

2017/2018 Monitoring Program

Come By Chance Secure Landfill Come By Chance, Newfoundland and Labrador

Department of Municipal Affairs and Environment

GHD | 1118 Topsail Road PO Box 8353 Station A St. John's NL A1B 3N7 084308 | Report No 9 | June 2018

Executive Summary

GHD Limited (GHD) was retained by the Newfoundland and Labrador Department of Municipal Affairs and Environment (DMAE) to complete the 2017/18 Monitoring Program at the Come By Chance Secure Landfill (Site) located on Refinery Road, approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town of Come By Chance (Town), Newfoundland and Labrador (NL).

The scope of work generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, groundwater and surface water sampling, landfill cover inspection, groundwater drainage system inspection, and clean out inspection with cleaning (if required). The Site visit with leachate, groundwater, and surface water sampling was conducted in October 2017; the leachate pumping event and Site inspections were completed in November 2017.

The Site covers an area of approximately 19,778 square metres (m²) and is fenced (chain link) along the perimeter with an access gate on the west side. The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the original operators of the Come By Chance Oil Refinery, and is filled with industrial waste and contaminated soil. The landfill was capped by the end of 1996.

Four monitor wells were installed around the Site (MW93-2, MW93-2A, MW10-1 and MW10-1A) to monitor potential leachate impacts on groundwater and two monitor wells (MW93-1 and MW93-1A) were installed upgradient of the Site to monitor background analyte concentrations. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners (PLCS and SLCS, respectively) as well as a groundwater drainage system (GWDS) to manage excess fluid and provide a means for leachate discharge. Monitoring events conducted between 2004 and 2007 indicated that the landfill cap and primary liner appeared to be minimizing the infiltration of precipitation into the landfill. However, large volumes of leachate identified in the SLCS indicated that groundwater may be entering the SLCS via perforations in the liner, likely from areas to the north of the landfill where it was determined that, periodically, groundwater levels were higher than the base of the SLCS. As a result, in 2009, a GWDS, consisting of a French drain was installed along the north and east sides of the landfill and was connected to a storm drain located along the east side of the landfill. The collected groundwater is directed from the storm drain towards Arnolds Cove, west of the landfill. Surface water sampling was intended to characterize leachate from the Site's leachate containment system and assess potential leachate infiltration into the nearby surface water by sampling a stream directly downgradient. Background analyte concentrations of the surface water was established by sampling at an upgradient location, which is located southeast of the landfill fenced area.

Annual monitoring of leachate, groundwater and surface water quality has been ongoing since 2008. An Operations and Maintenance Manual (OMM) providing details on maintenance and monitoring requirements for the Site was issued by DMAE in 2012. The previous monitoring and maintenance program was completed in 2015-2016.

E.1 2017-2018 Monitoring Program Summary

E.1.1 Groundwater

Groundwater samples were submitted for analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), modified total petroleum hydrocarbons (mTPH), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), general chemistry, and dissolved metals.

In general, BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals analytical data show groundwater conditions to be of better quality compared to leachate analytical data, with the exception of one VOC exceedance (Trichloroethylene) at one monitor well that was not previously detected; however, it does not appear that groundwater is being influenced by leachate from the secure landfill. Based on static groundwater levels measured during the 2017 Site visit, it also appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

E.1.2 Surface Water

Surface water samples were submitted for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and total metals that included trivalent and hexavalent Chromium (Cr³⁺ and Cr⁶⁺).

A review of the downgradient surface water analytical data from the October 2017 sampling event was compared to leachate analytical data to determine if leachate may be impacting the surface water. In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions to be similar or better in quality compared to the leachate analytical data. Concentrations of BTEX/TPH were non-detectable in the downgradient surface water sample, whereas leachate analytical data reported TPH concentrations of 0.24 mg/kg from the PLCS. In addition, PAH concentrations were non-detectable in the downgradient surface water sample, whereas several PAHs (Anthracene, Fluoranthene, Fluorene, Phenanthrene and Pyrene) were detected in the leachate analytical data. Furthermore, two metals (iron and zinc) reported exceedances in the downgradient surface water samples whereas the leachate analytical data did not report any metals exceedances. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

E.1.3 Leachate

Since construction of the landfill, water held in the primary and secondary liner containment systems (PLCS and SLCS, respectively) has been sampled and analyzed in an accredited laboratory and, if considered not to be affected by the waste in the landfill, pumped into a ditch adjacent to the access road to the landfill. Therefore, leachate samples collected from the PLCS and SLCS chambers were submitted for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, dissolved and total metals, and toxicity.

Once it was determined that the leachate was below all regulated parameters and non-toxic, all water held in the containment systems was pumped and discharged to the environment in accordance with the OMM Manual. The pumping events consisted of two Site visits so that a desired flow rate of 15 L/min could be achieved on two successive days. During the Site visits for

leachate pumping in November 2017, it was observed that the PLCS and SLCS valves were permanently in the open position with the discharge hoses no longer connected to the valves. This condition has been reported in previous pumping events. GHD determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculated in-flow rates. It was also noted that leachate elevations in the PLCS and SLCS for two consecutive Site visits were less than 0.6 metres below the top of the valve chambers. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not historically risen above the ground surface.

A comparison of the average of the current and historical pumped leachate volumes from the PLCS valve chambers prior to and following installation of the GWDS shows the PLCS leachate volumes as relatively unchanged. Whereas, a review of the current and historical leachate pumping volumes from the SLCS valve chamber demonstrates that pumped leachate volumes have generally decreased by approximately 41 percent since the installation of the GWDS. Consequently, the GWDS appears to contribute to reduce volumes of pumped leachate from the SLCS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

E.1.4 Landfill Cover

The landfill cover inspection was conducted in November 2017 and indicated maintenance is not required. A vegetation management program was conducted during the previous monitoring event in 2015-2016. Vegetation height, generally alders, does not exceed the OMM recommended height restriction of 0.3 metres. Two monitor well locations were surrounded with very high vegetative growth in the area; alders were noted to reach a height of approximately 1.5 metres. Therefore, GHD staff trimmed the alders prior to conducting groundwater sampling at those locations.

Meadow vole activity from tunneling and nesting was previously noted in numerous locations on the landfill cover during previous inspections, and was again noted during the 2017 inspection; however, meadow voles typically limit their habitat to less than 300 mm from surface.

There was no visible evidence of landfill subsidence and results of the elevation control survey continue to indicate that limited settlement of the landfill is occurring; however, it appears the elevation control survey points were affected by the clear cutting and mulching activities in 2015. The survey control points were observed to be in good condition, but were difficult to locate as the survey flags have been damaged and/or are missing.

E.1.5 Groundwater Drainage System

Four GWDS clean-outs were previously installed as part of the original system construction; visual inspections confirmed that water was not present during the November 2017 Site visit. Debris or blockages were not present in any of the clean-outs; however, the inner 100 mm drain cap of CO2 and CO4 were damaged.

The outflow drainage pipe, located on the asphalt plant property, was in good condition with the rodent screen intact. Some small branches and leaves were observed to slightly impede flow; therefore, the screen was removed and the pipe cleaned out. The screen was reinstated and flow

from the outflow drainage pipe was approximately 1.0 L/min to 2.0 L/min and contained some Iron floc. Overall, it was determined the GWDS was functioning properly.

E.2 Recommendations

Based on the findings of the 2017/18 monitoring program, along with data from previous monitoring programs, the following recommendations are offered for consideration by DMAE:

Monitoring and Maintenance Schedule: The leachate quality is continually reporting BTEX/TPH, PAH, PCB, general chemistry, and metals concentrations at levels that would not affect the surrounding environment, most notably groundwater and surface water. In addition, the landfill was constructed approximately 20 years ago and based on the historical analytical data reviewed in this report, it appears that leachate has reached a steady-state condition. Furthermore, groundwater infiltration has been evident for many years and has acted as a flushing mechanism for any contaminants that may have been present, although elevated levels of contaminants have not historically been identified. Therefore, GHD recommends that further monitoring of the landfill and pumping out of the PLCS and SLCS are not required on an annual basis; however, annual inspections should be continued to ensure the landfill cover system is not compromised by erosion. GHD understands that DMAE would prefer to continue monitoring activities at the landfill as a matter of due diligence; therefore, GHD recommends that monitoring and leachate pumping schedule should be amended to every 2 years.

Maintenance: The cracked plastic drain cap at two clean-outs (CO2 and CO4) should be replaced to prevent potential infiltration of surface water. The elevational control point flags should be replaced to facilitate easier identification of the control points.

OMM Manual: Several sections of the OMM Manual are out of date. For example, MW93-3/93-3A has been decommissioned and replaced by MW10-1/10-1A. The OMM Manual does not state that leachate samples should be analyzed for both total and dissolved metals. The site plan with sampling locations is not reflective of current site conditions, etc. Therefore, consideration should be given by DMAE to incorporate these changes and issue a revised OMM Manual.

Table of Contents

1.	Introd	luction		. 1
2.	Site D	Description		. 1
3.	Metho	odology		. 2
	3.1	Groundwa	ater Sampling	. 2
	3.2	Surface W	/ater Sampling	. 2
	3.3	Leachate	Sampling and Pumping	. 3
	3.4	Landfill Co	over Inspection and Elevation Control	. 3
	3.5	Groundwa	ater Drainage System	. 4
4.	Guide	eline Frame	work	. 4
	4.1	Groundwa	ater	. 4
	4.2	Surface W	/ater	. 5
	4.3	Leachate		. 5
5.	Analy	tical Resul	ts	. 5
•			ater	
	•	5.1.1	BTEX/mTPH in Groundwater	-
		5.1.2	PAHs in Groundwater	. 5
		5.1.3	PCBs in Groundwater	
		5.1.4 5.1.5	VOCs in Groundwater General Chemistry in Groundwater	
		5.1.5 5.1.6	Metals in Groundwater	
	5.2	Surface W	/ater	. 6
		5.2.1	BTEX/mTPH in Surface Water	. 7
		5.2.2	PAHs in Surface Water	
		5.2.3	PCBs in Surface Water	
		5.2.4	VOCs in Surface Water	
		5.2.5	General Chemistry in Surface Water	
			Metals in Surface Water	
	5.3	Leachate	Sampling	. 8
		5.3.1	BTEX/mTPH in Leachate	. 8
		5.3.2	PAHs in Leachate	
		5.3.3	PCBs in Leachate	
		5.3.4	VOCs in Leachate	
			General Chemistry in Leachate	
		5.3.7	Toxicity in Leachate	
6	Discu			
2. Site Descr 3. Methodolo 3.1 Gro 3.2 Sur 3.3 Lea 3.4 Lan 3.5 Gro 4. Guideline 4.1 Gro 4.2 Sur 4.3 Lea 5. Analytical 5.1 Gro 5.1 Gro 5.1 Sin 5.1 Sin 5.1 Sin 5.2 Sur 5.2 Sur 5.3 Lea 5.3 Sur 5.3 Sur				
		ater		
	6.2	Surface W	/ater	10

	6.3	Leachate		10			
		6.3.1 6.3.2	November 2017 Leachate Pumping Event Leachate Pumping Evaluation	10 11			
	6.4	Landfill Co	over Inspection	11			
	6.5	Groundwa	ater Drainage System	12			
7.	Sumn	nary and R	ecommendations	12			
	7.1	2017/18 Monitoring Summary					
		7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	Groundwater Surface Water Leachate Landfill Cover Groundwater Drainage System	14 14 15			
	7.2	Recomme	endations	15			
8.	Refer	ences		16			
9.	Closu	re		17			

Figure Index

Figure 1	Site Location Map
Figure 2	Site Plan with Sample Locations

Table Index

Table 1	Static Water Levels
Table 2	GPS Co-ordinates of Key Site Features
Table 3	Primary Leachate Sampling and Pumping Information
Table 4	Secondary Leachate Sampling and Pumping Information
Table 5	Landfill Cap Inspection Form
Table 6	Elevational Control Point Survey Data
Table 7	Groundwater Analytical Data – BTEX/mTPH (mg/L)
Table 8	Groundwater Analytical Data – PAHs (µg/L)
Table 9	Groundwater Analytical Data – PCBs (µg/L)
Table 10	Groundwater Analytical Data – VOCs (µg/L)
Table 11	Groundwater Analytical Data – General Chemistry
Table 12	Groundwater Analytical Data – Dissolved Metals (μ g/L)
Table 13	Surface Water Analytical Data – BTEX/mTPH (mg/L)
Table 14	Surface Water Analytical Data – PAHs (µg/L)
Table 15	Surface Water Analytical Data – Total PCBs (μ g/L)

- Table 16 Surface Water Analytical Data VOCs (µg/L)
- Table 17
 Surface Water Analytical Data General Chemistry
- Table 18 Surface Water Analytical Data Total Metals (µg/L)
- Table 19 Leachate Analytical Data BTEX/ mTPH (mg/L)
- Table 20 Leachate Analytical Data PAHs (µg/L)
- Table 21 Leachate Analytical Data Total PCBs (µg/L)
- Table 22 Leachate Analytical Data VOCs (µg/L)
- Table 23
 Leachate Analytical Data General Chemistry
- Table 24 Leachate Analytical Data Total Metals (µg/L)
- Table 25 Leachate Analytical Data Dissolved Metals (µg/L)
- Table 26 Leachate Analytical Data Toxicology

Appendix Index

Appendix A	Site Photographs
Appendix B	Laboratory Certificates of Analyses
Appendix C	Petroforma Lethality Laboratory Reports
Appendix D	Leachate Pumping Logs
Appendix E	Historical Monitoring Data

1. Introduction

GHD Limited (GHD) was retained by the Newfoundland and Labrador Department of Municipal Affairs and Environment (DMAE) to complete the 2017/18 Monitoring Program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the DMAE Tier I schedule as outlined in the June 2012 Operations, Maintenance, and Monitoring (OMM) Manual.

The scope of work generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, groundwater and surface water sampling, landfill cover inspection, groundwater drainage system inspection, and clean out inspection with cleaning (if required).

The 2017/18 Site sampling event was conducted in October 2017 with the leachate pumping event and Site inspections completed in November 2017.

2. Site Description

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans-Canada Highway and approximately 4 km south of the Town of Come By Chance (Town), NL. The Site is fenced (chain link) along the perimeter with an access gate on the west side. The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the original operators of the Come By Chance Oil Refinery, and is filled with industrial waste and contaminated soil. The landfill was capped by the end of 1996.

Four monitor wells were installed around the Site (MW93-2, MW93-2A, MW10-1 and MW10-1A) to monitor potential leachate impacts on groundwater and two monitor wells (MW93-1 and MW93-1A) were installed upgradient of the Site to monitor background analyte concentrations. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners (PLCS and SLCS, respectively) as well as a groundwater drainage system (GWDS) to manage excess fluid and provide a means for leachate discharge. Monitoring events conducted between 2004 and 2007 indicated that the landfill cap and primary liner appeared to be minimizing the infiltration of precipitation into the landfill. However, large volumes of leachate identified in the SLCS indicated that groundwater may be entering the SLCS via perforations in the liner, likely from areas to the north of the landfill where it was determined that, periodically, groundwater levels were higher than the base of the SLCS. As a result, in 2009, a GWDS, consisting of a French drain was installed along the north and east sides of the landfill and was connected to a storm drain located along the east side of the landfill. The collected groundwater is directed from the storm drain towards Arnolds Cove, west of the landfill. Surface water sampling was intended to characterize leachate from the Site's leachate containment system and assess potential leachate infiltration into the nearby surface water by sampling a stream directly downgradient. Background analyte concentrations of the surface water was established by sampling at an upgradient location, which is located southeast of the landfill fenced area.

Annual monitoring of leachate, groundwater and surface water quality has been ongoing since 2008. The previous monitoring and maintenance program was completed in 2015-2016.

3. Methodology

3.1 Groundwater Sampling

On October 12, 2017, static water levels were measured using an electronic product/water interface probe at the on-Site and up-gradient monitor wells (Table 1). The monitor wells were then developed, allowed to recover, and sampled using dedicated, disposable bailers. Six groundwater samples were collected from the existing monitor wells (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A), plus one field duplicate (MW-DUP) from MW93-2A. Groundwater sample locations are presented on Figure 2 and GPS co-ordinates for the monitor wells are included in Table 2.

Note that two monitor well locations (MW93-1 and MW93-2) were surrounded with very high vegetative growth in the area; alders were noted to reach a height of approximately 1.5 metres. Therefore, GHD staff trimmed the alders prior to conducting groundwater sampling at those locations. Photographs of the monitor wells from the Site visit (Photos 1 to 3) are presented in Appendix A.

All groundwater samples collected from the existing monitor wells were submitted for analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), modified total petroleum hydrocarbons (mTPH), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), general chemistry, and dissolved metals. Groundwater samples were submitted to Maxxam Analytics Inc. (Maxxam) in Bedford, Nova Scotia (NS) for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL.

3.2 Surface Water Sampling

Surface water sampling was intended to demonstrate background analyte concentrations from the upgradient sample location (SURFACE-UP) and assess potential leachate infiltration into surface water by sampling downgradient (SURFACE-DOWN). The original SURFACE-DOWN location was destroyed as a result of an industrial development with an asphalt plant; therefore, a new SURFACE-DOWN location was selected and sampled since November 2012.

The surface water locations are located southeast of the fenced area and upstream (SURFACE-UP) along with one southwest of the Site beyond the gravel road and downstream (SURFACE DOWN), both of which are shown on Figure 2. GPS co-ordinates for each surface water station are presented in Table 2. Photographs of the surface water sample locations from the Site visit (Photos 4 and 5) are presented in Appendix A.

Surface water samples were collected by GHD staff on October 12, 2017 and were submitted for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and total metals that included trivalent and hexavalent Chromium (Cr³⁺ and Cr⁶⁺). All surface water samples were submitted to Maxxam in Bedford, NS for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL.

3.3 Leachate Sampling and Pumping

Since construction of the landfill, water held in the primary and secondary liner containment systems (PLCS and SLCS, respectively) has been sampled, analyzed in an accredited laboratory and, if considered not to be affected by the waste in the landfill, pumped into a ditch adjacent to the access road to the landfill. Once it was determined that the leachate was below all regulated parameters and non-toxic, all water held in the containment systems was discharged to the environment in accordance with the OMM Manual.

On October 12, 2017, GHD collected leachate samples from the PLCS and SLCS chambers for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, dissolved and total metals, and toxicity. All leachate samples were submitted to Maxxam in Bedford, NS for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL; toxicity samples were submitted to Petroforma Laboratories (Petroforma) in Paradise, NL. Note that all laboratories are certified by the Canadian Association for Laboratory Accreditation Inc. (CALA) for the respective analyses that were completed. GPS co-ordinates were confirmed for both leachate collection system valve chamber sample locations (Table 2), which are shown on Figure 2. A photograph of the PLCS and SLCS chambers from the Site visit (Photo 6) is presented in Appendix A.

Leachate analytical data was required to determine if pumping down the PLCS and SLCS valve chambers and discharging into a nearby ditch was permitted under Newfoundland and Labrador Regulation 65/03, *Environmental Control Water and Sewage Regulations (ECWSR), 2003, Schedule "A", under the Water Resources Act* (Filed May 23, 2003) (herein referred to as ECWSR Schedule "A" for the respective comparison criteria, where available. The tabulated analytical results from the sampling event were presented to DMAE for review and approval. Since the drainage ditch location planned for leachate discharge is within the Town boundaries, approval was also requested from the Town prior to discharging leachate from both collection systems into the nearby ditch. Field data recorded prior to and during the PLCS and SLCS leachate discharge events are presented in Tables 3 and 4, respectively.

3.4 Landfill Cover Inspection and Elevation Control

A landfill cover visual inspection was completed during the Site visit in November 2017 along with a detailed inspection documented in Table 5 in accordance with the OMM Manual. The comprehensive landfill cover inspection conducted in November 2017 assessed the following:

- Height of vegetation
- Condition of landfill vents
- Evidence or erosion/animal burrows
- Condition of slopes
- Condition of lateral drains

Concrete elevation control points were installed at four locations on the landfill cover in 2010 to accurately measure potential settlement of the landfill cover. Therefore, an elevation control survey was conducted as part of the November 2017 Site visit. GPS co-ordinates using NAD27

(UTM Zone 21) geo reference were available for the four elevation control points and landfill vent locations (Table 2), which are shown on Figure 2.

Results of the elevational control point survey are presented in Table 6 along with a comparison of the results from the previous survey completed in 2015. Select photographs from the landfill cover inspection (Photos 7 to 10) are presented in Appendix A.

3.5 Groundwater Drainage System

Historically, large volumes of leachate from the SLCS were required to be pumped during each Site visit, which was previously suspected to be a result of groundwater infiltration into the secondary liner (AMEC, 2009). Based on the information gathered, it was determined that groundwater levels to the northeast of the landfill were above the level of the SLCS at various time each year. As a result, in 2009, a GWDS was designed and installed to control water levels at the Site and maintain the integrity of the liner system.

The GWDS was constructed outside the fenced area of the secure landfill along the eastern and northern boundaries at an elevation that was anticipated to intercept groundwater and divert it through the drainage system. The GWDS consists of approximately 140 m of perforated pipe (French drain), 150 mm in diameter, and 110 m of storm pipe, 200 mm in diameter. The perforated pipe is installed in a trench of washed crushed stone measuring approximately 600 mm x 600 mm wrapped in filter fabric and 110 m of corrugated steel pipe, 200 mm in diameter. Four clean out locations (CO1 to CO4) were also installed and a rip-rap storm drain placed at the end of the system. The collected groundwater is directed from the storm drain towards Arnolds Cove, west of the landfill.

A visual inspection of the GWDS was conducted during the November 2017 Site visit to determine if cleaning was required and/or if groundwater was present in the clean out locations (CO1 to CO4). GPS co-ordinates were available for the four clean out locations (Table 2), which are shown on Figure 2. The discharge location for the GWDS was also checked for blockages and to ensure the rodent screen was intact. Select photographs from the GWDS inspection (Photos 11 to 13) are presented in Appendix A.

4. Guideline Framework

4.1 Groundwater

As specified in the OMM Manual, petroleum hydrocarbon compound concentrations (BTEX/TPH) in groundwater were assessed in relation to the Atlantic Risk Based Corrective Action (RBCA) Version 3.0 (updated January 2015) Tier I Risk Based Screening Levels (RBSLs) for a commercial property with non-potable groundwater and coarse-grained soil.

PAHs, PCBs, VOCs, dissolved metals, and general chemistry concentrations in groundwater were assessed in relation to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

4.2 Surface Water

As specified in the OMM Manual, PAHs, VOCs, total metals (including trivalent and hexavalent Chromium), and general chemistry concentrations in surface water were evaluated in relation to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the Protection of Aquatic Life (Freshwater or FAL). The FAL were from the Canadian Environmental Quality Guidelines (Update 7.0, September 2007).

BTEX/TPH in surface water were assessed in relation to RBCA version 3.0 Tier I Ecological Screening Levels (ESLs) for the Protection of Freshwater and Marine Aquatic Life.

There is no known guideline for PCBs in surface water.

4.3 Leachate

As specified in the OMM Manual, leachate was assessed in relation to ECWSR Schedule "A." As the pumped leachate eventually discharges into a stream downgradient of the Site, parameters not specified in ECWSR Schedule "A" were assessed in relation to the CCME CWQGs for the Protection of FAL, updated 2007. Leachate samples were filtered and analyzed for dissolved metals to permit a direct comparison with dissolved metals in groundwater samples, as required by the OMM. Total metals in leachate were also analyzed to permit a direct comparison with the discharge limits set out in ECWSR Schedule "A".

5. Analytical Results

5.1 Groundwater

Groundwater analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and dissolved metals are presented in Tables 7 to 12, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix B. Additional discussion is presented in Section 6.1 regarding the groundwater analytical results.

5.1.1 BTEX/mTPH in Groundwater

Laboratory analytical results for BTEX/mTPH from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 7, all of which reported BTEX/mTPH concentrations as non-detectable and below the applicable guidelines.

One field duplicate (MW-DUP) was also collected from MW93-2A during the October 2017 sampling event, which reported BTEX/mTPH concentrations consistent with the original sample results.

5.1.2 PAHs in Groundwater

Laboratory analytical results for PAHs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 8, all of which reported PAH concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate (MW-DUP) was also collected from MW93-2A and reported PAH concentrations as non-detectable.

5.1.3 PCBs in Groundwater

Laboratory analytical results for PCBs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 9, all of which reported PCB concentrations as non-detectable and below the applicable guidelines.

In addition, one field duplicate (MW-DUP) was collected from MW93-2A that also reported PCB concentrations consistent with the original sample results.

5.1.4 VOCs in Groundwater

Laboratory analytical results for VOCs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 10, all of which reported VOC concentrations as non-detectable or below the applicable guidelines except trichloroethylene in groundwater sample MW10-1, which exceeded the applicable guideline.

In addition, one field duplicate (MW-DUP) was collected from MW93-2A that also reported VOC concentrations consistent with the original sample results.

5.1.5 General Chemistry in Groundwater

Laboratory analytical results for general chemistry from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 11, all of which reported general chemistry concentrations as non-detectable or within the applicable guidelines.

In addition, one field duplicate (MW-DUP) was collected from MW93-2A that also reported general chemistry concentrations consistent with the original sample results.

5.1.6 Metals in Groundwater

Laboratory analytical results for dissolved metals from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 12, all of which reported dissolved metals concentrations as non-detectable or within the applicable guidelines.

In addition, one field duplicate (MW-DUP) was collected from MW93-2A that also reported dissolved metals concentrations consistent with the original sample results.

5.2 Surface Water

Laboratory analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and total metals that included trivalent and hexavalent Chromium from the two surface water sample locations collected in October 2017 are presented in Tables 13 to 18, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix B. Additional discussion is presented in Section 6.2 regarding the surface water analytical results.

5.2.1 BTEX/mTPH in Surface Water

Laboratory analytical results for BTEX/mTPH from the two surface water samples (SURFACE-UP and SURFACE-DOWN) are presented in Table 13, both of which reported BTEX/mTPH concentrations as non-detectable and below the applicable guidelines.

In addition, one field duplicate (SURFACE-DUP) was collected from SURFACE-DOWN that also reported BTEX/mTPH concentrations consistent with the original sample results.

5.2.2 PAHs in Surface Water

Laboratory analytical results for PAHs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) are presented in Table 14, both of which reported PAH concentrations as non-detectable and below the applicable guidelines.

In addition, one field duplicate (SURFACE-DUP) was collected from SURFACE-DOWN that also reported PAH concentrations consistent with the original sample results.

5.2.3 PCBs in Surface Water

Laboratory analytical results for PCBs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) are presented in Table 15, both of which reported PCB concentrations as non-detectable and below the applicable guidelines. Note that CCME CWQGs (FAL) does not specify a criterion for PCBs in surface water.

In addition, one field duplicate (SURFACE-DUP) was collected from SURFACE-DOWN that also reported PCB concentrations consistent with the original sample results.

5.2.4 VOCs in Surface Water

Laboratory analytical results for VOCs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) are presented in Table 16, both of which reported VOC concentrations as non-detectable and below the applicable guidelines.

In addition, one field duplicate (SURFACE-DUP) was collected from SURFACE-DOWN that also reported VOC concentrations consistent with the original sample results.

5.2.5 General Chemistry in Surface Water

Laboratory analytical results for general chemistry from the two surface water samples (SURFACE-UP and SURFACE-DOWN) are presented in Table 17, both of which reported general chemistry concentrations as non-detectable or within the applicable guidelines.

In addition, one field duplicate (SURFACE-DUP) was collected from SURFACE-DOWN that also reported general chemistry concentrations consistent with the original sample results.

5.2.6 Metals in Surface Water

Laboratory analytical results for total metals from two surface water samples (SURFACE-UP and SURFACE-DOWN) are presented in Table 18, both of which reported metals concentrations as

non-detectable or below the applicable guidelines except exceedances at both locations for Iron, and an exceedance for Zinc at the downgradient sample location.

The above-noted exceedances of Iron were identified in all previous monitoring events except November 2014 and December 2015 in the downgradient sample location, and all previous monitoring events except July 2010 in the upgradient sample location. The above-noted exceedance of Zinc was identified in the downstream surface water location in 2008 and December 2010.

5.3 Leachate Sampling

Leachate analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, dissolved and total metals and toxicity from the two leachate samples (PLCS and SLCS) collected in October 2017 are presented in Tables 19 to 26, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix B. In addition, PLCS and SLCS toxicity analytical results as reported by Petroforma are included as Appendix C. Leachate collection system pumping logs from the November 2017 program are provided in Appendix D. Further discussion is presented in Section 6.3 regarding the leachate analytical results.

5.3.1 BTEX/mTPH in Leachate

Laboratory analytical results for BTEX/mTPH from the two leachate samples (PLCS and SLCS) are presented in Table 19, both of which reported BTEX/mTPH concentrations as non-detectable or within the applicable guidelines. BTEX concentrations were non-detect and below the CCME CWQGs FAL criteria and TPH concentrations were below the ECWSR Schedule A criterion.

5.3.2 PAHs in Leachate

Laboratory analytical results for PAHs from the two leachate samples (PLCS and SLCS) are presented in Table 20, both of which reported PAH concentrations as very low or non-detectable and below CCME CWQGs (FAL), where applicable. Provincial regulations or guidelines for PAHs do not exist in consideration of discharging an effluent into a drainage ditch.

5.3.3 PCBs in Leachate

Laboratory analytical results for PCBs from the two leachate samples (PLCS and SLCS) are presented in Table 21, both of which reported PCB concentrations as non-detectable. Provincial regulations or guidelines for PCBs do not exist in consideration of discharging an effluent into a drainage ditch and the CCME CWQGs (FAL) do not specify criteria for PCBs.

5.3.4 VOCs in Leachate

Laboratory analytical results for VOCs from the two leachate samples (PLCS and SLCS) are presented in Table 22, both of which reported VOC concentrations as non-detectable. Provincial regulations or guidelines for VOCs do not exist in consideration of discharging an effluent into a drainage ditch.

5.3.5 General Chemistry in Leachate

Laboratory analytical results for general chemistry from the two leachate samples (PLCS and SLCS) are presented in Table 23, both of which reported general chemistry concentrations as non-detectable or within the applicable guidelines.

5.3.6 Metals in Leachate

Laboratory analytical results for total and dissolved metals from the two leachate samples (PLCS and SLCS) are presented in Tables 24 and 25, respectively, both of which reported total and dissolved metals concentrations as non-detectable or below the Provincial regulations.

5.3.7 Toxicity in Leachate

Leachate samples from the PLCS and SLCS were also submitted for toxicity analysis, which concluded the effluent from the PLCS and SLCS were non-toxic to rainbow trout with zero mortality for both samples after 96 hours. Toxicology results are presented in Table 26.

6. Discussion

Groundwater, surface water, and leachate analytical data from the October 2017 sampling event were compared with historical analytical data to determine if leachate may be affecting groundwater or surface water and identify the potential for trends. Annual monitoring of groundwater, surface water, and leachate quality has been ongoing since 2008. Historical data from previous environmental assessment and/or monitoring is presented in Appendix E.

6.1 Groundwater

A review of groundwater analytical data from the October 2017 sampling event was compared to leachate analytical data collected from the PLCS and SLCS to determine if leachate appeared to be impacting groundwater. In general, BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals analytical data show groundwater conditions to be of better quality compared to leachate analytical data, with the exception of one VOC exceedance (Trichloroethylene) at one monitor well (MW10-1); however, Trichloroethylene was not previously detected in past monitoring events since 2010. It does not appear that groundwater is being influenced by leachate from the secure landfill.

Based on static groundwater levels measured during the 2017 Site visit, groundwater was confirmed to flow in a southwesterly direction toward Come By Chance Cove. In addition, static groundwater elevations in 2017 from the three sets of monitor wells were compared to the PLCS and SLCS leachate elevations in the valve chambers. The groundwater elevations at MW93-1 and MW93-1A were measured at approximately 0.14 and 0.18 metres above the leachate elevation at the SLCS valve chamber, respectively. In comparison, groundwater elevations at MW93-2, MW93-2A, MW10-1, and MW10-1A measured approximately 1.89 to 2.35 metres below the leachate elevation at the SLCS valve chamber.

6.2 Surface Water

A review of the downgradient surface water analytical data from the October 2017 sampling event was compared to leachate analytical data to determine if leachate may be impacting the surface water. In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions to be similar or better in quality compared to the leachate analytical data. Concentrations of BTEX/TPH were non-detectable in the downgradient surface water sample, whereas leachate analytical data reported TPH concentrations of 0.24 mg/kg from the PLCS. In addition, PAH concentrations were non-detectable in the downgradient surface water sample, whereas several PAHs (Anthracene, Fluoranthene, Fluorene, Phenanthrene and Pyrene) were detected in the leachate analytical data. Furthermore, two metals (iron and zinc) reported exceedances in the downgradient surface water samples whereas the leachate analytical data did not report any metals exceedances. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

6.3 Leachate

Prior to pumping and discharging leachate from the PLCS and SLCS, all analytical parameters were reviewed for compliance with ECWSR Schedule "A" and/or CCME CWGGs for FAL. In addition, copies of the results were submitted to DMAE and the Town for approval prior to the pumping event. On November 7 and 15, 2017, approvals for discharge were received from DMAE and the Town, respectively. In accordance with the OMM Manual, the pumping event consisted of two Site visits so that a desired flow rate of less than 15 L/min was achieved on two successive days.

6.3.1 November 2017 Leachate Pumping Event

GHD returned to the Site on November 22, 2017 to initiate the leachate collection system pumping program (Photo 14, Appendix A). As noted during previous events, it was observed that the PLCS and SLCS valves were in the open position with the discharge hose no longer connected to the valves. GHD determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculated in-flow rates. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not historically risen above the ground surface.

GHD completed the initial leachate collection system pumping program on November 22, 2017. Approximately 21,300 L was pumped from the PLCS valve chamber with a final measured in-flow rate of 12 L/min while approximately 19,200 L was pumped from the SLCS valve chamber with a final measured in-flow rate of 8 L/min. The desired in-flow rate of 15 L/min was achieved for the PLCS and SLCS during the initial pumping event.

GHD completed the subsequent leachate collection system pumping program on November 23, 2017. Approximately 1,800 L was pumped from the PLCS valve chamber with a final measured in-flow rate of 7 L/min while approximately 300 L was pumped from the SLCS valve chamber with a final measured in-flow rate of 5 L/min.

6.3.2 Leachate Pumping Evaluation

Volumes of leachate pumped and discharged from the PLCS and SLCS were compared to previous pumped volumes. A summary of leachate pumping from November 2000 to November 2017 is presented in the table below.

Year	Month	PLCS	SLCS				
2000	November	13,000	70,000				
2003	November	15,000	56,000				
2004	August	NA	45,000				
2004	September	15,500	83,000				
2004	October	NA	32,000				
2006	October	NA	68,000				
2007	February	6,000	63,000				
2007	July	NA	103,000				
2008	November	NA	74,000				
Average Pre GWD	S	≈12,500	≈66,000				
NA: No leachate presen	NA: No leachate present						
Year	Month	PLCS	SLCS				
2009	August	3,400	19,500				
2000	December	4 500	20 700				

Summary of Leachate Pumping Volumes (Litres)

NA: No leachate present							
Year	Month	PLCS	SLCS				
2009	August	3,400	19,500				
2009	December	4,500	30,700				
2010	February	3,400	21,350				
2010	August	12,100	35,200				
2011	January	8,600	30,200				
2012	November	12,200	24,900				
2013	October	22,700	42,500				
2014	December	23,000	18,500				
2017	November	23,100	19,500				
Average Post GWI	DS	≈12,500	≈27,000				

GWDS: Groundwater drainage system installed in March 2009

A comparison of the average of the current and historical pumped leachate volumes from the PLCS valve chambers prior to and following installation of the GWDS shows the PLCS leachate volumes as relatively unchanged. Whereas, a review of the current and historical leachate pumping volumes from the SLCS valve chamber demonstrates that pumped leachate volumes have generally decreased by approximately 41 percent since the installation of the GWDS. Consequently, the GWDS appears to contribute to reduce volumes of pumped leachate from the SLCS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

6.4 Landfill Cover Inspection

A landfill cover inspection was conducted on November 22, 2017. Notable items resulting from the landfill cover inspection are outlined below:

- A vegetation management program was conducted during the previous monitoring event in 2015-2016. Vegetation height, generally alders, do not exceed the OMM requirement of maximum vegetation height of 0.3 metres;
- The landfill vents (V1 and V2) were in good condition and not obstructed
- There was no evidence of erosion or large animal burrows on the landfill cover
- Meadow vole activity from tunneling and nesting was noted in two locations (VOLE1 and VOLE2, Figure 2) during the 2017 inspection
- The slopes were in good condition and covered with vegetation with no signs of erosion
- The lateral drains were dry and not obstructed

Upon reviewing the results of the elevation control survey, it was noted the elevation control point decreased slightly in elevation at ECP2 (22 mm) when compared to the original 2010 elevation while the elevation control points at ECP1, ECP3, and ECP4 increased in elevation (48 mm, 345 mm, and 96 mm, respectively) when compared to the original 2010 elevations. Based on this information, the difference in elevation of the control points indicate that very limited and insignificant settlement or frost heave is occurring at the landfill cover in three locations (ECP1, ECP2, and ECP4), which in turn indicates the contents of the landfill are not settling. The elevation at one control point (ECP3) indicated a raise in elevation of 345 mm, which was likely attributed to the clear cutting and mulching activities in 2015 since there was no visual evidence of significant frost heave at this location.

The survey control points were observed to be in good condition, but were difficult to locate as the survey flags have been damaged and/or are missing.

Results of the inspection and survey of the landfill cap are summarized in Tables 5 and 6.

6.5 Groundwater Drainage System

Four GWDS clean-outs (CO1 to CO4) were previously installed as part of the original system construction; visual inspections confirmed that water was not present during the November 2017 Site visit. Debris or blockages were not present in any of the clean-outs; however, the inner 100 mm drain cap of CO2 and CO4 were damaged (refer to Photos 11 and 12, respectively, of Appendix A).

The outflow drainage pipe, located on the asphalt plant property, was in good condition with the rodent screen intact. Some small branches and leaves were observed behind the screen that slightly impeding flow (Photo 13, Appendix A). Therefore, the screen was removed from the pipe discharge, cleaned out, and the screen reinstated. Flow from the outflow drainage pipe was approximately 1.0 L/min to 2.0 L/min and contained some Iron floc. Overall, it was determined the GWDS was functioning properly.

7. Summary and Recommendations

The Come By Chance Secure Landfill covers an area of approximately 4.88 acres located approximately 2.5 km west of the Trans-Canada Highway and approximately 4 km south of the Town of Come By Chance, NL. The Site is fenced (chain link) along the perimeter with an access

gate on the west side. The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the original operators of the Come By Chance Oil Refinery, and is filled with industrial waste and contaminated soil. The landfill was capped by the end of 1996.

Four monitor wells were installed around the Site to monitor potential leachate impacts on groundwater and two monitor wells were installed upgradient of the Site to monitor background analyte concentrations. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners (PLCS and SLCS, respectively) as well as a GWDS to manage excess fluid and provide a means for leachate discharge. Monitoring events conducted between 2004 and 2007 indicated that the landfill cap and primary liner appeared to be minimizing the infiltration of precipitation into the landfill. However, large volumes of leachate identified in the SLCS indicated that groundwater may be entering the SLCS via perforations in the liner, likely from areas to the north of the landfill where it was determined that, periodically, groundwater levels were higher than the base of the SLCS. As a result, in 2009, a GWDS, consisting of a French drain was installed along the north and east sides of the landfill and was connected to a storm drain located along the east side of the landfill. The collected groundwater is directed from the storm drain towards Arnolds Cove, west of the landfill. Surface water sampling was intended to characterize leachate from the Site's leachate containment system and assess potential leachate infiltration into the nearby surface water by sampling a stream directly downgradient. Background analyte concentrations of the surface water was established by sampling at an upgradient location, which is located southeast of the landfill fenced area.

Annual monitoring of leachate, groundwater and surface water quality has been ongoing since 2008. An Operations and Maintenance Manual (OMM) providing details on maintenance and monitoring requirements for the Site was issued by DMAE in 2012.

GHD was retained by DMAE to complete the 2017/18 Monitoring Program at the Site. The scope of work generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, groundwater and surface water sampling, landfill cover inspection, groundwater drainage system inspection, and clean out inspection with cleaning (if required).

The Site visit with leachate, groundwater, and surface water sampling was conducted in October 2017; the leachate pumping event and Site inspections were completed in November 2017. Information regarding the 2017/18 monitoring program is summarized below in Section 7.1 with recommendations provided in Section 7.2.

7.1 2017/18 Monitoring Summary

7.1.1 Groundwater

In general, BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals analytical data show groundwater conditions to be of better quality compared to leachate analytical data, with the exception of one VOC exceedance (Trichloroethylene) at one monitor well that was not previously detected; however, it does not appear that groundwater is being influenced by leachate from the secure landfill. Based on static groundwater levels measured during the 2017 Site visit, it also appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

7.1.2 Surface Water

A review of the downgradient surface water analytical data from the October 2017 sampling event was compared to leachate analytical data to determine if leachate may be impacting the surface water. In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions to be similar or better in quality compared to the leachate analytical data. Concentrations of BTEX/TPH were non-detectable in the downgradient surface water sample, whereas leachate analytical data reported TPH concentrations of 0.24 mg/kg from the PLCS. In addition, PAH concentrations were non-detectable in the downgradient surface water sample, whereas several PAHs (Anthracene, Fluoranthene, Fluorene, Phenanthrene and Pyrene) were detected in the leachate analytical data. Furthermore, two metals (iron and zinc) reported exceedances in the downgradient surface water samples whereas the leachate analytical data did not report any metals exceedances. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

7.1.3 Leachate

Since construction of the landfill, water held in the primary and secondary liner containment systems (PLCS and SLCS, respectively) has been sampled and analyzed in an accredited laboratory and, if considered not to be affected by the waste in the landfill, pumped into a ditch adjacent to the access road to the landfill. Therefore, leachate samples collected from the PLCS and SLCS chambers were submitted for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, dissolved and total metals, and toxicity.

Once it was determined that the leachate was below all regulated parameters and non-toxic, all water held in the containment systems was pumped and discharged to the environment in accordance with the OMM Manual. The pumping events consisted of two Site visits so that a desired flow rate of 15 L/min could be achieved on two successive days. During the Site visits for leachate pumping in November 2017, it was observed that the PLCS and SLCS valves were permanently in the open position with the discharge hoses no longer connected to the valves. This condition has been reported in previous pumping events. GHD determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculated in-flow rates. It was also noted that leachate elevations in the PLCS and SLCS for two consecutive Site visits were less than 0.6 metres below the top of the valve chambers. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not historically risen above the ground surface.

