed undertaking are identified and ongoing efforts to consult with these groups is summarized to show the proponent's commitment to co-existing in harmony with other corporate entities, local citizens and with the environment.

A detailed description of the undertaking is presented in Section 3, with focus on such items as site parameters, operational scenarios, water consumption, waste management and quality standards.

Section 4 addresses Marine and Terrestrial Biological Environments associated with the undertaking. It provides a discussion of the various species found in the Stephenville area and presents any impacts that the proposed undertaking may have on the same.

Section 5 presents a description of the socio-economic environment in which the undertaking must exist. Historic and current demographics are elaborated on and any impacts that the hatchery may have on the traditional way of life in the Stephenville area are discussed. Public consultations, although not mandatory for an Environmental Registration document, are planned to be conducted in the town of Stephenville to describe the proposed hatchery and to address any concerns that the local citizens may have.

Land use issues are discussed in Section 6, with emphasis placed on zoning, surrounding land uses, land tenure and access to the proposed site.

The project schedule is presented in Section 7 of the document. It is based on an assumption that approvals will be issued following the review period by the Crown.

2.0 GENERAL INFORMATION

2.1 **Proponent Contact Information**

Name of the Corporate Body:

Northern Harvest Sea Farms Newfoundland Ltd. (NHSF/NL) P.O. Box 190, 183 Main Street St. Albans, NL A0H 2E0

Chief Executive Officer:

Mr. Larry Ingalls, President Northern Harvest Sea Farms Ltd. 204 Limekiln Road Letang, NB E5C 2A8 Tel: (506) 755-6192 Email: larryingalls@northernharvestseafarm.com

Principal Contact Persons for EA:

Mr. Aaron Craig Fresh Water Production Manager Northern Harvest Sea Farms Ltd. 204 Limekiln Road Letang, NB E5C 2A8 Tel: 506-754-1575 Email: <u>aaroncraig@northernharvestseafarm.com</u>

Mr. David Stevens, P.Eng Senior Engineer Silk Stevens Limited Design and Consulting Engineers 35 Main Street St. George, NB E5C 3H9 Tel: (506) 755-3005 Email: <u>dave@silkstevens.ca</u>

2.2 Nature of the Undertaking

The project will involve the construction of a bio-secure recirc hatchery for sustained production of high quality smolt. The hatchery will produce 4.5 million smolt annually. Appendix A shows location and site plans of the hatchery, while Appendix B presents detailed floor plans, elevations and sections of the proposed Smolt Buildings No. 1 and No. 2 (Phase I of the hatchery).

2.3 Purpose / Rationale for the Hatchery

Newfoundland's marine environment offers many opportunities for salmon producers. However, the salmon farming industry in Newfoundland is presently reliant upon smolt importations from outside of the province for production. This approach poses significant risk to biosecurity and impacts competitiveness. To realize the potential of these opportunities, manage risks and be globally competitive, investment in hatchery capacity and a breeding program is critical.

This project will construct a modern, bio-secure recirc hatchery for land based production of smolt, broodstock, eggs, and a breeding program. The hatchery is an innovative application and combination of technologies merged with production techniques and management to meet these needs while achieving sustainable superior environmental performance and reduced production costs.

The hatchery will provide stock for NHSF's expanding ocean grow-out operations in Newfoundland and New Brunswick.

2.4 Authorizations Required / Approval of Undertaking

NHSF/NL will require approval in order to operate the hatchery. Following the environmental process, all applicable permits and licenses will be secured. These permits and licenses will include Department of the Environment and Conservation approval of the water works, municipal development approvals and other forms of authorizations as required.

The proposed location of the hatchery is situated within the Planning Area Boundary of the Town of Stephenville and any development must abide by municipal regulations and bylaws established by the town.

2.5 Public Consultations

NHSF recognizes that public consultation, while not mandatory, is desirable; and experience has shown that having all stakeholders, including the general public, consistently informed about Company plans leads to more successful on-going relationships. NHSF has met with the Town Council of Stephenville on several occasions and has involved them in meetings with regulatory agencies. In addition, NHSF plans to conduct a public meeting before the end of 2010 in the Town of Stephenville to present their plans in relation to the hatchery. During this meeting NHSF will provide an overview of the project, discuss employment requirements, solicit input into the project and receive feedback from the public.

3.0 DESCRIPTION OF THE UNDERTAKING

3.1 Geographical Location

3.1.1 Site Location

The site of the proposed aquaculture operation is located in the Town of Stephenville on the north shore of St. George's Bay, NL. Appendix A shows a general location map from a regional perspective. The hatchery will be constructed on the north shore of Port Harmon below an elevated bog/overburden plateau, west of the Indian Head mountain range. The land that was considered by NHSF to be most suited for the construction of the hatchery is located south of Connecticut Drive near the Stephenville Airport.

3.1.2 Site Description Including Boundaries

The site is located in the Port Harmon Complex Industrial Park, north of Rorstad Loop, near the Stephenville Airport and between the Stephenville Naval Air Museum and the former Abitibi Mill. The rectangular shaped, 11 hectare, site is relatively flat, sloping towards Port Harmon and is well suited to the construction of the hatchery facility. Appendix C includes a legal survey completed by R. Davis Surveys Ltd., which shows the exact site boundaries.

3.1.3 Current and Historical Land Use

Barry Coates, the Town Manager for the Town of Stephenville provided the following historical summary for the land that was purchased by Northern Harvest for the Indian Head Hatchery:

- Prior to 1941 the land was vacant or used as a pasture by local farmers;
- Oct. 20, 1940 the land was selected as part of 8,159 acres to be used by the US Army Air Force Base (Stephenville Army Base) the largest military air base to be constructed outside the continental USA.
 - At that time Stephenville had only 500 residents.
 - Stephenville grew from 500 to 7000 almost overnight.
 - The first contingent of US Army troops arrived in January 1941.
 - When the US declared war on Japan in December 1942, the site was not yet finished.
- 1942 100 mammoth tents were erected on the site of the proposed hatchery as 700 troops arrived and housing was not available.
- December 31, 1966 The base officially closed and was turned over to the federal government. Many of the buildings still stand and are used by residents and businesses in the Town of Stephenville today.
 - The proposed hatchery site had not permanent structures.
- Feb. 1966 The Harmon Corporation was formed in an attempt to boost the town's economy after the Americans left Stephenville. It had the right to buy, sell or lease property. The corporation received government support until 1976.
- Mid 1970s A yacht club operated on the north end of the site. The Stephenville Search and Rescue Club used a natural point on the south end of the site for launching boats for training

4

purposes. Remnants of the wharf and boat launch still remain today.

- 1972-1977 Newfoundland Liner Board Company stored logs on the site.
- 1977-1979 The land was vacant.
- 1987 The Harmon Corporation transferred land to the Town of Stephenville.
- 2000 The remaining lands were transferred to the Town of Stephenville from the Newfoundland Housing Corporation.

3.2 Physical Features

3.2.1 Major Physical Features

The main physical features associated with this undertaking will be the construction of two identical smolt buildings with a footprint of approximately 2,322 m², an incubation fry building of approximately 2,500m², land for parking and access roads. Appendix A shows location and site plans for the hatchery.

3.3 **Project Components and Activities**

3.3.1 Fresh Water Supply

Appendix D presents water supply information including data from monitoring wells that were completed along a straight line from Noel's Pond to the shore of Port Harmon. The data shows that the overburden aquifer extends to depths of 60m or more and consists of sands and gravels. The data indicates that the aquifer is unconfined. Over most of this zone, the aquifer is covered by a layer of bog/peat, followed by an unsaturated zone below the peat and in some areas; a second layer of decayed peat is present. An exploratory test well was drilled to check the depth of the overburden at the borehole location, the type of sediments present and whether the groundwater chemistry varied with depth or pumping. The client's biologist, Mario Puga, has confirmed that that the water chemistry for the samples analyzed is suitable for the proposed hatchery.

3.3.2 Marine Infrastructure and Transportation

No construction of marine infrastructure in the form of wharves or other marine installations is planned for the hatchery. NHSF/NL intends to utilize existing local marine installations in the area for the delivery of juvenile salmon from the hatchery site to well-boats at the local wharf that will transport them to cold water grow-out cages. A wharf already exists at the former Abitibi Mill site, a short distance from the hatchery site, and wharf facilities for commercial fishing enterprises exist at the entrance to Port Harmon.

The hatchery will have company trucks for the transportation of materials required for operation of the hatchery and for the transportation of juvenile salmon from the hatchery to local wharves. As well, local delivery trucks will periodically visit the hatchery.

3.3.3 Related Municipal Infrastructure

3.3.3.1 Municipal Water System

The town of Stephenville is supplied by one of the best groundwater supply systems in Newfoundland. A potable water pipeline connected to this system runs along the south side of the paved road that is located along the northern edge of the proposed hatchery site. This will be used for site drinking water and fire protection.

3.3.3.2 Municipal Road System

The site is connected to the main road network for the town of Stephenville and the local highway system by a paved, two-lane road. No additional road upgrading is necessary for this development.

3.3.4 Electrical Services

The proponent proposes to connect to the existing power distribution system installed in the town of Stephenville by Newfoundland Power. In order to accomplish this, the proponent will run a three phase line from the new hatchery to the existing three phase line from the new hatchery to the existing three phase service on Connecticut Drive. This line of Newfoundland Power on Connecticut Drive is approximately 130 meters from the hatchery site which lies in a southwest direction from the Newfoundland Power lines. The new pole line will run along an access road which runs parallel to the proponent's property line and located approximately 30 meters inside the proponent's line. Poles will most likely be used to hold area lighting as well as the three phase lines. There will also be an emergency back-up generator on site.

3.3.5 Area to Be Affected By the Hatchery

The area to be affected by the hatchery is a site located in the Port Harmon Complex Industrial Park, north of Rorstad Loop, near the Stephenville Airport and between the Stephenville Naval Air Museum and the former Abitibi Mill site. The rectangular shaped 11 hectare site, is relatively flat, sloping towards Port Harmon and is well suited to the construction of the hatchery facility. The site is currently accessible by two gravel roads from the east, extending from an unnamed paved road from Rorstad Loop.

3.3.6 Environmental Protection During Construction

NHSF requires that all its employees and contractors comply with applicable environmental regulatory requirements related to the construction and operation of its facilities. As a result, NHSF is committed to minimizing environmental impact during the construction of the hatchery. As applicable, Environmental Guidelines issued by the DOEC will be followed.

Land clearing around the hatchery site will be controlled so that, where possible, activities will be kept to a minimum. Inspections of the site will be conducted on a regular basis as the project progresses and mitigation measures will be adjusted based on observations and scheduled activities.

3.3.6.1 Construction Duration and Period

The details of the construction duration and period of the undertaking are presented in Section 7. Construction of the Smolt Buildings will begin in the fall of 2010 and construction of the Fry Building will begin in the spring of 2011. Site construction should be completed by the fall of 2011 with inside finishes, furnishings, equipment and controls, substantially complete by January 2012.

3.3.6.2 Potential Sources of Pollutants during Construction

It is anticipated that the potential sources of pollutants arising from the construction of the hatchery will be fairly short-lived. Construction activities that will potentially generate sources of pollutants will include any on-site activities preparatory or related to the building, alteration or improvement of the property including, but not limited to the following activities; excavation, infrastructure development, vehicular travel and loading / unloading construction materials.

3.3.6.3 Air Emissions

Construction activities such as land clearing and the operation of heavy equipment can potentially contribute to air pollution. Dust emissions, known as particulate matter (PM) that can be generated during construction include dirt, dust, soot and smoke.

Vehicles equipped with diesel engines create air emissions such as carbon monoxide, carbon dioxide, nitrogen oxides and hydrocarbons. Air emissions can also be generated from paints, glues, oils, thinners, and cleaners that may be used during construction.

Intrusive noise can also be generated from construction activities and equipment. Due to the location of the site, however, it is not anticipated that noise will be a concern, as there are no other buildings or residents in the immediate vicinity. Construction activities will be managed to prevent or control sources of pollutants associated with air emissions.

3.3.6.4 Liquid Effluents

Construction activities such as land clearing can potentially contribute to liquid effluents. Land clearing causes soil erosion which can lead to silt-bearing run-off and sediment pollution. Surface water run-off also has the potential to carry pollutants from the site. If not managed properly, contaminated surface run-off can pollute waterways, groundwater or soil. Construction activities will be managed to prevent and control sources of pollutants associated with surface run-off.

3.3.6.5 Solid Waste Materials

It is important to minimize construction waste leaving the site for landfill disposal. This waste includes building materials such as insulation, steel, concrete, and wood. Construction activities will be managed to prevent or control sources of pollutants associated with solid waste materials.

3.3.6.6 Equipment Operation and Dust Control

Contractors will implement best management practices and methods as described below:

- Vehicles and equipment will be clean and in good repair, free of oil and harmful substances;
- Vehicles will not be refueled or serviced on site and heavy equipment will be refueled only in designated areas;
- Traffic will be restricted to project related access routes and existing roads will be used whenever possible;
- Vehicles transporting loads to and from the construction site will have loads covered to minimize dust;
- Gravel will be applied to cover, regularly travelled, unpaved surfaces and water will be applied, as necessary, to limit the amount of dust;
- Any piles of soil / aggregate that could generate dust will be covered or watered down;
- Idling of vehicles and equipment will be kept to a minimum.

3.3.6.7 Sediment/Erosion Control and Natural Drainage

Contractors will implement best management practices and methods to protect natural drainage and minimize soil erosion:

- Alterations to existing drainage patterns will be avoided, if possible;
- Land disturbance will be kept to a minimum;
- Ditches will be constructed to intercept surface water that would enter the site;
- Ditches will be constructed from lower to high elevations to avoid water ponding;
- Culverts will be installed to prevent ponding, as necessary;
- Surplus soil will be removed and properly disposed of;
- Vegetation will be retained along ditches to reduce potential erosion.

3.3.6.8 Waste Management

Waste management during the construction of the Undertaking can be categorized into nonhazardous and hazardous waste management practices.

The practices that will be followed to minimize environmental impacts caused by non-hazardous waste are listed below:

- The site will be kept tidy at all times;
- Construction waste and sewage will be collected for proper disposal;
- Garbage will be collected and stored in covered containers and disposed of regularly at an

approved landfill;

• Surplus construction materials will be removed from the site.

The practices that will be followed to minimize environmental impacts caused by hazardous waste are listed below:

- Laws, regulations and standards for safe use, handling, storage, and disposal of hazardous waste will be followed;
- An inventory of controlled products including hazardous waste will be maintained on site and updated;
- WHMIS requirements will be followed;
- All regulatory requirements for hazardous waste, including spill containment, will be followed;
- Storage sites for petroleum products will be secured and comply with all regulatory requirements;
- Non-hazardous products will be used in place of hazardous products, if possible;

3.3.7 Potential Causes of Resource Conflicts

No potential causes of resource conflicts have been identified for the construction of the hatchery.

3.3.8 Operation

3.3.8.1 Description of Operation

The hatchery will be owned and operated by NHSF, the principal contact person being Aaron Craig. The facility will be a modern recirc salmon hatchery and the Atlantic Salmon (Salmo salar) produced will be used at the company's own sites. All smolt from the hatchery will be used by NHSF in their own cold water sea cage grow-out system; no smolt will be for sale.

The hatchery will be located in Stephenville, NL. The nearest aquaculture site is a blue mussel aquaculture site operating at Piccadilly Bay (located 120-140 km away on the Port-au-Port Peninsula). The proposed hatchery site size will be approximately 11 hectares.

Stocking and culture of Atlantic salmon is based on life stage and separation of year classes. The incubation timeline for eggs and fry before first feeding is October – February; for part the first feeding to 30-40 g salmon is March to December; and the smolt timeline for 30-40 g to 100 g salmon is from January to May.

Growth and feed projections are as follows: a stocking ratio for 1 g fish will be 25 kg/m³ with a feed rate per day of 6-7% and an expected mortality of 5% at a temperature range of 14-16°C rising to a stocking ratio of 60 kg/m³ for 100 g fish with a feed rate of 2% per day and an expected mortality of 1% at a temperature of 12°C.

Egg incubation will be done on vertical trays or "Heath Incubators". This current technology is already in use in many hatcheries and has proven results. The Health Incubators require very little floor space and less water than other technologies. The Egg Room will need to be biosecure and completely independent in terms of systems and control from all other parts of the hatchery.

The Alevin Room is simply an extension of the Egg Room and also has to be biosecure and independently controlled with respect to temperature, water demand, etc.

The Fry Room will contain sixteen 5 m diameter x 1.2 m deep tanks. This Fry Room will be divided into two systems of eight tanks each, completely independent from each other including a physical barrier. There will also be two sorting tanks for each system.

The Juvenile Room will consist of fourteen 7 m diameter x 1.6 m deep tanks. This room will also be divided into two systems completely independent of each other with two sorting tanks for each system.

The Smolt Room will consist of sixteen 12.2 diameter x 2.3 m deep tanks. This will provide enough capacity for production of 4.5 million smolt annually with a target weight of 80 grams each at a density of 60 kg/m³. The Smolt Room will be divided into four separate tank bays or systems of four tanks each.

Product transportation will involve delivery of juvenile salmon from the hatchery site to well boats at the local wharf that will transport them to cold water grow out cages.

3.3.8.2 Estimated Period of Operation

Following the construction phase, the facility will begin operation and assume full production capacity by January 2012. The hatchery will operate for an indeterminate period into the future.

3.3.8.3 Potential Sources of Pollutants during Operation

Sources of pollutants during the operation of the hatchery include wastewater, fish feces, dead eggs and fish, food waste, sludge, ammonia, any chemicals used at the facility, and any feed bags used to bring the fish food into the hatchery. Trace amounts of dissolved reactive phosphorous, nitrate, nitrite, copper, zinc, iron, and hydrogen sulphide are expected to be found at the hatchery during operation.

3.3.8.3.1 Hatchery Effluent

Hatchery effluent includes wastewater, fish feces, dead eggs and fish, food waste, sludge, ammonia, and any chemicals used at the facility. Solid waste, including food waste, fish feces and dead eggs and fish, would be for the most part removed by filters before waste water leaves the facility.

Filtration and disinfection will be as follows: water will go through u/v, drum filter, swirl separator, bio filter, bead filter, low head oxygenator (LHO) and degasser.

3.3.8.3.2 Waste Materials

Waste materials will include: wastewater, fish feces, dead eggs and fish, food waste, sludge, ammonia, any chemicals used at the facility and trace amounts of other elements.

A feed-fine recovery system will not be used. Feed will consist of micro pellets for the first feeding through to 3 mm diet for smolt. There will also be a need to have up to 10 mm diet for brood fish. Feed bags will be disposed of in a dumpster on-site. Solid waste (trash) generated at the hatchery site will be disposed of at an approved waste disposal site.

3.3.8.3.3 Noise Pollution

Noise pollution is not expected to be a significant problem at the hatchery facility. Sources of noise such as motors, engines, fans, etc are expected to generate little significant noise at the hatchery.

3.3.9 Hatchery Effluent Monitoring

All of the water that enters the hatchery will be treated with UV Sterilization in order to prevent contamination. A Water Quality Monitoring Program will be part of the Hatchery Quality Management Program. The water that comes in from groundwater supply wells has very little oxygen in it and so because of this, oxygenation will be required prior to the water entering the culture tanks. Degasification will also be required in order to maintain ideal oxygen levels. This will be done as part of the recirculation treatment system and no additional equipment will be required.

The main water supply will enter the hatchery directly into the water treatment room. From there, the water will be split into process water and non-process water. Water supply distribution pipes will pass through the centre of the main hatchery building and run down the centre of each tank bay. Water treatment and distribution is important in order to maintain optimal water quality for fish culture and to control operating costs. Water treatment for the hatchery will consist of: solids removal, biofiltration, degasification, oxygenation and sterilization.

3.3.10 Waste Management

Any waste water that is generated will be filtered, to remove solids before being discharged from the hatchery. Once discharged, the waste water will be sent to an Abydos Treatment System.

NHSF has a Waste Management Plan in place to reduce waste and effluents.

An effluent treatment system will be provided to meet local discharge requirements. The effluent treatment system will include:

- 1) Drum filters;
- 2) Radial flow clarifiers; and
- 3) Solids concentration filtration

These components will be used to effectively reduce total suspended solids, total nitrogen and

biological oxygen. The waste treatment system will remove more than 90% of the monthly mass of feed. Solids will need to be collected from tank sumps, parabolic and other contact filters and drum filters.

All solids and fish feces will be removed from re-circulated process water by mechanical filters and discharged as sludge to underground collection tanks. The collected waste will be removed by vacuum tanker and disposed of by licensed contractors at approved facilities.

After water has passed through the drum filter, it normally flows by gravity into a moving bed biofilter with kaldness media. Biofiltration will remove the ammonia produced by the fish as well as carbon dioxide that needs to be exhausted from the system. After biofiltration, the culture water normally goes to a primary sump pump where the water is pumped through a second filter to remove suspended solids, dissolved solids and biofilm. The hatchery will use a bead filter.

After water has passed through secondary filtration (bead filter) it will flow by gravity feed into a degasser unit that will remove gases. From there the water will drop into a Low Head Oxygenerator (LHO) responsible for replacing oxygen that has been consumed by fish.

To fulfill the Oxygen need of the culture tanks, an oxygen saturation system will be installed to ensure the oxygen level on the culture tanks are optimal for fish growth. This system will also help reduce the nitrogen on the system water. An oxygen generation system including an oxygen storage tank will be required to be sized to meet the hatchery demand.

After degasification and re-oxygenation, water will continue to flow by gravity to culture tanks. Gravity flow is essential whenever it is possible to be able to manage operating and maintenance costs.

A number of workers and management will be required on-site every day to operate the hatchery. The facility will have a kitchen/lunch room, washrooms, showers, etc., and numerous other fixtures that will contribute to a sanitary sewage effluent that will require on-site treatment and disposal. An in-ground sanitary treatment system comprising of a septic tank and disposal field will be required.

The Waste Management Plan will reduce the type, volume and disposition of waste effluents. The plan will be audited annually and changed as required to meet targets set for reducing all waste streams where possible. Materials and supplies will be delivered in biodegradable or recyclable packaging wherever possible.

The proponent anticipates an average daily dry waste generation of approximately 50kg/day which equates to less than 20 metric tonnes of waste per year.

3.3.11 Noise Control

Due to the location of the site, it is not anticipated that noise will be an issue. There are no other buildings, commercial operations or residential dwellings in the immediate vicinity of the site.

The incubation fry, parr and smolt units will have insulated walls to filter out any minimal amount

of noise from machinery operating inside the hatchery. The access road will be paved and speed limits will be posted to ensure traffic noise is minimized. In order to reduce the impact any noise may have on adjacent properties, deliveries to / from the hatchery will take place, whenever possible, during regular business hours.

3.3.3.12 Quality and ECO Standards

NHSF will manage the hatchery with a continued focus on quality and service that will be maintained as the undertaking progresses from construction through to operation. Key issues of focus include sustainability, food safety, quality and the environment.

NHSF provides its fish with an Eco-Friendly diet that is more sustainable than traditional diets. The fish are fed a premium diet that is higher in Omega 3 and Vitamin E, than traditional diets. The feed is produced in pants that are HACCP certified, enabling safety systems to track and trace raw materials and finished product.

3.4 Employment and Human Resources

3.4.1 Enumeration and Breakdown for Construction

Construction of Smolt Buildings No. 1 and No. 2 (Phase I of the hatchery) will begin in the Fall of 2010 and will be completed by June 2011. A Fry Building (Phase II of the hatchery) is planned for the Spring of 2011. Appendix A shows the location and site plans of the hatchery.

Workers during construction will include supervisors and laborers for concrete footings and erectors of the pre-engineered steel building. There will also be electricians, plumbers, carpenters and finish trades for installing equipment, tanks, and various building systems and finishes. There is a potential need for up to 150 full-time / part-time workers during construction.

3.4.2 Enumeration and Breakdown for Operation

The hatchery when fully operational will have the potential to employ a mix of both full-time and part-time employees. These employees may consist of a hatchery manager, assistant manager, two fish hatchery machinery technicians, a fish hatchery technician with expertise in recycling flow facilities, an aquaculture farm technician, a bacteriological technician, a food bacteriological technician, a microbiological quality control technologist, an accountant/office manager, a security guard and a janitor.

3.4.3 Workforce, Contractor and Spin-Off Activities

The hatchery has the potential to generate approximately 150 jobs during construction. During operation of the hatchery, 16 full and part-time permanent positions may be generated and double that number will potentially be generated as permanent spin-off positions within the community. The hatchery will make a positive and significant contribution to the local economy.

3.4.4 Employment Equity (Age and Gender)

NHSF is an equal opportunity employer and is committed to ensuring that its policies, practices, and programs are free of barriers, emphasize diversity, and promote participation to ensure dignity, respect, and equal access for all employees. Employment decisions are made on the basis of merit and unlawful discrimination is prohibited.

3.5 Alternatives Considered

NHSF has been working to locate a modern recirc salmon hatchery in Stephenville, NL since 2008. No other locations or sites were considered. Appendix A shows the location and site plans of the hatchery.

4.0 Marine and Terrestrial Biological Environments

4.1 Water Bodies and Drainage Basins

A number of small water bodies including Noel's Pond, Mine Pond and Gull Pond drain into Port Harmon adjacent to the hatchery site. Several protected well fields also exist to the north-west of the site. The closest, Stephenville well field, is 3.5km away, and the Kippens well field, which is further west, is 5.5km from the site. The hatchery site is down-gradient of the established well fields as the general topography of the area consists of elevated hills to the west, north and east of the site with the majority of the precipitation collecting in nearby drainage basins (Noel's Pond, Mine Pond, etc.) and eventually flowing towards the ocean near the site at Port Harmon.

4.2 Topography, Surficial Geology, Bedrock Geology and Hydrogeology

The hatchery site is located near the cusp of two physiographic regions in western Newfoundland, the Stephenville Lowlands and the Blow-Me-Down Highlands. (AMEC, 2008) The actual coordinates of the hatchery site fall within the Stephenville Lowlands physiographic region. The surficial geology is predominantly sand and gravel within the Stephenville area and the topographic terrain ranges from approximately 50m to 150m above sea level throughout. (AMEC, 2008) Appendix F shows the surficial geology. The surficial geology of the Stephenville area can be defined as unconsolidated sediments, well sorted sand and gravel with depths from 1.5m to 50m. Gravel is pebble to cobble in size and forms approximately 50-95% of the sediment including eskers, kames and outwash planes. (AMEC, 2008)

The bedrock geology within the hatchery site is comprised of clastic sedimentary rocks and minor coal beds. Bedrock geology in the area can be defined as part of the Barachois Group, Arkosic and subarkosic, grey to red sandstones, grey to red siltstones, grey to black shale and coal beds as well as Codroy Group rock, coarse to fine red beds, evaporates such as sulphate and chloride salts, limestones and dolostones with some grey lacustrine siliciclastic rocks. (AMEC, 2008) Appendix F shows the bedrock geology.

4.3 Vegetation

Stephenville is located within the St. George's Bay sub eco-region which is described as a forested rolling and flat topography with deep soils composed primarily of glaciofluvial deposits and till. The area tends to be nutrient poor with coarse soils and marginally productive forests that extend into the coastal zones with extensive bogs in the lowlands that are precipitation dependant. (South, 1983) This eco-region is one of the largest in the province covering approximately 1,000,000 hectares. See Appendix E for eco-region information. The predominant vegetation is forest with species ranging from Balsam Fir, Black Spruce, White Pine, Red Maple, Trembling Aspen and Alders to Yellow Birch and the uncommon Black Ash. The undergrowth of these forests tends to be dominated by ferns. (NFDOEC, 2010)

A number of Botanical Ecological Reserves exist on the island such as Burt Cape, Hawke Hill, King George IV, Redfir Lake-Kapitagas Channel, Watts Point and West Brook which serve as areas that represent important flora areas in Newfoundland and Labrador. (NFDOEC, 2010) The closest Botanical Ecological Reserve to the hatchery site is King George IV which is 75km to the southeast.

The Newfoundland and Labrador Housing Corporation previously conducted a wetland survey that encompassed the hatchery site. The report did not identify any wetlands of significance that would require environmental investigation / assessment for new developments by the NLHC.

A plant species query was obtained from the Atlantic Canada Conservation Data Centre (ACCDC) for plant species within a 5km buffer of the hatchery site. Records indicate 14 occurrences of rare and common plant life. Among the 14 sightings, 5 are considered rare plant occurrences: Fernald's chuckleypear, St. Lawrence serviceberry (*Amelanchier fernaldii*), hardstem bulrush (*Schoenoplectus acutus var. acutus*), northern speedwell (*Veronica serphyllifolia subsp. Humifusa*), spiked watermilfoil (*Myriophyllum sibiricum*) and whorled watermilfoil (*Myriophyllum verticuillatum*). However, these rare plant species have not yet been assessed under COSEWIC or the Provincial Endangered Species Act. (ACCDC, 2010) It should be noted that none of the above species were observed within the immediate footprint of the project area.

No provincial or federally listed species of concern were found to have distribution ranges that overlapped that of the general Stephenville area.

4.4 Wildlife Species

Newfoundland and Labrador is home to several species at risk or those that require special concern in relation to environmental changes that may affect important habitat required for survival. Species at risk can be designated both federally and provincially. The following species are listed under the federal Species at Risk Act (SARA) and have distribution ranges or migratory patterns that overlap but are not limited to the general Stephenville area: Piping Plover (*Charadrius melodus melodus*), Eskimo Curlew (Numenius borealis), American Marten or Newfoundland Pine Marten (*Martes Americana atrata*), Northern Wolffish (*Anarchichas denticulatus*), Woodland Caribou (*Rangifer tarandus caribou*), Banded Killfish (*Fundulus daiphanious*), Harlequin Duck (*Histrionicus histrionicus*), Short Eared Owl (*Asio flammeus*), Harbour Porpoise (*Phocoena phocoena*), Atlantic Codfish (*Gadus morhua*), Red Crossbill (*Loxia curvirostra*) and the Barrow's Goldeneye (*Bucephala islandica*). (SARA, 2010)

Newfoundland and Labrador's Endangered Species Act provides special protection for species within the province that are considered to be endangered, threatened or vulnerable. Species are assessed based on recommendations from the committee on the Status of Endangered Wildlife in Canada (COSEWIC) and / or the Species Status Advisory Committee (SSAC), both independent committees who determine the status of species, subspecies and population. Those that have distribution ranges within the general Stephenville area include: Piping Plover (*Charadrius melodus melodus*), Eskimo Curlew (Numenius borealis), American Marten or Newfoundland Pine Marten (*Martes Americana atrata*), Northern Wolfish (*Anarchichas denticulatus*), Woodland Caribou (*Rangifer tarandus caribou*), Banded Killfish (*Fundulus daiphanious*), Harlequin Duck (*Histrionicus histrionicus*), Short Eared Owl (*Asio flammeus*), Red Knot (*Calidris canutus*), Red Crossbill (*Loxia curvirostra*), Barrow's Goldeneye (*Bucephala islandica*), Rusty Blackbird (*Euphagus carolinus*), Grey-cheeked Thrush (*Catharus minimus*), and the American Eel (*Anguilla*)

INDIAN HEAD HATCHERY

rostrata). (NFDOEC, 2010)

A search by the Atlantic Canada Conservation Data Centre in Corner Brook, NL lists 511 occurrences of rate to common fauna between the years of 1992 and 2005 within a 5km buffer of the hatchery site. All of these sightings were of birds; no other vertebrates or invertebrates were recorded within the buffer zone. Among these sightings, 69 would be considered rare occurrences and 3 of these were of the Short Eared Owl (*Asio flammeus*) which has been assessed as a species of special concern under both COSEWIC and SARA and listed as vulnerable under the provincial listings. 6 of these sightings were of two species, the Ivory Gull (*Pagophila eburnean*) and the Red Crossbill (*Loxia curvirostra*), which are both considered endangered under COSEWIC, SARA and provincial listings. One sighting of the Red Knot (*Calidris canutus*) species is listed as endangered under COSEWIC and provincial listings. One sighting of the Barrow's Goldeneye (*Bucephala islandica*) is considered a species of special concern under COSEWIC and savelnerable under provincial listings. Lastly, one sighting of the Killdeer (*Charadrius vociferous*) species is being considered as a candidate for listing under COSEWIC. (ACCDC, 2010) It should be noted that none of the above species were observed within the immediate footprint of the proposed project area. See Appendix E for distribution maps.

In summary, the hatchery site is a previously disturbed site within an industrialized area and is adjacent to an airport and a recently closed mill. (Town of Stephenville, 2010) As such, the immediate build area is not likely to offer suitable habitat for most of the species listed above. It is not anticipated that the proposed project's activities would result in significant negative impacts on the aforementioned species or their habitat.

5.0 SOCIO-ECONOMIC ENVIRONMENT

5.1 Demography

The town of Stephenville, formerly named 'Indian Head', is located on the west coast of Newfoundland and has a population, as of 2006, of 6,588. Stephenville is a major service centre for the southwestern part of Newfoundland.

The town was founded in 1844 by two English families, William Hunt and James Penny, of Margaree, Cape Breton. In 1846, Felix Gallant, also arrived with his family from Margaree. The following year as they revisited Margaree, the Gallants encouraged others to relocate to Stephenville.

The name 'Stephenville' first appeared in 1874 when the population had reached 268. Farming was the main occupation but by the early 1900's, people had turned to lobster and herring.

By 1935 the population of the town of Stephenville had reached 1,000, many being employed in the pulp-wood industry and at saw mills.

In 1941, Stephenville became the site for construction of the Ernest Harmon Air Force Base – the largest U.S. Air Force Base outside of the Continental United States. Construction of the base impacted Stephenville significantly increasing the population to 7000, almost overnight. In 1966, the base closed, leaving considerable economic devastation in the region.

In the 1970's the Abitibi-Consolidated Pulp and Paper Mill opened. The College of the North Atlantic also established its main campus in Stephenville at this time.

The closing of the base proved to be not the only economic crisis that the citizens of Stephenville have had to endure during the past several decades. The Abitibi-Consolidated Pulp and Paper Mill also closed its doors, again leaving considerable economic devastation in the region. Stephenville, survived, however, and is continuing to grow economically.

6.0 LAND INFORMATION

6.1 Zone Information

The proposed undertaking is situated within the Planning Area Boundary of the Town of Stephenville, and hence it is subject to development regulations and bylaws as established by the town. The subject property is zoned Industrial General (IG).

6.2 Land Ownership

The proposed undertaking is encompassed by a track of land that is owned by the Town of Stephenville. NHSF is currently in negotiations with the Town of Stephenville to acquire this land for the construction and operation of the hatchery.

7.0 SCHEDULE

NHSF plans to complete construction of Smolt Buildings No. 1 and No. 2 (Phase I of the hatchery) by June 2011. A tentative schedule for the project has been provided below:

Project Schedule - Indian Head Hatchery					
Task	Description	Start Date	End Date		
1	Site Selection	2009	May 2010		
2	Conceptual Plan	May 2010	August 2010		
3	Land Acquisition	August 2010	October 2010		
4	Geotechnical Analysis	August 2010	September 2010		
5	Building Design	June 2010	November 2010		
6	Regulatory Approvals	September 2010	November 2010		
7	Development of Fresh Water Supply	September 2010	December 2010		
8	Construction	Fall of 2010	June 2011		
9	Process Installation	January 2011	June 2011		
10	Commissioning	May 2011	June 2011		
11	Operations	June 2011			

8.0 FUNDING

NHSF plans to develop an \$11 million modern recirc salmon hatchery in Stephenville, NL. To assist the company with setting up operations in the province, the Government of Newfoundland and Labrador will provide 50 per cent of the cost of setting up the hatchery. This funding will be provided through the Aquaculture Capital Equity Investment Program and will be based on a matching investment from the company. In return, the Provincial Government will have an equity position in the expanded company until the development is completed and the provincial investment is repaid in seven years.

9.0 REFERENCES

SARA, 2010. Species at risk public registry (Online www.sararegistry.gc.ca/default_e.cfm)

Environment and Conservation. 2010. Government of Newfoundland and Labrador. (NFDOEC). Birds. (Online: www.env.gov.nl.ca/env/wildlife/endangeredspecies/birds.html).

Town of Stephenville. 2010. "The Acadian Village". (Online: <u>http://www.town.stephenville.nf.ca</u>)

Town of Stephenville. 2010. (Online: <u>http://www.town.stephenville.nf.ca</u>)

- Environment and Conservation. 2010. Government of Newfoundland and Labrador. (NFDOEC) Fish (On line: <u>www.env.gov.nl.ca/env/wildlife/endangeredspecies/fish.html</u>).
- Environment and Conservation. 2010. Government of Newfoundland and Labrador. (NFDOEC). Mammals. (Online: www.env.gov.nl.ca/env/wildlife/endangeredspecies/mammals.html).

South, 1983. Biogeography and Ecology of the Island of Newfoundland.

AMEC Earth and Environmental, 2008. Hydrogeology of Western Newfoundland. (Online: http://www.env.gov.nl.ca/env/waterres/reports/hydrogeology_westernnl/final_report.pdf

Environment and Conservation. 2010. Government of Newfoundland and Labrador. Wilderness and Ecology Reserves. (Online: http://www.env.gov.nl.ca/env/parks/wer/find.html

Atlantic Canada Conservation Data Centre (ACCDC). 2010. Query Results.

Environment and Conservation January 27, 2011

Environmental Assessment Bulletin

The Honourable Ross Wiseman, Minister of Environment and Conservation, has announced the following events relative to Part 10 Environmental Assessment of the Environmental Protection Act.

UNDERTAKINGS RELEASED:

Garnish to Point Rosie All Terrain Vehicle (ATV) Trail	
Proponent: Garnish-Point Rosie Trail Association Inc.	(Reg. 1535)

Crown Districts 17 & 18 Five Year Operating Plan (2008-2012) Amendment Proponent: Department of Natural Resources (Reg. 1541)

Stephenville Indian Head Salmon Hatchery Revised Proponent: Northern Harvest Sea Farms Newfoundland Ltd. (Reg.1544)

The project is released from further environmental assessment subject to the following conditions:

- A satisfactory full scale hydrogeologic assessment of the proposed groundwater source is required and shall be carried out by a qualified hydrogeologic professional. The full extent of the influence of the proposed water use on the aquifer needs to be evaluated in this assessment in order to ensure that there are no long-term negative effects on water quality or quantity from this source. This hydrogeologic assessment is to be submitted and approved by the Minister of Environment and Conservation.
- A groundwater monitoring program must be implemented by Northern Harvest Sea Farms Newfoundland Ltd. to monitor water levels and water quality. The program must be approved by the Water Resources Management Division (WRMD). Water level data shall be collected continuously using a recording data logger, and selected water quality parameters will be collected weekly, with monthly and annual reports submitted to this department for review for a period of at least two years. The format, content and quality of all reports must be approved by WRMD. Extension of the monitoring and reporting beyond two years will be at the discretion of the Minister of Environment and Conservation.

- Northern Harvest Sea Farms Newfoundland Ltd. will be required to enter into a Memorandum of Understanding with the Department of Environment and Conservation for the installation of a real time water quality and quantity monitoring network to monitor water levels and selected quality parameters. The type, number and location of the stations required will depend on site conditions and final operation plans. The proponent is to bear all costs associated with the groundwater monitoring network and must install the required network prior to the start of operation.
- A health and safety plan is required if any excavation is going to take place in subsurface soil (below 1 metre depth) in the areas of identified or potential contamination. In addition, workers should be made aware of the contamination and be required to wear personnel protective equipment to minimize potential exposure to contaminants.

For further information on the environmental assessment process, please contact the Director of Environmental Assessment at (709) 729-4211 or toll-free: 1-800-563-6181 or by mail to:

Director, Environmental Assessment Division Department of Environment and Conservation West Block, Confederation Building P.O. Box 8700, St. John's, NL, A1B 4J6

Environmental assessment information is on the department Web site at <u>http://www.gov.nl.ca/env</u>

-30-

Media contact: Melony O'Neill Director of Communications Department of Environment and Conservation 709-729-2575; 689-0928 moneill@gov.nl.ca

APPENDIX B: FRESHWATER AQUIFER TESTING

Please note that these reports were commissioned by MHAC prior to the purchase of NHS.

- 1. Assessing the Capacity of the Local Groundwater Aquifers 3113-003
- 2. Aquifer Well Testing 3113-006

TECHNICAL MEMORANDUM

TO:Dean Guest, Marine Harvest Atlantic CanadaFFC-NL-3113-003FROM:Fracflow Consultants Inc.-DATE:January 17, 2018-SUBJECT:Progress Report: Assessing the Capacity of the Local Groundwater Aquifers
to Support the Long Term Water Supply Needs of a New Fish Hatchery –

to Support the Long Term Water Supply Needs of a New Fish Hatchery – Stephenville, NL - Monitoring Wells, Water Table, Water Chemistry and RFP for Test Well.

Background

In 2009, Fracflow conducted an initial hydrogeological assessment of an area adjacent to the Port of Stephenville (Port Harmon) to determine the potential for developing a water supply for a proposed fish hatchery (Northern Harvest Sea Farms) which was subsequently constructed. The 2009 assessment consisted of augering three (3) boreholes and constructing three (3) monitoring wells and drilling a 15-cm diameter, screened, test water well to determine the approximate groundwater yield from the aquifer. The aquifer was found to consist of sands and gravels to some unknown depth, greater than 60 m, and to have a high permeability. However, the vertical overburden column included a low permeability paleosurface surface, locally, at approximately 5 m to 6 m below ground surface which impedes local groundwater recharge and creates a perched water table. The actual water table is approximately15 m below the ground surface. Fracflow recommended that a 3D model should be constructed and used to simulate the groundwater system as a basis for assessing the long term groundwater yield for this area given the lack of detail on the aquifer thickness and distribution and the known areas of environmental impact from the US air force activities and the linerboard mill, in the form of old landfills and oil spills as defined by Fracflow's 2006 and 2009 Phase 1 and Phase 2 work for Abitibi in this area.

Existing Fish Hatchery Water Supply Wells

The 3D model work was never completed but the water supply wells for the fish hatchery were constructed (**Figure 1**) and have been in operation for a number of years. The details of the water well construction and pumping rates for two years (**Figure 2**) have been provided to Fracflow. However, the drawdowns and any long term changes in water levels in the production wells are not known but the owner has noted that the frequency settings on the variable frequency drives that control and operate the water supply pumps have had to be increased in recent months to maintain well yields. This may reflect a decrease in the overall water levels in the aquifer or

reduced well yield efficiency due to plugging of the well screens or a combination of both conditions. Monitoring of groundwater levels in the aquifer is limited to measuring water levels (**Figure 3**) on a monthly basis in one monitoring well that is located near the top of the raised plateau (MW5 in **Figure 4**) and this monitoring well has not shown any large changes in groundwater levels over the period of measurement.

3D Flow and Transport Model Boundaries

The 3D model that was constructed in 1999 for the Town of Stephenville was based on MODFLOW, a finite difference code and did not include the area of the existing fish hatchery well field or the potential sites of water supply wells for a new fish hatchery. A comprehensive groundwater flow model is being constructed to refine the watershed boundaries, and provide a basis for developing a well field protection plan for the existing and new well fields, that includes the simulation of different operational scenarios for the existing pumping wells, identifying the location of and simulating withdrawal from new production wells to establish a reasonable estimate of the long term well yields for the aquifer system in the fish hatchery area. This model is an update of the Stephenville-Kippens model and included extending the boundaries (**Figure 5**) of the existing model to the local drainage boundaries to the east to include Mine Pond and the old Abitibi landfills and part of their up-gradient drainage basins.

The model has been constructed using the finite element model FEFLOW which is a well-known commercial finite element flow and transport modeling software. Unlike the finite difference code, the finite element approach is more suited to simulate multiple production and observation wells because the mesh around the wells is refined locally resulting in a significantly smaller number of number of grid points and simulation time than the finite difference code. In addition, the model area in the revised model has been extended to a broader area to capture the more extensive watershed boundaries and to enable the assessment of how the different proposed well field locations and withdrawal rates may impact the yield from existing well fields or wells and the long-term yield from other water supply areas. Development of the larger aerial model allows the historical well field performance data from the existing well fields to be used to calibrate the model and to confirm whether or not the individual well fields interact and by doing so, provide an assessment of the overall groundwater capacity for the general area. Based on the calibrated flow model under the current condition of the groundwater system of the well fields, the impact of any potential contaminates such as the leachate from the abandoned and active landfills will be re-evaluated using the transport model by calculating travel time to the pumping wells.

Water Table Variations

The first step in assessing the local groundwater potential was to determine the nature of the recharge to the aquifer by determining the water table gradient. Given the lack of water table elevation data, three new monitoring wells were constructed (BH1, BH2 and BH3 in **Figure 4**). The logs for these three boreholes are provided in **Appendix A**. The water level in BH1 was 19.17 m bgs, 19.51 m bgs in BH2 and 11.95 m in BH3. The water table elevation, below the perched water table, was 12.275 m in BH1, 12.277 m in BH2 and 16.186 m in BH3. An additional 11 existing monitoring wells were surveyed by Enos Fudge Surveys and the water
table elevations were measured in those wells (**Figure 4**). These water table measurements show that there is a water table gradient of approximately 0.004, oriented NNE to SSW with the main recharge area located north of the main bog area. However, it is expected that while the bog and ponds constitute a perched water table system, there is some recharge from this perched water table to the deeper groundwater system.

Groundwater Chemistry

Groundwater samples were collected from the three new monitoring wells and from the two main water supply wells for the existing fish hatchery. The water was analyzed for general chemistry, total and dissolved metals and low level BTEX/TPH. The laboratory data are presented in **Appendix B**.

The ground water samples showed consistent water chemistry, typical TDS, fluid conductivity and pH values for the groundwater in this immediate area. The total iron levels in BH2 and BH3 are elevated which is consistent with the higher turbidity levels in these two monitoring wells. The dissolved iron levels are not elevated. It is expected that when a water supply well is full developed, the turbidity levels will decrease and the total metals iron levels will also decrease to an acceptable level.

Each sample was analyzed for BTEX/TPH using a low level detection approach and no detectable BTEX/TPH was reported. BH1 showed a Fluoride concentration that was 0.16 mg/L versus the Fresh Water Aquatic Guidelines of 0.12 mg/L. Since the laboratory measured value is very close to the detection level, Fracflow will resample this monitoring well to see if one can determine if the Fluoride is still present in the groundwater and if so the source of the Fluoride.