A comparison of the average of the current and historical pumped leachate volumes from the PLCS valve chambers prior to and following installation of the GWDS shows the PLCS leachate volumes as relatively unchanged. Whereas, a review of the current and historical leachate pumping volumes from the SLCS valve chamber demonstrates that pumped leachate volumes have generally decreased by approximately 41 percent since the installation of the GWDS. Consequently, the GWDS appears to contribute to reduce volumes of pumped leachate from the SLCS; however,

significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

7.1.4 Landfill Cover

The landfill cover inspection was conducted in November 2017 and indicated maintenance is not required. A vegetation management program was conducted during the previous monitoring event in 2015-2016. Vegetation height, generally alders, does not exceed the OMM recommended height restriction of 0.3 metres. Two monitor well locations were surrounded with very high vegetative growth in the area; alders were noted to reach a height of approximately 1.5 metres. Therefore, GHD staff trimmed the alders prior to conducting groundwater sampling at those locations.

Meadow vole activity from tunneling and nesting was previously noted in numerous locations on the landfill cover during previous inspections, and was again noted during the 2017 inspection; however, meadow voles typically limit their habitat to less than 300 mm from surface.

There was no visible evidence of landfill subsidence and results of the elevation control survey continue to indicate that limited settlement of the landfill is occurring; however, it appears the elevation control survey points were affected by the clear cutting and mulching activities in 2015. The survey control points were observed to be in good condition, but were difficult to locate as the survey flags have been damaged and/or are missing.

7.1.5 Groundwater Drainage System

Four GWDS clean-outs were previously installed as part of the original system construction; visual inspections confirmed that water was not present during the November 2017 Site visit. Debris or blockages were not present in any of the clean-outs; however, the inner 100 mm drain cap of CO2 and CO4 were damaged.

The outflow drainage pipe, located on the asphalt plant property, was in good condition with the rodent screen intact. Some small branches and leaves were observed to slightly impede flow; therefore, the screen was removed and the pipe cleaned out. The screen was reinstated and flow from the outflow drainage pipe was approximately 1.0 L/min to 2.0 L/min and contained some Iron floc. Overall, it was determined the GWDS was functioning properly.

7.2 Recommendations

Based on the findings of the 2017/18 monitoring program, along with data from previous monitoring programs, the following recommendations are offered for consideration by DMAE:

Monitoring and Maintenance Schedule: The leachate quality is continually reporting BTEX/TPH, PAH, PCB, general chemistry, and metals concentrations at levels that would not affect the surrounding environment, most notably groundwater and surface water. In addition, the landfill was constructed approximately 20 years ago and based on the historical analytical data reviewed in this report, it appears that leachate has reached a steady-state condition. Furthermore, groundwater infiltration has been evident for many years and has acted as a flushing mechanism for any contaminants that may have been present, although elevated levels of contaminants have not historically been identified. Therefore, GHD recommend that further monitoring of the landfill and pumping out of the PLCS and SLCS are not required on an annual basis; however, annual

inspections should be continued to ensure the landfill cover system is not compromised by erosion. GHD understands that DMAE would prefer to continue monitoring activities at the landfill as a matter of due diligence; therefore, GHD recommend that monitoring and leachate pumping schedule should be amended to every 2 years.

Maintenance: The cracked plastic drain cap at two clean-outs (CO2 and CO4) should be replaced to prevent potential infiltration of surface water. The elevational control point flags should be replaced to facilitate easier identification of the control points.

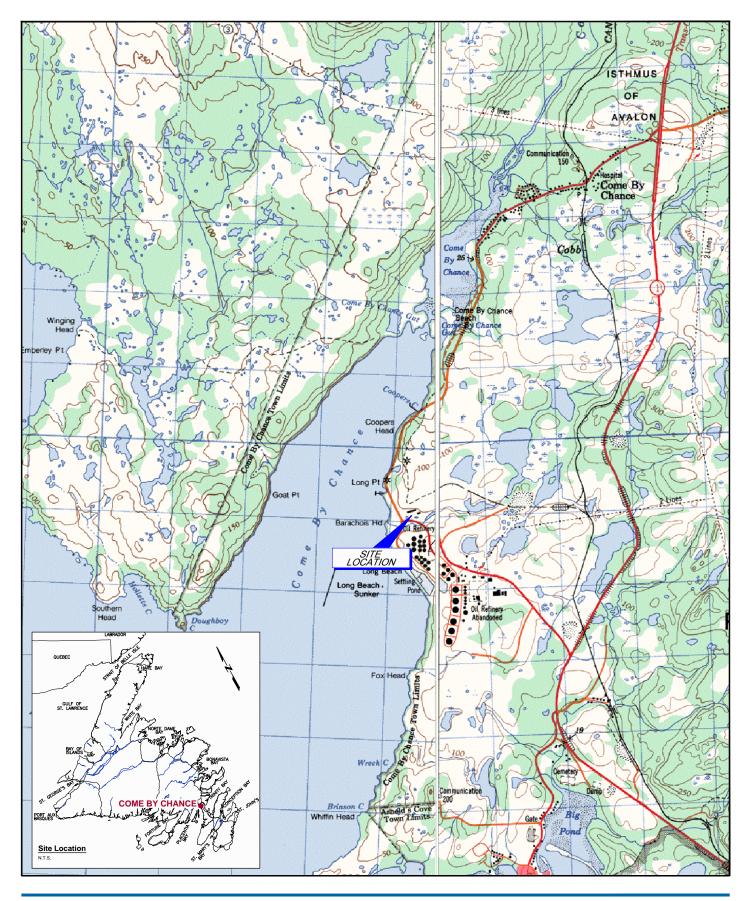
OMM Manual: Several sections of the OMM Manual are out of date. For example, MW93-3/93-3A has been decommissioned and replaced by MW10-1/10-1A. The OMM Manual does not state that leachate samples should be analyzed for both total and dissolved metals. The site plan with sampling locations is not reflective of current site conditions, etc. Therefore, consideration should be given by DMAE to incorporate these changes and issue a revised OMM Manual.

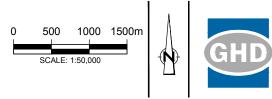
8. References

- Report entitled "*Come By Chance Secure Landfill Groundwater Drainage System*" prepared by AMEC Earth and Environmental for Newfoundland and Labrador Department of Environment and Conservation, dated March 2009.
- Report entitled "Annual Summary Report, 2009/2010 Environmental Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, Newfoundland" prepared by Pinchin Leblanc Environmental Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 2010.
- Report entitled "Annual Summary Report 2010/2011 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CRA Limited for Newfoundland and Labrador Department of Environment and Conservation, dated March 2011.
- Report entitled "2011/2012 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CBCL Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 24, 2012.
- Report entitled "Come By Chance Secure Landfill Operations, Maintenance and Monitoring (OMM) Manual" prepared by Newfoundland and Labrador Department of Environment and Conservation, Pollution Prevention Division, dated June 2012.
- Report entitled "2012/2013 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CRA Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 2013.
- Report entitled "2013/2014 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CRA Limited for Newfoundland and Labrador Department of Environment and Conservation, dated November 2013.
- Report entitled "2014/2015 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CRA Limited for Newfoundland and Labrador Department of Environment and Conservation, dated February 2015.

Report entitled "2015-16 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by Fracflow Consultants Inc. for Newfoundland and Labrador Department of Environment and Conservation, dated May 2016.

9. Closure

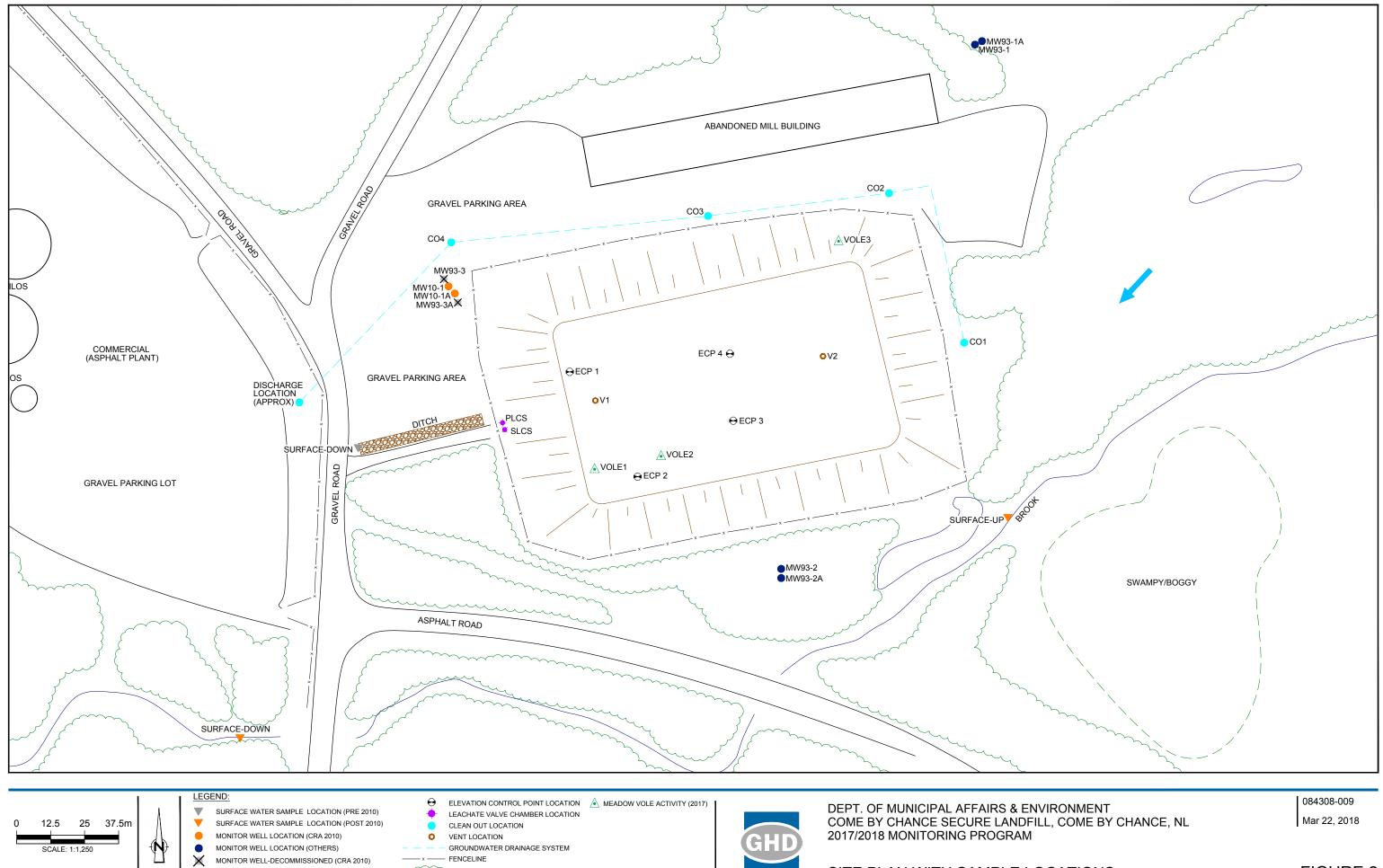

All of Which is Respectfully Submitted,


GHD

Brian Luffman, P. Eng. Associate/Senior Project Manager

Impid Dantor

Ingrid Lawlor, C.Tech. Environmental Technologist


DEPT. OF MUNICIPAL AFFAIRS & ENVIRONMENT COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL 2017/2018 MONITORING PROGRAM

SITE LOCATION MAP

084308(009) Jan 4, 2018

CAD File: I:\CAD\6-chars\08----\0843--\084308\-009\084308(009) GN-NL001.dwg

FIGURE 1

VEGETATION (BUSHES, GRASSES AND SHRUBS

GROUNDWATER FLOW DIRECTION (APPROX.)

CAD File: I:\CAD\6-chars\08----\0843--\084308\-009\084308(009) GN-NL002.dwg

SITE PLAN WITH SAMPLE LOCATIONS

STATIC WATER LEVELS 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

ID	Ground Surface Elevation	Length of Stick-up	TOC Elevation	Groundwater Depth	Water Elevation	
ID ID	Liovation			Oct 12, 2017	Oct 12, 2017	
	(masl)	(m)	(masl)	(mbTOC)	(masl)	
PLCS	15.960	-	15.960	0.450	15.510	
SLCS	15.955	-	15.955	0.451	15.504	
MW93-1	16.300	1.100	17.400	1.760	15.640	
MW93-1A	16.310	1.400	17.710	2.030	15.680	
MW93-2	14.290	1.100	15.390	2.235	13.155	
MW93-2A	14.310	1.100	15.410	1.792	13.618	
MW10-1	15.790	0.846	16.636	3.464	13.172	
MW10-1A	15.890	0.854	16.744	3.503	13.241	

Notes:

masl = Metres Above Sea Level

m = Metres

TOC = Top of Casing

mbTOC = Metres Below Top of Casing

GPS CO-ORDINATES OF KEY SITE FEATURES 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

ID	NORTHING	EASTING		
	(m)	(m)		
PLCS	5299282.569	724372.496		
SLCS	5299280.034	724373.295		
MW93-1	5299421.760	724546.360		
MW93-1A	5299422.020	724548.440		
MW93-2	5299235.085	724470.927		
MW93-2A	5299232.673	724472.066		
MW10-1	5299332.811	724352.601		
MW10-1A	5299330.374	724354.471		
SURFACE UP	5299241.840	724543.520		
SURFACE DOWN	5299166.473	724273.883		
ECP 1	5299300.345	724396.495		
ECP 2	5299262.242	724421.331		
ECP 3	5299284.519	724455.814		
ECP 4	5299308.292	724454.469		
CLEAN-OUT 1	5299312.040	724542.394		
CLEAN-OUT 2	5299367.086	724514.748		
CLEAN-OUT 3	5299358.686	724448.126		
CLEAN-OUT 4	5299348.991	724353.634		
VENT 1	5299290.775	724406.665		
VENT 2	5299307.780	724490.445		

Notes:

All points recorded using NAD27, Universal Transverse Mercator (UTM) Zone 21 as coordinate system.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

MW = Monitoring Well

ECP = Elevation Control Point

PRIMARY LEACHATE SAMPLING AND PUMPING INFORMATION 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	Р	PLCS LEACHA	TE SAMPLIN	G	PLCS PUMPING EVENT					
Date	Weather	Valve Condition	Initial head (mbTOVC)	Analysis Conducted	Date	Weather	Valve Condition	Final Flow Rate (L/min)	Pumping Time (hours)	
Oct 12, 2017	Overcast,	· Unknown"	0.450	General chemistry, dissolved and total metals, BTEX, TPH, VOCs, PAHs, PCBs, and Toxicity	Nov 22, 2017	Sunny, -2 °C	Open, flowing freely, hose disconnected	11.9	9	
	+6 °C				Nov 23, 2017	Rain, +5 °C	Open, flowing freely, hose disconnected	6.6	2	

Notes:

mbTOVC = Metres from water level to top of valve chamber.

Elevation of Top of PLCS Valve Chamber = 15.960 m.

* PLCS valve chamber completely filled with leachate; therefore, unable to inspect valve.

SECONDARY LEACHATE SAMPLING AND PUMPING INFORMATION 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	S	LCS LEACHA	TE SAMPLIN	G	SLCS PUMPING EVENT				
Date	Weather	Valve Condition	Initial head (mbTOVC)	Analysis Conducted	Date	Weather	Valve Condition	Final Flow Rate (L/min)	Pumping Time (hours)
Oct 12, 2017	Overcast,		0.451	General chemistry, dissolved and total metals, BTEX, TPH, VOCs, PAHs, PCBs, and Toxicity	Nov 22, 2017	Sunny, -2 °C	Open, flowing freely, hose disconnected	7.7	8
	+6 °C				Nov 23, 2017	Rain, +5 °C	Open, flowing freely, hose disconnected	5.2	1.5

Notes:

mbTOVC = Metres from water level to top of valve chamber.

Elevation of Top of SLCS Valve Chamber = 15.960 m.

* SLCS valve chamber completely filled with leachate; therefore, unable to inspect valve.

LANDFILL CAP INSPECTION FORM 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Date	Weather	Landfill Cap Inspection							Elevational Survey Control Points			
		Veather Vegetative Height (m)	tive Vent Condition		Evidence of Erosion	Condition of	Condition of	ECP 1	ECP 2	ECP 3	ECP 4	
			V1	V2	/ Animal Burrows	Slopes	Lateral Drains	ECFI	ECI 2	LCF 5	ECI 4	
Nov 22, 2017	Sunny, -2 °C	unny, $-2 ^{\circ}\text{C}$ > 0.3 m damage or d	Good, no	Meadow vole	5	Dry, no blockages.	Good	Good	Good	Good		
			0	damage or obstructions.	activity evident.		CO2 & CO4 have damaged end caps.	Survey flags should be repaired/replaced.				

Notes:

Elevations measured using an assumed benchmark of 15.960 m at top of PLCS valve chamber.

ECP = Elevation Control Point

ELEVATIONAL CONTROL POINT SURVEY DATA 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Original Survey Date: Jul 16, 2010 Recent Survey Date: Nov 22, 2017								
	Original	20	15	2017				
Location	Elevation	Survey	DIFF	Survey	DIFF			
	m	m	m	m	m			
PLCS	15.960	-	-	-	-			
ECP1	20.439	20.421	0.018	20.487	-0.048			
ECP2	20.442	20.416	0.026	20.420	0.022			
ECP3	20.935	20.928	0.007	21.280	-0.345			
ECP4	21.212	21.171	0.041	21.308	-0.096			

Notes:

All elevations surveyed to benchmark PLCS.

ECP = Elevational Control Point

DIFF = Differences calculated in relation to original elevation (positive indicates amount of settlement)

GROUNDWATER ANALYTICAL DATA - BTEX/mTPH (mg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	Total Petroleum Hydrocarbons (TPH)					
Sample Location						F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F C ₁₆ -C ₂₁	-3 C ₂₁ -C ₃₂	Modified TPH	Comments
MW93-1	Oct 12, 2017	<	<	<	<	<	<	<		<	-
MW93-1A	Oct 12, 2017	<	<	<	<	<	<	<		<	-
MW93-2	Oct 12, 2017	<	<	<	<	<	<	<		<	-
MW93-2A	Oct 12, 2017	<	<	<	<	<	<	<		<	-
MW-DUP	Oct 12, 2017	<	<	<	<	<	<	<		<	-
MW10-1	Oct 12, 2017	<	<	<	<	<	<	<		<	-
MW10-1A	Oct 12, 2017	<	<	<	<	<	<	<		<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.05	0.1	0.1	-
Atlantic RBCA Tier I RBSLs * (Commercial, Non-Potable)		20	20	20	20	na	na	na	na	20	Gasoline
										20	Diesel / #2 Fuel Oil
										20	# 6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Atlantic Risk-Based Corrective Action (RBCA) 2015 Tier I Risk-Based Screening Level (RBSL) Table values {coarse-grained soil}.

RDL = Reportable Detection Limit MW = Monitor Well MW-DUP = Field Duplicate of MW93-2A < = Parameter below detection limit

- = Not analysed

0.0 = Above criteria

GROUNDWATER ANALYTICAL DATA - PAHs (μg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	MW93-1A	MW93-2	MW93-2A	MW-DUP	MW10-1	MW10-1A	Criteria*	
		Oct 12, 2017							
1-Methylnaphthalene	0.05	<	<	<	<	<	<	1,800	
2-Methylnaphthalene	0.05	<	<	<	<	<	<	1,800	
Acenaphthene	0.01	<	<	<	<	<	<	600	
Acenaphthylene	0.01	<	<	<	<	<	<	1.8	
Anthracene	0.01	<	<	<	<	<	<	2.4	
Benzo(a)anthracene	0.01	<	<	<	<	<	<	4.7	
Benzo(a)pyrene	0.01	<	<	<	<	<	<	0.81	
Benzo(b)fluoranthene	0.01	<	<	<	<	<	<	0.75	
Benzo(b/j)fluoranthene	0.02	<	<	<	<	<	<	-	
Benzo(g,h,i)perylene	0.01	<	<	<	<	<	<	0.2	
Benzo(j)fluoranthene	0.01	<	<	<	<	<	<	-	
Benzo(k)fluoranthene	0.01	<	<	<	<	<	<	0.4	
Chrysene	0.01	<	<	<	<	<	<	1	
Dibenz(a,h)anthracene	0.01	<	<	<	<	<	<	0.52	
Fluoranthene	0.01	<	<	<	<	<	<	130	
Fluorene	0.01	<	<	<	<	<	<	400	
Indeno(1,2,3-cd)pyrene	0.01	<	<	<	<	<	<	0.2	
Naphthalene	0.20	<	<	<	<	<	<	1,400	
Perylene	0.01	<	<	<	<	<	<	-	
Phenanthrene	0.01	<	<	0.011	<	<	<	580	
Pyrene	0.01	<	<	<	<	<	<	68	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit MW = Monitor Well MW-DUP = Field Duplicate of MW93-2A

< = Parameter below detection limit

- = Not analysed/No criteria

0.0 = Above criteria

GROUNDWATER ANALYTICAL DATA - PCBs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	MW93-1	MW93-1A	MW93-2	MW93-2A	MW-DUP	MW10-1	MW10-1A	Criteria*
		Oct 12, 2017							
Total PCBs	0.05	<	<	<	<	<	<	<	7.8

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

Protection Act",

MW = Monitor Well

April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

- RDL = Reportable Detection Limit
- < = Parameter below detection limit
- = Not analysed/No criteria

MW-DUP = Field Duplicate of MW93-2A

0.0 = Above criteria

GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	MW93-1	MW93-1A	MW93-2	MW93-2A	MW-DUP	MW10-1	MW10-1A	Criteria*
		Oct 12, 2017							
Benzene	1.00	<	<	<	<	<	<	<	44
Bromodichloromethane	1.00	<	<	<	<	<	<	<	85,000
Bromoform	1.00	<	<	<	<	<	<	<	380
Bromomethane	0.50	~	~	~	<	<	<	<	5.6
Carbon Tetrachloride	0.50	<	<	<	<	<	<	<	0.79
Chlorobenzene	1.00	<	<	<	<	<	<	<	630
Chloroethane	8.00	<	<	<	<	<	<	<	-
Chloroform	1.00	<	<	<	<	<	<	<	2.4
Chloromethane	8.00	<	<	<	<	<	<	<	-
Dibromochloromethane	1.00	<	<	<	<	<	<	<	82,000
1,2-Dichlorobenzene	0.50	<	<	<	<	<	<	<	4,600
1,3-Dichlorobenzene	1.00	<	<	<	<	<	<	<	9,600
1,4-Dichlorobenzene	1.00	<	<	<	<	<	<	<	8
1,1-Dichloroethane	2.00	<	<	<	<	<	<	<	320
1,2-Dichloroethane	1.00	<	<	<	<	<	<	<	1.6
1,1-Dichloroethylene	0.50	<	<	<	<	<	<	<	1.6
cis-1,2-Dichloroethylene	0.50	<	<	<	<	<	<	<	1.6
trans-1,2-Dichloroethylene	0.50	<	<	<	<	<	<	<	1.6
1,2-Dichloropropane	0.50	<	<	<	<	<	10	5.6	16
cis-1,3-Dichloropropene	0.50	<	<	<	<	<	<	<	5.2
trans-1,3-Dichloropropene	0.50	<	<	<	<	<	<	<	5.2
Ethylbenzene	1.00	<	<	<	<	<	<	<	2,300
Ethylene Dibromide	0.20	<	<	<	<	<	<	<	0.25
Methylene Chloride(Dichloromethane)	3.00	<	<	<	<	<	<	<	610
o-Xylene	1.00	<	<	<	<	<	<	<	-
p+m-Xylene	2.00	<	<	<	<	<	<	<	-
Styrene	1.00	<	<	<	<	<	<	<	1,300
Tetrachloroethylene	1.00	<	<	<	<	<	<	<	1.6
1,1,2,2-Tetrachloroethane	0.50	<	<	<	<	<	<	<	3.2
Toluene	1.00	<	<	<	<	<	<	<	18,000
Trichloroethylene	1.00	<	<	<	<	<	2.4	<	1.6
1,1,1-Trichloroethane	1.00	<	<	<	<	<	<	<	640
1,1,2-Trichloroethane	1.00	<	<	<	<	<	<	<	4.7
Trichlorofluoromethane (FREON 11)	8.00	<	<	<	<	<	<	<	2,500
Vinyl Chloride	0.50	<	<	<	<	<	<	<	0.5

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

MW = Monitor Well MW-DUP = Field Duplicate of MW93-2A < = Parameter below detection limit - = Not analysed/No criteria = Above criteria 1

GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Units	MW93-1	MW93-1A	MW93-2	MW93-2A	MW-DUP	MW10-1	MW10-1A	Criteria*
			Oct 12, 2017							
Anion Sum	N/A	me/L	6.38	7.19	5.79	1.88	2.05	2.3	1.79	-
Bicarb. Alkalinity (calc. as CaCO3)	1.00	mg/L	250	310	220	17	25	92	67	-
Calculated TDS	1.00	mg/L	330	380	320	130	140	130	110	-
Carb. Alkalinity (calc. as CaCO3)	1.00	mg/L	2.9	3.4	<	<	<	<	<	-
Cation Sum	N/A	me/L	5.62	7.09	5.61	1.88	2.08	2.13	1.68	-
Hardness (CaCO3)	1.00	mg/L	130	190	230	43	52	90	65	-
Ion Balance (% Difference)	N/A	%	6.33	0.7	1.58	0	0.73	3.84	3.17	-
Langelier Index (@ 20C)	N/A	N/A	0.537	0.792	0.368	-3.09	-2.46	-0.424	-0.898	-
Langelier Index (@ 4C)	N/A	N/A	0.288	0.544	0.119	-3.34	-2.71	-0.675	-1.15	-
Nitrate (N)	0.05	mg/L	<	<	<	<	<	<	0.064	-
Saturation pH (@ 20C)	N/A	N/A	7.54	7.28	7.24	9.08	8.82	7.91	8.19	-
Saturation pH (@ 4C)	N/A	N/A	7.79	7.53	7.49	9.33	9.07	8.16	8.44	-
Total Alkalinity (Total as CaCO3)	30	mg/L	260	310	220	17	25	93	67	-
Dissolved Chloride (CI)	1	mg/L	30	11	16	28	26	5.3	4.9	2,300
Colour	5.00	TCU	<	<	<	>	110 (2)	7.2	10	-
Nitrate + Nitrite (N)	0.05	mg/L	<	<	<	<	<	<	0.064	-
Nitrite (N)	0.01	mg/L	<	<	<	<	<	<	<	-
Nitrogen (Ammonia Nitrogen)	0.05	mg/L	<	<	<	0.35	0.34	<0.050	0.16	-
Total Organic Carbon (C)	0.50	mg/L	5.3 (1)	<5.0 (1)	1.3	11	10	4.2	<50 (1)	-
Orthophosphate (P)	0.01	mg/L	<	<	<	<	<	<	<	-
рН	N/A	pН	8.08	8.07	7.61	5.99	6.37	7.48	7.29	-
Reactive Silica (SiO2)	0.50	mg/L	9.1	5.9	18	7.3	8.2	11	11	-
Dissolved Sulphate (SO4)	2	mg/L	19	30	46	36	39	14	14	-
Turbidity	0.1	NTU	47	690	1.7	40	35	38	800	-
Conductivity	1	uS/cm	570	640	530	220	230	230	160	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Reporting limit was increased due to turbidity.

(2) = Elevated reporting limit due to sample matrix.

RDL = Reportable Detection Limit MW = Monitor Well MW-DUP = Field Duplicate of MW93-2A

- < = Parameter below detection limit
- = Not analysed/No criteria

GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	MW93-1	MW93-1A	MW93-2	MW93-2A	MW-DUP	MW10-1	MW10-1A	Criteria*
		Oct 12, 2017							
Aluminum (Al)	5.0	9.5	9.8	7.8	220	180	8.5	17	-
Antimony (Sb)	1.0	<	<	v	<	<	<	<	20,000
Arsenic (As)	1.0	<	<	2.3	1.2	1.1	<	<	1,900
Barium (Ba)	1.0	100	71	150	49	51	37	40	29,000
Beryllium (Be)	1.0	<	<	<	<	<	<	<	67
Bismuth (Bi)	2.0	<	<	<	<	<	<	<	-
Boron (B)	50	120	79	1,000	95	150	<	<	45,000
Cadmium (Cd)	0.010	v	0.013	۲	0.31	0.32	0.027	0.015	2.7
Calcium (Ca)	100	30,000	47,000	70,000	11,000	14,000	30,000	21,000	-
Chromium (Cr)	1.0	~	~	<	~	<	<	<	810
Cobalt (Co)	0.4	<	1	0.4	2.2	2.3	3.3	5	66
Copper (Cu)	2.0	<	3	<	<	<	4.3	5.3	87
Iron (Fe)	50	v	110	120	8,600	8,900	1,000	3,600	-
Lead (Pb)	0.5	<	<	v	<	<	<	<	25
Magnesium (Mg)	100	14,000	17,000	14,000	3,600	4,200	3,500	2,700	-
Manganese (Mn)	2.0	87	140	1,000	5,100	5,300	310	530	-
Molybdenum (Mo)	2.0	15	15	v	<	<	<	<	9,200
Nickel (Ni)	2.0	v	2	v	2.3	2.4	4	5.5	490
Phosphorus (P)	100	<	<	<	<	<	<	<	-
Potassium (K)	100	1,600	2,500	1,300	1,300	1,300	810	620	-
Selenium (Se)	1.0	<	<	<	<	<	<	<	63
Silver (Ag)	0.1	<	<	<	<	<	<	<	1.5
Sodium (Na)	100	68,000	75,000	22,000	15,000	15,000	6,100	5,300	2,300,000
Strontium (Sr)	2.0	230	290	200	55	61	68	53	-
Thallium (TI)	0.1	<	<	<	<	<	<	<	510
Tin (Sn)	2.0	<	<	<	<	<	<	<	-
Titanium (Ti)	2.0	<	<	<	<	<	<	<	-
Uranium (U)	0.1	0.28	2.4	0.2	<	<	0.1	<	420
Vanadium (V)	2.0	<	<	<	<	<	<	<	250
Zinc (Zn)	5.0	<	10	5.6	130	140	13	7.3	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit MW = Monitor Well MW-DUP = Field Duplicate of MW93-2A < = Parameter below detection limit - = Not analysed/No criteria 0.0 = Above criteria

SURFACE WATER ANALYTICAL DATA - BTEX/mTPH (mg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Dete				Ether			Total Petro	oleum Hyd	rocarbons	s (TPH)	
Sample Location	Sample Location	Ethyl- benzene	Xylenes	F1	F2	F3		Modified TPH	Comments		
	Sampled			Denzene		C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₂₁	C ₂₁ -C ₃₂		
SURFACE-UP	Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
SURFACE-DOWN	Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
SURFACE-DUP	Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.05	0.1	0.1	-
2012 RBCA Tier	Ecological									1.5	Gasoline
Screening Leve	els for the	2.1	0.77	0.32	0.33	-	-	-	-	0.10	Diesel/#2
Protection of Ac	uatic Life ²									0.10	#6 oil/lube

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Atlantic RBCA (Risk-Based Corrective Action) Version 3.0 (July 2012) Tier I Surface Water Screening Levels for the Protection of Freshwater and Marine Aquatic Life.

RDL = Reportable Detection Limit

SURFACE-DUP = Field Duplicate of SURFACE-DOWN

< = Parameter below detection limit

- = Not analysed/No criteria

SURFACE WATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	Criteria*
		Oct 12, 2017	Oct 12, 2017	Oct 12, 2017	
1-Methylnaphthalene	0.05	<	<	<	-
2-Methylnaphthalene	0.05	<	<	<	-
Acenaphthene	0.01	<	<	<	5.8
Acenaphthylene	0.01	<	<	<	-
Anthracene	0.01	<	<	<	0.012
Benzo(a)anthracene	0.01	<	<	<	0.018
Benzo(a)pyrene	0.01	<	<	<	0.015
Benzo(b)fluoranthene	0.01	<	<	<	-
Benzo(b/j)fluoranthene	0.02	<	<	<	-
Benzo(g,h,i)perylene	0.01	<	<	<	-
Benzo(j)fluoranthene	0.01	<	<	<	-
Benzo(k)fluoranthene	0.01	<	<	<	-
Chrysene	0.01	<	<	<	-
Dibenz(a,h)anthracene	0.01	<	<	<	-
Fluoranthene	0.01	<	<	<	0.04
Fluorene	0.01	<	<	<	3.0
Indeno(1,2,3-cd)pyrene	0.01	<	<	<	-
Naphthalene	0.2	<	<	<	1.1
Perylene	0.01	<	<	<	-
Phenanthrene	0.01	<	<	<	0.4
Pyrene	0.01	<	<	<	0.025

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

< = Parameter below detection limit

SURFACE-DUP = Field Duplicate of SURFACE-DOWN - = Not analysed/No criteria

SURFACE WATER ANALYTICAL DATA - TOTAL PCBs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	Criteria*
		Oct 12, 2017	Oct 12, 2017	Oct 12, 2017	
Total PCBs	0.05	<	<	<	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

SURFACE-DUP = Field Duplicate of SURFACE-DOWN -

< = Parameter below detection limit

- = Not analysed/No criteria

SURFACE WATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	Criteria*
		Oct 12, 2017	Oct 12, 2017	Oct 12, 2017	
Benzene	1	<	<	<	370
Bromodichloromethane	1	<	<	<	-
Bromoform	1	<	<	<	-
Bromomethane	0.5	~	<	<	-
Carbon Tetrachloride	0.5	<	<	<	13.3
Chlorobenzene	1	<	<	<	1.3
Chloroethane	8	<	<	<	-
Chloroform	1	<	<	<	1.8
Chloromethane	8	<	<	<	-
Dibromochloromethane	1	<	<	<	-
1,2-Dichlorobenzene	0.5	<	<	<	0.7
1,3-Dichlorobenzene	1	<	<	<	150
1,4-Dichlorobenzene	1	<	<	<	26
1,1-Dichloroethane	1	<	<	<	-
1,2-Dichloroethane	1	<	<	<	100
1,1-Dichloroethylene	0.5	<	<	<	-
cis-1,2-Dichloroethylene	0.5	<	<	<	-
trans-1,2-Dichloroethylene	0.5	<	<	<	-
1,2-Dichloropropane	0.5	<	<	<	-
cis-1,3-Dichloropropene	0.5	<	<	<	-
trans-1,3-Dichloropropene	0.5	<	<	<	-
Ethylbenzene	1	<	<	<	90
Ethylene Dibromide	0.2	<	<	<	-
Methylene Chloride(Dichloromethane)	3	<	<	<	98.1
o-Xylene	1	<	<	<	-
p+m-Xylene	2	<	<	<	-
Styrene	1	<	<	<	72
Tetrachloroethylene	1	<	<	<	-
1,1,2,2-Tetrachloroethane	0.5	<	<	<	-
Toluene	1	<	<	<	2
Trichloroethylene	1	<	<	<	-
1,1,1-Trichloroethane	1	<	<	<	-
1,1,2-Trichloroethane	1	<	<	<	-
Trichlorofluoromethane (FREON 11)	8	<	<	<	-
Vinyl Chloride	0.5	<	<	<	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

SURFACE-DUP = Field Duplicate of SURFACE-DOWN

< = Parameter below detection limit

- = Not analysed/No criteria

SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Units	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	Criteria*
			Oct 12, 2017	Oct 12, 2017	Oct 12, 2017	
Anion Sum	N/A	me/L	0.94	1.07	1.09	-
Bicarb. Alkalinity (calc. as CaCO3)	1	mg/L	18	21	22	-
Calculated TDS	1	mg/L	53	61	61	-
Carb. Alkalinity (calc. as CaCO3)	1	mg/L	<	<	<	-
Cation Sum	N/A	me/L	0.9	1.02	1.03	-
Hardness (CaCO3)	1	mg/L	18	21	21	-
Ion Balance (% Difference)	N/A	%	2.17	2.39	2.83	-
Langelier Index (@ 20C)	N/A	N/A	-1.96	-1.92	-1.42	-
Langelier Index (@ 4C)	N/A	N/A	-2.21	-2.17	-1.67	-
Nitrate (N)	0.05	mg/L	<	<	<	-
Saturation pH (@ 20C)	N/A	N/A	9.32	9.2	9.18	-
Saturation pH (@ 4C)	N/A	N/A	9.57	9.45	9.43	-
Total Alkalinity (Total as CaCO3)	30	mg/L	18	21	22	-
Dissolved Chloride (CI)	1	mg/L	18	20	22	120
Colour	5	TCU	41	38	37	-
Nitrate + Nitrite (N)	0.05	mg/L	<	<	<	-
Nitrite (N)	0.01	mg/L	<	<	<	0.06
Nitrogen (Ammonia Nitrogen)	0.05	mg/L	<	0.23	0.13	-
Total Organic Carbon (C)	0.5	mg/L	7.5	7.3	7.3	-
Orthophosphate (P)	0.01	mg/L	<	<	<	-
рН	N/A	рΗ	7.36	7.28	7.76	6.5 - 9.0
Reactive Silica (SiO2)	0.5	mg/L	1.8	2.1	2.1	-
Dissolved Sulphate (SO4)	2	mg/L	2.8	4.8	4.9	-
Turbidity	0.1	NTU	0.72	0.55	0.73	-
Conductivity	1	uS/cm	120	110	140	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SURFACE-DUP = Field Duplicate of SURFACE-DOWN < = Parameter below detection limit</p>
- = Not analysed/No criteria
0.0 = Above criteria

SURFACE WATER ANALYTICAL DATA - TOTAL METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	Criteria*
		Oct 12, 2017	Oct 12, 2017	Oct 12, 2017	
Aluminum (Al)	5.0	43	61	62	100 ⁽¹⁾
Antimony (Sb)	1.0	<	<	<	-
Arsenic (As)	1.0	<	<	<	5
Barium (Ba)	1.0	6.9	7.4	7.6	-
Beryllium (Be)	1.0	<	<	<	-
Bismuth (Bi)	2.0	<	<	<	-
Boron (B)	50	<	<	<	1,500
Cadmium (Cd)	0.010	<	<	<	0.04 ⁽²⁾
Calcium (Ca)	100	5,300	6,200	6,300	-
Chromium (Cr)	1.0	<	<	<	8.9 ⁽³⁾
Hexavalent Chromium (Cr ⁶⁺)	0.5	<	<	<	1.0
Cobalt (Co)	0.4	<	<	<	-
Copper (Cu)	2.0	<	<	<	2 ⁽⁴⁾
Iron (Fe)	50	420	300	310	300
Lead (Pb)	0.50	<	<	<	1, 2 ⁽⁵⁾
Magnesium (Mg)	100	1,100	1,300	1,300	-
Manganese (Mn)	2.0	85	55	60	-
Molybdenum (Mo)	2.0	<	<	<	73
Nickel (Ni)	2.0	<	<	<	25, 65 ⁽⁶⁾
Phosphorus (P)	100	<	<	<	-
Potassium (K)	100	340	370	400	-
Selenium (Se)	1.0	<	<	<	1
Silver (Ag)	0.1	<	<	<	0.1
Sodium (Na)	100	12,000	13,000	13,000	-
Strontium (Sr)	2.0	17	20	19	-
Thallium (TI)	0.1	<	<	<	0.8
Tin (Sn)	2.0	<	<	<	-
Titanium (Ti)	2.0	<	<	<	-
Uranium (U)	0.10	<	<	<	15
Vanadium (V)	2.0	<	<	<	-
Zinc (Zn)	5.0	<	37	<	30

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SURFACE-DUP = Field Dup of SURFACE-DOWN < = Parameter below detection limit

- = Not analysed/No criteria 3

- (1) Aluminum guideline = 5 ug/L at pH < 6.5; 100 ug/L at pH \ge 6.5.
- (2) Cadmium guideline = 10^{(U.soplog(naroness)]-3.2}
- (3) Criteria for Chromium (III) = 8.9 ug/L, Criteria for Chromium (VI) = 1.0 ug/L.
- (4) Copper guideline = 2 ug/L at [CaCO₃] = 0-120 mg/L; 3 ug/L at [CaCO3] = 120-180 mg/L; 4 ug/L at [CaCO3] > 180 mg/L.
- (5) Lead guideline = 1 ug/L at [CaCO₃] = 0-60 mg/L; 2 ug/L at [CaCO3] = 60-120 mg/L; 4 ug/L at [CaCO3] = 120-180 mg/L; 7 ug/L at [CaCO3] >180 mg/L.
- (6) Nickel guideline = 25 ug/L at [CaCO₃] = 0-60 mg/L; 65 ug/L at [CaCO3] = 60-120 mg/L; 110 ug/L at [CaCO3] = 120-180 mg/L; 150 ug/L at [CaCO3] >180 mg/L.

LEACHATE ANALYTICAL DATA - BTEX/mTPH (mg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

			e Toluene	Ethyd		Tot	al Petrole	um Hydro	carbons	(TPH)	
Sample Location Date Sam	Date Sampled	Benzene		Ethyl- benzene	Xylenes	F1	F2	F	3	Modified	Comments
				Denzene		C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₂₁	C ₂₁ -C ₃₂	TPH	
PLCS	Oct 12, 2017	<	۷	<	<	۷	۷	0.067	0.17	0.24	One product in fuel/lube range
SLCS	Oct 12, 2017	<	<	<	۷	۷	<	<	<	<	-
	RDL	0.001	0.001	0.001	0.002	0.01	0.05	0.05	0.1	0.1	-
Schedule A Water	& Sewer Regulations ¹	-	-	-	-	-	-		-	15	-
2007 CCME Fres	hwater Aquatic Life									-	Gasoline
	lelines ²	0.37	0.00	0.09	-	-	-	-	-	-	Diesel /#2 Fuel Oil
Guid	lennes									-	#6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

2. 2007 CCME Freshwater Aquatic Life Guidelines.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit - = Not analysed/No criteria < = Parameter below detection limit</p>
0.0 = Above CCME Criteria

LEACHATE ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	PLCS	SLCS	Crite	eria
		Oct 12, 2017	Oct 12, 2017	NL ¹	CCME ²
1-Methylnaphthalene	0.05	<	<	-	-
2-Methylnaphthalene	0.05	<	<	-	-
Acenaphthene	0.01	<	<	-	580
Acenaphthylene	0.01	<	<	-	-
Anthracene	0.01	<	0.018	-	1.2
Benzo(a)anthracene	0.01	<	<	-	1.8
Benzo(a)pyrene	0.01	<	<	-	1.5
Benzo(b)fluoranthene	0.01	<	<	-	-
Benzo(b/j)fluoranthene	0.02	<	<	-	-
Benzo(g,h,i)perylene	0.01	<	<	-	-
Benzo(j)fluoranthene	0.01	<	<	-	-
Benzo(k)fluoranthene	0.01	<	<	-	-
Chrysene	0.01	<	<	-	-
Dibenz(a,h)anthracene	0.01	<	<	-	-
Fluoranthene	0.01	<	0.037	-	4
Fluorene	0.01	<	0.012	-	300
Indeno(1,2,3-cd)pyrene	0.01	<	<	-	-
Naphthalene	0.2	<	<	-	110
Perylene	0.01	<	<	-	-
Phenanthrene	0.01	<	0.012	-	40
Pyrene	0.01	0.012	0.14	-	2.5

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS

1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

2. CCME Canadian Water Quality Guidelines for Protection of Freshwater Aquatic Life (2007 - Update 7.1) with a dilution factor of 100 based on distance between ditch and receiving waters and percolation through soil.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit - = Not analysed/No criteria < = Parameter below detection limit</p>

 0.0
 = Above criteria

 0.1
 = Above criteria

LEACHATE ANALYTICAL DATA - TOTAL PCBs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Parameter RDL		SLCS	Criteria*
		Oct 12, 2017	Oct 12, 2017	
Total PCBs	0.05	<	<	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit 0.0 = Above criteria

LEACHATE ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	PLCS	SLCS	Criteria*
		Oct 12, 2017	Oct 12, 2017	
Benzene	1	<	<	-
Bromodichloromethane	1	<	<	-
Bromoform	1	<	<	-
Bromomethane	0.5	<	<	-
Carbon Tetrachloride	0.5	<	<	-
Chlorobenzene	1	<	<	-
Chloroethane	8	<	<	-
Chloroform	1	<	<	-
Chloromethane	8	<	<	-
Dibromochloromethane	1	<	<	-
1,2-Dichlorobenzene	0.5	<	<	-
1,3-Dichlorobenzene	1	<	<	-
1,4-Dichlorobenzene	1	<	<	-
1,1-Dichloroethane	2	<	<	-
1,2-Dichloroethane	1	<	<	-
1,1-Dichloroethylene	0.5	<	<	-
cis-1,2-Dichloroethylene	0.5	<	<	-
trans-1,2-Dichloroethylene	0.5	<	<	-
1,2-Dichloropropane	0.5	<	<	-
cis-1,3-Dichloropropene	0.5	<	<	-
trans-1,3-Dichloropropene	0.5	<	<	-
Ethylbenzene	1	<	<	-
Methylene Chloride(Dichloromethane)	3	<	<	-
o-Xylene	1	<	<	-
p+m-Xylene	2	<	<	-
Styrene	1	<	<	-
Tetrachloroethylene	1	<	<	-
1,1,2,2-Tetrachloroethane	0.5	<	<	-
Toluene	1	<	<	-
Trichloroethylene	1	<	<	-
1,1,1-Trichloroethane	1	<	<	-
1,1,2-Trichloroethane	1	<	<	-
Trichlorofluoromethane (FREON 11)	8	<	<	-
Vinyl Chloride	0.5	<	<	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. * Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit</p>

 0.0
 = Above criteria

 •
 •

LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Units	PLCS	SLCS	Criteria*
			Oct 12, 2017	Oct 12, 2017	
Anion Sum	N/A	me/L	3.98	7.85	-
Bicarb. Alkalinity (calc. as CaCO3)	1	mg/L	170	340	-
Calculated TDS	1	mg/L	220	410	1,000
Carb. Alkalinity (calc. as CaCO3)	1	mg/L	1.4	2.7	-
Cation Sum	N/A	me/L	3.92	7.24	-
Hardness (CaCO3)	1	mg/L	150	280	-
Ion Balance (% Difference)	N/A	%	0.76	4.04	-
Langelier Index (@ 20C)	N/A	N/A	0.488	0.938	-
Langelier Index (@ 4C)	N/A	N/A	0.238	0.69	-
Nitrate (N)	0.05	mg/L	0.29	0.4	10
Saturation pH (@ 20C)	N/A	N/A	7.46	6.98	-
Saturation pH (@ 4C)	N/A	N/A	7.71	7.22	-
Total Alkalinity (Total as CaCO3)	30.00	mg/L	170	350	-
Carbonaceous BOD	15.00	mg/L	<	<	20
Dissolved Chloride (CI)	1	mg/L	11	27	1,000
Colour	5	TCU	22	12	-
Strong Acid Dissoc. Cyanide (CN)	0.001	mg/L	<	<	25
Nitrate + Nitrite	0.05	mg/L	0.29	0.4	-
Nitrite (N)	0.01	mg/L	<	<	-
Nitrogen (Ammonia Nitrogen)	0.05	mg/L	0.32	0.3	2
Total Organic Carbon (C)	0.5	mg/L	5.9	10	-
Orthophosphate (P)	0.01	mg/L	<	<	-
рН	N/A	рΗ	7.95	7.91	5.5 - 9.0
Phenols-4AAP	0.001	mg/L	<	0.0012	0.10
Reactive Silica (SiO2)	0.5	mg/L	9.5	13	-
Total Suspended Solids (TSS)	2.0	mg/L	6.4	12	30
Dissolved Sulphate (SO4)	2.0	mg/L	13	6.4	-
Sulphide	0.02	mg/L	<	<	0.50
Turbidity	0.1	NTU	2.5	10	-
Conductivity	1	uS/cm	380	680	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

< = Parameter below detection limit

- = Not analysed/No criteria

LEACHATE ANALYTICAL DATA - TOTAL METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	PLCS	SLCS	Criteria*
		Oct 12, 2017	Oct 12, 2017	
Aluminum (Al)	5	42	17	-
Antimony (Sb)	1	<	<	-
Arsenic (As)	1	<	<	500
Barium (Ba)	1	17	31	5,000
Beryllium (Be)	1	<	<	-
Bismuth (Bi)	2	<	<	-
Boron (B)	5	370	1,300	5,000
Cadmium (Cd)	0.010	0.015	<	50
Calcium (Ca)	100	50,000	87,000	-
Chromium (Cr)	1	<	<	1,000
Hexavalent Chromium (Cr ⁶⁺)	0.5	<	<	50
Cobalt (Co)	0.4	<	0.72	-
Copper (Cu)	2	4	<	300
Iron (Fe)	50	350	2,700	10,000
Lead (Pb)	0.5	<	<	200
Magnesium (Mg)	100	4,100	16,000	-
Manganese (Mn)	2	61	5,200	-
Mercury (Hg)	0.013	<	<	5
Molybdenum (Mo)	2	<	<	-
Nickel (Ni)	2	<	2.2	500
Phosphorus (P)	100	<	<	-
Potassium (K)	100	17,000	24,000	-
Selenium (Se)	1	<	<	10
Silver (Ag)	0.1	<	<	50
Sodium (Na)	100	12,000	20,000	-
Strontium (Sr)	2	110	230	-
Thallium (TI)	0.1	<	<	-
Tin (Sn)	2	<	<	-
Titanium (Ti)	2	2.1	<	-
Uranium (U)	1	0.23	1.1	-
Vanadium (V)	2	<	<	-
Zinc (Zn)	5	8.2	<	500

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit 0.0 = Above criteria

LEACHATE ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	PLCS	SLCS	Criteria*
		Oct 12, 2017	Oct 12, 2017	
Aluminum (Al)	5	17	5.5	-
Antimony (Sb)	1	<	<	20,000
Arsenic (As)	1	<	<	1,900
Barium (Ba)	1	15	30	29,000
Beryllium (Be)	1	<	<	67
Bismuth (Bi)	2	<	<	-
Boron (B)	5	380	1,300	45,000
Cadmium (Cd)	0.010	<	<	2.7
Calcium (Ca)	100	51,000	86,000	-
Chromium (Cr)	1	<	<	810/140(1)
Cobalt (Co)	0.4	<	0.78	66
Copper (Cu)	2	2.2	<	87
Iron (Fe)	50	<	2,300	-
Lead (Pb)	0.5	<	<	25
Magnesium (Mg)	100	4,300	16,000	-
Manganese (Mn)	2	54	5,200	-
Molybdenum (Mo)	2	<	<	9,200
Nickel (Ni)	2	<	2.2	490
Phosphorus (P)	100	<	<	-
Potassium (K)	100	17,000	23,000	-
Selenium (Se)	1	<	<	63
Silver (Ag)	0.1	<	<	1.5
Sodium (Na)	100	13,000	20,000	2,300,000
Strontium (Sr)	2	120	230	-
Thallium (TI)	0.1	<	<	510
Tin (Sn)	2	<	<	-
Titanium (Ti)	2	<	<	-
Uranium (U)	1	0.23	1	420
Vanadium (V)	2	<	<	250
Zinc (Zn)	5	12	6.3	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit 0.0 = Above criteria

LEACHATE ANALYTICAL DATA - TOXICOLOGY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

			Toxicology Test Results*								
Sample Location	Date Sampled	Effluent Conc.	Tem	o (°C)	D.O. (mg/L)		pH (units)		Cond. (µs/cm)		Mortality
		(%)	Init.	Final	Init.	Final	Init.	Final	Init.	Final	%
	Oct 12, 2017	100	14.3	15.9	9.3	9.6	7.0	8.0	293	300	0
PLCS Oct 12, 2017	0	15.0	16.0	9.3	9.2	7.0	6.6	88	94	0	
SLCS	Oct 12, 2017	100	14.3	16.0	9.5	9.4	6.8	8.0	593	487	0
3203	001 12, 2017	0	15.0	16.0	9.8	9.2	7.0	6.6	88	94	0

Notes:

Analysis completed by Petroforma Laboratory in Paradise, NL.

* 96-hour LT50 bioassay. Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition-December 2000, May 2007 and February 2016 amendments).

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

Appendices

Appendix A Site Photographs

Photo 1 - View, looking west, showing MW93-1 and MW93-1A during the October 2017 monitoring event.

Photo 2 - View, looking north, showing MW93-2 and MW93-2A during the October 2017 monitoring event.

Photo 3 - View, looking northeast, showing MW10-1 and MW10-1A during the October 2017 monitoring event.

Photo 4 - View, looking northeast, showing the upgradient surface water sample location (SURFACE-UP).

Photo 5 - View, looking east, showing the downgradient surface water sample location (SURFACE-DOWN).

Photo 6 - View, looking east, showing the PLCS and SLCS chambers during the October 2017 monitoring event.

Photo 7 - View, looking north, from the top of the landfill during the inspection and survey of the cap in November 2017.

Photo 8 - View, looking east, from the top of the landfill during the inspection and survey of the cap in November 2017.

Photo 9 - View, looking south, from the top of the landfill during the inspection and survey of the cap in November 2017.

Photo 10 - View, looking west, from the top of the landfill during the inspection and survey of the cap in November 2017.

Photo 11 - View of groundwater drainage system clean out CO2. Note the 4" drain cap is damaged.

Photo 12 - View of groundwater drainage system clean out CO4. Note the 4" drain cap is damaged.

Photo 13 - View, looking east, showing the groundwater drainage system outflow with rodent screen attached.

Photo 14 - View, looking west, while pumping leachate from the PLCS and SLCS chambers in November 2017.

Appendix B Laboratory Certificates of Analyses

Maxkam A Bureau Veritas Group Company

> Your P.O. #: 73509542 Your Project #: 084308-02 Site Location: Come By Chance, NL Your C.O.C. #: 14886

Attention:Brian Luffman

GHD Limited St.John's 1118 Topsail Road St. John's, NL, NL CANADA A1B 3N7

> Report Date: 2017/10/26 Report #: R4804105 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7M7761

Received: 2017/10/16, 09:18

Sample Matrix: Water # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide	2	N/A	2017/10/18	N/A	SM 22 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	10	N/A	2017/10/20	N/A	SM 22 4500-CO2 D
Alkalinity	6	N/A	2017/10/19	ATL SOP 00013	EPA 310.2 R1974 m
Alkalinity	6	N/A	2017/10/20	ATL SOP 00013	EPA 310.2 R1974 m
Benzo(b/j)fluoranthene Sum (water)	8	N/A	2017/10/20	N/A	Auto Calc.
Benzo(b/j)fluoranthene Sum (water)	4	N/A	2017/10/23	N/A	Auto Calc.
Carbonaceous BOD	2	2017/10/18	2017/10/23	ATL SOP 00041	SM 22 5210B m
Chloride	6	N/A	2017/10/20	ATL SOP 00014	SM 22 4500-Cl- E m
Chloride	6	N/A	2017/10/23	ATL SOP 00014	SM 22 4500-Cl- E m
Str. Acid Diss. Cyanide water (2)	2	N/A	2017/10/18	ATL SOP 00040	EPA 335.3 m
Colour	6	N/A	2017/10/19	ATL SOP 00020	SM 22 2120C m
Colour	6	N/A	2017/10/23	ATL SOP 00020	SM 22 2120C m
Chromium 3+ by calculation	5	2017/10/16	2017/10/24	N/A	Auto Calc.
Chromium (VI) in Water (1)	5	N/A	2017/10/23	CAM SOP-00436	EPA 7199 m
Conductance - water	2	N/A	2017/10/18	ATL SOP 00004	SM 22 2510B m
Conductance - water	10	N/A	2017/10/19	ATL SOP 00004	SM 22 2510B m
TEH in Water (PIRI)	1	2017/10/18	2017/10/18	ATL SOP 00113	Atl. RBCA v3.1 m
TEH in Water (PIRI)	3	2017/10/18	2017/10/19	ATL SOP 00113	Atl. RBCA v3.1 m
TEH in Water (PIRI)	8	2017/10/19	2017/10/20	ATL SOP 00113	Atl. RBCA v3.1 m
Hardness (calculated as CaCO3)	12	N/A	2017/10/18	ATL SOP 00048	SM 22 2340 B
Mercury - Total (CVAA,LL)	2	2017/10/18	2017/10/20	ATL SOP 00026	EPA 245.1 R3 m
Metals Water Diss. MS (as rec'd)	9	N/A	2017/10/17	ATL SOP 00058	EPA 6020A R1 m
Metals Water Total MS	5	2017/10/17	2017/10/18	ATL SOP 00058	EPA 6020A R1 m
Ion Balance (% Difference)	6	N/A	2017/10/20	N/A	Auto Calc.
Ion Balance (% Difference)	6	N/A	2017/10/23	N/A	Auto Calc.
Anion and Cation Sum	12	N/A	2017/10/20	N/A	Auto Calc.
Nitrogen Ammonia - water	12	N/A	2017/10/19	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite	6	N/A	2017/10/19	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrate + Nitrite	6	N/A	2017/10/20	ATL SOP 00016	USGS SOPINCF0452.2 m

Your P.O. #: 73509542 Your Project #: 084308-02 Site Location: Come By Chance, NL Your C.O.C. #: 14886

Attention:Brian Luffman

GHD Limited St.John's 1118 Topsail Road St. John's, NL, NL CANADA A1B 3N7

> Report Date: 2017/10/26 Report #: R4804105 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7M7761

Received: 2017/10/16, 09:18

Sample Matrix: Water # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Nitrogen - Nitrite	6	N/A	2017/10/20	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrite	6	N/A	2017/10/23	ATL SOP 00017	SM 22 4500-NO2- B m
Nitrogen - Nitrate (as N)	6	N/A	2017/10/20	ATL SOP 00018	ASTM D3867-16
Nitrogen - Nitrate (as N)	6	N/A	2017/10/23	ATL SOP 00018	ASTM D3867-16
PAH in Water by GC/MS (SIM)	8	2017/10/17	2017/10/20	ATL SOP 00103	EPA 8270D 2007 m
PAH in Water by GC/MS (SIM)	4	2017/10/18	2017/10/21	ATL SOP 00103	EPA 8270D 2007 m
PCBs in water by GC/ECD	4	2017/10/19	2017/10/20	ATL SOP 00107	EPA 8082A m
PCBs in water by GC/ECD	8	2017/10/20	2017/10/24	ATL SOP 00107	EPA 8082A m
PCB Aroclor sum (water)	4	N/A	2017/10/20	N/A	Auto Calc.
PCB Aroclor sum (water)	8	N/A	2017/10/24	N/A	Auto Calc.
Phenols (4-AAP)	2	N/A	2017/10/19	ATL SOP 00039	EPA 420.2 m
рН (3)	2	N/A	2017/10/18	ATL SOP 00003	SM 22 4500-H+ B m
рН (3)	10	N/A	2017/10/19	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho	6	N/A	2017/10/19	ATL SOP 00021	SM 22 4500-P E m
Phosphorus - ortho	6	N/A	2017/10/23	ATL SOP 00021	SM 22 4500-P E m
VPH in Water (PIRI)	4	N/A	2017/10/17	ATL SOP 00118	Atl. RBCA v3.1 m
VPH in Water (PIRI)	8	N/A	2017/10/18	ATL SOP 00118	Atl. RBCA v3.1 m
Sat. pH and Langelier Index (@ 20C)	6	N/A	2017/10/20	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 20C)	6	N/A	2017/10/23	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	6	N/A	2017/10/20	ATL SOP 00049	Auto Calc.
Sat. pH and Langelier Index (@ 4C)	6	N/A	2017/10/23	ATL SOP 00049	Auto Calc.
Reactive Silica	6	N/A	2017/10/19	ATL SOP 00022	EPA 366.0 m
Reactive Silica	6	N/A	2017/10/20	ATL SOP 00022	EPA 366.0 m
Sulphate	6	N/A	2017/10/19	ATL SOP 00023	ASTM D516-16 m
Sulphate	6	N/A	2017/10/20	ATL SOP 00023	ASTM D516-16 m
Sulphide (1)	2	N/A	2017/10/18	CAM SOP-00455	SM 22 4500-S G m
Total Dissolved Solids (TDS calc)	6	N/A	2017/10/20	N/A	Auto Calc.
Total Dissolved Solids (TDS calc)	6	N/A	2017/10/23	N/A	Auto Calc.
Organic carbon - Total (TOC) (4)	12	N/A	2017/10/23	ATL SOP 00037	SM 22 5310C m

Your P.O. #: 73509542 Your Project #: 084308-02 Site Location: Come By Chance, NL Your C.O.C. #: 14886

Attention:Brian Luffman

GHD Limited St.John's 1118 Topsail Road St. John's, NL, NL CANADA A1B 3N7

> Report Date: 2017/10/26 Report #: R4804105 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7M7761 Received: 2017/10/16, 09:18

Sample Matrix: Water # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
ModTPH (T1) Calc. for Water	1	N/A	2017/10/19	N/A	Atl. RBCA v3 m
ModTPH (T1) Calc. for Water	11	N/A	2017/10/20	N/A	Atl. RBCA v3 m
Total Suspended Solids	2	2017/10/18	2017/10/24	ATL SOP 00007	SM 22 2540D m
Turbidity	8	N/A	2017/10/18	ATL SOP 00011	EPA 180.1 R2 m
Turbidity	4	N/A	2017/10/19	ATL SOP 00011	EPA 180.1 R2 m
Volatile Organic Compounds in Water	12	N/A	2017/10/18	ATL SOP 00133	EPA 8260C R3 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(4) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

⁽²⁾ Strong acid dissociable cyanide value may include contribution from thiocyanate.

⁽³⁾ The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

Your P.O. #: 73509542 Your Project #: 084308-02 Site Location: Come By Chance, NL Your C.O.C. #: 14886

Attention:Brian Luffman

GHD Limited St.John's 1118 Topsail Road St. John's, NL, NL CANADA A1B 3N7

> Report Date: 2017/10/26 Report #: R4804105 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B7M7761 Received: 2017/10/16, 09:18

Encryption Key

Sara Mason Project Manager Assistant 26 Oct 2017 09:59:12

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: HMacumber@maxxam.ca Phone# (902)420-0203 Ext:226

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

RBCA HYDROCARBONS IN WATER (WATER)

Maxxam ID		FIE812	FIE812	FIE813		FIE814		
Comulius Data		2017/10/12	2017/10/12	2017/10/12		2017/10/12		
Sampling Date		11:20	11:20	11:18		14:00		
COC Number		14886	14886	14886		14886		
	UNITS	PLCS	PLCS Lab-Dup	SLCS	QC Batch	MW93-1	RDL	QC Batch
Petroleum Hydrocarbons								
Benzene	mg/L	<0.0010		<0.0010	5215386	<0.0010	0.0010	5215386
Toluene	mg/L	<0.0010		<0.0010	5215386	<0.0010	0.0010	5215386
Ethylbenzene	mg/L	<0.0010		<0.0010 5215386		<0.0010	0.0010	5215386
Total Xylenes	mg/L	<0.0020		<0.0020	5215386	<0.0020	0.0020	5215386
C6 - C10 (less BTEX)	mg/L	<0.010		<0.010	5215386	<0.010	0.010	5215386
>C10-C16 Hydrocarbons	mg/L	<0.050	<0.050	<0.050	5217584	<0.050	0.050	5217454
>C16-C21 Hydrocarbons	mg/L	0.067	0.056	<0.050	5217584	<0.050	0.050	5217454
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	0.17	0.17	<0.10	5217584	<0.10	0.10	5217454
Modified TPH (Tier1)	mg/L	0.24		<0.10	5213153	<0.10	0.10	5213153
Reached Baseline at C32	mg/L	Yes		NA	5217584	NA	N/A	5217454
Hydrocarbon Resemblance	mg/L	COMMENT (1)		NA	5217584	NA	N/A	5217454
Surrogate Recovery (%)								
Isobutylbenzene - Extractable	%	107	89	95	5217584	97		5217454
n-Dotriacontane - Extractable	%	103	93	100	5217584	115		5217454
Isobutylbenzene - Volatile	%	82		82	5215386	80		5215386
RDL = Reportable Detection Lim	nit			-				-
QC Batch = Quality Control Batc	h							
Lab Dura Lab and any Indiata di	- I [.] .							

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) One product in fuel / lube range.

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

RBCA HYDROCARBONS IN WATER (WATER)

Maxxam ID		FIE815		FIE816	FIE817	FIE818	FIE819		
Sampling Date		2017/10/12		2017/10/12	2017/10/12	2017/10/12	2017/10/12		
		13:27		16:02	15:43	09:40	10:45		
COC Number		14886		14886	14886	14886	14886		
	UNITS	MW93-1A	QC Batch	MW93-2	MW93-2A	MW10-1	MW10-1A	RDL	QC Batch
Petroleum Hydrocarbons									
Benzene	mg/L	<0.0010	5215386	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	5215386
Toluene	mg/L	<0.0010	5215386	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	5215386
Ethylbenzene	mg/L	<0.0010	5215386	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	5215386
Total Xylenes	mg/L	<0.0020	5215386	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	5215386
C6 - C10 (less BTEX)	mg/L	<0.010	5215386	<0.010	<0.010	<0.010	<0.010	0.010	5215386
>C10-C16 Hydrocarbons	mg/L	<0.050	5217584	<0.050	<0.050	<0.050	<0.050	0.050	5219881
>C16-C21 Hydrocarbons	mg/L	<0.050	5217584	<0.050	<0.050	<0.050	<0.050	0.050	5219881
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	<0.10	5217584	<0.10	<0.10	<0.10	<0.10	0.10	5219881
Modified TPH (Tier1)	mg/L	<0.10	5213153	<0.10	<0.10	<0.10	<0.10	0.10	5213153
Reached Baseline at C32	mg/L	NA	5217584	NA	NA	NA	NA	N/A	5219881
Hydrocarbon Resemblance	mg/L	NA	5217584	NA	NA	NA	NA	N/A	5219881
Surrogate Recovery (%)									
Isobutylbenzene - Extractable	%	90	5217584	99	101	99	101		5219881
n-Dotriacontane - Extractable	%	98	5217584	115	116	110	118		5219881
Isobutylbenzene - Volatile	%	83	5215386	79	80	80	81		5215386
RDL = Reportable Detection Lim	it								
QC Batch = Quality Control Batc	h								
N/A = Not Applicable									

Report Date: 2017/10/26

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

RBCA HYDROCARBONS IN WATER (WATER)

Maxxam ID		FIE820	FIE821	FIE822	FIE823		
		2017/10/12	2017/10/12	2017/10/12	2017/10/12		
Sampling Date		15:55	15:41	10:08	10:23		
COC Number		14886	14886	14886	14886		
	UNITS	MW-DUP	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	RDL	QC Batch
Petroleum Hydrocarbons							
Benzene	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	5215386
Toluene	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	5215386
Ethylbenzene	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0010	5215386
Total Xylenes	mg/L	<0.0020	<0.0020	<0.0020	<0.0020	0.0020	5215386
C6 - C10 (less BTEX)	mg/L	<0.010	<0.010	<0.010	<0.010	0.010	5215386
>C10-C16 Hydrocarbons	mg/L	<0.050	<0.050	<0.050	<0.050	0.050	5219881
>C16-C21 Hydrocarbons	mg/L	<0.050	<0.050	<0.050	<0.050	0.050	5219881
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/L	<0.10	<0.10	<0.10	<0.10	0.10	5219881
Modified TPH (Tier1)	mg/L	<0.10	<0.10	<0.10	<0.10	0.10	5213153
Reached Baseline at C32	mg/L	NA	NA	NA	NA	N/A	5219881
Hydrocarbon Resemblance	mg/L	NA	NA	NA	NA	N/A	5219881
Surrogate Recovery (%)							
Isobutylbenzene - Extractable	%	97	95	98	96		5219881
n-Dotriacontane - Extractable	%	115	117	130	118		5219881
Isobutylbenzene - Volatile	%	82	83	81	84		5215386
RDL = Reportable Detection Lim	it						
QC Batch = Quality Control Batc	:h						
N/A = Not Applicable							

Report Date: 2017/10/26

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FIE812		FIE813			FIE821	FIE821		
Sampling Date		2017/10/12 11:20		2017/10/12 11:18			2017/10/12 15:41	2017/10/12 15:41		
COC Number		14886		14886			14886	14886		
	UNITS	PLCS	QC Batch	SLCS	RDL	QC Batch	SURFACE-UP	SURFACE-UP Lab-Dup	RDL	QC Batch
Calculated Parameters										
Anion Sum	me/L	3.98	5213207	7.85	N/A	5213207	0.940		N/A	5213207
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	170	5213214	340	1.0	5213214	18		1.0	5213214
Calculated TDS	mg/L	220	5213212	410	1.0	5213212	53		1.0	5213212
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.4	5213214	2.7	1.0	5213214	<1.0		1.0	5213214
Cation Sum	me/L	3.92	5213207	7.24	N/A	5213207	0.900		N/A	5213207
Hardness (CaCO3)	mg/L	150	5213205	280	1.0	5213205	18		1.0	5213205
Ion Balance (% Difference)	%	0.760	5213206	4.04	N/A	5213206	2.17		N/A	5213206
Langelier Index (@ 20C)	N/A	0.488	5213210	0.938		5213210	-1.96			5213210
Langelier Index (@ 4C)	N/A	0.238	5213211	0.690		5213211	-2.21			5213211
Nitrate (N)	mg/L	0.29	5213208	0.40	0.050	5213208	<0.050		0.050	5213208
Saturation pH (@ 20C)	N/A	7.46	5213210	6.98		5213210	9.32			5213210
Saturation pH (@ 4C)	N/A	7.71	5213211	7.22		5213211	9.57			5213211
Inorganics				1				1		
Total Alkalinity (Total as CaCO3)	mg/L	170	5218088	350	25	5220710	18		5.0	5220710
Dissolved Chloride (Cl)	mg/L	11	5218089	27	1.0	5220713	18		1.0	5220713
Colour	TCU	22	5218095	12	5.0	5220717	41		5.0	5220717
Nitrate + Nitrite (N)	mg/L	0.29	5218101	0.40	0.050	5220719	<0.050		0.050	5220719
Nitrite (N)	mg/L	<0.010	5218103	<0.010	0.010	5220721	<0.010		0.010	5220721
Nitrogen (Ammonia Nitrogen)	mg/L	0.32	5220040	0.30	0.050	5220040	<0.050		0.050	5220040
Total Organic Carbon (C)	mg/L	5.9	5225903	10	0.50	5225903	7.5	7.7	0.50	5226299
Orthophosphate (P)	mg/L	<0.010	5218100	<0.010	0.010	5220718	<0.010		0.010	5220718
рН	рН	7.95	5219841	7.91	N/A	5219841	7.36		N/A	5219843
Reactive Silica (SiO2)	mg/L	9.5	5218093	13	0.50	5220715	1.8		0.50	5220715
Dissolved Sulphate (SO4)	mg/L	13	5218091	6.4	2.0	5220714	2.8		2.0	5220714
Turbidity	NTU	2.5	5217419	10	0.10	5217419	0.72		0.10	5219880
Conductivity	uS/cm	380	5219842	680	1.0	5219842	120		1.0	5219844
Metals										
Total Aluminum (Al)	ug/L	42	5215272	17	5.0	5215272	43		5.0	5215272
Total Antimony (Sb)	ug/L	<1.0	5215272	<1.0	1.0	5215272	<1.0		1.0	5215272
Total Arsenic (As)	ug/L	<1.0	5215272	<1.0	1.0	5215272	<1.0		1.0	5215272
Total Barium (Ba)	ug/L	17	5215272	31	1.0	5215272	6.9		1.0	5215272
RDL = Reportable Detection Limit	•				•					
QC Batch = Quality Control Batch										

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FIE812		FIE813			FIE821	FIE821		
Sampling Date		2017/10/12		2017/10/12			2017/10/12	2017/10/12		
		11:20		11:18			15:41	15:41		
COC Number		14886		14886			14886	14886		
	UNITS	PLCS	QC Batch	SLCS	RDL	QC Batch	SURFACE-UP	SURFACE-UP Lab-Dup	RDL	QC Batch
Total Beryllium (Be)	ug/L	<1.0	5215272	<1.0	1.0	5215272	<1.0		1.0	5215272
Total Bismuth (Bi)	ug/L	<2.0	5215272	<2.0	2.0	5215272	<2.0		2.0	5215272
Total Boron (B)	ug/L	370	5215272	1300	50	5215272	<50		50	5215272
Total Cadmium (Cd)	ug/L	0.015	5215272	<0.010	0.010	5215272	<0.010		0.010	5215272
Total Calcium (Ca)	ug/L	50000	5215272	87000	100	5215272	5300		100	5215272
Total Chromium (Cr)	ug/L	<1.0	5215272	<1.0	1.0	5215272	<1.0		1.0	5215272
Total Cobalt (Co)	ug/L	<0.40	5215272	0.72	0.40	5215272	<0.40		0.40	5215272
Total Copper (Cu)	ug/L	4.0	5215272	<2.0	2.0	5215272	<2.0		2.0	5215272
Total Iron (Fe)	ug/L	350	5215272	2700	50	5215272	420		50	5215272
Total Lead (Pb)	ug/L	<0.50	5215272	<0.50	0.50	5215272	<0.50		0.50	5215272
Total Magnesium (Mg)	ug/L	4100	5215272	16000	100	5215272	1100		100	5215272
Total Manganese (Mn)	ug/L	61	5215272	5200	2.0	5215272	85		2.0	5215272
Total Molybdenum (Mo)	ug/L	<2.0	5215272	<2.0	2.0	5215272	<2.0		2.0	5215272
Total Nickel (Ni)	ug/L	<2.0	5215272	2.2	2.0	5215272	<2.0		2.0	5215272
Total Phosphorus (P)	ug/L	<100	5215272	<100	100	5215272	<100		100	5215272
Total Potassium (K)	ug/L	17000	5215272	24000	100	5215272	340		100	5215272
Total Selenium (Se)	ug/L	<1.0	5215272	<1.0	1.0	5215272	<1.0		1.0	5215272
Total Silver (Ag)	ug/L	<0.10	5215272	<0.10	0.10	5215272	<0.10		0.10	5215272
Total Sodium (Na)	ug/L	12000	5215272	20000	100	5215272	12000		100	5215272
Total Strontium (Sr)	ug/L	110	5215272	230	2.0	5215272	17		2.0	5215272
Total Thallium (Tl)	ug/L	<0.10	5215272	<0.10	0.10	5215272	<0.10		0.10	5215272
Total Tin (Sn)	ug/L	<2.0	5215272	<2.0	2.0	5215272	<2.0		2.0	5215272
Total Titanium (Ti)	ug/L	2.1	5215272	<2.0	2.0	5215272	<2.0		2.0	5215272
Total Uranium (U)	ug/L	0.23	5215272	1.1	0.10	5215272	<0.10		0.10	5215272
Total Vanadium (V)	ug/L	<2.0	5215272	<2.0	2.0	5215272	<2.0		2.0	5215272
Total Zinc (Zn)	ug/L	8.2	5215272	<5.0	5.0	5215272	<5.0		5.0	5215272
RDL = Reportable Detection Limit		•	-	-		-				
OC Patch - Quality Control Patch										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FIE822		FIE823		
Sampling Date		2017/10/12 10:08		2017/10/12 10:23		
COC Number		14886		14886		
	UNITS	SURFACE-DOWN	QC Batch	SURFACE-DUP	RDL	QC Batch
Calculated Parameters						
Anion Sum	me/L	1.07	5213207	1.09	N/A	5213207
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	21	5213214	22	1.0	5213214
Calculated TDS	mg/L	61	5213212	61	1.0	5213212
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	5213214	<1.0	1.0	5213214
Cation Sum	me/L	1.02	5213207	1.03	N/A	5213207
Hardness (CaCO3)	mg/L	21	5213205	21	1.0	5213205
Ion Balance (% Difference)	%	2.39	5213206	2.83	N/A	5213206
Langelier Index (@ 20C)	N/A	-1.92	5213210	-1.42		5213210
Langelier Index (@ 4C)	N/A	-2.17	5213211	-1.67		5213211
Nitrate (N)	mg/L	<0.050	5213208	<0.050	0.050	5213208
Saturation pH (@ 20C)	N/A	9.20	5213210	9.18		5213210
Saturation pH (@ 4C)	N/A	9.45	5213211	9.43		5213211
Inorganics						
Total Alkalinity (Total as CaCO3)	mg/L	21	5220710	22	5.0	5220710
Dissolved Chloride (Cl)	mg/L	20	5220713	19	1.0	5220713
Colour	TCU	38	5220717	37	5.0	5220717
Nitrate + Nitrite (N)	mg/L	<0.050	5220719	<0.050	0.050	5220719
Nitrite (N)	mg/L	<0.010	5220721	<0.010	0.010	5220721
Nitrogen (Ammonia Nitrogen)	mg/L	0.23	5220040	0.13	0.050	5220045
Total Organic Carbon (C)	mg/L	7.3	5226299	7.3	0.50	5226299
Orthophosphate (P)	mg/L	<0.010	5220718	<0.010	0.010	5220718
рН	рН	7.28	5217403	7.76	N/A	5219843
Reactive Silica (SiO2)	mg/L	2.1	5220715	2.1	0.50	5220715
Dissolved Sulphate (SO4)	mg/L	4.8	5220714	4.9	2.0	5220714
Turbidity	NTU	0.55	5219880	0.73	0.10	5219880
Conductivity	uS/cm	110	5217404	140	1.0	5219844
Metals					-	
Total Aluminum (Al)	ug/L	61	5215272	62	5.0	5215272
Total Antimony (Sb)	ug/L	<1.0	5215272	<1.0	1.0	5215272
Total Arsenic (As)	ug/L	<1.0	5215272	<1.0	1.0	5215272
Total Barium (Ba)	ug/L	7.4	5215272	7.6	1.0	5215272
Total Beryllium (Be)	ug/L	<1.0	5215272	<1.0	1.0	5215272
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						
N/A = Not Applicable						

ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

Maxxam ID		FIE822		FIE823		
Sampling Date		2017/10/12		2017/10/12		
		10:08		10:23		
COC Number		14886		14886		
	UNITS	SURFACE-DOWN	QC Batch	SURFACE-DUP	RDL	QC Batch
Total Bismuth (Bi)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Boron (B)	ug/L	<50	5215272	<50	50	5215272
Total Cadmium (Cd)	ug/L	<0.010	5215272	<0.010	0.010	5215272
Total Calcium (Ca)	ug/L	6200	5215272	6300	100	5215272
Total Chromium (Cr)	ug/L	<1.0	5215272	<1.0	1.0	5215272
Total Cobalt (Co)	ug/L	<0.40	5215272	<0.40	0.40	5215272
Total Copper (Cu)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Iron (Fe)	ug/L	300	5215272	310	50	5215272
Total Lead (Pb)	ug/L	<0.50	5215272	<0.50	0.50	5215272
Total Magnesium (Mg)	ug/L	1300	5215272	1300	100	5215272
Total Manganese (Mn)	ug/L	55	5215272	60	2.0	5215272
Total Molybdenum (Mo)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Nickel (Ni)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Phosphorus (P)	ug/L	<100	5215272	<100	100	5215272
Total Potassium (K)	ug/L	370	5215272	400	100	5215272
Total Selenium (Se)	ug/L	<1.0	5215272	<1.0	1.0	5215272
Total Silver (Ag)	ug/L	<0.10	5215272	<0.10	0.10	5215272
Total Sodium (Na)	ug/L	13000	5215272	13000	100	5215272
Total Strontium (Sr)	ug/L	20	5215272	19	2.0	5215272
Total Thallium (Tl)	ug/L	<0.10	5215272	<0.10	0.10	5215272
Total Tin (Sn)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Titanium (Ti)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Uranium (U)	ug/L	<0.10	5215272	<0.10	0.10	5215272
Total Vanadium (V)	ug/L	<2.0	5215272	<2.0	2.0	5215272
Total Zinc (Zn)	ug/L	37	5215272	<5.0	5.0	5215272
RDL = Reportable Detection Limit						
QC Batch = Quality Control Batch						

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		FIE814		FIE815		FIE816		FIE817	FIE817		
Sampling Date		2017/10/12 14:00		2017/10/12 13:27		2017/10/12 16:02		2017/10/12 15:43	2017/10/12 15:43		
COC Number		14886		14886		14886		14886	14886		
	UNITS	MW93-1	RDL	MW93-1A	RDL	MW93-2	RDL	MW93-2A	MW93-2A Lab-Dup	RDL	QC Batch
Calculated Parameters											
Anion Sum	me/L	6.38	N/A	7.19	N/A	5.79	N/A	1.88		N/A	5213207
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	250	1.0	310	1.0	220	1.0	17		1.0	5213214
Calculated TDS	mg/L	330	1.0	380	1.0	320	1.0	130		1.0	5213212
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.9	1.0	3.4	1.0	<1.0	1.0	<1.0		1.0	5213214
Cation Sum	me/L	5.62	N/A	7.09	N/A	5.61	N/A	1.88		N/A	5213207
Hardness (CaCO3)	mg/L	130	1.0	190	1.0	230	1.0	43		1.0	5213205
Ion Balance (% Difference)	%	6.33	N/A	0.700	N/A	1.58	N/A	0.00		N/A	5213206
Langelier Index (@ 20C)	N/A	0.537	-	0.792		0.368	-	-3.09			5213210
Langelier Index (@ 4C)	N/A	0.288		0.544		0.119		-3.34			5213211
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050		0.050	5213208
Saturation pH (@ 20C)	N/A	7.54		7.28		7.24		9.08			5213210
Saturation pH (@ 4C)	N/A	7.79		7.53		7.49		9.33			5213211
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	260	25	310	25	220	25	17		5.0	5218088
Dissolved Chloride (Cl)	mg/L	30	1.0	11	1.0	16	1.0	28		1.0	5218089
Colour	TCU	<5.0	5.0	<5.0	5.0	<5.0	5.0	51		25	5218095
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050		0.050	5218101
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010		0.010	5218103
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	0.35	0.35	0.050	5220040
Total Organic Carbon (C)	mg/L	5.3 (1)	5.0	<5.0 (1)	5.0	1.3	0.50	11		0.50	5225903
Orthophosphate (P)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010		0.010	5218100
рН	pН	8.08	N/A	8.07	N/A	7.61	N/A	5.99		N/A	5219841
Reactive Silica (SiO2)	mg/L	9.1	0.50	5.9	0.50	18	0.50	7.3		0.50	5218093
Dissolved Sulphate (SO4)	mg/L	19	2.0	30	2.0	46	4.0	36		2.0	5218091
Turbidity	NTU	47	0.10	690	1.0	1.7	0.10	40		0.10	5217419
Conductivity	uS/cm	570	1.0	640	1.0	530	1.0	220		1.0	5219842
Metals	-		1		1		1				
Dissolved Aluminum (Al)	ug/L	9.5	5.0	9.8	5.0	7.8	5.0	220		5.0	5215126
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0		1.0	5215126
Dissolved Arsenic (As)	ug/L	<1.0	1.0	<1.0	1.0	2.3	1.0	1.2		1.0	5215126
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Dup	1 -										

N/A = Not Applicable

(1) Reporting limit was increased due to turbidity.