Aquifer Properties – Grain size distributions and Estimate Hydraulic Conductivities

Each borehole was completed using hollow stem augers and split spoon samples were collected at regular intervals. The aquifer material in those samples consists of fine sand, some silt or clay particles, gravel with some cobbles and occasional boulders. The split spoon samples that were collected from below the water table were analyzed and the grain size distribution determined. The grain size data are included in **Appendix C** and show that nearly all of overburden samples that were collected from below the water table had grain sizes such that 50% of the grain diameters were greater than 0.5 mm. The grain size data are used to determine the slot size for screened wells since the general approach is to allow for 50% of the aquifer particles to pass through the well screen during well development in order to develop a natural gravel pack around the well screen. Based on these grain size distributions, a slot 20 is a suitable slot size for a well screen when a natural gravel pack will be developed. If an artificial gravel pack is installed, using a #2 sand, then a slot 40 well screen can be utilized.

The grain size data were used to compute the hydraulic conductivity values for the split-spoon samples that were collected below the water table using the Hazen method (Fetter, 2001) as,

$$K = C(d_{10})^2$$

where *K* is hydraulic conductivity (cm/s), d_{10} is the effective grain size (cm), and *C* is a coefficient with a range as shown in **Table 1**. The method is generally applicable for sand with the effective grain size ranged from 0.01 cm to 0.3 cm. The effective grain size from the eleven (11) analyzed samples ranged from 0.007 cm to 0.012 cm and the computed hydraulic conductivity values ranged from 4.41E-03 to 1.44E-02 cm/s (**Table 1**).

Sample ID	c	1 10	d 60	C ⁽¹⁾		ĸ	C _{min}	C _{max}	K _{min}	K _{max}
	тт	ст	mm		cm/s	m/s			cm/s	cm/s
BH1-SS14	0.089	0.0089	0.6	90	7.13E-03	7.13E-05	80	120	6.34E-03	9.51E-03
BH1-SS15	0.094	0.0094	2	90	7.95E-03	7.95E-05	80	120	7.07E-03	1.06E-02
BH1-SS17	0.07	0.007	0.6	90	4.41E-03	4.41E-05	80	120	3.92E-03	5.88E-03
BH2-SS17	0.113	0.0113	0.675	100	1.28E-02	1.28E-04	80	120	1.02E-02	1.53E-02
BH2-SS18	0.088	0.0088	0.7	110	8.52E-03	8.52E-05	80	120	6.20E-03	9.29E-03
BH2-SS19	0.092	0.0092	0.95	90	7.62E-03	7.62E-05	80	120	6.77E-03	1.02E-02
BH2-SS20	0.105	0.0105	0.85	100	1.10E-02	1.10E-04	80	120	8.82E-03	1.32E-02
BH3-SS13	0.097	0.0097	0.35	90	8.47E-03	8.47E-05	80	120	7.53E-03	1.13E-02
BH3-SS15	0.12	0.012	0.63	100	1.44E-02	1.44E-04	80	120	1.15E-02	1.73E-02
BH3-SS18	0.092	0.0092	0.565	100	8.46E-03	8.46E-05	80	120	6.77E-03	1.02E-02
BH3-SS20	0.09	0.009	0.685	110	8.91E-03	8.91E-05	80	120	6.48E-03	9.72E-03

Table 1Hydraulic conductivities calculated from the grain size distribution data using the
Hazen method.

Slug tests (falling head test) were conducted in the three boreholes, BH1, BH2 and BH3 on November 27, 2017. The hydraulic conductivities were calculated using the Hvorslev method (Fetter, 2001) as,

$$K = \frac{r^2 \ln(L_e/R)}{2 L_e T_0}$$

where K is hydraulic conductivity (L/T; m/s), r is the radius of the well casing (L; m), R is the radius of the well screen (L; m), L_e is the length of the well screen (L; m), and T_o is the time it takes for the water level to rise or fall to 37 percent of the initial change (T; sec). The above

formula applies when the length of the piezometer/well screen is more than eight (8) times the radius of the well screen ($L_e/R > 8$) and the ratio was greater than 300 for the three boreholes, BH1, BH2 and BH3. The time to fall to 37 percent (T_o) of the initial change ranged from 5 to 10 seconds for the three slug test, and the computed hydraulic conductivities ranged from 1.16E-02 cm/s to 2.10E-02 cm/s (**Table 2**).

Borehole ID	Hydraulic Cond	luctivity (K)
	cm/s	m/s
BH1	2.10E-02	2.10E-04
BH2	1.49E-02	1.49E-04
BH3	1.16E-02	1.16E-04

 Table 2
 Hydraulic conductivities calculated from the slug tests using the Hvorslev method.

Summary and Conclusions

- 1. A water table gradient of 0.004 with a NNE-SSW direction was mapped indicating that the main area of recharge to the aquifer is located north of the existing NHSF fish hatchery water supply wells.
- 2. The shape of the original NHSF aquifer test curves suggests that some recharge is taking place from the perched water table that underlies the bog/marshland area.
- 3. The water levels in the aquifer around the NHSF water supply wells based on the data from one monitoring well do not show any long term changes for the records that were available
- 4. Withdrawal rates for the NHSF water supply wells have averaged approximately 400 to 450 USGPM for most of the two year period for which we have records. For one five to six day period, the withdrawal rates were increased to approximately 1,000 USGPM with no long term impact on groundwater levels in the monitoring well.
- 5. The water level in one monitoring well that is located between the NHSF water supply wells and the harbour shoreline is several metres above sea level, demonstrating that withdrawals from the NHSF water supply wells have not reversed the hydraulic gradient and that groundwater is continuing to be discharged to the harbour.
- 6. The three new monitoring wells that were constructed to map the water table encountered sands with minor gravel and occasional boulders to depths of up to 40 m below ground surface. Hydraulic conductivity (K) values that range from 4.41E-05 m/s to 1.1E--04 m/s were computed from the grain size data.

- 7. Falling head tests in the three new monitoring wells gave K values that range from 7.88E-04 m/s to 1.01E-03 m/s.
- 8. The ground water samples showed a consistent water chemistry, typical TDS, fluid conductivity and pH values for the groundwater in this immediate area, with no detectable BTEX/TPH (low level), but BH1 showed a Fluoride concentration that was 0.16 mg/L versus the Fresh water Aquatic Guidelines of 0.12 mg/L. Since the laboratory measured value is very close to the detection level, Fracflow will resample this monitoring well to see if one can determine if the Fluoride is still present in the groundwater and if so the source of the Fluoride. The total iron levels in BH2 and BH3 are elevated which is consistent with the higher turbidity levels in these two monitoring wells. The dissolved iron levels are not elevated.
- 9. Based on the data obtained from the three new monitoring wells a 200 mm diameter test well has been designed, using a K-packer design, and a slot 20 well screen, with a potential depth of up to 80 m, depending on the depth to bedrock. Overburden samples will be collected as the borehole is advanced to confirm that the grain size data are consistent with the slot 20 well screens. The RFP for this test well is provided in **Appendix D**.
- 10. Depending on the depth to bedrock and the type of overburden near the bottom of the well, which determines both the available drawdown and the well yield, it is expected that each full size production well will produce approximately 500 USGPM or 2,000 litres per minute.
- 11. The 3D model boundaries have been defined with mesh refinement limited to the drainage basin in which the new water supply wells may be developed.

Reference

Fetter, C.W., 2001, Applied Hydrogeology. Fourth Edition, Prentice Hall.

APPENDIX A

Borehole Logs

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH1

Project No: 3113

Date: November 16 - 19, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
$0 \frac{\text{ft m}}{1} 0$		Ground Surface (GS)	31.4	-							
1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 4 1 1		Auger	30								Well head protection installed Cement packing from 0.05 m to 0.46 m Native sand packing from 0.46 m to 0.91 m Bentonite packing from 0.91 m to 1.12 m
5 6 6 7		SPT: 4 / 18 / 36 / 36 Wet, brown, medium sand	29.4	SS	1	54	31				
7 1 8 11 9 1		Auger									0.05 m dia. riser from 0 m to 16.68 m
		SPT: 7 / 12 / 21 / 22 Damp, brown, medium sand with red and black particles	28.3	SS	2	33	52				
13 - 4 14 - 4		Auger	26.9								Nativo cond posking
15 1 16 1 17 1 17 1		SPT: 13 / 16 / 19 /14 Damp,brown, medium sand	26.3	SS	3	35	25				from 1.12 m to 26.48 m
18 18 19		Auger	25.4								
20 1 6 21 22 22		SPT: 10 / 39 / 27 / 16 No recovery	24.8	SS	4	66	0				
23-		Auger									
	H	Fracflow Consultants Inc.									

Fractlow Consultants Inc 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 1 of 5

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH1

Project No: 3113

Date: November 16 - 19, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
S Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
23 24			23.9								
²⁵		SPT: 7 / 25 / 53 / 53 Dry, brown, fine to medium sand with some rock fragments	23.3	ss	5	78	20				
27 28 29		Auger	00.4								
30 -1 -9 31 -1 -		SPT: 43 / 52 for 0.03 m (Refusal) Brown and tan, fine sand with some rock fragments	22.4	SS	6	52	36				0.05 m dia. riser from 0 m to 16.68 m
33 10 34 10		Auger	20.0								
35- 36		SPT: 44 / 62 for 0.06 m (Refusal) Dry, grey and brown, fine sand with some rock fragments	20.9	SS	7	62	97				Native sand packing from 1.12 m
37 38 39		Auger	10.0								to 26.48 m
40 41		SPT: 17 / 52 / 66 / 42 Dry, light grey to dark brown, fine sand with some coarse sand	19.3	SS	8	118	62				
42 43 43 44		Auger	17 9								
45 - 46 14		SPT: 9 / 15 / 17 / 20 Dry, grey and some brown, fine sand with some rock fragments	17.8				41				
	F 1 S F	Fracflow Consultants Inc. 54 Major's Path Drilling M St. John's, NL A1A 5A1 Phone: (709) 739-7270 Driller: F Fax: (709) 753-5101	Method ormatic	: Hol Dyr on Dr	llow nami rillin	Ster ic Co ig Lt	n Au one F d.	igerii Penet	ng ration Test	Datum Sheet:	: Geodetic 2 of 5

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH1

Project No: 3113

Date: November 16 - 19, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
40			17.2	SS	9	32	41			•	
47 48 49 49 15		Auger	16.2								Native sand packing
50 51 52		SPT: 10 / 12 / 15 / 13 Brown and grey, fine sand with some rock fragments	15.6	ss	10	27	54				from 1.12 m to 26.48 m
53 1 6		Auger	14.7								
55 56 17		SPT: 9 / 17 / 17 / 16 Damp, brown, fine sand	14.1	SS	11	34	67				0.05 m dia. screen from 16.68 m to 25.82 m
57 58 59 59 18		Auger	13.2								
60 61		SPT: 10 / 18 / 17 / 15 Dry, grey and brown, fine sand	12.6	SS	12	35	58				
63 - 19 63 - 19 64 - 19		Auger	11.7								19.17 m BGS (Nov. 27, 2017)
65 1 20		SPT: 9 / 15 / 19 / 19 Wet, grey, very fine sand	11.1	SS	13	34	46				
68- 69- 21		Auger									

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 3 of 5

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH1

Project No: 3113

Date: November 16 - 19, 2017

		SUBSURFACE PROFILE		S	SAMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
69			10.3							• - •	
70 -1 71 -1		SPT: 12 / 28 / 39 / 18 CFEM: Sand, trace Gravel, trace Silt/Clay	9.65	SS	14	67	37				
72 22 73 74		Auger	0.00								0.05 m dia. screen from 16.68 m to 25.82 m
75 - 23 76 -		SPT: 32 / 49 / 32 / 34 CFEM: Gravelly Sand, trace Silt/Clay	8.68	SS	15	81	33				
77 78 79 79		Auger	7 14								Native sand packing from 1.12 m to 26.48 m
80 - 81 -		SPT: 29 / 54 / 67 / 52 for 0.03 m (Refusal) No recovery	6.66	SS	16	121	0				
82 25 83 83 84		Auger	5 57								Scrow.on.con
85 - 26 86 -		SPT: 14 / 13 / 19 / 23 CFEM: Sand, some Silt/Clay, trace Gravel	4.97	SS	17	32	27				ociew-on cap
87 88 89 90 91 91 92 28		DCPT (Blow counts per 150 mm)		PC PC PC PC PC PC PC PC PC	 	29 27 28 37 36 39 33 28 28 28 35 28					

Fracflow Consultants Inc 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd.

Datum: Geodetic

Sheet: 4 of 5

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH1

Project No: 3113

Date: November 16 - 19, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
92 93 94 95 94 95 96 97 98 97 97 97 97 97 97 97 97 97 97		DCPT (Blow counts per 150 mm) End of Borehole	1.2			31 32 35 29 28 41 48 46 40 37 39 49 45 53					

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 5 of 5

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH2

Project No: 3113

Date: November 19 - 22, 2017

		SUBSURFACE PROFILE		S	AMP	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
0 <u>ft</u> m		Ground Surface (GS)	31.8							П	
1 1 2 3 3 4 4		Auger									Flush mount installed Cement packing from 0.1 m to 0.46 m Native sand packing from 0.46 m to 0.91 m Bentonite packing
			30.3								from 0.91 m to 1.52 m
Ĭ		SPT: 4 / 52 for 0.03 m (Refusal) Wet, dark brown coarse sand	30.1	SS	1	52	100			•	
⁶ 7 7 8 8 9		Auger									0.05 m dia. riser from 0 m to 15.76 m
			28.8							•	
		SPT: 4 / 20 / 19 / 6 0 m - 0.31 m: damp, brown gravel with coarse sand with red and black particles	28.2	SS	2	39	92				
12		0.31 m - 0.56 m: wet, silt/clay							$\left[+ \right] + $		
13 - 4 14 -		Auger									
15			27.3								Native sand packing
16-5		0 m - 0.15 m: medium sand 0.15 m - 0.25 m: silt/clay	26.7	SS	3	12	42				from 1.52 m to 31.00 m
		Auger									
			25.7								
20 21		SPT: 10 / 11 / 8 / 6 Wet, dark brown, medium sand with gravel	25.1	SS	4	19	23				
23											

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd Datum: Geodetic

Sheet: 1 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH2

Project No: 3113

Date: November 19 - 22, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
5 Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
23		Auger	24.2								
25 - 26 - 8		SPT: 11 / 18 / 19 / 10 Damp, light brown, medium sand	23.6	ss	5	37	8				
27 28 29		Auger	00 7								
30 31 32		SPT: 10 / 9 / 9 / 21 Damp, brown 0 m - 0.07 m: fine sand 0.07 m - 0.15 m: gravel with coarse sand	22.7	ss	6	18	25				0.05 m dia. riser from 0 m to 15.76 m
33 10 34 		Auger	21.2								
35 - 36 11		SPT: 9 / 12 / 13 / 14 Damp, light brown, medium sand with red and black particles	20.6	SS	7	25	42				
37 38 39 39 12		Auger	19.6								Native sand packing
40 41 41		SPT: 12 / 25 / 23 / 29 Damp, light brown, fine sand with gravel with red and black particles	19	SS	8	48	44				trom 1.52 m to 31.00 m
43 43 44		Auger	10 1								
45 - 46 - 14		SPT: 8 / 23 / 23 / 20 Dry, light brown, medium sand with red and black particles	10.1				56				
	H 1 S H H	Fracflow Consultants Inc.54 Major's PathDrilling NSt. John's, NL A1A 5A1Phone: (709) 739-7270Driller: FeFax: (709) 753-5101	Aethod ormatic	: Ho Dy on D	llow nami rillin	Ster ic Co ig Lt	n Au one F d	igerii Penet	ng tration Test	Datum Sheet:	: Geodetic 2 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH2

Project No: 3113

Date: November 19 - 22, 2017

		SUBSURFACE PROFILE		S	SAMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
			17.5	SS	9	46	56				
47 48 49 49 49 15	5	Auger	16.6								
50		SPT: 52 for 0.10 m (Refusal)		SS	10	52	37			•	
51		Damp, light brown, graver								•	Native sand packing from 1.52 m
52 16 53	6	Auger									to 31.00 m
54			15 1								
55 56 17	,	SPT: 10 / 14 / 14 / 20 0 m - 0.33 m: dry, light brown medium sand with red and black particle 0.33 m - 0.39 m: light brown, silt/clay	14.5	SS	11	28	65				0.05 m dia. screen from 15.76 m to 23.38 m
57 58 58 59 18	}	Auger									
60		SPT: 10 / 10 / 20 / 43	13.6							• •	
		0 m - 0.06 m: dry, light gray, gravel 0.06 m - 0.35 m: dry, light brown, medium sand with red and black	13	SS	12	48	58				
63 - 19 63 - 19 64 - 19)	Auger	10								19.51 m BGS
65 - 20		SPT: 16 / 15 / 24 / 9 Wet, brown, fine sand with small rock fragments	11.4	SS	13	39	35		· 		(Nov. 27, 2017)
68 69 21		Auger									
		Fracflow Consultants Inc. 154 Major's Path Drilling N	Aethod	: Ho	llow	Ster	n Au	igeri	ng ration Test	Datum	: Geodetic

St. John's, NL A1A 5A1 Phone: (709) 739-7270 (709) 753-5101

Cone Penetration Test Driller: Formation Drilling Ltd

Sheet: 3 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH2

Project No: 3113

Date: November 19 - 22, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
69 -			10.5								
		SPT: 19 / 23 / 26 / 29 Wet, brown, fine sand with small rock fragments	9.87	SS	14	49	29		│		0.05 m dia. screen from 15.76 m to 23.38 m
72 22 73 73 74 74 74		Auger	8.98								
75 23 76 23		SPT: 31 / 19 / 24 / 33 Wet, brown, fine to medium sand	8.37	SS	15	43	46				Screw-on cap
78 78 79 79 24		Auger	7.44								
80 -		SPT: 15 / 20 / 39 / 50 Wet, brown, fine to medium sand with red and black particles	6.83	ss	16	59	42				
82 - 25 83 - 1 84 - 1 84 - 1		Auger	5.89								Native sand packing from 1.52 m
85 26 86 		SPT: 14 / 21 / 35 / 36 CFEM: Sand, trace Gravel, trace Silt/Clay	5.28	SS	17	56	42				to 31.00 m
88 88 89 89		Auger	4.44								
90 1 91 1		SPT: 18 / 78 / 36 / 45 CFEM: Sand, trace Silt/Clay	3.84	SS	18	114	29				
92 -1 -28										•	

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd Datum: Geodetic

Sheet: 4 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH2

Project No: 3113

Date: November 19 - 22, 2017

		SUBSURFACE PROFILE		S	AMP	ΊΕ					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
92 93 94		Auger	2.9								
95 29 96 29		SPT: 35 / 38 / 34 / 27 CFEM: Sand, some Gravel, trace Silt/Clay	2.28	ss	19	72	23				Native sand packing from 1.52 m
98 - 30 99 -		Auger	1.4								to 31.00 m
		SPT: 18 / 32 / 34 / 41 CFEM: Sand, trace Gravel, trace Silt/Clay	0.787	SS	20	66	46				
102 103 104 105 105 106 107 107 107 107 107 107 107 107		DCPT (Blow counts per 150 mm)				30 32 32 28 21 26 35 35 53 23 24 36 37 38 33 36 37 38 33 36 37 46 52 50 58					

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd Datum: Geodetic

Sheet: 5 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH2

Project No: 3113

Date: November 19 - 22, 2017

		SUBSURFACE PROFILE		S	AMF	LE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
15 16 17 18 17 18 17 18 17 18 17 18 19 10 10 10 10 10 10 10 10 10 10		DCPT (Blow counts per 150 mm) End of Borehole	-6.52			283 43 48 57 40 38 57 56 71 57 61 57 61 57 61 57 61 57 61 57 61 57 61 57 61 57 62 79 103 119					

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd Datum: Geodetic

Sheet: 6 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH3

Project No: 3113

Date: November 23 - 26, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
ft m		Ground Surface (GS)	28.1								
0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Auger	26.7								Well head protection Installed Cement packing from 0.05 m to 0.36 m Native sand packing from 0.36 m to 0.91 m Bentonite packing from 0.91 m to 1.52 m
5		SPT: 6 / 9 / 10 / 11								•	
		Dry, brown,coarse sand	26	SS	1	19	21				
2 8 9 9		Auger	05.0								
10		SPT: 17 / 31 / 12 / 20 Medium to coarse sand with small rock fragments	23.2	SS	2	43	29				0.05 m dia. riser from 0 m to 12.21 m
12 13 13 14		Auger	23.6								
15 1 16 1 5		SPT: 5 / 21 / 30 / 21 Dry, light brown gravel with coarse sand with red and black particles	23	SS	3	51	29				Native sand packing
17 1 18 1 19 1		Auger	22.1								trom 1.52 m to 32.71 m
20 1 6 21 1 1 1 1 1 1 1 1 1 1		SPT: 10 / 27 / 37 / 30 Dry, light brown, gravel with coarse sand	21.5	ss	4	64	27				
22 23											

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 1 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH3

Project No: 3113

Date: November 23 - 26, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
23 24		Auger	20.5								
26 -		SPT: 4 / 36 / 52 for 0.05 m (Refusal) Dry, light brown, coarse sand with gravel	20.1	SS	5	88	25				
27 28 29		Auger	10								
30	-	SPT: 52 for 0.08 m (Refusal) No recovery	19	SS	ĥ	52	Ô				
31 32 32 33 10		Auger									Native sand packing from 1.52 m to 32.71 m
34			17.5								
36 - 11		SPT: 6 / 19 / 52 for 0.10 m (Refusal) Dry, light brown, coarse sand	17.1	SS	7	71	6				
37 38 39 12		Auger	10								
40 41		SPT: 4 / 9 / 14 / 16 Wet, light brown, medium sand with red and black particles	15.4	SS	8	23	52				(Nov. 27, 2017)
42 43 43 44 44 45		Auger	14.5								0.05 m dia. screen from 12.21 m to 21.36 m
46 14					_		29				
	ŀ	Fracflow Consultants Inc.				C.					

Fractiow Consultants Inc 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 2 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH3

Project No: 3113

Date: November 23 - 26, 2017

			SUBSURFACE PROFILE		S	AMF	PLE					
Depth		Symbol	Geologic Description	Elevation (m)	Sample Type Sample Sample Sequence Sample Sample Sequence "N" Value "N" Value Recovery (%) Recovery (%) Mell Data						Well Data	Well Description
40 47 48 49	· 15		SPT: 3 / 10 / 16 / 17 Wet, light brown with red and black particles 0 m - 0.05 m: fine to medium sand 0.05 m - 0.18 m: medium sand Auger	13.9	SS	9	26	29				
51 52	• 16		SPT: 8 / 17 / 19 / 19 Wet, light brown with red and black particles 0 m - 0.18 m: fine sand 0.18 m - 0.23 m: medium sand	12.3	SS	10	36	37				Native sand packing from 1.52 m
53 54			Auger	11.5								to 32.71 m
56 57	· 17		SPT: 8 / 16 / 24 / 29 Wet, light brown, fine sand with red and black particles	10.8	SS	11	40	30		┝┼╋┼┼		
58 58 59	18		Auger	9.84								
61 62			SPT: 20 / 22 / 28 / 25 Wet, light brown, fine to medium sand with red and black particles	9.23	SS	12	50	67				0.05 m dia. screen from 12.21 m to 21.36 m
63 64	• 19		Auger	8.46								
65 66	20		SPT: 7 / 15 / 21 / 16 CFEM: Sand, trace Silt/Clay	7.85	SS	13	36	54				
67 68 69	· 21		Auger									

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 3 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH3

Project No: 3113

Date: November 23 - 26, 2017

		SUBSURFACE PROFILE		S	AMF	PLE					
Depth	Symbol	Geologic Description	Geologic Description Geologic								Well Description
69			6.88								
70 - 71 -		SPT: 3 / 10 / 13 / 17 Wet, light brown, fine to medium sand with red and white particles	6.27	SS	14	23	37				Screw-on cap
72 22 73 74		Auger	5 4 4								
75 23 76 		SPT: 6 / 12 / 18 / 25 CFEM: Sand, trace Silt/Clay	4.83	SS	15	30	33				
77 78 79 24		Auger	3.84								
80 81 		SPT: 2 / 8 / 13 / 14 Wet, brown, fine sand	3.23	SS	16	21	1				Native sand packing from 1.52 m to 32.71 m
82 25 83 84		Auger	2.3								
85 26		SPT: 2 / 9 / 13 / 17 Brown, fine to medium sand with red and white particles	1.69	SS	17	22	29				
88 88 89 89		Auger	0.809								
90 91 91 92 28		SPT: 15 / 15 / 20 / 27 CFEM: Sand, trace Silt/Clay, trace Gravel	0.199	SS	18	35	21				
									1		

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 4 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH3

Project No: 3113

Date: November 23 - 26, 2017

		SUBSURFACE PROFILE		S	AMF	PLE							
Depth	Symbol	Geologic Description Geologic Description									Well Data	Well Description	
92 93 94		Auger	-0.721										
95 29 96		SPT: 1 / 9 / 21 / 27 Wet, grey fine to medium sand with red and white particles	-1.33	SS	19	30	21			 	 		
97 98 98 99		Auger	-2.27										Native sand packing from 1.52 m
100 101 02 - 31		SPT: 3 / 11 / 17 / 26 CFEM: Sand, trace Silt/Clay	-2.88	SS	20	28	21			 \ 			to 32.71 m
103 104		Auger	-3.74) +	 -		
105 - 32		Sampler sank 0.23 m under own weight	-3.97	İ									
106 107		SPT: 22 / 31 / 36 / 53 Wet, brown, fine to medium sand with silt/clay Rock chip at the tip of sampler	-4.58	SS	21	67	10			\downarrow			
108 33 109 4 110 4 111 4 112 4 113 4 113 4 114 4 115 4 35		DCPT (Blow counts per 150 mm)		PC PC PC PC PC PC PC PC PC PC PC PC PC P		24 33 26 25 28 36 31 40 41 35 29 32 26 44 38							

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd.

Datum: Geodetic

Sheet: 5 of 6

Client: Marine Harvest Atlantic Canada

Location: Stephenville, NL

Log of Borehole: BH3

Project No: 3113

Date: November 23 - 26, 2017

		SUBSURFACE PROFILE		S	SAMF	PLE					
Depth	Symbol	Geologic Description	Elevation (m)	Sample Type	Sample Sequence	"N" Value	Recovery (%)	% Fines	Standard Penetration Test "N" Value per 300 mm 20 60	Well Data	Well Description
15 16 17 18 19 19 19 19 19 19 10 19 10 19 10 10 10 10 10 10 10 10 10 10		DCPT (Blow counts per 150 mm)	-12.7			39 43 42 43 42 43 36 37 41 35 37 41 35 37 41 35 37 41 35 37 41 35 37 41 35 37 41 35 37 41 35 36 37 42 36 37 42 36 45 46 50 62 59 51 64 85 78 83 127 153					
41 135 136 137 137 14 137		End of Borehole									

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1 Phone: (709) 739-7270 Fax: (709) 753-5101

Drilling Method: Hollow Stem Augering Dynamic Cone Penetration Test Driller: Formation Drilling Ltd. Datum: Geodetic

Sheet: 6 of 6

APPENDIX B

Laboratory Analyses

CLIENT NAME: FRACFLOW CONSULTANTS 154 MAJOR'S PATH ST. JOHN'S PATH, NL A1A5A1 (709) 739-7270

ATTENTION TO: John Gale

PROJECT: 3113 - Stephenville, NL

AGAT WORK ORDER: 17K288500

TRACE ORGANICS REVIEWED BY: Kelly Hogue, B.Sc, P.Chem, Operations Manager

WATER ANALYSIS REVIEWED BY: Laura Baker, Inorganics Data Reporter

DATE REPORTED: Dec 01, 2017

PAGES (INCLUDING COVER): 16

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (709)747-8573

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 16

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17K288500 PROJECT: 3113 - Stephenville, NL 57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

ATTENTION TO: John Gale

SAMPLED BY:

Atlantic RBCA Tier 1 Hydrocarbons in Water - Low Level

DATE RECEIVED: 2017-11-27

			3113-PUMP1-	3113-PUMP2-			
	S	SAMPLE DESCRIPTION:	WS1	WS1			
		SAMPLE TYPE:	Water	Water			
		DATE SAMPLED:	2017-11-22	2017-11-22			
Parameter	Unit	G/S RDL	8936013	8936090			
Benzene	mg/L	0.370 0.001	<0.001	<0.001			
Toluene	mg/L	0.002 0.001	<0.001	<0.001			
Ethylbenzene	mg/L	0.09 0.001	<0.001	<0.001			
Xylene (Total)	mg/L	0.001	<0.001	<0.001			
C6-C10 (less BTEX)	mg/L	0.01	<0.01	<0.01			
>C10-C16 Hydrocarbons	mg/L	0.05	<0.05	<0.05			
>C16-C21 Hydrocarbons	mg/L	0.05	<0.05	<0.05			
>C21-C32 Hydrocarbons	mg/L	0.01	<0.01	<0.01			
Modified TPH (Tier 1)	mg/L	0.1	<0.1	<0.1			
Resemblance Comment			NR	NR			
Return to Baseline at C32			Y	Y			
Surrogate	Unit	Acceptable Limits					
Isobutylbenzene - EPH	%	70-130	104	104			
Isobutylbenzene - VPH	%	70-130	77	77			
n-Dotriacontane - EPH	%	70-130	113	108			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 8936013-8936090 Resemblance Comment Key:

GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction LR - Lube Range UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable

Certified By:

Kelly Hogue

DATE REPORTED: 2017-12-01

AGAT WORK ORDER: 17K288500 PROJECT: 3113 - Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

					Dissolved Meta	als		
DATE RECEIVED: 2017-11-27							DATE REPORTED: 2017-	12-01
		SAMPLE DESC SAMP DATE S	RIPTION: LE TYPE: AMPLED:	3113-PUMP1- WS1 Water 2017-11-22	3113-PUMP2- WS1 Water 2017-11-22			
Parameter	Unit	G / S	RDL	8936013	8936090			
Dissolved Aluminum	ug/L	Variable	5	<5	<5			
Dissolved Antimony	ug/L		2	<2	<2			
Dissolved Arsenic	ug/L	5	2	<2	<2			
Dissolved Barium	ug/L		5	36	38			
Dissolved Beryllium	ug/L		2	<2	<2			
Dissolved Bismuth	ug/L		2	<2	<2			
Dissolved Boron	ug/L	29000,	5	7	7			
Dissolved Cadmium	ug/L	1.0, 0.09	0.017	<0.017	<0.017			
Dissolved Chromium	ug/L		1	2	2			
Dissolved Cobalt	ug/L		1	<1	<1			
Dissolved Copper	ug/L	Equation	2	<2	<2			
Dissolved Iron	ug/L	300	50	<50	<50			
Dissolved Lead	ug/L	Equation	0.5	<0.5	<0.5			
Dissolved Manganese	ug/L		2	<2	<2			
Dissolved Molybdenum	ug/L	73	2	<2	<2			
Dissolved Nickel	ug/L	Equation	2	<2	<2			
Dissolved Selenium	ug/L	1.0	1	<1	<1			
Dissolved Silver	ug/L	0.25	0.1	<0.1	<0.1			
Dissolved Strontium	ug/L		5	75	74			
Dissolved Thallium	ug/L	0.8	0.1	<0.1	<0.1			
Dissolved Tin	ug/L		2	<2	<2			
Dissolved Titanium	ug/L		2	<2	<2			
Dissolved Uranium	ug/L	33, 15	0.1	0.3	0.3			
Dissolved Vanadium	ug/L		2	<2	<2			
Dissolved Zinc	ug/L	30	5	<5	8			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 8936013-8936090 Analysis completed on a filtered sample.

Certified By:

Lama Balu

AGAT WORK ORDER: 17K288500 PROJECT: 3113 - Stephenville, NL 57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

ATTENTION TO: John Gale

SAMPLED BY:

				Γ	MTL - TOC i	n Water
DATE RECEIVED: 2017-11-27						DATE REPORTED: 2017-12-01
				3113-PUMP1-	3113-PUMP2-	
		SAMPLE DESC	RIPTION:	WS1	WS1	
		SAMPI	LE TYPE:	Water	Water	
		DATE SA	AMPLED:	2017-11-22	2017-11-22	
Parameter	Unit	G/S	RDL	8936013	8936090	
Total Organic Carbon	mg/L		0.5	3.0	3.1	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 8936013-8936090 TOC analysed at AGAT Montreal.

Certified By:

AGAT WORK ORDER: 17K288500 PROJECT: 3113 - Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

				Standard \	Vater Analysis	s + Total Metals
DATE RECEIVED: 2017-11-27						DATE REPORTED: 2017-12-01
	S	SAMPLE DESC SAMP DATE S	RIPTION: LE TYPE: AMPLED:	3113-PUMP1- WS1 Water 2017-11-22	3113-PUMP2- WS1 Water 2017-11-22	
Parameter	Unit	G/S	RDL	8936013	8936090	
рН		6.5-9.0		8.23	8.19	
Reactive Silica as SiO2	mg/L		0.5	6.5	6.4	
Chloride	mg/L	640, 120	1	26	17	
Fluoride	mg/L	0.12	0.12	<0.12	<0.12	
Sulphate	mg/L		2	7	5	
Alkalinity	mg/L		5	145	142	
True Color	TCU	Narrative	5	<5	8	
Turbidity	NTU	Narrative	0.1	0.6	0.8	
Electrical Conductivity	umho/cm		1	312	318	
Nitrate + Nitrite as N	mg/L		0.05	0.21	0.38	
Nitrate as N	mg/L	550, 13	0.05	0.21	0.38	
Nitrite as N	mg/L	0.06	0.05	<0.05	<0.05	
Ammonia as N	mg/L	Fact Sheet	0.03	0.05	0.06	
Ortho-Phosphate as P	mg/L		0.01	<0.01	<0.01	
Total Sodium	mg/L		0.1	9.6	12.1	
Total Potassium	mg/L		0.1	1.0	1.0	
Total Calcium	mg/L		0.1	50.2	49.4	
Total Magnesium	mg/L		0.1	8.3	7.4	
Bicarb. Alkalinity (as CaCO3)	mg/L		5	145	142	
Carb. Alkalinity (as CaCO3)	mg/L		10	<10	<10	
Hydroxide	mg/L		5	<5	<5	
Calculated TDS	mg/L		1	190	179	
Hardness	mg/L			160	154	
Langelier Index (@20C)	NA			0.48	0.42	
Langelier Index (@ 4C)	NA			0.16	0.10	
Saturation pH (@ 20C)	NA			7.75	7.77	
Saturation pH (@ 4C)	NA			8.07	8.09	
Anion Sum	me/L			3.79	3.45	
Cation sum	me/L			3.64	3.64	

Certified By:

Laura Balu

AGAT WORK ORDER: 17K288500 PROJECT: 3113 - Stephenville, NL 57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals												
DATE RECEIVED: 2017-11-27						DATE REPORTED: 2017-12-01						
Parameter	Linit	SAMPLE DESCRIPTIO SAMPLE TYP DATE SAMPLE		3113-PUMP1- WS1 Water 2017-11-22	3113-PUMP2- WS1 Water 2017-11-22 8936090							
% Difference/ Ion Balance (NS)	%	0/0	RDL	2.1	2.6							
Total Aluminum	ug/l	Variable	5	<5	6							
Total Antimony	ug/L		2	<2	<2							
Total Arsenic	ug/L	5	2	<2	<2							
Total Barium	ug/L		5	38	39							
Total Beryllium	ug/L		2	<2	<2							
Total Bismuth	ug/L		2	<2	<2							
Total Boron	ug/L	29000,	5	8	7							
Total Cadmium	ug/L	1.0, 0.09	0.017	<0.017	<0.017							
Total Chromium	ug/L		1	1	1							
Total Cobalt	ug/L		1	<1	<1							
Total Copper	ug/L	Equation	1	<1	<1							
Total Iron	ug/L	300	50	61	77							
Total Lead	ug/L	Equation	0.5	<0.5	<0.5							
Total Manganese	ug/L		2	<2	<2							
Total Molybdenum	ug/L	73	2	<2	<2							
Total Nickel	ug/L	Equation	2	<2	<2							
Total Phosphorous	mg/L	Fact Sheet	0.02	0.02	0.02							
Total Selenium	ug/L	1	1	<1	<1							
Total Silver	ug/L	0.25	0.1	<0.1	<0.1							
Total Strontium	ug/L		5	89	86							
Total Thallium	ug/L	0.8	0.1	<0.1	<0.1							
Total Tin	ug/L		2	<2	<2							
Total Titanium	ug/L		2	<2	<2							
Total Uranium	ug/L	33, 15	0.1	0.3	0.3							
Total Vanadium	ug/L		2	<2	<2							
Total Zinc	ug/L	30	5	<5	<5							

Certified By:

Lauro Balu

AGAT WORK ORDER: 17K288500 PROJECT: 3113 - Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

http://www.agatlabs.com

DATE REPORTED: 2017-12-01

57 Old Pennywell Road, Unit I

St. John's, NL

CANADA A1E 6A8

TEL (709)747-8573 FAX (709 747-2139

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals

DATE RECEIVED: 2017-11-27

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015 Comments:

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Lauro Balu

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113 - Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 17K288500

ATTENTION TO: John Gale

SAMPLED BY:

Trace Organics Analysis

RPT Date: Dec 01, 2017				DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
								Lower	Upper		Lower	Upper]	Lower	Upper
Atlantic RBCA Tier 1 Hydrocarbons in Water - Low Level															
Benzene	1	8923753	< 0.001	< 0.001	NA	< 0.001	77%	70%	130%	95%	70%	130%			
Toluene	1	8923753	< 0.001	< 0.001	NA	< 0.001	78%	70%	130%	93%	70%	130%			
Ethylbenzene	1	8923753	< 0.001	< 0.001	NA	< 0.001	81%	70%	130%	92%	70%	130%			
Xylene (Total)	1	8923753	< 0.001	< 0.001	NA	< 0.001	82%	70%	130%	101%	70%	130%			
C6-C10 (less BTEX)	1	8923753	< 0.01	< 0.01	NA	< 0.01	97%	70%	130%	102%	70%	130%	106%	70%	130%
>C10-C16 Hydrocarbons	1	8938408	< 0.05	< 0.05	NA	< 0.05	77%	70%	130%	89%	70%	130%	98%	70%	130%
>C16-C21 Hydrocarbons	1	8938408	< 0.05	< 0.05	NA	< 0.05	71%	70%	130%	89%	70%	130%	98%	70%	130%
>C21-C32 Hydrocarbons	1	8938408	< 0.01	< 0.01	NA	< 0.01	70%	70%	130%	89%	70%	130%	98%	70%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Kelly Hogue

Page 8 of 16

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 9 of 16

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113 - Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 17K288500

ATTENTION TO: John Gale

SAMPLED BY:

				Wate	er Ar	nalysi	is								
RPT Date: Dec 01, 2017			C	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	K SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lii	eptable mits	Recovery	Acce	eptable mits	Recovery	Acce	ptable mits
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
MTL - TOC in Water															
Total Organic Carbon	8932683	ł	35.0	35.8	2.3%	< 0.5	NA	80%	120%	120%	80%	120%	NA	80%	120%
Standard Water Analysis + Tota	al Metals														
pН	8936119)	7.89	7.92	0.4%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
Reactive Silica as SiO2	1	8933976	2.2	3.5	NA	< 0.5	110%	80%	120%		80%	120%	80%	80%	120%
Chloride	8939186	;	7	8	2.6%	< 1	97%	80%	120%	NA	80%	120%	94%	80%	120%
Fluoride	8939186	i	<0.12	<0.12	NA	< 0.12	111%	80%	120%	NA	80%	120%	102%	80%	120%
Sulphate	8939186	i	11	11	3.0%	< 2	117%	80%	120%	NA	80%	120%	NA	80%	120%
Alkalinity	8936119	1	131	132	0.6%	< 5	98%	80%	120%	NA	80%	120%	NA	80%	120%
True Color	8926699)	<5	6	NA	< 5	110%	80%	120%	NA			NA		
Turbidity	8933973		3.3	3.0	8.2%	< 0.1	99%	80%	120%	NA			NA		
Electrical Conductivity	8936119		13400	13400	0.1%	< 1	101%	80%	120%	NA	80%	120%	NA	80%	120%
Nitrate as N	8939186	i	<0.05	<0.05	NA	< 0.05	103%	80%	120%	NA	80%	120%	96%	80%	120%
Nitrite as N	8939186	i	<0.05	<0.05	NA	< 0.05	91%	80%	120%	NA	80%	120%	93%	80%	120%
Ammonia as N	1	8933973	0.05	0.02	NA	< 0.03	110%	80%	120%		80%	120%	104%	80%	120%
Ortho-Phosphate as P	1	8933973	<0.01	<0.01	NA	< 0.01	NA	80%	120%		80%	120%	100%	80%	120%
Total Sodium	8939189		3.5	3.4	1.2%	< 0.1	106%	80%	120%	107%	80%	120%	NA	70%	130%
Total Potassium	8939189	1	0.3	0.3	NA	< 0.1	106%	80%	120%	109%	80%	120%	101%	70%	130%
Total Calcium	8939189	1	11.6	12.0	3.8%	< 0.1	105%	80%	120%	108%	80%	120%	NA	70%	130%
Total Magnesium	8939189		0.9	0.9	3.4%	< 0.1	107%	80%	120%	110%	80%	120%	102%	80%	120%
Bicarb. Alkalinity (as CaCO3)	8936119		131	132	0.6%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	8936119		<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Hydroxide	8936119)	<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Total Aluminum	8939189	1	<5	<5	NA	< 5	103%	80%	120%	111%	80%	120%	96%	70%	130%
Total Antimony	8939189)	<2	<2	NA	< 2	94%	80%	120%	105%	80%	120%	98%	70%	130%
Total Arsenic	8939189)	<2	<2	NA	< 2	99%	80%	120%	99%	80%	120%	95%	70%	130%
Total Barium	8939189)	<5	<5	NA	< 5	101%	80%	120%	104%	80%	120%	104%	70%	130%
Total Beryllium	8939189)	<2	<2	NA	< 2	103%	80%	120%	108%	80%	120%	103%	70%	130%
Total Bismuth	8939189)	<2	<2	NA	< 2	102%	80%	120%	109%	80%	120%	102%	70%	130%
Total Boron	8939189)	<5	<5	NA	< 5	103%	80%	120%	106%	80%	120%	98%	70%	130%
Total Cadmium	8939189)	<0.017	<0.017	NA	< 0.017	96%	80%	120%	99%	80%	120%	94%	70%	130%
Total Chromium	8939189	1	<1	<1	NA	< 1	95%	80%	120%	95%	80%	120%	102%	70%	130%
Total Cobalt	8939189)	<1	<1	NA	< 1	96%	80%	120%	95%	80%	120%	101%	70%	130%
Total Copper	8939189)	477	467	2.0%	< 1	99%	80%	120%	102%	80%	120%	NA	70%	130%
Total Iron	8939189)	58	56	NA	< 50	99%	80%	120%	100%	80%	120%	102%	70%	130%
Total Lead	8939189)	<0.5	<0.5	NA	< 0.5	104%	80%	120%	108%	80%	120%	101%	70%	130%
Total Manganese	8939189)	3	<2	NA	< 2	98%	80%	120%	99%	80%	120%	75%	70%	130%
Total Molybdenum	8939189)	<2	<2	NA	< 2	91%	80%	120%	94%	80%	120%	98%	70%	130%
Total Nickel	8939189)	5	5	NA	< 2	96%	80%	120%	97%	80%	120%	100%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113 - Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 17K288500 ATTENTION TO: John Gale SAMPLED BY:

Water Analysis (Continued)

RPT Date: Dec 01, 2017			C	UPLICAT		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Phosphorous	8939189		0.04	0.03	NA	< 0.02	98%	80%	120%	105%	80%	120%	119%	70%	130%
Total Selenium	8939189		<1	<1	NA	< 1	96%	80%	120%	99%	80%	120%	82%	70%	130%
Total Silver	8939189		<0.1	<0.1	NA	< 0.1	93%	80%	120%	99%	80%	120%	94%	70%	130%
Total Strontium	8939189		31	31	1.6%	< 5	94%	80%	120%	98%	80%	120%	NA	70%	130%
Total Thallium	8939189		<0.1	<0.1	NA	< 0.1	102%	80%	120%	110%	80%	120%	105%	70%	130%
Total Tin	8939189		<2	<2	NA	< 2	97%	80%	120%	99%	80%	120%	103%	70%	130%
Total Titanium	8939189		<2	<2	NA	< 2	104%	80%	120%	107%	80%	120%	109%	70%	130%
Total Uranium	8939189		<0.1	<0.1	NA	< 0.1	100%	80%	120%	102%	80%	120%	100%	70%	130%
Total Vanadium	8939189		<2	<2	NA	< 2	91%	80%	120%	94%	80%	120%	95%	70%	130%
Total Zinc	8939189		56	56	0.1%	< 5	97%	80%	120%	102%	80%	120%	NA	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Dissolved Metals														
Dissolved Aluminum	8934102	<5	<5	NA	< 5	99%	80%	120%	96%	80%	120%	96%	70%	130%
Dissolved Antimony	8934102	<2	<2	NA	< 2	92%	80%	120%	99%	80%	120%	106%	70%	130%
Dissolved Arsenic	8934102	<2	<2	NA	< 2	94%	80%	120%	95%	80%	120%	101%	70%	130%
Dissolved Barium	8934102	5	5	NA	< 5	100%	80%	120%	102%	80%	120%	100%	70%	130%
Dissolved Beryllium	8934102	<2	<2	NA	< 2	101%	80%	120%	104%	80%	120%	117%	70%	130%
Dissolved Bismuth	8934102	<2	<2	NA	< 2	96%	80%	120%	103%	80%	120%	70%	70%	130%
Dissolved Boron	8934102	<5	<5	NA	< 5	97%	80%	120%	97%	80%	120%	112%	70%	130%
Dissolved Cadmium	8934102	<0.017	<0.017	NA	< 0.017	97%	80%	120%	97%	80%	120%	103%	70%	130%
Dissolved Chromium	8934102	<1	<1	NA	< 1	90%	80%	120%	90%	80%	120%	92%	70%	130%
Dissolved Cobalt	8934102	2	2	NA	< 1	93%	80%	120%	94%	80%	120%	100%	70%	130%
Dissolved Copper	8934102	<2	<2	NA	< 2	96%	80%	120%	98%	80%	120%	101%	70%	130%
Dissolved Iron	8934102	3000	2940	2.2%	< 50	90%	80%	120%	92%	80%	120%	NA	70%	130%
Dissolved Lead	8934102	21.3	21.3	0.1%	< 0.5	99%	80%	120%	101%	80%	120%	NA	70%	130%
Dissolved Manganese	8934102	156	152	2.3%	< 2	90%	80%	120%	91%	80%	120%	NA	70%	130%
Dissolved Molybdenum	8934102	<2	<2	NA	< 2	88%	80%	120%	91%	80%	120%	85%	70%	130%
Dissolved Nickel	8934102	<2	<2	NA	< 2	94%	80%	120%	95%	80%	120%	99%	70%	130%
Dissolved Selenium	8934102	<1	<1	NA	< 1	105%	80%	120%	97%	80%	120%	111%	70%	130%
Dissolved Silver	8934102	<0.1	<0.1	NA	< 0.1	90%	80%	120%	101%	80%	120%	96%	70%	130%
Dissolved Strontium	8934102	36	37	1.7%	< 5	86%	80%	120%	85%	80%	120%	NA	70%	130%
Dissolved Thallium	8934102	<0.1	<0.1	NA	< 0.1	100%	80%	120%	107%	80%	120%	105%	70%	130%
Dissolved Tin	8934102	<2	<2	NA	< 2	92%	80%	120%	96%	80%	120%	96%	70%	130%
Dissolved Titanium	8934102	<2	<2	NA	< 2	104%	80%	120%	105%	80%	120%	98%	70%	130%
Dissolved Uranium	8934102	<0.1	<0.1	NA	< 0.1	96%	80%	120%	100%	80%	120%	97%	70%	130%
Dissolved Vanadium	8934102	<2	<2	NA	< 2	89%	80%	120%	90%	80%	120%	94%	70%	130%
Dissolved Zinc	8934102	<5	<5	NA	< 5	91%	80%	120%	95%	80%	120%	113%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113 - Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 17K288500

ATTENTION TO: John Gale

SAMPLED BY:

Water Analysis (Continued)

RPT Date: Dec 01, 2017		C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lin	ptable nits	Recoverv	Acce Lir	ptable nits
		Ia	-				value	Lower	Upper		Lower	Upper		Lower	Upper

Certified By:

Lauro Bale

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 11 of 16

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS PROJECT: 3113 - Stephenville, NL

AGAT WORK ORDER: 17K288500

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	L		
Benzene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Toluene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Ethylbenzene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Xylene (Total)	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
C6-C10 (less BTEX)	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
>C10-C16 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C16-C21 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C21-C32 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Modified TPH (Tier 1)	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	CALCULATION
Resemblance Comment	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Return to Baseline at C32	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
n-Dotriacontane - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID

Method Summary

CLIENT NAME: FRACFLOW CONSULTA	NTS	AGAT WORK ORDER: 17K288500 ATTENTION TO: John Gale									
PROJECT: 3113 - Stephenville, NL		ATTENTION TO: John Gale									
SAMPLING SITE:		SAMPLED BY:									
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Water Analysis											
Dissolved Aluminum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Arsenic	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Barium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Beryllium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Bismuth	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Boron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Cadmium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Chromium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Cobalt	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Copper	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Iron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Lead	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Manganese	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Molybdenum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Nickel	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Selenium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Silver	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Strontium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Thallium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Tin	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Titanium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Uranium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Vanadium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Dissolved Zinc	MET121-6104 & MET-121-6105	SM 3125	ICP-MS								
Total Organic Carbon	INOR-101-6049F	MA.300-C1.0	DETECTION INFRAROUGE								
IPH	INOR-121-6001	SM 4500 H+B	PC TITRATE								
Reactive Silica as SiO2	INORG-121-6028	SM 4110 B	COLORIMETER								
	INORG-121-6005	SM 4110 B									
	110110-121-0000										

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113 - Stephenville, NL

AGAT WORK ORDER: 17K288500 ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Alkalinity	INOR-121-6001	SM 2320 B	
True Color	INORG-121-6014	EPA 110.2	NEPHELOMETER
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INORG-121-6003	SM 4500-NH3 G	COLORIMETER
Ortho-Phosphate as P	INORG-121-6005	SM 4110 B	COLORIMETER
Total Sodium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Potassium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Calcium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Magnesium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE
Calculated TDS	CALCULATION	SM 1030E	CALCULATION
Hardness	CALCULATION	SM 2340B	CALCULATION
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Anion Sum	CALCULATION	SM 1030E	CALCULATION
Cation sum	CALCULATION	SM 1030E	CALCULATION
% Difference/ Ion Balance (NS)	CALCULATION	SM 1030E	CALCULATION
Total Aluminum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Arsenic	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Barium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Beryllium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Bismuth	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Boron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Cadmium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Chromium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Cobalt	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Copper	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Iron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS

Method Summary

CLIENT NAME: FRACFLOW CONS	SULTANTS	AGAT WORK OF	RDER: 17K288500
PROJECT: 3113 - Stephenville, NL		ATTENTION TO:	John Gale
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Lead	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Manganese	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Molybdenum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Nickel	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Phosphorous	MET-121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Selenium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Silver	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Strontium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Thallium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Tin	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Titanium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Uranium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Vanadium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Zinc	MET121-6104 & MET-121-6105	SM 3125	ICP-MS

ris Drive Laboratory Use Only	outh, NS Arrival Condition: □ Good □ Poor (see notes) 33B 1M2 Arrival Temperature: C C	AGAT JOD Number: VTV 2 8 500	00.03/4 Notes:	Format	le Sample	Turnaround Time Required (TAT)	iple Sample Regular TAT 3 5 to 7 working days	el Format	uded Rush IAI Loame day Li Ludy	ort:	Date Required:		Water Sample: Z Yes 🗆 No Salt Water Sample: 🗆 Yes Z No				- Miliss alent El lov onatio	Packa Packa Miss Miss Miss Miss Miss Miss Miss Mis	total 1 ه ا 1 br>1 1 1 1 1 1 1 1 1	rdous sates (Colifo Colifo Colifo MMS T FPA 6 Colifo Colifo Colifo	100: Phosph Phosph Phenol Phen								Delegitime Delegitime Page 1 of 1	DetayTime Yellow Copy - AGAT	1:00 White Copy-AGAT NV: FFC-3113-CUC-UI
Unit 122 * 11 Mor	B B CS	Webearth.agatiabs.com • www.agati	P: 902.468.8718 = F: 302.4	ation (Please print): Report	n Gale (john_ffc@nfld.net)	eong Seok (eunjeong_ffc@nfld.net)	an Andrews (karen_ffc@nfld.net)		Indu	quirements (Check):	s on Report	Doct Coarse	Com Drinking	Fuel Cube				Waste Water	Other Prese	Lered/ advational and	ments - Site/Sample Info.	500, 3x150, 2x250, 3x40mi	rield filtered - diss.metal	500, 3x150, 2x250, 3x40ml	Field filtered - diss.metal				Received By (Print Name):	Received By (Sign):	-lang
	Laboratori			Report Inform	1. Name: John	Email: Eun	And C Kare	Z. Maille.	Email:	Regulatory Re	List Guidelines		r analysis.	/ No 🗆 🔤 Gas 🔲	CCME	Industrial Commercia	Res/Park	L Agricultura	Sediment		trix # Containers Cont	ater 9 1x		ater 9 1x					Date/Time Samples	NOV. ZI/11	12 · 01
	FEEF		ody Record		acultante Inc. (NI.)	JISUIGINS INC. (ME)		s Path	NL	:70 Fax: 709-753-5101	3 - Stephenville, NL		ar is not provided client will be billed full price fo.	Same Yes Z		rews (karen_ffc@nfld.net)			Fax:	6	Date/Time Sampled Mar	W N0. 20 2017 / 12.20	NUV. 22, 2011 / 12.20	Nov. 22, 2017 / 11:30 W		-				g Seok	110
		2	Chain of Custo	Denort Information		Company: rracilow of	Contact: John Gale	Address: 154 Major's	St. John's, I	Phone: 709-739-72	Client Project #: 3113	AGAT Ountation: S/O	Please Note: If quotation numbe	Invoice To	-meamo	Contact: Karen And	Address:		Phone:	PO/Credit Card#: 383	Sample Identification	MUNICIPAL MICH	10M-1-4MI0-4-5115	3113-PUMP2-WS1					Samples Relinquished By (Print Name):	Eunjeon	Samples Relinquished By (Sign):

CLIENT NAME: FRACFLOW CONSULTANTS 154 MAJOR'S PATH ST. JOHN'S PATH, NL A1A5A1 (709) 739-7270

ATTENTION TO: John Gale

PROJECT: 3113-Stephenville,NL

AGAT WORK ORDER: 17K289906

TRACE ORGANICS REVIEWED BY: Kelly Hogue, B.Sc, P.Chem, Operations Manager

WATER ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

DATE REPORTED: Dec 08, 2017

PAGES (INCLUDING COVER): 15

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (709)747-8573

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 15

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17K289906 PROJECT: 3113-Stephenville,NL 57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

SAMPLED BY:

Atlantic RBCA Tier 1 Hydrocarbons in Water - Low Level

DATE RECEIVED: 2017-11-30

		SAMPLE DESCRIPTION	ON: 3113-BH1-WS1	3113-BH2-WS1	3113-BH3-WS1
		SAMPLE TY	PE: Water	Water	Water
		DATE SAMPLE	ED: 2017-11-28	2017-11-28	2017-11-28
Parameter	Unit	G/S RDL	. 8944411	8944428	8944429
Benzene	mg/L	0.370 0.00	1 <0.001	<0.001	<0.001
oluene	mg/L	0.002 0.007	1 <0.001	<0.001	<0.001
thylbenzene	mg/L	0.09 0.00	1 <0.001	<0.001	<0.001
(ylene (Total)	mg/L	0.00	1 <0.001	<0.001	<0.001
6-C10 (less BTEX)	mg/L	0.01	<0.01	<0.01	<0.01
C10-C16 Hydrocarbons	mg/L	0.05	<0.05	<0.05	<0.05
C16-C21 Hydrocarbons	mg/L	0.05	< 0.05	<0.05	<0.05
C21-C32 Hydrocarbons	mg/L	0.01	<0.01	<0.01	<0.01
Nodified TPH (Tier 1)	mg/L	0.1	<0.1	<0.1	<0.1
Resemblance Comment			NR	NR	NR
Return to Baseline at C32			Y	Y	Y
Surrogate	Unit	Acceptable Limit	S		
sobutylbenzene - EPH	%	70-130	94	95	97
sobutylbenzene - VPH	%	70-130	100	101	96
-Dotriacontane - EPH	%	70-130	98	92	93

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8944411-8944429 Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction LR - Lube Range UC - Unidentified Compounds NR - No Resemblance

NA - Not Applicable

Certified By:

Kelly Hogue

DATE REPORTED: 2017-12-06

AGAT WORK ORDER: 17K289906 PROJECT: 3113-Stephenville,NL 57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

ATTENTION TO: John Gale

SAMPLED BY:

					Dissolved	Metals	
DATE RECEIVED: 2017-11-30							DATE REPORTED: 2017-12-02
Parameter	Unit	SAMPLE DESC SAMP DATE S G / S	RIPTION: LE TYPE: AMPLED: RDL	3113-BH1-WS1 Water 2017-11-28 8944411	3113-BH2-WS1 Water 2017-11-28 8944428	3113-BH3-WS1 Water 2017-11-28 8944429	
Dissolved Aluminum	ug/L	Variable	5	13	14	16	
Dissolved Antimony	ug/L		2	<2	<2	<2	
Dissolved Arsenic	ug/L	5	2	<2	<2	<2	
Dissolved Barium	ug/L		5	26	42	44	
Dissolved Beryllium	ug/L		2	<2	<2	<2	
Dissolved Bismuth	ug/L		2	<2	<2	<2	
Dissolved Boron	ug/L	29000,	5	10	7	8	
Dissolved Cadmium	ug/L	1.0, 0.09	0.017	<0.017	<0.017	<0.017	
Dissolved Chromium	ug/L		1	3	4	4	
Dissolved Cobalt	ug/L		1	<1	<1	<1	
Dissolved Copper	ug/L	Equation	2	<2	<2	<2	
Dissolved Iron	ug/L	300	50	<50	<50	<50	
Dissolved Lead	ug/L	Equation	0.5	<0.5	<0.5	<0.5	
Dissolved Manganese	ug/L		2	21	67	134	
Dissolved Molybdenum	ug/L	73	2	<2	<2	<2	
Dissolved Nickel	ug/L	Equation	2	<2	3	3	
Dissolved Selenium	ug/L	1.0	1	<1	<1	<1	
Dissolved Silver	ug/L	0.25	0.1	<0.1	<0.1	<0.1	
Dissolved Strontium	ug/L		5	123	81	86	
Dissolved Thallium	ug/L	0.8	0.1	<0.1	<0.1	<0.1	
Dissolved Tin	ug/L		2	<2	<2	<2	
Dissolved Titanium	ug/L		2	<2	<2	<2	
Dissolved Uranium	ug/L	33, 15	0.1	0.4	0.4	0.3	
Dissolved Vanadium	ug/L		2	<2	<2	<2	
Dissolved Zinc	ug/L	30	5	7	16	16	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 8944411-8944429 Analysis completed on a filtered sample.

Certified By:

Yasar Cota

AGAT WORK ORDER: 17K289906 PROJECT: 3113-Stephenville,NL

Standard Water Analysis + Total Metals

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

DATE RECEIVED: 2017-11-30 **DATE REPORTED: 2017-12-06** SAMPLE DESCRIPTION: 3113-BH1-WS1 3113-BH2-WS1 3113-BH3-WS1 SAMPLE TYPE: Water Water Water DATE SAMPLED: 2017-11-28 2017-11-28 2017-11-28 G/S RDL 8944411 8944428 8944429 Parameter Unit bН 6.5-9.0 8.18 8.17 8.18 Reactive Silica as SiO2 mg/L 0.5 7.9 6.2 7.1 Chloride mg/L 640, 120 1 27 17 11 Fluoride 0.12 0.12 <0.12 <0.12 mg/L 0.16 Sulphate mg/L 2 6 5 2 Alkalinity 5 128 145 170 mg/L True Color TCU Narrative 5 <5 6 9 6.8 Turbidity NTU Narrative 0.1 1.7 2.8 Electrical Conductivity umho/cm 333 337 358 1 Nitrate + Nitrite as N mg/L 0.05 0.14 0.37 0.15 Nitrate as N mg/L 550.13 0.05 0.14 0.37 0.15 Nitrite as N 0.06 0.05 < 0.05 < 0.05 < 0.05 mg/L < 0.03 Ammonia as N mg/L Fact Sheet 0.03 0.03 < 0.03 Ortho-Phosphate as P 0.01 < 0.01 0.01 < 0.01 mg/L Total Sodium mg/L 0.1 15.6 9.3 7.5 Total Potassium mg/L 0.1 2.1 1.7 2.2 Total Calcium mg/L 0.1 44.4 51.2 57.8 Total Magnesium mg/L 0.1 7.8 7.5 8.2 170 Bicarb. Alkalinity (as CaCO3) mg/L 5 128 145 10 <10 Carb. Alkalinity (as CaCO3) mg/L <10 <10 Hydroxide mg/L 5 <5 <5 <5 192 Calculated TDS mg/L 181 181 1 Hardness mg/L 143 159 178 Langelier Index (@20C) NA 0.32 0.43 0.56 Langelier Index (@ 4C) NA 0 0.11 0.24 Saturation pH (@ 20C) NA 7.86 7.74 7.62 Saturation pH (@ 4C) NA 8.18 8.06 7.94 Anion Sum me/L 3.46 3.51 3.76 3.67 4.00 Cation sum me/L 3.62 % 2.3 2.2 3.1 % Difference/ Ion Balance (NS)

Certified By:

Jasar Coughtru

AGAT WORK ORDER: 17K289906 PROJECT: 3113-Stephenville,NL

Standard Water Analysis + Total Metals

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

DATE RECEIVED: 2017-11-30						DATE REPORTED: 2017-12-06
Parameter Unit	SAMPLE DESC SAMP DATE S G / S	RIPTION: LE TYPE: AMPLED: RDL	3113-BH1-WS1 Water 2017-11-28 8944411	3113-BH2-WS1 Water 2017-11-28 8944428	3113-BH3-WS1 Water 2017-11-28 8944429	
Total Aluminum ug/L	Variable	5	119	207	265	
Total Antimony ug/L		2	<2	<2	<2	
Total Arsenic ug/L	5	2	<2	<2	<2	
Total Barium ug/L		5	27	43	46	
Total Beryllium ug/L		2	<2	<2	<2	
Total Bismuth ug/L		2	<2	<2	<2	
Total Boron ug/L	29000,	5	11	8	8	
Total Cadmium ug/L	1.0, 0.09	0.017	<0.017	<0.017	<0.017	
Total Chromium ug/L		1	2	4	2	
Total Cobalt ug/L		1	<1	3	2	
Total Copper ug/L	Equation	1	<1	2	2	
Total Iron ug/L	300	50	258	489	559	
Total Lead ug/L	Equation	0.5	<0.5	<0.5	<0.5	
Total Manganese ug/L		2	32	96	171	
Total Molybdenum ug/L	73	2	2	<2	<2	
Total Nickel ug/L	Equation	2	4	5	4	
Total Phosphorous mg/L	Fact Sheet	0.02	0.03	0.03	0.04	
Total Selenium ug/L	1	1	<1	<1	<1	
Total Silver ug/L	0.25	0.1	<0.1	<0.1	<0.1	
Total Strontium ug/L		5	143	96	104	
Total Thallium ug/L	0.8	0.1	<0.1	<0.1	<0.1	
Total Tin ug/L		2	<2	<2	<2	
Total Titanium ug/L		2	7	14	19	
Total Uranium ug/L	33, 15	0.1	0.5	0.4	0.4	
Total Vanadium ug/L		2	<2	<2	<2	
Total Zinc ug/L	30	5	6	16	8	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Jason CoE

AGAT WORK ORDER: 17K289906 PROJECT: 3113-Stephenville,NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

TION TO: John Gale

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

	Water Analysis - TOC								
					-				
DATE RECEIVED: 2017-11-30							DATE REPORTED: 2017-12-06		
		SAMPLE DES	CRIPTION:	3113-BH1-WS1	3113-BH2-WS1	3113-BH3-WS1			
		SAM	PLE TYPE:	Water	Water	Water			
		DATES	SAMPLED:	2017-11-28	2017-11-28	2017-11-28			
Parameter	Unit	G/S	RDL	8944411	8944428	8944429			
Total Organic Carbon	mg/L		0.5	0.9	0.9	1.4			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Joson Court

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville,NL

SAMPLING SITE:

AGAT WORK ORDER: 17K289906 ATTENTION TO: John Gale

SAMPLED BY:

Trace Organics Analysis

RPT Date:	RPT Date:			DUPLICATE			REFERENCE MATERIAL			L METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptab Ired Limits	Accepta red Limits		Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		Ia				Lo	Lower	Upper	er Lo	Lower	Upper	r	Lower	Upper		
Atlantic RBCA Tier 1 Hydrocarbor	ns in Wate	er - Low Le	evel													
Benzene	1	8950494	< 0.001	< 0.001	NA	< 0.001	92%	70%	130%	90%	70%	130%				
Toluene	1	8950494	< 0.001	< 0.001	NA	< 0.001	94%	70%	130%	98%	70%	130%				
Ethylbenzene	1	8950494	< 0.001	< 0.001	NA	< 0.001	94%	70%	130%	102%	70%	130%				
Xylene (Total)	1	8950494	< 0.001	< 0.001	NA	< 0.001	95%	70%	130%	104%	70%	130%				
C6-C10 (less BTEX)	1	8950494	< 0.01	< 0.01	NA	< 0.01	95%	70%	130%	107%	70%	130%	107%	70%	130%	
>C10-C16 Hydrocarbons	1	8944411	< 0.05	< 0.05	NA	< 0.05	101%	70%	130%	106%	70%	130%	107%	70%	130%	
>C16-C21 Hydrocarbons	1	8944411	< 0.05	< 0.05	NA	< 0.05	101%	70%	130%	106%	70%	130%	107%	70%	130%	
>C21-C32 Hydrocarbons	1	8944411	<0.01	<0.01	NA	< 0.01	103%	70%	130%	106%	70%	130%	107%	70%	130%	

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Kelly Hogue

Page 7 of 15

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville,NL

SAMPLING SITE:

AGAT WORK ORDER: 17K289906 ATTENTION TO: John Gale

SAMPLED BY:

				Wate	er An	alysi	is								
RPT Date:			C	UPLICATE			REFERE		TERIAL	METHOD	BLAN		MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dun #2	RPD	Method Blank	Measured	Acce Lii	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
		ld					Value	Lower	Upper		Lower	Upper	,	Lower	Upper
Standard Water Analysis + Tota	I Metals														
рН	8944411	8944411	8.18	8.20	0.2%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
Reactive Silica as SiO2	1	8933041	4.3	5.2	18.9%	< 0.5	106%	80%	120%		80%	120%	98%	80%	120%
Chloride	8932992		36	35	1.0%	< 1	104%	80%	120%	NA	80%	120%	NA	80%	120%
Fluoride	8932992		<0.12	<0.12	NA	< 0.12	109%	80%	120%	NA	80%	120%	93%	80%	120%
Sulphate	8932992		5	5	NA	< 2	114%	80%	120%	NA	80%	120%	99%	80%	120%
Alkalinity	8944411	8944411	128	128	0.2%	< 5	98%	80%	120%	NA	80%	120%	NA	80%	120%
True Color	8944411	8944411	<5	<5	NA	< 5	110%	80%	120%	NA			NA		
Turbidity	8942126		1.0	1.1	9.4%	< 0.1	99%	80%	120%	NA			NA		
Electrical Conductivity	8944411	8944411	333	337	1.2%	< 1	101%	80%	120%	NA	80%	120%	NA	80%	120%
Nitrate as N	8932992		0.07	0.06	NA	< 0.05	103%	80%	120%	NA	80%	120%	104%	80%	120%
Nitrite as N	8932992		<0.05	<0.05	NA	< 0.05	88%	80%	120%	NA	80%	120%	95%	80%	120%
Ammonia as N	1	8943119	0.05	0.05	NA	< 0.03	101%	80%	120%		80%	120%	105%	80%	120%
Ortho-Phosphate as P	1	8933041	<0.01	<0.01	NA	< 0.01	114%	80%	120%		80%	120%	100%	80%	120%
Total Sodium	8947105		26.3	27.0	2.4%	< 0.1	102%	80%	120%	103%	80%	120%	NA	70%	130%
Total Potassium	8947105		1.1	1.2	2.9%	< 0.1	104%	80%	120%	105%	80%	120%	NA	70%	130%
Total Calcium	8947105		50.7	52.1	2.7%	< 0.1	105%	80%	120%	105%	80%	120%	NA	70%	130%
Total Magnesium	8947105		7.4	7.4	0.4%	< 0.1	103%	80%	120%	104%	80%	120%	NA	80%	120%
Bicarb. Alkalinity (as CaCO3)	8944411	8944411	128	128	0.2%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	8944411	8944411	<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Hydroxide	8944411	8944411	<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Total Aluminum	8947105		<5	<5	NA	< 5	108%	80%	120%	111%	80%	120%	102%	70%	130%
Total Antimony	8947105		<2	<2	NA	< 2	93%	80%	120%	103%	80%	120%	100%	70%	130%
Total Arsenic	8947105		7	7	NA	< 2	94%	80%	120%	98%	80%	120%	NA	70%	130%
Total Barium	8947105		20	20	NA	< 5	100%	80%	120%	103%	80%	120%	104%	70%	130%
Total Beryllium	8947105		<2	<2	NA	< 2	113%	80%	120%	116%	80%	120%	103%	70%	130%
Total Bismuth	8947105		<2	<2	NA	< 2	107%	80%	120%	115%	80%	120%	97%	70%	130%
Total Boron	8947105		17	18	NA	< 5	113%	80%	120%	117%	80%	120%	107%	70%	130%
Total Cadmium	8947105		<0.017	<0.017	NA	< 0.017	98%	80%	120%	100%	80%	120%	94%	70%	130%
Total Chromium	8947105		<1	<1	NA	< 1	100%	80%	120%	103%	80%	120%	110%	70%	130%
Total Cobalt	8947105		<1	<1	NA	< 1	101%	80%	120%	106%	80%	120%	107%	70%	130%
Total Copper	8947105		10	11	9.5%	< 1	104%	80%	120%	109%	80%	120%	NA	70%	130%
Total Iron	8947105		529	551	4.0%	< 50	99%	80%	120%	101%	80%	120%	NA	70%	130%
Total Lead	8947105		<0.5	0.5	NA	< 0.5	99%	80%	120%	102%	80%	120%	92%	70%	130%
Total Manganese	8947105		795	813	2.2%	< 2	96%	80%	120%	99%	80%	120%	NA	70%	130%
Total Molybdenum	8947105		<2	<2	NA	< 2	98%	80%	120%	100%	80%	120%	110%	70%	130%
Total Nickel	8947105		2	2	NA	< 2	103%	80%	120%	104%	80%	120%	104%	70%	130%
Total Phosphorous	8947105		0.02	0.03	NA	< 0.02	110%	80%	120%	103%	80%	120%	96%	70%	130%
Total Selenium	8947105		<1	<1	NA	< 1	92%	80%	120%	100%	80%	120%	84%	70%	130%
Total Silver	8947105		<0.1	<0.1	NA	< 0.1	97%	80%	120%	107%	80%	120%	101%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 15

Page 9 of 15

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville,NL

SAMPLING SITE:

AGAT WORK ORDER: 17K289906 ATTENTION TO: John Gale SAMPLED BY:

Water Analysis (Continued)

RPT Date:	RPT Date:		DUPLICATE				REFERENCE MATERIAL		AL METHOD BLANK SPIKE			E MATRIX SPIKE			
PARAMETER	Batch	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Value		Acce Lir	ptable nits	Recoverv	Acce Lin	ptable nits	Recoverv	Acceptable Limits					
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Strontium	8947105		362	379	4.7%	< 5	91%	80%	120%	94%	80%	120%	NA	70%	130%
Total Thallium	8947105		<0.1	<0.1	NA	< 0.1	107%	80%	120%	113%	80%	120%	103%	70%	130%
Total Tin	8947105		<2	<2	NA	< 2	97%	80%	120%	98%	80%	120%	102%	70%	130%
Total Titanium	8947105		<2	<2	NA	< 2	106%	80%	120%	107%	80%	120%	97%	70%	130%
Total Uranium	8947105		0.1	0.1	NA	< 0.1	106%	80%	120%	109%	80%	120%	104%	70%	130%
Total Vanadium	8947105		<2	<2	NA	< 2	97%	80%	120%	100%	80%	120%	112%	70%	130%
Total Zinc	8947105		9	9	NA	< 5	105%	80%	120%	108%	80%	120%	96%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Dissolved Metals

Dissolved metals														
Dissolved Aluminum	8943635	9	8	NA	< 5	109%	80%	120%	111%	80%	120%	100%	70%	130%
Dissolved Antimony	8943635	<2	<2	NA	< 2	99%	80%	120%	107%	80%	120%	111%	70%	130%
Dissolved Arsenic	8943635	<2	<2	NA	< 2	97%	80%	120%	102%	80%	120%	112%	70%	130%
Dissolved Barium	8943635	8	8	NA	< 5	100%	80%	120%	104%	80%	120%	107%	70%	130%
Dissolved Beryllium	8943635	<2	<2	NA	< 2	104%	80%	120%	111%	80%	120%	122%	70%	130%
Dissolved Bismuth	8943635	<2	<2	NA	< 2	108%	80%	120%	114%	80%	120%	83%	70%	130%
Dissolved Boron	8943635	<5	<5	NA	< 5	104%	80%	120%	107%	80%	120%	111%	70%	130%
Dissolved Cadmium	8943635	<0.017	<0.017	NA	< 0.017	98%	80%	120%	101%	80%	120%	112%	70%	130%
Dissolved Chromium	8943635	<1	<1	NA	< 1	100%	80%	120%	103%	80%	120%	90%	70%	130%
Dissolved Cobalt	8943635	<1	<1	NA	< 1	99%	80%	120%	103%	80%	120%	89%	70%	130%
Dissolved Copper	8943635	<2	<2	NA	< 2	102%	80%	120%	109%	80%	120%	94%	70%	130%
Dissolved Iron	8943635	<50	<50	NA	< 50	101%	80%	120%	109%	80%	120%	76%	70%	130%
Dissolved Lead	8943635	<0.5	<0.5	NA	< 0.5	103%	80%	120%	106%	80%	120%	99%	70%	130%
Dissolved Manganese	8943635	2	2	NA	< 2	101%	80%	120%	105%	80%	120%	91%	70%	130%
Dissolved Molybdenum	8943635	<2	<2	NA	< 2	96%	80%	120%	100%	80%	120%	78%	70%	130%
Dissolved Nickel	8943635	<2	<2	NA	< 2	100%	80%	120%	109%	80%	120%	94%	70%	130%
Dissolved Selenium	8943635	<1	<1	NA	< 1	96%	80%	120%	98%	80%	120%	119%	70%	130%
Dissolved Silver	8943635	<0.1	<0.1	NA	< 0.1	103%	80%	120%	101%	80%	120%	90%	70%	130%
Dissolved Strontium	8943635	16	16	NA	< 5	94%	80%	120%	96%	80%	120%	91%	70%	130%
Dissolved Thallium	8943635	<0.1	<0.1	NA	< 0.1	103%	80%	120%	111%	80%	120%	104%	70%	130%
Dissolved Tin	8943635	<2	<2	NA	< 2	97%	80%	120%	99%	80%	120%	100%	70%	130%
Dissolved Titanium	8943635	<2	<2	NA	< 2	105%	80%	120%	105%	80%	120%	98%	70%	130%
Dissolved Uranium	8943635	<0.1	<0.1	NA	< 0.1	101%	80%	120%	105%	80%	120%	97%	70%	130%
Dissolved Vanadium	8943635	<2	<2	NA	< 2	96%	80%	120%	101%	80%	120%	88%	70%	130%
Dissolved Zinc	8943635	<5	<5	NA	< 5	100%	80%	120%	107%	80%	120%	114%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Water Analysis - TOC

otal Organic Carbon 65	56	8930876	6	6	0.0%	< 1	110%	80%	120%
------------------------	----	---------	---	---	------	-----	------	-----	------

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville,NL

SAMPLING SITE:

AGAT WORK ORDER: 17K289906

ATTENTION TO: John Gale

SAMPLED BY:

Water Analysis (Continued)

RPT Date:			D	UPLICAT	E		REFEREN	EFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Jasa Cought vu

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville,NL

AGAT WORK ORDER: 17K289906

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE									
Trace Organics Analysis		1	1									
Benzene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS									
Toluene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS									
Ethylbenzene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS									
Xylene (Total)	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS									
C6-C10 (less BTEX)	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS									
>C10-C16 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID									
>C16-C21 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID									
>C21-C32 Hydrocarbons	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID									
Modified TPH (Tier 1)	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	CALCULATION									
Resemblance Comment	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID									
Return to Baseline at C32	ORG-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID									
Isobutylbenzene - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID									
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS									
n-Dotriacontane - EPH	VOL-120-5007	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID									

Method Summary

CLIENT NAME: FRACFLOW CONS	SULTANTS	AGAT WORK ORDER: 17K289906								
PROJECT: 3113-Stephenville,NL		ATTENTION TO: John Gale								
SAMPLING SITE:		SAMPLED BY:								
	AGATSOP									
Water Analysis	A6A1 0.0.1									
Dissolved Aluminum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Arsenic	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Barium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Beryllium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Bismuth	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Boron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Cadmium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Chromium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Cobalt	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Copper	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Iron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Lead	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Manganese	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Molybdenum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Nickel	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Selenium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Silver	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Strontium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Thallium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Tin	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Titanium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Uranium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Vanadium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Dissolved Zinc	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
рН	INOR-121-6001	SM 4500 H+B	PC TITRATE							
Reactive Silica as SiO2	INORG-121-6028	SM 4110 B	COLORIMETER							
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH							
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH							
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH							

AGAT METHOD SUMMARY (V1)

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville,NL

AGAT WORK ORDER: 17K289906 ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	AMPLED BY:					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Alkalinity	INOR-121-6001	SM 2320 B						
True Color	INORG-121-6014	EPA 110.2	NEPHELOMETER					
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER					
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE					
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION					
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Ammonia as N	INORG-121-6003	SM 4500-NH3 G	COLORIMETER					
Ortho-Phosphate as P	INORG-121-6005	SM 4110 B	COLORIMETER					
Total Sodium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Potassium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Calcium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Magnesium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE					
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE					
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE					
Calculated TDS	CALCULATION	SM 1030E	CALCULATION					
Hardness	CALCULATION	SM 2340B	CALCULATION					
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION					
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION					
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION					
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION					
Anion Sum	CALCULATION	SM 1030E	CALCULATION					
Cation sum	CALCULATION	SM 1030E	CALCULATION					
% Difference/ Ion Balance (NS)	CALCULATION	SM 1030E	CALCULATION					
Total Aluminum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Arsenic	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Barium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Beryllium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Bismuth	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Boron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Cadmium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Chromium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Cobalt	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Copper	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Iron	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					

Method Summary

CLIENT NAME: FRACFLOW CONS	SULTANTS	AGAT WORK ORDER: 17K289906								
PROJECT: 3113-Stephenville,NL		ATTENTION TO	: John Gale							
SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Total Lead	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Manganese	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Molybdenum	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Nickel	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Phosphorous	MET-121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Selenium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Silver	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Strontium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Thallium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Tin	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Titanium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Uranium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Vanadium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Zinc	MET121-6104 & MET-121-6105	SM 3125	ICP-MS							
Total Organic Carbon	INOR-171-6217	SM 5310 B	COMBUSTION							

Laboratory Use Only Arrival Condition: Good Poor (see notes) Arrival Temperature: Hold Time: 	AGAT Job Number: AGAT Job Number: Notes:		Trues Domised (TAT)	Iurnaroung Iime Kequirea (IAI)	Regular TAT 25 to 7 working days	Rush TAT Same day 1 day	□ 2 days □ 3 days	Date Required:		ple: Z Yes ONo Salt Water Sample: T Yes Z No			I WE	00156100	I MPI TEX 1 MPI 1 MPI	 H>BTEX ((Y/N) S TPH/B M 6255 - M M 6255 - M M 6255 - M M 6255 - M 	2: TPP 2:	Marchange Marchange 1 1 1 2 1 2 1 2 2 2 3 3 3 3 3 4 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Sint Conv. Clant</th> <th>VI Vellow Copy - AGAT Page OI I</th> <th>Vointe copy-AGAT No: FFC-3113-COC-02</th> <th>Date revised January 2018</th>								Sint Conv. Clant	VI Vellow Copy - AGAT Page OI I	Vointe copy-AGAT No: FFC-3113-COC-02	Date revised January 2018
 11 Morris Drive Dartmouth. NS B3B 1M2 ww.agatlabs.com 	F: 902.468.8924	Keport Format	Single Sample	Multiple Sample	Per page	Excel Format		EXPORT		Drinking Water San	Reg. No.:			(i seiM - (3OS) (Jn9ls	lexav FOC sa P: s/flne	□ CB01 (coarse i fotal i ss (total i n (Tri & H	anim M - C M - C									Datectimo	1 100.	12	
Unit 122 h.agatlabs.com • w	P: 902.468.8718 -	-	et) fc@nfld.net)		()ntid.net)			list Guidelines on Report	Charse	Pot Eine	-	əlo	deliev	√ □	erved alysis	eerese Mater An IstoT	nry Is:⊡ Is:⊡	Field I Brand Metal Mercu	ni < <		m / /		mi / /				1	S	
Ories webeart	. (Disses and 10)	Itormation (Please print):	John Gale (john_ftc@ntld.n Eunieona Seok (eunieona 1		Karen Andrews (karen_ftc@		ory Requirements (Check)	delines on Report 🛛 🗆 Do not	1 Res		🗌 Fuel 🔄 Lube	CDWQ		Park Until TOT Water	L Waste Water	ment 🗌 Other		Comments – Site/Sample Into Sample Containment	1x500, 3x100, 2x250, 3x40r	Field filtered - diss.metal	1x500, 3x100, 2x250, 3x40	Field filtered - diss.metal	1x500, 3x100, 2x250, 3x40	Field filtered - diss.metal		Samples Received By Print Name	2		- 1
aborat		Keport II	1. Name	Email:	2. Name	Email:	Regulato	List Gui		s.	□ □ Cas	COME		Res,	- FWA			# Containers	6		6		6			ą	ov. 30/17	12:12	
							3-5101			II price for analysi	Yes Z / No						-	Sample Matrix	Water		Water		Water			Date/T	Z	Date/1	
ED	y Record		ultants Inc. (NL)		ŧ		Fax: 709-75	tephenville, NL		ot provided client will be billed fu	Same		karen_ffc@nfld.net)			84 Fax:		Date/Time Sampled	Nov. 28, 2017	21:19	Nov. 28, 2017	13:05	Nov. 28, 2017	16:16				ſ	
E	Chain of Custod	Report Information	Company: Fracflow Consu	Contact: John Gale	Address: 154 Major's Pat	St. John's, NL	Phone: 709-739-7270	Client Project #: 3113 - Si	AGAT Quotation: S/O	Please Note: If quotation number is no	Invoice To	Company:	Contact: Karen Andrews	Address:		Phone: PO/Credit Card#: 3		Sample Identification	3113-BH1-WS1		3113-BH2-WS1		3113-BH3-WS1			Samples Relinquished By (Print Name)	Terry Crummey	Samples felinquished By (Sign)	Charles

APPENDIX C

Grain Size Analysis Reports

Sample No. : BH1-SS14

Depth below GS : 21.19 m - 21.80 m

Sieve Analysis	5	Dry weight of sample $(g) = 526.39$									
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing						
2	50.8										
1	25.4	0.00	0.00	0.00	100.00						
1/2"	12.7	16.39	3.11	3.11	96.89						
1/4"	6.35	19.29	3.66	6.78	93.22						
4	4.76	8.46	1.61	8.39	91.61						
10	2.00	30.72	5.84	14.22	85.78						
20	0.85	70.09	13.32	27.54	72.46						
40	0.425	127.82	24.28	51.82	48.18						
60	0.25	85.01	16.15	67.97	32.03						
100	0.15	56.74	10.78	78.75	21.25						
200	0.075	79.40	15.08	93.83	6.17						
pan		32.47	6.17	100.00							
-		526.39									

$D_{10} = 0.089$	
D ₃₀ = 0.23	
$D_{60} = 0.6$	

USCS: SP-SM (Poorly graded sand with silt) or SP-SC (Poorly graded sand with clay)

R ₂₀₀ = 93.83	% Gravel =	8.39
$R_4 = 8.39$	% Sand =	85.45
$R_4/R_{200} = 0.09$	% Silt & Clay =	6.17
SF = 85.45	% Clay =	NA
GF = 8.39	CFEM:	Sand, trace Gravel, trace Silt/Clay

Cu = 6.74

Cc = 0.99

Sample No. : BH1-SS15

Depth below GS : 22.77 m - 23.22 m

Sieve Analysi	s	Dry weight of sample $(g) = 547.48$									
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing						
2	50.8										
1	25.4	0.00	0.00	0.00	100.00						
1/2"	12.7	61.18	11.17	11.17	88.83						
1/4"	6.35	61.57	11.25	22.42	77.58						
4	4.76	25.08	4.58	27.00	73.00						
10	2.00	72.02	13.15	40.16	59.84						
20	0.85	61.73	11.28	51.43	48.57						
40	0.425	73.20	13.37	64.80	35.20						
60	0.25	55.10	10.06	74.87	25.13						
100	0.15	41.05	7.50	82.36	17.64						
200	0.075	61.60	11.25	93.62	6.38						
pan		34.95	6.38	100.00							
-		547.48									

$D_{10} = 0.094$	
$D_{30} = 0.325$	Cu = 21.28
$D_{60} = 2$	Cc = 0.56

USCS: SP-SM (Poorly graded sand with silt and gravel) or SP-SC (Poorly graded sand with clay and gravel)

R ₂₀₀ = 93.62	% Gravel =	27.00
R ₄ = 27.00	% Sand =	66.61
$R_4/R_{200} = 0.29$	% Silt & Clay =	6.38
SF = 66.61	% Clay =	NA
GF = 27.00	CFEM:	Gravelly Sand, trace Silt/Clay

```
Sample No. : BH1-SS17
```

Depth below GS : 25.87 m - 26.48 m

Sieve Analysis	Dry weight of sample $(g) = 282.04$									
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing					
2	50.8									
1	25.4	0.00	0.00	0.00	100.00					
1/2"	12.7	6.10	2.16	2.16	97.84					
1/4"	6.35	5.67	2.01	4.17	95.83					
4	4.76	4.21	1.49	5.67	94.33					
10	2.00	17.04	6.04	11.71	88.29					
20	0.85	46.87	16.62	28.33	71.67					
40	0.425	66.06	23.42	51.75	48.25					
60	0.25	38.82	13.76	65.51	34.49					
100	0.15	23.03	8.17	73.68	26.32					
200	0.075	42.43	15.04	88.72	11.28					
pan		31.81	11.28	100.00						
		282.04								

$D_{10} = 0.07$	
D ₃₀ = 0.19	
$D_{60} = 0.6$	

USCS: SP-SM (Poorly graded sand with silt) or SP-SC (Poorly graded sand with clay)

R ₂₀₀ = 88.72	% Gravel =	5.67
R ₄ = 5.67	% Sand =	83.06
$R_4/R_{200} = 0.06$	% Silt & Clay =	11.28
SF = 83.06	% Clay =	NA
GF = 5.67	CFEM:	Sand, some Silt/Clay, trace Gravel

Cu = 8.57

Cc = 0.86

```
Sample No. : BH2-SS17
```

Depth below GS : 25.90 m - 26.51 m

Sieve Analysis	Dry weight of sample $(g) = 484.43$									
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing					
2	50.8									
1	25.4	0.00	0.00	0.00	100.00					
1/2"	12.7	16.57	3.42	3.42	96.58					
1/4"	6.35	6.80	1.40	4.82	95.18					
4	4.76	3.82	0.79	5.61	94.39					
10	2.00	24.90	5.14	10.75	89.25					
20	0.85	86.15	17.78	28.54	71.46					
40	0.425	163.65	33.78	62.32	37.68					
60	0.25	81.60	16.84	79.16	20.84					
100	0.15	35.89	7.41	86.57	13.43					
200	0.075	40.21	8.30	94.87	5.13					
pan		24.84	5.13	100.00						
-		484.43								

D ₁₀ = 0.113	
$D_{30} = 0.335$	Cu = 5.97
$D_{60} = 0.675$	Cc = 1.47

USCS: SP-SM (Poorly graded sand with silt) or SP-SC (Poorly graded sand with clay)

R ₂₀₀ = 94.87	% Gravel =	5.61
R ₄ = 5.61	% Sand =	89.26
$R_4/R_{200} = 0.06$	% Silt & Clay =	5.13
SF = 89.26	% Clay =	NA
GF = 5.61	CFEM:	Sand, trace Gravel, trace Silt/Clay

Sample No. : BH2-SS18

Depth below GS : 27.34 m - 27.95 m

Sieve Analysis		Dry weight of sample $(g) = 374.75$			
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4				
1/2"	12.7				
1/4"	6.35	0.00	0.00	0.00	100.00
4	4.76	1.32	0.35	0.35	99.65
10	2.00	15.01	4.01	4.36	95.64
20	0.85	100.27	26.76	31.11	68.89
40	0.425	116.06	30.97	62.08	37.92
60	0.25	54.30	14.49	76.57	23.43
100	0.15	27.40	7.31	83.89	16.11
200	0.075	30.29	8.08	91.97	8.03
pan		30.10	8.03	100.00	
·		374.75			

$D_{10} = 0.088$	
$D_{30} = 0.32$	Cu = 7.95
$D_{60} = 0.7$	Cc = 1.66

USCS: SW-SM (Well-graded sand with silt) or SW-SC (Well-graded sand with clay)

R ₂₀₀ = 91.97	% Gravel =	0.35
$R_4 = 0.35$	% Sand =	91.62
$R_4/R_{200} = 0.00$	% Silt & Clay =	8.03
SF = 91.62	% Clay =	NA
GF = 0.35	CFEM:	Sand, trace Silt/Clay

Sample No. : BH2-SS19

Depth below GS : 28.89 m - 29.50 m

Sieve Analysis	3	Dry weight of sample $(g) = 469.82$			
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4	0.00	0.00	0.00	100.00
1/2"	12.7	50.99	10.85	10.85	89.15
1/4"	6.35	14.73	3.14	13.99	86.01
4	4.76	8.91	1.90	15.88	84.12
10	2.00	38.99	8.30	24.18	75.82
20	0.85	85.27	18.15	42.33	57.67
40	0.425	104.51	22.24	64.58	35.42
60	0.25	54.93	11.69	76.27	23.73
100	0.15	33.35	7.10	83.37	16.63
200	0.075	44.63	9.50	92.87	7.13
pan		33.51	7.13	100.00	
		469.82			

D ₁₀ = 0.092	
D ₃₀ = 0.335	
$D_{60} = 0.95$	

USCS: SW-SM (Well-graded sand with silt and gravel) or SW-SC (Well-graded sand with clay and gravel)

R ₂₀₀ = 92.87	% Gravel =	15.88
R ₄ = 15.88	% Sand =	76.98
$R_4/R_{200} = 0.17$	% Silt & Clay =	7.13
SF = 76.98	% Clay =	NA
GF = 15.88	CFEM:	Sand, some Gravel, trace Silt/Clay

Cu = 10.33

```
Sample No. : BH2-SS20
```

Depth below GS : 30.39 m - 31.00 m

Sieve Analysis	Dry weight of sample $(g) = 686.68$				
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4	0.00	0.00	0.00	100.00
1/2"	12.7	23.67	3.45	3.45	96.55
1/4"	6.35	22.46	3.27	6.72	93.28
4	4.76	12.96	1.89	8.61	91.39
10	2.00	62.38	9.08	17.69	82.31
20	0.85	154.88	22.55	40.24	59.76
40	0.425	168.68	24.56	64.81	35.19
60	0.25	64.46	9.39	74.20	25.80
100	0.15	60.68	8.84	83.03	16.97
200	0.075	90.50	13.18	96.21	3.79
pan		26.01	3.79	100.00	
-		686.68			

D ₁₀ =	0.105
D ₃₀ =	0.32
$D_{60} =$	0.85

Cu =	8.10
Cc =	1.15

USCS: SW (Well-graded sand)		
R ₂₀₀ = 96.21	% Gravel =	8.61
R ₄ = 8.61	% Sand =	87.61
$R_4/R_{200} = 0.09$	% Silt & Clay =	3.79
SF = 87.61	% Clay =	NA
GF = 8.61	CFEM:	Sand, trace Gravel, trace Silt/Clay

Depth below GS : 19.56 m - 20.17 m

Sieve Analysis	8	Dry weight of sample $(g) = 739.60$			
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4				
1/2"	12.7				
1/4"	6.35	0.00	0.00	0.00	100.00
4	4.76	1.13	0.15	0.15	99.85
10	2.00	4.66	0.63	0.78	99.22
20	0.85	16.44	2.22	3.01	96.99
40	0.425	151.00	20.42	23.42	76.58
60	0.25	318.70	43.09	66.51	33.49
100	0.15	128.40	17.36	83.87	16.13
200	0.075	71.74	9.70	93.57	6.43
pan		47.53	6.43	100.00	
·		739.60			

D ₁₀ = 0.097	
$D_{30} = 0.23$	Cu = 3.61
$D_{60} = 0.35$	Cc = 1.56

USCS: SP-SM (Poorly graded sand with silt) or SP-SC (Poorly graded sand with clay)

R ₂₀₀ = 93.57	% Gravel =	0.15
$R_4 = 0.15$	% Sand =	93.42
$R_4/R_{200} = 0.00$	% Silt & Clay =	6.43
SF = 93.42	% Clay =	NA
GF = 0.15	CFEM:	Sand, trace Silt/Clay

Sample No. : BH3-SS15

Depth below GS : 22.70 m - 23.31 m

Sieve Analysis	is Dry weight of sample (g) = 524.73				
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4				
1/2"	12.7	0.00	0.00	0.00	100.00
1/4"	6.35	0.45	0.09	0.09	99.91
4	4.76	2.14	0.41	0.49	99.51
10	2.00	19.90	3.79	4.29	95.71
20	0.85	112.31	21.40	25.69	74.31
40	0.425	176.52	33.64	59.33	40.67
60	0.25	105.97	20.20	79.52	20.48
100	0.15	42.57	8.11	87.64	12.36
200	0.075	34.08	6.49	94.13	5.87
pan		30.79	5.87	100.00	
·		524.73			

$D_{10} = 0.12$	
D ₃₀ = 0.325	
$D_{60} = 0.63$	

USCS: SP-SM (Poorly graded sand with silt) or SP-SC (Poorly graded sand with clay)

Cu = 5.25

R ₂₀₀ = 94.13	% Gravel =	0.49
$R_4 = 0.49$	% Sand =	93.64
$R_4/R_{200} = 0.01$	% Silt & Clay =	5.87
SF = 93.64	% Clay =	NA
GF = 0.49	CFEM:	Sand, trace Silt/Clay

```
Sample No. : BH3-SS18
```

Depth below GS : 27.32 m - 27.93 m

Sieve Analysis	Dry weight of sample (g) = 410.99				
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4	0.00	0.00	0.00	100.00
1/2"	12.7	16.31	3.97	3.97	96.03
1/4"	6.35	3.04	0.74	4.71	95.29
4	4.76	2.75	0.67	5.38	94.62
10	2.00	9.02	2.19	7.57	92.43
20	0.85	47.08	11.46	19.03	80.97
40	0.425	148.17	36.05	55.08	44.92
60	0.25	80.72	19.64	74.72	25.28
100	0.15	35.86	8.73	83.44	16.56
200	0.075	38.88	9.46	92.90	7.10
pan		29.16	7.10	100.00	
-		410.99			

D ₁₀ = 0.092	
D ₃₀ = 0.285	
D ₆₀ = 0.565	

USCS: SP-SM (Well-graded sand with silt) or SP-SC (Well-graded sand with clay)

$R_{200} = 92.90$	% Gravel =	5.38
$R_4 = 5.38$	% Sand =	87.53
$R_4/R_{200} = 0.06$	% Silt & Clay =	7.10
SF = 87.53	% Clay =	NA
GF = 5.38	CFEM:	Sand, trace Silt/Clay, trace Gravel

Cu = 6.14

Sample No. : BH3-SS20

Depth below GS : 30.40 m - 31.01 m

Sieve Analysis	is Dry weight of sample (g) = 320.68				
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8				
1	25.4				
1/2"	12.7	0.00	0.00	0.00	100.00
1/4"	6.35	0.68	0.21	0.21	99.79
4	4.76	0.37	0.12	0.33	99.67
10	2.00	11.33	3.53	3.86	96.14
20	0.85	82.82	25.83	29.69	70.31
40	0.425	106.04	33.07	62.75	37.25
60	0.25	49.53	15.45	78.20	21.80
100	0.15	22.19	6.92	85.12	14.88
200	0.075	21.63	6.75	91.86	8.14
pan		26.09	8.14	100.00	
·		320.68			

Cu = 7.61

Cc = 1.82

$D_{10} = 0.09$	
D ₃₀ = 0.335	
$D_{60} = 0.685$	

USCS: SW-SM (Well-graded sand with silt) or SW-SC (Well-graded sand with clay)

R ₂₀₀ = 91.86	% Gravel =	0.33
$R_4 = 0.33$	% Sand =	91.54
$R_4/R_{200} = 0.00$	% Silt & Clay =	8.14
SF = 91.54	% Clay =	NA
GF = 0.33	CFEM:	Sand, trace Silt/Clay

APPENDIX D

Test Well Request for Pricing

Request for pricing for a nominal 200 mm diameter test and production well.