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		FIE814		FIE815		FIE816		FIE817	FIE817		
Sampling Date		2017/10/12		2017/10/12		2017/10/12		2017/10/12	2017/10/12		
		14:00		13:27		16:02		15:43	15:43		
COC Number		14886		14886		14886		14886	14886		
	UNITS	MW93-1	RDL	MW93-1A	RDL	MW93-2	RDL	MW93-2A	MW93-2A Lab-Dup	RDL	QC Batch
Dissolved Barium (Ba)	ug/L	100	1.0	71	1.0	150	1.0	49		1.0	5215126
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0		1.0	5215126
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0		2.0	5215126
Dissolved Boron (B)	ug/L	120	50	79	50	1000	50	95		50	5215126
Dissolved Cadmium (Cd)	ug/L	<0.010	0.010	0.013	0.010	<0.010	0.010	0.31		0.010	5215126
Dissolved Calcium (Ca)	ug/L	30000	100	47000	100	70000	100	11000		100	5215126
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0		1.0	5215126
Dissolved Cobalt (Co)	ug/L	<0.40	0.40	1.0	0.40	0.40	0.40	2.2		0.40	5215126
Dissolved Copper (Cu)	ug/L	<2.0	2.0	3.0	2.0	<2.0	2.0	<2.0		2.0	5215126
Dissolved Iron (Fe)	ug/L	<50	50	110	50	120	50	8600		50	5215126
Dissolved Lead (Pb)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50		0.50	5215126
Dissolved Magnesium (Mg)	ug/L	14000	100	17000	100	14000	100	3600		100	5215126
Dissolved Manganese (Mn)	ug/L	87	2.0	140	2.0	1000	2.0	5100		2.0	5215126
Dissolved Molybdenum (Mo)	ug/L	15	2.0	15	2.0	<2.0	2.0	<2.0		2.0	5215126
Dissolved Nickel (Ni)	ug/L	<2.0	2.0	2.0	2.0	<2.0	2.0	2.3		2.0	5215126
Dissolved Phosphorus (P)	ug/L	<100	100	<100	100	<100	100	<100		100	5215126
Dissolved Potassium (K)	ug/L	1600	100	2500	100	1300	100	1300		100	5215126
Dissolved Selenium (Se)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0		1.0	5215126
Dissolved Silver (Ag)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10		0.10	5215126
Dissolved Sodium (Na)	ug/L	68000	100	75000	100	22000	100	15000		100	5215126
Dissolved Strontium (Sr)	ug/L	230	2.0	290	2.0	200	2.0	55		2.0	5215126
Dissolved Thallium (Tl)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	<0.10		0.10	5215126
Dissolved Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0		2.0	5215126
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0		2.0	5215126
Dissolved Uranium (U)	ug/L	0.28	0.10	2.4	0.10	0.20	0.10	<0.10		0.10	5215126
Dissolved Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0		2.0	5215126
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	10	5.0	5.6	5.0	130		5.0	5215126
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											
1											

Lab-Dup = Laboratory Initiated Duplicate

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		FIE818			FIE819			FIE820		
Sampling Date		2017/10/12			2017/10/12			2017/10/12		
	_	09:40			10:45			15:55		
COC Number		14886			14886			14886		
	UNITS	MW10-1	RDL	QC Batch	MW10-1A	RDL	QC Batch	MW-DUP	RDL	QC Batc
Calculated Parameters										
Anion Sum	me/L	2.30	N/A	5213207	1.79	N/A	5213207	2.05	N/A	521320
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	92	1.0	5213214	67	1.0	5213214	25	1.0	5213214
Calculated TDS	mg/L	130	1.0	5213212	110	1.0	5213212	140	1.0	521321
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	5213214	<1.0	1.0	5213214	<1.0	1.0	5213214
Cation Sum	me/L	2.13	N/A	5213207	1.68	N/A	5213207	2.08	N/A	521320
Hardness (CaCO3)	mg/L	90	1.0	5213205	65	1.0	5213205	52	1.0	521320
Ion Balance (% Difference)	%	3.84	N/A	5213206	3.17	N/A	5213206	0.730	N/A	5213206
Langelier Index (@ 20C)	N/A	-0.424		5213210	-0.898		5213210	-2.46		5213210
Langelier Index (@ 4C)	N/A	-0.675		5213211	-1.15		5213211	-2.71		521321
Nitrate (N)	mg/L	<0.050	0.050	5213208	0.064	0.050	5213208	<0.050	0.050	521320
Saturation pH (@ 20C)	N/A	7.91		5213210	8.19		5213210	8.82		521321
Saturation pH (@ 4C)	N/A	8.16		5213211	8.44		5213211	9.07		521321
Inorganics										
Total Alkalinity (Total as CaCO3)	mg/L	93	5.0	5218088	67	5.0	5220710	25	5.0	5220710
Dissolved Chloride (Cl)	mg/L	5.3	1.0	5218089	4.9	1.0	5220713	26	1.0	5220713
Colour	TCU	7.2	5.0	5218095	10	5.0	5220717	110 (1)	25	522071
Nitrate + Nitrite (N)	mg/L	<0.050	0.050	5218101	0.064	0.050	5220719	<0.050	0.050	5220719
Nitrite (N)	mg/L	<0.010	0.010	5218103	<0.010	0.010	5220721	<0.010	0.010	5220722
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	5220040	0.16	0.050	5220040	0.34	0.050	5220040
Total Organic Carbon (C)	mg/L	4.2	0.50	5225903	<50 (2)	50	5225903	10	0.50	5225903
Orthophosphate (P)	mg/L	<0.010	0.010	5218100	<0.010	0.010	5220718	<0.010	0.010	5220718
рН	рН	7.48	N/A	5219843	7.29	N/A	5219841	6.37	N/A	5217403
Reactive Silica (SiO2)	mg/L	11	0.50	5218093	11	0.50	5220715	8.2	0.50	5220715
Dissolved Sulphate (SO4)	mg/L	14	2.0	5218091	14	2.0	5220714	39	2.0	5220714
Turbidity	NTU	38	0.10	5217419	800	1.0	5217419	35	0.10	5219880
Conductivity	uS/cm	230	1.0	5219844	160	1.0	5219842	230	1.0	5217404
Metals										
Dissolved Aluminum (Al)	ug/L	8.5	5.0	5215126	17	5.0	5215126	180	5.0	5215126
Dissolved Antimony (Sb)	ug/L	<1.0	1.0	5215126	<1.0	1.0	5215126	<1.0	1.0	521512
Dissolved Arsenic (As)	ug/L	<1.0	1.0	5215126	<1.0	1.0	5215126	1.1	1.0	5215126

N/A = Not Applicable

(1) Elevated reporting limit due to sample matrix.

(2) Reporting limit was increased due to turbidity.

AT. RCAP-MS DISSOLVED (FIELDFILT) IN W

Maxxam ID		FIE818			FIE819			FIE820		
Sampling Date		2017/10/12			2017/10/12			2017/10/12		
		09:40			10:45			15:55		
COC Number		14886			14886			14886		
	UNITS	MW10-1	RDL	QC Batch	MW10-1A	RDL	QC Batch	MW-DUP	RDL	QC Batch
Dissolved Barium (Ba)	ug/L	37	1.0	5215126	40	1.0	5215126	51	1.0	5215126
Dissolved Beryllium (Be)	ug/L	<1.0	1.0	5215126	<1.0	1.0	5215126	<1.0	1.0	5215126
Dissolved Bismuth (Bi)	ug/L	<2.0	2.0	5215126	<2.0	2.0	5215126	<2.0	2.0	5215126
Dissolved Boron (B)	ug/L	<50	50	5215126	<50	50	5215126	150	50	5215126
Dissolved Cadmium (Cd)	ug/L	0.027	0.010	5215126	0.015	0.010	5215126	0.32	0.010	5215126
Dissolved Calcium (Ca)	ug/L	30000	100	5215126	21000	100	5215126	14000	100	5215126
Dissolved Chromium (Cr)	ug/L	<1.0	1.0	5215126	<1.0	1.0	5215126	<1.0	1.0	5215126
Dissolved Cobalt (Co)	ug/L	3.3	0.40	5215126	5.0	0.40	5215126	2.3	0.40	5215126
Dissolved Copper (Cu)	ug/L	4.3	2.0	5215126	5.3	2.0	5215126	<2.0	2.0	5215126
Dissolved Iron (Fe)	ug/L	1000	50	5215126	3600	50	5215126	8900	50	5215126
Dissolved Lead (Pb)	ug/L	<0.50	0.50	5215126	<0.50	0.50	5215126	<0.50	0.50	5215126
Dissolved Magnesium (Mg)	ug/L	3500	100	5215126	2700	100	5215126	4200	100	5215126
Dissolved Manganese (Mn)	ug/L	310	2.0	5215126	530	2.0	5215126	5300	2.0	5215126
Dissolved Molybdenum (Mo)	ug/L	<2.0	2.0	5215126	<2.0	2.0	5215126	<2.0	2.0	5215126
Dissolved Nickel (Ni)	ug/L	4.0	2.0	5215126	5.5	2.0	5215126	2.4	2.0	5215126
Dissolved Phosphorus (P)	ug/L	<100	100	5215126	<100	100	5215126	<100	100	5215126
Dissolved Potassium (K)	ug/L	810	100	5215126	620	100	5215126	1300	100	5215126
Dissolved Selenium (Se)	ug/L	<1.0	1.0	5215126	<1.0	1.0	5215126	<1.0	1.0	5215126
Dissolved Silver (Ag)	ug/L	<0.10	0.10	5215126	<0.10	0.10	5215126	<0.10	0.10	5215126
Dissolved Sodium (Na)	ug/L	6100	100	5215126	5300	100	5215126	15000	100	5215126
Dissolved Strontium (Sr)	ug/L	68	2.0	5215126	53	2.0	5215126	61	2.0	5215126
Dissolved Thallium (TI)	ug/L	<0.10	0.10	5215126	<0.10	0.10	5215126	<0.10	0.10	5215126
Dissolved Tin (Sn)	ug/L	<2.0	2.0	5215126	<2.0	2.0	5215126	<2.0	2.0	5215126
Dissolved Titanium (Ti)	ug/L	<2.0	2.0	5215126	<2.0	2.0	5215126	<2.0	2.0	5215126
Dissolved Uranium (U)	ug/L	0.10	0.10	5215126	<0.10	0.10	5215126	<0.10	0.10	5215126
Dissolved Vanadium (V)	ug/L	<2.0	2.0	5215126	<2.0	2.0	5215126	<2.0	2.0	5215126
Dissolved Zinc (Zn)	ug/L	13	5.0	5215126	7.3	5.0	5215126	140	5.0	5215126
RDL = Reportable Detection Limit	-						-			
QC Batch = Quality Control Batch										

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FIE812	FIE812	FIE813	FIE814	FIE815	FIE816		
Someling Data		2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12		
Sampling Date		11:20	11:20	11:18	14:00	13:27	16:02		
COC Number		14886	14886	14886	14886	14886	14886		
	UNITS	PLCS	PLCS Lab-Dup	SLCS	MW93-1	MW93-1A	MW93-2	RDL	QC Batc
Chlorobenzenes									
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Volatile Organics	1			1	1				
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
1,1-Dichloroethane	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5215463
1,1-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	521546
1,2-Dichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
1,2-Dichloropropane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	521546
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	521546
Carbon Tetrachloride	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	521546
Chloroethane	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	521546
Chloroform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Chloromethane	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	521546
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	521546
cis-1,3-Dichloropropene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	521546
Dibromochloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Ethylbenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	521546
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	3.0	521546
o-Xylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
p+m-Xylene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	521546
Styrene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Tetrachloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
Toluene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	521546
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FIE812	FIE812	FIE813	FIE814	FIE815	FIE816		
Sampling Date		2017/10/12 11:20	2017/10/12 11:20	2017/10/12 11:18	2017/10/12 14:00	2017/10/12 13:27	2017/10/12 16:02		
COC Number		14886	14886	14886	14886	14886	14886		
	UNITS	PLCS	PLCS Lab-Dup	SLCS	MW93-1	MW93-1A	MW93-2	RDL	QC Batch
trans-1,3-Dichloropropene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
Trichloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	5215463
Vinyl Chloride	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
Surrogate Recovery (%)	•								
4-Bromofluorobenzene	%	98	97	98	99	97	97		5215463
D4-1,2-Dichloroethane	%	98	108	99	100	103	106		5215463
D8-Toluene	%	98	96	97	98	97	97		5215463
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	•							•	

Lab-Dup = Laboratory Initiated Duplicate

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FIE817	FIE818	FIE819	FIE820	FIE821	FIE822		
Sampling Date		2017/10/12 15:43	2017/10/12 09:40	2017/10/12 10:45	2017/10/12 15:55	2017/10/12 15:41	2017/10/12 10:08		
COC Number		14886	14886	14886	14886	14886	14886		
	UNITS	MW93-2A	MW10-1	MW10-1A	MW-DUP	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Chlorobenzenes									
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Volatile Organics									
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
1,1-Dichloroethane	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5215463
1,1-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
1,2-Dichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
1,2-Dichloropropane	ug/L	<0.50	10	5.6	<0.50	<0.50	<0.50	0.50	5215463
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
Carbon Tetrachloride	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
Chloroethane	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	5215463
Chloroform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Chloromethane	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	5215463
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
cis-1,3-Dichloropropene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
Dibromochloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Ethylbenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5215463
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	3.0	5215463
o-Xylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
p+m-Xylene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5215463
Styrene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Tetrachloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Toluene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5215463
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
trans-1,3-Dichloropropene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FIE817	FIE818	FIE819	FIE820	FIE821	FIE822		
Someling Data		2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12		
Sampling Date		15:43	09:40	10:45	15:55	15:41	10:08		
COC Number		14886	14886	14886	14886	14886	14886		
	UNITS	MW93-2A	MW10-1	MW10-1A	MW-DUP	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Trichloroethylene	ug/L	<1.0	2.4	<1.0	<1.0	<1.0	<1.0	1.0	5215463
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	5215463
Vinyl Chloride	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5215463
Surrogate Recovery (%)									
Surrogate Recovery (%) 4-Bromofluorobenzene	%	96	97	97	97	96	97		5215463
• • • •	%	96 112	97 102	97 103	97 102	96 106	97 103		5215463 5215463

QC Batch = Quality Control Batch

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FIE823		
Course line Data		2017/10/12		
Sampling Date		10:23		
COC Number		14886		
	UNITS	SURFACE-DUP	RDL	QC Batch
Chlorobenzenes				
1,2-Dichlorobenzene	ug/L	<0.50	0.50	5215463
1,3-Dichlorobenzene	ug/L	<1.0	1.0	5215463
1,4-Dichlorobenzene	ug/L	<1.0	1.0	5215463
Chlorobenzene	ug/L	<1.0	1.0	5215463
Volatile Organics				
1,1,1-Trichloroethane	ug/L	<1.0	1.0	5215463
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	5215463
1,1,2-Trichloroethane	ug/L	<1.0	1.0	5215463
1,1-Dichloroethane	ug/L	<2.0	2.0	5215463
1,1-Dichloroethylene	ug/L	<0.50	0.50	5215463
1,2-Dichloroethane	ug/L	<1.0	1.0	5215463
1,2-Dichloropropane	ug/L	<0.50	0.50	5215463
Benzene	ug/L	<1.0	1.0	5215463
Bromodichloromethane	ug/L	<1.0	1.0	5215463
Bromoform	ug/L	<1.0	1.0	5215463
Bromomethane	ug/L	<0.50	0.50	5215463
Carbon Tetrachloride	ug/L	<0.50	0.50	5215463
Chloroethane	ug/L	<8.0	8.0	5215463
Chloroform	ug/L	<1.0	1.0	5215463
Chloromethane	ug/L	<8.0	8.0	5215463
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	5215463
cis-1,3-Dichloropropene	ug/L	<0.50	0.50	5215463
Dibromochloromethane	ug/L	<1.0	1.0	5215463
Ethylbenzene	ug/L	<1.0	1.0	5215463
Ethylene Dibromide	ug/L	<0.20	0.20	5215463
Methylene Chloride(Dichloromethane)	ug/L	<3.0	3.0	5215463
o-Xylene	ug/L	<1.0	1.0	5215463
p+m-Xylene	ug/L	<2.0	2.0	5215463
Styrene	ug/L	<1.0	1.0	5215463
Tetrachloroethylene	ug/L	<1.0	1.0	5215463
Toluene	ug/L	<1.0	1.0	5215463
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	5215463
trans-1,3-Dichloropropene	ug/L	<0.50	0.50	5215463
RDL = Reportable Detection Limit			:	
QC Batch = Quality Control Batch				

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

ATLANTIC VOC IN WATER (WATER)

Maxxam ID		FIE823		
Sampling Date		2017/10/12		
		10:23		
COC Number		14886		
	UNITS	SURFACE-DUP	RDL	QC Batch
Trichloroethylene	ug/L	<1.0	1.0	5215463
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	8.0	5215463
Vinyl Chloride	ug/L	<0.50	0.50	5215463
Surrogate Recovery (%)	·	•		
4-Bromofluorobenzene	%	96		5215463
D4-1,2-Dichloroethane	%	104		5215463
D8-Toluene	%	97		5215463
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

RESULTS OF ANALYSES OF WATER

Maxxam ID		FIE812		FIE813	FIE821	FIE822	FIE823		
Sampling Date		2017/10/12 11:20		2017/10/12 11:18	2017/10/12 15:41	2017/10/12 10:08	2017/10/12 10:23		
COC Number		14886		14886	14886	14886	14886		
	UNITS	PLCS	RDL	SLCS	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	RDL	QC Batch
Calculated Parameters									
Chromium (+3)	mg/L	< 0.001	0.001	< 0.001	< 0.001	<0.001	<0.001	0.001	5213367
Inorganics									
Carbonaceous BOD	mg/L	<5.0	5.0	<5.0				5.0	5215161
Strong Acid Dissoc. Cyanide (CN)	mg/L	<0.0010	0.0010	<0.0010				0.0010	5218107
Phenols-4AAP	mg/L	<0.0010	0.0010	0.0012				0.0010	5220972
Total Suspended Solids	mg/L	6.4	1.0	12				2.0	5217705
Sulphide	mg/L	<0.020	0.020	<0.020				0.020	5218882
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									
QC Batch – Quanty Control Batch									

Maxxam ID		FIE812	FIE813		
Sampling Date		2017/10/12 11:20	2017/10/12 11:18		
COC Number		14886	14886		
	UNITS	PLCS	SLCS	RDL	QC Batch
Metals					
Total Mercury (Hg)	ug/L	<0.013	<0.013	0.013	5217874
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	atch				

MERCURY BY COLD VAPOUR AA (WATER)

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

Maxxam ID		FIE812	FIE813						
Comulius Data		2017/10/12	2017/10/12						
Sampling Date		11:20	11:18						
COC Number		14886	14886						
	UNITS	PLCS	SLCS	RDL	QC Batch				
Metals									
Dissolved Aluminum (Al)	ug/L	17	5.5	5.0	5215126				
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	1.0	5215126				
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	5215126				
Dissolved Barium (Ba)	ug/L	15	30	1.0	5215126				
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	1.0	5215126				
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	5215126				
Dissolved Boron (B)	ug/L	380	1300	50	5215126				
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	5215126				
Dissolved Calcium (Ca)	ug/L	51000	86000	100	5215126				
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	5215126				
Dissolved Cobalt (Co)	ug/L	<0.40	0.78	0.40	5215126				
Dissolved Copper (Cu)	ug/L	2.2	<2.0	2.0	5215126				
Dissolved Iron (Fe)	ug/L	<50	2300	50	5215126				
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	5215126				
Dissolved Magnesium (Mg)	ug/L	4300	16000	100	5215126				
Dissolved Manganese (Mn)	ug/L	54	5200	2.0	5215126				
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	5215126				
Dissolved Nickel (Ni)	ug/L	<2.0	2.2	2.0	5215126				
Dissolved Phosphorus (P)	ug/L	<100	<100	100	5215126				
Dissolved Potassium (K)	ug/L	17000	23000	100	5215126				
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	1.0	5215126				
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	5215126				
Dissolved Sodium (Na)	ug/L	13000	20000	100	5215126				
Dissolved Strontium (Sr)	ug/L	120	230	2.0	5215126				
Dissolved Thallium (Tl)	ug/L	<0.10	<0.10	0.10	5215126				
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	2.0	5215126				
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	2.0	5215126				
Dissolved Uranium (U)	ug/L	0.23	1.0	0.10	5215126				
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	2.0	5215126				
Dissolved Zinc (Zn)	ug/L	12	6.3	5.0	5215126				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Bat	ch								

ELEMENTS BY ICP/MS (WATER)

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		FIE812	FIE813	FIE821	FIE822	FIE823				
Sampling Date		2017/10/12 11:20	2017/10/12 11:18	2017/10/12 15:41	2017/10/12 10:08	2017/10/12 10:23				
COC Number		14886	14886	14886	14886	14886				
	UNITS	PLCS	SLCS	SURFACE-UP	SURFACE-DOWN	SURFACE-DUP	RDL	QC Batch		
Metals										
Metals		L								
Metals Chromium (VI)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5218868		

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		FIE812	FIE813	FIE814	FIE815	FIE816	FIE817	FIE818		
Sampling Date		2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12		
		11:20	11:18	14:00	13:27	16:02	15:43	09:40		
COC Number		14886	14886	14886	14886	14886	14886	14886		
	UNITS	PLCS	SLCS	MW93-1	MW93-1A	MW93-2	MW93-2A	MW10-1	RDL	QC Batch
Polyaromatic Hydrocarbons										
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5215197
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5215197
Acenaphthene	ug/L	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Acenaphthylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Anthracene	ug/L	<0.010	0.018	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Benzo(a)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Benzo(b)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Benzo(b/j)fluoranthene	ug/L	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5213503
Benzo(g,h,i)perylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Benzo(j)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Benzo(k)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Chrysene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Dibenz(a,h)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Fluoranthene	ug/L	<0.010	0.037	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Fluorene	ug/L	<0.010	0.012	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Naphthalene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5215197
Perylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Phenanthrene	ug/L	<0.010	0.012	<0.010	<0.010	<0.010	0.011	<0.010	0.010	5215197
Pyrene	ug/L	0.012	0.14	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5215197
Surrogate Recovery (%)										
D10-Anthracene	%	92	73	53	50	96	58	91		5215197
D14-Terphenyl	%	101	82	76	60	103	62	93		5215197
D8-Acenaphthylene	%	95	75	71	71	100	68	91		5215197
RDL = Reportable Detection L	imit									
QC Batch = Quality Control B	atch									

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		FIE819		FIE820	FIE820	FIE821	FIE822		
Sampling Date		2017/10/12		2017/10/12	2017/10/12	2017/10/12	2017/10/12		
		10:45		15:55	15:55	15:41	10:08		
COC Number		14886		14886	14886	14886	14886		
	UNITS	MW10-1A	QC Batch	MW-DUP	MW-DUP Lab-Dup	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Polyaromatic Hydrocarbon	s								
1-Methylnaphthalene	ug/L	<0.050	5215197	<0.050	<0.050	<0.050	<0.050	0.050	5217532
2-Methylnaphthalene	ug/L	<0.050	5215197	<0.050	<0.050	<0.050	<0.050	0.050	5217532
Acenaphthene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Acenaphthylene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Anthracene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Benzo(a)anthracene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Benzo(a)pyrene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Benzo(b)fluoranthene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Benzo(b/j)fluoranthene	ug/L	<0.020	5213503	<0.020		<0.020	<0.020	0.020	5213503
Benzo(g,h,i)perylene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Benzo(j)fluoranthene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Benzo(k)fluoranthene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Chrysene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Dibenz(a,h)anthracene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Fluoranthene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Fluorene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Naphthalene	ug/L	<0.20	5215197	<0.20	<0.20	<0.20	<0.20	0.20	5217532
Perylene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Phenanthrene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Pyrene	ug/L	<0.010	5215197	<0.010	<0.010	<0.010	<0.010	0.010	5217532
Surrogate Recovery (%)	•								
D10-Anthracene	%	52	5215197	56	57	56	67		5217532
D14-Terphenyl	%	62	5215197	52	56	64	62		5217532
D8-Acenaphthylene	%	66	5215197	55	64	73	70		5217532
RDL = Reportable Detection	Limit	•	•	•	•	•			•
QC Batch = Quality Control	Batch								
Lab-Dup = Laboratory Initia	ted Duplic	ate							

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

Maxxam ID		FIE823								
Sampling Date		2017/10/12								
Sampling Date		10:23								
COC Number		14886								
	UNITS	SURFACE-DUP	RDL	QC Batch						
Polyaromatic Hydrocarbon	S									
1-Methylnaphthalene	ug/L	<0.050	0.050	5217532						
2-Methylnaphthalene	ug/L	<0.050	0.050	5217532						
Acenaphthene	ug/L	<0.010	0.010	5217532						
Acenaphthylene	ug/L	<0.010	0.010	5217532						
Anthracene	ug/L	<0.010	0.010	5217532						
Benzo(a)anthracene	ug/L	<0.010	0.010	5217532						
Benzo(a)pyrene	ug/L	<0.010	0.010	5217532						
Benzo(b)fluoranthene	ug/L	<0.010	0.010	5217532						
Benzo(b/j)fluoranthene	ug/L	<0.020	0.020	5213503						
Benzo(g,h,i)perylene	ug/L	<0.010	0.010	5217532						
Benzo(j)fluoranthene	ug/L	<0.010	0.010	5217532						
Benzo(k)fluoranthene	ug/L	<0.010	0.010	5217532						
Chrysene	ug/L	<0.010	0.010	5217532						
Dibenz(a,h)anthracene	ug/L	<0.010	0.010	5217532						
Fluoranthene	ug/L	<0.010	0.010	5217532						
Fluorene	ug/L	<0.010	0.010	5217532						
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	0.010	5217532						
Naphthalene	ug/L	<0.20	0.20	5217532						
Perylene	ug/L	<0.010	0.010	5217532						
Phenanthrene	ug/L	<0.010	0.010	5217532						
Pyrene	ug/L	<0.010	0.010	5217532						
Surrogate Recovery (%)										
D10-Anthracene	%	71		5217532						
D14-Terphenyl	%	64		5217532						
D8-Acenaphthylene	%	72		5217532						
RDL = Reportable Detection Limit										
QC Batch = Quality Control	Batch									

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

	1									
Maxxam ID		FIE812	FIE813	FIE814	FIE815	FIE816	FIE817	FIE818		
Sampling Date		2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12	2017/10/12		
Samping Date		11:20	11:18	14:00	13:27	16:02	15:43	09:40		
COC Number		14886	14886	14886	14886	14886	14886	14886		
	UNITS	PLCS	SLCS	MW93-1	MW93-1A	MW93-2	MW93-2A	MW10-1	RDL	QC Batch
PCBs										
Aroclor 1016	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Aroclor 1221	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Aroclor 1232	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Aroclor 1248	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Aroclor 1242	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Aroclor 1254	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Aroclor 1260	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5222421
Calculated Total PCB	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5213504
Surrogate Recovery (%)										
Decachlorobiphenyl	%	67 (1)	70 (1)	66 (2)	58 (2)	89 (3)	72 (3)	75 (2)		5222421

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) PCB sample analysed past recommended hold time due to lab error.

(2) PCB sample analysed past recommended hold time due to lab error. PCB:Unidentified (possibly halogenated) compounds detected. PCB sample contained sediment.

(3) PCB sample analysed past recommended hold time due to lab error. PCB:Unidentified (possibly halogenated) compounds detected.

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		FIE819		FIE820	FIE820	FIE821	FIE822		
Comulius Data		2017/10/12		2017/10/12	2017/10/12	2017/10/12	2017/10/12		
Sampling Date	10:45			15:55	15:55	15:41	10:08		
COC Number		14886		14886	14886	14886	14886		
	UNITS	MW10-1A	QC Batch	MW-DUP	MW-DUP Lab-Dup	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
PCBs									
Aroclor 1016	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Aroclor 1221	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Aroclor 1232	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Aroclor 1248	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Aroclor 1242	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Aroclor 1254	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Aroclor 1260	ug/L	<0.050	5222421	<0.050	<0.050	<0.050	<0.050	0.050	5219965
Calculated Total PCB	ug/L	<0.050	5213504	<0.050		<0.050	<0.050	0.050	5213504
Surrogate Recovery (%)		•	•	•		•			,
Decachlorobiphenyl	%	52 (1)	5222421	56 (2)	61 (2)	76	80		5219965
DDI - Departable Detection	Lingit		•		-			,	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) PCB sample analysed past recommended hold time due to lab error. PCB:Unidentified (possibly halogenated) compounds detected. PCB sample contained sediment.

(2) PCB:Unidentified (possibly halogenated) compounds detected.

Maxxam ID		FIE823								
Sampling Date		2017/10/12								
		10:23								
COC Number		14886								
	UNITS	SURFACE-DUP	RDL	QC Batch						
PCBs										
Aroclor 1016	ug/L	<0.050	0.050	5219965						
Aroclor 1221	ug/L	<0.050	0.050	5219965						
Aroclor 1232	ug/L	<0.050	0.050	5219965						
Aroclor 1248	ug/L	<0.050	0.050	5219965						
Aroclor 1242	ug/L	<0.050	0.050	5219965						
Aroclor 1254	ug/L	<0.050	0.050	5219965						
Aroclor 1260	ug/L	<0.050	0.050	5219965						
Calculated Total PCB	ug/L	<0.050	0.050	5213504						
Surrogate Recovery (%)										
Decachlorobiphenyl	%	82		5219965						
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										

GHD Limited Client Project #: 084308-02 Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

GENERAL COMMENTS

Samples PLCS and SLCS were received past the recommended hold tiome for BOD.

Poor RCAp Ion Balance due to sample matrix.

Revised report - the below samples were analyzed past the recommended hold time for PCBs due to lab error. HWS Oct 26/17

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5215197	D10-Anthracene	2017/10/18	59	50 - 130	96	50 - 130	104	%				
5215197	D14-Terphenyl	2017/10/18	71	50 - 130	95	50 - 130	106	%				
5215197	D8-Acenaphthylene	2017/10/18	64	50 - 130	98	50 - 130	95	%				
5215386	Isobutylbenzene - Volatile	2017/10/17	83	70 - 130	82	70 - 130	83	%				
5215463	4-Bromofluorobenzene	2017/10/18	100 (2)	70 - 130	100	70 - 130	98	%				
5215463	D4-1,2-Dichloroethane	2017/10/18	103 (2)	70 - 130	100	70 - 130	99	%				
5215463	D8-Toluene	2017/10/18	98 (2)	70 - 130	99	70 - 130	98	%				
5217454	Isobutylbenzene - Extractable	2017/10/18	95	30 - 130	90	30 - 130	90	%				
5217454	n-Dotriacontane - Extractable	2017/10/18	116	30 - 130	129	30 - 130	94	%				
5217532	D10-Anthracene	2017/10/21	61 (4)	50 - 130	79	50 - 130	92	%				
5217532	D14-Terphenyl	2017/10/21	70 (4)	50 - 130	79	50 - 130	93	%				
5217532	D8-Acenaphthylene	2017/10/21	79 (4)	50 - 130	91	50 - 130	88	%				
5217584	Isobutylbenzene - Extractable	2017/10/19	93 (6)	30 - 130	90	30 - 130	90	%				
5217584	n-Dotriacontane - Extractable	2017/10/19	105 (6)	30 - 130	98	30 - 130	93	%				
5219881	Isobutylbenzene - Extractable	2017/10/20	96	30 - 130	92	30 - 130	97	%				
5219881	n-Dotriacontane - Extractable	2017/10/20	123	30 - 130	118	30 - 130	112	%				
5219965	Decachlorobiphenyl	2017/10/20	83 (9)	30 - 130	89	30 - 130	87	%				
5222421	Decachlorobiphenyl	2017/10/24	57	30 - 130	77	30 - 130	73	%				
5215126	Dissolved Aluminum (Al)	2017/10/17	106	80 - 120	106	80 - 120	<5.0	ug/L	0.23 (1)	20		
5215126	Dissolved Antimony (Sb)	2017/10/17	101	80 - 120	94	80 - 120	<1.0	ug/L	NC (1)	20		
5215126	Dissolved Arsenic (As)	2017/10/17	97	80 - 120	98	80 - 120	<1.0	ug/L	NC (1)	20		
5215126	Dissolved Barium (Ba)	2017/10/17	NC	80 - 120	95	80 - 120	<1.0	ug/L	0.10 (1)	20		
5215126	Dissolved Beryllium (Be)	2017/10/17	96	80 - 120	98	80 - 120	<1.0	ug/L	NC (1)	20		
5215126	Dissolved Bismuth (Bi)	2017/10/17	102	80 - 120	103	80 - 120	<2.0	ug/L	NC (1)	20		
5215126	Dissolved Boron (B)	2017/10/17	99	80 - 120	101	80 - 120	<50	ug/L	1.5 (1)	20		
5215126	Dissolved Cadmium (Cd)	2017/10/17	100	80 - 120	101	80 - 120	<0.010	ug/L	NC (1)	20		
5215126	Dissolved Calcium (Ca)	2017/10/17	101	80 - 120	102	80 - 120	<100	ug/L	0.76 (1)	20		
5215126	Dissolved Chromium (Cr)	2017/10/17	97	80 - 120	99	80 - 120	<1.0	ug/L	NC (1)	20		
5215126	Dissolved Cobalt (Co)	2017/10/17	99	80 - 120	101	80 - 120	<0.40	ug/L	NC (1)	20		
5215126	Dissolved Copper (Cu)	2017/10/17	96	80 - 120	100	80 - 120	<2.0	ug/L	1.4 (1)	20		

Maxxam Analytics International Corporation o/a Maxxam Analytics 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.maxxamanalytics.com

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5215126	Dissolved Iron (Fe)	2017/10/17	NC	80 - 120	107	80 - 120	<50	ug/L	0.63 (1)	20		
5215126	Dissolved Lead (Pb)	2017/10/17	96	80 - 120	97	80 - 120	<0.50	ug/L	3.0 (1)	20		
5215126	Dissolved Magnesium (Mg)	2017/10/17	103	80 - 120	107	80 - 120	<100	ug/L	1.4 (1)	20		
5215126	Dissolved Manganese (Mn)	2017/10/17	NC	80 - 120	100	80 - 120	<2.0	ug/L	1.3 (1)	20		
5215126	Dissolved Molybdenum (Mo)	2017/10/17	106	80 - 120	101	80 - 120	<2.0	ug/L	NC (1)	20		
5215126	Dissolved Nickel (Ni)	2017/10/17	98	80 - 120	100	80 - 120	<2.0	ug/L	NC (1)	20		
5215126	Dissolved Phosphorus (P)	2017/10/17	111	80 - 120	108	80 - 120	<100	ug/L	NC (1)	20		
5215126	Dissolved Potassium (K)	2017/10/17	110	80 - 120	108	80 - 120	<100	ug/L	0.79 (1)	20		
5215126	Dissolved Selenium (Se)	2017/10/17	102	80 - 120	102	80 - 120	<1.0	ug/L	NC (1)	20		
5215126	Dissolved Silver (Ag)	2017/10/17	98	80 - 120	98	80 - 120	<0.10	ug/L	NC (1)	20		
5215126	Dissolved Sodium (Na)	2017/10/17	101	80 - 120	106	80 - 120	<100	ug/L	0.77 (1)	20		
5215126	Dissolved Strontium (Sr)	2017/10/17	NC	80 - 120	101	80 - 120	<2.0	ug/L	0.98 (1)	20		
5215126	Dissolved Thallium (TI)	2017/10/17	103	80 - 120	104	80 - 120	<0.10	ug/L	NC (1)	20		
5215126	Dissolved Tin (Sn)	2017/10/17	105	80 - 120	102	80 - 120	<2.0	ug/L	NC (1)	20		
5215126	Dissolved Titanium (Ti)	2017/10/17	99	80 - 120	105	80 - 120	<2.0	ug/L	NC (1)	20		
5215126	Dissolved Uranium (U)	2017/10/17	103	80 - 120	105	80 - 120	<0.10	ug/L	NC (1)	20		
5215126	Dissolved Vanadium (V)	2017/10/17	98	80 - 120	99	80 - 120	<2.0	ug/L	NC (1)	20		
5215126	Dissolved Zinc (Zn)	2017/10/17	99	80 - 120	104	80 - 120	<5.0	ug/L	5.4 (1)	20		
5215161	Carbonaceous BOD	2017/10/23			96	80 - 120	<2.0	mg/L	NC (1)	25	112	80 - 120
5215197	1-Methylnaphthalene	2017/10/18	64	30 - 130	91	30 - 130	<0.050	ug/L	NC (1)	40		
5215197	2-Methylnaphthalene	2017/10/18	68	30 - 130	98	30 - 130	<0.050	ug/L	NC (1)	40		
5215197	Acenaphthene	2017/10/18	63	30 - 130	104	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Acenaphthylene	2017/10/18	77	30 - 130	117	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Anthracene	2017/10/18	58	30 - 130	113	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Benzo(a)anthracene	2017/10/18	70	30 - 130	95	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Benzo(a)pyrene	2017/10/18	67	30 - 130	96	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Benzo(b)fluoranthene	2017/10/18	74	30 - 130	107	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Benzo(g,h,i)perylene	2017/10/18	71	30 - 130	104	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Benzo(j)fluoranthene	2017/10/18	71	30 - 130	100	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Benzo(k)fluoranthene	2017/10/18	67	30 - 130	99	30 - 130	<0.010	ug/L	NC (1)	40		

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5215197	Chrysene	2017/10/18	69	30 - 130	98	30 - 130	< 0.010	ug/L	NC (1)	40		
5215197	Dibenz(a,h)anthracene	2017/10/18	68	30 - 130	91	30 - 130	< 0.010	ug/L	NC (1)	40		
5215197	Fluoranthene	2017/10/18	73	30 - 130	93	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Fluorene	2017/10/18	70	30 - 130	112	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Indeno(1,2,3-cd)pyrene	2017/10/18	70	30 - 130	98	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Naphthalene	2017/10/18	64	30 - 130	100	30 - 130	<0.20	ug/L	NC (1)	40		
5215197	Perylene	2017/10/18	69	30 - 130	100	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Phenanthrene	2017/10/18	65	30 - 130	94	30 - 130	<0.010	ug/L	NC (1)	40		
5215197	Pyrene	2017/10/18	70	30 - 130	97	30 - 130	<0.010	ug/L	NC (1)	40		
5215272	Total Aluminum (Al)	2017/10/18	99	80 - 120	101	80 - 120	<5.0	ug/L				
5215272	Total Antimony (Sb)	2017/10/18	101	80 - 120	99	80 - 120	<1.0	ug/L				
5215272	Total Arsenic (As)	2017/10/18	98	80 - 120	99	80 - 120	<1.0	ug/L	9.5 (1)	20		
5215272	Total Barium (Ba)	2017/10/18	97	80 - 120	100	80 - 120	<1.0	ug/L				
5215272	Total Beryllium (Be)	2017/10/18	97	80 - 120	98	80 - 120	<1.0	ug/L				
5215272	Total Bismuth (Bi)	2017/10/18	103	80 - 120	105	80 - 120	<2.0	ug/L				
5215272	Total Boron (B)	2017/10/18	101	80 - 120	101	80 - 120	<50	ug/L				
5215272	Total Cadmium (Cd)	2017/10/18	102	80 - 120	102	80 - 120	<0.010	ug/L				
5215272	Total Calcium (Ca)	2017/10/18	106	80 - 120	107	80 - 120	<100	ug/L				
5215272	Total Chromium (Cr)	2017/10/18	99	80 - 120	102	80 - 120	<1.0	ug/L				
5215272	Total Cobalt (Co)	2017/10/18	101	80 - 120	103	80 - 120	<0.40	ug/L				
5215272	Total Copper (Cu)	2017/10/18	98	80 - 120	102	80 - 120	<2.0	ug/L				
5215272	Total Iron (Fe)	2017/10/18	103	80 - 120	106	80 - 120	<50	ug/L				
5215272	Total Lead (Pb)	2017/10/18	98	80 - 120	100	80 - 120	<0.50	ug/L	NC (1)	20		
5215272	Total Magnesium (Mg)	2017/10/18	100	80 - 120	101	80 - 120	<100	ug/L				
5215272	Total Manganese (Mn)	2017/10/18	100	80 - 120	103	80 - 120	<2.0	ug/L				
5215272	Total Molybdenum (Mo)	2017/10/18	104	80 - 120	105	80 - 120	<2.0	ug/L				
5215272	Total Nickel (Ni)	2017/10/18	101	80 - 120	104	80 - 120	<2.0	ug/L				
5215272	Total Phosphorus (P)	2017/10/18	104	80 - 120	104	80 - 120	<100	ug/L				
5215272	Total Potassium (K)	2017/10/18	105	80 - 120	106	80 - 120	<100	ug/L				
5215272	Total Selenium (Se)	2017/10/18	102	80 - 120	102	80 - 120	<1.0	ug/L				

Page 34 of 45

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5215272	Total Silver (Ag)	2017/10/18	101	80 - 120	102	80 - 120	<0.10	ug/L				
5215272	Total Sodium (Na)	2017/10/18	99	80 - 120	101	80 - 120	<100	ug/L				
5215272	Total Strontium (Sr)	2017/10/18	100	80 - 120	104	80 - 120	<2.0	ug/L				
5215272	Total Thallium (TI)	2017/10/18	104	80 - 120	106	80 - 120	<0.10	ug/L				
5215272	Total Tin (Sn)	2017/10/18	105	80 - 120	104	80 - 120	<2.0	ug/L				
5215272	Total Titanium (Ti)	2017/10/18	101	80 - 120	103	80 - 120	<2.0	ug/L				
5215272	Total Uranium (U)	2017/10/18	106	80 - 120	108	80 - 120	<0.10	ug/L	3.1 (1)	20		
5215272	Total Vanadium (V)	2017/10/18	98	80 - 120	100	80 - 120	<2.0	ug/L				
5215272	Total Zinc (Zn)	2017/10/18	101	80 - 120	107	80 - 120	<5.0	ug/L				
5215386	Benzene	2017/10/17	112	70 - 130	113	70 - 130	<0.0010	mg/L	NC (1)	40		
5215386	C6 - C10 (less BTEX)	2017/10/17					<0.010	mg/L	NC (1)	40		
5215386	Ethylbenzene	2017/10/17	108	70 - 130	109	70 - 130	<0.0010	mg/L	NC (1)	40		
5215386	Toluene	2017/10/17	112	70 - 130	112	70 - 130	<0.0010	mg/L	NC (1)	40		
5215386	Total Xylenes	2017/10/17	107	70 - 130	108	70 - 130	<0.0020	mg/L	NC (1)	40		
5215463	1,1,1-Trichloroethane	2017/10/18	102 (2)	70 - 130	106	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	1,1,2,2-Tetrachloroethane	2017/10/18	102 (2)	70 - 130	101	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	1,1,2-Trichloroethane	2017/10/18	103 (2)	70 - 130	102	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	1,1-Dichloroethane	2017/10/18	102 (2)	70 - 130	105	70 - 130	<2.0	ug/L	NC (3)	40		
5215463	1,1-Dichloroethylene	2017/10/18	103 (2)	70 - 130	107	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	1,2-Dichlorobenzene	2017/10/18	92 (2)	70 - 130	95	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	1,2-Dichloroethane	2017/10/18	100 (2)	70 - 130	101	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	1,2-Dichloropropane	2017/10/18	95 (2)	70 - 130	98	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	1,3-Dichlorobenzene	2017/10/18	91 (2)	70 - 130	96	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	1,4-Dichlorobenzene	2017/10/18	91 (2)	70 - 130	96	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Benzene	2017/10/18	96 (2)	70 - 130	99	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Bromodichloromethane	2017/10/18	100 (2)	70 - 130	102	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Bromoform	2017/10/18	106 (2)	70 - 130	106	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Bromomethane	2017/10/18	102 (2)	60 - 140	101	60 - 140	<0.50	ug/L	NC (3)	40		
5215463	Carbon Tetrachloride	2017/10/18	101 (2)	70 - 130	105	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	Chlorobenzene	2017/10/18	93 (2)	70 - 130	98	70 - 130	<1.0	ug/L	NC (3)	40	Ī	