General Description of the Work

- 1. The proposed well is expected to extend to 80 m or more of depth and be completed using a stainless steel well screen with a 1 m sand trap at the bottom and a K-packer at the top of the well screen with a 2 to 3 m section of stainless steel riser or casing between the well screen and the K-packer. The K-Packer has to be sized to fit within the nominal 200 mm well casing. The well screens are to be slot 20 stainless steel wire wrapped Johnson Well screens or an equivalent that is acceptable to Fracflow Consultants. The sand trap, riser and K-packer will be stainless steel to match the stainless steel in the well screens. The sand trap is to have a pump-down valve attached to the bottom of the sand trap to permit final adjustments in the position of the well screen and K-Packer.
- 2. The ground is expected to consist of an upper organic layer that may be up to 5 m thick, sands, gravels, cobbles and occasional boulders in the upper 20 m of the borehole. Below 20 m the aquifer is expected to consist primarily of sands, gravels and cobbles. Bedrock may be encountered at depths below 40 m. Samples, approximately 2 kg in weight, of the overburden are to be collected at 5 m intervals and placed in fabric sample bags.
- 3. The well will be constructed by driving the 200 mm casing with a casing shoe attached with removal of the material from inside the casing as the casing is advanced to within no more than 1 m of the casing shoe to minimize up-coning of the sand into the casing except at the bottom of the hole.
- 4. The proposed well site is located in the Stephenville area and site access for drill trucks and service vehicles will be prepared by the Engineer and any snow clearing services that may be required will be arranged by the Engineer.
- 5. This well is being constructed to determine if sufficient volumes of ground water can be obtained from the aquifer to supply water for a proposed commercial enterprise in the Stephenville area. Based on the results obtained from this test/production well, an additional two production wells may be constructed in the general area in the near future.
- 6. Well drilling is expected to commence, based on the submitted prices, within four weeks of the date for submission of prices subject to the availability of equipment and materials and approval of the proposed well site and issuance of the well construction permit by DMAE the Regulator.
- 7. Prices are to be submitted by the selected Newfoundland and Labrador licensed well drillers on or before 5:00 pm, December 21, 2017.

- 8. The work will be conducted under a Purchase Order/contract from Fracflow Consultants Inc. on behalf of its Client.
- 9. Please complete the equipment and personnel sheet that is attached as Appendix A and submit prices using the attached bid sheet, Appendix B.

To discuss any technical aspects of this project, contact:

John Gale, Ph.D., P.Eng., P.Geo., Fracflow Consultants Inc. Telephone: (709) 739-7270 Facsimile: (709) 753-5101 Email: john_ffc@nfld.net Cellular: (709) 685-0721

APPENDIX A - CONTRACTOR INFORMATION

GENERAL

Name:	Owner:
Address:	Address:
Telephone:	Telephone:
Facsimile:	Facsimile:
Email:	Email:
Water Well Contractor's Licenses and Certifications	for:
Schedule and startbtime proposed by the contractor;	

PERSONNEL

(List only those likely to work on this Contract. Additional records of experience for individuals listed may be required.)

	Years with Contractor	Total Years in Related Work
Field Superintendent		
Drillers		
Helpers		
Other Personnel		

EQUIPMENT

(List equipment to be used on this Contract)

Drilling Rig:		
Manufacturer:	 	
Model No. or Size:		
Model Year or Age:	 	
Drill Pipe Size:		
Collar Size:		
Compressor Size:		
Additional:		
Information		
Other Equipment:		

APPENDIX B - SCHEDULE OF QUANTITIES AND PRICES (One	well)
--	-------

Section	Description	Unit	Estimated Quantity	Unit Price	Total
	1) Mobilization to and demobilization from Site between January and March 2018, inclusive of all materials, equipment, supplies and personnel costs, including all required permits and licenses for the driller. Site access preparation will be provided by the Engineer, including snow clearing if required. Note that the application for the construction of a non-domestic well permit will be submitted and paid for by and held by the Engineer.	Lump Sum	1		
	 Supply nominal 200 mm diameter mild steel casing with a minimum 9 mm wall thickness 				
	a) Blank Casing, 200 mm diameter casing.	Metre	80		
	b) Supply and install Drive Shoe.	Each	1		
	c) Supply stainless steel K-Packer that fits and seals inside the nominal 200 mm diameter blank casing.	Each	1		
	d) Supply stainless steel well screen (20 slot), in 3 m or 10 ft sections, sized to fit inside the 200 mm casing and matches the ID and OD of the bottom of the K-Packer. The well screen should have a nominal inside diameter of no less 150 mm.	Metre	15		
	e) Supply nominal 150 mm inside diameter stainless steel blank casing to match the ID and OD of the well screen and the bottom of the K-Packer. One metre for the sand trap and 3 metres for the connection between the K-Packer and the well screen.	Metre	4		
	f) Pump-down valve for the bottom of the sand trap, including the plate for the bottom of the sand trap.	Each	1		
	g) Supply separate nominal 150 mm stainless steel weld rings for welding the well screen sections and the K-Packer. Note that all welding of the stainless steel materials must use stainless steel welding rods.	Each	5		
	3) Drive/drill minimum 200 mm diameter surface casing to a depth of 80 m or as directed by the Engineer. Drill and/or extract sediment from within the 200 mm diameter casing as the casing is advanced to one metre above the bottom of the casing shoe in the well, except at the bottom of the well. Collect nominal 2 kg weight overburden samples from inside the blank casing at 5 m intervals. Payment for completed wells only.	Metre	80		
	4) Assemble and Install the sand trap with the pump down valve, the well screen and the K-packer inside the 200 mm blank casing at the depth specified by the engineer. Payment for completed well only.	Hour	12		
	5) Retract the 200 mm casing approximately 17 m such that the K-Packer seal is approximately 2.5 m above the bottom of the 200 mm blank casing and casing shoe and ensure that the K-Packer string is not pulled up the hole with the blank casing. Confirm to the satisfaction of the Engineer the depth of the K-packer seal relative to the bottom of the blank casing. If necessary, use the pump-down valve to position the K- Packer and screen at the required depth and location. Payment for completed well only.	Hour	8		
	ο) N/A				

Section	Description	Unit	Estimated Quantity per Well	Unit Price	Total				
	7) N/A								
	8) Standby Time as approved by the engineer.								
	a) Rig and crew	Hour	8						
	b) Rig only	Hour	8						
	9) Well Disinfection	Each	1						
	10) Well cap	Each	1						
	Sub-Total								
	HST 15%								
			Grand Total						

APPENDIX B - SCHEDULE OF QUANTITIES AND PRICES (One well)

Note: all unit rates are inclusive of fuel, vehicles, per diems and hotel costs. No separate additional charge will be accepted for per diems and hotel costs.

Optional items, if identified, are those items that the owner reserves the right to conduct using its own resources or the resources of the Engineer.

Estimated quantities and hours are provided for bid comparison purposes. The client reserves the right to select the bidder whose prices, equipment, schedule and personnel that provides the best overall value for the work and not necessarily the lowest price.

TECHNICAL MEMORANDUM

TO:	Marine Harvest Atlantic Canada	FFC-NL-3113-006
FROM:	Fracflow Consultants Inc.	
DATE:	April 19, 2018	
SUBJECT:	Construction and Aquifer Testing - Test Well, MHPW1- 2018	

1.0 INTRODUCTION

A Test Well (MHPW1) was sited (**Figure 1**) and drilled for Marine Harvest Atlantic Canada (MHAC) to evaluate the aquifer potential and water chemistry as a source water for a proposed fish hatchery/aquaculture operation in Stephenville, NL. The Test Well was drilled between February 8 and 11, 2018. Aquifer tests, consisting of a step-drawdown test, a 72-hour constant discharge test followed by monitoring of the recovery of the water level in the Test Well and monitoring wells, were completed between March 19 and 22, 2018. Five potable water samples, three bacteriological samples, and additional water samples for low-level BTEX/TPH hydrocarbon analysis, were collected during the 72-hour aquifer test. The scope of work, field methods, data collected, and the aquifer test results are presented in this report.

1.1 Scope of Work

The scope of work included 1) preparation of a water well design, obtaining a water well drilling permit, issuing two different Requests for Prices to five different drillers, and preparing a contract for the driller's services, 2) siting the borehole location and retaining a contractor to construct a drill pad for the large truck mounted DR12 drill rig, 3) supervising and directing the driller to construct the well, collecting drill cuttings at 1.5 m intervals, 4) selecting the interval for the placement of the well screens based on the drill cuttings, 5) completing grain size analysis on selected drill cutting samples and computing the hydraulic conductivity values for those grain size distribution curves, 6) conducting the aquifer tests and collecting water samples, followed by 7) analyzing the aquifer test data and the water sample laboratory data, and

8) preparation of this report. The Test Well was also designed to determine the nature of the underlying material and if bedrock existed at depth or at least at or above 80 m below ground surface. The design, size, and depth of the well was dictated by the cost and the uncertainty with respect to the depth to bedrock and nature of the overburden materials in the depth range of interest.

2.0 DRILLING AND WELL CONSTRUCTION

2.1 Preparation of the Drill Pad

Prior to mobilizing the drill rig to the proposed Test Well location, the drill pad was prepared by using an excavator to place a culvert and fill in the roadside ditch and to clear the surface bog material and brush to provide access for the drill rig. A drainage ditch was also constructed to permit drainage of the surface water as well as the well development water. As part of the overall hydrogeolgical assessment of the aquifer system and the recharge areas, a monitoring well (BH2) had been constructed near the proposed Test Well location to serve as an observation/monitoring well for the aquifer test.

2.2 Borehole Drilling

Fracflow retained Brewster Drilling and Piling (Brewster) from Mount Uniacke, Nova Scotia, to supply the well materials and to drill and construct the well. Brewster mobilized a DR12 drill rig with supporting equipment to the site on February 7, 2018. A 200 mm diameter casing was advanced in 1.5 m increments to approximately 80 m below ground surface. A surface casing was not installed for this water well but will have to be installed if this well is converted to a water supply production well. The driller's log is presented in Appendix A.

The overburden from approximately 3 m below ground surface (bgs) to approximately 66.25 m of depth consisted of fine to medium sand with some gravel. A thin clay layer (from 66.25 to 66.30 m) was encountered at approximately 66 m of depth followed by a 6 m thick zone of fine sand and then approximately 8 m of coarse conglomerate or coarse gravel in a clay matrix to 80 m bgs. The coarse gravel like drill cuttings consisted of pieces of quartz, granitic and metamorphic rock fragments with carbonate/dolomite rock fragments. The borehole was terminated when the design depth of 80 m bgs was reached. The borehole/well construction log is presented in **Figure 2**. The grain size data for selected samples, from what was identified as the preferred producing zone, for this water well, are presented in **Appendix B**.

The grain size data were used to compute the hydraulic conductivity values for the selected soil samples using the Hazen method (Fetter, 2001) as,

$$K = C(d_{10})^2$$

where *K* is hydraulic conductivity (cm/s), d_{10} is the effective grain size (cm), and *C* is a coefficient based on the table shown in **Table 1**. The method is generally applicable for sand with the effective grain size ranged from 0.01 cm to 0.3 cm. The effective grain sizes (d_{10} values) from the eleven (11) analyzed samples ranged from 0.0087 cm to 0.027 cm and the computed hydraulic conductivity values ranged from 6.06 E-03 cm/s to 7.29 E-02 cm/s with the selected Hazen coefficients.

2.3 Well Construction

Construction of the well assembly was proceeded by pulling the 200 mm regular steel casing back to approximately 66.25 m bgs to avoid the layer of fine sand and the thin clay layer at about 66.25 m bgs. The exposed borehole did not completely collapse below the bottom of the casing and crushed stone (fill) had to be added to the open borehole to fill the borehole up to the bottom of the casing or to 66.52 m bgs.

The water well was constructed using a K-Packer assembly, consisting of a 1.5 m bottom section of tight wound screen (0.005 slot) to serve as a sand trap. A 15 m section of 20 slot screen was then attached to the sand trap with a three metre section of tight wound screen (0.005 slot) between the well screen and the K-Packer. Once the well screen and K-Packer assembly had been lowered into place inside the 200 mm casing, the casing was pulled back approximately 15 m such that the bottom of the casing and the casing shoe were approximately 1.0 m above the top of the slot 20 well screen. The K-Packer and screen assembly sank under its own weight another 0.5 m such that the bottom of the sand trap was located at approximately 66.52 m bgs. The borehole and well construction log are provided in **Figure 2.**

2.4 Well Development

The well was developed on February 11, 2018, for a period of approximately one hour by air lifting within the well screen using a series of on and off air-lifting cycles to surge the well and to remove the fines from around the well screen. The discharge water was free of fines after a few minutes within each surging cycle. Due to the large volume of water (approximately 500 to

600 USgpm) that was being produced by air lifting and the limited space for water discharge, the planned procedure of well development using a surge block with simultaneous air-lifting could not be used on this well in the cold weather that was experienced at the time of the well construction and/or during the period before the aquifer test. This well can be expected to continue to develop with continued pumping especially with on and off pump cycles that will surge the water in the well, removing fines, with a corresponding increase in the permeability of the material that is adjacent to the well screen.

3.0 AQUIFER TESTING

3.1 Equipment Setup

The aquifer test equipment was installed on March 17 and 18, 2018. A 40 hp pump controlled by a variable frequency drive (VFD) was lowered into the well using a winch and tripod system with a safety rope and steel cable attached. The pump was powered using a mobile 85 KVA 3-phase generator.

The pump riser consisted of 100 mm diameter Aqua-Pipe sections that were connected to an electronic turbine flowmeter at the surface, a sampling port for collecting water samples and a valve to control the pump discharge. The discharge pipe at the surface consisted of approximately 90 m of 100 mm diameter lay-flat hose that extended to a down slope area such that the discharge water flowed down the slope over frozen ground to a nearby pond.

Two leveloggers were installed in the pumping well using the same 25 mm diameter stilling tube and the water level changes and groundwater temperatures before, during and after the aquifer test were monitored and recorded using direct read cables attached to the leveloggers.

Leveloggers were also installed in three nearby monitoring wells (**Figure 1**) that served as monitoring or observation wells for this aquifer test. A baralogger was placed within the trailer at the Test Well location to provide the data needed to correct the measured levelogger data on water levels for barometric pressure changes during the aquifer test. It is important to note that the screened sections of the monitoring wells did not extend to the depth in the aquifer in which the Test Well was screened.

3.2 Step-Drawdown Test

A step-drawdown test was completed on Test Well MHPW1 using the pump assembly described above to determine what pumping or discharge rate should be used to conduct the 72-hour aquifer test.

Four (4) steps were completed (**Figure 3**) with the initial static water level at 18.92 m below the top of the casing. The initial step was set at a flow rate of 344 Lpm for a period of approximately 19 minutes with the drawdown stabilizing at approximately 0.75 m. The second step was set at a flow rate of about 623 Lpm, the third step was set at 1,204 Lpm and the fourth and final step was set at 2,167 Lpm that produced a drawdown of about 5.13 m. All four steps, conducted over a 116 minute period, reached steady state within a few minutes with the fourth step showing a slight increase in drawdown with time.

Using the data from the step-drawdown test, an estimate of the optimum pumping rate for a well can be obtained by plotting the drawdown divided by pumping rate versus pumping rate for each step (**Figure 4**). The slope and intercept of a regression line fitted to these four (4) data points give the coefficients of the equation that describes the flow regime components that affect drawdown in a pumping well, such that;

$$dd = BQ + CQ^2$$

where:

dd = drawdown; Q = pumping rate; B = coefficient for laminar component of drawdown (intercept); and C = coefficient for turbulent component of drawdown (slope).

The slope of the line also gives an indication of the efficiency of the well (**Figure 4**). The smaller the slope of the line, the greater the well efficiency. For this Test Well, MHPW1, **Figure 4** shows that with a regression line slope of 1E-07, the well is very efficient at the measured pumping rates. Based on the step-drawdown test data, a pumping rate 1,820 Lpm was selected as the long term pumping rate for the 72-hour aquifer test since the maximum capacity of the pump with the 100 mm diameter discharge line was approximately 2,300 Lpm.

3.3 Aquifer Test Data and Safe Well Yield

The pump, riser and flow meter assembly (aquifer test equipment) used in the step-drawdown test was then used to conduct the 72-hour aquifer test. Once the water levels in the pumping well had returned to their original static water levels, the 72-hour aquifer test started on Monday, March 19, 2018, at 5:40 pm and ended 4,320 minutes later on Thursday, March 22, 2018, at 5:40 pm. The average pumping rate during the test was 1,820 Lpm. The water level dropped from an initial static level of 18.97 m to a near steady-state pumping level of 23.50 m below the top of the casing (i.e., the difference between these two readings equals a total drawdown of 4.53 m). The recorded data are provided in **Appendix C**.

The drawdown versus time data for the 72-hour aquifer test are plotted on a log-log diagram in **Figure 5**. The water well responded immediately to the imposed pumping rate and reached essentially a stable drawdown within 90 seconds with only a small increase in the drawdown in the first 100 minutes of pumping followed by a small but steady increase in drawdown until the pump was shut down. When the pump was shut down, the water level in the well recovered the first four metres of the drawdown in the first 20 seconds followed by a small but steady recovery of the water levels over the next 1,000 minutes.

Monitoring well, BH2 (**Figure 1**) is located 100 m northwest of the Test Well, with a monitoring well screen placed at 15.76 m to 23.38 m bgs but approximately 27.6 m above the top of the well screen in the Test Well. The water level in BH2 started to respond to the Test Well pumping within one minute (**Figure 6**) demonstrating that the vertical permeability of this section of the aquifer is similar to the horizontal permeability and that the producing zone of the aquifer for this Test Well responds more as an unconfined aquifer than a very leaky confined aquifer. The linear nature of the measured drawdown in this monitoring well, after the first five minutes of the aquifer test, reflects the vertical position of the monitoring well screen relative to the screened interval in the Test Well. A 3-D model will be used to compare the simulated drawdowns for the model nodes at the position within the aquifer that matches the monitoring well screen position to further define the hydraulic conductivity of the aquifer in the area of the Test Well.

The early time aquifer test data do not fit the Theis curve (Fetter, 2001) very well although the aquifer could be classified as a very leaky semi-confined aquifer. Based on the shape of the measured drawdown curve, the Neuman type curves (Fetter, 2001) were used to compute a range of hydraulic conductivity (K) values for this aquifer. Fitting the later time drawdowns to the Neuman unconfined aquifer type curves (**Figure 7**) produces a K value of 5.52×10^{-5} m/s for an assumed aquifer thickness of 50 m. Fitting the early time data to the Neuman type curves (**Figure 8**) produces a K value of 1.63×10^{-5} m/s. The slight increase in the drawdown that started

after 100 minutes of pumping is indicative of the response that is provided by pumping a well in an unconfined aquifer. For comparison purposes, the pumping well data were also analyzed using the Cooper-Jacob semi-log or time drawdown plot (**Figure 9**), which is used to analyze Test Well well data in a confined aquifer, with the analysis based on the later time data producing a K value of 8.51×10^{-4} m/s.

The drawdown data from monitoring well, BH2 (**Figure 10**) were analyzed using the Cooper-Jacob time drawdown procedure (generally referred to as the straight-line procedure) with the computed K value being based on the later time drawdown data. This approach produced a K value of 7.11×10^{-4} m/s and a storativity of 0.0948, which is consistent with the storativity values that are expected for either an unconfined aquifer or a very leaky semi-confined aquifer. A 3-D flow model will be used to compared the K values that have been computed using the type curve approach and the grain size Hazen method, to the model parameters that are required to match the measured and modeled drawdowns at the same points in the aquifer.

The water level recovery data for the pumping well (**Figure 11**) did not produce useable data for type curve analysis due to the rapid response of the water levels immediately after the pump was turned off at the end of the 72-hour aquifer test. The water levels in the monitoring well (**Figure 12**) showed a more gradual response with the water levels in the monitoring well still recovering approximately one day after the pump was turned off.

Estimating the long term or safe well yield from this Test Well is referenced to the drawdown of approximately 4.5 m for a flowrate of 1,820 litres per minute. Based on the results of this aquifer test, the data indicate that the short term specific capacity will be approximately 400 litres per minute per metre of drawdown. This specific capacity is expected to decrease with increasing drawdown due to well losses from entrance/velocity effects and the accumulation of fines in the aquifer material around the well screen over time. The available drawdown for the pump system that was used is approximately 20 m to 22 m. For this well, the safe well yield is more determined by the size of the well screen and the well casing than by the available drawdown. The estimated safe yield, if a 125 mm (5 inch) pump discharge pipe or riser is used, is 2,100 Lpm to 2,200 Lpm. The well, if the pump is sized to deliver more water, can yield 2,500 Lpm for periods of up to 24 hours on an infrequent basis. Ultimately, the safe yield from a well depends on the aquifer geometry and characteristics since a 72-hour aquifer test does not provide a measure of the long term yield, especially if other production wells are extracting water from the same aquifer.

3.3.1 Groundwater Chemistry

Water samples were collected for pH, fluid electrical conductivity, and turbidity measurements during the three day aquifer test. Five (5) suites of water samples were collected during the three day period, for standard water analysis, total metals, and dissolved metals along with two (2) water samples for low level BTEX/TPH - hydrocarbon analysis. The laboratory analysis included pH and fluid conductivity measurements. Water temperatures were recorded along with water levels by the leveloggers. There were no measurable changes in pH and fluid conductivity during the three day test even though approximately eight million litres of water were pumped from the aquifer.

The laboratory reports are provided in **Appendix D**. The basic chemical data for general chemistry, total metals and dissolved metals are tabulated for ease of reference in **Tables 2, 3** and **4**. Based on the five standard water samples, the pH varied from 8.11 to 8.14 and fluid electrical conductivity varied from 310 umho/cm to 323 umho/cm. Mercury was below detection levels in all five laboratory samples. Copper and lead concentrations both decreased with increase in pumping times. The zinc concentration in the first water sample was above guideline but decreased to below guideline in all of the next four water samples. TDS and hardness are typical of groundwater and did not change significantly during the three day test, indicating limited or no contact with surface waters in close proximity to the Test Well screened section.

Table 5 provides the low-level BTEX/TPH analysis of two of the last three water samples that were collected during this aquifer test. All of the hydrocarbon components were below detection levels.

Water samples were also collected and submitted for bacteriological analysis (**Appendix D**). All of the submitted samples were free of any colliform impacts.

4.0 DISCUSSION AND RECOMMENDATIONS

The aquifer at the location of the Test Well consists primarily of medium sand with some gravel and scattered boulders or cobbles to approximately 67 m bgs, followed by a thin clay layer, that overlies a 6 m thick layer of fine sand that grades into a conglomeratic bedrock or a layer of gravel embedded in a clay matrix to the end of the borehole at 80 m bgs. The computed hydraulic conductivities varies from 5.52 E-05 m/s to 8.51E-04 m/s with the hydraulic conductivities that were computed from the grain size data falling within this range.

The aquifer test data indicate that this aquifer is responding as an unconfined aquifer or a very leaky confined aquifer. A 3-D model has to be used to match the measured drawdowns and screened sections in the monitoring well and the pumping well within the aquifer to the computed drawdowns at the same locations within at the model.

The safe yield of this well is controlled in part by the size of the well screen and with a specific capacity of approximately 400 litres per metre of drawdown and an available drawdown of 22 m for the pump configuration used in this aquifer test, the estimated safe yield of this well is 2,300 Lpm.

The general chemistry, total metals and dissolved metals laboratory data indicate that this Test Well water is suitable for aquaculture usage. Also, the low-level BTEX/TPH laboratory data for two (2) water samples that were collected during the aquifer test show no evidence of any hydrocarbon impacts in the immediate area of the Test Well.

Based on the yield obtained from this Test Well, it is recommended that future production wells be constructed using a 250 mm (10 inch) diameter well screen with a straight well assembly. In addition, each well design should be adapted to the aquifer materials that are encountered during the borehole drilling. To further evaluate the aquifer system and to provide additional data for aquifer test evaluation of future production wells, a 15 cm diameter casing should be driven within 30 m of the production well location to approximately 90 m of depth, into obvious bedrock, and the borehole instrumented with three 50 mm diameter monitoring wells, with screens at 85 m to 90 m, 55 m to 65 m and at 30 m to 35 m of depth, as the casing is withdrawn. This multi-level piezometer or monitoring well will enable collection of water samples from the bedrock, and the measured hydraulic heads will show the direction of groundwater movement during aquifer tests.

5.0 **REFERENCE**

Fetter, C.W., 2001, Applied Hydrogeology. Fourth Edition, Prentice Hall.

Tables

Sample ID	d mm	¹⁰ cm	C ⁽¹⁾	l cm/s	K m/s	C _{min} 	C _{max} 	K _{min} cm/s	K _{max} cm/s
MHPW1-160-165	0.16	0.016	80	2.05E-02	2.05E-04	70	90	1.79E-02	2.30E-02
MHPW1-165-170	0.16	0.016	80	2.05E-02	2.05E-04	70	90	1.79E-02	2.30E-02
MHPW1-170-175	0.17	0.017	90	2.60E-02	2.60E-04	80	100	2.31E-02	2.89E-02
MHPW1-175-180	0.16	0.016	90	2.30E-02	2.30E-04	80	100	2.05E-02	2.56E-02
MHPW1-180-185	0.1	0.01	80	8.00E-03	8.00E-05	70	90	7.00E-03	9.00E-03
MHPW1-185-190	0.095	0.0095	80	7.22E-03	7.22E-05	70	90	6.32E-03	8.12E-03
MHPW1-190-195	0.087	0.0087	80	6.06E-03	6.06E-05	70	90	5.30E-03	6.81E-03
MHPW1-195-200	0.12	0.012	90	1.30E-02	1.30E-04	80	100	1.15E-02	1.44E-02
MHPW1-200-205	0.265	0.0265	100	7.02E-02	7.02E-04	90	110	6.32E-02	7.72E-02
MHPW1-205-210	0.27	0.027	100	7.29E-02	7.29E-04	90	110	6.56E-02	8.02E-02
MHPW1-210-215	0.26	0.026	100	6.76E-02	6.76E-04	90	110	6.08E-02	7.44E-02

Table 1Hydraulic conductivity values computed from grain size data using Hazen method. The
sample ID includes the depth in feet below the ground surface

Note: (1) Table for coefficient **C** by *Hazen* (1911).

40 - 80 Very fine sand, poorly sorted

40 - 80 Fine sand with appreciable fines

80 - 120 Medium sand, well sorted

80 - 120 Coarse sand, poorly sorted

120 - 150 Coarse sand, well sorted, clean

Project 3113 - Aquifer Test Sampling Program								
				3113-	3113-	3113-	3113-	3113-
Fracflow Sample ID				MHPW1-	MHPW1-	MHPW1-	MHPW1-	MHPW1-
Compling Data	Units	G/S	RDL	WS1	WS2	WS3	WS4	WS5
				3/19/2018	3/20/2018	3/21/2018	3/22/2018	3/22/2018
AGAT ID Standard Water Analysis + A	dditional I	Paramotore	•	9144904	9144904	9149300	9149305	9149302
			5	<u>8</u> 11	<u>8</u> 11	8 1 /	8 1 3	8 1 3
Reactive Silica as SiO2	ma/l	0.5-3.0	0.5	10.0	7/	6	5.7	5.7
Chloride	mg/L	640 120	0.0	13	12	12	12	12
Fluoride	mg/L	0.12	0.12	<0.12	<0.12	<0.12	<0.12	<0.12
Sulphate	mg/L	0.12	2	5	4	4	4	4
Alkalinity	mg/L		5	142	142	143	143	143
True Color	TCU	Narrative	5	13	14	<5	<5	<5
Turbidity	NTU	Narrative	01	0.8	11	0.5	0.9	0.7
Electrical Conductivity	umho/cm	Harraivo	1	310	313	321	323	322
Nitrate + Nitrite as N	ma/L		0.05	0.43	0.37	0.36	0.39	0.37
Nitrate as N	ma/L	550, 13	0.05	0.43	0.37	0.36	0.39	0.37
Nitrite as N	ma/L	0.06	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ammonia as N	ma/L	Fact Sheet	0.03	0.03	0.05	0.04	0.04	< 0.03
Total Organic Carbon	ma/L		0.5	<0.5	< 0.5	<0.5	0.7	1.7
Ortho-Phosphate as P	mg/L		0.01	<0.01	<0.01	0.08	0.07	0.08
Total Sodium	mg/L		0.1	8.2	8.1	8.2	8.3	8.2
Total Potassium	mg/L		0.1	1	0.9	0.9	0.9	0.9
Total Calcium	mg/L		0.1	50.3	47	50	47.3	49.7
Total Magnesium	mg/L		0.1	6.9	6.9	7.2	7.1	6.8
Bicarb. Alkalinity (as CaCO3)	mg/L		5	142	142	143	143	143
Carb. Alkalinity (as CaCO3)	mg/L		10	<10	<10	<10	<10	<10
Hydroxide	mg/L		5	<5	<5	<5	<5	<5
Calculated TDS	mg/L		1	172	166	170	167	169
Hardness	mg/L			154	146	154	147	152
Langelier Index (@20C)	NA			0.35	0.33	0.38	0.35	0.37
Langelier Index (@ 4C)	NA			0.03	0.01	0.06	0.03	0.05
Saturation pH (@ 20C)	NA			7.76	7.78	7.76	7.78	7.76
Saturation pH (@ 4C)	NA			8.08	8.1	8.08	8.1	8.08
Anion Sum	me/L			3.34	3.29	3.31	3.31	3.31
Cation sum	me/L			3.47	3.3	3.48	3.34	3.42
% Difference/ Ion Balance (NS	%			1.9	0.2	2.5	0.4	1.7
Dissolved Organic Carbon	mg/L		0.5	<0.5				<0.5
Mercury	ug/L	0.026	0.026	<0.026				<0.026
Mercury Digest				у				у
Total Kjeldahl Nitrogen as N	mg/L		0.4	0.5				<0.4
Bromide	mg/L		0.05	<0.05				<0.05

Table 2Analytical results of standard water analysis in water samples for Test Well, MHPW1,
Stephenville, NL.

Comments: - Bold/Shaded - Exceeds Guideline/Standard

- RDL - Reported Detection Limit;

- G / S - Guideline / Standard

Project 3113 - Aquifer Test Sampling Program										
Fracflow Sample ID				3113- MHPW1- WS1	3113- MHPW1- WS2	3113- MHPW1- WS3	3113- MHPW1- WS4	3113- MHPW1- WS5		
Sampling Date	Units	G/S	RDL	3/19/2018	3/20/2018	3/21/2018	3/22/2018	3/22/2018		
AGAT ID				9144903	9144904	9149300	9149305	9149302		
Total Metals										
Total Aluminum	ug/L	Variable	5	8	7	<5	<5	<5		
Total Antimony	ug/L		2	<2	<2	<2	<2	<2		
Total Arsenic	ug/L	5	2	<2	<2	<2	<2	<2		
Total Barium	ug/L		5	39	39	39	39	39		
Total Beryllium	ug/L		2	<2	<2	<2	<2	<2		
Total Bismuth	ug/L		2	<2	<2	<2	<2	<2		
Total Boron	ug/L	29000, 1500	5	12	6	7	7	6		
Total Cadmium	ug/L	1.0, 0.09	0.017	<0.017	<0.017	<0.017	<0.017	<0.017		
Total Chromium	ug/L		1	<1	<1	<1	<1	<1		
Total Cobalt	ug/L		1	<1	<1	<1	<1	<1		
Total Copper	ug/L	Equation	1	44	13	4	1	1		
Total Iron	ug/L	300	50	89	65	65	68	63		
Total Lead	ug/L	Equation	0.5	4.5	1.8	0.6	0.6	<0.5		
Total Manganese	ug/L		2	4	3	3	3	3		
Total Molybdenum	ug/L	73	2	<2	<2	<2	<2	<2		
Total Nickel	ug/L	Equation	2	2	<2	2	2	2		
Total Phosphorous	mg/L	Fact Sheet	0.02	0.03	0.03	0.03	0.03	0.02		
Total Selenium	ug/L	1	1	<1	<1	<1	<1	<1		
Total Silver	ug/L	0.25	0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Total Strontium	ug/L		5	84	86	86	88	87		
Total Thallium	ug/L	0.8	0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Total Tin	ug/L		2	<2	<2	<2	<2	<2		
Total Titanium	ug/L		2	<2	<2	<2	<2	<2		
Total Uranium	ug/L	33, 15	0.1	0.4	0.4	0.4	0.4	0.3		
Total Vanadium	ug/L		2	<2	<2	<2	<2	<2		
Total Zinc	ug/L	30	5	82	23	26	15	22		

Table 3 Analytical results of total metals in water samples for Test Well, MHPW1, Stephenville, NL.

Comments: - Bold/Shaded - Exceeds Guideline/Standard

RDL - Reported Detection Limit;
G / S - Guideline / Standard

Project 3113 - Aquifer Test Sampling Program									
Fracflow Sample ID				3113-MHPW1-	3113-MHPW1-	3113-MHPW1-			
	Units	G/S	RDL	WS1	WS3	WS5			
Sampling Date				3/19/2018	3/21/2018	3/22/2018			
AGAT ID				9144903	9149300	9149302			
Dissolved Metals									
Dissolved Aluminum	ug/L	Variable	5	<5	<5	<5			
Dissolved Antimony	ug/L		2	<2	<2	<2			
Dissolved Arsenic	ug/L	5	2	<2	<2	<2			
Dissolved Barium	ug/L		5	41	40	39			
Dissolved Beryllium	ug/L		2	<2	<2	<2			
Dissolved Bismuth	ug/L		2	<2	<2	<2			
Dissolved Boron	ug/L	29000, 1500	5	21	7	7			
Dissolved Cadmium	ug/L	1.0, 0.09	0.017	<0.017	<0.017	<0.017			
Dissolved Chromium	ug/L		1	2	2	2			
Dissolved Cobalt	ug/L		1	<1	<1	<1			
Dissolved Copper	ug/L	Equation	2	4	<2	<2			
Dissolved Iron	ug/L	300	50	<50	<50	<50			
Dissolved Lead	ug/L	Equation	0.5	0.8	<0.5	<0.5			
Dissolved Manganese	ug/L		2	3	2	<2			
Dissolved Molybdenum	ug/L	73	2	<2	<2	<2			
Dissolved Nickel	ug/L	Equation	2	<2	6	<2			
Dissolved Selenium	ug/L	1	1	<1	<1	<1			
Dissolved Silver	ug/L	0.25	0.1	<0.1	<0.1	<0.1			
Dissolved Strontium	ug/L		5	84	83	83			
Dissolved Thallium	ug/L	0.8	0.1	<0.1	<0.1	<0.1			
Dissolved Tin	ug/L		2	<2	<2	<2			
Dissolved Titanium	ug/L		2	<2	<2	<2			
Dissolved Uranium	ug/L	33, 15	0.1	0.4	0.3	0.3			
Dissolved Vanadium	ug/L		2	<2	<2	<2			
Dissolved Zinc	ug/L	30	5	81	28	29			

Table 4Analytical results of dissolved metals in water samples for Test Well, MHPW1,
Stephenville, NL.

Comments: - Bold/Shaded - Exceeds Guideline/Standard

- RDL - Reported Detection Limit;

- G / S - Guideline / Standard

- Analysis completed on a filtered sample.

Project 3113 - Aquifer Test Sampling Program											
Fracflow Sample ID		 .		3113-MHPW1-WS3	3113-MHPW1-WS5						
Sampling Date	Units	Units Tier I	RDL	3/21/2018	3/22/2018						
AGAT ID				9149300	9149302						
Petroleum Hydrocarbons	Petroleum Hydrocarbons										
Benzene	mg/L		0.001	<0.001	<0.001						
Toluene	mg/L		0.001	<0.001	<0.001						
Ethylbenzene	mg/L		0.001	<0.001	<0.001						
Xylene (Total)	mg/L		0.001	<0.001	<0.001						
C6-C10 (less BTEX)	mg/L		0.01	<0.01	<0.01						
>C10-C16 Hydrocarbons	mg/L		0.05	<0.05	<0.05						
>C16-C21 Hydrocarbons	mg/L		0.05	<0.05	<0.05						
>C21-C32 Hydrocarbons	mg/L		0.01	<0.01	<0.01						
Modified TPH (Tier 1)	mg/L		0.1	<0.1	<0.1						
Resemblance Comment				NR	NR						
Return to Baseline at C32				Y	Y						
Surrogate Recovery (%)											
Isobutylbenzene - EPH	%			111	119						
Isobutylbenzene - VPH	%			89	94						
n-Dotriacontane - EPH	%			112	122						

Table 5Analytical results of low level BTEX/TPH of selected water samples from Test Well,
MHPW1, Stephenville, NL.

Comments: - Tier I - Atlantic RBCA Version 3 Minimum requirements and reference guidelines for environmental assessments of petroleum impacted sites in Atlantic Canada (Non-potable

- Bold/Shaded Exceeds Tier I Criteria.
- RDL Reported Detection Limit;
- G / S Guideline / Standard
- Results are based on the dry weight of the soil.
- Resemblance Comment Key:
 - FOF Fuel Oil Fraction
 - FR Product in Fuel Oil Range
 - GF Gasoline Fraction
 - GR Product in Gasoline Range

LOF - Lube Oil Fraction LR - Lube Range NA - Not Applicable NR - No Resemblance Figures

APPENDIX A

Driller's Records

Newfoundla	and	nado (qui e generation) 1 presentation (generation)	V	Vell Iden	tification	Num	ber (WIN)	D	epartment of Water R	Environment a esources Mana	nd Conservatio	
Labrador				olas in seto	o ne 114 pr	1	negros equi		Measurem	nents: 🗆 Met		
Well Owner In	formatio	n (must be	e the fi	nal own	er of well	or bo	orehole)					
First Name		Last Name			Street Address							
MARINE HARV	EST ATL	ANTIC C.	ANAD	A 124-1554 ISLAND HIGHWAY, CAMPBELL, RIVERC, C						IN VEOC, BC		
Town/City		LGID For Of	fice Use	only only	LGID Na	Office	Use Only	Pos	tal Code	Telepho	ne	
V9W BH9	Leastin							VY	w ony		petite	
Town/City	Locatio	n	Stree	t Address	/Lot Numbe	er		10 20101	Land Owner	Developer, Priva	ate, etc.)	
STEPHENU	ILLE		BETW	EEN HO	NAQ0	1 DA	KOTA DI	NVE	TOWN OF	STEPHEN	VILLE	
GPS Coordinate		titude N	10	027	1 1 0	0	" 0000	itudo V	V FG	03111	5 A"	
									<u> </u>		<u> </u>	
dina more care and	The Bards of	Sketch	or we					Influence and	Depth Rate Type			
lowway	PINT E				5	5 - 240	2 400 GPM	SAND				
DAVOTA DR		they are	3	3		Ano	ovirces in police ted file or day		cada lide bad v Cada lide bad v I la tawar ying	nin (he ortanoon) / <u>Polution</u> (leticting) pit fille nik soncrete vauf	na have a routiened accude acu	
CN-NAM								etri virita	Type of Water Encountered			
Show distances from at least two lan					andmarks and indicate North				Fresh Odourous Salt Cloudy Clear Coloured			
Include street / road name / and house / lot number if available							ble \		Other (Specify)			
Borehole Lithe	ology		2000	1.1.11.1		1		11. 10	and a second line	VA RESCI CON THE	a suppression	
Jeptn Co	blour	ur Lithology										
- 55 B	ROWN	COAPSE SAND W/ COBBLES										
5-230 B	ROUN FINE SAND \$ 30-40% PA							PASSI	SSING 0.020 SLOT			
30-235 Fra	0-235 FRANCHURGE BROWN/LAREEN BROKEN SAND STONE W/ CLEAN WASHED GRAVEL											
35-260 61	oo GREX				SAND STONE (NO WATER)							
Depth to Bedro	ck: 23	SFT	Depth	of boreho	ole containi	ing ca	asing: 16-	4 FT	Total de	pth of borehole	: 219 Fr	
Casing Inform	nation - re	ecommen	ded Sc	h 40, .28	80 Wall	Ani	nular Spac	e and	Sealant	and the second		
Casing should	be finishe	d 0.60 met	res (2 fe	et) abov	e grade	The	annulus o	f the we	Il should be s	ealed with an in	npermeable	
Depth Inside -				unin anti la	we the state	sea	Depth	ne potto	Turne of Content Lload			
From To Diameter Typ			e e	hickness	F	rom	То	Type of Se	alant Used	and in another in the		
0 16	O 164 8.125 A5		A53	-	0.25	a and the	α	x	A			
leight of the ca	asing finis	hed above	grade:	ebe os lin	y ginfilawa ye	Rea	ason why a	nnulus v	vas not sealed	d: TEST WELL	a Trave a priselivi (f. Status de seas facto	
creen Informa	ation	1997 - 1945 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			12 Marile	1210		111 23		U. M. S. S. S. S.	Lange Street	
Was a screen installed? Ves No				From To		ert and	Slot Diame		TIGHT WIND FROM: 154 - 161		: 154 - 161	
Delline Method				154 219		# 20 6		Finite	504 L + 215.5 - 219			
	Drilli	ng Method		-			and to the	Final S	status of wei	I/Borenoie	A SHEAR ON DAMAS	
Rotary (Air)	Ham	mer 🗆	Revers	e Rotary		Domes	stic 🗆 M	lunicipal	□ Explora	ation	d Well	
Other DUAL	ICOTAI	CY T	10 2001	ivoia setto		Dewate	erina 🗆 G	eotherm	al Observ	ation Other	TEST WELL	
rive Shoe insta	lled? d	Yes 🗆	No	eddiupe io	town price	463.44	nes lited with	HAR IN S	PERMIT	# Gw9 50	2-2017	
umping Test	Results	a in valid to	-	11-1-1	and the second	-		The line	141		A MERICAN	
flowing Well: □ f flowing, rate:	Yes	CHNO CON		Static W	ater Level:	60	Fr	ivable dev New artis	Recommend	ed Pumping Rat	e: 200 GPn	
lethod:	Pump Intake at: 180 Duration: 1 Hrz Recommended Pump Depth: 140							160				
Air Lift	Pump										the first state and	
Other	ous sit es i	alen el Guide	a telli tizi a telli tizi	Pumping	Rate durin	ng Tes	t: 400 GF	M	Estimated Sa	afe Yield: 200	GPM	
Licenced Wat Comments: ພະ ຊັ້ນນີ້ ຣັຊເວເດີ ເວລະເວດີ ເພຣ Vell Constructio	er Well C LL DRIL To 2(9 F PULEN n Compan	Construction	260 260 76 164	tractor FT B4 DS1 STS FF T	nformatio Btck of 10'3 5 50 Pose Licence Nu	Frue Frue Scree	d to 2 SER AND L SEN. WILL	LIS FT. Z PACKER ZPTUR We	TECESCOP 2 GI'Z" # 2N To SEAL Il Completed o	20 V-WIRE N 20 V-WIRE N - IF USED FOR n: (Day - Month -	STALLED fud 3'b" Baic Резолитоц Year)	
BREWSTERL	NELL D	RILLING		dalitim bita	0271	039	to asound a	11	-02-20	18	s to ensuin yet big	
Driller Hart Sign	f	9(2) unices	YLE	Fette	rely	the dis	Driller Assis	Sign	4	EVAN G	ough nt	

This is a Legal Document

 If you have any questions regarding this document, please call Water Resources Management at 709-729-2563

 White Copy – Department of Environment and Conservation
 Yellow Copy – Drilling Company
 Pink Copy – Well Owner

Safeguard with Home Owner's Documents
APPENDIX B

Reports of Grain Size Analysis

Depth below GS : 48.77 - 50.29 m Sieve Analysis Dry weight of sample (g) = 734.02 Sieve Opening (mm) Retained (g) % Retained Cumulative % Ret % Passing 50.8 --25.4 0.00 0.00 0.00 100.00 12.7 3.66 0.50 0.50 99.50 6.35 0.00 0.00 0.50 99.50 4.76 99.50 0.00 0.00 0.50 2.00 1.68 0.23 0.73 99.27 0.85 10.19 97.88 1.39 2.12

15.80

45.62

27.71

7.12

1.64

115.95

334.85

203.38

52.28

12.03

734.02

Clay Sand Gravel Silt 100 90 80 % passing (dry weight) 70 60 50 40 30 20 10 0 100 10 1 0.1 0.01 0.001 0.0001 Diameter (mm)

D ₁₀ =	0.16
D ₃₀ =	0.22
D ₆₀ =	0.33

Cu = 2.06 Cc = 0.92

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 98.36	% Gravel =	0.50
$R_4 = 0.50$	% Sand =	97.86
$R_4/R_{200} = 0.01$	% Silt & Clay =	1.64
SF = 97.86	% Clay =	NA
GF = 0.50	CFEM:	Sand, trace Silt/Clay

Project : 3113 - Stephenville, NL

0.425

0.25

0.15

0.075

2

1

1/2"

1/4"

4

10

20

40

60

100

200

pan

Sample No. : MHPW1-160-165

17.91

63.53

91.24

98.36

100.00

(160 - 165 ft)

82.09

36.47

8.76

1.64

Sample No. : MHPW1-165-170

Depth below GS : 50.29 - 51.82 m

Sieve Analysis		Dry weig	ht of sample (g)	= 434.51	(165 - 170 ft)
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8	-	-		
1	25.4	-	-		
1/2"	12.7	0.00	0.00	0.00	100.00
1/4"	6.35	6.87	1.58	1.58	98.42
4	4.76	1.28	0.29	1.88	98.12
10	2.00	7.61	1.75	3.63	96.37
20	0.85	19.66	4.52	8.15	91.85
40	0.425	106.32	24.47	32.62	67.38
60	0.25	173.40	39.91	72.53	27.47
100	0.15	87.65	20.17	92.70	7.30
200	0.075	24.05	5.53	98.23	1.77
pan		7.67 434.51	1.77	100.00	

D ₁₀ =	0.16
D ₃₀ =	0.26
D ₆₀ =	0.38

Cu = 2.38 Cc = 1.11

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 98.23	% Gravel =	1.88
$R_4 = 1.88$	% Sand =	96.36
$R_4/R_{200} = 0.02$	% Silt & Clay =	1.77
SF = 96.36	% Clay =	NA
GF = 1.88	CFEM:	Sand, trace Gravel, trace Silt/Clay

Sample No. : MHPW1-170-175

Depth below GS : 51.82 - 53.34 m

				((170 - 175 ft)
Sieve Analysis		Dry weig	ht of sample (g)	= 434.30	
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8	-	-		0
1	25.4	-	-		
1/2"	12.7	-	-		
1/4"	6.35	0.00	0.00	0.00	100.00
4	4.76	0.22	0.05	0.05	99.95
10	2.00	1.04	0.24	0.29	99.71
20	0.85	14.47	3.33	3.62	96.38
40	0.425	145.38	33.47	37.10	62.90
60	0.25	178.32	41.06	78.16	21.84
100	0.15	69.45	15.99	94.15	5.85
200	0.075	18.21	4.19	98.34	1.66
pan		7.21 434.30	1.66	100.00	

D ₁₀ =	0.17
D ₃₀ =	0.28
D ₆₀ =	0.41

Cu =	2.41
Cc =	1.12

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 98.34	% Gravel =	0.05
$R_4 = 0.05$	% Sand =	98.29
$R_4/R_{200} = 0.00$	% Silt & Clay =	1.66
SF = 98.29	% Clay =	NA
GF = 0.05	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-175-180

Depth below GS : 53.34 - 54.86 m

(175 - 180 ft) Sieve Analysis Dry weight of sample (g) = 462.23 Sieve Opening (mm) Retained (g) % Retained Cumulative % Ret % Passing 2 50.8 --25.4 --1 1/2" 12.7 0.00 0.00 0.00 100.00 1/4" 6.35 1.13 0.24 0.24 99.76 4 4.76 0.36 0.08 0.32 99.68 10 2.00 7.19 1.56 1.88 98.12 20 0.85 25.31 5.48 7.35 92.65 40 0.425 141.93 30.71 38.06 61.94 60 0.25 173.38 37.51 75.57 24.43 100 0.15 81.28 17.58 93.15 6.85 200 0.075 23.36 5.05 98.21 1.79 8.29 100.00 1.79 --pan ---462.23

D ₁₀ =	0.16
D ₃₀ =	0.27
D ₆₀ =	0.41

Cu =	2.56
Cc =	1.11

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 98.21	% Gravel =	0.32
$R_4 = 0.32$	% Sand =	97.88
$R_4/R_{200} = 0.00$	% Silt & Clay =	1.79
SF = 97.88	% Clay =	NA
GF = 0.32	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-180-185

.

Depth below GS : 54.86 - 56.39 m

(180 - 185 ft) Sieve Analysis Dry weight of sample (g) = 458.75 Retained (g) Sieve Opening (mm) % Retained Cumulative % Ret % Passing 50.8 2 --25.4 1 --1/2" 12.7 ---1/4" 6.35 -100.00 4 4.76 0.00 0.00 0.00 10 2.00 0.68 0.15 0.15 99.85 20 0.85 8.42 1.84 1.98 98.02 40 0.425 81.53 17.77 19.76 80.24 60 0.25 157.81 34.40 54.16 45.84 100 0.15 125.92 27.45 81.60 18.40 200 0.075 68.46 14.92 96.53 3.47 15.93 3.47 100.00 --pan ---458.75

D ₁₀ =	0.1
D ₃₀ =	0.19
$D_{60} =$	0.31

Cu =	3.10
Cc =	1.16

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 96.53	% Gravel =	0.00
$R_4 = 0.00$	% Sand =	96.53
$R_4/R_{200} = 0.00$	% Silt & Clay =	3.47
SF = 96.53	% Clay =	NA
GF = 0.00	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-185-190

Depth below GS : 56.39 - 57.91 m

(185 - 190 ft)

Sieve Analysis	Dry weight of sample $(g) = 429.71$				
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8	-	-		-
1	25.4	-	-		
1/2"	12.7	-	-		
1/4"	6.35	-	-		
4	4.76	0.00	0.00	0.00	100.00
10	2.00	1.59	0.37	0.37	99.63
20	0.85	25.02	5.82	6.19	93.81
40	0.425	101.61	23.65	29.84	70.16
60	0.25	119.92	27.91	57.75	42.25
100	0.15	97.52	22.69	80.44	19.56
200	0.075	65.03	15.13	95.57	4.43
pan		19.02	4.43	100.00	
•		429.71			

D ₁₀ =	0.095
D ₃₀ =	0.19
D ₆₀ =	0.35

Cu =	3.68
Cc =	1.09

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 95.57	% Gravel =	0.00
$R_4 = 0.00$	% Sand =	95.57
$R_4/R_{200} = 0.00$	% Silt & Clay =	4.43
SF = 95.57	% Clay =	NA
GF = 0.00	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-190-195

Depth below GS : 57.91 - 59.44 m

(190 - 195 ft) Sieve Analysis Dry weight of sample (g) = 588.54 Sieve Opening (mm) Retained (g) % Retained Cumulative % Ret % Passing 2 50.8 --25.4 1 --1/2" 12.7 --1/4" 6.35 --4 4.76 0.00 0.00 0.00 100.00 10 2.00 0.55 0.09 0.09 99.91 20 0.85 13.90 2.36 2.46 97.54 40 0.425 84.06 14.28 16.74 83.26 44.15 60 0.25 161.35 27.42 55.85 100 0.15 170.70 29.00 73.16 26.84 200 0.075 127.95 21.74 94.90 5.10 5.10 100.00 30.03 ---pan ---588.54

D ₁₀ =	0.087
D ₃₀ =	0.16
$D_{60} =$	0.27

Cu = 3.10 Cc = 1.09

USCS:	SP (Poorly graded sand)		
R ₂₀₀ =	94.90	% Gravel =	0.00
R ₄ =	0.00	% Sand =	94.90
$R_4/R_{200} =$	0.00	% Silt & Clay =	5.10
SF =	94.90	% Clay =	NA
GF =	0.00	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-195-200

Depth below GS : 59.44 - 60.96 m

(195 - 200 ft) Sieve Analysis Dry weight of sample (g) = 604.39 Retained (g) Sieve Opening (mm) % Retained Cumulative % Ret % Passing 2 50.8 --25.4 1 --1/2" 12.7 ---1/4" 6.35 -100.00 4 4.76 0.00 0.00 0.00 10 2.00 2.66 0.44 0.44 99.56 20 0.85 48.75 8.07 8.51 91.49 40 0.425 216.37 35.80 44.31 55.69 60 0.25 173.97 28.78 73.09 26.91 85.58 100 0.15 14.16 87.25 12.75 200 0.075 57.91 9.58 96.83 3.17 100.00 19.15 3.17 --pan ---604.39

D ₁₀ =	0.12
D ₃₀ =	0.26
D ₆₀ =	0.46

Cu =	3.83
Cc =	1.22

USCS: SP (Poorly graded sand)	
R ₂₀₀ = 96.83 % Gravel = (0.00
$R_4 = 0.00$ % Sand = 9	96.83
$R_4/R_{200} = 0.00$ % Silt & Clay = 3	3.17
SF = 96.83 % Clay = 1	NA
GF = 0.00 CFEM: \$	Sand, trace Silt/Clay

Sample No. : MHPW1-200-205

Depth below GS : 60.96 - 62.48 m

(200 - 205 ft)

Sieve Analysis	Dry weight of sample (g) = 516.24				(
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing	
2	50.8	-	-			
1	25.4	-	-			
1/2"	12.7	-	-			
1/4"	6.35	-	-			
4	4.76	0.00	0.00	0.00	100.00	
10	2.00	13.30	2.58	2.58	97.42	
20	0.85	124.78	24.17	26.75	73.25	
40	0.425	233.85	45.30	72.05	27.95	
60	0.25	102.51	19.86	91.90	8.10	
100	0.15	26.10	5.06	96.96	3.04	
200	0.075	8.55	1.66	98.61	1.39	
pan		7.15	1.39	100.00		
-		516.24				

$D_{10} = 0.265$
$D_{30} = 0.44$
$D_{60} = 0.7$

Cu = 2.64 Cc = 1.04

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 98.61	% Gravel =	0.00
$R_4 = 0.00$	% Sand =	98.61
$R_4/R_{200} = 0.00$	% Silt & Clay =	1.39
SF = 98.61	% Clay =	NA
GF = 0.00	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-205-210

Depth below GS : 62.48 - 64.01 m (205 - 210 ft)

Sieve Analysis		Dry weight of sample (g) = 572.85			
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing
2	50.8	-	-		
1	25.4	-	-		
1/2"	12.7	0.00	0.00	0.00	100.00
1/4"	6.35	1.20	0.21	0.21	99.79
4	4.76	3.13	0.55	0.76	99.24
10	2.00	62.76	10.96	11.71	88.29
20	0.85	155.88	27.21	38.92	61.08
40	0.425	210.45	36.74	75.66	24.34
60	0.25	93.31	16.29	91.95	8.05
100	0.15	24.89	4.34	96.29	3.71
200	0.075	9.64	1.68	97.98	2.02
pan		11.59	2.02	100.00	
		572.85			

 $D_{10} = 0.27$ $D_{30} = 0.47$ $D_{60} = 0.81$

Cu =	3.00
Cc =	1.01

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 97.98	% Gravel =	0.76
$R_4 = 0.76$	% Sand =	97.22
$R_4/R_{200} = 0.01$	% Silt & Clay =	2.02
SF = 97.22	% Clay =	NA
GF = 0.76	CFEM:	Sand, trace Silt/Clay

Sample No. : MHPW1-210-215

Depth below GS : 64.01 - 65.53 m

Sieve Analysis		Dry weight of sample (g) = 446.43			(210 - 215 ft)	
Sieve	Opening (mm)	Retained (g)	% Retained	Cumulative % Ret	% Passing	
2	50.8	-	-		-	
1	25.4	-	-			
1/2"	12.7	0.00	0.00	0.00	100.00	
1/4"	6.35	2.62	0.59	0.59	99.41	
4	4.76	1.56	0.35	0.94	99.06	
10	2.00	34.37	7.70	8.64	91.36	
20	0.85	118.45	26.53	35.17	64.83	
40	0.425	171.93	38.51	73.68	26.32	
60	0.25	79.29	17.76	91.44	8.56	
100	0.15	21.38	4.79	96.23	3.77	
200	0.075	7.94	1.78	98.01	1.99	
pan		8.89	1.99	100.00		
-		446.43				

D ₁₀ =	0.26
D ₃₀ =	0.45
D ₆₀ =	0.77

Cu =	2.96
Cc =	1.01

USCS: SP (Poorly graded sand)		
R ₂₀₀ = 98.01	% Gravel =	0.94
$R_4 = 0.94$	% Sand =	97.07
$R_4/R_{200} = 0.01$	% Silt & Clay =	1.99
SF = 97.07	% Clay =	NA
GF = 0.94	CFEM:	Sand, trace Silt/Clay

APPENDIX C

Records of Well Response for Step-Drawdown Tests and 72-Hours Aquifer Tests

Ston	Time	Depth	Drawdown
Step	t (min)	(m)	dd (m)
Static	0.00	18.918	0.000
Step1	0.25	19.705	0.787
-	0.50	20.052	1.134
	0.75	19.937	1.019
	1.00	19.688	0.769
	1.25	19.535	0.617
	1.50	19.610	0.692
	1.75	19.634	0.716
	2.00	19.571	0.653
	2.25	19.677	0.759
	2.50	19.674	0.756
	2.75	19.582	0.664
	3.00	19.614	0.695
	3.25	19.609	0.690
	3.50	19.647	0.729
	3.75	19.658	0.740
	4.00	19.613	0.695
	4.25	19.685	0.767
	4.50	19.601	0.683
	4.75	19.684	0.765
	5.00	19.599	0.681
	5.25	19.579	0.661
	5.50	19.580	0.662
	5.75	19.541	0.623
	6.00	19.633	0.715
	6.25	19.614	0.696
	6.50	19.646	0.728
	6.75	19.525	0.607
	7.00	19.619	0.701
	7.25	19.627	0.709
	7.50	19.639	0.720
	7.75	19.607	0.689
	8.00	19.563	0.645
	8.25	19,623	0.705
	8.50	19.625	0.707
	8 75	19.688	0 770
	9.00	19 734	0.816
	9.25	19 591	0.673
	9.50	19.643	0.725
	9.75	19.676	0.758
	10.00	19.600	0.682
	10.00	19.653	0.735
	10.20	19 598	0.735
	10.30	10.500	0.000
	11.00	10,501	0.001
	11.00	19.591	0.073
	11.20	10.676	0.001
	11.50	19.646	0.728

Stop	Time	Depth	Drawdown
Step	t (min)	(m)	dd (m)
	11.75	19.666	0.748
	12.00	19.624	0.706
	12.25	19.680	0.762
	12.50	19.605	0.687
	12.75	19.580	0.662
	13.00	19.682	0.764
	13.25	19.637	0.719
	13.50	19.747	0.829
	13.75	19.661	0.743
	14.00	19.538	0.620
	14.25	19.647	0.729
	14.50	19.717	0.799
	14.75	19.567	0.649
	15.00	19.657	0.739
	15.25	19.624	0.706
	15.50	19.641	0.723
	15.75	19.643	0.725
	16.00	19.611	0.693
	16.25	19.639	0.721
	16.50	19.607	0.689
	16.75	19.667	0.749
	17.00	19.651	0.733
	17.25	19.674	0.756
	17.50	19.641	0.723
	17.75	19.550	0.632
	18.00	19.606	0.688
	18.25	19.576	0.658
	18.50	19.702	0.784
	18.75	19.669	0.751
Step2	19.00	19.738	0.820
	19.25	19.867	0.949
	19.50	19.950	1.032
	19.75	19.980	1.062
	20.00	19.964	1.046
	20.25	20.988	2.070
	20.50	20.007	1.089
	20.75	19.964	1.046
	21.00	19.949	1.031
	21.25	19.971	1.053
	21.50	20.149	1.231
	21.75	20.151	1.233
	22.00	20.173	1.255
	22.25	20.257	1.339
	22.50	20.232	1.314
	22.75	20.246	1.328
	23.00	20.221	1.303
	23.25	20.213	1.295

Table C1 Recorded data during the step-drawdown test in the Test Well, MHPW1 (1 of 5).

Ston	Time	Depth	Drawdown
Step	t (min)	(m)	dd (m)
	23.50	20.232	1.314
	23.75	20.266	1.348
	24.00	20.243	1.325
	24.25	20.209	1.291
	24.50	20.276	1.358
	24.75	20.295	1.377
	25.00	20.276	1.358
	25.25	20.264	1.346
	25.50	20.225	1.307
	25.75	20.205	1.287
	26.00	20.238	1.320
	26.25	20.314	1.396
	26.50	20.179	1.261
	26.75	20.269	1.351
	27.00	20.233	1.315
	27.25	20.265	1.347
	27.50	20.199	1.281
	27.75	20.230	1.312
	28.00	20.265	1.347
	28.25	20.273	1.355
	28.50	20.206	1.288
	28.75	20.261	1.343
	29.00	20.282	1.364
	29.25	20.203	1.285
	29.50	20.184	1.266
	29.75	20.246	1.328
	30.00	20.266	1.348
	30.25	20 259	1 341
	30.50	20.240	1.322
	30.75	20.174	1 256
	31.00	20.231	1,313
	31.25	20.237	1,319
	31.50	20.237	1,319
	31 75	20 213	1 295
	32.00	20.297	1 379
	32.25	20 195	1 277
	32.50	20.700	1 374
	32.75	20.202	1 373
	33.00	20.201	1,359
	33.25	20,303	1,385
	33.50	20.303	1 324
	33.50	20.242	1 3/5
	34.00	20.203	1 228
	3/ 25	20.200	1 300
	34.50	20.210	1 320
	34.50	20.230	1 225
	04.70	20.200	1.000

Stop	Time	Depth	Drawdown
Step	t (min)	(m)	dd (m)
	35.25	20.230	1.312
	35.50	20.296	1.378
	35.75	20.288	1.370
	36.00	20.281	1.363
	36.25	20.231	1.313
	36.50	20.287	1.369
	36.75	20.233	1.315
	37.00	20.264	1.346
	37.25	20.276	1.358
	37.50	20.260	1.342
	37.75	20.261	1.343
	38.00	20.276	1.358
	38.25	20.231	1.313
	38.50	20.286	1.368
	38.75	20.239	1.321
	39.00	20.212	1.294
	39.25	20.218	1.300
	39.50	20.209	1.291
	39.75	20.237	1.319
	40.00	20.265	1.347
	40.25	20.281	1.363
	40.50	20.203	1.285
	40.75	20.252	1.334
	41.00	20.259	1.341
	41.25	20.265	1.347
	41.50	20.243	1.325
	41.75	20.252	1.334
	42.00	20.288	1.370
	42.25	20.224	1.306
	42.50	20.255	1.337
	42.75	20.233	1.315
	43.00	20.262	1.344
	43.25	20.229	1.311
	43.50	20.209	1.291
	43.75	20.267	1.349
	44.00	20.254	1.336
	44.25	20.245	1.327
	44.50	20.242	1.324
	44.75	20.250	1.332
	45.00	20.293	1.375
	45.25	20.307	1.389
	45.50	20.206	1.288
	45.75	20.250	1.332
	46.00	20.302	1.384
	46.25	20.280	1.362
	46.50	20.285	1.367
	46.75	20.261	1.343

Table C1 Recorded data during the step-drawdown test in the Test Well, MHPW1 (2 of 5).

Ston	Time	Depth	Drawdown	
Sieh	t (min)	(m)	dd (m)	
	47.00	20.259	1.341	
	47.25	20.279	1.361	
	47.50	20.247	1.329	
	47.75	20.237	1.319	
	48.00	20.287	1.369	
	48.25	20.279	1.361	
	48.50	20.293	1.375	
	48.75	20.280	1.362	
	49.00	20.280	1.362	
	49.25	20.323	1.405	
	49.50	20.277	1.359	
Step3	49.75	20.261	1.343	
	50.00	20.266	1.348	
	50.25	20.294	1.376	
	50.50	20.297	1.379	
	50.75	20.326	1.408	
	51.00	20.236	1.318	
	51.25	20.249	1.331	
	51.50	20.226	1.308	
	51.75	21.044	2.126	
	52.00	21.209	2.291	
	52.25	21.279	2.361	
	52.50	21.219	2.301	
	52.75	21.346	2.428	
	53.00	21.344	2.426	
	53.25	21.325	2.407	
	53.50	21.373	2.455	
	53.75	21.380	2.462	
	54.00	21.490	2.572	
	54.25	21,464	2.546	
	54,50	21,399	2.481	
	54.75	21.492	2.574	
	55.00	21.503	2.585	
	55.25	21.527	2.609	
	55.50	21.589	2.671	
	55 75	21 504	2.586	
	56.00	21.537	2.619	
	56.25	21.617	2.699	
	56 50	21 596	2 678	
	56 75	21.500	2 679	
	57.00	21.544	2.676	
	57 25	21.651	2 733	
	57 50	21.001	2.700	
	57 75	21.577	2.572	
	58.00	21.577	2.003	
	58.25	21.010	2.032	
	50.25	21.010	2.032	

Sten	Time	Depth	Drawdown
otep	t (min)	(m)	dd (m)
	58.75	21.506	2.588
	59.00	21.545	2.627
	59.25	21.560	2.642
	59.50	21.593	2.675
	59.75	21.547	2.629
	60.00	21.655	2.737
	60.25	21.597	2.679
	60.50	21.702	2.784
	60.75	21.584	2.666
	61.00	21.557	2.639
	61.25	21.690	2.772
	61.50	21.518	2.600
	61.75	21.558	2.640
	62.00	21.567	2.649
	62.25	21.603	2.685
	62.50	21.571	2.653
	62.75	21.524	2.606
	63.00	21.636	2.718
	63.25	21.573	2.655
	63.50	21.586	2.668
	63.75	21.610	2.692
	64.00	21.620	2.702
	64.25	21.538	2.620
	64.50	21.551	2.633
	64.75	21.680	2.762
	65.00	21.615	2.697
	65.25	21.572	2.654
	65.50	21.494	2.576
	65.75	21.650	2.732
	66.00	21.590	2.672
	66.25	21.626	2.708
	66.50	21.653	2.735
	66.75	21.592	2.674
	67.00	21.663	2.745
	67.25	21.614	2.696
	67.50	21.535	2.617
	67.75	21.504	2.586
	68.00	21.584	2.000
	08.20	21.582	2.004
	00.00	21.03U	2.712
	00.75	21.00/	2.009
	09.00 60.05	21.022	2.704
	09.20 60.50	21.000	2.042
	60.75	21.010	2.090
	70.00	21.090	2.077
	70.00	21.000	2.111
	10.25	21.020	2.710

Table C1 Recorded data during the step-drawdown test in the Test Well, MHPW1 (3 of 5).

Stop	Time	Depth	Drawdown
Sieh	t (min)	(m)	dd (m)
	70.50	21.672	2.754
	70.75	21.662	2.744
	71.00	21.595	2.677
	71.25	21.558	2.640
	71.50	21.598	2.680
	71.75	21.549	2.631
	72.00	21.559	2.641
	72.25	21.699	2.781
	72.50	21.556	2.638
	72.75	21.609	2.691
	73.00	21.452	2.534
	73.25	21.574	2.656
	73.50	21,563	2,645
	73.75	21,590	2,672
	74.00	21.501	2.583
	74.25	21.577	2.659
	74.50	21.596	2.678
	74 75	21 534	2 616
	75.00	21.642	2 724
	75.25	21.587	2 669
	75.50	21.586	2 668
	75 75	21.655	2 737
	76.00	21.633	2 715
	76.25	21.600	2 696
	76.50	21.638	2 720
	76.00	21.609	2 691
	77.00	21.586	2.668
	77.25	21.636	2 718
	77.50	21.600	2 705
	77.75	21.020	2.700
	78.00	21.021	2.700
	78.25	21.000	2 710
	78.50	21.020	2.710
	78 75	21.000	2.698
	79.00	21.610	2.000
	79.00	21.012	2.034
	79.50	21.020	2.705
	79.50	21.000	2.040
	80.00	21.027	2.703
	80.25	21.009	2.041
	80.50	21.580	2.000
	80.50	21.047	2.029
	81 00	21.007	2.009
	81.00	21.041	2.123
	01.20 81 E0	21.001	2.003
	01.30	21.070	2.007
	01.70	21.020	2./10
	8Z.UU	21.516	2.598

Ston	Time	Depth	Drawdown	
Step	t (min)	(m)	dd (m)	
	82.25	21.593	2.675	
	82.50	21.583	2.665	
	82.75	21.622	2.704	
	83.00	21.614	2.696	
	83.25	21.629	2.711	
	83.50	21.650	2.732	
	83.75	21.638	2.720	
	84.00	21.659	2.741	
	84.25	21.698	2.780	
	84.50	21.630	2.712	
	84.75	21.578	2.660	
	85.00	21.635	2.717	
	85.25	21.733	2.815	
Step4	85.50	22.189	3.271	
	85.75	22.384	3.466	
	86.00	22.643	3.725	
	86.25	22.952	4.034	
	86.50	23.218	4.300	
	86.75	23.269	4.351	
	87.00	23.462	4.544	
	87.25	23.566	4.648	
	87.50	23.783	4.865	
	87.75	23.899	4.981	
	88.00	23.991	5.073	
	88.25	23.950	5.032	
	88.50	23.946	5.028	
	88.75	23.954	5.036	
	89.00	24.003	5.085	
	89.25	23.957	5.039	
	89.50	23.993	5.075	
	89.75	24.014	5.096	
	90.00	24.007	5.089	
	90.25	24.001	5.083	
	90.50	24.012	5.094	
	90.75	24.038	5.120	
	91.00	23.998	5.080	
	91.25	24.020	5.102	
	91.50	24.027	5.109	
	91.75	23.982	5.064	
	92.00	24.004	5.086	
	92.25	24.050	5.132	
	92.50	24.011	5.093	
	92.75	23.982	5.064	
	93.00	24.007	5.089	
	93.25	23.954	5.036	
	93.50	24.053	5.135	
	93.75	24.031	5.113	

Table C1 Recorded data during the step-drawdown test in the Test Well, MHPW1 (4 of 5).

Ston	Time	Depth	Drawdown	
Step	t (min)	(m)	dd (m)	
	94.00	24.033	5.115	
	94.25	24.019	5.101	
	94.50	24.021	5.103	
	94.75	24.043	5.125	
	95.00	24.010	5.092	
	95.25	24.054	5.136	
	95.50	23.978	5.060	
	95.75	24.046	5.128	
	96.00	24.028	5.110	
	96.25	24.031	5.113	
	96.50	24.043	5.125	
	96.75	24.013	5.095	
	97.00	24.020	5.102	
	97.25	24.022	5.104	
	97.50	23.958	5.040	
	97.75	24.002	5.084	
	98.00	24.049	5.131	
	98.25	24.007	5.089	
	98.50	24.012	5.094	
	98.75	24.086	5.168	
	99.00	24.038	5.120	
	99.25	23.995	5.077	
	99.50	23.972	5.054	
	99.75	23.991	5.073	
	100.00	24.056	5.138	
	100.25	24.003	5.085	
	100.50	23.980	5.062	
	100.75	24.024	5.106	
	101.00	23.980	5.062	
	101.25	24.023	5.105	
	101.50	24.014	5.096	
	101.75	24.005	5.087	
	102.00	24.030	5.112	
	102.25	24.009	5.091	
	102.50	24.037	5.119	
	102.75	24.017	5.099	
	103.00	23,991	5.073	
	103.25	24.054	5,136	
	103.50	24.004	5.086	
	103.75	24.082	5,164	
	104.00	24.031	5.113	
	104.25	23,983	5.065	
	104.50	23.996	5.078	
	104.75	24.063	5.145	
	105.00	24.033	5,115	
	105.25	23.992	5.074	
	105.50	24.056	5 138	

Stop	Time	Depth	Drawdown	
Step	t (min)	(m)	dd (m)	
	105.75	24.095	5.177	
	106.00	24.087	5.169	
	106.25	24.009	5.091	
	106.50	24.069	5.151	
	106.75	24.063	5.145	
	107.00	24.037	5.119	
	107.25	24.031	5.113	
	107.50	24.048	5.130	
	107.75	24.028	5.110	
	108.00	24.051	5.133	
	108.25	24.072	5.154	
	108.50	24.031	5.113	
	108.75	24.048	5.130	
	109.00	24.008	5.090	
	109.25	24.063	5.145	
	109.50	24.061	5.143	
	109.75	24.036	5.118	
	110.00	24.050	5.132	
	110.25	24.084	5.166	
	110.50	24.038	5.120	
	110.75	24.086	5.168	
	111.00	24.026	5.108	
	111.25	24.051	5.133	
	111.50	24.021	5.103	
	111.75	24.053	5.135	
	112.00	24.030	5.112	
	112.25	23.991	5.073	
	112.50	24.033	5.115	
	112.75	24.062	5.144	
	113.00	24.067	5.149	
	113.25	24.076	5.158	
	113.50	24.072	5.154	
	113.75	24.023	5.105	
	114.00	24.062	5.144	
	114.25	24.053	5.135	
	114.50	24.019	5.101	
	114.75	24.030	5.112	
	115.00	24.060	5.142	
	115.25	24.052	5.134	
	115.50	24.020	5.102	
	115.75	24.060	5.142	
	116.00	24.092	5.174	
End	116.25	24.049	5.131	

Table C1 Recorded data during the step-drawdown test in the Test Well, MHPW1 (5 of 5).

Time	Depth	Drawdown]	Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(m)	dd (m)
0 (Static)	18.968	0.000	1	13.08	23.184	4.216
0.08	20.396	1.428	1	13.58	23.181	4.213
0.33	20.832	1.864	1	14.08	23.136	4.168
0.58	21.839	2.871	1	14.58	23.202	4.234
0.83	22.728	3.760	1	15.08	23.155	4.187
1.08	23.026	4.058	1	15.58	23.151	4.183
1.33	23.111	4.143	1	16.08	23.164	4.196
1.58	23.087	4.119	1	16.58	23.166	4.198
1.83	23.092	4.124	1	17.08	23.142	4.174
2.08	23.118	4.150		17.58	23.181	4.213
2.33	23.174	4.206		18.08	23.180	4.212
2.58	23.150	4.182	1	18.58	23.168	4.200
2.83	23.139	4.171	1	19.08	23.134	4.166
3.08	23.157	4.189		19.58	23.154	4.186
3.33	23.170	4.202		20.08	23.151	4.183
3.58	23.157	4.189	1	20.58	23.205	4.237
3.83	23.151	4.183	1	21.08	23.167	4.199
4.08	23.159	4.191	1	21.58	23.171	4.203
4.33	23.130	4.162		22.08	23.135	4.167
4.58	23.175	4.207		22.58	23.164	4.196
4.83	23.191	4.223		23.08	23.163	4.195
5.08	23.144	4.176		23.58	23.178	4.210
5.33	23.136	4.168		24.08	23.160	4.192
5.58	23.156	4.188		24.58	23.181	4.213
5.83	23.156	4.188		25.08	23.163	4.195
6.08	23.188	4.220		25.58	23.179	4.211
6.33	23.165	4.197		26.08	23.167	4.199
6.58	23.157	4.189		26.58	23.139	4.171
6.83	23.163	4.195		27.08	23.152	4.184
7.08	23.193	4.225		27.58	23.173	4.205
7.33	23.156	4.188		28.08	23.200	4.232
7.58	23.167	4.199		28.58	23.162	4.194
7.83	23.177	4.209		29.08	23.178	4.210
8.08	23.137	4.169		29.58	23.165	4.197
8.33	23.173	4.205		30.08	23.208	4.240
8.58	23.164	4.196		31.08	23.166	4.198
8.83	23.201	4.233		32.08	23.138	4.170
9.08	23.155	4.187		33.08	23.189	4.221
9.33	23.172	4.204		34.08	23.162	4.194
9.58	23.138	4.170		35.08	23.195	4.227
9.83	23.195	4.227		36.08	23.191	4.223
10.08	23.137	4.169		37.08	23.177	4.209
10.58	23.177	4.209		38.08	23.196	4.228
11.08	23.155	4.187		39.08	23.208	4.240
11.58	23.189	4.221		40.08	23.233	4.265
12.08	23.172	4.204		41.08	23.207	4.239
12.58	23.215	4.247		42.08	23.183	4.215

Table C2 Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (1 of 7).

Time	Depth	Drawdown]	Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(<i>m</i>)	dd (m)
43.08	23.215	4.247	1	90.08	23.218	4.250
44.08	23.209	4.241	1	95.08	23.234	4.266
45.08	23.197	4.229		100.08	23.225	4.257
46.08	23.164	4.196		105.08	23.242	4.274
47.08	23.158	4.190		110.08	23.191	4.223
48.08	23.196	4.228	1	115.08	23.241	4.273
49.08	23.172	4.204	1	120.08	23.222	4.254
50.08	23.153	4.185	1	125.08	23.221	4.253
51.08	23.172	4.204	1	130.08	23.220	4.252
52.08	23.179	4.211	1	135.08	23.170	4.202
53.08	23.213	4.245	1	140.08	23.243	4.275
54.08	23.228	4.260	1	145.08	23.200	4.232
55.08	23.207	4.239	1	150.08	23.255	4.287
56.08	23.187	4.219	1	155.08	23.227	4.259
57.08	23.177	4.209	1	160.08	23.186	4.218
58.08	23.185	4.217	1	165.08	23.218	4.250
59.08	23.184	4.216	1	170.08	23.241	4.273
60.08	23.163	4.195	1	175.08	23.231	4.263
61.08	23.175	4.207	1	180.08	23.218	4.250
62.08	23.200	4.232	1	185.08	23.250	4.282
63.08	23.204	4.236	1	190.08	23.250	4.282
64.08	23.193	4.225	1	195.08	23.220	4.252
65.08	23.225	4.257	1	200.08	23.233	4.265
66.08	23.219	4.251	1	205.08	23.285	4.317
67.08	23.230	4.262	1	210.08	23.226	4.258
68.08	23.185	4.217	1	215.08	23.241	4.273
69.08	23.218	4.250	1	220.08	23.239	4.271
70.08	23.222	4.254	1	225.08	23.186	4.218
71.08	23.178	4.210	1	230.08	23.278	4.310
72.08	23.202	4.234	1	235.08	23.236	4.268
73.08	23.192	4.224	1	240.08	23.297	4.329
74.08	23.201	4.233	1	245.08	23.271	4.303
75.08	23.220	4.252	1	250.08	23.239	4.271
76.08	23.223	4.255	1	255.08	23.239	4.271
77.08	23.190	4.222	1	260.08	23.215	4.247
78.08	23.213	4.245	1	265.08	23.318	4.350
79.08	23.238	4.270	1	270.08	23.252	4.284
80.08	23.211	4.243	1	275.08	23.288	4.320
81.08	23.239	4.271	1	280.08	23.251	4.283
82.08	23.232	4.264	1	285.08	23.258	4.290
83.08	23.219	4.251	1	290.08	23.309	4.341
84.08	23.243	4.275	1	295.08	23.260	4.292
85.08	23.202	4.234	1	300.08	23.278	4.310
86.08	23.166	4.198	1	305.08	23.267	4.299
87.08	23.174	4.206	1	310.08	23.255	4.287
88.08	23.216	4.248	1	315.08	23.307	4.339
89.08	23.245	4.277	1	320.08	23.296	4.328

Table C2 Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (2 of 7).

Time	Depth	Drawdown		Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(m)	dd (m)
325.08	23.262	4.294		760.08	23.351	4.383
330.08	23.303	4.335		770.08	23.329	4.361
335.08	23.306	4.338		780.08	23.368	4.400
340.08	23.314	4.346		790.08	23.341	4.373
345.08	23.243	4.275		800.08	23.348	4.380
350.08	23.273	4.305		810.08	23.309	4.341
355.08	23.261	4.293		820.08	23.338	4.370
360.08	23.296	4.328		830.08	23.340	4.372
370.08	23.273	4.305		840.08	23.351	4.383
380.08	23.241	4.273		850.08	23.333	4.365
390.08	23.331	4.363		860.08	23.351	4.383
400.08	23.285	4.317		870.08	23.336	4.368
410.08	23.265	4.297		880.08	23.344	4.376
420.08	23.272	4.304		890.08	23.338	4.370
430.08	23.276	4.308		900.08	23.334	4.366
440.08	23.303	4.335		910.08	23.370	4.402
450.08	23.324	4.356		920.08	23.344	4.376
460.08	23.283	4.315		930.08	23.326	4.358
470.08	23.279	4.311		940.08	23.314	4.346
480.08	23.279	4.311		950.08	23.351	4.383
490.08	23.294	4.326		960.08	23.341	4.373
500.08	23.321	4.353		970.08	23.366	4.398
510.08	23.306	4.338		980.08	23.338	4.370
520.08	23.281	4.313		990.08	23.368	4.400
530.08	23.323	4.355		1000.08	23.395	4.427
540.08	23.282	4.314		1010.08	23.359	4.391
550.08	23.332	4.364		1020.08	23.337	4.369
560.08	23.307	4.339		1030.08	23.370	4.402
570.08	23.352	4.384		1040.08	23.373	4.405
580.08	23.316	4.348		1050.08	23.367	4.399
590.08	23.305	4.337		1060.08	23.349	4.381
600.08	23.297	4.329		1070.08	23.361	4.393
610.08	23.321	4.353		1080.08	23.367	4.399
620.08	23.339	4.371		1090.08	23.364	4.396
630.08	23.326	4.358		1100.08	23.380	4.412
640.08	23.344	4.376		1110.08	23.367	4.399
650.08	23.329	4.361		1120.08	23.376	4.408
660.08	23.312	4.344		1130.08	23.363	4.395
670.08	23.338	4.370		1140.08	23.372	4.404
680.08	23.317	4.349		1150.08	23.360	4.392
690.08	23.335	4.367		1160.08	23.431	4.463
700.08	23.322	4.354		1170.08	23.368	4.400
710.08	23.325	4.357		1180.08	23.386	4.418
720.08	23.316	4.348		1190.08	23.382	4.414
730.08	23.327	4.359	1	1200.08	23.407	4.439
740.08	23.340	4.372		1210.08	23.386	4.418
750.08	23.329	4.361	1	1220.08	23.360	4.392

Table C2 Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (3 of 7).

Time	Depth	Drawdown		Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(m)	dd (m)
1230.08	23.374	4.406		1700.08	23.391	4.423
1240.08	23.409	4.441	1	1710.08	23.434	4.466
1250.08	23.414	4.446		1720.08	23.377	4.409
1260.08	23.367	4.399	1	1730.08	23.398	4.430
1270.08	23.344	4.376		1740.08	23.453	4.485
1280.08	23.401	4.433	1	1750.08	23.385	4.417
1290.08	23.367	4.399	1	1760.08	23.445	4.477
1300.08	23.353	4.385		1770.08	23.395	4.427
1310.08	23.345	4.377		1780.08	23.417	4.449
1320.08	23.333	4.365		1790.08	23.417	4.449
1330.08	23.394	4.426		1800.08	23.400	4.432
1340.08	23.385	4.417		1810.08	23.420	4.452
1350.08	23.389	4.421		1820.08	23.445	4.477
1360.08	23.362	4.394	1	1830.08	23.424	4.456
1370.08	23.390	4.422	1	1840.08	23.391	4.423
1380.08	23.377	4.409	1	1850.08	23.399	4.431
1390.08	23.398	4.430	1	1860.08	23.408	4.440
1400.08	23.383	4.415		1870.08	23.456	4.488
1410.08	23.408	4.440		1880.08	23.423	4.455
1420.08	23.395	4.427		1890.08	23.418	4.450
1430.08	23.371	4.403		1900.08	23.409	4.441
1440.08	23.406	4.438		1910.08	23.402	4.434
1450.08	23.352	4.384		1920.08	23.426	4.458
1460.08	23.410	4.442		1930.08	23.402	4.434
1470.08	23.384	4.416		1940.08	23.424	4.456
1480.08	23.406	4.438		1950.08	23.422	4.454
1490.08	23.413	4.445	1	1960.08	23.429	4.461
1500.08	23.401	4.433	1	1970.08	23.448	4.480
1510.08	23.373	4.405	1	1980.08	23.423	4.455
1520.08	23.415	4.447	1	1990.08	23.434	4.466
1530.08	23.386	4.418	1	2000.08	23.385	4.417
1540.08	23.392	4.424	1	2010.08	23.425	4.457
1550.08	23.395	4.427	1	2020.08	23.447	4.479
1560.08	23.403	4.435		2030.08	23.431	4.463
1570.08	23.391	4.423	1	2040.08	23.416	4.448
1580.08	23.399	4.431		2050.08	23.420	4.452
1590.08	23.401	4.433	1	2060.08	23.430	4.462
1600.08	23.421	4.453	1	2070.08	23.384	4.416
1610.08	23.415	4.447	1	2080.08	23.373	4.405
1620.08	23.410	4.442	1	2090.08	23.404	4.436
1630.08	23.395	4.427	1	2100.08	23.427	4.459
1640.08	23.402	4.434	1	2110.08	23.451	4.483
1650.08	23.379	4.411	1	2120.08	23.416	4.448
1660.08	23.416	4.448	1	2130.08	23.436	4.468
1670.08	23.409	4.441	1	2140.08	23.428	4.460
1680.08	23.367	4.399	1	2150.08	23.395	4.427
1690.08	23.397	4.429	1	2160.08	23.432	4.464

Table C2 Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (4 of 7).