Page 35 of 45

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5215463	Chloroethane	2017/10/18	91 (2)	60 - 140	93	60 - 140	<8.0	ug/L	NC (3)	40		
5215463	Chloroform	2017/10/18	91 (2)	70 - 130	94	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Chloromethane	2017/10/18	114 (2)	60 - 140	72	60 - 140	<8.0	ug/L	NC (3)	40		
5215463	cis-1,2-Dichloroethylene	2017/10/18	106 (2)	70 - 130	109	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	cis-1,3-Dichloropropene	2017/10/18	105 (2)	70 - 130	107	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	Dibromochloromethane	2017/10/18	106 (2)	70 - 130	107	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Ethylbenzene	2017/10/18	99 (2)	70 - 130	105	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Ethylene Dibromide	2017/10/18	106 (2)	70 - 130	106	70 - 130	<0.20	ug/L	NC (3)	40		
5215463	Methylene Chloride(Dichloromethane)	2017/10/18	105 (2)	70 - 130	106	70 - 130	<3.0	ug/L	NC (3)	40		
5215463	o-Xylene	2017/10/18	101 (2)	70 - 130	106	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	p+m-Xylene	2017/10/18	102 (2)	70 - 130	109	70 - 130	<2.0	ug/L	NC (3)	40		
5215463	Styrene	2017/10/18	104 (2)	70 - 130	110	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Tetrachloroethylene	2017/10/18	101 (2)	70 - 130	106	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Toluene	2017/10/18	101 (2)	70 - 130	106	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	trans-1,2-Dichloroethylene	2017/10/18	102 (2)	70 - 130	106	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	trans-1,3-Dichloropropene	2017/10/18	96 (2)	70 - 130	96	70 - 130	<0.50	ug/L	NC (3)	40		
5215463	Trichloroethylene	2017/10/18	102 (2)	70 - 130	106	70 - 130	<1.0	ug/L	NC (3)	40		
5215463	Trichlorofluoromethane (FREON 11)	2017/10/18	97 (2)	60 - 140	99	60 - 140	<8.0	ug/L	NC (3)	40		
5215463	Vinyl Chloride	2017/10/18	102 (2)	60 - 140	105	60 - 140	<0.50	ug/L	NC (3)	40		
5217403	рН	2017/10/18							4.2 (1)	N/A	100	97 - 103
5217404	Conductivity	2017/10/18			106	80 - 120	1.3, RDL=1.0	uS/cm	0.11 (1)	25		
5217419	Turbidity	2017/10/18			92	80 - 120	<0.10	NTU	9.1 (1)	20	91	80 - 120
5217454	>C10-C16 Hydrocarbons	2017/10/18	93	70 - 130	87	70 - 130	<0.050	mg/L	NC (1)	40		
5217454	>C16-C21 Hydrocarbons	2017/10/18	91	70 - 130	83	70 - 130	<0.050	mg/L	NC (1)	40		
5217454	>C21- <c32 hydrocarbons<="" td=""><td>2017/10/18</td><td>107</td><td>70 - 130</td><td>98</td><td>70 - 130</td><td><0.10</td><td>mg/L</td><td>NC (1)</td><td>40</td><td></td><td></td></c32>	2017/10/18	107	70 - 130	98	70 - 130	<0.10	mg/L	NC (1)	40		
5217532	1-Methylnaphthalene	2017/10/21	85 (4)	30 - 130	95	30 - 130	<0.050	ug/L	NC (5)	40		
5217532	2-Methylnaphthalene	2017/10/21	93 (4)	30 - 130	102	30 - 130	<0.050	ug/L	NC (5)	40		
5217532	Acenaphthene	2017/10/21	80 (4)	30 - 130	91	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Acenaphthylene	2017/10/21	95 (4)	30 - 130	113	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Anthracene	2017/10/21	82 (4)	30 - 130	87	30 - 130	<0.010	ug/L	NC (5)	40		

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5217532	Benzo(a)anthracene	2017/10/21	69 (4)	30 - 130	80	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Benzo(a)pyrene	2017/10/21	68 (4)	30 - 130	95	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Benzo(b)fluoranthene	2017/10/21	74 (4)	30 - 130	97	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Benzo(g,h,i)perylene	2017/10/21	72 (4)	30 - 130	105	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Benzo(j)fluoranthene	2017/10/21	76 (4)	30 - 130	104	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Benzo(k)fluoranthene	2017/10/21	72 (4)	30 - 130	99	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Chrysene	2017/10/21	68 (4)	30 - 130	77	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Dibenz(a,h)anthracene	2017/10/21	65 (4)	30 - 130	96	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Fluoranthene	2017/10/21	81 (4)	30 - 130	90	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Fluorene	2017/10/21	87 (4)	30 - 130	102	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Indeno(1,2,3-cd)pyrene	2017/10/21	69 (4)	30 - 130	99	30 - 130	< 0.010	ug/L	NC (5)	40		
5217532	Naphthalene	2017/10/21	108 (4)	30 - 130	99	30 - 130	<0.20	ug/L	NC (5)	40		
5217532	Perylene	2017/10/21	71 (4)	30 - 130	99	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Phenanthrene	2017/10/21	74 (4)	30 - 130	92	30 - 130	<0.010	ug/L	NC (5)	40		
5217532	Pyrene	2017/10/21	76 (4)	30 - 130	84	30 - 130	< 0.010	ug/L	NC (5)	40		
5217584	>C10-C16 Hydrocarbons	2017/10/19	88 (6)	70 - 130	88	70 - 130	<0.050	mg/L	NC (7)	40		
5217584	>C16-C21 Hydrocarbons	2017/10/19	89 (6)	70 - 130	91	70 - 130	<0.050	mg/L	17 (7)	40		
5217584	>C21- <c32 hydrocarbons<="" td=""><td>2017/10/19</td><td>101 (6)</td><td>70 - 130</td><td>107</td><td>70 - 130</td><td><0.10</td><td>mg/L</td><td>3.8 (7)</td><td>40</td><td></td><td></td></c32>	2017/10/19	101 (6)	70 - 130	107	70 - 130	<0.10	mg/L	3.8 (7)	40		
5217705	Total Suspended Solids	2017/10/24					<1.0	mg/L	6.1 (1)	25	97	80 - 120
5217874	Total Mercury (Hg)	2017/10/20	103	80 - 120	104	80 - 120	<0.013	ug/L	NC (1)	20		
5218088	Total Alkalinity (Total as CaCO3)	2017/10/19	NC	80 - 120	108	80 - 120	<5.0	mg/L	1.9 (1)	25		
5218089	Dissolved Chloride (Cl)	2017/10/20	101	80 - 120	103	80 - 120	<1.0	mg/L	3.3 (1)	25	104	80 - 120
5218091	Dissolved Sulphate (SO4)	2017/10/19	NC	80 - 120	95	80 - 120	<2.0	mg/L	3.5 (8,1)	25		
5218093	Reactive Silica (SiO2)	2017/10/19	90	80 - 120	96	80 - 120	<0.50	mg/L	0.43 (1)	25		
5218095	Colour	2017/10/19			92	80 - 120	<5.0	TCU	3.0 (1)	20		
5218100	Orthophosphate (P)	2017/10/19	89	80 - 120	100	80 - 120	<0.010	mg/L	NC (1)	25		
5218101	Nitrate + Nitrite (N)	2017/10/19	NC	80 - 120	99	80 - 120	<0.050	mg/L	1.2 (1)	25		
5218103	Nitrite (N)	2017/10/20	96	80 - 120	93	80 - 120	<0.010	mg/L	15 (1)	25		
5218107	Strong Acid Dissoc. Cyanide (CN)	2017/10/18	103	80 - 120	102	80 - 120	<0.0010	mg/L	NC (1)	25		
5218868	Chromium (VI)	2017/10/23	99	80 - 120	99	80 - 120	<0.50	ug/L	NC (1)	20		

Page 37 of 45

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5218882	Sulphide	2017/10/18	89	80 - 120	99	80 - 120	<0.020	mg/L	3.8 (1)	20		
5219841	рН	2017/10/19							1.9 (1)	N/A	100	97 - 103
5219842	Conductivity	2017/10/19			101	80 - 120	1.7, RDL=1.0	uS/cm	1.1 (1)	25		
5219843	рН	2017/10/19							1.5 (1)	N/A	100	97 - 103
5219844	Conductivity	2017/10/19			102	80 - 120	1.7, RDL=1.0	uS/cm	0.000021 (1)	25		
5219880	Turbidity	2017/10/19			92	80 - 120	<0.10	NTU	1.0 (1)	20	95	80 - 120
5219881	>C10-C16 Hydrocarbons	2017/10/20	88	70 - 130	90	70 - 130	<0.050	mg/L	NC (1)	40		
5219881	>C16-C21 Hydrocarbons	2017/10/20	86	70 - 130	86	70 - 130	<0.050	mg/L	NC (1)	40		
5219881	>C21- <c32 hydrocarbons<="" td=""><td>2017/10/20</td><td>106</td><td>70 - 130</td><td>104</td><td>70 - 130</td><td><0.10</td><td>mg/L</td><td>NC (1)</td><td>40</td><td></td><td></td></c32>	2017/10/20	106	70 - 130	104	70 - 130	<0.10	mg/L	NC (1)	40		
5219965	Aroclor 1016	2017/10/20					<0.050	ug/L	NC (10)	40		
5219965	Aroclor 1221	2017/10/20					<0.050	ug/L	NC (10)	40		
5219965	Aroclor 1232	2017/10/20					<0.050	ug/L	NC (10)	40		
5219965	Aroclor 1242	2017/10/20					<0.050	ug/L	NC (10)	40		
5219965	Aroclor 1248	2017/10/20					<0.050	ug/L	NC (10)	40		
5219965	Aroclor 1254	2017/10/20	112 (9)	30 - 130	106	30 - 130	<0.050	ug/L	NC (10)	40		
5219965	Aroclor 1260	2017/10/20					<0.050	ug/L	NC (10)	40		
5220040	Nitrogen (Ammonia Nitrogen)	2017/10/19	97 (11)	80 - 120	105	80 - 120	<0.050	mg/L	1.6 (12)	20		
5220045	Nitrogen (Ammonia Nitrogen)	2017/10/19	104	80 - 120	104	80 - 120	<0.050	mg/L	NC (1)	20		
5220710	Total Alkalinity (Total as CaCO3)	2017/10/20	80	80 - 120	107	80 - 120	<5.0	mg/L	NC (1)	25		
5220713	Dissolved Chloride (Cl)	2017/10/23	98	80 - 120	101	80 - 120	<1.0	mg/L	1.7 (1)	25	104	80 - 120
5220714	Dissolved Sulphate (SO4)	2017/10/20	NC	80 - 120	103	80 - 120	<2.0	mg/L	0.68 (1)	25		
5220715	Reactive Silica (SiO2)	2017/10/20	NC	80 - 120	94	80 - 120	<0.50	mg/L	0.097 (1)	25		
5220717	Colour	2017/10/23			96	80 - 120	<5.0	TCU	NC (1)	20		
5220718	Orthophosphate (P)	2017/10/23	99	80 - 120	97	80 - 120	<0.010	mg/L	NC (1)	25		
5220719	Nitrate + Nitrite (N)	2017/10/20	99	80 - 120	98	80 - 120	<0.050	mg/L	2.9 (1)	25		
5220721	Nitrite (N)	2017/10/23	100	80 - 120	98	80 - 120	<0.010	mg/L	NC (1)	25		
5220972	Phenols-4AAP	2017/10/19	94	80 - 120	96	80 - 120	<0.0010	mg/L	NC (1)	25		
5222421	Aroclor 1016	2017/10/24					<0.050	ug/L	NC (1)	40		
5222421	Aroclor 1221	2017/10/24					<0.050	ug/L	NC (1)	40		

QUALITY ASSURANCE REPORT(CONT'D)

GHD Limited Client Project #: 084308-02

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5222421	Aroclor 1232	2017/10/24					<0.050	ug/L	NC (1)	40		
5222421	Aroclor 1242	2017/10/24					<0.050	ug/L	NC (1)	40		
5222421	Aroclor 1248	2017/10/24					<0.050	ug/L	NC (1)	40		
5222421	Aroclor 1254	2017/10/24	78	30 - 130	89	30 - 130	<0.050	ug/L	NC (1)	40		
5222421	Aroclor 1260	2017/10/24					<0.050	ug/L	NC (1)	40		
5225903	Total Organic Carbon (C)	2017/10/23	98	80 - 120	103	80 - 120	<0.50	mg/L	4.3 (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

Site Location: Come By Chance, NL Your P.O. #: 73509542 Sampler Initials: ISL

Client Project #: 084308-02

GHD Limited

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
5226299	Total Organic Carbon (C)	2017/10/23	99 (13)	80 - 120	99	80 - 120	<0.50	mg/L	2.4 (14)	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Duplicate Parent ID

(2) Matrix Spike Parent ID [FIE813-16]

(3) Duplicate Parent ID [FIE812-16]

(4) Matrix Spike Parent ID [FIE821-05]

(5) Duplicate Parent ID [FIE820-04]

(6) Matrix Spike Parent ID [FIE813-11]

(7) Duplicate Parent ID [FIE812-11]

(8) Elevated reporting limit due to sample matrix.

(9) Matrix Spike Parent ID [FIE821-06]

(10) Duplicate Parent ID [FIE820-05]

(11) Matrix Spike Parent ID [FIE817-03]

(12) Duplicate Parent ID [FIE817-03]

(13) Matrix Spike Parent ID [FIE822-03]

(14) Duplicate Parent ID [FIE821-03]

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

laina

Eric Dearman, Scientific Specialist

- Mike The Sull

Mike MacGillivray, Scientific Specialist (Inorganics)

Hilpe Deven

Phil Deveau, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition). Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples. First Sample: PLCS Last Sample: SURFACE-DUP Sample Count: 12

CARLES F. F.	Relinquished By		1000		Received By		
i Nie	D IN OSHO	Date .	OCT 13/17	The Dial of	fordered	Date	201711043
INGKID LAWLOR	Mand Summ	Time (24 HR)	10:30	JasmineRadmond	GAEWRE	Time (24 HR)	11:40
27.05	SIL	Date	(MS7)9465240	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5p)	Date	NYY/WONDO
		Time (24 HR)	1117.5344			Time (24 HR)	102 hest
Critical	Same	Date	The lot of the second sec	11/34	Supe	Date	Setting TVTA/Last
		Time (24 HR)	Micheller.			Time (24 HR)	00100100

	Submission T	riage Information		
Sampled By	# of Coolers/Pkgs:	Rush 🗌 Micro 🔲	Immediate Test	Food Residue 🗌

Received At	Comments:	Custod	y Seal	Cooling	Te	mperature	°C
	27.6	Present (Y/N)	Intact (Y/N)	Media	1	2	3
Labeled By	B7M 7761			\checkmark	3.8	3.60	3-
Verified By							

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition). Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples. First Sample: PLCS Last Sample: SURFACE-DUP Sample Count: 12

1	Relinguished By			No. of Concession, Name	Received By		
1	10 01 00	Date	OUT 13/17	Jasmine .	Spedmoral	Date	DOITHOUR
INDRID LAWLON	Drepe dum	Time (24 HR)	10:30	fedmond	Arening	Time (24 HR)	11140
	1.	Date				Date	
		Time (24 HR)				Time (24 HR)	-
		Date			the second se	Date	
		Time (24 HR)				Time (24 HR)	and the second

	Submission Ti	riage Information		
Sampled By	# of Coolers/Pkgs:			
151	2 OF 4	Rush	Immediate Test 🔲	Food Residue
		Micro 🗌		Food Chemistry

Received At	Comments:	Custor	Custody Seal		Temperature °C		
		Present (Y/N)	Intact (Y/N)	Cooling Media	1	2	3
Labeled By	B7M7761				3.9	4.0	3-4
Verified By	OCT 1 3 2017						

n		T14886
equisition).	First Sample:	PLCS
This number links	Last Sample:	SURFACE-DUP
	Sample Count:	12
	Received By	The second s

11:40

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Re Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. your electronic submission to your samples.

Maxlam

Relinquished By Jasmine Redmond Date OCT 13/17 2012/10/13 NURID LAWLON Ingel Jun Date Time (24 HR) 10:30 Time (24 HR) Date Date Time (24 HR) Time (24 HR) Date Date Time (24 HR) Time (24 HR)

	Submission Tri	iage Information		
Sampled By	# of Coolers/Pkgs: 3 of 4	Rush 🗌 Micro 🔲	Immediate Test 🗌	Food Residue 🗌 Food Chemistry 🔲

LELS	10.1 0	JSE ON	VALUE
	and the second		1.0000000000000000000000000000000000000

Received At	Comments:	Custor	Custody Seal		Temperature °C		
		Present (Y/N)	Intact (Y/N)	Media	1	2	3
Labeled By	B7M7761				3.4	3-7	3.2
Verified By				-			-
	OCT 1 3	2617			Sand		

Custody Tracking Form

Please use this form for custody tracking when submitting the work instructions via eTR (electronic Test Requisition). Please ensure your form has a barcode or a Maxxam eTR confirmation number in the top right hand side. This number links your electronic submission to your samples. First Sample: PLCS Last Sample: SURFACE-DUP Sample Count: 12

	Relinquished By				Received By		
INURIO LAWNON	Inged Jun	Date OCT 1317 Jasmine Redmond	Tremos Potosind	022.50	Date	2017/10113	
			fledmond	Time (24 HR)	11:40		
10.051	Simi	Date	1444/*#U/EID	Pannt	tigat.	Date	ener rubatitu
		Time (24 HR)	(SCAMP)			Time (24 HR)	(it)shits
time	(der))	Date	177.5284W(200	(inter-	Stine	Date	(TREPARTOR)
		Time (24 HR)	View I died			Time (24 HR)	hidde

	Submission 7	riage Information		
Sampled By	# of Coolers/Pkgs:			
(<)	4 OF 4	Rush 🔲	Immediate Test 🗌	Food Residue
		Micro 🗌		Food Chemistry

Labeled By BFM7761 Present (Y/N) Intact (Y/N) Media 1 2	
Labeled By B7M7761 / 7.4 6	3
	6
Verified By	

Appendix C Petroforma Lethality Laboratory Reports

ISO/IEC 17025:2005 (CALA Accreditation No.: 2907)

October 19, 2017 Project: 11300 Lab Refer No.: B-0424-17

Report No.: 06917

GHD Ltd. 1118 Topsail Road St. John's, NL A1N 5B8 Tel: (709) 364-5353

Attention: Brian Luffman

Dear Mr. Luffman

Reference: Toxicology Testing Results

Please find enclosed the results of the 96-hour bioassay conducted October 13 - 17, 2017. The toxicity test was performed on the PLCS sample. The effluent was collected on October 12, 2017. The sample was received in acceptable condition.

Test conditions for a single concentration test were followed according to the Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition-December 2000, May 2007 and February 2016 amendments). All test parameters were maintained within the recommended levels outlined in the above protocol.

The PLCS sample is not acutely lethal to the fish, since less than 50.00 % of the fish died in the 100.00 % effluent during the 96-hour period. The LT50 was determined to be greater than 96 hours.

Please call if you have any questions regarding these results.

Sincerely,

petroforma Laboratories

Suzette Winter, B.Sc

Manager

Attachments:

A- Bench Data Sheet(s)

October 19, 2017 Attention: Brian Luffman Project: 11300 Report No.: 06917

Reference: Toxicology Testing Results

SAMPLE

Lab Refer No.: Company: Sample Material: Sampling Method: Sample Condition: Collected: Collected By: B-0424-17 GHD Ltd. PLCS Grab Received in acceptable condition. October 12, 2017; 11:57 I. Lawlor

SAMPLE CHARACTERIZATION

Received (Date and Time): Volume: Temperature: Dissolved Oxygen: pH: Conductivity: Colour: Odour: Storage: October 13, 2017; 2:20 2 x 20 L 14.0 °C 9.2 mg/L 7.0 pH units 293 μS/cm Clear, yellow None 0 hrs @ 15 ± 1.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source: Dissolved Oxygen: Conductivity: Hardness: pH: Date Revised: St. John's Dechlorinated 9.4 \pm 0.2 mg/L 80 \pm 2 μ S/cm 26 \pm 0 mg/L 7.0 \pm 0.1 pH units October 5, 2017

TEST CONDITIONS

Started (Date and Time): Ended (Date and Time): Type of Test: Volume of Test Solutions: Photoperiod: Light Intensity: Aeration Rate: Preaeration Time: Test Temperature: Duration:

TEST ORGANISM

Species: Source: Batch Number: Number per Tank: % Mortality: Mean Fork Length (cm): Mean Total Weight (g): Loading Density (g/L): October 13, 2017; 4:05 PM October 17, 2017; 4:05 PM 96-hour static LT_{50} (Pass/Fail) 20 Litres 16h ± 1h Light/08h ± 1h Dark 500 Lux 6.5 ± 1.0 mL/min.L⁻¹ 30 mins 15 ± 1 °C 96 hours

Rainbow Trout (Oncorhynchus mykiss) Rainbow Springs Hatchery 17-07 10 0.00% (7 days prior to testing) 4.4 ± 0.7 Range (cm): 3.3 - 5.6 1.0 ± 0.6 Range (g): 0.3 - 2.10.5 Reference: Toxicology Testing Results

TEST RESULTS

Lab Refer No.:	B-0424-17
Sample Material:	PLCS
Collection Date:	October 12, 2017; 11:57
Protocol:	EPS 1/RM/13
Test Type:	LT ₅₀ (Pass/Fail)
LT ₅₀ value (static, acute):	> 96 hours
95% Confidence Intervals:	N/A

Effluent	Tem	p(°C)	D.O.	(mg/L)	pH (units)	Cond.(us/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	Init.	Final	Init.	Final	(%)
100	14.3	15.9	9.3	9.6	7.0	8.0	293	300	0
0	15.0	16.0	9.3	9.2	7.0	6.6	88	94	0

COMMENTS:

- Arrival temperature was 13.7°C.
- The sample contained a few twigs and suspended particles.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism: Toxicant: Fish Batch No.: Reference Toxicant Date: LC_{50} Value: 95% Confidence Limits: Historic Mean ± 2 SD (Warning Limits): Oncorhynchus mykiss Phenol 17-07 September 6 – 10, 2017 0.85 mg/L 0.74 – 0.95 mg/L 0.94 ± 0.17 mg/L

Performed by: Stephen Rossiter/Amanda Woodrow/Holly Doucette

Technical Reviewer: Hmanda Ubodia adian (Print Name/Signature)

Senior Reviewer:

(Print Name/Signature)

Date: October 19/17

October 19, 2017 Attention: Brian Luffman Project: 11300 Report No.: 06917

Reference: Toxicology Testing Results

ATTACHMENT A

Bench Data Sheet (s)

	petroforma					p	etrof	'orma La	aborat	ories	¥1.84		orm: 8-0011 February 14, 2			
		a a						LT50 Fi	sh Bioassay	Data Sheet		1		i		
	Customer	። G	HD Lt	d.				Sample	ID #	B-0424-17	7					
			rian Lu	uffman psail Ro	ad			Project	#	11300						
		S A	t. John 1N 5B	s, NL										Light Intensit Ammonia (In Ammonia (Fi	iit.):	
Finish Date	101317 101717 sted: 101	+		ne Collect	ed: 1)!S		Test Source Test	eration Time: Org - Batch # ce: QSH Start Date: Start Time:	17-	,		Col Odc Susj		ir		
Aeration F	Rate: 6.5 ± ml	L/min. L-	1	Conc: Salinity:). 2 pp	.100)%/0		Conc Salin			0			Litres Pecerva	
Time	Day	Monit By	HR.	Mort #	Temp (°C)	DO (mg/l)	pH	Cond (µS/cm)) Mort #	Temp (°C)	DO (mg/l)	pH	Cond (uS/cm)	Fish Meas	in in	war
3:35	101317	LA	INT		140	9.2	20	293			S. Incal	adar.		Fork Length (cm)	Wet Weight (g)	
4:05	101317	1	0		143	93	20	293	te	150	93	70	88	4.4	1.1	
														40	08	
					1.0	0.			-			-		51	1.5	
040	101417	Sr	24	/	14.9	7.1	7.3	299	1	15.0	9.8	6.4	86	5.1	1.8	
2:00	101517	Se	48	/	15.3	9.5	7.6	298	/	15.5	9.7	69	86	3.3	0.3	
2:00	101617	Ho	72	-	160	9.5	7.8	295		16.0	9.6	69	93	4.0	0.7	
1:05	101717	tto	96	-	159	9.6	8.0	300	-	160	9.2	6.6	94	3.8	0.5	
Fish Behav	viour Comme	ents		A	1 €	ich (2.1	- al	i	itte	na		0	42	0.5	
												n M		2.1		
				r		LV Or		at c	16 r	ours.	•			45	10	
Pretreatme	ent: Con	posite	Te	mp	Oth	er 📾			Clarity	(F): 7	(c c c)	n		Mean -	-/- SD	
		olved		ater	题				Colour		sam	C.			1.03 0.60	
Comments	Oxy	•		ardness		000			Odour	(F): 5	ini	hal		Loading Density (g/l):	0.5	-
Comments EPS1 / RM / 13 Second Edition - December 2000					Susp. 1 Other	Part. (F): /				LT50: > 96	hours.					

ISO/IEC 17025:2005 (CALA Accreditation No.: 2907)

October 19, 2017 Project: 11300 Lab Refer No.: B-0425-17

Report No.: 06918

GHD Ltd. 1118 Topsail Road St. John's, NL A1N 5B8 Tel: (709) 364-5353

Attention: Brian Luffman

Dear Mr. Luffman

Reference: Toxicology Testing Results

Please find enclosed the results of the 96-hour bioassay conducted October 13 - 17, 2017. The toxicity test was performed on the SLCS sample. The effluent was collected on October 12, 2017. The sample was received in acceptable condition.

Test conditions for a single concentration test were followed according to the Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition-December 2000, May 2007 and February 2016 amendments). All test parameters were maintained within the recommended levels outlined in the above protocol.

The SLCS sample is not acutely lethal to the fish, since less than 50.00 % of the fish died in the 100.00 % effluent during the 96-hour period. The LT50 was determined to be greater than 96 hours.

Please call if you have any questions regarding these results.

Sincerely,

petroforma Laboratories

Suzette Winter, B.Sc Manager

Attachments:

A- Bench Data Sheet(s)

Reference: Toxicology Testing Results

SAMPLE

Lab Refer No.: Company: Sample Material: Sampling Method: Sample Condition: Collected: Collected By: B-0425-17 GHD Ltd. SLCS Grab Received in acceptable condition. October 12, 2017; 11:42 I. Lawlor

SAMPLE CHARACTERIZATION

Received (Date and Time): Volume: Temperature: Dissolved Oxygen: pH: Conductivity: Colour: Odour: Storage: October 13, 2017; 2:20 2 x 20 L 14.0 °C 9.1 mg/L 6.7 pH units 593 μS/cm Slightly cloudy, yellow None 0 hrs @ 15 ± 1.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source: Dissolved Oxygen: Conductivity: Hardness: pH: Date Revised: St. John's Dechlorinated 9.4 \pm 0.2 mg/L 80 \pm 2 μ S/cm 26 \pm 0 mg/L 7.0 \pm 0.1 pH units October 5, 2017

TEST CONDITIONS

Started (Date and Time): Ended (Date and Time): Type of Test: Volume of Test Solutions: Photoperiod: Light Intensity: Aeration Rate: Preaeration Time: Test Temperature: Duration:

TEST ORGANISM

Species: Source: Batch Number: Number per Tank: % Mortality: Mean Fork Length (cm): Mean Total Weight (g): Loading Density (g/L): October 13, 2017; 4:00 PM October 17, 2017; 4:00 PM 96-hour static LT₅₀ (Pass/Fail) 20 Litres 16h ± 1h Light/08h ± 1h Dark 496 Lux 6.5 ± 1.0 mL/min.L⁻¹ 30 mins 15 ± 1 °C 96 hours

Rainbow Trout (Oncorhynchus mykiss) Rainbow Springs Hatchery 17-07 10 0.00% (7 days prior to testing) 4.4 ± 0.7 Range (cm): 3.3-5.6 1.0 ± 0.6 Range (g): 0.3-2.10.5 Reference: Toxicology Testing Results

TEST RESULTS

Lab Refer No.:	B-0425-17
Sample Material:	SLCS
Collection Date:	October 12, 2017; 11:42
Protocol:	EPS 1/RM/13
Test Type:	LT ₅₀ (Pass/Fail)
LT ₅₀ value (static, acute):	> 96 hours
95% Confidence Intervals:	N/A

Effluent	Tem	p(°C)	D.O.	(mg/L)	pH (units)	Cond.(μ s/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	Init.	Final	init.	Final	(%)
100	14.3	16.0	9.5	9.4	6.8	8.0	593	487	0
0	15.0	16.0	9.8	9.2	7.0	6.6	88	94	0

COMMENTS:

- Arrival temperature was 13.7°C.
- The sample contained a few twigs and small brown suspended particles.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism: Toxicant: Fish Batch No.: Reference Toxicant Date: LC₅₀ Value: 95% Confidence Limits: Historic Mean ± 2 SD (Warning Limits): Oncorhynchus mykiss Phenol 17-07 September 6 – 10, 2017 0.85 mg/L 0.74 – 0.95 mg/L 0.94 ± 0.17 mg/L

Performed by: Stephen Rossiter/Amanda Woodrow/Holly Doucette

Technical Reviewer (Print Name/Signature Senior Reviewer: (Print Name/Signature)

Date: October 20/17

October 19, 2017 Attention: Brian Luffman Project: 11300 Report No.: 06918

Reference: Toxicology Testing Results

ATTACHMENT A

Bench Data Sheet (s)

		peti	O TOP	na			~		Juiatu	1163		Date:	February 14, 20	14		
-	•							LT50 Fish	Bioassay	Data Sheet						
	Custome	1		td. uffman opsail Re	oad			Sample ID Project #		B-0425-17 11300	1					
		1	St. John A1N 5E 709) 30											Light Intensi Ammonia (I Ammonia (F		
Sample Ma Start Date: Finish Dat Date Colle Date Recei	(013) e: (014 cted: (0	7			red: 1142 ed: 222		Test Source Test S	ration Time: Org - Batch #: xe: LSH Start Date: 10 Start Time: 10				Cole Odc Sus	our (I): Seller our (I): Karo p. Part. (I): Srr	all bewint	Sonsetuigs	
	Rate: $6.5 \pm m$			Conc:		1	00	9 10	Conc: Salinit		C)°/0	er (I): Am	volume: 2×20 Storage: Tem	p to 15°C ±1	O.C.
Time	Day	Monit By	HR.	Mort #	Temp (°C)	DO (mg/l)	pH	Cond (µS/cm)	Mort #	Temp (°C)	DO (mg/l)	pH	Cond (uS/cm)	Fish Mea	surements	in warm
3:30	101317	A	INT		14.0	9.1	67	593		1.00				Fork Length (cm)	Wet Weight (g)	
4:00	7	7	0	-	14.3	95	68	593	-	15.0	89	70	88	4.4	1.1	
										•				4.0	0.8	1
16:40	101417	04	+										Ø	51	1.5	1
10:40	101417	S	24	10	14.9	9.2	7.1	608	-	15.0	9.8	6.9	8696	5.1	18	
12:05	101517	Se	48	1	15.4	9.6	7.6	579	/	15.3	9.7	6.96	8696	3.3	0.3	
2:00	101617	Ho	72	-	160	9.5	7.9	532	~	16.0	9.6	6.9	93	40	0.7	
4:00	101717	tho	96	-	16.0	9.4	8.0	487	-	16.0	9.2	66	94	38	0.5	
Fish Behav	viour Comme	ents		AII	fis	,h a	re	alive		sith	non	mal		42	0.5	1
												1104		5.6	2.1	
				ľ	sen	and	V	at c	16	hou	rs.			4.5	1.0	
Pretreatme	ent: Com	posite	Te	mp	Oth	er 🗐			Clarity (F): 7	C 0	0		Mean	+/- SD	
		olved		ater					Colour (F):	sam as Initi	ue-			1.03 0.60	
Comments	Oxy;			ardness	ecember 20				Odour (F):	initi	al		Loading Density (g/l)	0.5	
Continents	Eroi / K	LIVI / 13 1		Solution - D	ecember 20	00			Susp. Pa Other (F	ut. (1).	1116 11			LT50: > 9	bhrs.	

Appendix D Leachate Pumping Logs

LEACHATE PUMPING LOG COME BY CHANCE SECURE LANDFILL, COME BY CHANCE, NL

PRIMARY (PLCS) NAME: CHAMBER DIAMETER: m m² AREA: 1.67

Г									CALCULATIONS	·	1
	INTERVAL	PUMPING / FILLING		(mbtoc)			ΔD (m)	VOLUME (m ³)	ΔΤ	Q (L/min)	< 15 L/min?
			START	END	START	END					
Nov. 22, 2017	1	PUMP	0,450	2,450	8:40	8:52	2,000	3.348	12	279	No
	2	FILL	3.280	2,120	10:32	11:03	1.160	1.942	31	63	No
	3 .	FILL	2.350	1,080	12:12	12:46	1.270	2.126	34	63	No
	4	FILL	3.450	2,540	13:07	13:45	0,910	1.523	38	40	No
	5	FILL	2,892	2.500	14:50	15:15	0.392	0.656	25	26	No
	6	FILL	3.132	2.962	15:28	15:40	0.170	0.285	12	: 24	No
	7	File	2.150	1.975	16:05	16:25	0,175	0.293	20	15	YES
	8	FILL	3,000	2.823	17:00	17:20	0.177	0.296	20	15	YES
	9	FILL	2.100	1.995	17:20	17:35	0.105	0.176	(5	12	VES
	10		Construction of the other designed and the second se	and the second			and the second	and the second			
	11	and the second		فالمحافظ الماري الماري والمحافظ المحافظ المحافظ المحاد ويستعموه	and the second	and a second	ويحاجبهم المراجع والمراجع والمراجع والمحاجب والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والم	and the second sec		A DESCRIPTION OF THE OWNER OF THE	
Nov. 23, 2017	12	PUMP	_	~	8:30	—	-				-
	13	FILL	3.325	3,083	9:05	9:15	0.242	0.405	10	41	No
	14	FILL	3.335	3.222	9,34	9'.54	0.113	0,189	20	9	VES
	15	FILL	3.160	3.082	10:07	10:27	0.078	0. UN	29	7	VES
	16										6
	17										
	18										
	19		· · · ·								
	20										
	21										-
	22		:								
	23										
	24										
	25										
	26										
:	27										
	28										
	29										
	30	I								• •	
1		1	·	1				I			

LEACHATE PUMPING LOG COME BY CHANCE SECURE LANDFILL, COME BY CHANCE, NL

 \mathbf{N}

NAME: SECONDARY (SLCS) CHAMBER DIAMETER: 1.46 m AREA: 1.67 m²

[PUMPING /	DEPTH	(mbtoc)	ти	ME			CALCULATIONS		
	INTERVAL	FILLING	START	END	START	END	ΔD (m)	VOLUME (m ³)	ΔΤ	Q (L/min)	< 15 L/min?
Nov 22,2017	1	PUMP	0.451	2.134	8:52	91.12	1.683	2.818	20	141	No
$\sim -, \omega_{()}$	2	FILL	2.150	1.970	11:55	12:10	0.180	0.301	IS	20	No
	3	Fill	2.380	2.023	12:48	13:08	0.357	0.598	2.0	30	No
·	4	FILL	2.753	2.485	13:45	14:05	0.268	0,449	20	22	No
	5	FILL	2.320	2.190	14:30	14:56	0,130	0.218	26	8	VES
·	6	FILL	3.373	3.305	16:27	16:42	0,068	0.114	15	8	VES
	7	A CONTRACTOR OF THE OWNER								~	
		and the second	The second s		a set the set of the set of the set of the	STATISTICS STATISTICS	an a	and and a summary of the summary of			
Nov 23, 2017	9	Fill	2.773	2.655	9:24	9:42	0.118	0,198	18		VES
ľ	10	FILL	2.655	2.600	9:45	10:03	0.055		16	5	Ves
-	11							<u>v</u>	<u> </u>	<u> </u>	
	12						· · · · ·				
	13								· · · · · · · · · · · · · · · · · · ·		
	14	1									
	15										
	16										
	17										
	18										
	19										
	20										
	21	· ·									
	22										
·	23				:						
	24						*				
	25										
	26										
	27		· · ·								
	28										
	29										
	30				e e mere vitale.						
1				I		L	1				· ·

Appendix E Historical Monitoring Data

HISTORICAL STATIC GROUNDWATER LEVELS 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Lesstian	Ground Surface	Length of	TOC Elevation								Gr	oundwa	ter Dept	th (mbTc	C)							
Location	Elevation	эпск-ир	Elevation	Mar	Jul	Sep	Oct	Jun	Jul	Oct	Dec	Oct	Sep	Mar	Jul	Dec	Sep	Dec	Aug	Nov	Dec	Oct
	(masl)	(m)	(masl)		20	04			20	06		2007	2008	2009	20	10	2011	2012	2013	2014	2015	2017
PLCS	15.960		15.960												0.55	0.73	0.59	0.89	0.55	0.40	0.60	0.450
SLCS	15.955		15.955												0.52	0.713	0.55	0.892	0.549	0.40	0.60	0.451
MW 93-1	16.300	1.100	17.400											1.975	1.703	1.915	1.921	1.780	1.756	1.62		1.760
MW 93-1A	16.310	1.400	17.710	0.39	1.88	0.41	0.16	2.06	1.68	2.11	1.84	1.67	2.17	2.50	1.638	1.636	2.204	1.669	1.815	1.69	2.110	2.030
MW 93-2	14.290	1.100	15.390	0.67	0.56	0.58	0.28	1.85	2.16	2.13		1.72	2.18	2.20	2.084	2.147		2.111	2.323	2.04		2.235
MW 93-2A	14.310	1.100	15.410											1.84	1.456	1.375		1.234	1.663	1.18	1.785	1.792
MW 93-3*														1.335								
MW 93-3A*				2.37	Dry		1.20	Dry	3.21	3.37		3.32	Dry	3.52								
MW 10-1	15.790	0.846	16.636												3.015	3.254	3.551	3.188	3.427	3.00		3.464
MW 10-1A	15.890	0.854	16.744												3.084	3.279	3.662	3.234	3.513	3.05	3.439	3.503

Location	Ground Surface	Length of	TOC Elevation								Gro	oundwat	ter Eleva	ation (ma	asl)							
Location	Elevation	olick-up	Lievation	Mar	Jul	Sep	Oct	Jun	Jul	Oct	Dec	Oct	Sep	Mar	Jul	Dec	Sep	Dec	Aug	Nov	Dec	Oct
	(masl)	(m)	(masl)		20	04			20	06		2007	2008	2009	20	10	2011	2012	2013	2014	2015	2017
PLCS	15.960		15.960												15.410	15.230	15.370	15.070	15.410	15.557	15.360	15.510
SLCS	15.955		15.955												15.435	15.242	15.405	15.063	15.406	15.551	15.355	15.504
MW 93-1	16.300	1.100	17.400											15.425	15.697	15.485	15.479	15.620	15.644	15.784		15.640
MW 93-1A	16.310	1.400	17.710	17.320	15.830	17.300	17.550	15.650	16.030	15.600	15.870	16.040	15.540	15.210	16.072	16.074	15.506	16.041	15.895	16.022	15.600	15.680
MW 93-2	14.290	1.100	15.390	14.720	14.830	14.810	15.110	13.540	13.230	13.260		13.670	13.210	13.190	13.306	13.243		13.279	13.067	13.355		13.155
MW 93-2A	14.310	1.100	15.410											13.570	13.954	14.035		14.176	13.747	14.229	13.625	13.618
MW 93-3*																						
MW 93-3A*			15.900	13.530	Dry		14.700	Dry	12.690	12.530		12.580	Dry	12.380								
MW 10-1	15.790	0.846	16.636												13.621	13.382	13.085	13.448	13.209	13.637		13.172
MW 10-1A	15.890	0.854	16.744												13.660	13.465	13.082	13.510	13.231	13.697	13.305	13.241

Notes:

*

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

MW = Monitor Well

TOC = Top of Casing

masl = Metres Above Sea Level

mbTOC = Metres Below Top of Casing

= Monitor Well Decommissioned in July 2010

HISTORICAL GROUNDWATER ANALYTICAL DATA - BTEX/mTPH 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				= 1 1		Tot	al Petrole	um Hydrocarbons (T	PH)	
Sample Location	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F3 C ₁₆ -C ₂₁ C ₂₁ -C ₃₂	mTPH	Comments
	Aug 19, 2009	<	۷	۷	<	<	<	<	<	-
	Aug 19, 2009 ¹	<	۷	۷	<	、	۷	<	<	-
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	v	۷	<	<	<	<	<	-
MW 93-1	Sep 02, 2011	<	<	<	<	<	<	<	<	-
10100 95-1	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	-
	Nov 25, 2014	<	<	<	<	<	<	<	<	-
	Dec 08, 2015	-	-	-	-	-	-	-	-	-
	Oct 12, 2017	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ³	<(0.05) ³	<(0.05) ³	<(0.15) ³	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
MW 93-1A	Jul 16, 2010	<	<	<	<	<	<	<	<	-
WW 55-1A	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Sep 02, 2011	<	۲	۷	<	<	<	<	<	-
	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-
DUP-03	Aug 30, 2012 ²	<	<	<	<	<	<	<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	-
MW 93-1A	Nov 25, 2014	~	~	<	<	~	<	<	<	-
WW 93-1A	Dec 08, 2015	<	<	<	<	<	<	<	<	-
	Oct 12, 2017	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ³	<(0.05) ³	<(0.05) ³	<(0.15) ³	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
MW 93-2	Jul 16, 2010 ²	-	-	-	-	-	<	<	-	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010 ²	-	-	-	-	-	<	<	-	-
	Sep 02, 2011	<	<	<	<	<	<	<	<	-

HISTORICAL GROUNDWATER ANALYTICAL DATA - BTEX/mTPH 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Commis				Edhad		Tot	tal Petrole	um Hydrocarbons	(TPH)	
Sample Location	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	F1	F2	F3	mTPH	Comments
						C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₂₁ C ₂₁ -C	32	
	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	-
MW 93-2	Nov 25, 2014	<	<	<	<	<	<	<	<	-
	Dec 08, 2015	-	-	-	-	-	-	-	-	-
	Oct 12, 2017	<	<	<	<	<	<	<	<	-
	Aug 19, 2009	۷	۷	۷	<	<	<	<	<	-
	Jul 16, 2010	۷	۲	۷	<	<	<	<	<	-
	Dec 13, 2010	۷	۷	۷	<	<	<	<	<	-
	Sep 02, 2011	<	<	<	<	<	<	<	<	-
MW 93-2A	Aug 30, 2012	<	<	<	<	<	<	<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	-
	Nov 25, 2014	<	<	<	<	<	<	<	<	-
	Dec 08, 2015	<	<	<	<	<	<	<	<	-
	Oct 12, 2017	<	<	<	<	<	<	<	<	-
MW-DUP	Oct 12, 2017 ¹	<	<	<	<	<	<	<	<	-
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
	Jul 16, 2010 ¹	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
MW 10-1										
	Sep 02, 2011	<	<	<	<	<	<	0.4	0.4	Possible lube oil fraction
	Aug 30, 2012	<	<	<	<	<	<	<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	-
DUP-05	Aug 28, 2013 ¹	<	<	<	<	<	<	<	<	-
MW 10-1										No resemblance to petroleum products in
	Nov 25, 2014	<	<	<	<	<	<	< 0.1	0.1	lube oil range
DUP-07	Nov 25, 2014 ¹	<	<	<	<	<	<	< <	<	-
	Dec 08, 2015	-	-	-	-	-	-	-	-	-
MW 10-1	Oct 12, 2017	<	<	<	<	<	<	<	<	-

HISTORICAL GROUNDWATER ANALYTICAL DATA - BTEX/mTPH 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Sampla				Ethyl-		То	tal Petrole	um Hydroc	arbons (T	PH)	
Sample Location	Date Sampled	Benzene	Toluene	benzene	Xylenes	F1 C ₆ -C ₁₀	F2 C ₁₀ -C ₁₆	F C ₁₆ -C ₂₁	3 C ₂₁ -C ₃₂	mTPH	Comments
	Jul 16, 2010	<	<	<	<	<	<	•	<	<	-
MW 10-1A	Dec 13, 2010	۷	۷	<	<	<	<		<	<	-
NIN TO-TA	Dec 13, 2010 ¹	۷	۷	<	<	<	<		<	<	-
	Sep 02, 2011	<	<	<	<	<	<		<	<	-
DUP-A	Sep 02, 2011 ¹	<	<	<	<	<	<		<	<	
	Aug 30, 2012	<	<	<	<	<	<		<	<	-
MW 10-1A	Aug 28, 2013	<	~	<	<	~	<		<	<	-
	Nov 25, 2014	<	<	<	<	~	<		<	<	-
	Dec 08, 2015	<	<	<	<	<	<		<	<	-
DUP1	Dec 08, 2015 ¹	<	<	<	<	<	<		<	<	-
MW 10-1A	Oct 12, 2017	<	<	<	<	<	<	•	<	<	-
	RDL	0.001	0.001	0.001	0.002	0.01	0.05	0.05	0.1	0.1	-
	A Tier I RBSLs ⁴	20	20	20	20	na	na	na	na	20 20	Gasoline Diesel / #2 Fuel Oil
(Commercia	II, Non-Potable)									20	# 6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Field Duplicate.

2. Lab Duplicate.

3. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report.

4. Atlantic Risk-Based Corrective Action (RBCA) 2015 Tier I Risk-Based Screening Levels (RBSLs) Table values {coarse-grained soil}.

RDL = Reportable Detection Limit

<(#) = Parameter below AMEC laboratory detection limit

MW = Monitor Well

< = Parameter below detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*					MW	93-1				
i urumeter	NDE	ontenta	Aug 19, 2009	Aug 19, 2009 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	-	<
2-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	-	<
Acenaphthene	0.01	600	<	<	<	<	0.01	<	<	<	-	<
Acenaphthylene	0.01	2	<	<	<	<	<	<	<	<	-	<
Acridine	0.05	-	-	-	<	<	-	-	<	<	-	-
Anthracene	0.01	2	<	<	<	<	<	<	<	<	-	<
Benzo(a)anthracene	0.01	5	<	<	<	<	<	<	<	<	-	<
Benzo(a)pyrene	0.01	0.8	<	0.01	<	<	<	<	<	<	-	<
Benzo(b)fluoranthene	0.01	1	<	0.02	<	<	<	<	<	<	-	<
Benzo(g,h,i)perylene	0.01	0.2	<	0.02	<	<	<	<	<	<	-	<
Benzo(k)fluoranthene	0.01	0.4	<	0.02	<	<	<	<	<	<	-	<
Chrysene	0.01	1	<	<	<	<	<	<	<	<	-	<
Dibenz(a,h)anthracene	0.01	0.52	<	0.03	<	<	<	<	<	<	-	<
Fluoranthene	0.01	130	<	<	<	<	<	<	<	<	-	<
Fluorene	0.01	400	<	<	<	<	<	<	<	<	-	<
Indeno(1,2,3-cd)pyrene	0.01	0.20	<	0.02	<	<	<	<	<	<	-	<
Naphthalene	0.20	1,400	<	<	<	<	<	<	<	<	-	<
Perylene	0.01	-	<	<	<	<	<	<	<	<	-	<
Phenanthrene	0.01	580	0.01	<	<	<	<	<	<	<	-	<
Pyrene	0.01	68	<	<	<	<	<	<	<	<	-	<
Quinoline	0.05	-	-	-	<	<	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDI	Criteria*						MW 93-1A					
, arameter	ND2	ornorna	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 30, 2012 DUP-03	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	1,800	<0.03	<	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	1,800	<0.03	<	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	600	<0.04	<	<	<	<	<	<	<	<	<	<
Acenaphthylene	0.01	2	<0.03	<	<	<	<	<	<	<	<	<	<
Acridine	0.05	-	-	-	<	<	-	-	-	<	<	-	-
Anthracene	0.01	2	<0.01	<	<	<	<	<	<	<	<	<	<
Benzo(a)anthracene	0.01	5	<0.01	<	~	<	<	<	~	<	<	<	<
Benzo(a)pyrene	0.01	0.8	<0.01	<	<	<	<	<	<	~	v	<	<
Benzo(b)fluoranthene	0.01	1	<0.05	<	<	<	<	<	<	~	v	<	<
Benzo(g,h,i)perylene	0.01	0.2	<0.03	<	<	<	<	۲	<	۷	v	<	<
Benzo(k)fluoranthene	0.01	0.4	<0.05	<	<	<	<	<	<	<	<	<	<
Chrysene	0.01	1	<0.04	<	<	<	<	<	<	~	v	<	<
Dibenz(a,h)anthracene	0.01	0.52	-	<	<	<	<	<	<	~	v	<	<
Fluoranthene	0.01	130	<0.03	<	<	<	<	۲	<	۷	v	<	<
Fluorene	0.01	400	<0.03	<	<	<	<	<	<	~	v	<	<
Indeno(1,2,3-cd)pyrene	0.01	0.20	<0.05	<	<	<	<	<	<	~	v	<	<
Naphthalene	0.20	1,400	-	<	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	-	<	<	<	<	<	<	<	<	<	<
Phenanthrene	0.01	580	<0.04	0.01	<	<	<	<	<	<	<	0.013	<
Pyrene	0.01	68	<0.01	<	<	<	<	<	<	<	<	<	<
Quinoline	0.05	-	-	-	<	<	-	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*						MW 93-2		-	-	
		••••••	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	1,800	<0.03	<	<	<	<	<	<	<	-	<
2-Methylnaphthalene	0.05	1,800	<0.03	<	<	<	<	<	<	<	-	<
Acenaphthene	0.01	600	<0.04	<	<	<	<	<	<	<	-	<
Acenaphthylene	0.01	2	<0.03	<	<	<	<	<	<	<	-	<
Acridine	0.05	-	-	-	<	<	-	-	<	<	-	-
Anthracene	0.01	2	<0.01	<	<	<	<	<	<	<	-	<
Benzo(a)anthracene	0.01	5	<0.01	<	<	<	<	<	<	<	-	<
Benzo(a)pyrene	0.01	0.8	<0.01	<	<	<	<	<	<	<	-	<
Benzo(b)fluoranthene	0.01	1	<0.05	<	<	<	<	<	<	<	-	<
Benzo(g,h,i)perylene	0.01	0.2	<0.03	<	<	<	<	<	<	<	-	<
Benzo(k)fluoranthene	0.01	0.4	<0.05	<	<	<	<	<	<	<	-	<
Chrysene	0.01	1	<0.04	<	<	<	<	<	<	<	-	<
Dibenz(a,h)anthracene	0.01	0.52	-	<	<	<	<	<	<	<	-	<
Fluoranthene	0.01	130	<0.03	<	<	<	<	<	<	<	-	<
Fluorene	0.01	400	<0.03	<	<	<	<	<	<	<	-	<
Indeno(1,2,3-cd)pyrene	0.01	0.20	<0.05	<	<	<	<	<	<	<	-	<
Naphthalene	0.20	1,400	-	<	<	<	<	<	<	<	-	<
Perylene	0.01	-	-	<	<	<	<	<	<	<	-	<
Phenanthrene	0.01	580	<0.04	0.01	<	<	<	<	<	<	-	<
Pyrene	0.01	68	<0.01	<	<	<	<	<	<	<	-	<
Quinoline	0.05	-	-	-	<	<	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit - = Not analysed/No criteria

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*						MW 93-2A				
i urumeter	RDE	ontena	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	Oct 12, 2017 MW-DUP
1-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	600	<	<	<	<	<	<	<	<	<	<
Acenaphthylene	0.01	2	<	<	<	<	<	<	<	<	<	<
Acridine	0.05	-	-	<	<	-	-	<	<	<	-	-
Anthracene	0.01	2	<	<	<	<	<	<	<	<	<	<
Benzo(a)anthracene	0.01	5	<	<	<	<	<	<	<	<	<	<
Benzo(a)pyrene	0.01	0.8	<	<	<	<	<	<	<	<	<	<
Benzo(b)fluoranthene	0.01	1	<	<	<	<	<	<	<	<	<	<
Benzo(g,h,i)perylene	0.01	0.2	<	۸ ۱	<	<	<	<	<	<	<	<
Benzo(k)fluoranthene	0.01	0.4	<	<	<	<	<	<	<	<	<	<
Chrysene	0.01	1	<	<	<	<	<	<	<	<	<	<
Dibenz(a,h)anthracene	0.01	0.52	<	<	<	<	<	<	<	<	<	<
Fluoranthene	0.01	130	<	<	<	<	<	<	<	<	<	<
Fluorene	0.01	400	<	<	<	<	<	<	<	<	<	<
Indeno(1,2,3-cd)pyrene	0.01	0.20	<	<	<	<	<	<	<	<	<	<
Naphthalene	0.20	1,400	<	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	<	<	<	0.02	<	<	<	<	<	<
Phenanthrene	0.01	580	0.01	<	<	<	0.012	<	<	<	0.011	<
Pyrene	0.01	68	<	<	~	<	<	<	<	<	<	<
Quinoline	0.05	-	-	<	<	-	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria
 0.0 = Above criteria for current sampling program

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*							MW 10)-1				
i arameter	RDL	Ginterna	Jul 16, 2010	Jul 16, 2010 DUP-01	Dec 13, 2010	Dec 13, 2010 DUP-02	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-05	Nov 25, 2014	Nov 25, 2014 Dup-07	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	<	<	-	<
2-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	<	<	-	<
Acenaphthene	0.01	600	<	<	<	<	<	<	<	<	<	<	-	<
Acenaphthylene	0.01	2	<	<	<	<	<	<	<	<	<	<	-	<
Acridine	0.05	-	<	<	<	<	-	-	<	<	<	<	-	-
Anthracene	0.01	2	<	<	<	<	<	<	<	<	<	<	-	<
Benzo(a)anthracene	0.01	5	<	<	<	<	<	<	<	<	<	<	-	<
Benzo(a)pyrene	0.01	0.8	<	<	<	<	<	<	<	<	<	<	-	<
Benzo(b)fluoranthene	0.01	1	<	۲	<	v	v	<	<	~	<	~	-	<
Benzo(g,h,i)perylene	0.01	0.2	<	<	<	<	<	<	<	<	<	<	-	<
Benzo(k)fluoranthene	0.01	0.4	<	<	<	<	<	<	<	<	<	<	-	<
Chrysene	0.01	1	<	v	<	v	v	<	<	~	<	~	-	<
Dibenz(a,h)anthracene	0.01	0.52	<	۲	<	v	v	<	<	~	<	v	-	<
Fluoranthene	0.01	130	<	<	<	<	<	<	<	<	<	<	-	<
Fluorene	0.01	400	<	<	<	<	<	<	<	<	<	<	-	<
Indeno(1,2,3-cd)pyrene	0.01	0.20	<	<	<	<	<	<	<	<	<	<	-	<
Naphthalene	0.20	1,400	<	<	<	<	<	<	<	<	<	<	-	<
Perylene	0.01	-	<	<	<	0.04	<	<	<	<	<	<	-	<
Phenanthrene	0.01	580	<	<	<	<	<	<	<	<	<	<	-	<
Pyrene	0.01	68	<	<	<	<	<	<	<	<	<	<	-	<
Quinoline	0.05	-	<	<	<	<	-	-	-	<	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit - = Not analysed/No criteria

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*					MW	10-1A				
Falameter	KDL	Cinterna	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Sep 02, 2011 DUP-A	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Dec 08, 2015 DUP1	Oct 12, 2017
1-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	1,800	<	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	600	<	<	<	<	<	<	<	<	<	<
Acenaphthylene	0.01	2	<	<	<	<	<	<	<	<	<	<
Acridine	0.05	-	<	<	-	-	-	<	<	-	-	-
Anthracene	0.01	2	<	<	<	<	<	<	<	<	<	<
Benzo(a)anthracene	0.01	5	<	<	<	<	<	<	<	<	<	<
Benzo(a)pyrene	0.01	0.8	<	<	<	<	<	<	<	<	<	<
Benzo(b)fluoranthene	0.01	1	<	<	<	<	<	<	<	<	<	<
Benzo(g,h,i)perylene	0.01	0.2	<	<	<	<	<	<	<	<	<	<
Benzo(k)fluoranthene	0.01	0.4	<	<	<	<	<	<	<	<	<	<
Chrysene	0.01	1	<	<	<	<	<	<	<	<	<	<
Dibenz(a,h)anthracene	0.01	0.52	<	<	<	<	<	<	<	<	<	<
Fluoranthene	0.01	130	<	<	<	<	<	<	<	<	<	<
Fluorene	0.01	400	<	<	<	<	<	<	<	<	<	<
Indeno(1,2,3-cd)pyrene	0.01	0.20	<	<	<	<	<	<	<	<	<	<
Naphthalene	0.20	1,400	<	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	<	<	<	<	0.017	0.019	<	0.027	0.028	<
Phenanthrene	0.01	580	<	<	<	<	<	0.013	<	<	<	<
Pyrene	0.01	68	<	<	<	<	<	<	<	<	<	<
Quinoline	0.05	-	<	<	<	<	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria 0.0 = Above criteria for current sampling program

HISTORICAL GROUNDWATER ANALYTICAL DATA - PCBs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Sample						e Date					Criteria*
Location	2008 (AMEC)	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	Cillena
MW 93-1	-	<	<	<	<	<	<	<	-	<	
Field Dup	-	<	-	-	-	-	-	-	-	-	
Lab Dup	-	<	-	-	-	-	-	-	-	-	
MW 93-1A	<0.04	0.1	<	<	<	<	<	<	<	<	
DUP-03	-	-	-	-	-	<	-	-	-	-	
MW 93-2	<0.04	<	<	<	<	<	<	<	-	<	
Lab Dup	-	-	<	<	-	-	-	-	-	-	
MW 93-2A	-	0.11	<	<	<	<	<	<	<	<	
MW-DUP	-	-	-	-	-	-	-	-	-	<	7.8
MW 10-1	-	-	<	<	<	<	<	<	-	<	
Field Dup	-	-	<	-	-	-	-	-	-	-	
DUP-05	-	-	-	-	-	-	<	-	-	-	
DUP-07	-	-	-	-	-	-	-	<	-	-	
MW 10-1A	-	-	<	~	<	<	<	<	<	<	
Field Dup	-	-	-	۷	-	-	-	-	-	-	
DUP-A	-	-	-	-	<	-	-	-	-	-	
DUP1	-	-	-	-	-	-	-	-	<	-	
RDL					0.	05					

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

< = Parameter below detection limit

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*					MW	93-1				
raiameter	RDL	Ginteria	Aug 19, 2009	Aug 19, 2009 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Benzene	1.00	44	<	<	<	<	<	<	<	<	-	<
Bromodichloromethane	1.00	85,000	<	<	<	<	<	<	<	<	-	<
Bromoform	1.00	380	<	<	<	<	<	<	<	<	-	<
Bromomethane	3.00	5.6	<	<	<	<	<	<	<	<	-	<
Carbon Tetrachloride	1.00	1	<	<	<	<	<	<	<	<	-	<
Chlorobenzene	1.00	630	<	<	<	<	<	<	<	<	-	<
Chloroethane	8.00	-	<	~	<	<	<10 (1)	<	<	<	-	<
Chloroform	1.00	2	<	<	<	<	<	<	<	<	-	<
Chloromethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	-	<
Dibromochloromethane	1.00	82,000	<	<	<	<	<	<	<	<	-	<
1,2-Dichlorobenzene	0.50	4,600	<	<	<	<	<0.7 (1)	<	<	<	-	<
1,3-Dichlorobenzene	1.00	9,600	<	<	<	<	<	<	<	<	-	<
1,4-Dichlorobenzene	1.00	8	<	~	<	<	<	<	<	<	-	<
1,1-Dichloroethane	2.00	320	<	<	<	<	<3 (1)	<	<	<	-	<
1,2-Dichloroethane	1.00	1.6	<	<	<	<	<	<	<	<	-	<
1,1-Dichloroethylene	0.50	1.6	<	~	<	<	~	<	<	<	-	<
cis-1,2-Dichloroethylene	2.00	1.6	<	、	<	<	<3 (1)	<	<	<	-	<
trans-1,2-Dichloroethylene	2.00	2	<	<	<	<	<	<	<	<	-	<
1,2-Dichloropropane	1.00	16.0	<	<	<	<	<	<	<	<	-	<
cis-1,3-Dichloropropene	2.00	5.2	<	、	<	<	<	<	<	<	-	<
trans-1,3-Dichloropropene	1.00	5.2	<	<	<	<	<	<	<	<	-	<
Ethylbenzene	1.00	2,300	<	<	<	<	<	<	<	<	-	<
Methylene Chloride(Dichloromethane)	3.00	610	<	、	<	<	<4 (1)	<	<	<	-	<
o-Xylene	1.00	4,200	<	<	<	<	<	<	<	<	-	<
p+m-Xylene	2.00	4,200	<	<	<	<	<3 (1)	<	<	<	-	<
Styrene	1.00	1,300	<	<	<	<	<	<	<	<	-	<
Tetrachloroethylene	1.00	2	<	<	<	<	<	<	<	<	-	<
1,1,2,2-Tetrachloroethane	1.00	3	<	<	<	<	<	<	<	<	-	<
Toluene	1.00	18,000	<	<	<	<	<	<	<	<	-	<
Trichloroethylene	1.00	2	<	<	<	<	<	<	<	<	-	<
1,1,1-Trichloroethane	1.00	640	<	<	<	<	<	<	<	<	-	<
1,1,2-Trichloroethane	1.00	5	<	<	<	<	<	<	<	<	-	<
Trichlorofluoromethane (FREON 11)	8.00	2,500	<	<	<	<	<10 (1)	<	<	<	-	<
Vinyl Chloride	0.50	0.5	<	<	<	<	<	<	<	<	-	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated RDL for analyzed VOC(s).

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit - = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*						MW 93-1A					
Falameter	NDL	Cinteria	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 30, 2012 DUP-03	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Benzene	1.00	44	<	<	<	<	<	<	<	<	<	<	<
Bromodichloromethane	1.00	85,000	<	<	<	<	<	<	<	<	<	<	<
Bromoform	1.00	380	<	<	<	<	<	<	<	<	<	<	<
Bromomethane	3.00	5.6	<	<	<	<	<	<	<	<	<	<	<
Carbon Tetrachloride	1.00	1	<	<	<	<	<	<	<	<	~	<	<
Chlorobenzene	1.00	630	<	<	<	<	<	<	<	<	<	<	<
Chloroethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	<	<	<
Chloroform	1.00	2	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	<	<	<
Dibromochloromethane	1.00	82,000	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	0.50	4,600	<	<	<	<	<0.7 (1)	<	<	<	<	<	<
1,3-Dichlorobenzene	1.00	9,600	<	<	<	<	<	<	<	<	<	<	<
1,4-Dichlorobenzene	1.00	8	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	2.00	320	<	<	<	<	<3 (1)	<	<	<	<	<	<
1,2-Dichloroethane	1.00	1.6	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethylene	2.00	1.6	<	<	<	<	<3 (1)	<	<	<	<	<	<
trans-1,2-Dichloroethylene	2.00	2	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichloropropane	1.00	16.0	<	<	<	<	<	<	<	<	<	<	<
cis-1,3-Dichloropropene	2.00	5.2	<	<	<	<	<	<	<	<	<	<	<
trans-1,3-Dichloropropene	1.00	5.2	<	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1.00	2,300	<	<	<	<	<	<	<	<	<	<	<
Methylene Chloride(Dichloromethane)	3.00	610	<	<	<	<	<4 (1)	<	<	<	<	<	<
o-Xylene	1.00	4,200	<	<	<	<	<	<	<	<	<	<	<
p+m-Xylene	2.00	4,200	<	<	<	<	<3 (1)	<	<	<	<	<	<
Styrene	1.00	1,300	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethylene	1.00	2	<	<	<	<	<	<	<	<	<	<	<
1,1,2,2-Tetrachloroethane	1.00	3	<	<	<	<	<	<	<	<	<	<	<
Toluene	1.00	18,000	<	<	<	<	<	<	<	<	<	<	<
Trichloroethylene	1.00	2	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	1.00	640	<	<	<	<	<	<	<	<	<	<	<
1,1,2-Trichloroethane	1.00	5	<	<	<	<	<	<	<	<	<	<	<
Trichlorofluoromethane (FREON 11)	8.00	2,500	<	<	<	<	<10 (1)	<	<	<	<	<	<
Vinyl Chloride	0.50	0.5	0.2	<	<	<	<``	<	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated RDL for analyzed VOC(s).

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit - = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*					MW	93-2				
i arameter	RDE	ontena	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Benzene	1.00	44	<	<	<	<	<	<	<	<	-	<
Bromodichloromethane	1.00	85,000	<	<	<	<	<	<	<	<	-	<
Bromoform	1.00	380	~	<	<	<	~	<	<	<	-	<
Bromomethane	3.00	5.6	~	<	<	<	~	<	<	<	-	<
Carbon Tetrachloride	1.00	1	~	<	<	<	~	<	<	<	-	<
Chlorobenzene	1.00	630	<	<	<	<	<	<	<	<	-	<
Chloroethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	-	<
Chloroform	1.00	2	<	<	<	<	<	<	<	<	-	<
Chloromethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	-	<
Dibromochloromethane	1.00	82,000	<	<	<	<	<	<	<	<	-	<
1,2-Dichlorobenzene	0.50	4,600	<	<	<	<	<0.7 (1)	<	<	<	-	<
1,3-Dichlorobenzene	1.00	9,600	<	<	<	<	<	<	<	<	-	<
1,4-Dichlorobenzene	1.00	8	<	<	<	<	<	<	<	<	-	<
1,1-Dichloroethane	2.00	320	<	<	<	<	<3 (1)	<	<	<	-	<
1,2-Dichloroethane	1.00	1.6	<	<	<	<	<	<	<	<	-	<
1,1-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	-	<
cis-1,2-Dichloroethylene	2.00	1.6	<	<	<	<	<3 (1)	<	<	<	-	<
trans-1,2-Dichloroethylene	2.00	2	<	<	<	<	<	<	<	<	-	<
1,2-Dichloropropane	1.00	16.0	<	<	<	<	<	<	<	<	-	<
cis-1,3-Dichloropropene	2.00	5.2	<	<	<	<	<	<	<	<	-	<
trans-1,3-Dichloropropene	1.00	5.2	<	<	<	<	<	<	<	<	-	<
Ethylbenzene	1.00	2,300	<	<	<	<	<	<	<	<	-	<
Methylene Chloride(Dichloromethane)	3.00	610	<	<	<	<	<4 (1)	<	<	<	-	<
o-Xylene	1.00	4,200	<	<	<	<	<	<	<	<	-	<
p+m-Xylene	2.00	4,200	<	<	<	<	<3 (1)	<	<	<	-	<
Styrene	1.00	1,300	<	<	<	<	<	<	<	<	-	<
Tetrachloroethylene	1.00	2	<	<	<	<	<	<	<	<	-	<
1,1,2,2-Tetrachloroethane	1.00	3	<	<	<	<	<	<	<	<	-	<
Toluene	1.00	18,000	<	<	<	<	<	<	<	<	-	<
Trichloroethylene	1.00	2	<	<	<	<	<	<	<	<	-	<
1,1,1-Trichloroethane	1.00	640	<	<	<	<	<	<	<	<	-	<
1,1,2-Trichloroethane	1.00	5	<	<	<	<	<	<	<	<	-	<
Trichlorofluoromethane (FREON 11)	8.00	2,500	<	<	<	<	<10 (1)	<	<	<	-	<
Vinyl Chloride	0.50	0.5	0.2	<	<	<	<	<	<	<	-	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated RDL for analyzed VOC(s).

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit - = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*					MW S	93-2A				
Parameter	RDL	Criteria	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	Oct 12, 2017 MW-DUP
Benzene	1.00	44	<	<	<	<	<	<	<	<	<	<
Bromodichloromethane	1.00	85,000	<	<	<	<	<	~	<	<	<	<
Bromoform	1.00	380	<	<	<	<	<	<	<	<	<	<
Bromomethane	3.00	5.6	<	<	<	<	<	~	<	<	<	<
Carbon Tetrachloride	1.00	1	<	<	<	<	<	<	<	<	<	<
Chlorobenzene	1.00	630	<	<	<	<	<	۲	<	<	<	<
Chloroethane	8.00	-	<	<	<	<10 (1)	<	~	<	<	<	<
Chloroform	1.00	2	<	<	<	<	<	v	<	<	<	<
Chloromethane	8.00	-	<	<	<	<10 (1)	<	~	<	<	<	<
Dibromochloromethane	1.00	82,000	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	0.50	4,600	<	<	<	<0.7 (1)	<	<	<	<	<	<
1,3-Dichlorobenzene	1.00	9,600	<	<	<	<	<	<	<	<	<	<
1,4-Dichlorobenzene	1.00	8	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	2.00	320	<	<	<	<3 (1)	<	<	<	<	<	<
1,2-Dichloroethane	1.00	1.6	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethylene	2.00	1.6	<	<	<	<3 (1)	<	<	<	<	<	<
trans-1,2-Dichloroethylene	2.00	2	<	<	<	<	<	<	<	<	<	<
1,2-Dichloropropane	1.00	16.0	<	<	<	<	<	<	<	<	<	<
cis-1,3-Dichloropropene	2.00	5.2	<	<	<	<	<	<	<	<	<	<
trans-1,3-Dichloropropene	1.00	5.2	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1.00	2,300	<	<	<	<	<	<	<	<	<	<
Methylene Chloride(Dichloromethane)	3.00	610	<	<	<	<4 (1)	<	<	<	<	<	<
o-Xylene	1.00	4,200	<	<	<	<	<	<	<	<	<	<
p+m-Xylene	2.00	4,200	<	<	<	<3 (1)	<	<	<	<	<	<
Styrene	1.00	1,300	<	<	<	<	<	<	<	<	<	<
Tetrachloroethylene	1.00	2	<	<	<	<	<	<	<	<	<	<
1,1,2,2-Tetrachloroethane	1.00	3	<	<	<	<	<	<	<	<	<	<
Toluene	1.00	18,000	<	<	<	<	<	<	<	<	<	<
Trichloroethylene	1.00	2	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	1.00	640	<	<	<	<	<	<	<	<	<	<
1,1,2-Trichloroethane	1.00	5	<	<	<	<	<	<	<	<	<	<
Trichlorofluoromethane (FREON 11)	8.00	2,500	<	<	<	<10 (1)	<	<	<	<	<	<
Vinyl Chloride	0.50	0.5	<	<	<	<	<	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated RDL for analyzed VOC(s).

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit - = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Deservator		Criteria*	MW 10-1												
Parameter	RDL		Jul 16, 2010	Dec 13, 2010	Jul 16, 2010 DUP-01	Dec 13, 2010 DUP-02	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-05	Nov 25, 2014	Nov 25, 2014 DUP-07	Dec 08, 2015	Oct 12, 2017	
Benzene	1.00	44	<	<	<	<	<	<	<	<	<	<	-	<	
Bromodichloromethane	1.00	85,000	<	<	~	<	<	<	<	<	<	<	-	<	
Bromoform	1.00	380	<	<	۲	<	<	<	<	<	<	<	-	<	
Bromomethane	0.50	5.6	<	<	~	<	<	<	<	<	<	<	-	<	
Carbon Tetrachloride	0.50	0.79	<	<	~	<	<	<	<	<	<	<	-	<	
Chlorobenzene	1.00	630	<	<	<	<	<	<	<	<	<	<	-	<	
Chloroethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	<	<	-	<	
Chloroform	1.00	2.4	<	<	<	<	<	<	<	<	<	<	-	<	
Chloromethane	8.00	-	<	<	<	<	<10 (1)	<	<	<	<	<	-	<	
Dibromochloromethane	1.00	82,000	<	<	<	<	<	<	<	<	<	<	-	<	
1,2-Dichlorobenzene	0.50	4,600	<	<	<	<	<0.7 (1)	<	<	<	<	<	-	<	
1,3-Dichlorobenzene	1.00	9,600	<	<	<	<	<	<	<	<	<	<	-	<	
1,4-Dichlorobenzene	1.00	8	<	<	<	<	<	<	<	<	<	<	-	<	
1,1-Dichloroethane	2.00	320	<	<	<	<	<3 (1)	<	<	<	<	<	-	<	
1,2-Dichloroethane	1.00	1.6	<	<	<	<	<	<	<	<	<	<	-	<	
1,1-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	<	<	-	<	
cis-1,2-Dichloroethylene	0.50	1.6	<	<	<	<	<3 (1)	<	<	<	<	<	-	<	
trans-1,2-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	<	<	-	<	
1,2-Dichloropropane	0.50	16	<	<	<	4.00	2.00	<	<	<	1.00	1.00	-	10	
cis-1,3-Dichloropropene	0.50	5.2	<	<	<	<	<	<	<	<	<	<	-	<	
trans-1,3-Dichloropropene	0.50	5.2	<	<	<	1.00	<	<	<	<	<	<	-	<	
Ethylbenzene	1.00	2,300	<	<	<	<	<	<	<	<	<	<	-	<	
Methylene Chloride(Dichloromethane)	3.00	610	<	<	<	<	<4 (1)	<	<	<	<	<	-	<	
o-Xylene	1.00	-	<	<	<	<	<	<	<	<	<	<	-	<	
p+m-Xylene	2.00	_	<	<	<	<	<3 (1)	<	<	<	<	<	-	<	
Styrene	1.00	1,300	<	<	<	<	<	<	<	<	<	<	-	<	
Tetrachloroethylene	1.00	1.6	<	<	<	<	<	<	<	<	<	<	-	<	
1,1,2,2-Tetrachloroethane	0.50	3.2	<	<	<	<	<	<	<	<	<	<	-	<	
Toluene	1.00	18,000	<	<	<	<	<	<	<	<	<	<	-	<	
Trichloroethylene	1.00	1.6	<	<	<	<	<	<	<	<	<	<	-	2.4	
1,1,1-Trichloroethane	1.00	640	<	<	<	<	<	<	<	<	<	<	-	<	
1,1,2-Trichloroethane	1.00	4.7	<	<	<	<	<	<	<	<	<	<	-	<	
Trichlorofluoromethane (FREON 11)	8.00	2,500	<	<	<	<	<10 (1)	<	<	<	<	<	-	<	
Vinyl Chloride	0.50	0.5	<	<	<	<	<	<	<	<	<	<	-	<	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated RDL for analyzed VOC(s).

RDL = Reportable Detection Limit

MW = Monitor Well

< = Parameter below detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter		Criteria*	MW 10-1A											
raiametei	RDL		Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Sep 02, 2011 DUP- A	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Dec 08, 2015 DUP1	Oct 12, 2017		
Benzene	1.00	44	<	<	<	<	<	<	<	<	<	<		
Bromodichloromethane	1.00	85,000	<	<	<	<	<	<	<	<	<	<		
Bromoform	1.00	380	<	<	<	<	<	<	<	<	<	<		
Bromomethane	0.50	5.6	<	<	<	<	<	<	<	<	<	<		
Carbon Tetrachloride	0.50	0.79	<	<	<	<	<	<	<	<	<	<		
Chlorobenzene	1.00	630	<	<	<	<	<	<	<	<	<	<		
Chloroethane	8.00	-	<	<	<10 (1)	<	<10 (1)	<	<	<	<	<		
Chloroform	1.00	2.4	<	<	<	<	<	<	<	<	<	<		
Chloromethane	8.00	-	<	<	<10 (1)	<	<10 (1)	<	<	<	<	<		
Dibromochloromethane	1.00	82,000	<	<	<	<	<	<	<	<	<	<		
1,2-Dichlorobenzene	0.50	4,600	<	<	<0.7 (1)	<	<0.7 (1)	<	<	<	<	<		
1,3-Dichlorobenzene	1.00	9,600	<	<	<	<	<	<	<	<	<	<		
1,4-Dichlorobenzene	1.00	8	<	<	<	<	<	<	<	<	<	<		
1,1-Dichloroethane	2.00	320	<	<	<3 (1)	<	<3 (1)	<	<	<	<	<		
1,2-Dichloroethane	1.00	1.6	<	<	<	<	<	<	<	<	<	<		
1,1-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	<	<		
cis-1,2-Dichloroethylene	0.50	1.6	<	<	<3 (1)	<	<3 (1)	<	<	<	<	<		
trans-1,2-Dichloroethylene	0.50	1.6	<	<	<	<	<	<	<	<	<	<		
1,2-Dichloropropane	0.50	16	<	2.00	7.00	3.00	7.00	7.1	<	3.9	3.0	5.6		
cis-1,3-Dichloropropene	0.50	5.2	<	<	<	<	<	<	<	<	<	<		
trans-1,3-Dichloropropene	0.50	5.2	<	1.00	<	<	<	<	<	<	<	<		
Ethylbenzene	1.00	2,300	<	<	<	<	<	<	<	<	<	<		
Methylene Chloride(Dichloromethane)	3.00	610	<	<	<4 (1)	<	<4 (1)	<	<	<	<	<		
o-Xylene	1.00	-	<	<	<	<	<	<	<	<	<	<		
p+m-Xylene	2.00	-	<	<	<3 (1)	<	<3 (1)	<	<	<	<	<		
Styrene	1.00	1,300	<	<	<	<	<	<	<	<	<	<		
Tetrachloroethylene	1.00	1.6	<	<	<	<	<	<	<	<	<	<		
1,1,2,2-Tetrachloroethane	0.50	3.2	<	<	<	<	<	<	<	<	<	<		
Toluene	1.00	18,000	<	<	<	<	<	<	<	<	<	<		
Trichloroethylene	1.00	1.6	<	<	<	<	<	<	<	<	<	<		
1,1,1-Trichloroethane	1.00	640	<	<	<	<	<	<	<	<	<	<		
1,1,2-Trichloroethane	1.00	4.7	<	<	<	<	<	<	<	<	<	<		
Trichlorofluoromethane (FREON 11)	8.00	2,500	<	<	<10 (1)	<	<10 (1)	<	<	<	<	<		
Vinyl Chloride	0.50	0.5	<	<	<	<	<	<	<	<	<	<		

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated RDL for analyzed VOC(s).

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit - = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter			Criteria*	MW 93-1											
Parameter	Units	RDL		Aug 19, 2009	Aug 19, 2009 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017		
Anion Sum	me/L	N/A	-	6.10	7.22	5.87	5.52	7.47	6.51	6.2	6.21	-	6.38		
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	236.0	292.0	229.0	210.0	304.0	270	240	250	-	250		
Calculated TDS	mg/L	1.00	-	338.0	375.0	313.0	313.0	389.0	338	330	330	-	330		
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	2.00	3.00	3.00	2.00	4.00	4.7	2.6	3.7	-	2.9		
Cation Sum	me/L	N/A	-	6.60	6.77	5.62	5.90	6.90	6.14	5.82	5.72	-	5.62		
Hardness (CaCO3)	mg/L	1.00	-	160	160	120	120	180	150	140	130	-	130		
Ion Balance (% Difference)	%	N/A	-	4.00	3.22	2.18	3.33	3.97	2.92	3.16	4.11	-	6.33		
Langelier Index (@ 20C)	N/A	N/A	-	0.50	0.62	0.47	0.38	0.80	0.815	0.51	0.644	-	0.537		
Langelier Index (@ 4C)	N/A	N/A	-	0.30	0.37	0.22	0.13	0.55	0.566	0.261	0.395	-	0.288		
Nitrate (N)	mg/L	0.05	-	~	<	<	<	<	<	v	<	-	<		
Saturation pH (@ 20C)	N/A	N/A	-	7.50	7.41	7.64	7.64	7.32	7.45	7.54	7.56	-	7.54		
Saturation pH (@ 4C)	N/A	N/A	-	7.80	7.66	7.89	7.89	7.57	7.69	7.79	7.81	-	7.79		
Total Alkalinity (Total as CaCO3)	mg/L	30	-	240	300	230	210	310	280	250	250	-	260		
Dissolved Chloride (CI)	mg/L	1	-	36	35	19	15	11	11	24	17	-	30		
Colour	TCU	5.00	-	<	<	<	<	<	<	<	<	-	<		
Nitrate + Nitrite	mg/L	0.05	-	<	<	<	<	<	<	<	<	-	<		
Nitrite (N)	mg/L	0.01	-	<	<	<	<	<	<	v	<	-	<0.010		
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	0.10	<	<	<	<	<	v	<	-	<0.050		
Total Organic Carbon (C)	mg/L	0.50	-	1.20	1.00	2.10	0.90	930.00	<	1.1	0.86	-	5.3 (2)		
Orthophosphate (P)	mg/L	0.01	-	<	<	<	<	<	<	0.013	<	-	<		
рН	pН	N/A	-	8.00	8.03	8.11	8.02	8.12	8.26	8.05	8.2	-	8.08		
Reactive Silica (SiO2)	mg/L	0.50	-	9.90	10.00	7.60	7.60	6.90	5.3	8.1	7.9	-	9.1		
Total Suspended Solids (TSS)	mg/L	2	-	-	-	-	-	-	-	-	-	-	_		
Dissolved Sulphate (SO4)	mg/L	2	-	2	16	33	42	48	33	27	37	-	19		
Turbidity	NTU	0.1	-	0.5	1.3	61.0	34.0	<1000	590	2.1	5.1	-	47		
Conductivity	uS/cm	1	-	580	580	520	500	630	580	540	520	-	570		

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated detection limit due to matrix interference.

(2) = Reporting limit was increased due to turbidity.

RDL = Reportable Detection Limit

MW = Monitor Well

< = Parameter below detection limit</p>

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

_				MW 93-1A												
Parameter	Units	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 30, 2012 DUP-03	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017		
Anion Sum	me/L	N/A	-	-	7.22	7.33	7.46	5.61	6.5	6.47	7.23	7.66	6.6	7.19		
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	-	285.0	293.0	297.0	216.0	260	250	300	320	270	310		
Calculated TDS	mg/L	1.00	-	265.0	447.0	390.0	401.0	302.0	334	334	380	400	350	380		
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	-	3.00	3.00	2.00	3.00	5.2	5.4	2.8	3.3	2.6	3.4		
Cation Sum	me/L	N/A	-	-	9.57	7.02	7.19	5.35	5.89	5.94	7.05	7.38	6.46	7.09		
Hardness (CaCO3)	mg/L	1.00	-	205	210	170	170	120	140	150	170	180	150	190		
Ion Balance (% Difference)	%	N/A	-	-	14.00	2.16	1.84	2.37	4.92	4.27	1.26	1.86	1.07	0.7		
Langelier Index (@ 20C)	N/A	N/A	-	-	0.70	0.62	0.61	0.55	0.826	0.846	0.65	0.74	0.561	0.792		
Langelier Index (@ 4C)	N/A	N/A	-	-	0.45	0.37	0.36	0.31	0.577	0.597	0.401	0.495	0.312	0.544		
Nitrate (N)	mg/L	0.05	-	-	<	<	~	<	~	~	<	<	<	<		
Saturation pH (@ 20C)	N/A	N/A	-	-	7.31	7.37	7.32	7.67	7.5	7.5	7.34	7.29	7.45	7.28		
Saturation pH (@ 4C)	N/A	N/A	-	-	7.55	7.62	7.57	7.92	7.75	7.75	7.59	7.54	7.69	7.53		
Total Alkalinity (Total as CaCO3)	mg/L	30	-	290	290	300	300	220	260	260	310	320	280	310		
Dissolved Chloride (CI)	mg/L	1	-	11	12	11	11	16	30	30	11	10	11	11		
Colour	TCU	5.00	-	-	<	<	<5	<5	~	<	<	<	<	<		
Nitrate + Nitrite	mg/L	0.05	-	<	<	<	<	<	<	<	<	<	<	<		
Nitrite (N)	mg/L	0.01	-	0.015	<	<	<	<	<	<	<	<	<	<0.010		
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	0.02	<	<	<0.05	<0.05	<	<	<	<	<	<0.050		
Total Organic Carbon (C)	mg/L	0.50	-	2.00	<	<(5) (1)	<(5)(1)	<(0.5)	1.4	1.5	2.6 (1)	<	1.68	<5.0 (2)		
Orthophosphate (P)	mg/L	0.01	-	-	<	<	0.04	<	<	<	<	<	0.011	<		
рН	pН	N/A	-	8.02	8.00	7.99	7.93	8.22	8.33	8.35	7.99	8.03	8.01	8.07		
Reactive Silica (SiO2)	mg/L	0.50	-	-	5.00	7.10	6.80	7.70	9.1	9.1	6.3	7.7	4.4	5.9		
Total Suspended Solids (TSS)	mg/L	2	-	-	-	-	-	-	-	-	-	-	-	-		
Dissolved Sulphate (SO4)	mg/L	2	-	-	55	53	56	38	19	20	38	43	35	30		
Turbidity	NTU	0.1	-	-	350.0	300.0	470.0	1.1	5.9	5.7	160	490	>1000	690		
Conductivity	uS/cm	1	-	511	610	630	640	500	580	590	620	680	580	640		

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated detection limit due to matrix interference.

(2) = Reporting limit was increased due to turbidity.