Time	Depth	Drawdown		Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(m)	dd (m)
2170.08	23.422	4.454		2640.08	23.456	4.488
2180.08	23.443	4.475		2650.08	23.476	4.508
2190.08	23.434	4.466		2660.08	23.457	4.489
2200.08	23.457	4.489		2670.08	23.478	4.510
2210.08	23.461	4.493		2680.08	23.518	4.550
2220.08	23.411	4.443		2690.08	23.456	4.488
2230.08	23.381	4.413		2700.08	23.477	4.509
2240.08	23.443	4.475		2710.08	23.422	4.454
2250.08	23.411	4.443		2720.08	23.433	4.465
2260.08	23.471	4.503		2730.08	23.463	4.495
2270.08	23.435	4.467		2740.08	23.454	4.486
2280.08	23.401	4.433		2750.08	23.448	4.480
2290.08	23.442	4.474		2760.08	23.493	4.525
2300.08	23.438	4.470		2770.08	23.463	4.495
2310.08	23.416	4.448		2780.08	23.494	4.526
2320.08	23.453	4.485		2790.08	23.473	4.505
2330.08	23.417	4.449		2800.08	23.474	4.506
2340.08	23.452	4.484		2810.08	23.513	4.545
2350.08	23.451	4.483		2820.08	23.457	4.489
2360.08	23.416	4.448		2830.08	23.508	4.540
2370.08	23.409	4.441		2840.08	23.479	4.511
2380.08	23.460	4.492		2850.08	23.489	4.521
2390.08	23.475	4.507		2860.08	23.486	4.518
2400.08	23.417	4.449		2870.08	23.486	4.518
2410.08	23.461	4.493		2880.08	23.476	4.508
2420.08	23.456	4.488		2890.08	23.482	4.514
2430.08	23.469	4.501		2900.08	23.480	4.512
2440.08	23.468	4.500		2910.08	23.481	4.513
2450.08	23.443	4.475		2920.08	23.449	4.481
2460.08	23.441	4.473		2930.08	23.472	4.504
2470.08	23.464	4.496		2940.08	23.461	4.493
2480.08	23.456	4.488		2950.08	23.467	4.499
2490.08	23.436	4.468		2960.08	23.481	4.513
2500.08	23.414	4.446		2970.08	23.482	4.514
2510.08	23.453	4.485		2980.08	23.480	4.512
2520.08	23.456	4.488		2990.08	23.492	4.524
2530.08	23.494	4.526		3000.08	23.496	4.528
2540.08	23.477	4.509		3010.08	23.468	4.500
2550.08	23.462	4.494		3020.08	23.444	4.476
2560.08	23.465	4.497	1	3030.08	23.460	4.492
2570.08	23.425	4.457		3040.08	23.449	4.481
2580.08	23.419	4.451		3050.08	23.472	4.504
2590.08	23.465	4.497	1	3060.08	23.451	4.483
2600.08	23.474	4.506	1	3070.08	23.506	4.538
2610.08	23.457	4.489	1	3080.08	23.485	4.517
2620.08	23.458	4.490		3090.08	23.458	4.490
2630.08	23.453	4.485	1	3100.08	23.457	4.489

Table C2 Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (5 of 7).

Time	Depth	Drawdown]	Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(m)	dd (m)
3110.08	23.488	4.520	1	3580.08	23.474	4.506
3120.08	23.459	4.491	1	3590.08	23.471	4.503
3130.08	23.469	4.501	1	3600.08	23.461	4.493
3140.08	23.484	4.516	1	3610.08	23.457	4.489
3150.08	23.439	4.471	1	3620.08	23.525	4.557
3160.08	23.488	4.520	1	3630.08	23.529	4.561
3170.08	23.477	4.509	1	3640.08	23.506	4.538
3180.08	23.460	4.492	1	3650.08	23.528	4.560
3190.08	23.490	4.522		3660.08	23.517	4.549
3200.08	23.471	4.503		3670.08	23.476	4.508
3210.08	23.494	4.526		3680.08	23.493	4.525
3220.08	23.466	4.498		3690.08	23.488	4.520
3230.08	23.460	4.492		3700.08	23.483	4.515
3240.08	23.451	4.483		3710.08	23.469	4.501
3250.08	23.493	4.525		3720.08	23.517	4.549
3260.08	23.459	4.491		3730.08	23.504	4.536
3270.08	23.446	4.478		3740.08	23.505	4.537
3280.08	23.499	4.531		3750.08	23.476	4.508
3290.08	23.525	4.557		3760.08	23.471	4.503
3300.08	23.459	4.491		3770.08	23.479	4.511
3310.08	23.509	4.541		3780.08	23.507	4.539
3320.08	23.497	4.529		3790.08	23.485	4.517
3330.08	23.468	4.500		3800.08	23.511	4.543
3340.08	23.485	4.517		3810.08	23.475	4.507
3350.08	23.470	4.502		3820.08	23.541	4.573
3360.08	23.519	4.551		3830.08	23.530	4.562
3370.08	23.512	4.544		3840.08	23.531	4.563
3380.08	23.460	4.492		3850.08	23.493	4.525
3390.08	23.504	4.536		3860.08	23.476	4.508
3400.08	23.470	4.502		3870.08	23.487	4.519
3410.08	23.495	4.527		3880.08	23.473	4.505
3420.08	23.476	4.508		3890.08	23.512	4.544
3430.08	23.522	4.554		3900.08	23.481	4.513
3440.08	23.489	4.521		3910.08	23.486	4.518
3450.08	23.468	4.500		3920.08	23.515	4.547
3460.08	23.496	4.528		3930.08	23.504	4.536
3470.08	23.460	4.492		3940.08	23.483	4.515
3480.08	23.465	4.497		3950.08	23.485	4.517
3490.08	23.489	4.521		3960.08	23.493	4.525
3500.08	23.468	4.500		3970.08	23.510	4.542
3510.08	23.471	4.503		3980.08	23.529	4.561
3520.08	23.472	4.504		3990.08	23.500	4.532
3530.08	23.468	4.500		4000.08	23.507	4.539
3540.08	23.462	4.494		4010.08	23.521	4.553
3550.08	23.509	4.541		4020.08	23.537	4.569
3560.08	23.500	4.532		4030.08	23.532	4.564
3570.08	23.499	4.531		4040.08	23.529	4.561

Table C2 Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (6 of 7).

Time	Depth	Drawdown
t (min)	(<i>m</i>)	dd (m)
4050.08	23.508	4.540
4060.08	23.529	4.561
4070.08	23.516	4.548
4080.08	23.532	4.564
4090.08	23.494	4.526
4100.08	23.474	4.506
4110.08	23.499	4.531
4120.08	23.493	4.525
4130.08	23.475	4.507
4140.08	23.542	4.574
4150.08	23.489	4.521
4160.08	23.522	4.554
4170.08	23.504	4.536
4180.08	23.481	4.513
4190.08	23.453	4.485
4200.08	23.486	4.518
4210.08	23.502	4.534
4220.08	23.520	4.552
4230.08	23.521	4.553
4240.08	23.499	4.531
4250.08	23.519	4.551
4260.08	23.479	4.511
4270.08	23.532	4.564
4280.08	23.467	4.499
4290.08	23.449	4.481
4300.08	23.513	4.545
4310.08	23.509	4.541
4320.08	23.490	4.522

Table C2Recorded data during the 72-hour aquifer test in the Test Well, MHPW1 (7 of 7).

Time	Depth	Recovery]	Time	Depth	Recovery
(min)	<i>(m)</i>	(m)		(min)	(<i>m</i>)	(<i>m</i>)
0 (Start)	23.468	0.000	1	13.50	19.191	4.277
0.25	19.040	4.428		14.00	19.188	4.280
0.50	19.254	4.215		14.50	19.188	4.280
0.75	19.366	4.102		15.00	19.186	4.282
1.00	19.250	4.218		15.50	19.189	4.279
1.25	19.235	4.233	1	16.00	19.187	4.282
1.50	19.227	4.242	1	16.50	19.188	4.280
1.75	19.219	4.249		17.00	19.186	4.282
2.00	19.214	4.254		17.50	19.187	4.281
2.25	19.208	4.260		18.00	19.186	4.282
2.50	19.208	4.260		18.50	19.185	4.283
2.75	19.206	4.262		19.00	19.185	4.283
3.00	19.204	4.264		19.50	19.185	4.283
3.25	19.204	4.264		20.00	19.185	4.283
3.50	19.202	4.266		20.50	19.184	4.285
3.75	19.203	4.265		21.00	19.183	4.285
4.00	19.203	4.265		21.50	19.184	4.285
4.25	19.200	4.268		22.00	19.184	4.284
4.50	19.201	4.267		22.50	19.180	4.288
4.75	19.201	4.267		23.00	19.182	4.286
5.00	19.200	4.268		23.50	19.177	4.291
5.25	19.200	4.268		24.00	19.182	4.286
5.50	19.198	4.270		24.50	19.182	4.287
5.75	19.198	4.270		25.00	19.180	4.288
6.00	19.199	4.269		25.50	19.181	4.287
6.25	19.199	4.269		26.00	19.179	4.289
6.50	19.198	4.270		26.50	19.177	4.291
6.75	19.199	4.269		27.00	19.179	4.289
7.00	19.197	4.271	1	27.50	19.178	4.290
7.25	19.199	4.269		28.00	19.180	4.288
7.50	19.195	4.273		28.50	19.178	4.290
7.75	19.194	4.274		29.00	19.178	4.290
8.00	19.194	4.274	1	29.50	19.177	4.291
8.25	19.197	4.271		30.00	19.177	4.291
8.50	19.193	4.275		31.00	19.177	4.291
8.75	19.194	4.274		32.00	19.175	4.293
9.00	19.194	4.274		33.00	19.177	4.291
9.25	19.193	4.275		34.00	19.176	4.292
9.50	19.193	4.275	4	35.00	19.174	4.294
9.75	19.192	4.276	4	36.00	19.174	4.294
10.00	19.191	4.277	4	37.00	19.174	4.295
10.50	19.192	4.276	4	38.00	19.165	4.303
11.00	19.192	4.276	4	39.00	19.170	4.298
11.50	19.190	4.278	4	40.00	19.168	4.301
12.00	19.191	4.277	4	41.00	19.180	4.288
12.50	19.190	4.278	4	42.00	19.182	4.286
13.00	19.190	4.278		43.00	19.181	4.287

Table C3 Recovery data after the 72-hour aquifer test in the Test Well, MHPW1 (1 of 4).

Time	Depth	Recovery	Tim	ne	Depth	Recovery
(min)	<i>(m)</i>	<i>(m)</i>	(mi	n)	(<i>m</i>)	(m)
44.00	19.184	4.284	95.0	00	19.153	4.315
45.00	19.183	4.285	100.	.00	19.151	4.317
46.00	19.182	4.286	105.	.00	19.148	4.320
47.00	19.183	4.285	110.	.00	19.146	4.322
48.00	19.181	4.287	115.	.00	19.143	4.326
49.00	19.177	4.291	120.	.00	19.146	4.322
50.00	19.179	4.289	125.	.00	19.146	4.322
51.00	19.180	4.289	130.	.00	19.145	4.323
52.00	19.175	4.293	135.	.00	19.145	4.323
53.00	19.175	4.293	140.	.00	19.145	4.323
54.00	19.162	4.306	145.	.00	19.142	4.326
55.00	19.176	4.292	150.	.00	19.141	4.327
56.00	19.176	4.292	155.	.00	19.138	4.330
57.00	19.175	4.293	160.	.00	19.138	4.330
58.00	19.164	4.304	165.	.00	19.136	4.332
59.00	19.172	4.296	170.	.00	19.132	4.336
60.00	19.174	4.294	175.	.00	19.130	4.338
61.00	19.173	4.295	180.	.00	19.131	4.337
62.00	19.171	4.297	185.	.00	19.132	4.336
63.00	19.173	4.295	190.	.00	19.131	4.337
64.00	19.170	4.298	195.	.00	19.131	4.337
65.00	19.170	4.298	200	.00	19.128	4.340
66.00	19.170	4.298	205.	.00	19.127	4.341
67.00	19.168	4.300	210	.00	19.128	4.340
68.00	19.169	4.299	215.	.00	19.125	4.343
69.00	19.167	4.301	220.	.00	19.125	4.343
70.00	19.168	4.301	225.	.00	19.124	4.344
71.00	19.165	4.303	230.	.00	19.120	4.348
72.00	19.163	4.305	235.	.00	19.126	4.342
73.00	19.163	4.305	240	.00	19.122	4.346
74.00	19.163	4.305	245	.00	19.119	4.349
75.00	19.163	4.305	250.	.00	19.119	4.349
76.00	19.163	4.305	255.	.00	19.117	4.352
77.00	19.162	4.306	260.	.00	19.117	4.351
78.00	19.162	4.306	265	.00	19.118	4.350
79.00	19.160	4.308	270	.00	19.112	4.356
80.00	19.162	4.306	275.	.00	19.113	4.355
81.00	19.160	4.308	280.	.00	19.114	4.354
82.00	19.161	4.308	285	.00	19.112	4.356
83.00	19.160	4.308	290.	.00	19.113	4.355
84.00	19.159	4.309	295.	.00	19.111	4.357
85.00	19.158	4.310	300.	.00	19.111	4.357
86.00	19.158	4.310	305.	.00	19.111	4.357
87.00	19.158	4.310	310	.00	19.111	4.357
88.00	19.156	4.312	315.	.00	19.110	4.358
89.00	19.157	4.311	320	.00	19.112	4.356
90.00	19.156	4.312	325	.00	19.111	4.357

Table C3 Recovery data after the 72-hour aquifer test in the Test Well, MHPW1 (2 of 4).

Time	Depth	Recovery]	Time	Depth	Recovery
(min)	(m)	(m)		(min)	(<i>m</i>)	(<i>m</i>)
330.00	19.108	4.360	1	565.00	19.086	4.382
335.00	19.108	4.360		570.00	19.083	4.386
340.00	19.107	4.361		575.00	19.082	4.386
345.00	19.110	4.358		580.00	19.082	4.386
350.00	19.108	4.360	1	585.00	19.082	4.386
355.00	19.108	4.360		590.00	19.083	4.385
360.00	19.104	4.364		595.00	19.081	4.387
365.00	19.104	4.364		600.00	19.080	4.388
370.00	19.104	4.364		605.00	19.081	4.387
375.00	19.103	4.365		610.00	19.080	4.388
380.00	19.102	4.366		615.00	19.079	4.390
385.00	19.103	4.365		620.00	19.079	4.389
390.00	19.103	4.365		625.00	19.077	4.391
395.00	19.100	4.369		630.00	19.076	4.392
400.00	19.096	4.372		635.00	19.075	4.393
405.00	19.097	4.371		640.00	19.074	4.394
410.00	19.096	4.372		645.00	19.073	4.396
415.00	19.098	4.370	1	650.00	19.074	4.394
420.00	19.098	4.370	1	655.00	19.075	4.393
425.00	19.097	4.371		660.00	19.076	4.392
430.00	19.097	4.371		665.00	19.074	4.394
435.00	19.095	4.373		670.00	19.074	4.394
440.00	19.093	4.375	1	675.00	19.075	4.393
445.00	19.092	4.376		680.00	19.074	4.394
450.00	19.092	4.377	1	685.00	19.073	4.395
455.00	19.091	4.377		690.00	19.073	4.395
460.00	19.092	4.376		695.00	19.072	4.396
465.00	19.090	4.378		700.00	19.072	4.396
470.00	19.088	4.380		705.00	19.073	4.395
475.00	19.088	4.380		720.00	19.069	4.399
480.00	19.091	4.377		725.00	19.069	4.399
485.00	19.088	4.380		730.00	19.069	4.399
490.00	19.090	4.378		735.00	19.068	4.400
495.00	19.090	4.378		740.00	19.068	4.400
500.00	19.086	4.382		745.00	19.068	4.401
505.00	19.086	4.382		750.00	19.066	4.402
510.00	19.084	4.384		755.00	19.067	4.401
515.00	19.083	4.385		760.00	19.068	4.400
520.00	19.084	4.384		765.00	19.065	4.403
525.00	19.086	4.382	1	770.00	19.067	4.401
530.00	19.082	4.386	1	775.00	19.064	4.404
535.00	19.083	4.385	1	780.00	19.066	4.402
540.00	19.088	4.380	1	785.00	19.066	4.402
545.00	19.088	4.380	1	790.00	19.064	4.404
550.00	19.086	4.382	1	795.00	19.066	4.403
555.00	19.088	4.380	1	800.00	19.064	4.404
560.00	19.084	4.384		805.00	19.067	4.401

Table C3 Recovery data after the 72-hour aquifer test in the Test Well, MHPW1 (3 of 4).

Time	Depth	Recovery
(min)	(<i>m</i>)	(m)
810.00	19.066	4.402
815.00	19.067	4.402
820.00	19.065	4.403
825.00	19.066	4.402
830.00	19.065	4.403
835.00	19.065	4.403
840.00	19.066	4.402
845.00	19.063	4.405
850.00	19.065	4.403
855.00	19.063	4.405
860.00	19.062	4.406
865.00	19.063	4.405
870.00	19.062	4.406
875.00	19.061	4.407
880.00	19.062	4.406
885.00	19.062	4.406
890.00	19.062	4.406
895.00	19.062	4.406
900.00	19.061	4.407
905.00	19.060	4.408
910.00	19.061	4.407
915.00	19.060	4.408
920.00	19.060	4.408
925.00	19.061	4.407
930.00	19.059	4.409
935.00	19.060	4.408
940.00	19.060	4.408
945.00	19.061	4.407
950.00	19.060	4.408
955.00	19.060	4.408
960.00	19.061	4.408
965.00	19.060	4.408
970.00	19.060	4.408
975.00	19.058	4.410
980.00	19.057	4.411
985.00	19.058	4.410
990.00	19.058	4.410
995.00	19.057	4.411
1000.00	19.057	4.411
1005.00	19.059	4.409
1010.00	19.058	4.410
1015.00	19.059	4.409
1020.00	19.058	4.410
1025.00	19.058	4.410
1030.00	19.059	4.410
1035.00	19.058	4.410
1040.00	19.057	4.411

Table C3	Recovery	data a	fter the	72-hour	aquifer	test in	the Te	st Well,	, MHPW1	. (4 of	i 4).
	2									· · ·	

Time	Depth	Recovery
(min)	(m)	(<i>m</i>)
1045.00	19.058	4.410
1050.00	19.058	4.411

Time	Depth	Drawdown] [Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	<i>(m)</i>	dd (m)
0 (Static)	19.340	0.000		14.08	19.350	0.009
0.08	19.340	0.000		12.33	19.348	0.008
0.33	19.341	0.000		15.58	19.350	0.010
0.58	19.340	0.000		16.08	19.351	0.011
0.83	19.341	0.001		13.33	19.350	0.010
1.08	19.342	0.002		17.58	19.350	0.010
1.33	19.343	0.003		18.08	19.350	0.010
1.58	19.343	0.003		14.33	19.349	0.009
1.83	19.343	0.003		19.58	19.351	0.011
2.08	19.344	0.004		20.08	19.351	0.011
2.33	19.345	0.005		15.33	19.349	0.009
2.58	19.345	0.005		21.58	19.352	0.012
2.83	19.344	0.004		22.08	19.351	0.011
3.08	19.345	0.005		16.33	19.350	0.010
3.33	19.345	0.005		23.58	19.353	0.013
3.58	19.346	0.006		24.08	19.351	0.011
3.83	19.346	0.006		17.33	19.351	0.011
4.08	19.346	0.006		25.58	19.353	0.012
4.33	19.346	0.006		26.08	19.353	0.013
4.58	19.346	0.006	1 1	18.33	19.350	0.010
4.83	19.346	0.006		27.58	19.354	0.014
5.08	19.346	0.006		28.08	19.353	0.013
5.33	19.346	0.006		19.33	19.351	0.011
5.58	19.346	0.006		29.58	19.356	0.015
5.83	19.347	0.007		30.58	19.354	0.014
6.08	19.347	0.007		20.33	19.350	0.010
6.33	19.347	0.007		33.58	19.355	0.015
6.58	19.347	0.006		34.58	19.356	0.016
6.83	19.346	0.006		21.33	19.353	0.013
7.08	19.347	0.007		37.58	19.357	0.017
7.33	19.346	0.006		38.58	19.357	0.017
7.58	19.347	0.007		22.33	19.353	0.013
7.83	19.347	0.007		41.58	19.358	0.017
8.08	19.348	0.008		42.58	19.358	0.018
8.33	19.346	0.006		23.33	19.353	0.013
8.58	19.347	0.007		46.58	19.360	0.020
8.83	19.348	0.008		49.58	19.359	0.019
9.08	19.347	0.007		25.33	19.353	0.013
9.33	19.348	0.008		54.58	19.361	0.021
9.58	19.349	0.009		57.58	19.362	0.022
9.83	19.348	0.008	7	27.33	19.354	0.014
10.08	19.348	0.008	7	74.58	19.365	0.025
10.33	19.348	0.008	1	89.58	19.369	0.029
11.58	19.348	0.008	7 F	29.33	19.354	0.014
12.08	19.348	0.008	1 F	114.58	19.372	0.032
11.33	19.348	0.008	1	124.58	19.374	0.034
13.58	19.349	0.009	7 F	31.08	19.355	0.015

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (1 of 7).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time	Depth	Drawdown		Time	Depth	Drawdown
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t (min)	<i>(m)</i>	dd (m)		t (min)	(<i>m</i>)	dd (m)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	149.58	19.378	0.038		684.58	19.427	0.087
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	159.58	19.379	0.039	1	739.58	19.428	0.088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.83	19.355	0.015	1	789.58	19.432	0.092
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33.33	19.355	0.015	1	66.33	19.363	0.023
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	194.58	19.386	0.046	1	68.83	19.363	0.023
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204.58	19.386	0.046	1	944.58	19.442	0.102
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35.08	19.355	0.015	1	994.58	19.446	0.106
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	229.58	19.390	0.050	1	76.58	19.367	0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	239.58	19.390	0.050	1	79.08	19.366	0.026
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36.83	19.356	0.016		1149.58	19.454	0.114
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.33	19.357	0.017		1199.58	19.457	0.117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	274.58	19.394	0.054	1	86.83	19.368	0.028
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	284.58	19.394	0.054	1	89.33	19.369	0.029
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39.08	19.357	0.017		1354.58	19.467	0.127
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	309.58	19.398	0.058		1404.58	19.472	0.132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	319.58	19.398	0.058		97.08	19.370	0.030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.83	19.358	0.018		1509.58	19,475	0.135
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41.33	19.358	0.018		1559.58	19,478	0.138
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	354,58	19.399	0.059		104.83	19.372	0.032
43.08 19.359 0.019 43.08 19.359 0.019 389.58 19.403 0.063 399.58 19.403 0.063 44.83 19.358 0.018 44.83 19.358 0.018 45.33 19.358 0.018 45.33 19.358 0.018 44.83 19.358 0.018 45.33 19.358 0.018 44.83 19.406 0.066 434.58 19.406 0.066 47.08 19.359 0.019 469.58 19.410 0.070 47.958 19.411 0.071 47.958 19.411 0.071 47.958 19.413 0.073 524.58 19.413 0.073 524.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 559.58 19.418 0.078 559.58 19.418 0.079 52.43 19.360 0.020 594.58 19.420 0.079 50.68 19.360 0.020 595.58 19.422 0.082 629.58 19.422 0.082 629.58 19.422 0.082 624.58 19.526 0.186 57.33 19.361 0.021 294.58 19.524 0.184 294.58 19.524 0.184 674.58 19.427 0	364.58	19.400	0.060	1	107.33	19.372	0.032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43.08	19.359	0.019		1714.58	19.484	0.144
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	389.58	19.403	0.063		1764.58	19.487	0.147
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	399.58	19.403	0.063		115.08	19.372	0.032
45.33 19.358 0.018 434.58 19.406 0.066 434.58 19.406 0.066 444.58 19.408 0.068 444.58 19.408 0.068 47.08 19.359 0.019 469.58 19.410 0.070 479.58 19.411 0.071 48.83 19.360 0.020 49.33 19.360 0.020 514.58 19.413 0.073 524.58 19.413 0.073 524.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 53.33 19.360 0.020 594.58 19.419 0.079 50.8 19.420 0.079 529.58 19.420 0.079 55.08 19.422 0.082 629.58 19.423 0.083 629.58 19.423 0.083 629.58 19.423 0.082 629.58 19.427 0.082 629.58 19.427 0.082 629.58 19.427 0.082 67.458 19.427 0.087	44.83	19.358	0.018		117.58	19.373	0.033
434.58 19.406 0.066 444.58 19.408 0.068 444.58 19.408 0.068 47.08 19.359 0.019 469.58 19.410 0.070 479.58 19.411 0.071 48.83 19.360 0.020 49.33 19.360 0.020 514.58 19.413 0.073 524.58 19.413 0.073 524.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 549.58 19.418 0.078 559.58 19.418 0.078 559.58 19.419 0.079 52.83 19.360 0.020 594.58 19.420 0.079 55.08 19.422 0.082 629.58 19.422 0.082 629.58 19.423 0.083 629.58 19.423 0.083 629.58 19.423 0.021 2739.58 19.524 0.184 57.33 19.362 0.022 2749.58 19.524 0.184 674.58 19.427 0.087	45.33	19.358	0.018		1919.58	19,492	0.152
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	434,58	19,406	0.066		1969.58	19,494	0.154
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	444.58	19.408	0.068		125.33	19.374	0.034
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.08	19.359	0.019	1	127.83	19.375	0.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	469,58	19,410	0.070		2124.58	19.500	0.160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	479.58	19.411	0.071	1	2174.58	19,503	0.163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.83	19.360	0.020		135.58	19.376	0.036
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.33	19.360	0.020		138.08	19.376	0.036
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	514.58	19.413	0.073		2329.58	19.503	0.163
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	524.58	19.413	0.073		2379.58	19.507	0.167
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	51.08	19.359	0.018		145.83	19.378	0.038
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	549.58	19.418	0.078		148.33	19.378	0.038
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	559.58	19.418	0.078	1	2534.58	19.515	0.175
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.83	19.360	0.020		2584.58	19.518	0.178
594.58 19.419 0.079 604.58 19.420 0.079 55.08 19.360 0.020 629.58 19.422 0.082 639.58 19.361 0.021 57.33 19.362 0.022 674.58 19.427 0.087	53.33	19.360	0.020		156.08	19.380	0.040
604.58 19.420 0.079 55.08 19.360 0.020 629.58 19.422 0.082 639.58 19.423 0.083 56.83 19.361 0.021 57.33 19.362 0.022 674.58 19.427 0.087	594.58	19.419	0.079		158.58	19.381	0.041
55.08 19.360 0.020 629.58 19.422 0.082 639.58 19.423 0.083 56.83 19.361 0.021 57.33 19.362 0.022 674.58 19.427 0.087	604.58	19.420	0.079		2739.58	19.524	0.184
629.58 19.422 0.082 166.33 19.380 0.040 639.58 19.423 0.083 168.83 19.382 0.041 56.83 19.361 0.021 2944.58 19.526 0.186 57.33 19.362 0.022 2994.58 19.524 0.184 674.58 19.427 0.087 176.58 19.381 0.041	55.08	19.360	0.020	1	2789.58	19,525	0.185
639.58 19.423 0.083 168.83 19.382 0.041 56.83 19.361 0.021 2944.58 19.526 0.186 57.33 19.362 0.022 2994.58 19.524 0.184 674.58 19.427 0.087 176.58 19.381 0.041	629.58	19.422	0.082	1	166.33	19.380	0.040
56.83 19.361 0.021 2944.58 19.526 0.186 57.33 19.362 0.022 2994.58 19.524 0.184 674.58 19.427 0.087 176.58 19.381 0.041	639.58	19.423	0.083	1	168.83	19.382	0.041
57.33 19.362 0.022 2994.58 19.524 0.184 674.58 19.427 0.087 176.58 19.381 0.041	56.83	19.361	0.021	1	2944.58	19.526	0.186
<u>674.58</u> <u>19.427</u> <u>0.087</u> <u>176.58</u> <u>19.381</u> <u>0.041</u>	57.33	19.362	0.022	1	2994.58	19.524	0.184
	674.58	19.427	0.087	1	176.58	19.381	0.041

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (2 of 7).

Time	Depth	Drawdown		Time	Depth	Drawdown
t (min)	(<i>m</i>)	dd (m)		t (min)	<i>(m)</i>	dd (m)
179.08	19.383	0.043	1	572.33	19.418	0.078
3149.58	19.525	0.185		582.83	19.418	0.078
3199.58	19.528	0.188	1	593.33	19.420	0.080
186.83	19.383	0.043	1	603.83	19.420	0.080
189.33	19.385	0.045	1	614.33	19.421	0.081
3354.58	19.530	0.190	1	625.08	19.422	0.082
3404.58	19.533	0.192	1	635.58	19.423	0.082
197.08	19.387	0.047	1	646.08	19.424	0.084
3559.58	19.533	0.193	1	656.58	19.425	0.085
207.33	19.387	0.046	1	667.08	19.426	0.086
3764.58	19.539	0.199	1	677.58	19.426	0.086
217.58	19.388	0.048	1	688.08	19.428	0.088
3969.58	19.548	0.208	1	698.58	19.428	0.088
227.83	19.390	0.050	1	709.08	19.430	0.090
4174.58	19.544	0.203	1	719.83	19.426	0.086
238.08	19.391	0.051	1	730.33	19.426	0.086
246.08	19.391	0.051	1	740.83	19.428	0.088
256.58	19.393	0.052		751.33	19.428	0.088
267.08	19.392	0.052		761.83	19.430	0.090
277.58	19.393	0.053		772.33	19.430	0.090
288.08	19.394	0.054		782.83	19.432	0.092
298.58	19.395	0.055	1	793.33	19.433	0.093
309.08	19.397	0.057	1	803.83	19.431	0.091
319.83	19.398	0.058	1	814.33	19.433	0.093
330.33	19.397	0.057	1	825.08	19.433	0.093
340.83	19.398	0.058	1	835.58	19.434	0.094
351.33	19.398	0.058		846.08	19.434	0.094
361.83	19.400	0.060		856.58	19.436	0.096
372.33	19.400	0.060		867.08	19.437	0.097
382.83	19.401	0.061		877.58	19.437	0.097
393.33	19.403	0.063		888.08	19.438	0.098
403.83	19.404	0.064		898.58	19.439	0.099
414.33	19.405	0.065		909.08	19.440	0.100
425.08	19.406	0.066		919.83	19.441	0.101
435.58	19.406	0.066		930.33	19.441	0.101
446.08	19.408	0.067		940.83	19.442	0.102
456.58	19.410	0.070		951.33	19.441	0.101
467.08	19.411	0.070		961.83	19.443	0.103
477.58	19.412	0.072		972.33	19.445	0.105
488.08	19.412	0.072		982.83	19.444	0.104
498.58	19.411	0.071		993.33	19.447	0.107
509.08	19.412	0.072		1003.83	19.447	0.107
519.83	19.413	0.073		1014.33	19.447	0.107
530.33	19.414	0.074		1025.08	19.448	0.108
540.83	19.415	0.075		1035.58	19.449	0.108
551.33	19.417	0.077		1046.08	19.452	0.111
561.83	19.417	0.077		1056.58	19.451	0.111

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (3 of 7).

Time	Depth	Drawdown		Time	Depth	Drawdown
t (min)	(<i>m</i>)	dd (m)		t (min)	(<i>m</i>)	dd (m)
1067.08	19.450	0.110	1	1561.83	19.478	0.138
1077.58	19.451	0.111	1	1572.33	19.480	0.140
1088.08	19.451	0.111	1	1582.83	19.478	0.138
1098.58	19.452	0.111	1	1593.33	19.478	0.138
1109.08	19.452	0.112	1	1603.83	19.479	0.139
1119.83	19.452	0.112	1	1614.33	19.479	0.139
1130.33	19.453	0.113	1	1625.08	19.480	0.140
1140.83	19.454	0.114	1	1635.58	19.482	0.142
1151.33	19.454	0.114	1	1646.08	19.481	0.141
1161.83	19.455	0.115		1656.58	19.482	0.142
1172.33	19.455	0.115		1667.08	19.482	0.142
1182.83	19.455	0.115		1677.58	19.482	0.142
1193.33	19.457	0.117	1	1688.08	19,482	0.142
1203.83	19.458	0.118		1698.58	19,483	0.143
1214.33	19.457	0.117		1709.08	19,484	0.144
1225.08	19.458	0.118	1	1719.83	19.485	0.145
1235.58	19.458	0.118		1730.33	19.486	0.146
1246.08	19.460	0.119		1740.83	19.485	0.145
1256.58	19.460	0.120	1	1751.33	19.487	0.147
1267.08	19.461	0.121		1761.83	19.486	0.146
1277.58	19.459	0.119		1772.33	19.487	0.147
1288.08	19.462	0.122		1782.83	19.487	0.147
1298.58	19.462	0.122		1793.33	19.486	0.146
1309.08	19.465	0.125		1803.83	19.488	0.148
1319.83	19.466	0.126		1814.33	19.488	0.148
1330.33	19.466	0.126		1825.08	19.488	0.148
1340.83	19.466	0.126		1835.58	19.488	0.148
1351.33	19.467	0.127	1	1846.08	19.488	0.148
1361.83	19.467	0.127		1856.58	19.488	0.148
1372.33	19.470	0.130	1	1867.08	19.488	0.148
1382.83	19.470	0.130		1877.58	19.489	0.149
1393.33	19.470	0.130		1888.08	19.491	0.151
1403.83	19.471	0.131		1898.58	19.491	0.151
1414.33	19.471	0.131		1909.08	19.491	0.151
1425.08	19.472	0.132		1919.83	19.491	0.151
1435.58	19.473	0.133		1930.33	19.492	0.152
1446.08	19.473	0.133	1	1940.83	19.492	0.152
1456.58	19.474	0.134		1951.33	19.493	0.153
1467.08	19.473	0.133		1961.83	19.493	0.153
1477.58	19.474	0.134		1972.33	19,494	0.154
1488.08	19.475	0.135	1	1982.83	19.496	0.156
1498.58	19,475	0.135	1	1993.33	19,495	0.154
1509.08	19.477	0.137	1	2003.83	19,495	0.155
1519.83	19,476	0,136	1	2014 33	19,496	0.156
1530.33	19,476	0,136	1	2025.08	19,495	0.155
1540.83	19 478	0 138	1	2035 58	19 497	0 157
1551.33	19.478	0.138	1	2046.08	19.495	0.155

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (4 of 7).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	Depth	Drawdown		Time	Depth	Drawdown
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t (min)	(m)	dd (m)		t (min)	(m)	dd (m)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2056.58	19.496	0.156		2551.33	19.516	0.176
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2067.08	19.497	0.157		2561.83	19.518	0.178
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2077.58	19.497	0.157		2572.33	19.517	0.177
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2088.08	19.498	0.158		2582.83	19.519	0.179
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2098.58	19.499	0.159		2593.33	19.520	0.180
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2109.08	19.499	0.159		2603.83	19.519	0.179
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2119.83	19.500	0.160		2614.33	19.520	0.180
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2130.33	19.500	0.160		2625.08	19.520	0.180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2140.83	19.500	0.160		2635.58	19.521	0.181
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2151.33	19.501	0.161		2646.08	19.522	0.182
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2161.83	19.501	0.161		2656.58	19.524	0.184
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2172.33	19.502	0.162		2667.08	19.524	0.183
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2182.83	19.502	0.162	1	2677.58	19.524	0.184
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2193.33	19.503	0.163	1	2688.08	19.522	0.182
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2203.83	19.503	0.163		2698.58	19.523	0.183
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2214.33	19.503	0.163		2709.08	19.525	0.185
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2225.08	19.503	0.163		2719.83	19.525	0.185
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2235.58	19.503	0.163		2730.33	19.525	0.185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2246.08	19.504	0.164		2740.83	19.524	0.184
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2256.58	19.505	0.165		2751.33	19.523	0.183
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2267.08	19.504	0.164		2761.83	19.524	0.184
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2277.58	19.502	0.162	1	2772.33	19.525	0.185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2288.08	19.503	0.163	1	2782.83	19.526	0.186
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2298.58	19.503	0.163		2793.33	19.525	0.185
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2309.08	19.504	0.164	1	2803.83	19.526	0.186
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2319.83	19.504	0.164		2814.33	19.526	0.186
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2330.33	19.503	0.163		2825.08	19.525	0.185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2340.83	19.505	0.165		2835.58	19.527	0.187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2351.33	19.505	0.165		2846.08	19.526	0.186
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2361.83	19.507	0.167		2856.58	19.525	0.185
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2372.33	19.506	0.166		2867.08	19.526	0.186
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2382.83	19.507	0.166		2877.58	19.527	0.187
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2393.33	19.508	0.168		2888.08	19.527	0.187
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2403.83	19.509	0.169		2898.58	19.528	0.188
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2414.33	19.511	0.171		2909.08	19.526	0.186
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2425.08	19.513	0.173		2919.83	19.525	0.185
2446.0819.5130.1732456.5819.5140.1742456.5819.5140.1742467.0819.5150.1752477.5819.5150.1752488.0819.5150.1752498.5819.5150.1752509.0819.5160.1762519.8319.5160.1762503.3319.5160.1762540.8319.5170.177	2435.58	19.514	0.174		2930.33	19.525	0.185
2456.5819.5140.1742467.0819.5150.1752477.5819.5150.1752488.0819.5150.1752498.5819.5150.1752509.0819.5160.1762519.8319.5160.1762530.3319.5160.1762540.8319.5170.177	2446.08	19.513	0.173		2940.83	19.526	0.186
2467.0819.5150.1752477.5819.5150.1752488.0819.5150.1752488.0819.5150.1752498.5819.5150.1752509.0819.5160.1762519.8319.5160.1762530.3319.5160.1762540.8319.5170.177	2456.58	19.514	0.174		2951.33	19.527	0.186
2477.58 19.515 0.175 2488.08 19.515 0.175 2498.58 19.515 0.175 2509.08 19.516 0.176 2519.83 19.516 0.176 2530.33 19.516 0.176 2540.83 19.517 0.177	2467.08	19.515	0.175	1	2961.83	19.526	0.186
2488.08 19.515 0.175 2498.58 19.515 0.175 2509.08 19.516 0.176 2519.83 19.516 0.176 2530.33 19.516 0.176 2540.83 19.517 0.177	2477.58	19.515	0.175	1	2972.33	19.526	0.186
2498.58 19.515 0.175 2993.33 19.523 0.183 2509.08 19.516 0.176 3003.83 19.523 0.183 2519.83 19.516 0.176 3014.33 19.524 0.184 2530.33 19.516 0.176 3025.08 19.524 0.184 2540.83 19.517 0.177 3035.58 19.525 0.185	2488.08	19.515	0.175	1	2982.83	19.524	0.184
2509.08 19.516 0.176 3003.83 19.523 0.183 2519.83 19.516 0.176 3014.33 19.524 0.184 2530.33 19.516 0.176 3025.08 19.524 0.184 2540.83 19.517 0.177 3035.58 19.525 0.185	2498.58	19.515	0.175	1	2993.33	19.523	0.183
2519.83 19.516 0.176 3014.33 19.524 0.184 2530.33 19.516 0.176 3025.08 19.524 0.184 2540.83 19.517 0.177 3035.58 19.525 0.185	2509.08	19.516	0.176	1	3003.83	19.523	0.183
2530.33 19.516 0.176 3025.08 19.524 0.184 2540.83 19.517 0.177 3035.58 19.525 0.185	2519.83	19.516	0.176	1	3014.33	19.524	0.184
2540.83 19.517 0.177 3035.58 19.525 0.185	2530.33	19.516	0.176	1	3025.08	19.524	0.184
	2540.83	19.517	0.177	1	3035.58	19,525	0.185

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (5 of 7).

Time	Depth	Drawdown]	Time	Depth	Drawdown
t (min)	(m)	dd (m)		t (min)	(<i>m</i>)	dd (m)
3046.08	19.524	0.184	1	3540.83	19.534	0.194
3056.58	19.525	0.185		3551.33	19.535	0.195
3067.08	19.526	0.186		3561.83	19.535	0.195
3077.58	19.526	0.186		3572.33	19.536	0.196
3088.08	19.525	0.185		3582.83	19.535	0.195
3098.58	19.526	0.186		3593.33	19.534	0.194
3109.08	19.528	0.188		3603.83	19.536	0.196
3119.83	19.526	0.186		3614.33	19.536	0.195
3130.33	19.524	0.184		3625.08	19.537	0.197
3140.83	19.525	0.185		3635.58	19.539	0.198
3151.33	19.526	0.186		3646.08	19.538	0.198
3161.83	19.525	0.185		3656.58	19.538	0.198
3172.33	19.525	0.185		3667.08	19.537	0.197
3182.83	19.527	0.187		3677.58	19.538	0.198
3193.33	19.527	0.187		3688.08	19.540	0.200
3203.83	19.528	0.188		3698.58	19.539	0.199
3214.33	19.527	0.187	1	3709.08	19.540	0.200
3225.08	19.529	0.189		3719.83	19.540	0.200
3235.58	19.528	0.188		3730.33	19.538	0.198
3246.08	19.527	0.187		3740.83	19.537	0.197
3256.58	19.526	0.186	1	3751.33	19.538	0.198
3267.08	19.526	0.186		3761.83	19.539	0.199
3277.58	19.527	0.187		3772.33	19.541	0.201
3288.08	19.528	0.188	1	3782.83	19.538	0.198
3298.58	19.529	0.189		3793.33	19.544	0.204
3309.08	19.530	0.189		3803.83	19.542	0.202
3319.83	19.528	0.188		3814.33	19.545	0.204
3330.33	19.530	0.190		3825.08	19.546	0.206
3340.83	19.530	0.190		3835.58	19.546	0.206
3351.33	19.531	0.191		3846.08	19.541	0.201
3361.83	19.531	0.191		3856.58	19.541	0.201
3372.33	19.532	0.192		3867.08	19.540	0.200
3382.83	19.531	0.191		3877.58	19.538	0.198
3393.33	19.532	0.192		3888.08	19.537	0.197
3403.83	19.532	0.192		3898.58	19.538	0.198
3414.33	19.532	0.192		3909.08	19.539	0.199
3425.08	19.532	0.192		3919.83	19.541	0.201
3435.58	19.532	0.192		3930.33	19.542	0.201
3446.08	19.533	0.192		3940.83	19.544	0.204
3456.58	19.532	0.192	1	3951.33	19.546	0.206
3467.08	19.533	0.193		3961.83	19.547	0.207
3477.58	19.533	0.193	1	3972.33	19.549	0.209
3488.08	19.531	0.191]	3982.83	19.550	0.210
3498.58	19.532	0.192	1	3993.33	19.548	0.208
3509.08	19.533	0.193]	4003.83	19.550	0.210
3519.83	19.532	0.192]	4014.33	19.549	0.209
3530.33	19.534	0.194		4025.08	19.547	0.207

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (6 of 7).

Time	Depth	Drawdown	
t (min)	(m)	dd (m)	
4035.58	19.545	0.205	
4046.08	19.543	0.203	
4056.58	19.544	0.204	
4067.08	19.549	0.209	
4077.58	19.553	0.213	
4088.08	19.548	0.208	
4098.58	19.545	0.205	
4109.08	19.544	0.204	
4119.83	19.544	0.204	
4130.33	19.544	0.204	
4140.83	19.544	0.204	
4151.33	19.544	0.203	
4161.83	19.546	0.206	
4172.33	19.543	0.203	
4182.83	19.545	0.205	
4193.33	19.546	0.206	
4203.83	19.547	0.207	
4214.33	19.552	0.212	
4225.08	19.551	0.211	
4235.58	19.548	0.208	
4246.08	19.544	0.204	
4256.58	19.543	0.203	
4267.08	19.544	0.204	
4277.58	19.543	0.203	
4288.08	19.542	0.202	
4298.58	19.543	0.203	
4309.08	19.542	0.202	
4319.83	19.541	0.201	

Table C4 Recorded data during the 72-hour aquifer test in the monitoring well, BH2 (7 of 7).
Time	Depth	Recovery	Time	Depth	Recovery
(min)	(<i>m</i>)	(m)	(min)	(m)	(<i>m</i>)
0 (Start)	19.542	0.000	13.50	19.530	0.012
0.25	19.542	0.000	14.00	19.529	0.013
0.50	19.541	0.001	14.50	19.528	0.014
0.75	19.539	0.003	15.00	19.528	0.014
1.00	19.540	0.003	15.50	19.530	0.012
1.25	19.538	0.004	16.00	19.528	0.014
1.50	19.539	0.003	16.50	19.529	0.014
1.75	19.539	0.003	17.00	19.528	0.015
2.00	19.539	0.003	17.50	19.527	0.015
2.25	19.537	0.005	18.00	19.526	0.016
2.50	19.538	0.004	18.50	19.525	0.017
2.75	19.537	0.005	19.00	19.525	0.017
3.00	19.536	0.006	19.50	19.527	0.015
3.25	19.538	0.005	20.00	19.526	0.016
3.50	19.536	0.006	20.50	19.526	0.016
3.75	19.536	0.006	21.00	19.525	0.017
4.00	19.536	0.006	21.50	19.524	0.018
4.25	19.535	0.007	22.00	19.524	0.018
4.50	19.536	0.006	22,50	19.524	0.018
4.75	19.537	0.005	23.00	19.524	0.018
5.00	19.535	0.007	23.50	19.520	0.022
5.25	19.536	0.006	24.00	19.524	0.018
5.50	19.534	0.009	24.50	19.524	0.018
5.75	19.534	0.008	25.00	19.523	0.019
6.00	19.535	0.007	25.50	19.523	0.019
6.25	19.536	0.006	26.00	19.522	0.020
6.50	19.534	0.008	26.50	19.523	0.019
6.75	19.535	0.007	27.00	19.521	0.021
7.00	19.534	0.008	27.50	19.522	0.020
7.25	19.537	0.006	28.00	19.522	0.020
7.50	19.531	0.011	28.50	19.522	0.020
7.75	19.531	0.011	29.00	19.522	0.020
8.00	19.533	0.009	29.50	19.522	0.020
8.25	19.532	0.010	30.00	19.522	0.020
8.50	19.531	0.011	31.00	19.522	0.020
8.75	19.533	0.009	32.00	19.521	0.021
9.00	19.532	0.010	33.00	19.520	0.022
9.25	19.532	0.010	34.00	19.521	0.021
9.50	19.530	0.012	35.00	19.520	0.023
9.75	19.532	0.010	36.00	19.519	0.023
10.00	19.531	0.012	37.00	19.518	0.024
10.50	19.532	0.010	38.00	19.518	0.024
11.00	19.533	0.009	39.00	19.515	0.027
11.50	19.532	0.010	40.00	19.513	0.029
12.00	19.530	0.012	41.00	19.523	0.019
12.50	19.531	0.011	42.00	19.526	0.016
13.00	19.531	0.011	43.00	19.526	0.016

Table C5 Recovery data after the 72-hour aquifer test in the monitoring well, BH2 (1 of 5).

Time	Depth	Recovery		Time	Depth	Recovery
(min)	(m)	<i>(m)</i>		(min)	(<i>m</i>)	(<i>m</i>)
44.00	19.528	0.014	1	95.00	19.504	0.038
45.00	19.528	0.014		100.00	19.502	0.041
46.00	19.527	0.015		105.00	19.500	0.042
47.00	19.528	0.014		110.00	19.498	0.044
48.00	19.525	0.017		115.00	19.496	0.046
49.00	19.523	0.019		120.00	19.499	0.043
50.00	19.524	0.018		125.00	19.497	0.045
51.00	19.524	0.018		130.00	19.499	0.044
52.00	19.524	0.018		135.00	19.497	0.045
53.00	19.524	0.018		140.00	19.497	0.045
54.00	19.523	0.019		145.00	19.496	0.046
55.00	19.525	0.017		150.00	19.494	0.049
56.00	19.524	0.018		155.00	19.492	0.050
57.00	19.521	0.021		160.00	19.491	0.051
58.00	19.512	0.030		165.00	19.490	0.052
59.00	19.519	0.023		170.00	19.487	0.055
60.00	19.519	0.023		175.00	19.485	0.057
61.00	19.521	0.021		180.00	19.487	0.055
62.00	19.519	0.023		185.00	19.488	0.054
63.00	19.521	0.021		190.00	19.486	0.056
64.00	19.519	0.023		195.00	19.485	0.057
65.00	19.519	0.023		200.00	19.483	0.059
66.00	19.518	0.024		205.00	19.482	0.060
67.00	19.516	0.026		210.00	19.483	0.059
68.00	19.518	0.024		215.00	19.481	0.061
69.00	19.514	0.028		220.00	19.481	0.061
70.00	19.516	0.026		225.00	19.479	0.063
71.00	19.514	0.028		230.00	19.478	0.064
72.00	19.512	0.030		235.00	19.482	0.060
73.00	19.512	0.030		240.00	19.479	0.063
74.00	19.512	0.030		245.00	19.476	0.066
75.00	19.511	0.031		250.00	19.478	0.064
76.00	19.511	0.031		255.00	19.474	0.068
77.00	19.511	0.031		260.00	19.476	0.066
78.00	19.511	0.031	1	265.00	19.476	0.066
79.00	19.509	0.033		270.00	19.470	0.072
80.00	19.511	0.031	1	275.00	19.473	0.069
81.00	19.509	0.033		280.00	19.473	0.069
82.00	19.509	0.033		285.00	19.472	0.070
83.00	19.509	0.033	4	290.00	19.471	0.071
84.00	19.508	0.034	4	295.00	19.471	0.071
85.00	19.507	0.035	4	300.00	19.470	0.072
86.00	19.508	0.034	4	305.00	19.470	0.072
87.00	19.507	0.035	4	310.00	19.469	0.073
88.00	19.507	0.035	4	315.00	19.470	0.072
89.00	19.507	0.035	4	320.00	19.472	0.070
90.00	19.506	0.036		325.00	19.470	0.072

Table C5 Recovery data after the 72-hour aquifer test in the monitoring well, BH2 (2 of 5).

Time	Depth	Recovery]	Time	Depth	Recovery
(min)	<i>(m)</i>	(m)		(min)	(<i>m</i>)	(<i>m</i>)
330.00	19.467	0.075		565.00	19.448	0.094
335.00	19.468	0.074		570.00	19.447	0.095
340.00	19.467	0.075		575.00	19.448	0.095
345.00	19.469	0.073		580.00	19.447	0.095
350.00	19.467	0.075		585.00	19.448	0.095
355.00	19.468	0.075		590.00	19.447	0.095
360.00	19.465	0.077		595.00	19.446	0.096
365.00	19.464	0.078		600.00	19.446	0.096
370.00	19.464	0.078		605.00	19.445	0.097
375.00	19.464	0.078		610.00	19.444	0.098
380.00	19.463	0.079		615.00	19.443	0.099
385.00	19.461	0.081		620.00	19.444	0.098
390.00	19.462	0.080		625.00	19.442	0.100
395.00	19.461	0.081		630.00	19.442	0.100
400.00	19.459	0.083		635.00	19.440	0.102
405.00	19.460	0.082		640.00	19.439	0.103
410.00	19.460	0.082		645.00	19.439	0.103
415.00	19.460	0.082		650.00	19.442	0.100
420.00	19.460	0.082		655.00	19.442	0.100
425.00	19.459	0.083		660.00	19.442	0.100
430.00	19.459	0.083		665.00	19.439	0.103
435.00	19.457	0.085		670.00	19.440	0.102
440.00	19.456	0.086		675.00	19.441	0.101
445.00	19.456	0.087		680.00	19.440	0.102
450.00	19.454	0.088		685.00	19.440	0.102
455.00	19.455	0.087		690.00	19.440	0.102
460.00	19.455	0.087		695.00	19.437	0.105
465.00	19.454	0.088		700.00	19.437	0.105
470.00	19.453	0.089		705.00	19.439	0.103
475.00	19.451	0.091		720.00	19.436	0.106
480.00	19.455	0.087		725.00	19.435	0.107
485.00	19.452	0.090		730.00	19.436	0.106
490.00	19.453	0.089		735.00	19.435	0.108
495.00	19.452	0.090		740.00	19.435	0.107
500.00	19.450	0.092		745.00	19.434	0.108
505.00	19.449	0.093		750.00	19.434	0.108
510.00	19.449	0.093		755.00	19.434	0.108
515.00	19.449	0.093		760.00	19.434	0.108
520.00	19.449	0.093		765.00	19.433	0.109
525.00	19.450	0.092		770.00	19.434	0.108
530.00	19.448	0.094		775.00	19.431	0.111
535.00	19.448	0.094		780.00	19.433	0.109
540.00	19.453	0.090		785.00	19.433	0.109
545.00	19.450	0.092		790.00	19.431	0.111
550.00	19.451	0.091		795.00	19.433	0.109
555.00	19.450	0.092		800.00	19.433	0.109
560.00	19.448	0.094		805.00	19.434	0.108

Table C5 Recovery data after the 72-hour aquifer test in the monitoring well, BH2 (3 of 5).

Time	Depth	Recovery]	Time	Depth	Recovery
(min)	(<i>m</i>)	(m)		(min)	(m)	(<i>m</i>)
810.00	19.434	0.108		1045.00	19.426	0.116
815.00	19.434	0.108		1050.00	19.426	0.116
820.00	19.434	0.108		1055.00	19.426	0.116
825.00	19.432	0.110		1060.00	19.426	0.117
830.00	19.432	0.110		1065.00	19.425	0.117
835.00	19.433	0.109		1070.00	19.425	0.117
840.00	19.434	0.108		1075.00	19.425	0.117
845.00	19.431	0.111		1080.00	19.425	0.117
850.00	19.432	0.111		1085.00	19.425	0.117
855.00	19.431	0.111		1090.00	19.425	0.117
860.00	19.430	0.112		1095.00	19.424	0.118
865.00	19.430	0.112		1100.00	19.425	0.117
870.00	19.430	0.112		1105.00	19.425	0.117
875.00	19.430	0.113		1110.00	19.424	0.118
880.00	19.429	0.113		1115.00	19.424	0.118
885.00	19.430	0.113		1120.00	19.425	0.117
890.00	19.430	0.112		1125.00	19.424	0.118
895.00	19.429	0.113		1130.00	19.426	0.116
900.00	19.429	0.113		1135.00	19.425	0.117
905.00	19.429	0.114		1140.00	19.424	0.118
910.00	19.429	0.113		1145.00	19.424	0.118
915.00	19.428	0.114		1150.00	19.425	0.118
920.00	19.429	0.113		1155.00	19.425	0.117
925.00	19.429	0.113		1160.00	19.426	0.116
930.00	19.428	0.114		1165.00	19.424	0.118
935.00	19.428	0.114		1170.00	19.424	0.118
940.00	19.429	0.113		1175.00	19.425	0.117
945.00	19.430	0.112		1180.00	19.426	0.116
950.00	19.429	0.114		1185.00	19.427	0.115
955.00	19.429	0.113		1190.00	19.426	0.117
960.00	19.428	0.114		1195.00	19.426	0.116
965.00	19.427	0.115		1200.00	19.426	0.116
970.00	19.427	0.115		1205.00	19.426	0.116
975.00	19.426	0.116		1210.00	19.426	0.116
980.00	19.426	0.116		1215.00	19.426	0.116
985.00	19.425	0.117		1220.00	19.426	0.116
990.00	19.426	0.117		1225.00	19.426	0.116
995.00	19.425	0.117		1230.00	19.426	0.116
1000.00	19.427	0.115		1235.00	19.428	0.114
1005.00	19.427	0.115		1240.00	19.428	0.114
1010.00	19.425	0.117		1245.00	19.428	0.114
1015.00	19.426	0.116		1250.00	19.429	0.113
1020.00	19.428	0.114		1255.00	19.429	0.113
1025.00	19.427	0.115		1260.00	19.429	0.113
1030.00	19.428	0.114		1265.00	19.428	0.114
1035.00	19.426	0.116		1270.00	19.426	0.116
1040.00	19.427	0.115		1275.00	19.425	0.117

Table C5 Recovery data after the 72-hour aquifer test in the monitoring well, BH2 (4 of 5).

Time	Depth	Recovery
(min)	(m)	(m)
1280.00	19.427	0.115
1285.00	19.431	0.111
1290.00	19.428	0.114
1295.00	19.425	0.117
1300.00	19.426	0.117
1305.00	19.424	0.118
1310.00	19.424	0.118
1315.00	19.423	0.119
1320.00	19.423	0.119
1325.00	19.422	0.120
1330.00	19.423	0.119
1335.00	19.422	0.120
1340.00	19.423	0.119
1345.00	19.421	0.121
1350.00	19.421	0.121
1355.00	19.421	0.121
1360.00	19.420	0.122
1365.00	19.421	0.121
1370.00	19.420	0.122
1375.00	19.421	0.121
1380.00	19.419	0.123
1385.00	19.420	0.122
1390.00	19.428	0.114
1395.00	19.428	0.114
1400.00	19.431	0.111
1405.00	19.432	0.110

Table C5 Recovery data after the 72-hour aquifer test in the monitoring well, BH2 (5 of 5).

APPENDIX D

Laboratory Analytical Reports of Chemical and Bacteriological Analysis

			Western Reg	ional Health Care		
Run Date: Run Time:	22/03/18 0916	Western	Health Care Cor Corner Broo Department Of L	p LAB **LIVE** k, NL aboratory RECEIVED) MAR 2 8 20	Page: 1 ** LIVE **
NAME: PW,	SEOK EUNJEON	3				
Report	for: GOV.SERV	. CENTRE -	STEPHEN			
3PEC #:	18:WA0000885R	OLL: RECD:	19/03/18-1835 20/03/18-1522	COLLECTED BY: SOURCE:	ES WATER	
COMMENTS:	NAME: EUNJEONG S MAJORS PATH ST NUMBER: 44516 SI	SEOK FRA JOHNS A PECIMEN	CFLOW CONSULTANT 1A 5A1 TELEPHONE TYPE:DRILLED WEL	S INC ADDRESS:154 :739-7270 BARCODE L		
Procedur	¢e		Result		Verified	Site
			*** MICROBIO	LOGY ***		
BACTERIC	DLOGICAL WATER	ANALYSIS	Final		21/03/18-153	8
	TAL COLTROPMS		ABSENT / 100	MT.		

GOVERNMENT	Stephenville Office 643-8650
Satisfactory Unsatisfactory	WATER TEST RESULTS:
Mar. 28/18	Environmental Health Officer I

	A 100 00 1	A 10.00 A		-		
19te	30731	2018	Time	2.50	02.1	
Date.	2.2.11	2010	THRE.	2.00.		1.41

Western Regional Health Care

Page 6 of 26

Run Date: 23/03/18 Run Time: 1545 Western Health Care Corp. - LAB **LIVE** Corner Brook, NL Department Of Laboratory

** LIVE **

Page: 5

+	27R OLL: 21/03/18-0832 RECD: 22/03/18-1104	COLLECTED BY: ST SOURCE: WATER	
COMMENTS: NAME:SHAWN 5A1 TELEPH TYPE:DRILI	I THOMPSON ADDRESS:154 MAJORS PA IONE:239-2270 BARCODE NUMBER:445 JED WELL FRACFLOW CONSULTANTS IN	TH ST JOHNS ALA 15 SPECIMEN C	
Procedure	Result	Verified	Site
Procedure	Result *** MICROBIOLOG	Verified Y ***	Site
Procedure	Result *** MICROBIOLOG TER ANALYSIS Final	Verified Y *** 23/03/18-114	Site

GOVERAMENT BB SERVICE BJ CENTRE	Stephenville Office 643-8650
INTERPRETATION OF Satisfactory Unsatisfactory Comments:	WATER TEST RESULTS:
Mar 26,2018 Da-	n J An . Environmental Health Office It

	Date	3/23/20	18 Time	2:51:01	PM
--	------	---------	---------	---------	----

Western Regional Health Care

Department Of Laboratory

Run Date: 23/03/18Western Health Care Corp. - LAB **LIVE**Run Time: 1545Corner Brook, NL

Page: 6

** LIVE **

Report	for: GOV.SERV	. CENTRE-STEPHEN		
SPEC #:	18:WA0000928R	OLL: 21/03/18-1412 RECD: 22/03/18-1106	COLLECTED BY: SOURCE:	ST WATER
COMMENTS:	NAME:SHAWN THO 5A1 TELEPHONE: TYPE:DRILLED W	MPSON ADDRESS:154 MAJOF 739-7270 BARCODE NUMBER ELL FRACFLOW CONSULTANT	RS PATH ST JOHNS AJ R:50769 SPECIMEN IS INC	IA Vieni Girca
COMMENTS: Procedua	NAME:SHAWN THO 5A1 TELEPHONE: TYPE:DRILLED W	MPSON ADDRESS:154 MAJOR 739-7270 EARCODE NUMBER ELL FRACFLOW CONSULTANT Result *** MICROE	RS PATH ST JOHNS AJ R:50769 SPECIMEN IS INC IOLOGY ***	LA Verified Site
Procedur	NAME: SHAWN THOM 5A1 TELEPHONE: TYPE: DRILLED W	MPSON ADDRESS:154 MAJOH 739-7270 BARCODE NUMBEH ELL FRACFLOW CONSULTANT Result *** MICROB:	RS PATH ST JOHNS AJ R:50769 SPECIMEN IS INC IOLOGY ***	Verified Site
Procedur > BACTERIC	NAME: SHAWN THOM 5A1 TELEPHONE: TYPE: DRILLED W Ce DLOGICAL WATER DTAL COLIFORMS	MPSON ADDRESS:154 MAJOH 739-7270 BARCODE NUMBEH ELL FRACFLOW CONSULTANT Result *** MICROB ANALYSIS Final ABSENT / 10	RS PATH ST JOHNS AJ R:50769 SPECIMEN IS INC IOLOGY ***	Verified Site 23/03/18-1144

SOVERNMENT 19 SERVICE 49 CENTRE	Stephenville Office 643-8650
INTERPRETATION OF Shtisfactory Unsatisfactory comments:	WATER TEST RESULTS:
Mar 26, Zer 8 I Date	Frvironmental Health Officer III

Page 7 of 26

CLIENT NAME: FRACFLOW CONSULTANTS 154 MAJOR'S PATH ST. JOHN'S PATH, NL A1A5A1 (709) 739-7270

ATTENTION TO: John Gale

PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K322806

WATER ANALYSIS REVIEWED BY: Jason Coughtrey, Inorganics Supervisor

DATE REPORTED: Apr 03, 2018

PAGES (INCLUDING COVER): 14

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (709)747-8573

*NOTES

VERSION 2:Version 2.0 supersedes Version 1.0. Updated RDL for Hg. Issued April 3, 2018.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 14

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18K322806 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

				[Dissolved Metals
DATE RECEIVED: 2018-03-23					DATE REPORTED: 2018-04-03
				3113-MHPW1-	
	S	AMPLE DESC	RIPTION:	WS1	
		SAMP	LE TYPE:	Water	
		DATE S	AMPLED:	2018-03-19	
Parameter	Unit	G/S	RDL	9144903	
Dissolved Aluminum	ug/L	Variable	5	<5	
Dissolved Antimony	ug/L		2	<2	
Dissolved Arsenic	ug/L	5	2	<2	
Dissolved Barium	ug/L		5	41	
Dissolved Beryllium	ug/L		2	<2	
Dissolved Bismuth	ug/L		2	<2	
Dissolved Boron	ug/L	29000,	5	21	
Dissolved Cadmium	ug/L	1.0, 0.09	0.017	<0.017	
Dissolved Chromium	ug/L		1	2	
Dissolved Cobalt	ug/L		1	<1	
Dissolved Copper	ug/L	Equation	2	4	
Dissolved Iron	ug/L	300	50	<50	
Dissolved Lead	ug/L	Equation	0.5	0.8	
Dissolved Manganese	ug/L		2	3	
Dissolved Molybdenum	ug/L	73	2	<2	
Dissolved Nickel	ug/L	Equation	2	<2	
Dissolved Selenium	ug/L	1.0	1	<1	
Dissolved Silver	ug/L	0.25	0.1	<0.1	
Dissolved Strontium	ug/L		5	84	
Dissolved Thallium	ug/L	0.8	0.1	<0.1	
Dissolved Tin	ug/L		2	<2	
Dissolved Titanium	ug/L		2	<2	
Dissolved Uranium	ug/L	33, 15	0.1	0.4	
Dissolved Vanadium	ug/L		2	<2	
Dissolved Zinc	ug/L	30	5	81	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 9144903 Analysis completed on a filtered sample.

Certified By:

Jason Coto

AGAT WORK ORDER: 18K322806 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals											
DATE RECEIVED: 2018-03-23						DATE REPORTED: 2018-04-03					
Parameter	Unit	SAMPLE DESC SAMP DATE S G / S	RIPTION: LE TYPE: AMPLED: RDI	3113-MHPW1- WS1 Water 2018-03-19 9144903	3113-MHPW1- WS2 Water 2018-03-20 9144904						
pH	0	6.5-9.0		8.11	8.11						
Reactive Silica as SiO2	mg/L		0.5	10.9	7.4						
Chloride	mg/L	640, 120	1	13	12						
Fluoride	mg/L	0.12	0.12	<0.12	<0.12						
Sulphate	mg/L		2	5	4						
Alkalinity	mg/L		5	142	142						
True Color	TCU	Narrative	5	13	14						
Turbidity	NTU	Narrative	0.1	0.8	1.1						
Electrical Conductivity	umho/cm		1	310	313						
Nitrate + Nitrite as N	mg/L		0.05	0.43	0.37						
Nitrate as N	mg/L	550, 13	0.05	0.43	0.37						
Nitrite as N	mg/L	0.06	0.05	<0.05	<0.05						
Ammonia as N	mg/L	Fact Sheet	0.03	0.03	0.05						
Total Organic Carbon	mg/L		0.5	<0.5	<0.5						
Ortho-Phosphate as P	mg/L		0.01	<0.01	<0.01						
Total Sodium	mg/L		0.1	8.2	8.1						
Total Potassium	mg/L		0.1	1.0	0.9						
Total Calcium	mg/L		0.1	50.3	47.0						
Total Magnesium	mg/L		0.1	6.9	6.9						
Bicarb. Alkalinity (as CaCO3)	mg/L		5	142	142						
Carb. Alkalinity (as CaCO3)	mg/L		10	<10	<10						
Hydroxide	mg/L		5	<5	<5						
Calculated TDS	mg/L		1	172	166						
Hardness	mg/L			154	146						
Langelier Index (@20C)	NA			0.35	0.33						
Langelier Index (@ 4C)	NA			0.03	0.01						
Saturation pH (@ 20C)	NA			7.76	7.78						
Saturation pH (@ 4C)	NA			8.08	8.10						
Anion Sum	me/L			3.34	3.29						

Certified By:

Josa Coup

Certificate of Analysis

AGAT WORK ORDER: 18K322806 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals											
DATE RECEIVED: 2018-03-23						DATE REPORTED: 2018-04-03					
Parameter	Unit	SAMPLE DESC SAMP DATE S G / S	RIPTION: LE TYPE: AMPLED: RDL	3113-MHPW1- WS1 Water 2018-03-19 9144903	3113-MHPW1- WS2 Water 2018-03-20 9144904						
Cation sum	me/L			3.47	3.30						
% Difference/ Ion Balance (NS)	%			1.9	0.2						
Total Aluminum	ug/L	Variable	5	8	7						
Total Antimony	ug/L		2	<2	<2						
Total Arsenic	ug/L	5	2	<2	<2						
Total Barium	ug/L		5	39	39						
Total Beryllium	ug/L		2	<2	<2						
Total Bismuth	ug/L		2	<2	<2						
Total Boron	ug/L	29000,	5	12	6						
Total Cadmium	ug/L	1.0, 0.09	0.017	<0.017	<0.017						
Total Chromium	ug/L		1	<1	<1						
Total Cobalt	ug/L		1	<1	<1						
Total Copper	ug/L	Equation	1	44	13						
Total Iron	ug/L	300	50	89	65						
Total Lead	ug/L	Equation	0.5	4.5	1.8						
Total Manganese	ug/L		2	4	3						
Total Molybdenum	ug/L	73	2	<2	<2						
Total Nickel	ug/L	Equation	2	2	<2						
Total Phosphorous	mg/L	Fact Sheet	0.02	0.03	0.03						
Total Selenium	ug/L	1	1	<1	<1						
Total Silver	ug/L	0.25	0.1	<0.1	<0.1						
Total Strontium	ug/L		5	84	86						
Total Thallium	ug/L	0.8	0.1	<0.1	<0.1						
Total Tin	ug/L		2	<2	<2						
Total Titanium	ug/L		2	<2	<2						
Total Uranium	ug/L	33, 15	0.1	0.4	0.4						
Total Vanadium	ug/L		2	<2	<2						
Total Zinc	ug/L	30	5	82	23						

Certified By:

Jason Cotaful

AGAT WORK ORDER: 18K322806 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

DATE REPORTED: 2018-04-03

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals

DATE RECEIVED: 2018-03-23

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Jason Cour

AGAT WORK ORDER: 18K322806 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

				Vario	us Inorganics (Water)
DATE RECEIVED: 2018-03-23					DATE REPORTED: 2018-04-03
				3113-MHPW1-	
	:	SAMPLE DES	CRIPTION:	WS1	
		SAM	PLE TYPE:	Water	
		DATES	SAMPLED:	2018-03-19	
Parameter	Unit	G/S	RDL	9144903	
Dissolved Organic Carbon	mg/L		0.5	<0.5	
Mercury	mg/L	0.000026	0.000026	<0.000026	
Mercury Digest				У	
Total Kjeldahl Nitrogen as N	mg/L		0.4	0.5	
Bromide	mg/L		0.05	<0.05	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Jason Cough

Guideline Violation

AGAT WORK ORDER: 18K322806 PROJECT: 3113-Stephenville, NL 57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

CLIENT NAME: FRACFLOW CONSULTANTS

ATTENTION TO: John Gale

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
9144903	3113-MHPW1-WS1	NS-CCME FWAL	Dissolved Metals	Dissolved Zinc	ug/L	30	81
9144903	3113-MHPW1-WS1	NS-CCME FWAL	Standard Water Analysis + Total Metals	Total Zinc	ug/L	30	82

Quality Assurance

Water Analysia

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K322806

ATTENTION TO: John Gale

SAMPLED BY:

				vvale		larys	15								
RPT Date: Apr 03, 2018			C	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits
	Baton	ld	Dup "I	Dup #2	IN D		Value	Lower	Upper	110001019	Lower	Upper	Receivery	Lower	Upper
Standard Water Analysis + Total	Metals														
рН	9144903 9	9144903	8.11	8.10	0.1%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
Reactive Silica as SiO2	1 9	9133260	7.0	10	35.3%	< 0.5	113%	80%	120%		80%	120%	120%	80%	120%
Chloride	9148923		(256)	(263)	2.5%	< 1	91%	80%	120%	NA	80%	120%	NA	80%	120%
Fluoride	9148923		<0.12	<0.12	NA	< 0.12	107%	80%	120%	NA	80%	120%	97%	80%	120%
Sulphate	9148923		23	23	3.4%	< 2	109%	80%	120%	NA	80%	120%	NA	80%	120%
Alkalinity	9144903 9	9144903	142	142	0.3%	< 5	97%	80%	120%	NA	80%	120%	NA	80%	120%
True Color	9142642		8	10	NA	< 5	120%	80%	120%	NA			NA		
Turbidity	9142642		87.2	86.8	0.5%	< 0.1	101%	80%	120%	NA			NA		
Electrical Conductivity	9144903 9	9144903	310	312	0.7%	< 1	102%	80%	120%	NA	80%	120%	NA	80%	120%
Nitrate as N	9148923		(7.64)	(7.95)	3.9%	< 0.05	98%	80%	120%	NA	80%	120%	NA	80%	120%
Nitrite as N	9148923		0.41	0.42	1.9%	< 0.05	103%	80%	120%	NA	80%	120%	100%	80%	120%
Ammonia as N	1 9	9142979	<0.03	<0.03	NA	< 0.03	95%	80%	120%		80%	120%	92%	80%	120%
Total Organic Carbon	1 9	9143876	8.5	8.3	2.4%	< 0.5	94%	80%	120%		80%	120%	83%	80%	120%
Ortho-Phosphate as P	1 9	9133260	0.14	0.16	13.3%	< 0.01	115%	80%	120%		80%	120%	113%	80%	120%
Total Sodium	9149177		39.8	41.3	3.6%	< 0.1	103%	80%	120%	100%	80%	120%	NA	70%	130%
Total Potassium	9149177		1.3	1.4	8.3%	< 0.1	101%	80%	120%	99%	80%	120%	NA	70%	130%
Total Calcium	9149177		8.2	8.6	4.8%	< 0.1	107%	80%	120%	101%	80%	120%	NA	70%	130%
Total Magnesium	9149177		0.9	1.0	7.7%	< 0.1	105%	80%	120%	101%	80%	120%	85%	80%	120%
Bicarb. Alkalinity (as CaCO3)	9144903 9	9144903	142	142	0.3%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	9144903 9	9144903	<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Hydroxide	9144903 9	9144903	<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Total Aluminum	9149177		101	109	7.6%	< 5	107%	80%	120%	106%	80%	120%	103%	70%	130%
Total Antimony	9149177		<2	<2	NA	< 2	98%	80%	120%	112%	80%	120%	103%	70%	130%
Total Arsenic	9149177		<2	<2	NA	< 2	97%	80%	120%	100%	80%	120%	97%	70%	130%
Total Barium	9149177		25	25	NA	< 5	98%	80%	120%	98%	80%	120%	NA	70%	130%
Total Beryllium	9149177		<2	<2	NA	< 2	100%	80%	120%	102%	80%	120%	97%	70%	130%
Total Bismuth	9149177		<2	<2	NA	< 2	108%	80%	120%	116%	80%	120%	98%	70%	130%
Total Boron	9149177		12	12	NA	< 5	100%	80%	120%	108%	80%	120%	101%	70%	130%
Total Cadmium	9149177		0.047	0.049	NA	< 0.017	98%	80%	120%	99%	80%	120%	94%	70%	130%
Total Chromium	9149177		<1	<1	NA	< 1	107%	80%	120%	108%	80%	120%	102%	70%	130%
Total Cobalt	9149177		<1	<1	NA	< 1	119%	80%	120%	120%	80%	120%	119%	70%	130%
Total Copper	9149177		96	100	3.7%	< 1	109%	80%	120%	113%	80%	120%	NA	70%	130%
Total Iron	9149177		227	239	NA	< 50	116%	80%	120%	119%	80%	120%	NA	70%	130%
Total Lead	9149177		2.4	2.4	NA	< 0.5	118%	80%	120%	119%	80%	120%	102%	70%	130%
Total Manganese	9149177		16	16	3.6%	< 2	113%	80%	120%	113%	80%	120%	NA	70%	130%
Total Molybdenum	9149177		<2	<2	NA	< 2	99%	80%	120%	103%	80%	120%	107%	70%	130%
Total Nickel	9149177		<2	<2	NA	< 2	107%	80%	120%	110%	80%	120%	103%	70%	130%
Total Phosphorous	9149177		0.02	0.02	NA	< 0.02	97%	80%	120%	87%	80%	120%	104%	70%	130%
Total Selenium	9149177		<1	<1	NA	< 1	92%	80%	120%	96%	80%	120%	87%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 14

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K322806 ATTENTION TO: John Gale

SAMPLED BY:

Water Analysis (Continued)

RPT Date: Apr 03, 2018			DUPLICATE				REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	tch Sample Dup #1 Dup #2 RPD Method Blank Mea		Measured	Acceptable d Limits		Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits			
		la					Value	Lower	Upper		Lower	Upper		Lower	Upper
Total Silver	9149177		<0.1	<0.1	NA	< 0.1	107%	80%	120%	108%	80%	120%	99%	70%	130%
Total Strontium	9149177		28	28	0.0%	< 5	104%	80%	120%	103%	80%	120%	NA	70%	130%
Total Thallium	9149177		<0.1	<0.1	NA	< 0.1	110%	80%	120%	114%	80%	120%	104%	70%	130%
Total Tin	9149177		<2	<2	NA	< 2	98%	80%	120%	101%	80%	120%	101%	70%	130%
Total Titanium	9149177		<2	<2	NA	< 2	104%	80%	120%	105%	80%	120%	100%	70%	130%
Total Uranium	9149177		0.6	0.6	1.3%	< 0.1	109%	80%	120%	110%	80%	120%	107%	70%	130%
Total Vanadium	9149177		<2	<2	NA	< 2	103%	80%	120%	104%	80%	120%	106%	70%	130%
Total Zinc	9149177		11	10	NA	< 5	108%	80%	120%	109%	80%	120%	92%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

9150500	<5	<5	NA	< 5	108%	80%	120%	106%	80%	120%	93%	70%	130%
9150500	<2	<2	NA	< 2	95%	80%	120%	106%	80%	120%	115%	70%	130%
9150500	7	6	NA	< 2	97%	80%	120%	98%	80%	120%	NA	70%	130%
9150500	98	98	0.3%	< 5	100%	80%	120%	102%	80%	120%	NA	70%	130%
9150500	<2	<2	NA	< 2	102%	80%	120%	106%	80%	120%	107%	70%	130%
9150500	<2	<2	NA	< 2	93%	80%	120%	105%	80%	120%	NA	70%	130%
9150500	140	138	1.8%	< 5	104%	80%	120%	107%	80%	120%	NA	70%	130%
9150500	0.026	0.025	NA	< 0.017	97%	80%	120%	99%	80%	120%	103%	70%	130%
9150500	2	3	NA	< 1	92%	80%	120%	97%	80%	120%	102%	70%	130%
9150500	2	2	NA	< 1	103%	80%	120%	108%	80%	120%	114%	70%	130%
9150500	<2	<2	NA	< 2	95%	80%	120%	99%	80%	120%	83%	70%	130%
9150500	<50	<50	NA	< 50	100%	80%	120%	102%	80%	120%	98%	70%	130%
9150500	<0.5	<0.5	NA	< 0.5	100%	80%	120%	101%	80%	120%	90%	70%	130%
9150500	1140	1100	3.1%	< 2	99%	80%	120%	102%	80%	120%	NA	70%	130%
9150500	<2	<2	NA	< 2	93%	80%	120%	97%	80%	120%	97%	70%	130%
9150500	12	12	0.4%	< 2	95%	80%	120%	98%	80%	120%	NA	70%	130%
9150500	2	2	NA	< 1	104%	80%	120%	103%	80%	120%	NA	70%	130%
9150500	<0.1	<0.1	NA	< 0.1	95%	80%	120%	100%	80%	120%	95%	70%	130%
9150500	1230	1190	3.5%	< 5	103%	80%	120%	104%	80%	120%	NA	70%	130%
9150500	<0.1	<0.1	NA	< 0.1	99%	80%	120%	103%	80%	120%	98%	70%	130%
9150500	<2	<2	NA	< 2	96%	80%	120%	99%	80%	120%	98%	70%	130%
9150500	<2	<2	NA	< 2	105%	80%	120%	104%	80%	120%	94%	70%	130%
9150500	0.4	0.4	NA	< 0.1	95%	80%	120%	98%	80%	120%	102%	70%	130%
9150500	3	3	NA	< 2	91%	80%	120%	92%	80%	120%	113%	70%	130%
9150500	8	8	NA	< 5	93%	80%	120%	95%	80%	120%	94%	70%	130%
	9150500 9150500	9150500 <5	9150500 <5 <5 9150500 <2	9150500 <5 <5 NA 9150500 <2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Various Inorganics (Water)														
Mercury	1	9143899	<0.	<0.	NA	< 0.000026 100%	80%	120%	80	%	120%	99%	70%	130%
AGAT QUALITY ASSURANC	E REP	ORT (V2)											Page 9	of 14

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K322806

ATTENTION TO: John Gale

SAMPLED BY:

Water Analysis (Continued)															
RPT Date: Apr 03, 2018				UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Kjeldahl Nitrogen as N Bromide	1 9148923	9142487	0.5 0.09	0.5 0.10	NA NA	< 0.4 < 0.05	120% 94%	80% 80%	120% 120%	NA	80% 80%	120% 120%	90% 114%	80% 80%	120% 120%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Jason Cotaght

Page 10 of 14

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K322806

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Water Analysis	1					
Dissolved Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Antimony	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
Dissolved Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS			
pH	INOR-121-6001	SM 4500 H+B	PC TITRATE			
Reactive Silica as SiO2	INORG-121-6028	SM 4110 B	COLORIMETER			
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH			

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K322806 ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Alkalinity	INOR-121-6001	SM 2320 B	
True Color	INORG-121-6014	EPA 110.2	NEPHELOMETER
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INORG-121-6003	SM 4500-NH3 G	COLORIMETER
Total Organic Carbon	INORG-121-6026	SM 5310 B	TOC ANALYZER
Ortho-Phosphate as P	INORG-121-6005	SM 4110 B	COLORIMETER
Total Sodium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Potassium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE
Calculated TDS	CALCULATION	SM 1030E	CALCULATION
Hardness	CALCULATION	SM 2340B	CALCULATION
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Anion Sum	CALCULATION	SM 1030E	CALCULATION
Cation sum	CALCULATION	SM 1030E	CALCULATION
% Difference/ Ion Balance (NS)	CALCULATION	SM 1030E	CALCULATION
Total Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS
Total Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

AGAT METHOD SUMMARY (V2)

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K322806

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Phosphorous	MET-121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Organic Carbon	INORG-121-6026	SM 5310 B	TOC ANALYZER
Mercury	MET-121-6100 & MET-121-6107	SM 3112 B	CVAAS
Mercury Digest	MET-121-6100 & MET-121-6107	EPA 245.5	CV/AA
Total Kjeldahl Nitrogen as N	INOR-121-6020	SM 4500 NORG D	COLORIMETER
Bromide	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH

Laboratory Use Only	Arrival Condition: ばGood 口Poor (see notes) Arrival Temperature: ろ、る こ Hold Time:	AGAT Job Number: 722 500	Notes:		Turnaround Time Required (TAT)	Regular TAT 3 5 to 7 working days	Bush TAT Same dav 1 dav	□ 2 days □ 3 days	Date Remired:		le: 🗌 Yes 🖾 No Salt Water Sample: 🗍 Yes 🖾 No			POU WE [646]		RI) [] Internation Rege Se T	(Pilick (Pilic	H181H1 318\H1 847 2V 71 855 (T) 8556 4 8556 4 8506	Tier 1: Ti Tier 2: Ti CCME-CV VOC Nathe 5 PAH PAH PAH PAH PCB Other: [Other: [Pink Copy - Client Page 1 of 1	White Copy AGAT No: FFC-3113-COC-07	Directored Income OVE
2 - 11 Morris Drive	Dartmouth, NS B3B 1M2 www.agatlabs.com	• F: 902.468.8924	Report Format	Single Sample		Murupie sample	Excel Format		Export:		Drinking Water Samp	Keg. No.:			(tua (g	ksvald b50 OC - I jue)	dOE dOD	e (coa Niss tes (to tes (to	D BOD Grain Siz Phospha Chromiu Chromiu							Detertime NUM-23		
Unit 12	.agatlabs.com • v	P: 902.468.8718		t)	c@ntid.net)	nfld.net)			st Guidelines on Report	 Coarse 	ot 🗌 Fine		əl	delisv	A 🗆	bev zizy zzi(nəsər Jana O D	9\bər Water IstoT t	 Field Filt Metals: E Mercury	111	//							
	ItOries webearth		Information (Please print):	e: John Gale (john_ffc@nfld.ne	il: Eunjeong Seok (eunjeong_ft	e: Karen Andrews (karen_ffc@		tory Requirements (Check):	uidelines on Report	ir 1 🗌 Res		s L Fuel Lube		lustrial LINSEQS-CUILUSIUS mmercial LINSEQS-CUILUSIUS	s/Park Carm Water	riculturalWaste Water	AL diment Other		Comments - Site/Sample Info. Sample Containment	Doc & Diss.Metal filtered	Diss.Metal filtered					Bampines Roceived By (Print Name)	Samples Received By (Sign)	LATA LATAN
	abora		Report	1. Nam	Ema	2. Nam	Ema	Regulat										1	# Containers	9	4					ch 23/18	6	
								3-5101		1	II price for analysis	Yes 🛛 / No 🛛	1						Sample Matrix	Water	Water					Mai Mai		
		dy Record		sultants Inc. (NL)		ath		Fax: 709-75	tephenville, NL	ола на 100 м.	not provided client will be billed fu	Same		s (karen_ffc@nfld.net)			Fax:		Date/Time Sampled	March 19, 2018 18:35	March 20, 2018 11:48					šok		E d
	U	Chain of Custo	Report Information	Company: Fracflow Cons	Contact: John Gale	Address: 154 Major's P.	St. John's, NL	Phone: 709-739-7270	Client Project #: 3113-S	AGAT Quotation: S/O	Please Note: If quotation number is	Invoice To	Company:	Contact: Karen Andrew	Address:		Phone:	PO/Credit Card#: 3880	Sample Identification	3113-MHPW1-WS1	3113-MHPW1-WS2					samples Relinquished By (Print Name): Eunjeong Se	amples Relinquished By (Sign),	1 0.0

CLIENT NAME: FRACFLOW CONSULTANTS 154 MAJOR'S PATH ST. JOHN'S PATH, NL A1A5A1 (709) 739-7270

ATTENTION TO: John Gale

PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K323461

TRACE ORGANICS REVIEWED BY: Amy Hunter, Trace Organics Supervisor, B.Sc.

WATER ANALYSIS REVIEWED BY: Laura Baker, Inorganics Data Reporter

DATE REPORTED: Apr 19, 2018

PAGES (INCLUDING COVER): 21

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (709)747-8573

*NOTES

VERSION 2:Version 2.0 supersedes Version 1.0. Corrected sampling dates. Issued April 19th, 2018.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 21

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

Atlantic RBCA Tier 1 Hydrocarbons in Water - Low Level

DATE RECEIVED: 2018-03-26

			3113-MHPW1-	3113-MHPW1-			
	S	AMPLE DESCRIPTION:	WS3	WS5			
		SAMPLE TYPE:	Water	Water			
		DATE SAMPLED:	2018-03-21	2018-03-22			
Parameter	Unit	G/S RDL	9149300	9149302			
Benzene	mg/L	0.001	<0.001	<0.001			
Toluene	mg/L	0.001	<0.001	<0.001			
Ethylbenzene	mg/L	0.001	<0.001	<0.001			
Xylene (Total)	mg/L	0.001	<0.001	<0.001			
C6-C10 (less BTEX)	mg/L	0.01	<0.01	<0.01			
>C10-C16 Hydrocarbons	mg/L	0.05	<0.05	<0.05			
>C16-C21 Hydrocarbons	mg/L	0.05	<0.05	<0.05			
>C21-C32 Hydrocarbons	mg/L	0.01	<0.01	<0.01			
Modified TPH (Tier 1)	mg/L	0.1	<0.1	<0.1			
Resemblance Comment			NR	NR			
Return to Baseline at C32			Y	Y			
Surrogate	Unit	Acceptable Limits					
Isobutylbenzene - EPH	%	70-130	111	119			
Isobutylbenzene - VPH	%	70-130	89	94			
n-Dotriacontane - EPH	%	70-130	112	122			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9149300-9149302 Resemblance Comment Key: GF - Gasoline Fraction WGF - Weathered Gasoline Fraction GR - Product in Gasoline Range FOF - Fuel Oil Fraction WFOF - Weathered Fuel Oil Fraction FR - Product in Fuel Oil Range LOF - Lube Oil Fraction LR - Lube Range UC - Unidentified Compounds NR - No Resemblance NA - Not Applicable

my Huj

DATE REPORTED: 2018-04-19

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V2)

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

				Dissolved M	Metals
DATE RECEIVED: 2018-03-26					DATE REPORTED: 2018-04-19
		SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED:	3113-MHPW1- WS3 Water 2018-03-21	3113-MHPW1- WS5 Water 2018-03-22	
Parameter	Unit	G / S RDL	9149300	9149302	
Dissolved Aluminum	ug/L	5	<5	<5	
Dissolved Antimony	ug/L	2	<2	<2	
Dissolved Arsenic	ug/L	2	<2	<2	
Dissolved Barium	ug/L	5	40	39	
Dissolved Beryllium	ug/L	2	<2	<2	
Dissolved Bismuth	ug/L	2	<2	<2	
Dissolved Boron	ug/L	5	7	7	
Dissolved Cadmium	ug/L	0.017	<0.017	<0.017	
Dissolved Chromium	ug/L	1	2	2	
Dissolved Cobalt	ug/L	1	<1	<1	
Dissolved Copper	ug/L	2	<2	<2	
Dissolved Iron	ug/L	50	<50	<50	
Dissolved Lead	ug/L	0.5	<0.5	<0.5	
Dissolved Manganese	ug/L	2	2	<2	
Dissolved Molybdenum	ug/L	2	<2	<2	
Dissolved Nickel	ug/L	2	6	<2	
Dissolved Selenium	ug/L	1	<1	<1	
Dissolved Silver	ug/L	0.1	<0.1	<0.1	
Dissolved Strontium	ug/L	5	83	83	
Dissolved Thallium	ug/L	0.1	<0.1	<0.1	
Dissolved Tin	ug/L	2	<2	<2	
Dissolved Titanium	ug/L	2	<2	<2	
Dissolved Uranium	ug/L	0.1	0.3	0.3	
Dissolved Vanadium	ug/L	2	<2	<2	
Dissolved Zinc	ug/L	5	28	29	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9149300-9149302 Analysis completed on a filtered sample.

Certified By:

Lauro Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

Mercury Analysis in Water (Total) DATE RECEIVED: 2018-03-26 **DATE REPORTED: 2018-04-19** 3113-MHPW1-SAMPLE DESCRIPTION: WS5 SAMPLE TYPE: Water DATE SAMPLED: 2018-03-22 9149302 Parameter Unit G/S RDL Total Mercury ug/L 0.026 0.026 < 0.026

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Lamo Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals													
DATE RECEIVED: 2018-03-26						DATE REPORTED: 2018-04-19							
Parameter	SUnit	SAMPLE DESC SAMPI DATE S/ G / S	RIPTION: LE TYPE: AMPLED: RDL	3113-MHPW1- WS3 Water 2018-03-21 9149300	3113-MHPW1- WS4 Water 2018-03-22 9149305								
рН		6.5-9.0		8.14	8.13								
Reactive Silica as SiO2	mg/L		0.5	6.0	5.7								
Chloride	mg/L	640, 120	1	12	12								
Fluoride	mg/L	0.12	0.12	<0.12	<0.12								
Sulphate	mg/L		2	4	4								
Alkalinity	mg/L		5	143	143								
True Color	TCU	Narrative	5	<5	<5								
Turbidity	NTU	Narrative	0.1	0.5	0.9								
Electrical Conductivity	umho/cm		1	321	323								
Nitrate + Nitrite as N	mg/L		0.05	0.36	0.39								
Nitrate as N	mg/L	550, 13	0.05	0.36	0.39								
Nitrite as N	mg/L	0.06	0.05	<0.05	<0.05								
Ammonia as N	mg/L	Fact Sheet	0.03	0.04	0.04								
Total Organic Carbon	mg/L		0.5	<0.5	0.7								
Ortho-Phosphate as P	mg/L		0.01	0.08	0.07								
Total Sodium	mg/L		0.1	8.2	8.3								
Total Potassium	mg/L		0.1	0.9	0.9								
Total Calcium	mg/L		0.1	50.0	47.3								
Total Magnesium	mg/L		0.1	7.2	7.1								
Bicarb. Alkalinity (as CaCO3)	mg/L		5	143	143								
Carb. Alkalinity (as CaCO3)	mg/L		10	<10	<10								
Hydroxide	mg/L		5	<5	<5								
Calculated TDS	mg/L		1	170	167								
Hardness	mg/L			154	147								
Langelier Index (@20C)	NA			0.38	0.35								
Langelier Index (@ 4C)	NA			0.06	0.03								
Saturation pH (@ 20C)	NA			7.76	7.78								
Saturation pH (@ 4C)	NA			8.08	8.10								
Anion Sum	me/L			3.31	3.31								

Certified By:

Lauro Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

57 Old Pennywell Road, Unit I St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals DATE RECEIVED: 2018-03-26 **DATE REPORTED: 2018-04-19** 3113-MHPW1-3113-MHPW1-SAMPLE DESCRIPTION: WS3 WS4 SAMPLE TYPE: Water Water DATE SAMPLED: 2018-03-21 2018-03-22 9149300 9149305 Parameter Unit G/S RDL 3.34 me/L 3.48 Cation sum % Difference/ Ion Balance (NS) % 2.5 0.4 Total Aluminum ug/L Variable 5 <5 <5 2 <2 <2 Total Antimony ug/L Total Arsenic ug/L 5 2 <2 <2 39 39 Total Barium ug/L 5 ug/L 2 <2 <2 Total Beryllium Total Bismuth ug/L 2 <2 <2 ug/L 29000. 5 7 7 Total Boron <0.017 Total Cadmium ug/L 1.0, 0.09 0.017 <0.017 Total Chromium ug/L <1 <1 1 Total Cobalt ug/L <1 <1 1 Total Copper ug/L Equation 4 1 1 50 Total Iron ug/L 300 65 68 Total Lead ug/L Equation 0.5 0.6 0.6 Total Manganese ug/L 2 3 3 2 Total Molybdenum ug/L 73 <2 <2 Total Nickel ug/L Equation 2 2 2 Fact Sheet 0.02 0.03 0.03 Total Phosphorous mg/L Total Selenium ug/L 1 1 <1 <1 Total Silver ug/L 0.25 0.1 <0.1 <0.1 Total Strontium ug/L 5 86 88 Total Thallium ug/L 0.8 0.1 <0.1 <0.1 2 <2 Total Tin ug/L <2 Total Titanium ug/L 2 <2 <2 0.4 Total Uranium ug/L 33, 15 0.1 0.4 2 <2 Total Vanadium ug/L <2 Total Zinc ug/L 30 5 26 15

Lauro Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

DATE REPORTED: 2018-04-19

57 Old Pennywell Road, Unit I

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals

DATE RECEIVED: 2018-03-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to CCME FWAL - update 2015

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Certified By:

Lauro Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatiabs.com

DATE REPORTED: 2018-04-19

57 Old Pennywell Road, Unit I

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals+ DOC,TKN,Bromide

DATE RECEIVED: 2018-03-26

DATE RECEIVED. 2010 03 20				DATE NET ORTED. 2010 04 13
			3113-MHPW1-	
	S	AMPLE DESCRIPTION:	WS5	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2018-03-22	
Parameter	Unit	G/S RDL	9149302	
рН			8.13	
Reactive Silica as SiO2	mg/L	0.5	5.7	
Chloride	mg/L	1	12	
Fluoride	mg/L	0.12	<0.12	
Sulphate	mg/L	2	4	
Alkalinity	mg/L	5	143	
True Color	TCU	5	<5	
Turbidity	NTU	0.1	0.7	
Electrical Conductivity	umho/cm	1	322	
Nitrate + Nitrite as N	mg/L	0.05	0.37	
Nitrate as N	mg/L	0.05	0.37	
Nitrite as N	mg/L	0.05	<0.05	
Ammonia as N	mg/L	0.03	<0.03	
Total Organic Carbon	mg/L	0.5	1.7	
Ortho-Phosphate as P	mg/L	0.01	0.08	
Total Sodium	mg/L	0.1	8.2	
Total Potassium	mg/L	0.1	0.9	
Total Calcium	mg/L	0.1	49.7	
Total Magnesium	mg/L	0.1	6.8	
Bicarb. Alkalinity (as CaCO3)	mg/L	5	143	
Carb. Alkalinity (as CaCO3)	mg/L	10	<10	
Hydroxide	mg/L	5	<5	
Calculated TDS	mg/L	1	169	
Hardness	mg/L		152	
Langelier Index (@20C)	NA		0.37	
Langelier Index (@ 4C)	NA		0.05	
Saturation pH (@ 20C)	NA		7.76	
Saturation pH (@ 4C)	NA		8.08	
Anion Sum	me/L		3.31	

Certified By:

Lauro Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.agatlabs.com

57 Old Pennywell Road, Unit I

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals+ DOC,TKN,Bromide

DATE DECENVED: 2018-02-26

				DATE REPORTED. 2016-04-19
			3113-MHPW1-	
	S	SAMPLE DESCRIPTION:	WS5	
		SAMPLE TYPE:	Water	
		DATE SAMPLED:	2018-03-22	
Parameter	Unit	G/S RDL	9149302	
Cation sum	me/L		3.42	
% Difference/ Ion Balance (NS)	%		1.7	
Total Aluminum	ug/L	5	<5	
Total Antimony	ug/L	2	<2	
Total Arsenic	ug/L	2	<2	
Total Barium	ug/L	5	39	
Total Beryllium	ug/L	2	<2	
Total Bismuth	ug/L	2	<2	
Total Boron	ug/L	5	6	
Total Cadmium	ug/L	0.017	<0.017	
Total Chromium	ug/L	1	<1	
Total Cobalt	ug/L	1	<1	
Total Copper	ug/L	1	1	
Total Iron	ug/L	50	63	
Total Lead	ug/L	0.5	<0.5	
Total Manganese	ug/L	2	3	
Total Molybdenum	ug/L	2	<2	
Total Nickel	ug/L	2	2	
Total Phosphorous	mg/L	0.02	0.02	
Total Selenium	ug/L	1	<1	
Total Silver	ug/L	0.1	<0.1	
Total Strontium	ug/L	5	87	
Total Thallium	ug/L	0.1	<0.1	
Total Tin	ug/L	2	<2	
Total Titanium	ug/L	2	<2	
Total Uranium	ug/L	0.1	0.3	
Total Vanadium	ug/L	2	<2	
Total Zinc	ug/L	5	22	
Bromide	µg/L	50	<50	

Certified By:

Lauro Balu

AGAT WORK ORDER: 18K323461 PROJECT: 3113-Stephenville, NL

CLIENT NAME: FRACFLOW CONSULTANTS

SAMPLING SITE:

St. John's, NL CANADA A1E 6A8 TEL (709)747-8573 FAX (709 747-2139 http://www.aqatlabs.com

57 Old Pennywell Road, Unit I

ATTENTION TO: John Gale

SAMPLED BY:

Standard Water Analysis + Total Metals+ DOC,TKN,Bromide

DATE RECEIVED: 2018-03-26					DATE REPORTED: 2018-04-19
				3113-MHPW1-	
	SA	AMPLE DESC	RIPTION:	WS5	
		SAMPI	LE TYPE:	Water	
		DATE S/	AMPLED:	2018-03-22	
Parameter	Unit	G/S	RDL	9149302	
TKN Digest				Y	
Total Kjeldahl Nitrogen as N	mg/L		0.4	<0.4	
Dissolved Organic Carbon	mg/L		0.5	<0.5	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLED BY:

Trace Organics Analysis

					-		-								
RPT Date: Apr 19, 2018			UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits
		IG					value	Lower	Upper		Lower	Upper		Lower	Upper
Atlantic RBCA Tier 1 Hydrocarbo	ns in Wat	er - Low Le	evel												
Benzene	1	9149010	< 0.001	< 0.001	NA	< 0.001	103%	70%	130%	112%	70%	130%	NA		
Toluene	1	9149010	< 0.001	< 0.001	NA	< 0.001	106%	70%	130%	108%	70%	130%	NA		
Ethylbenzene	1	9149010	< 0.001	< 0.001	NA	< 0.001	104%	70%	130%	102%	70%	130%	NA		
Xylene (Total)	1	9149010	< 0.001	< 0.001	NA	< 0.001	109%	70%	130%	110%	70%	130%	NA		
C6-C10 (less BTEX)	1	9149010	< 0.01	< 0.01	NA	< 0.01	100%	70%	130%	106%	70%	130%	106%	70%	130%
>C10-C16 Hydrocarbons	1	9149302	< 0.05	< 0.05	NA	< 0.05	109%	70%	130%	123%	70%	130%	125%	70%	130%
>C16-C21 Hydrocarbons	1	9149302	< 0.05	< 0.05	NA	< 0.05	116%	70%	130%	123%	70%	130%	125%	70%	130%
>C21-C32 Hydrocarbons	1	9149302	< 0.01	< 0.01	NA	< 0.01	104%	70%	130%	123%	70%	130%	125%	70%	130%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

my Hu

AGAT QUALITY ASSURANCE REPORT (V2)

Page 11 of 21

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 12 of 21

Quality Assurance

Water Analysia

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLED BY:

				vvale		larys	15								
RPT Date: Apr 19, 2018		C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	Recovery	Acce Lir	ptable nits
	Balon	ld	Dup	5 dp // 2			Value	Lower	Upper		Lower	Upper		Lower	Upper
Standard Water Analysis + Total	I Metals														
pH	9148925		7.75	7.77	0.3%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
Reactive Silica as SiO2	1	9149300	6.0	5.9	1.7%	< 0.5	98%	80%	120%		80%	120%	100%	80%	120%
Chloride	9149375		4	4	NA	< 1	92%	80%	120%	NA	80%	120%	90%	80%	120%
Fluoride	9149375		<0.12	<0.12	NA	< 0.12	104%	80%	120%	NA	80%	120%	90%	80%	120%
Sulphate	9149375		<2	<2	NA	< 2	113%	80%	120%	NA	80%	120%	94%	80%	120%
Alkalinity	9148925		213	213	0.1%	< 5	97%	80%	120%	NA	80%	120%	NA	80%	120%
True Color	9149300	9149300	<5	6	NA	< 5	105%	80%	120%	NA			NA		
Turbidity	9149300	9149300	0.5	0.4	NA	< 0.1	101%	80%	120%	NA			NA		
Electrical Conductivity	9148925		1530	1540	0.5%	< 1	102%	80%	120%	NA	80%	120%	NA	80%	120%
Nitrate as N	9149375		0.20	0.18	NA	< 0.05	101%	80%	120%	NA	80%	120%	82%	80%	120%
Nitrite as N	9149375		<0.05	<0.05	NA	< 0.05	105%	80%	120%	NA	80%	120%	87%	80%	120%
Ammonia as N	1	9144766	0.03	0.02	NA	< 0.03	92%	80%	120%		80%	120%	95%	80%	120%
Total Organic Carbon	1	9149300	<0.5	<0.5	NA	< 0.5	108%	80%	120%		80%	120%	105%	80%	120%
Ortho-Phosphate as P	1	9149300	0.08	0.07	13.3%	< 0.01	115%	80%	120%		80%	120%	90%	80%	120%
Total Sodium	9150501		19.1	19.8	3.7%	< 0.1	105%	80%	120%	108%	80%	120%	NA	70%	130%
Total Potassium	9150501		1.7	1.6	1.7%	< 0.1	103%	80%	120%	104%	80%	120%	NA	70%	130%
Total Calcium	9150501		85.9	88.9	3.4%	< 0.1	109%	80%	120%	106%	80%	120%	NA	70%	130%
Total Magnesium	9150501		9.4	9.2	2.4%	< 0.1	105%	80%	120%	107%	80%	120%	NA	80%	120%
Bicarb. Alkalinity (as CaCO3)	9148925		213	213	0.1%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	9148925		<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Hydroxide	9148925		<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Total Aluminum	9150501		9	9	NA	< 5	108%	80%	120%	109%	80%	120%	97%	70%	130%
Total Antimony	9150501		<2	<2	NA	< 2	92%	80%	120%	103%	80%	120%	98%	70%	130%
Total Arsenic	9150501		<2	<2	NA	< 2	98%	80%	120%	92%	80%	120%	97%	70%	130%
Total Barium	9150501		49	49	0.2%	< 5	99%	80%	120%	97%	80%	120%	NA	70%	130%
Total Beryllium	9150501		<2	<2	NA	< 2	102%	80%	120%	105%	80%	120%	97%	70%	130%
Total Bismuth	9150501		<2	<2	NA	< 2	97%	80%	120%	106%	80%	120%	92%	70%	130%
Total Boron	9150501		12	11	NA	< 5	104%	80%	120%	102%	80%	120%	102%	70%	130%
Total Cadmium	9150501		0.051	0.050	NA	< 0.017	98%	80%	120%	97%	80%	120%	93%	70%	130%
Total Chromium	9150501		<1	<1	NA	< 1	107%	80%	120%	107%	80%	120%	106%	70%	130%
Total Cobalt	9150501		<1	<1	NA	< 1	105%	80%	120%	103%	80%	120%	103%	70%	130%
Total Copper	9150501		34	33	2.5%	< 1	107%	80%	120%	103%	80%	120%	NA	70%	130%
Total Iron	9150501		90	85	NA	< 50	114%	80%	120%	115%	80%	120%	113%	70%	130%
Total Lead	9150501		11.6	11.5	0.6%	< 0.5	107%	80%	120%	105%	80%	120%	NA	70%	130%
Total Manganese	9150501		373	386	3.3%	< 2	115%	80%	120%	114%	80%	120%	NA	70%	130%
Total Molybdenum	9150501		<2	<2	NA	< 2	92%	80%	120%	94%	80%	120%	102%	70%	130%
Total Nickel	9150501		4	4	NA	< 2	106%	80%	120%	104%	80%	120%	97%	70%	130%
Total Phosphorous	9150501		0.03	0.03	NA	< 0.02	106%	80%	120%	91%	80%	120%	101%	70%	130%
Total Selenium	9150501		<1	<1	NA	< 1	96%	80%	120%	85%	80%	120%	92%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLED BY:

Water Analysis (Continued)

RPT Date: Apr 19, 2018		DUPLICATE				REFEREN	ICE MA	TERIAL	METHOD	BLANK	K SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits	Recoverv	Acce Lir	ptable nits
		la					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Silver	9150501		<0.1	<0.1	NA	< 0.1	99%	80%	120%	102%	80%	120%	95%	70%	130%
Total Strontium	9150501		288	298	3.1%	< 5	102%	80%	120%	103%	80%	120%	NA	70%	130%
Total Thallium	9150501		<0.1	<0.1	NA	< 0.1	103%	80%	120%	105%	80%	120%	97%	70%	130%
Total Tin	9150501		<2	<2	NA	< 2	95%	80%	120%	94%	80%	120%	95%	70%	130%
Total Titanium	9150501		<2	<2	NA	< 2	107%	80%	120%	108%	80%	120%	86%	70%	130%
Total Uranium	9150501		<0.1	<0.1	NA	< 0.1	101%	80%	120%	100%	80%	120%	98%	70%	130%
Total Vanadium	9150501		<2	<2	NA	< 2	105%	80%	120%	104%	80%	120%	110%	70%	130%
Total Zinc	9150501		41	41	1.9%	< 5	112%	80%	120%	109%	80%	120%	122%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Standard Water Analysis + Total Metals+ DOC,TKN,Bromide

AGAT QUALITY ASSUR	ANCE REPORT (V2)											P	age 13	of 21
Total Iron	9150501	90	85	NA	< 50	114%	80%	120%	115%	80%	120%	113%	70%	130%
Total Copper	9150501	34	33	2.5%	< 1	107%	80%	120%	103%	80%	120%	NA	70%	130%
Total Cobalt	9150501	<1	<1	NA	< 1	105%	80%	120%	103%	80%	120%	103%	70%	130%
Total Chromium	9150501	<1	<1	NA	< 1	107%	80%	120%	107%	80%	120%	106%	70%	130%
Total Cadmium	9150501	0.051	0.050	NA	< 0.017	98%	80%	120%	97%	80%	120%	93%	70%	130%
Total Boron	9150501	12	11	NA	< 5	104%	80%	120%	102%	80%	120%	102%	70%	130%
Total Bismuth	9150501	<2	<2	NA	< 2	97%	80%	120%	106%	80%	120%	92%	70%	130%
Total Beryllium	9150501	<2	<2	NA	< 2	102%	80%	120%	105%	80%	120%	97%	70%	130%
Total Barium	9150501	49	49	0.2%	< 5	99%	80%	120%	97%	80%	120%	NA	70%	130%
Total Arsenic	9150501	<2	<2	NA	< 2	98%	80%	120%	92%	80%	120%	97%	70%	130%
Total Antimony	9150501	<2	<2	NA	< 2	92%	80%	120%	103%	80%	120%	98%	70%	130%
Total Aluminum	9150501	9	9	NA	< 5	108%	80%	120%	109%	80%	120%	97%	70%	130%
Hydroxide	9148925	<5	<5	NA	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Carb. Alkalinity (as CaCO3)	9148925	<10	<10	NA	< 10	NA	80%	120%	NA	80%	120%	NA	80%	120%
Bicarb. Alkalinity (as CaCO3)	9148925	213	213	0.1%	< 5	NA	80%	120%	NA	80%	120%	NA	80%	120%
Total Magnesium	9150501	9.4	9.2	2.4%	< 0.1	105%	80%	120%	107%	80%	120%	NA	80%	120%
Total Calcium	9150501	85.9	88.9	3.4%	< 0.1	109%	80%	120%	106%	80%	120%	NA	70%	130%
Total Potassium	9150501	1.7	1.6	1.7%	< 0.1	103%	80%	120%	104%	80%	120%	NA	70%	130%
Total Sodium	9150501	19.1	19.8	3.7%	< 0.1	105%	80%	120%	108%	80%	120%	NA	70%	130%
Nitrite as N	9149375	<0.05	<0.05	NA	< 0.05	105%	80%	120%	NA	80%	120%	87%	80%	120%
Nitrate as N	9149375	0.20	0.18	NA	< 0.05	101%	80%	120%	NA	80%	120%	82%	80%	120%
Electrical Conductivity	9148925	1530	1540	0.5%	< 1	102%	80%	120%	NA	80%	120%	NA	80%	120%
Turbidity	9149300 9149300	0.5	0.4	NA	< 0.1	101%	80%	120%	NA			NA		
True Color	9149300 9149300	<5	6	NA	< 5	105%	80%	120%	NA			NA		
Alkalinity	9148925	213	213	0.1%	< 5	97%	80%	120%	NA	80%	120%	NA	80%	120%
Sulphate	9149375	<2	<2	NA	< 2	113%	80%	120%	NA	80%	120%	94%	80%	120%
Fluoride	9149375	<0.12	<0.12	NA	< 0.12	104%	80%	120%	NA	80%	120%	90%	80%	120%
Chloride	9149375	4	4	NA	< 1	92%	80%	120%	NA	80%	120%	90%	80%	120%
рН	9148925	7.75	7.77	0.3%	<	101%	80%	120%	NA	80%	120%	NA	80%	120%
- j	/ /													

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 14 of 21

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLED BY:

		V	Vater	· Ana	lysis	(Cor	ntinu	ed)							
RPT Date: Apr 19, 2018	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce	ptable nits	Recovery	Acce Lir	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Lead	9150501		11.6	11.5	0.6%	< 0.5	107%	80%	120%	105%	80%	120%	NA	70%	130%
Total Manganese	9150501		373	386	3.3%	< 2	115%	80%	120%	114%	80%	120%	NA	70%	130%
Total Molybdenum	9150501		<2	<2	NA	< 2	92%	80%	120%	94%	80%	120%	102%	70%	130%
Total Nickel	9150501		4	4	NA	< 2	106%	80%	120%	104%	80%	120%	97%	70%	130%
Total Phosphorous	9150501		0.03	0.03	NA	< 0.02	106%	80%	120%	91%	80%	120%	101%	70%	130%
Total Selenium	9150501		<1	<1	NA	< 1	96%	80%	120%	85%	80%	120%	92%	70%	130%
Total Silver	9150501		<0.1	<0.1	NA	< 0.1	99%	80%	120%	102%	80%	120%	95%	70%	130%
Total Strontium	9150501		288	298	3.1%	< 5	102%	80%	120%	103%	80%	120%	NA	70%	130%
Total Thallium	9150501		<0.1	<0.1	NA	< 0.1	103%	80%	120%	105%	80%	120%	97%	70%	130%
Total Tin	9150501		<2	<2	NA	< 2	95%	80%	120%	94%	80%	120%	95%	70%	130%
Total Titanium	9150501		<2	<2	NA	< 2	107%	80%	120%	108%	80%	120%	86%	70%	130%
Total Uranium	9150501		<0.1	<0.1	NA	< 0.1	101%	80%	120%	100%	80%	120%	98%	70%	130%
Total Vanadium	9150501		<2	<2	NA	< 2	105%	80%	120%	104%	80%	120%	110%	70%	130%
Total Zinc	9150501		41	41	1.9%	< 5	112%	80%	120%	109%	80%	120%	122%	70%	130%
Bromide	9149375		<50	<50	NA	< 50	92%	80%	120%	NA	80%	120%	88%	80%	120%
Total Kjeldahl Nitrogen as N	1	9144766	0.4	0.5	NA	< 0.4	98%	80%	120%		80%	120%	105%	80%	120%
Comments: If RPD value is NA, the	results of th	e duplicates	s are less t	than 5x the	RDL and	the RPD	will not be	calcula	ted.						
Dissolved Metals															
Dissolved Aluminum	9150500		<5	<5	NA	< 5	108%	80%	120%	106%	80%	120%	93%	70%	130%
Dissolved Antimony	9150500		<2	<2	NA	< 2	95%	80%	120%	106%	80%	120%	115%	70%	130%
Dissolved Arsenic	9150500		7	6	NA	< 2	97%	80%	120%	98%	80%	120%	NA	70%	130%
Dissolved Barium	9150500		98	98	0.3%	< 5	100%	80%	120%	102%	80%	120%	NA	70%	130%
Dissolved Beryllium	9150500		<2	<2	NA	< 2	102%	80%	120%	106%	80%	120%	107%	70%	130%
Dissolved Bismuth	9150500		<2	<2	NA	< 2	93%	80%	120%	105%	80%	120%	NA	70%	130%
Dissolved Boron	9150500		140	138	1.8%	< 5	104%	80%	120%	107%	80%	120%	NA	70%	130%
Dissolved Cadmium	9150500		0.026	0.025	NA	< 0.017	97%	80%	120%	99%	80%	120%	103%	70%	130%
Dissolved Chromium	9150500		2	3	NA	< 1	92%	80%	120%	97%	80%	120%	102%	70%	130%
Dissolved Cobalt	9150500		2	2	NA	< 1	103%	80%	120%	108%	80%	120%	114%	70%	130%
Dissolved Copper	9150500		<2	<2	NA	< 2	95%	80%	120%	99%	80%	120%	83%	70%	130%
Dissolved Iron	9150500		<50	<50	NA	< 50	100%	80%	120%	102%	80%	120%	98%	70%	130%
Dissolved Lead	9150500		<0.5	<0.5	NA	< 0.5	100%	80%	120%	101%	80%	120%	90%	70%	130%
Dissolved Manganese	9150500		1140	1100	3.1%	< 2	99%	80%	120%	102%	80%	120%	NA	70%	130%
Dissolved Molybdenum	9150500		<2	<2	NA	< 2	93%	80%	120%	97%	80%	120%	97%	70%	130%
Dissolved Nickel	9150500		12	12	0.4%	< 2	95%	80%	120%	98%	80%	120%	NA	70%	130%
Dissolved Selenium	9150500		2	2	NA	< 1	104%	80%	120%	103%	80%	120%	NA	70%	130%
Dissolved Silver	9150500		<0.1	<0.1	NA	< 0.1	95%	80%	120%	100%	80%	120%	95%	70%	130%
Dissolved Strontium	9150500		1230	1190	3.5%	< 5	103%	80%	120%	104%	80%	120%	NA	70%	130%
Dissolved Thallium	9150500		<0.1	<0.1	NA	< 0.1	99%	80%	120%	103%	80%	120%	98%	70%	130%
Dissolved Tin	9150500		<2	<2	NA	< 2	96%	80%	120%	99%	80%	120%	98%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

MATRIX SPIKE

Recovery

Acceptable Limits

Lower Upper

Quality Assurance

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

SAMPLING SITE:

RPT Date: Apr 19,

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLED BY:

		V	Vater	Ana	lysis	(Cor	ntinu	ed)					
Apr 19, 2018			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits	
		iu iu					value	Lower	Upper		Lower	Upper	

Dissolved Titanium	9150500	<2	<2	NA	< 2	105%	80%	120%	104%	80%	120%	94%	70%	130%
Dissolved Uranium	9150500	0.4	0.4	NA	< 0.1	95%	80%	120%	98%	80%	120%	102%	70%	130%
Dissolved Vanadium	9150500	3	3	NA	< 2	91%	80%	120%	92%	80%	120%	113%	70%	130%
Dissolved Zinc	9150500	8	8	NA	< 5	93%	80%	120%	95%	80%	120%	94%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Mercury Analysis in Water (Total)

 Total Mercury
 1
 9151513
 <0.05</th>
 <0.05</th>
 NA
 < 0.026</th>
 95%
 80%
 120%
 97%
 80%
 120%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Laure Balu

Page 15 of 21

AGAT QUALITY ASSURANCE REPORT (V2)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Toluene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Ethylbenzene	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
Xylene (Total)	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
C6-C10 (less BTEX)	VOL-120-5010	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
>C10-C16 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C16-C21 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
>C21-C32 Hydrocarbons	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Modified TPH (Tier 1)	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	CALCULATION
Resemblance Comment	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS/FID
Return to Baseline at C32	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - EPH	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID
Isobutylbenzene - VPH	VOL-120-5013	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/MS
n-Dotriacontane - EPH	ORG-120-5101	Atlantic RBCA Guidelines for Laboratories Tier 1	GC/FID

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Antimony	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Dissolved Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Mercury	MET-121-6100 & MET-121-6107	SM 3112 B	CV/AA
рН	INOR-121-6001	SM 4500 H+B	PC TITRATE
Reactive Silica as SiO2	INORG-121-6028	SM 4110 B	COLORIMETER
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS

PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K323461 ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Fluoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Alkalinity	INOR-121-6001	SM 2320 B						
True Color	INORG-121-6014	EPA 110.2	NEPHELOMETER					
Turbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER					
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE					
Nitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION					
Nitrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Nitrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Ammonia as N	INORG-121-6003	SM 4500-NH3 G	COLORIMETER					
Total Organic Carbon	INORG-121-6026	SM 5310 B	TOC ANALYZER					
Ortho-Phosphate as P	INORG-121-6005	SM 4110 B	COLORIMETER					
Total Sodium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Potassium	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Bicarb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE					
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE					
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE					
Calculated TDS	CALCULATION	SM 1030E	CALCULATION					
Hardness	CALCULATION	SM 2340B	CALCULATION					
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION					
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION					
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION					
Saturation pH (@ 4C)	CALCULATION	CALCULATION	CALCULATION					
Anion Sum	CALCULATION	SM 1030E	CALCULATION					
Cation sum	CALCULATION	SM 1030E	CALCULATION					
% Difference/ Ion Balance (NS)	CALCULATION	SM 1030E	CALCULATION					
Total Aluminum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Antimony	MET121-6104 & MET-121-6105	SM 3125	ICP-MS					
Total Arsenic	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Barium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Beryllium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Bismuth	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Boron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Cadmium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Chromium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					
Total Cobalt	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS					

Method Summary

CLIENT NAME: FRACFLOW CONSULTANTS PROJECT: 3113-Stephenville, NL

AGAT WORK ORDER: 18K323461

ATTENTION TO: John Gale

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Copper	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Iron	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Lead	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Manganese	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Molybdenum	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Nickel	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Phosphorous	MET-121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Selenium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Silver	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Strontium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Thallium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Tin	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Titanium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Uranium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Vanadium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Zinc	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Bromide	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
TKN Digest			COLORIMETER
Total Kjeldahl Nitrogen as N	INOR-121-6020	SM 4500 NORG D	COLORIMETER
Dissolved Organic Carbon	INORG-121-6026	SM 5310 B	TOC ANALYZER

Laboratory Use Only Arrival Condition:	AGAT Job Number: 185525761	Notes:		Turnaround Time Required (TAT)	Regular TAT 5 to 7 working days	Rush TAT Same day 1 day	□ 2 days □ 3 days	Data Banılirad.		ole:			pou WE Gree	3 low l) (IЯI9) 1 ТЕХ)) 155] 155] 15] 155] 15] 15] 15] 15] 15] 15] 15] 15] 15] 15] 15	31EX (1 31EX (1 (106)) (106) (106) 5 Org nm nide 7 Org 100 100 100 100 100 100 100 100 100 10	3/H9 3/H9 7 2W 52559 65569 701 101 101 2251 001 101 2251 001 101 2251 001 101 2251 001 2251 001 2251 001 2251 2001 200	Tlet 1: 1 Tlet 2: 1 CCME-C Other: 1 PAH PCB PCB PAH PCB PAH PCB PAH PCB PCB	×		//					Yellow Cooy - Client Page 1 of 2	V white Copy-AGAT No: FFC-3113-COC-08
2 • 11 Morris Drive Dartmouth, NS B3B 1M2 ww.agatlabs.com	F: 902.468.8924	Report Format	Single Sample	Per page	 per page 	Excel Format		Export:		Drinking Water Samp	Reg. No.:			eelM (30 (fins)	lexava FOC - FOC -	H 39 1003) 92 22iM 22iM 23im	<u>Р</u> непоја Сћгомји Рћоѕрћа Рћоѕрћа Сћгомји							Date/Tme	03 hull	Date/Time
Unit 122 ratories webearth.agatlabs.com • w	P: 902,468,8718 =	ort Information (Please print):	Vame: John Gale (john_ffc@nfld.net)	Email: Eunjeong Seok (eunjeong_inc@mia.net)	Vame: Karen Andrews (karen_ffc@nfld.net)	Email:	ulatory Requirements (Check):	ist Guidelines on Report		Diter 1 Likes Lot Coarse	Gas C Fuel C Lube	CME CDWQ	Commercial NSEQS-Cont Sites	Res/Park Storm Water	□ Agricuttural □ Waste Water 000 000 000 000 000 000 000 000 000 0	Sediment Other	l l l l l l l	ers Comments - Site/Sample Info. Tit Metals: Metals: Standar	1×500, 3×100, 2×250, 3×40	Diss.Metal filtered	1×500, 5×100, 2×250, 3×40 🖌 🖌 🗸	Doc & Diss.Metal filtered			Samples Recyfridd By (Frigt Name):	18 A CUMMIN (Sampley Perovived By (Stight:
Labo		Rep	ر ا		5		1 Reg			or analysis.								nple # Contair Itrix	ater 9		ater 11				Dete/Time	March 26,	Daw/Time
LBD	y Record		ultants Inc. (NL)		th		Fax: 709-753-510	sphenville, NL		ot provided client will be billed full price f	Same Yes 2		(karen_ffc@nfld.net)			Fax:		Date/Time Sampled Ma	March 21, 2018 08:30 Ws		March 22, 2018 17:27 Wé					ok	
	Chain of Custod	Report Information	Company: Fracflow Const	Contact: John Gale	Address: 154 Major's Pa	St. John's, NL	Phone: 709-739-7270	Client Project #: 3113-Ste	AGAT Quotation: S/O	Please Note: If quotation number is n	Invoice To	Company:	Contact: Karen Andrews	Address:		Phone:	PU/Credit Card#: 3001	Sample Identification	3113-MHPW1-WS3		3113-MHPW1-WS5				Semples fibringuished By (Print Neme):	Eunjeong Se	samples Patinquished By (Sign)

Laboratory Use Only Arrival Condition: Arrival Temperature:	AGAT JOD Number: 18K323461	Notes:		Turnaround Time Required (TAT)	Regular TAT J 5 to 7 working days	Bush TAT Same dav 1 dav	□ 2 days □ 3 days	Date Benuired:		le:			ME Gavel	noite 1	PN kage ctione X	1) X (BIFI A Pace DG) DG) DG)	178/Н 978/Н Ирт 2у 107) азба 107) азба 1070 1070 1070 1070 1070 1070 1070 107	Tier 1: TF Tier 2: TF Tier 2: TF CCME_CV VOC Marine Sc PAH PCB PAH PCB PAH PCB PAH PCB Other: Other:						// Pink Copy - Client Page 2 of 2	C White CODY-AGAT Nº: FFC-3113-COC-08
: • 11 Morris Drive Dartmouth, NS B3B 1M2 ww.agatlabs.com	F: 902.468.8924	Report Format	Single Sample	Mutting Commis	Munipe sample	Excel Format		Export:		Drinking Water Samp	Reg. No.:			sein (Jng	sansie b306 DC - V jue)	100 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	e (cos e (cos fiss fot) sef tes (tot tot) m	Crain Siz Chromiu Chromiu Chromiu						CT2 17 6	pater/fime
Unit 122 arth.agatlabs.com - w	P: 902.468.8718 =	it):	d.net)	Ig_ffc@nfld.net)	fc@nfld.net)		ck):	not list Guidelines on Report		Pot Coarse N/Pot Fine		Ð	N delie	vA []	b9\ sis\ ssi	/Jena (lena d 🗆	ng/bens nefeW lefoT t	Field Filte Standard Mercury	11					1 NY	6
tories webe		nformation (Please prin	John Gale (john_ffc@nfl	Eunjeong Seok (eunjeon	Karen Andrews (karen_f		ory Requirements (Cheo	idelines on Report		2 [res 00m	🗌 Fuel 🛛 Lube		istriał LINSEQS-CONTSI	/Park Ctorm Wotor	cultural 🗌 Waste Water	L iment Other		Comments - Site/Sample I Sample Containment	1x500, 3x100					Sampies Repeived By (Print Name):	အက္က္တန္ေက်းလေ့မရေ ည အချ
abora		Report I	1. Name	Email	2. Name	Email	Regulat	List Gu				CCME				Sed		# Containers	4					ch 26/18	i ff
							3-5101			Il price for analysis.	Yes ⊡ / No □							Sample Matrix	Water						
	iy Record		ultants Inc. (NL)		ath		Fax: 709-75	ephenville, NL		not provided client will be billed fu	Same		s (karen_ffc@nfld.net)			Fax:		Date/Time Sampled	March 22, 2018 7:54					k K	2
	Chain of Custoc	Report Information	Company: Fracflow Cons	Contact: John Gale	Address: 154 Major's Pa	St. John's, NL	Phone: 709-739-7270	Client Project #: 3113-Si	AGAT Quotation: S/O	Please Note: If quotation number is I	Invoice To	Company:	Contact: Karen Andrew	Address:		Phone:	PO/Credit Card#: 3881	Sample Identification	3113-MHPW1-WS4					iampies Relinquiatred By (Print Name). Eunjeong Se	amples Faiinquished By (Sign):

APPENDIX C: LEGAL SURVEY AND DESCRIPTION

LAND SURVEY FOR THE TOWN OF STEPHENVILLE

CONNECTICUT DRIVE, STEPHENVILLE, NL.

SCALE 1 : 5000

DATE DECEMBER 15th, 2017

DRAWING No. SV-CD-MARINE-1A REVISED JULY 6th, 2018

Description

Land of the Town of Stephenville

Connecticut Drive, Stephenville, NL.

All that piece or parcel of land situate, lying and being west of Connecticut Drive, Stephenville, Province of Newfoundland and Labrador, abutted and bounded as follows;

That is to say, beginning at a point, said point being the most northeasterly corner of the lot; having Grid Co-ordinates (NAD 83) N5377719.181; E302629.832;

Running thence from the above described point of beginning along the westerly limits of Connecticut Drive S38°18'54"E distance 65.945 metres; S43°26'15"E distance 139.553 metres; S45°52'44"E distance 208.173 metres and following the arc of a clockwise curve (radius 204.753 m) having a chord bearing S35°50'51"E distance 62.145 metres;

Thence running by property leased to Newco Metals S56°58'37"W distance 203.769 metres;

Thence running by property leased to Newco Metals and property of Newco Metals S33°01'56"E distance 92.642 metres;

Thence running by property of NFLD Hardwoods S56°59'01"W distance 31.046 metres;

Thence running by property of Port of Stephenville N03°27'51'W distance 31.377 metres; N36°05'51'W distance 57.760 metres; N35°46'51'W distance 111.330 metres; N36°55'51'W distance 108.280 metres; N34°40'51'W distance 124.750 metres and N26°55'05'W distance 36.327 metres;

Thence running by property of the Town of Stephenville N51°43'07"E distance 52.930 metres and N26°55'05"W distance 82.647 metres;

Thence running by property of Northern Harvest N51°43'07"E distance 93.106 metres to the point of beginning; containing 8.598 hectares as shown and delineated on attached Drawing No. SV-CD-MARINE-1A.

All bearings refer to Grid North (NAD 83)

Enos K. Fudge

Newfoundland Land Surveyor

Enos Fudge Surveys

SV-CD-MARINE-1A

December 15th, 2017

Revised: July 6th, 2018

APPENDIX D: AERIAL PHOTOS

- 1. 1:50:000 map of the area
- 2. Arial photos of the proposed expansion site over time

Produced by the Centre for Topographic Information, Natural Resources Canada. Boundaries and toponyms current as of 2000; road network current as of 1996; all other information current as of 1984. Published in 2000. Visit our Web site: http://maps.NRCan.gc.ca/ For corrections, additions or comments concerning the content of this map, please contact us either by telephone at 1–800–465–6277, by facsimile at 1–800–661–6277 or by electronic mail at: topo.maps@NRCan.gc.ca This map may not be reproduced in whole or in part, by any means-graphic, electronic or mechanical-without the written permission of Natural Resources Canada. © 2000. Her Majesty the Queen in Right of Canada. This map is not to be used for air or marine navigation.

sverse Mercator Projection • Projection transverse de Mercator North American Datum 1983 Système de référence nord-américain de 1983 Coordinate conversion NAD 83 (WGS 84) to NAD 27 Coordinate conversion NAD 83 (WGS 84) to NAD 27 Mean values for this map-Geographic: Latitude • add 0.0° Longitude • add 2.7" Grid: Northing • subtract 219 m Easting • subtract 59 m Conversion des coordonnées NAD 83 (WGS 84) à NAD 27 Values maintenance acte laleurs moyennes pour cette carte-Coordonnées géographiques : Latitude • additionner 0,0" Longitude • additionner 2,7" Quadrillage : Ordonnée (N) • soustraire 219 m Abscisse (E) • soustraire 59 m

STEPHENVILLE NEWFOUNDLAND • TERRE-NEUVE

1/50 000 **Kilometres** 1 нннн 1 centimetre on the map represents 500 metres on the ground 1 centimètre sur la carte représente 500 mètres au sol Contour Interval: 20 Metres Équidistance des courbes : 20 mètres Elevations in Metres above Mean Sea Level Altitudes en mètres au-dessus du niveau moyen de la mer

Method used to give reference to the nearest 100 metres Méthode employée pour fixer des repères à 100 mètres près asting: Read grid line value to Grid reference in this example / Référenc du quadrillage dans cet exemple : <u>367946</u> E N he left of point. Estimate tenths of a quare from this line eastward to point Abscisse : Noter le chiffe de la ligne du quadrillage à gauche du repère. Estimer le nombre de dixièmes du carré entre cette ligne et le repère en direction est. 34 35 36 37 38 Northing: Read grid line value 95 Ordonnée : Noter le chiffre de la ligne du quadrillage en dessous du repère. Estimer le nombre de dixièmes du carré entre cette 94 ligne et le repère en direction nord.

Universal Transverse Mercator Gr Zone 21 Quadrillage universel transverse de Mercator de 1000 mètres

Établie par le Centre d'information topographique, Ressources naturelles Canada. Limites et toponymes à jour en 2000; réseau routier à jour en 1996; tous les autres renseignements à jour en 1984. Publiée en 2000. Visitez notre site Web : http://cartes.RNCan.gc.ca/ Pour toutes corrections, additions ou commentaires concernant le contenu de cette carte, veuillez nous contacter soit par téléphone au 1–800–465–6277, par télécopieur au 1–800–661–6277 ou par courrier électronique à : cartes.topo@RNCan.gc.ca Cette carte ne peut être reproduite, en totalité ou en partie, sous quelque forme ou par quelque procédé que ce soit – graphique, mécanique ou électronique – sans l'autorisation écrite de Ressources naturelles Canada. © 2000. Sa Majesté la Reine du chef du Canada.

maritime.

Cette carte ne doit pas être utilisée pour la navigation aérienne ou

	Dual Highway, hard surface
	Road, hard surface, more than 2 lanes, highway route number
	Route, revetement dur, plus de 2 voles, numero de route Road, hard surface, 2 lanes
	Route, revêtement dur, 2 voies Road, hard surface, less than 2 lanes
	Route, revêtement dur, moins de 2 voies Road, loose or stabilized surface, all season, 2 lanes or more
	Route de gravier, aggloméré, toute saison, 2 voies ou plus Road, loose or stabilized surface, all season, less than 2 lanes
	Route de gravier, aggloméré, toute saison, noiss dans 2 tants Route de gravier, aggloméré, toute saison, moins de 2 voies
	Route de gravier, temps sec
	Vehicle track or winter road; gate Chemin de terre ou d'hiver; barrière
	P Trail, cut line or portage; portage, short Sentier, percé ou portage; portage, court
	Built-up area; street; park/sports field Agglomération; rue; parc ou terrain de sports
_	Railway, single track, multiple tracks, side track; station Chemin de fer, voie unique, voies multiples, voie d'évitement; gare
2)	Power transmission line, multiple lines Ligne électrique, lignes multiples
	======================================
10	Cut; embankment, causeway Déblai; remblai, chaussée
	 Seaplane base; heliport; navigation light Hydrohase; héliport; halipa luminanca
	Building(s)
	+ Church; non-Christian place of worship; shrine
	Eglise; lieu de culte non chrétien; lieu de pèlerinage F. School; elevator; fire station
	Ecole; élévateur; caserne de pompiers Cemetery: historic site or point of interest: areenhouse
	Cimetière; lieu historique ou lieu d'intérêt; serre
	 Terrain de camping: terrain de pique-nique: centre de service Golf course: ski area: mine
	Terrain de golf; station de ski; mine Oil or nature ace faciliter electrical faciliter
	Installation pétrolière ou de gaz naturel; installation électrique
	 International boundary with monument Frontière internationale avec borne-repère
	Boundary, first class Limite de première classe
•	Boundary, first class unsurveyed Limite de première classe non arpentée
	Boundary, second class Limite de deuxième classe
	Boundary, second class in Dominion Land Survey Limite de deuxième classe dans les régions de l'Arpentage des te
	Boundary, third class
	Boundary, fourth class
	Boundary, fifth class
	Boundary, sixth class
	Limite de sixième classe Boundary, sixth class unsurveyed
	Limite de sixième classe non arpentée Boundary, seventh class
	Limite de septième classe Boundary, eichth class
	Limite de huitième classe
	Limite de neuvième classe
1	Dam: small; large; carrying road Barrage : petit; grand; portant une route
	Watercourse or shoreline: definite; indefinite Cours d'eau ou rive : précis[e]; imprécis[e)
ĺ	Rapids; falls (with height in black) Rapides; chutes (avec hauteur en noir)
	Lake or pond; slough, intermittent lake or pond Lac ou étang; bourbier, lac ou étang intermittent
	Foreshore flats or sand in water Estrans ou sable dans l'eau
	Rocks in water or small islands Rochers dans l'eau ou ilots
>	Rocky ledge; rocky reef
	Marsh; swamp Marsh; swamp
	Marais; marecage Contours: index; intermediate; approximate
T	Courbes de niveau : maîtresses; intermédiaires; approximatives Depression contours
	Courbes de cuvette Cliff or escarpment
2	Falaise ou escarpement
	3 7 Sable; esker; pingo
	Glacier, rec cap, snowmena Glacier; calotte glaciaire; champ de neige
	wooded area; orchard; vineyard, hopfield Région boisée; verger, vignoble, houblonnière
	For complete reference, see reverse side. Pour une liste complète des signes, voir au
	Your Local Dealer Votre vendeur local
	You soon sould you sould local

STEPHENVILLE 12 B/10 Edition 7 Édition Canada

- -

Address: PO Box 8700

.

APPENDIX E: ZONING AND LAND OWNERSHIP

Please note that the Zoning and Ownership Map was commissioned by MHAC prior to the purchase of NHS.

Northern Harvest Smolt July 2018

WATERS OF ST. GEORGE'S BAY

WATERS OF ST. GEORGE'S BAY

MHSW3

MHSW2-

MHSW1-

PARCEL	OWNERSHIP	REGISTRY OF DEEDS
A	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
В	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
С	NORTHERN HARVEST SMOLT LTD.	REGISTRATION NO. 525341
D	TRANSPORT CANADA	PROPERTY NO. 72087
E	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
F	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
G	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
Н	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
	IRVING OIL LIMITED	
J	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE (LEASED BY O & M HOLDING LTD.)	ROLL: 2201 FRAME: 1738
K	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
L	NEWFOUNDLAND HARWOODS LTD.	
М	O & M HOLDING LTD.	REGISTRATION NO. 812296
N	O & M HOLDING LTD.	REGISTRATION NO. 812296
0	THE TOWN COUNCIL OF THE TOWN OF STEPHENVILLE	ROLL: 2201 FRAME: 1738
Ρ	TORS COVE FISHERIES	
Q	NFLD FEED GRAINS SOCIETY INC.	REGISTRATION NO. 685123
R	NEWFOUNDLAND & LABRADOR HOUSING CORPORATION	ROLL: 878 FRAME: 1917
S	PEAT RESOURCES LIMITED	REGISTRATION NO. 260452/29088
Т	NEWFOUNDLAND POWER INC. & BELL ALIANT REGIONAL COMMUNICATIONS INC.	REGISTRATION NO. 429847
U	NEWFOUNDLAND POWER INC. & BELL ALIANT REGIONAL COMMUNICATIONS INC.	REGISTRATION NO. 488623
V	NEWFOUNDLAND POWER INC. & BELL ALIANT REGIONAL COMMUNICATIONS INC.	REGISTRATION NO. 429847
W	NEWFOUNDLAND POWER INC. & BELL ALIANT REGIONAL COMMUNICATIONS INC.	REGISTRATION NO. 429847
Х	LITTLE PORT HARMON CABIN OWNERS INC.	ROLL: 1644 FRAME: 883
Y	DEPARTMENT OF FISHERIES AND OCEANS	PLAN S-1995-1
Z	LITTLE PORT HARMON CABIN OWNERS INC.	ROLL: 1644 FRAME: 883
AA	HARMON SEASIDE LINKS	

	LEGEND											
	COMMERCIAL ZONE											
	COMMUNITY SERVICE ZONE											
	ENVIRONMENTAL PROTECTION ZONE											
	INDUSTRIAL ZONE											
	STEPHENVILLE AIRPORT ZONE											
	OPEN SPACE / PARK ZONE											
	RESIDENTIAL ZONE											
	RURAL ZONE											
	CLIMATE CHANGE FLOOD ZONE											
	LEGAL SURVEY BOUNDARIES											
	PROPOSED FRESH WATER WELL											
	PROPOSED SALT WATER WELL											
NOTES:												
1. REGISTRY PROVINCE OF REQUIREMENT CONVEYANCE DEEDS WHICH	INFO SHOWN IS BASED ON A SEARCH OF THE REGISTRY OF DEEDS FOR THE NEWFOUNDLAND AND LABRADOR AS OF MAY 18, 2018. THERE IS NO LEGAL FOR AN INDIVIDUAL OR CORPORATE ENTITY TO REGISTER A DEED OF AND AS SUCH THERE IS A POSSIBILITY THAT THERE MAY BE UNREGISTERED MAY RELATE TO PROPERTIES IN/AROUND THIS AREA.											

marine harvest

A – PLAN,SECTION,ELEVATION,OR DETAIL NO.

B - NO. OF DRAWING WHERE ABOVE IS DRAWN

ISSUED FOR REVIEW

ISSUED FOR REVIEW

ISSUED FOR REVIEW

DESCRIPTION

REVISIONS

06/21/2018 R.B.

06/01/2018 R.B.

05/18/2018 R.B.

DATE BY

REALITY CAPTURE SPECIALISTS & ASSOCIATES LTD.

CONSULTANT

А

В

EDWARDS AND ASSOCIATES LTD. P.O. BOX 158, MARYSTOWN, NL, AOE 2MO TEL: 709-279-1990, FAX 709-279-2185

NORTHERN HARVEST SMOLT LTD.

P.O. BOX 460 ST. ALBAN'S, NL, AOH 2E0

LAND OWNERSHIP MAP

DRAWN BY:		CHECKED BY:	APPROVED BY:
	R.B.	R.B.	R.B.
MPA PROJECT NO:		DRAWING FILE:	EAL PROJECT NO.:
	N/A	6871_LOM.dwg	6871
DATE:		SCALE:	DRAWING NO.
MAY 18, 2018		1: 7500	1