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit</p>

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Provincia	Har Mar		Criteria*					MW 9	13-2				
Parameter	Units	RDL		AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Anion Sum	me/L	N/A	-	-	6.90	6.30	6.58	6.42	6.36	6.33	6.18	-	5.79
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	-	232.0	205.0	219.0	210.0	210.0	220	220	-	220
Calculated TDS	mg/L	1.00	-	331.0	380.0	346.0	368.0	361.0	353.0	350	340	-	320
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	-	1.00	1.00	1.00	2.00	2.60	1.3	1.7	-	<
Cation Sum	me/L	N/A	-	-	6.50	5.66	6.19	6.10	5.99	5.97	6.01	-	5.61
Hardness (CaCO3)	mg/L	1.00	-	245	270	240	250	260	250	250	250	-	230
Ion Balance (% Difference)	%	N/A	-	-	2.60	5.35	3.05	2.56	3.00	2.93	1.39	-	1.58
Langelier Index (@ 20C)	N/A	N/A	-	-	0.50	0.53	0.54	0.68	0.90	0.591	0.711	-	0.368
Langelier Index (@ 4C)	N/A	N/A	-	-	0.30	0.28	0.29	0.43	0.65	0.342	0.462	-	0.119
Nitrate (N)	mg/L	0.05	-	-	<	<	۲	<	<	<	<	-	<
Saturation pH (@ 20C)	N/A	N/A	-	-	7.20	7.28	7.20	7.23	7.22	7.22	7.2	-	7.24
Saturation pH (@ 4C)	N/A	N/A	-	-	7.40	7.53	7.45	7.47	7.47	7.47	7.45	-	7.49
Total Alkalinity (Total as CaCO3)	mg/L	30	-	205	2,320	210	220	210	220	220	220	-	220
Dissolved Chloride (CI)	mg/L	1	-	24	24	23	21	20	20	19	18	-	16
Colour	TCU	5.00	-	-	<	<	<5	<5	<	<	<	-	>
Nitrate + Nitrite	mg/L	0.05	-	<	<	<	<	<	<	<	<	-	<
Nitrite (N)	mg/L	0.01	-	0.02	<	<	<	<	<	<	<	-	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	<0.01	<	<	<	<	<	<	<	-	<0.050
Total Organic Carbon (C)	mg/L	0.50	-	2.00	0.50	1.50	1.30	1.00	0.88	1	1	-	1
Orthophosphate (P)	mg/L	0.01	-	-	<	<	<	<	<	<	<	-	<
рН	pН	N/A	-	7.50	7.70	7.81	7.74	7.90	8.12	7.81	7.91	-	7.61
Reactive Silica (SiO2)	mg/L	0.50	-	-	19.00	18.00	19.00	19.00	18.00	18	17	-	18
Total Suspended Solids (TSS)	mg/L	2	_	-	-	-	-	-	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	2	_	-	73	74	76	78	71	68	56	-	46
Turbidity	NTU	0.1	-	-	13.0	5.4	13.0	3.9	4.0	1.1	6.1	-	1.7
Conductivity	uS/cm	1	-	549	560	570	580	570	580	560	550	-	530

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated detection limit due to matrix interference.

(2) = Reporting limit was increased due to turbidity.

RDL = Reportable Detection Limit

MW = Monitor Well

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

0.0

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Denomotor	Lin:te	RDL	Onitoniat	MW 93-2A												
Parameter	Units		Criteria*	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	Oct 12, 2017 MW-DUP			
Anion Sum	me/L	N/A	-	2.69	6.43	1.31	2.42	1.37	1.72	2.27	2.22	1.88	2.05			
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	62.0	212.0	14.0	61.0	11.0	14	7.7	14	17	25			
Calculated TDS	mg/L	1.00	-	184.0	351.0	87.0	145.0	96.0	120	150	150	130	140			
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	<	1.00	<	<	<	۷	v	<	~	<			
Cation Sum	me/L	N/A	-	3.43	5.70	1.15	2.09	1.44	1.87	1.96	2.31	1.88	2.08			
Hardness (CaCO3)	mg/L	1.00	-	120	240	31	73	34	42	61	60	43	52			
Ion Balance (% Difference)	%	N/A	-	12.10	`	6.50	7.32	2.49	4.18	7.33	1.99	0	0.73			
Langelier Index (@ 20C)	N/A	N/A	-	-1.51	0.48	-3.48	-1.21	-3.03	-3.37	-3.6	-2.85	-3.09	-2.46			
Langelier Index (@ 4C)	N/A	N/A	-	-1.76	0.24	-3.73	-1.46	-3.28	-3.62	-3.85	-3.1	-3.34	-2.71			
Nitrate (N)	mg/L	0.05	-	<	<	0.15	<	<	<	0.43	<	<	<			
Saturation pH (@ 20C)	N/A	N/A	-	8.06	7.27	9.25	8.27	9.28	9.14	9.26	9.02	9.08	8.82			
Saturation pH (@ 4C)	N/A	N/A	-	8.31	7.52	9.50	8.52	9.53	9.39	9.51	9.28	9.33	9.07			
Total Alkalinity (Total as CaCO3)	mg/L	30	-	62	210	14	61	12	14	7.7	14	17	25			
Dissolved Chloride (Cl)	mg/L	1	-	21	23	14	16	17	22	31	31	28	26			
Colour	TCU	5.00	-	6.00	<	79.00	120.00	41.00	65	14	36	>	110 (2)			
Nitrate + Nitrite	mg/L	0.05	-	<	<	<	<	<	v	0.43	<	<	<			
Nitrite (N)	mg/L	0.01	-	<	<	<	<	<	v	v	<	<0.010	<0.010			
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	0.24	<	0.35	0.25	0.40	0.53	0.21	0.36	0.35	0.34			
Total Organic Carbon (C)	mg/L	0.50	-	6.20	1.30	16.00	17.00	22.00	16	13	10.7	11	10			
Orthophosphate (P)	mg/L	0.01	-	<	<	<	<	<	<	<	0.012	<	<			
рН	рН	N/A	-	6.55	7.75	5.77	7.06	6.25	5.77	5.66	6.18	5.99	6.37			
Reactive Silica (SiO2)	mg/L	0.50	-	12.00	18.00	6.40	11.00	5.70	6.4	7	8	7.3	8.2			
Total Suspended Solids (TSS)	mg/L	2	-	-		-	-	-	-	-	-		-			
Dissolved Sulphate (SO4)	mg/L	2	_	41	74	31	36	32	40	58	51	36	39			
Turbidity	NTU	0.1	-	84.0	3.2	100.0	190.0	120.0	44	70	160	40	35			
Conductivity	uS/cm	1	-	260	570	140	230	150	190	260	250	220	230			

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated detection limit due to matrix interference.

(2) = Reporting limit was increased due to turbidity.

RDL = Reportable Detection Limit

MW = Monitor Well

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

0.0

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

									MW	10-1					
Parameter	Units	RDL	Criteria*		Dec 13, 2010	DUP-01	Dec 13, 2010 DUP-02	Sep 02, 2011	Aug 30, 2012		Aug 28, 2013 DUP-05	NOV 25, 2014	Nov 25, 2014 Dup-07	Dec 08, 2015	
Anion Sum	me/L	N/A	-	3.87	2.63	3.89	2.70	3.48	3.24	2.92	2.96	3.11	3.16	-	2.30
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	94.0	92.0	96.0	95.0	144.0	140	120	120	96	98	-	92
Calculated TDS	mg/L	1.00	-	215.0	147.0	217.0	149.0	185.0	174	160	160	170	170	-	130
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	<	<	<	<	<	1.1	<	<	<	<	-	<
Cation Sum	me/L	N/A	-	3.60	2.55	3.66	2.57	3.27	3.11	2.89	2.91	2.99	3.01	-	2.13
Hardness (CaCO3)	mg/L	1.00	-	100	110	100	110	150	140	130	130	130	130	-	90
Ion Balance (% Difference)	%	N/A	-	3.61	1.54	3.05	2.47	3.11	2.05	0.52	0.85	1.97	2.43	-	3.84
Langelier Index (@ 20C)	N/A	N/A	-	-0.23	-0.79	-0.31	-0.68	0.34	0.365	-0.202	-0.192	-0.006	0.007	-	-0.424
Langelier Index (@ 4C)	N/A	N/A	-	-0.48	-1.05	-0.56	-0.93	0.09	0.115	-0.452	-0.442	-0.256	-0.243	-	-0.675
Nitrate (N)	mg/L	0.05	-	<	0.24	<	0.25	<	0.16	<	<	0.13	0.14	-	<
Saturation pH (@ 20C)	N/A	N/A	-	7.93	7.79	7.91	7.77	7.51	7.55	7.64	7.63	7.73	7.72	-	7.91
Saturation pH (@ 4C)	N/A	N/A	-	8.18	8.05	8.16	8.02	7.76	7.8	7.89	7.88	7.98	7.97	-	8.16
Total Alkalinity (Total as CaCO3)	mg/L	30	-	95	92	96	96	140	140	120	120	96	98	-	93
Dissolved Chloride (CI)	mg/L	1	-	56	12	56	12	6	3.8	5.4	5.8	26	26	-	5.3
Colour	TCU	5.00	-	10.00	9.00	6.00	13.00	9.00	5.6	<	<	<	<	-	7.2
Nitrate + Nitrite	mg/L	0.05	-	<	<	<	<	0.90	0.16	<	<	0.13	0.14	-	<
Nitrite (N)	mg/L	0.01	-	<	<	<	<	<	<	<	<	<	<	-	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	0.14	<0.05	0.14	<0.05	0.28	<	<	<	<	<	-	<0.050
Total Organic Carbon (C)	mg/L	0.50	-	8 (1)	33.00	8 (1)	18.00	18.00	2.7	3	3.1	2.2	2.3	-	4.2
Orthophosphate (P)	mg/L	0.01	-	<	<	<	<	<	<	<	<	<	<	-	<
pH	рН	N/A	-	7.70	7.00	7.60	7.09	7.85	7.91	7.44	7.44	7.73	7.72	_	7.48
Reactive Silica (SiO2)	mg/L	0.50	-	7.00	6.20	7.00	6.00	8.00	7.4	6.9	7	4.5	4.5	_	11.0
Total Suspended Solids (TSS)	mg/L	2	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	2	-	18	21	19	21	20	17	17	18	21	21	-	14
Turbidity	NTU	0.1	-	640.0	>1000	570.0	540.0	320.0	26	110	110	37	38	-	38
Conductivity	uS/cm	1	-	380	250	380	260	320	300	270	280	300	300	-	230

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) = Elevated detection limit due to matrix interference.

(2) = Reporting limit was increased due to turbidity.

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit</p>

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

		221	0 11 1 1					MW	10-1A				
Parameter	Units	RDL	Criteria*	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Sep 02, 2011 DUP-A	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Dec 08, 2015 DUP1	Oct 12, 2017
Anion Sum	me/L	N/A	-	3.86	3.08	1.43	2.11	1.44	1.66	2.92	2.22	2.20	1.79
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	94.0	114.0	50.0	77.0	51.0	49	90	72	71	67
Calculated TDS	mg/L	1.00	-	215.0	171.0	95.0	122.0	95.0	100	160	130	130	110
Carb. Alkalinity (calc. as CaCO3)	mg/L	1.00	-	v	v	~	<	<	<	<	<	~	<
Cation Sum	me/L	N/A	-	3.61	3.08	1.57	1.98	1.59	1.61	2.76	2.05	2.05	1.68
Hardness (CaCO3)	mg/L	1.00	-	100	140	61	84	61	68	120	85	85	65
Ion Balance (% Difference)	%	N/A	-	3.35	0.00	4.67	3.18	4.95	1.53	2.82	3.98	3.53	3.17
Langelier Index (@ 20C)	N/A	N/A	-	-0.36	-0.18	-1.18	-0.60	-1.11	-1.51	-0.083	-0.792	-0.799	-0.898
Langelier Index (@ 4C)	N/A	N/A	-	-0.61	-0.43	-1.43	-0.85	-1.36	-1.76	-0.333	-1.04	-1.05	-1.15
Nitrate (N)	mg/L	0.05	-	<	0.26	0.10	0.08	0.08	0.068	0.069	0.11	0.11	0.064
Saturation pH (@ 20C)	N/A	N/A	-	7.92	7.64	8.32	8.00	8.31	8.29	7.76	8.04	8.05	8.19
Saturation pH (@ 4C)	N/A	N/A	-	8.17	7.89	8.57	8.25	8.56	8.54	8.01	8.3	8.3	8.44
Total Alkalinity (Total as CaCO3)	mg/L	30	-	95	110	51	77	51	49	90	72	71	67
Dissolved Chloride (Cl)	mg/L	1	-	56	14	3	4	3	5.7	27	11	11	4.9
Colour	TCU	5.00	-	7.00	5.00	22.00	7.70	18.00	8.2	16	7.4	8.1	10
Nitrate + Nitrite	mg/L	0.05	-	۲	v	0.11	0.08	0.08	0.068	0.069	0.11	0.11	0.064
Nitrite (N)	mg/L	0.01	-	۲	v	、	<	<	<	<	<	、	<0.010
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	0.15	0.09	~	0.11	<	<	<	0.13	0.11	0.16
Total Organic Carbon (C)	mg/L	0.50	-	8 (1)	2.30	15.00	8.70	18.00	34(1)	7.1 (2)	14.9	18.5	<50 (2)
Orthophosphate (P)	mg/L	0.01	-	<	<	<	<	<	<	<	0.012	0.012	<
pH	рΗ	N/A	-	7.56	7.46	7.14	7.40	7.20	6.78	7.68	7.25	7.25	7.29
Reactive Silica (SiO2)	mg/L	0.50	-	7.10	7.60	10.00	10.00	10.00	11	2.9	9.7	10	11
Total Suspended Solids (TSS)	mg/L	2	_	-	-	7,000	-	9,400	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	2	_	19	19	22	21	22	24	16	22	22	14
Turbidity	NTU	0.1	-	520.0	110.0	>1000	240.0	>1000	>1000	310	710	>1000	800
Conductivity	uS/cm	1	-	380	300	150	200	150	160	280	200	200	160

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in

a Non-Potable Ground Water Condition.

(1) = Elevated detection limit due to matrix interference.

(2) = Reporting limit was increased due to turbidity.

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

							MW	93-1				
Parameter	RDL	Criteria*	Aug 19, 2009	Aug 19, 2009 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Aluminum (Al)	5.0	-	100	120	37	17	73.7	73.7	8.3	14	-	9.5
Antimony (Sb)	1.0	20,000	<	<	<	<	<	<	<	<	-	<
Arsenic (As)	1.0	1,900	<	<	<	<	<	<	<	1.2	-	<
Barium (Ba)	1.0	29,000	130	150	88	70	77.9	77.9	100	85	-	100
Beryllium (Be)	1.0	67	<	<	<	<	<1	<1	<	<	-	<
Bismuth (Bi)	2.0	-	<	<	<	<	<2	<2	<	<	-	<
Boron (B)	50	45,000	120	120	100	99	63	63	110	98	-	120
Cadmium (Cd)	0.010	2.7	0.4	<	0.02	0.05	<	<	0.044	0.022	-	<
Calcium (Ca)	100	-	-	-	26,000	29,000	43,500	43,500	31,000	30,000	-	30,000
Chromium (Cr)	1.0	810/140 ⁽¹⁾	<	<	<	<	<	<	<	<	-	<
Cobalt (Co)	0.4	66	<	<	<	<	0.44	0.44	<	<	-	<
Copper (Cu)	2.0	87	6	3	<	<	<2	<2	<	<	-	<
Iron (Fe)	50	-	670	550	<	<	65	65	570	330	-	<
Lead (Pb)	0.5	25	4.6	1	<	<	<	<	<	<	-	<
Magnesium (Mg)	100	-	-	-	14,000	12,000	16,400	16,400	15,000	14,000	-	14,000
Manganese (Mn)	2.0	-	110	120	120	81	60	60	110	120	-	87
Molybdenum (Mo)	2.0	9,200	6	6	20	18	16.3	16.3	15	15	-	15
Nickel (Ni)	2.0	490	6	<	<	<	<	<	<	<	-	<
Phosphorus (P)	100	-	-	-	<	<	-	-	<	<	-	<
Potassium (K)	100	-	-	-	1,900	2,000	2,680	2,680	1,800	1,700	-	1,600
Selenium (Se)	1.0	63	<	<	<	<	<	<	<	<	-	<
Silver (Ag)	0.1	1.5	<	<	<	<	<	<	<	<	-	<
Sodium	100	2,300,000	-	-	-	-	76,100	70,400	69,000	69,000	-	68,000
Strontium (Sr)	2.0	-	250	260	230	220	263	263	240	220	-	230
Thallium (TI)	0.1	510	<	<	<	<	<	<	<	<	-	<
Tin (Sn)	2.0	-	<	<	<	<	<2	<2	<	<	-	<
Titanium (Ti)	2.0	-	3	3	<	<	2.6	2.6	<	<	-	<
Uranium (U)	0.1	420	0.2	0.2	0.3	0.2	3.06	3.06	0.16	0.34	-	0.28
Vanadium (V)	2.0	250	<	<	<	<	<	<	<	<	-	<
Zinc (Zn)	5.0	1,100	360	32	10	10	<	<	12	10	-	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) Criteria for Total Chromium = 2000 μ g/L, Criteria for Chromium (VI) = 110 μ g/L.

RDL = Reportable Detection Limit

< = Parameter below detection limit

- = Not analysed/No criteria

MW = Monitor Well

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Devemeter		Critorio*						MW 93-1A					
Parameter	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 30, 2012 DUP-03	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Aluminum (Al)	5.0	-	42000	13,000	15	31	5.9	5.9	13.0	10	18	33	9.8
Antimony (Sb)	1.0	20,000	<	<	<	<	<	<	<	<	<	<	<
Arsenic (As)	1.0	1,900	36	7	<	<	<	<	<	<	<	<	<
Barium (Ba)	1.0	29,000	426	240	79	73	68.6	68.6	107	83	71	74	71
Beryllium (Be)	1.0	67	2	<	<	<	<	<	<	<	<	<	<
Bismuth (Bi)	2.0	-	-	<	<	<	<	<	<	<	<	<	<
Boron (B)	50	45,000	-	58	56	57	96	96	118	69	64	59	79
Cadmium (Cd)	0.010	2.7	3	<	0.03	0.07	<	<	<	<	0.012	<	0.013
Calcium (Ca)	100	-	-	-	40,000	45,000	26,300	26,300	33,000	42,000	45,000	35,000	47,000
Chromium (Cr)	1.0	810/140 ⁽¹⁾	54	39	<	<	<	<	<	<	<	<	<
Cobalt (Co)	0.4	66	110	170	0.7	0.4	<	<	<	1	<	3	1
Copper (Cu)	2.0	87	370	170	2	<	<	<	6.8	<	<	<	3
Iron (Fe)	50	-	370	37000	<	<	<	<	55	530	<	<	110
Lead (Pb)	0.5	25	45	17	<	<	<	<	<	<	<	<	<
Magnesium (Mg)	100	-	-	-	17,000	14,000	12,200	12,200	15,400	17,000	17,000	16,000	17,000
Manganese (Mn)	2.0	-	2,620	1200	160	57	259	259	103	160	71	68	140
Molybdenum (Mo)	2.0	9,200	20	11	15	14	19.2	19.2	10.7	16	15	18	15
Nickel (Ni)	2.0	490	154	87	<	<	<	<	<	<	<	3.1	2
Phosphorus (P)	100	-	-	-	<	130	-	-	<	<	<	<	<
Potassium (K)	100	-	-	-	2,500	2,700	1,830	1,830	1,730	2,700	2,500	2,400	2,500
Selenium (Se)	1.0	63	<1	<	<	<	<	<	<	<	<	<	<
Silver (Ag)	0.1	1.5	1	<	<	<	<	<	<	<	<	<	<
Sodium	100	2,300,000	-	-	-	-	68,600	68,200	68,600	80,000	85,000	77,000	75,000
Strontium (Sr)	2.0	-	-	300	300	280	192	192	249	280	280	230	290
Thallium (TI)	0.1	510	-	-	<	<	<	<	<	<	<	<	<
Tin (Sn)	2.0	-	-	<	<	<	<	<	<	<	<	<	<
Titanium (Ti)	2.0	-	-	720	<	2	<	<	<	<	<	<	<
Uranium (U)	0.1	420	-	6	2.9	2.8	0.4	0.4	0.21	2.3	3.1	5.0	2.4
Vanadium (V)	2.0	250	155	28	<	<	<	<	<	<	<	<	<
Zinc (Zn)	5.0	1,100	443	250	<	<	<	<	<	<	<	<	10

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) Criteria for Total Chromium = 2000 μ g/L, Criteria for Chromium (VI) = 110 μ g/L.

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit <(#) = Parameter below AMEC laboratory detection limit – = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter		Critorio*					MV	V 93-2				
Parameter	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Aluminum (Al)	5.0	-	484	460	9	<	<	<	5.4	6.2	-	7.8
Antimony (Sb)	1.0	20,000	<	<	<	<	<	<	<	<	-	<
Arsenic (As)	1.0	1,900	3	2	2	2	1.2	1.2	1.9	3.0	-	2.3
Barium (Ba)	1.0	29,000	131	180	170	160	171	171	170	190	-	150
Beryllium (Be)	1.0	67	<0.1	<	<	<	<	<	<	<	-	<
Bismuth (Bi)	2.0	-	<0.5	<	<	<	<	<	<	<	-	<
Boron (B)	50	45,000	-	1100	980	1100	<	<	1,100	980	-	1,000
Cadmium (Cd)	0.010	2.7	-	<	0.15	0.1	1160	1160	<0.010	<	-	<
Calcium (Ca)	100	-	-	-	69,000	80,000	77,300	77,400	75,000	76,000	-	70,000
Chromium (Cr)	1.0	810/140 ⁽¹⁾	1	<	<	<	<	<	<	<	-	<
Cobalt (Co)	0.4	66	1	<	<	0.4	<	<	<	<	-	0.4
Copper (Cu)	2.0	87	8	5	<	<	0.56	0.56	<	<	-	<
Iron (Fe)	50	-	1300	980	<	<	<	<	57	130	-	120
Lead (Pb)	0.5	25	5	2	<	<	<	<	<	<	-	<
Magnesium (Mg)	100	-	-	-	16,000	13,000	15,600	15,600	15,000	15,000	-	14,000
Manganese (Mn)	2.0	-	15,300	1200	880	950	1,120	1,120	980	720	-	1,000
Molybdenum (Mo)	2.0	9,200	2	<	<	<	<	<	<	<	-	<
Nickel (Ni)	2.0	490	1	<	<	<	<	<	<	<	-	<
Phosphorus (P)	100	-	-	-	<	150	-	-	<	<	-	<
Potassium (K)	100	-	-	-	1,200	1,400	1,560	1,560	1,300	1,300	-	1,300
Selenium (Se)	1.0	63	1	<	<	<	<	<	<	<	-	<
Silver (Ag)	0.1	1.5	-	<	<	<	<	<	<	<	-	<
Sodium	100	2,300,000	-	-	-	-	21,000	20,300	22,000	22,000	-	22,000
Strontium (Sr)	2.0	-	-	230	240	230	210	210	220	230	-	200
Thallium (TI)	0.1	510	-	<	<	<	<	<	<	<	-	<
Tin (Sn)	2.0	-	-	<	<	<	<	<	<	<	-	<
Titanium (Ti)	2.0	-	-	21	<	<	<	<	<	<	-	<
Uranium (U)	0.1	420	-	0	0.3	0.2	0.24	0.24	0.26	0.23	-	0.2
Vanadium (V)	2.0	250	2	<	<	<	<	<	<	<	-	<
Zinc (Zn)	5.0	1,100	33	41	19	18	5	5	<	<	-	5.6

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) Criteria for Total Chromium = 2000 μ g/L, Criteria for Chromium (VI) = 110 μ g/L.

RDL = Reportable Detection Limit MW = Monitor Well

< = Parameter below detection limit

- = Not analysed/No criteria 0.0

-	~	~	~
Page	3	ot	6

HISTORICAL GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Demonster	DDI	Quitoriet					M	W 93-2A				
Parameter	RDL	Criteria*	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	Oct 12, 2017 MW-DUP
Aluminum (Al)	5.0	-	630	<	150	86.6		290	270	170	220	180
Antimony (Sb)	1.0	20,000	<	<	<	<	<	<	<	<	<	<
Arsenic (As)	1.0	1,900	<	2	<	<	<	<	<	<	1.2	1.1
Barium (Ba)	1.0	29,000	69	180	39	54.1	54.1	48	90	54	49	51
Beryllium (Be)	1.0	67	<	<	<	<	<	<	<	<	<	<
Bismuth (Bi)	2.0	-	<	<	<	<	<	<	<	<	<	<
Boron (B)	50	45,000	440.0	1000	24	317	317	<	<	110	95	150
Cadmium (Cd)	0.010	2.7	11	0.15	3.5	0.304	0.304	0.32	11	0.80	0.31	0.32
Calcium (Ca)	100	-	-	69,000	9,000	20,600	20,600	11,000	16,000	15,000	11,000	14,000
Chromium (Cr)	1.0	810/140 ⁽¹⁾	<	<	<	<	<	<	<	<	<	<
Cobalt (Co)	0.4	66	1	<	1.4	1.19	1.19	0.93	5.2	2.9	2.2	2.3
Copper (Cu)	2.0	87	6	<	<	<	<	<	<	<	<	<
Iron (Fe)	50	-	9900	<	1900	3000	3000	12,000	730	7,700	8,600	8,900
Lead (Pb)	0.5	25	6.9	<	0.8	1.17	1.17	1	1	<	<	<
Magnesium (Mg)	100	-		16,000	2,200	5,220	5,220	3,300	4,900	5,200	3,600	4,200
Manganese (Mn)	2.0	-	4300	890	4,000	4,190	4,190	5,000	6,700	5,700	5,100	5,300
Molybdenum (Mo)	2.0	9,200	<	<	<	<	<	<	<	<	<	<
Nickel (Ni)	2.0	490	<	<	<	<	<	<	4.8	2.6	2.3	2.4
Phosphorus (P)	100	-	-	<	<	-	-	<	110	<	<	<
Potassium (K)	100	-	-	1,200	980	1,040	1,040	1,300	1,600	1,500	1,300	1,300
Selenium (Se)	1.0	63	<	<	<	<	<	<	<	<	<	<
Silver (Ag)	0.1	1.5	<	<	<	<	<	<	<	<	<	<
Sodium	100	2,300,000	-	-	-	11,000	9,100	12,000	15,000	18,000	15,000	15,000
Strontium (Sr)	2.0	-	100	240	41	70.6	70.6	52	77	68	55	61
Thallium (TI)	0.1	510	<	<	<	<	<	<	<	<	<	<
Tin (Sn)	2.0	-	<	<	<	<	<	<	<	<	<	<
Titanium (Ti)	2.0	-	20	<	2	<	<	2.2	<	<	<	<
Uranium (U)	0.1	420	0.3	0.3	<	<	<	<	<	<	<	<
Vanadium (V)	2.0	250	4	<	<	<	<	<	<	<	<	<
Zinc (Zn)	5.0	1,100	1,700	17	1,300	568	568	190	2,900	290	130	140

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) Criteria for Total Chromium = 2000 μ g/L, Criteria for Chromium (VI) = 110 μ g/L.

RDL = Reportable Detection Limit MW = Monitor Well

< = Parameter below detection limit <(#) = Parameter below AMEC laboratory detection limit - = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Demonster		Oritoriat						MW	10-1					
Parameter	RDL	Criteria*	Jul 16, 2010	Dec 13, 2010	Jul 16, 2010 DUP-01	Dec 13, 2010 DUP-02	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-05	Nov 25, 2014	Nov 25, 2014 DUP-07	Dec 08, 2015	Oct 12, 2017
Aluminum (Al)	5.0	-	200	38	160	36	41.8	41.8	30	26	12	17	-	8.5
Antimony (Sb)	1.0	20,000	<	<	<	<	<	<	<	<	<	<	-	<
Arsenic (As)	1.0	1,900	<	<	<	<	<	<	<	<	<	<	-	<
Barium (Ba)	1.0	29,000	100	36	110	38	50.2	50.2	38	38	41	41	-	37
Beryllium (Be)	1.0	67	<	<	<	<	<	<	<	<	<	<	-	<
Bismuth (Bi)	2.0	-	<	<	<	<	<	<	<	<	<	<	-	<
Boron (B)	50	45,000	45	9	38	9	<	<	<	<	<	<	-	<
Cadmium (Cd)	0.010	2.7	0.03	<	0.03	<	0.032	0.032	0.037	0.053	<	<	-	0.027
Calcium (Ca)	100	-	31,000	41,000	32,000	42,000	51,100	51,100	45,000	45,000	46,000	47,000	-	30,000
Chromium (Cr)	1.0	810/140 ⁽¹⁾	<	<	<	<	<	<	<	<	<	<	-	<
Cobalt (Co)	0.4	66	2.3	1.4	2.4	1.4	4.91	4.91	0.41	<	<	<	-	3.3
Copper (Cu)	2.0	87	5	9	5	9	7.3	7.3	5.8	6	3.8	4	-	4
Iron (Fe)	50	-	120	50	140	59	50	50	84	<	<	<	-	1000
Lead (Pb)	0.5	25	<	<	<	<	<	<	<	<	<	<	-	<
Magnesium (Mg)	100	-	5,800	2,300	5,900	2,300	4,540	4,540	4,100	4,000	3,900	3,900	-	3,500
Manganese (Mn)	2.0	-	390	190	390	170	239	239	27	26	12	13	-	310
Molybdenum (Mo)	2.0	9,200	16	3	16	3	2.5	2.5	<	<	<	<	-	<
Nickel (Ni)	2.0	490	6	6	6	6	6.5	6.5	2	2.1	<	<	-	4
Phosphorus (P)	100	-	<	150	<	<	-	-	<	<	<	<	-	<
Potassium (K)	100	-	6,400	1,100	6,400	980	1,360	1,360	1,200	1,300	1,100	1,100	-	810
Selenium (Se)	1.0	63	<	<	<	<	<	<	<	<	<	<	-	<
Silver (Ag)	0.1	1.5	<	<	<	<	<	<	<	<	<	<	-	<
Sodium	100	2,300,000	-	-	-	-	6,570	7,020	6,600	6,600	8,000	7,800	-	6,100
Strontium (Sr)	2.0	-	98	85	99	87	106	106	98	98	98	98	-	68
Thallium (TI)	0.1	510	<	<	<	<	<	<	<	<	<	<	-	<
Tin (Sn)	2.0	-	<	<	<	<	<	<	<	<	<	<	-	<
Titanium (Ti)	2.0	-	3	<	3	<	<	<	<	<	<	<	-	<
Uranium (U)	0.1	420	0.4	<	0.4	<	0.43	0.43	0.29	0.29	0.2	0.21	-	0.1
Vanadium (V)	2.0	250	<	<	<	<	<	<	<	<	<	<	-	<
Zinc (Zn)	5.0	1,100	5	11	6	11	9	9	8.2	11	<	<	-	13

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) Criteria for Total Chromium = 2000 μ g/L, Criteria for Chromium (VI) = 110 μ g/L.

RDL = Reportable Detection Limit MW = Monitor Well < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - DISSOLVED METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Devenuetor	DDI	Onitoniot					MW	10-1A				
Parameter	RDL	Criteria*	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Sep 02, 2011 DUP-A	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Dec 08, 2015 DUP1	Oct 12, 2017
Aluminum (Al)	5.0	-	100	11	74.5	74.5	68.3	58	75	32	33	17
Antimony (Sb)	1.0	20,000	、	<	<	<	<	<	<	<	<	<
Arsenic (As)	1.0	1,900	<	<	<	<	<	<	<	<	<	<
Barium (Ba)	1.0	29,000	110	62	28.8	28.8	29.4	35	22	39	38	40
Beryllium (Be)	1.0	67	<	<	<	<	<	<	<	<	<	<
Bismuth (Bi)	2.0	-	<	<	<	<	<	<	<	<	<	<
Boron (B)	50	45,000	42	13	<	<	<	<	<	<	<	<
Cadmium (Cd)	0.010	2.7	0.02	0.03	0.039	0.039	0.036	0.033	<	0.030	0.028	0.015
Calcium (Ca)	100	-	31,000	48,000	20,600	20,600	20,800	23,000	45,000	28,000	29,000	21,000
Chromium (Cr)	1.0	810/140 ⁽¹⁾	<	<	<	<	<	<	<	<	<	<
Cobalt (Co)	0.4	66	2.5	3.3	1.54	1.54	2.07	12	<	6.3	6.2	5
Copper (Cu)	2.0	87	4	<	9.4	9.4	9.1	11	6.8	5.8	5.6	5.3
Iron (Fe)	50	-	82	<	96	96	92	560	86	1,100	1,100	3600
Lead (Pb)	0.5	25	<	<	<	<	2.66	<	<	<	<	<
Magnesium (Mg)	100	-	5,900	3,900	2,190	2,190	2,150	2,500	1,800	3,300	3,200	2,700
Manganese (Mn)	2.0	-	400	380	106	106	139	860	3.3	590	590	530
Molybdenum (Mo)	2.0	9,200	14	5	8.5	8.5	6.1	3.2	<	<	<	<
Nickel (Ni)	2.0	490	5	6	8.9	8.9	8.3	11	<	6.4	6.5	5.5
Phosphorus (P)	100	-	<	<	-	-	-	<	<	<	<	<
Potassium (K)	100	-	6,400	1,400	714	714	693	720	850	710	690	620
Selenium (Se)	1.0	63	<	<	<	<	<	<	<	<	<	<
Silver (Ag)	0.1	1.5	<	<	<	<	<	0.15	<	<	<	<
Sodium	100	2,300,000	-	-	4,670	5,750	4,600	5,100	8,100	6,600	6,600	5,300
Strontium (Sr)	2.0	-	99	100	46.9	46.9	45.4	56	85	68	67	53
Thallium (TI)	0.1	510	<	<	<	<	<	<	<	<	<	<
Tin (Sn)	2.0	-	<	<	<	<	<	<	<	<	<	<
Titanium (Ti)	2.0	-	2	<	2.1	2.1	<	<	3.9	<	<	<
Uranium (U)	0.1	420	0.4	0.3	<	<	<	<	0.14	<	<	<
Vanadium (V)	2.0	250	<	<	<	<	<	<	<	<	<	<
Zinc (Zn)	5.0	1,100	5	10	8.9	8.9	10.1	6.9	<	8.4	7.7	7.3

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

(1) Criteria for Total Chromium = 2000 μ g/L, Criteria for Chromium (VI) = 110 μ g/L.

RDL = Reportable Detection Limit MW = Monitor Well

< = Parameter below detection limit

- = Not analysed/No criteria

0.0

HISTORICAL SURFACE WATER ANALYTICAL DATA - BTEX/mTPH 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

						Tot	tal Petroleu	um Hydrod	carbons (T	PH)	
Sample Location	Date Sampled	Benzene	Toluene	Ethyl-	Xylenes	F1	F2	F	-3		Comments
				benzene	-	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₂₁	C ₂₁ -C ₃₂	mTPH	
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ¹	<(0.05) ¹		<(0.05) ¹	<(0.15) ¹	-
	Aug 19, 2009	<	<	<	<	<	<		<	<	-
	Jul 16, 2010	<	<	<	<	<	<		<	<	-
	Dec 13, 2010	<	<	<	<	<	<		<	<	-
	Sep 02, 2011	<	<	<	<	<	<		<	<	-
SURFACE-UP	Nov 07, 2012	<	<	<	<	<	<		<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	<	-
	Nov 25, 2014	<	<	<	<	<	<	<	<	<	-
	Dec 08, 2015	<	<	<	<	<	<	<	<	<	-
	Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ¹	<(0.05) ¹		<(0.05) ¹	<(0.15) ¹	-
	Aug 19, 2009	<	<	<	<	<	<		<	<	_
	Jul 16, 2010	<		<	<	<	<		<	<	-
	Dec 13, 2010	<	<	<	<	<	<		<	<	-
SURACE-DOWN	Sep 02, 2011	<	0.02	<	<	<	<		<	<	-
SONAGE-DOWN	Nov 07, 2012	<	<	<	<	<	<		<	<	-
	Aug 28, 2013	<	<	<	<	<	<	<	<	<	-
	Nov 25, 2014	<	<	<	<	<	<	<	<	<	-
	Dec 08, 2015	<	<	<	<	<	<	<	<	<	-
	Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
SURFACE-DUP	Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
RDL	-	0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	0.1	-
B.C. Reg. 375/96										-	-
Generic Numbe		4.00	0.39	2.00	-	-	-	-	-	-	-
Standards for A	-									-	-
2012 RBCA Tier										1.5	Gasoline
Screening Lev		2.1	0.77	0.32	0.33	-	-	-	-	0.10	Diesel/#2
Protection of A	quatic Life [°]									0.10	#6 oil/lube

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report.

2. British Columbia Contaminated Site Regulation (B.C. Reg. 375/96) Schedule 6 Generic Numerical Water Standards for Aquatic Life (Aquatic Life Generic Standards - freshwater).

3. Atlantic RBCA (Risk-Based Corrective Action) Version 3.0 (July 2012) Tier I Surface Water Screening Levels for the Protection of Freshwater and Marine Aquatic Life.

RDL = Reportable Detection Limit

SURFACE-DUP = Field Duplicate of SURFACE-DOWN - = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Criteria*					SURF#	ACE-UP			-	
		•	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	-	<0.03	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	-	< 0.03	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	5.8	<0.04	<	<	<	<	<	<	<	<	<
Acenaphthylene	0.01	-	<0.03	<	<	<	<	<	<	<	<	<
Acridine	0.05	4.4	-	-	<	<	-	-	<	<	-	-
Anthracene	0.01	0.012	<0.01	<	<	<	<	<	<	<	<	<
Benzo(a)anthracene	0.01	0.018	<0.01	<	<	<	<	<	<	<	<	<
Benzo(a)pyrene	0.01	0.015	<0.01	<	<	<	<	<	<	<	<	<
Benzo(b)fluoranthene	0.01	-	<0.05	<	<	<	<	<	<	<	<	<
Benzo(g,h,i)perylene	0.01	-	< 0.03	<	<	<	<	<	<	<	<	<
Benzo(j)fluoranthene	0.01		-	-	-	-	<	<	<	<	<	<
Benzo(k)fluoranthene	0.01	-	<0.05	<	<	<	<	<	<	<	<	<
Chrysene	0.01	-	<0.04	<	<	<	<	<	<	<	<	<
Dibenz(a,h)anthracene	0.01	-	-	<	<	<	<	<	<	<	<	<
Fluoranthene	0.01	0.04	<0.03	<	<	<	<	<	<	<	<	<
Fluorene	0.01	3.0	<0.03	<	<	<	<	<	<	<	<	<
Indeno(1,2,3-cd)pyrene	0.01	-	<0.05	<	<	<	<	<	<	<	<	<
Naphthalene	0.2	1.1	-	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	-	<	0.01	<	<	<	<	<	<	<
Phenanthrene	0.01	0.4	<0.04	<	<	<	<	0.011	<	<	<	<
Pyrene	0.01	0.025	<	<	<	<	<	<	<	<	<	<
Quinoline	0.05	3.4	-	-	<	<	-	-	~	~	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit - = Not analysed/No criteria < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

= Above criteria for current sampling program

0.0

HISTORICAL SURFACE WATER ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	וחפ	Criteria*						SURFACE-DO	WN				
Farameter	NDL	Ginteria	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	SURFACE-DUP Oct 12, 2017
1-Methylnaphthalene	0.05	-	<0.03	<	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	-	<0.03	<	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	5.8	<0.04	<	<	<	<	<	<	<	<	<	<
Acenaphthylene	0.01	-	<0.03	<	<	<	<	<	<	<	<	<	<
Acridine	0.05	4.4	-	-	<	<	-	-	<	<	-	-	-
Anthracene	0.01	0.012	<0.01	<	<	<	<	<	<	<	<	<	<
Benzo(a)anthracene	0.01	0.018	<0.01	<	<	<	<	<	<	<	<	<	<
Benzo(a)pyrene	0.01	0.015	<0.01	<	<	<	<	<	<	<	<	<	<
Benzo(b)fluoranthene	0.01	-	<0.05	<	<	<	<	<	<	<	<	<	<
Benzo(g,h,i)perylene	0.01	-	<0.03	<	<	<	<	<	<	<	<	<	<
Benzo(j)fluoranthene	0.01		-	-	-	-	<	<	<	<	<	<	<
Benzo(k)fluoranthene	0.01	-	<0.05	<	<	<	<	<	<	<	<	<	<
Chrysene	0.01	-	<0.04	<	<	<	<	<	<	<	<	<	<
Dibenz(a,h)anthracene	0.01	-	NA	<	<	<	<	<	<	<	<	<	<
Fluoranthene	0.01	0.04	<0.03	<	<	<	<	<	<	<	<	<	<
Fluorene	0.01	3.0	<0.03	<	<	<	<	<	<	<	<	<	<
Indeno(1,2,3-cd)pyrene	0.01	-	<0.05	<	<	<	<	<	<	<	<	<	<
Naphthalene	0.2	1.1	NA	<	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	NA	<	<	<	<	<	<	<	<	<	<
Phenanthrene	0.01	0.4	<0.04	0.01	<	<	<	0.012	<	<	<	<	<
Pyrene	0.01	0.025	<0.01	<	<	<	<	<	<	<	<	<	<
Quinoline	0.05	3.4	-	-	<	<	-	-	<	<	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SURFACE-DUP = Field Duplicate of SURFACE-DOWN < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL SURFACE WATER ANALYTICAL DATA - PCBs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	eter RDL Crit	Criteria*		SURFACE-UP												
i arameter	RDE			Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017				
Total PCBs	0.05	-	<0.04	0.11	<	<	<	<	<	<	<	<				

Parameter	eter RDL Crit	Critoria*						SURFACE-DO	NMN				
Falameter	KDL			Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	SURFACE-DUP Oct 12, 2017
Total PCBs	0.05	-	<0.04	0.13	<	<	<	<	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SURFACE-DUP = Field Duplicate of SURFACE-DOWN < = Parameter below detection limit <(#) = Parameter below AMEC laboratory detection limit - = Not analysed/No criteria

HISTORICAL SURFACE WATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDI	Criteria*					SURFA	CE-UP				
i arameter	KDL	Cinteria	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Benzene	1	370	<	<	<	<	<	<	<	<	<	<
Bromodichloromethane	1	-	<	<	<	<	<	<	<	<	<	<
Bromoform	1	-	<	<	<	<	<	<	<	<	<	<
Bromomethane	0.5	-	<	<	<	<	<	<	<	<	<	<
Carbon Tetrachloride	0.5	13.3	<	<	<	<	<	<	<	<	<	<
Chlorobenzene	1	1.3	<	<	<	<	<	<	<	<	<	<
Chloroethane	8	-	<	<	<	<	<	<	<	<	<	<
Chloroform	1	1.8	<	<	<	<	<	<	<	<	<	<
Chloromethane	8	-	<	<	<	<	<	<	<	<	<	<
Dibromochloromethane	1	-	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	0.5	0.7	<	<	<	<	<	<	<	<	<	<
1,3-Dichlorobenzene	1	150	<	<	<	<	<	<	<	<	<	<
1,4-Dichlorobenzene	1	26	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	1	-	<	<	<	<	<	<	<	<	<	<
1,2-Dichloroethane	1	100	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<	<	<
trans-1,2-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<	<	<
1,2-Dichloropropane	0.5	-	<	<	<	<	<	<	<	<	<	<
cis-1,3-Dichloropropene	0.5	-	<	<	<	<	<	<	<	<	<	<
trans-1,3-Dichloropropene	0.5	-	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1	90	<	<	<	<	<	<	<	<	<	<
Methylene Chloride(Dichloromethane)	3	98.1	<	<	<	<	<	<	<	<	<	<
o-Xylene	1	-	<	<	<	<	<	<	<	<	<	<
p+m-Xylene	2	-	<	<	<	<	<	<	<	<	<	<
Styrene	1	72	<	<	<	<	<	<	<	<	<	<
Tetrachloroethylene	1	-	<	<	<	<	<	<	<	<	<	<
1,1,2,2-Tetrachloroethane	0.5	-	<	<	<	<	<	<	<	<	<	<
Toluene	1	2	<	<	<	<	2	<	<	<	<	<
Trichloroethylene	1	-	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<
1,1,2-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<
Trichlorofluoromethane (FREON 11)	8	-	<	<	<	<	<	<	<	<	<	<
Vinyl Chloride	0.5	-	0.2	<	<	<	<	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit

0.0 = Above criteria for current sampling program

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - VOCs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter		Onitonist						SURFACE-DOV	VN				
Parameter	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	SURFACE-DUP Oct 12, 2017
Benzene	1	370	<	<	<	<	<	<	<	<	<	<	<
Bromodichloromethane	1	-	<	<	<	<	<	<	<	<	<	<	<
Bromoform	1	-	<	<	<	<	<	<	<	<	<	<	<
Bromomethane	0.5	-	<	<	<	<	<	<	<	<	<	<	<
Carbon Tetrachloride	0.5	13.3	<	<	<	<	<	<	<	<	<	<	<
Chlorobenzene	1	1.3	<	<	<	<	<	<	<	<	<	<	<
Chloroethane	8	-	<	<	<	<	<	<	<	<	<	<	<
Chloroform	1	1.8	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	8	-	<	<	<	<	<	<	<	<	<	<	<
Dibromochloromethane	1	-	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	0.5	0.7	<	<	<	<	<	<	<	<	<	<	<
1,3-Dichlorobenzene	1	150	<	<	<	<	<	<	<	<	<	<	<
1,4-Dichlorobenzene	1	26	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichloroethane	1	100	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<	<	<	<
trans-1,2-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichloropropane	0.5	-	<	<	<	<	<	<	<	<	<	<	<
cis-1,3-Dichloropropene	0.5	-	<	<	<	<	<	<	<	<	<	<	<
trans-1,3-Dichloropropene	0.5	-	<	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1	90	<	<	<	<	<	<	<	<	<	<	<
Methylene Chloride(Dichloromethane)	3	98.1	<	<	<	<	<	<	<	<	<	<	<
o-Xylene	1	-	<	<	<	<	<	<	<	<	<	<	<
p+m-Xylene	2	-	<	<	<	<	<	<	<	<	<	<	<
Styrene	1	72	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethylene	1	-	<	<	<	<	<	<	<	<	<	<	<
1,1,2,2-Tetrachloroethane	0.5	-	<	<	<	<	<	<	<	<	<	<	<
Toluene	1	2	<	<	<	<	<	<	<	<	<	<	<
Trichloroethylene	1	-	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<
1,1,2-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<
Trichlorofluoromethane (FREON 11)	8	-	<	<	<	<	<	<	<	<	<	<	<
Vinyl Chloride	0.5	-	0.2	<	<	<	<	<	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SURFACE-DUP = Field Duplicate of SURFACE-DOWN < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	RDL	Criteria*					SURF	ACE-UP				
Farameter	Units	KUL	Criteria	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Anion Sum	me/L	N/A	-	-	4.8	1.14	0.34	0.68	0.610	0.64	0.82	1.02	0.94
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	118	38	6	17	7.6	11	10	9.3	18
Calculated TDS	mg/L	1	-	53	267	62	23	63	38.0	39	51	62	53
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	<	<	<	<	<	<	<	<	<
Cation Sum	me/L	N/A	-	-	4.8	1.05	0.43	1.45	0.650	0.74	0.85	1.04	0.9
Hardness (CaCO3)	mg/L	1	-	21.5	100	41	10	29	14	15	17	22	18
Ion Balance (% Difference)	%	N/A	-	-	0.6	4.11	11.7	36.2	3.17	7.25	1.8	0.97	2.17
Langelier Index (@ 20C)	N/A	N/A	-	-	-0.4	-1.36	-3.49	-3.19	-2.97	-2.82	-2.69	-2.42	-1.96
Langelier Index (@ 4C)	N/A	N/A	-	-	-0.7	-1.61	-3.74	3.44	-3.22	-3.07	-2.94	-2.67	-2.21
Nitrate (N)	mg/L	0.05	-	<	<	0.17	<	<	0.054	<	0.068	0.1	<
Saturation pH (@ 20C)	N/A	N/A	-	-	7.8	8.62	10.1	9.18	9.83	9.61	9.61	9.54	9.32
Saturation pH (@ 4C)	N/A	N/A	-	-	8.1	8.87	10.3	9.43	10.1	9.86	9.86	9.79	9.57
Total Alkalinity (Total as CaCO3)	mg/L	30	-	24	120	39	39	17	7.6	11	10	9.3	18
Dissolved Chloride (CI)	mg/L	1	120	8.9	79	5	6	7	12	12	17	24	18
Colour	TCU	5	-	-	44	38	49	140	67	65	52	44	41
Nitrate + Nitrite	mg/L	0.05	-	-	<	0.17	<	<	0.054	<	0.068	0.1	<
Nitrite (N)	mg/L	0.01	0.06	<0.015	<	<	<	<	<	<	<	<	<
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	-	0.1	<	<	<	<	<	<	<	<
Total Organic Carbon (C)	mg/L	0.5	-	9.5	5.7	6	6.4	41	7.9	8.2	6.4	7.16	7.5
Orthophosphate (P)	mg/L	0.01	-	-	<	<	<	<	<	<	<	<	<
рН	рН	N/A	6.5 - 9	6.9	7.4	7.26	6.58	5.99	6.86	6.79	6.92	7.12	7.36
Reactive Silica (SiO2)	mg/L	0.5	-	-	6.3	1.5	1.5	3.5	2.1	1.5	2.3	2.3	1.8
Total Suspended Solids (TSS)	mg/L	2	-	-	-	-	-	840	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	2	-	-	8	11	3	-	5.7	3.2	6.7	7.0	2.8
Turbidity	NTU	0.1	-	-	2.9	3.8	2.2	30	0.72	1.6	3	1.2	0.72
Conductivity	uS/cm	1	-	87	470	110	43	72	66	72	91	120	120

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

< = Parameter below detection limit

= Above criteria for current sampling program 0.0

- = Not analysed/No criteria

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Deremeter	Units	RDL	Critorio*					÷	SURFACE-DOV	VN				
Parameter	Units	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	SURFACE-DUP Oct 12, 2017
Anion Sum	me/L	N/A	-	-	3.78	2.69	1.53	3.8	0.630	0.69	0.84	1.12	1.07	1.09
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	150	117	12	159	8.2	12	10	9.1	21	22
Calculated TDS	mg/L	1	-	145	205	140	122	204	39.0	41	51	66	61	61
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	3	<	<	<	<	<	<	<	<	<
Cation Sum	me/L	N/A	-	-	3.8	2.54	2.4	3.85	0.650	0.74	0.84	1.09	1.02	1.03
Hardness (CaCO3)	mg/L	1	-	138	170	110	70	170	14	16	18	23	21	21
Ion Balance (% Difference)	%	N/A	-	-	0.26	2.87	22.1	0.65	1.56	3.5	0.0	1.4	2.4	2.8
Langelier Index (@ 20C)	N/A	N/A	-	-	0.996	-0.099	-2.64	0.248	-2.95	-2.57	-2.73	-2.47	-1.92	-1.42
Langelier Index (@ 4C)	N/A	N/A	-	-	0.746	-0.35	-2.89	-0.002	-3.20	-2.82	-2.98	-2.72	-2.17	-1.67
Nitrate (N)	mg/L	0.05	-	<	<	<	2	1.6	0.058	<	0.076	0.072	<	<
Saturation pH (@ 20C)	N/A	N/A	-	-	7.39	7.69	9.01	7.39	9.80	9.56	9.59	9.53	9.2	9.18
Saturation pH (@ 4C)	N/A	N/A	-	-	7.64	7.94	9.26	7.64	10.0	9.81	9.85	9.79	9.45	9.43
Total Alkalinity (Total as CaCO3)	mg/L	30	-	136	150	120	120	160	8.2	12	10	9.1	21	22
Dissolved Chloride (CI)	mg/L	1	120	3.6	4	1	23	8	12	13	16	26	20	22
Colour	TCU	5	-	-	23	39	120	32	78	71	57	47	38	37
Nitrate + Nitrite	mg/L	0.05	-	-	<	<	2	1.6	0.058	<	0.076	0.072	<	<
Nitrite (N)	mg/L	0.01	0.06	<0.015	<	<	<	<	<	<	<	<	<	<
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	-	-	<	0.19	0.06	<	<	<	<	<	0.23	0.13
Total Organic Carbon (C)	mg/L	0.5	-	9.2	4.3	5.4	18	2.8	7.9	7.9	6.8	7.8	7.3	7.3
Orthophosphate (P)	mg/L	0.01	-	-	<	<	<	<	<	<	<	<	<	<
рН	рΗ	N/A	6.5 - 9	7.48	8.39	7.59	6.37	7.64	6.85	6.99	6.87	7.06	7.28	7.76
Reactive Silica (SiO2)	mg/L	0.5	-	-	4	3.1	7.4	1.8	2.2	1.6	2.4	2.3	2.1	2.1
Total Suspended Solids (TSS)	mg/L	2	-	-	-	-	-	160	-	-	-	-	-	-
Dissolved Sulphate (SO4)	mg/L	2	-	-	29	15	24	-	5.8	3.5	7.8	8.8	4.8	4.9
Turbidity	NTU	0.1	-	-	5.2	39	140	5.6	0.88	0.77	4.4	1.7	0.55	0.73
Conductivity	uS/cm	1	-	275	290	240	170	340	67	76	94	120	110	140

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SURFACE-DUP = Field Duplicate of SURFACE-DOWN < = Parameter below detection limit</p>

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL SURFACE WATER ANALYTICAL DATA - METALS 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	RDL	Criteria*					SURF	ACE-UP		
Farameter	Units	KDL	Griteria	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014
Aluminum (Al)	ug/L	5.0	100 ⁽¹⁾	484	18	108	257	1,140	113	86	270
Antimony (Sb)	ug/L	1.0	-	<	<	<	<	-	<	<	<
Arsenic (As)	ug/L	1.0	5.0	3	<	<	<	2.50	<	<	<
Barium (Ba)	ug/L	1.0	-	131	26	22.3	9.4	132.0	8.9	9.1	11
Beryllium (Be)	ug/L	1.0	-	<0.1	<	~	<	<	<	<	<
Bismuth (Bi)	ug/L	2.0	-	<0.5	<	<	<	<	<	<	<
Boron (B)	ug/L	50	-	-	14	9.4	6.9	<50	<	<	<
Cadmium (Cd)	ug/L	0.010	0.04 ⁽²⁾	0.273	<	0.028	0.04	0.066	<	<	<
Calcium (Ca)	ug/L	100	-	-	-	12,900	2,960	8,230	3,870	4,500	4,900
Chromium (Cr)	ug/L	1	8.9/1.0 ⁽³⁾	1	<	<	<	2.3	<	<	<
Hexavalent Chromium (Cr ⁶⁺)	ug/L	0.5	1.00						<	0.61	0.63
Cobalt (Co)	ug/L	0.4	-	1	<	<	<	1.9	<	<	<
Copper (Cu)	ug/L	2	2 ⁽⁴⁾	8	<	<	<	5.3	<	<	5
Iron (Fe)	ug/L	50	300	1,300	1,300	289	722	16,700	387	530	310
Lead (Pb)	ug/L	0.5	1, 2 ⁽⁵⁾	5	<	<	<	0.5	<	<	<
Magnesium (Mg)	ug/L	100	-	-	-	2,140	713	100	1,040	1,000	1,200
Manganese (Mn)	ug/L	2	-	1,260	230	98	142	2	41	110	49
Molybdenum (Mo)	ug/L	2	73.00	2	3.0	<	<	2	<	<	<
Nickel (Ni)	ug/L	2	25, 65 ⁽⁶⁾	1	<	<	<	2	<	<	<
Phosphorus (P)	ug/L	100	-	-	-	<	<	-	<	<	<
Potassium (K)	ug/L	100	-	-	-	588	295	100	363	310	860
Selenium (Se)	ug/L	1	1.0	1	<	<	<	1	<	<	<
Silver (Ag)	ug/L	0.1	0.1	<	v	۲	<	0.1	<	<	<
Sodium (Na)	ug/L	100	-	-	-	4,720	3,680	100	7,930	9,300	11,000
Strontium (Sr)	ug/L	2	-	-	90	40.7	9.7	2	13.4	16	16
Thallium (TI)	ug/L	0.1	0.8	-	<	<	<	0.1	<	<	<
Tin (Sn)	ug/L	2	-	-	<	<	<	2	<	<	<
Titanium (Ti)	ug/L	2	-	-	<	2.1	7.9	2	3.1	2	5
Uranium (U)	ug/L	0.1	-	-	0.2	<	<	0.1	<	<	<
Vanadium (V)	ug/L	2	-	<	<	<	<	2	<	<	<
Zinc (Zn)	ug/L	5	30	33	<	9.2	10.7	5	<	<	18
Hardness (CaCO3)	mg/L	1	-	21.5	100	41	10	29	14	15	17
рН	рН	-	6.5 - 9	6.9	7.4	7.26	6.58	5.99	6.86	6.79	6.92

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

(1) Aluminum guideline = 5 ug/L at pH < 6.5; 100 ug/L at pH \ge 6.5.

(2) Cadmium guideline = $10^{\{0.83\}\log(hardness)\}-2.46\}}$

(3) Criteria for Chromium (III) = 8.9 ug/L, Criteria for Chromium (VI) = 1.0 ug/L.

(4) Copper guideline = 2 ug/L at [CaCO₃] = 0-120 mg/L; 3 ug/L at [CaCO₃] = 120-180 mg/L; 4 ug/L at [CaCO₃] > 180 mg/L.

(5) Lead guideline = 1 ug/L at [CaCO₃] = 0-60 mg/L; 2 ug/L at [CaCO₃] = 60-120 mg/L; 4 ug/L at [CaCO₃] = 120-180 mg/L; 7 ug/L at [CaCO₃] > 180 mg/L.

(6) Nickel guideline = 25 ug/L at [CaCO₃] = 0-60 mg/L; 65 ug/L at [CaCO₃] = 60-120 mg/L; 110 ug/L at [CaCO₃] = 120-180 mg/L; 150 ug/L at [CaCO₃] > 180 mg/L.

RDL = Reportable Detection Limit

< = Parameter below detection limit

= Above criteria for current sampling program 3

- = Not analysed/No criteria

<(#) = Parameter below AMEC laboratory detection limit

Dec 08, 2015	Oct 12, 2017
99	43
<	<
<	<
9.1	6.9
<	<
<	<
<	<
~	<
6,400	5,300
<	<
<	<
<	<
<	<
440	420
<	<
1,300	1,100
88	85
<	<
<	<
<	<
550	340
<	<
<	<
13,000	12,000
19	17
<	<
<	<
11	<
<	<
<	<
<	<
ND	18
7.12	7.36

HISTORICAL SURFACE WATER ANALYTICAL DATA - METALS 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Devenueter	Linita		Oritoriat						SURFACE-DO	WN				
Parameter	Units	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Nov 07, 2012	Aug 28, 2013	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017	SURFACE-DUP Oct 12, 2017
Aluminum (Al)	ug/L	5.0	100 ⁽¹⁾	42,000	69	527	5,210	941	117	83	270	110	61	62
Antimony (Sb)	ug/L	1.0	-	<	<	<	<	<	<	<	<	<	~	<
Arsenic (As)	ug/L	1.0	5.0	36	<	1.1	3.3	2.5	<	<	<	<	v	<
Barium (Ba)	ug/L	1.0	-	426	82	102	289	179	8.6	8.6	11	9.3	7.4	7.6
Beryllium (Be)	ug/L	1.0	-	1.8	~	<	<	<	<	<	<	<	v	<
Bismuth (Bi)	ug/L	2.0	-	<0.1	~	<	<	<	<	<	<	<	۷	<
Boron (B)	ug/L	50	-	-	22	27.1	9	<	<	<	<	<	v	<
Cadmium (Cd)	ug/L	0.010	0.04 ⁽²⁾	2.65	<	0.044	0.232	-	<	<	<	<	<	<
Calcium (Ca)	ug/L	100	-	-	-	40,100	18,300	62,300	3,890	4,500	5,000	6,800	6,200	6,300
Chromium (Cr)	ug/L	1	8.9/1.0 ⁽³⁾	110	<	<	8	163	<	<	<	<	<	<
Hexavalent Chromium (Cr ⁶⁺)	ug/L	0.5	1.00						<	0.68	0.74	<	<	<
Cobalt (Co)	ug/L	0.4	-	307	<	0.9	6.69	1.98	<	<	<	<	<	<
Copper (Cu)	ug/L	2	2 ⁽⁴⁾	370	<	12.7	32.9	3	<	<	<	<	<	<
Iron (Fe)	ug/L	50	300	59,000	380	1,820	10,900	4,130	382	440	300	270	300	310
Lead (Pb)	ug/L	0.5	1, 2 ⁽⁵⁾	45	<	1.48	7.64	0.69	<	<	<	<	<	<
Magnesium (Mg)	ug/L	100	-	-	-	3,320	5,840	3,830	1,050	1,100	1,300	1,500	1,300	1,300
Manganese (Mn)	ug/L	2	-	2,620	62	481	427	1,760	38	66	41	66	55	60
Molybdenum (Mo)	ug/L	2	73.00	0.09	<	<	<	<2	<	<	<	<	<	<
Nickel (Ni)	ug/L	2	25, 65 ⁽⁶⁾	2	<	3	16.7	-	<	<	<	<	<	<
Phosphorus (P)	ug/L	100	-	-	-	120	852	-	<	<	<	<	<	<
Potassium (K)	ug/L	100	-	-	-	1080	4060	1030	400	320	580	430	370	400
Selenium (Se)	ug/L	1	1.0	<	<	<	<	<1	<	<	<	<	<	<
Silver (Ag)	ug/L	0.1	0.1	0.5	<	<	<	<	<	<	<	<	<	<
Sodium (Na)	ug/L	100	-	-	-	4,300	11,500	5,820	7,880	9,100	11,000	14,000	13,000	13,000
Strontium (Sr)	ug/L	2	-	-	110	85.4	49.9	110	13.3	17	17	20	20	19
Thallium (TI)	ug/L	0.1	0.8	-	<	<	<	<0.1	<	<	<	<	v	<
Tin (Sn)	ug/L	2	-	-	<	<	<	<2	<	<	<	<	~	<
Titanium (Ti)	ug/L	2	-	-	2.0	17.2	148	37.2	2.7	2.5	3.5	<	<	<
Uranium (U)	ug/L	0.1	-	-	0.9	0.38	0.38	0.35	<	<	<	<	<	<
Vanadium (V)	ug/L	2	-	155	<	<	0.34	2.8	<	<	<	<	~	<
Zinc (Zn)	ug/L	5	30	443	<	25.2	103	12.4	<	<	<	<	37	<
Hardness (CaCO3)	mg/L	1	-	138	170	110	70	170	14	16	18	23	21	21
рН	рΗ	-	6.5 - 9	7.48	8.39	7.59	6.37	7.64	6.85	6.99	6.87	7.06	7.28	7.76

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

(1) Aluminum guideline = 5 ug/L at pH < 6.5; 100 ug/L at pH \ge 6.5.

(2) Cadmium guideline = $10^{\{0.83\}\log(hardness)\}-2.46\}}$.

(3) Criteria for Chromium (III) = 8.9 ug/L, Criteria for Chromium (VI) = 1.0 ug/L.

(4) Copper guideline = 2 ug/L at [CaCO₃] = 0-120 mg/L; 3 ug/L at [CaCO₃] = 120-180 mg/L; 4 ug/L at [CaCO₃] > 180 mg/L.

(5) Lead guideline = 1 ug/L at $[CaCO_3] = 0.60 \text{ mg/L}$; 2 ug/L at $[CaCO_3] = 60-120 \text{ mg/L}$; 4 ug/L at $[CaCO_3] = 120-180 \text{ mg/L}$; 7 ug/L at $[CaCO_3] > 180 \text{ mg/L}$.

(6) Nickel guideline = 25 ug/L at [CaCO₃] = 0-60 mg/L; 65 ug/L at [CaCO₃] = 60-120 mg/L; 110 ug/L at [CaCO₃] = 120-180 mg/L; 150 ug/L at [CaCO₃] > 180 mg/L.

RDL = Reportable Detection Limit

SURFACE-DUP = Field Duplicate of SURFACE-DOWN

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

- = Not analysed/No criteria

HISTORICAL LEACHATE ANALYTICAL DATA - BTEX/mTPH 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

						Tot	tal Petrole	um Hydrod	arbons (T	PH)	
Sample Location	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	F1	F2	F	3		Comments
Location				benzene		C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₂₁	C ₂₁ -C ₃₂	mTPH	
	Aug 19, 2009	<	<	<	<	<	0.08		0.1	0.2	NR
	Oct 13, 2009	<	<	<	<	<	0.2		0.1	0.3	WFO
	Jan 26, 2010	~	<	<	<	~	0.09		<	<	WFO
	Jul 16, 2010	<	<	<	<	<	<		<	<	-
	Dec 13, 2010	<	<	<	<	~	<		<	<	-
	Sep 02, 2011	<	<	<	<	<	0.05		<	<	-
	Feb 07, 2012	<	<	<	<	~	0.05		<	<	-
PLCS	Aug 30, 2012	<	<	<	<	<	<		<	<	-
	Aug 30, 2012 (DUP-04)	<	<	<	<	۷	0.173		<	0.18	No resemblance to petroleum products in fuel oil range.
	Aug 28, 2013	<	<	<	<	<	<	<	<	<	_
	Nov 25, 2014	<	<	<	<	<	<	<	<	<	-
	Nov 25, 2014 (DUP-08)	<	<	<	<	<	<	<	<	<	-
	Dec 08, 2015	<	<	<	<	<	<	<	<	<	-
	Oct 12, 2017	<	<	<	<	<	<	0.067	0.17	0.24	One product in fuel/ lube oil range.
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ¹	<(0.05) ¹		<(0.05) ¹	<(0.15) ¹	-
	Aug 19, 2009	<	<	<	<	<	<		<	<	-
	Oct 13, 2009	<	<	<	<	<	0.14		<	0.1	WFO
	Jan 26, 2010	<	۷	<	<	۷	0.11		<	0.1	WFO
	Jan 26, 2010 ²	<	<	<	<	<	0.11		<	0.1	WFO
	Jul 16, 2010	<	<	<	<	<	<		<	<	-
	Dec 13, 2010	<	<	<	<	<	0.05		<	<	-
	Sep 02, 2011	~	<	<	<	~	0.05		<	<	-
	Feb 07, 2012	<	<	<	<	<	0.11		<	0.21	One product in fuel/ lube oil range
SLCS	Feb 07, 2012										
	(DUP)	<	<	<	<	<	0.11		<	0.11	One product in fuel/ lube oil range
	Aug 30, 2012	<	<	<	<	<	0.159		<	0.16	No resemblance to petroleum products in fuel oil range.
	Aug 28, 2013	<	<	<	<	<	0.058	0.062	<	0.12	No resemblance to petroleum products in fuel oil range.
	Aug 28, 2013 (DUP-06)	<	<	<	<	<	0.071	0.061	<	0.13	No resemblance to petroleum products in fuel oil range.
	Nov 25, 2014	<	<	<	<	<	<	<	<	<	-
	Dec 08, 2015 Oct 12, 2017	<	<	<	<	<	<	<	<	<	-
	RDL	<	<	<	<	<	<	<	<	<	-
	RDL le A Water &	0.001	0.001	0.001	0.002	0.01	0.05	0.05	0.1	0.1	· ·
Sewer R	Regulations ³	-	-	-	-	-	-	-	-	15	-
	IE Freshwater									-	Gasoline
	latic Life	0.37	0.002	0.09	-	-	-	-	-	-	Diesel /#2 Fuel Oil
Gui	delines ⁴									-	#6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report

2. Field Duplicate

3. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

4. 2007 CCME Freshwater Aquatic Life Guidelines

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit
- = Not analysed/No criteria

NR = No resemblance WFO = Weathered Fuel Oil

< = Parameter below detection limit

HISTORICAL LEACHATE ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Cr	iteria*							PL	.CS						
Farameter		NL ¹	CCME ²	Aug 19, 2009	Oct 13, 2009	Jan 25, 2010	Jul 16, 2010	Dec 13, 2010	Sep 02, 2012	Feb 07, 2012	Aug 30, 2012	Aug 30, 2012 DUP-04	Aug 28, 2013	Nov 25, 2014	Nov 25, 2014 DUP-08	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	-	580	<	0.01	0.01	<	<	<	0.011	0.041	0.01	<	<	<	0.076	<
Acenaphthylene	0.01	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Acridine	0.05			-	-	-	<	<	<	<	-	<	-	<	<	-	-
Anthracene	0.01	-	1.2	<	0.05	0.06	<	0.04	<	<	<0.15 ⁽³⁾	<0.040 ⁽³⁾	<	<0.020 ⁽³⁾	<	0.33	<
Benzo(a)anthracene	0.01	-	1.8	<	0.01	0.02	<	<	<	<	0.039	0.013	<	<	<	0.066	<
Benzo(a)pyrene	0.01	-	1.5	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzo(b)fluoranthene	0.01	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzo(g,h,i)perylene	0.01	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzo(j)fluoranthene	0.01	-	-										<	<	<	<	<
Benzo(k)fluoranthene	0.01	-	-	~	<	<	~	~	<	~	<	<	~	~	<	<	<
Chrysene	0.01	-	-	<	0.04	0.03	~	0.02	<	~	0.064	0.024	~	<	<	0.10	<
Dibenz(a,h)anthracene	0.01	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Fluoranthene	0.01	-	4	<	0.05	0.07	<	0.04	<	0.011	0.18	0.046	0.011	<	<	0.28	<
Fluorene	0.01	-	300	<	0.02	0.02	<	<	<		0.049	0.014	<	<	<	<	<
Indeno(1,2,3-cd)pyrene	0.01	-	-	<	<	<	<	<	<	0.017	<	<	<	<	<	<	<
Naphthalene	0.2	-	110	<	<	<	<	~	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	-	<	<	<	<	~	<	<	<	<	<	<	<	<	<
Phenanthrene	0.01	-	40	<	0.17	0.23	<	0.07	<	0.034	<0.020 ⁽³⁾	< 0.060 ⁽³⁾	<	0.012	<	0.59	<
Pyrene	0.01	-	2.5	<	0.36	0.32	<	0.17	0.2	0.046	0.85	0.01	0.052	0.013	<	1.4	0.012
Quinoline	0.05	-	-	<	-	-	<	<	-	-	-	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

1. NL = Environmental Control Water and Sewer Regulations, 2003, Schedule "A" under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

2. CCME = Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1) with a dilution factor of 100 based on distance between ditch and receiving waters and percolation through soil.

3. Elevated PAH RDL(s) due to matrix / co-extractive interference.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System RDL = Reportable Detection Limit - = Not analysed/No criteria < = Parameter below detection limit
<(#) = Parameter below AMEC laboratory detection limit</pre>

0.0	= Above NL criteria
<u>0.0</u>	= Above CCME crit

a for current sampling program teria for surface water for current sampling program

HISTORICAL LEACHATE ANALYTICAL DATA - PAHs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	RDL	Cr	iteria*								SLC	S						
Farameter	RDL	NL ¹	CCME ²	AMEC 2008	Aug 19, 2009	Oct 13, 2009	Jan 25, 2010	Jan 25, 2010 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2012	Feb 07, 2012	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-06	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
1-Methylnaphthalene	0.05	-	-	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	<	<
2-Methylnaphthalene	0.05	-	-	<0.03	<	<	<	<	0.22	<	<	<	<	<	<	<	<	<
Acenaphthene	0.01	-	580	<0.04	<	<	0.01	<	<	<	<	<	0.019	0.014	0.017	<	< (3)	<
Acenaphthylene	0.01	-	-	< 0.03	<	<	<	<	<	<	<	<	0.018	<	<(0.02)	<	<	<
Acridine	0.05			-					<	<	<	<	-	-	-	<	-	-
Anthracene	0.01	-	1.2	<0.01	<	0.1	0.06	0.06	<	<	<	<	< 0.20 (3)	<(0.06)	<(0.15)	<	0.13	0.018
Benzo(a)anthracene	0.01	-	1.8	<0.01	<	0.06	0.02	0.03	<	<	<	<	0.064	0.05	0.062	<	0.045	<
Benzo(a)pyrene	0.01	-	1.5	<0.01	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzo(b)fluoranthene	0.01	-	-	<0.05	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzo(g,h,i)perylene	0.01	-	-	<0.03	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzo(j)fluoranthene	0.01	-	-											<	<	<	<	<
Benzo(k)fluoranthene	0.01	-	-	<0.05	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Chrysene	0.01	-	-	< 0.04	<	0.09	0.04	0.04	<	0.01	<	0.013	0.10	0.085	0.11	<	0.070	<
Dibenz(a,h)anthracene	0.01	-	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Fluoranthene	0.01	-	4	< 0.03	<	0.26	0.11	0.11	0.01	<	<	0.018	0.37	0.24	0.29	0.01	0.23	0.037
Fluorene	0.01	-	300	<0.03	<	0.02	<	<	<	<	<	<	0.031	<(0.02)	<(0.04)	<	< (3)	0.012
Indeno(1,2,3-cd)pyrene	0.01	-	-	<0.05	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Naphthalene	0.2	-	110	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Perylene	0.01	-	-	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Phenanthrene	0.01	-	40	<0.04	<	0.4	0.13	0.07	0.02	0.01	<	0.012	< 0.30 (3)	<	<(0.04)	<	< (3)	0.012
Pyrene	0.01	-	2.5	<0.01	<	1.5	0.55	0.55	0.06	<	<	0.085	1.8	1.3	1.7	0.064	1.2	0.14
Quinoline	0.05	-	-	-	-	-	-	-	<	<	-	-	-	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

1. NL = Environmental Control Water and Sewer Regulations, 2003, Schedule "A" under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

2. CCME = Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1) with a dilution factor of 100 based on distance between ditch and receiving waters and percolation through soil.

3. Elevated PAH RDL(s) due to matrix / co-extractive interference.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System RDL = Reportable Detection Limit - = Not analysed/No criteria

< = Parameter below detection limit <(#) = Parameter below AMEC laboratory detection limit 0.0 = Above NL criteria for current sampling program 0.0

= Above CCME criteria for surface water for current sampling program

HISTORICAL LEACHATE ANALYTICAL DATA - PCBs (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	וחפ	Critoria*		PLCS													
Farameter	NDL			Oct 13, 2009	Jan 26, 2010	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Feb 07, 2012	Aug 30, 2012	Aug 30, 2012 DUP-04	Aug 28, 2013	Nov 25, 2014	Nov 25, 2014 DUP-08	Dec 08, 2015	Oct 12, 2017	
Total PCBs	0.05	-	0.16	<	<	<	<	<	<	<	<	<	<	<	<	<	

Parameter	וחפ	Critoria*							SI	LCS						
Falameter	RDL	Cinteria	AMEC 2008	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Feb 07, 2012	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-06	Nov 25, 2014	Dec 08, 2015	Oct 12, 2017
Total PCBs	0.05	-	<0.04	<	<	<	<	<	<	<	<	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, Schedule "A" under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit - = Not analysed/No criteria < = Parameter below detection limit <(#) = Parameter below AMEC laboratory detection limit **0.0** = A

HISTORICAL LEACHATE ANALYTICAL DATA - VOCs 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Description		Oritoriat						PL	.cs					
Parameter	RDL	Criteria*	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Feb 07, 2012	Aug 30, 2012	Aug 30, 2012 DUP-04	Aug 28, 2013	Nov 25, 2014	Nov 25, 2014 DUP-08
Benzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Bromodichloromethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Bromoform	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Bromomethane	3	-	<	<	<	<	<	<	<(4)	<	<	<	<	<
Carbon Tetrachloride	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Chlorobenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Chloroethane	8	-	<	<	<	<	<	<	<(10)	<	<	<	<	<
Chloroform	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	8	-	<	<	<	<	<	<	<(10)	<	<	<	<	<
Dibromochloromethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	0.5	-	<	<	<	<	<	<	<(0.7)	<	<	<	<	<
1,3-Dichlorobenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,4-Dichlorobenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	2	-	<	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethylene	0.5	-	<	<	<	<	<	<	<(0.7)	<	<	<	<	<
cis-1,2-Dichloroethylene	2	-	<	<	<	<	<	<	<(3)	<	<	<	<	<
trans-1,2-Dichloroethylene	2	-	<	<	<	<	<	<	<(3)	<	<	<	<	<
1,2-Dichloropropane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,3-Dichloropropene	2	-	<	<	<	<	<	<	<(3)	<	<	<	<	<
trans-1,3-Dichloropropene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Methylene Chloride(Dichloromethane)	3	-	<	<	<	<	<	<	<(4)	<	<	<	<	<
o-Xylene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
p+m-Xylene	2	-	<	<	<	<	<	<	<(3)	<	<	<	<	<
Styrene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethylene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,1,2,2-Tetrachloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Toluene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Trichloroethylene	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
1,1,2-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<
Trichlorofluoromethane (FREON 11)	8	-	<	<	<	<	<	<	<(10)	<	<	<	<	<
Vinyl Chloride	0.5	-	<	<	<	<	<	<	<(0.7)	<	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System - = Not analysed/No criteria

SLCS = Secondary Leachate Collection System < = Parameter below detection limit

DUP-04 = Field Duplicate of PLCS

DUP-06 = Field Duplicate of SLCS

RDL = Reportable Detection Limit

0.0 = above criteria

HISTORICAL LEACHATE ANALYTICAL DATA - VOCs 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

									SLCS						
Parameter	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jan 26, 2010 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Feb 07, 2012	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-06	Nov 25, 2014
Benzene	1	-		<	<	<	<	<	<	<	<	<	<	<	<
Bromodichloromethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Bromoform	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Bromomethane	3	-	<	<	<	<	<	<	<	<(4)	<(4)	<	<	<	<
Carbon Tetrachloride	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Chlorobenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloroethane	8	-	<	<	<	<	<	<	<	<(10)	<(10)	<	<	<	<
Chloroform	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Chloromethane	8	-	<	<	<	<	<	<	<	<(10)	<(10)	<	<	<	<
Dibromochloromethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	0.5	-	<	<	<	<	<	<	<	<(0.7)	<(0.7)	<	<	<	<
1,3-Dichlorobenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,4-Dichlorobenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethane	2	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1-Dichloroethylene	0.5	-	<	<	<	<	<	<	<	<(0.7)	<(0.7)	<	<	<	<
cis-1,2-Dichloroethylene	2	-	<	<	<	<	<	<	<	<(3)	<(3)	<	<	<	<
trans-1,2-Dichloroethylene	2	-	<	<	<	<	<	<	<	<(3)	<(3)	<	<	<	<
1,2-Dichloropropane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
cis-1,3-Dichloropropene	2	-	<	<	<	<	<	<	<	<(3)	<(3)	<	<	<	<
trans-1,3-Dichloropropene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Methylene Chloride(Dichloromethane)	3	-	<	<	<	<	<	<	<	<(4)	<(4)	<	<	<	<
o-Xylene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
p+m-Xylene	2	-	<	<	<	<	<	<	<	<(3)	<(3)	<	<	<	<
Styrene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethylene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,2,2-Tetrachloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Toluene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Trichloroethylene	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,1-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
1,1,2-Trichloroethane	1	-	<	<	<	<	<	<	<	<	<	<	<	<	<
Trichlorofluoromethane (FREON 11)	8	-	<	<	<	<	<	<	<	<(10)	<(10)	<	<	<	<
Vinyl Chloride	0.5	-	<	<	<	<	<	<	<	<(0.7)	<(0.7)	<	<	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System - = Not analysed/No criteria

SLCS = Secondary Leachate Collection System < = Parameter below detection limit

DUP-04 = Field Duplicate of PLCS

DUP-06 = Field Duplicate of SLCS

RDL = Reportable Detection Limit

0.0 = above criteria

HISTORICAL LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Desembles	Units	RDL	Criteria*						PLCS				
Parameter	Units	RDL	Criteria	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 30, 2012 DUP-04	Aug 28, 2013	Nov 25
Anion Sum	me/L	N/A	-	2.30	12.20	12.20	4.86	10.10	4.21	12.5	9.53	10	3.3
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	-	90	482	453	176	400	167	520	390	420	14
Calculated TDS	mg/L	1	1,000	133	640	662	263	546	239	624	564	540	18
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	-	<	<	<	1	1	1	2.6	2.3	<	<
Cation Sum	me/L	N/A	-	2.30	11.60	11.90	4.47	10.10	4.06	10.7	12.3	10	3.1
Hardness (CaCO3)	mg/L	1	-	71	510	540	190	190	140	470	530	430	12
Ion Balance (% Difference)	%	N/A	-	0.40	2.40	1.30	4.18	0.00	1.81	7.94	12.9	0.05	2.7
Langelier Index (@ 20C)	N/A	N/A	-	-0.10	0.60	0.60	0.42	0.86	0.366	1.10	1.11	0.449	0.1
Langelier Index (@ 4C)	N/A	N/A	-	-0.40	0.30	0.30	0.17	0.61	0.116	0.856	0.864	0.202	-0.0
Nitrate (N)	mg/L	0.05	10	0.30	<	0.10	0.35	0.28	0.32	0.061	0.41	0.11	0.2
Saturation pH (@ 20C)	N/A	N/A	-	8.00	6.60	6.60	7.40	6.74	7.51	6.63	6.69	6.73	7.6
Saturation pH (@ 4C)	N/A	N/A	-	8.30	6.90	6.90	7.65	6.98	7.76	6.87	6.94	6.98	7.8
Total Alkalinity (Total as CaCO3)	mg/L	30.00	-	91	480	450	180	400	170	530	390	420	14
Carbonaceous BOD	mg/L	5.00	20	-	-	-	<	<	-	-	-	<	<
Dissolved Chloride (CI)	mg/L	1	-	8	40	33	11	29	11	39	31	30	12
Colour	TCU	5	-	31	35	20	15	17	18	10	10	8.6	14
Strong Acid Dissoc. Cyanide (CN)	mg/L	0.002	25	-	-	-	<	<	-	<0.0020	-	<(2)	0.00
Nitrate + Nitrite	mg/L	0.05	-	0.30	<	0.10	0.37	0.28	0.32	0.061	0.41	0.11	0.2
Nitrite (N)	mg/L	0.01	-	<	<	<	0.03	<	ND	<0.010	<	<	<
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	2	<	0.30	0.40	<	0.10	ND	0.53	0.45	0.35	<
Total Organic Carbon (C)	mg/L	0.5	-	4.7	25.0	16.0	6.4	11.0	5.1	16(1)	20 (5)	13	3.9
Orthophosphate (P)	mg/L	0.01	-	<	<	<	<	<	ND	<0.010	<	<	<
рН	pН	N/A	5.5 - 9.0	7.90	7.20	7.20	7.82	7.59	7.88	7.73	7.8	7.18	7.8
Phenols-4AAP	mg/L	0.001	0.10	-	-	-	0.01	0.003	0.003	0.012	-	0.0064	0.00
Reactive Silica (SiO2)	mg/L	0.5	-	4.30	16.00	16.00	8.40	13.00	12	17	14	14	7.4
Total Suspended Solids (TSS)	mg/L	2.0	30	-	2	6	11	17	5	9.8	-	1.6	<
Dissolved Sulphate (SO4)	mg/L	2.0	-	11	66	110	47	61	25	43	36	42	13
Sulphide	mg/L	0.02	0.50	-	-	-	<	<	ND	<0.020	-	<	<
Turbidity	NTU	0.1	-	0.4	62.0	6.8	1.6	16.0	0.7	160	12	140	0.6
Conductivity	uS/cm	1	-	220	1000	1000	440	840	400	1000	820	820	30
Total Oil & Grease	mg/L	5.00	-	-	-	-	<	<	-	-	-	<	<
Coliform-Fecal	#/100mL	-	1,000/100 mL	-	-	-	0	0	-	-	-	-	-
Coliform-Total	#/100mL	-	5,000/100 mL	-	-	-	>80	>80	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

0.0

Coliform analysis completed by Newfoundland and Labrador Government Services in Grand Falls-Windsor, NL

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

DUP-04= Field Duplicate of PLCS

DUP-06= Field Duplicate of SLCS

RDL = Reportable Detection Limit

-= Not analysed/No criteria

= above criteria

< = Parameter below detection limit</p>

<(#) = Parameter below AMEC laboratory detection limit

05 0044	Nov 25, 2014
ov 25, 2014	DUP-08
3.36	3.18
140	120
180	180
<	1.2
3.18	3.27
120	120
2.75	1.40
0.19	0.339
-0.061	0.089
0.25	0.32
7.64	7.67
7.89	7.92
140	120
<	<
12	14
14	21
0.0017	<
0.25	0.32
< <	
<	< <
3.9	3.7
<	<
7.83	8.01
0.0012	<
7.4	7.6
<	<
13	13
<	<
0.68	0.51
300	300
<	<

-

-

-

HISTORICAL LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

		RDL							SL	cs					
Parameter	Units	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jan 26, 2010 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-06	Nov 25, 2014
Anion Sum	me/L	N/A	-	-	10.80	13.70	13.60	13.40	8.68	10.90	6.93	12.3	11.2	12.8	7.39
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	428	542	532	509	315	420	267	500	460	530	310
Calculated TDS	mg/L	1	1,000	780	598	737	728	716	460	574	383	647	640	710	390
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	-	-	<	<	<	<	1	2	2	2.2	<	<	<
Cation Sum	me/L	N/A	-	-	10.70	13.90	12.90	13.10	7.81	10.40	6.6	12.0	13.5	14.2	7.2
Hardness (CaCO3)	mg/L	1	-	658	410	580	560	570	320	320	240	500	560	580	280
Ion Balance (% Difference)	%	N/A	-	-	0.50	0.70	3.70	1.10	5.28	2.44	2.44	1.07	9.25	5.24	1.58
Langelier Index (@ 20C)	N/A	N/A	-	-	0.60	0.40	0.50	0.60	0.67	0.99	0.749	1.04	0.511	0.487	0.441
Langelier Index (@ 4C)	N/A	N/A	-	-	0.40	0.20	0.30	0.30	0.42	0.74	0.5	0.787	0.264	0.24	0.193
Nitrate (N)	mg/L	0.05	10	<0.05	0.10	<	<	<	0.35	0.10	0.48	0.067	0.077	<	0.23
Saturation pH (@ 20C)	N/A	N/A	-	-	6.80	6.60	6.60	6.60	7.00	6.73	7.17	6.63	6.6	6.53	7.01
Saturation pH (@ 4C)	N/A	N/A	-	-	7.00	6.80	6.80	6.80	7.25	6.98	7.42	6.87	6.85	6.78	7.26
Total Alkalinity (Total as CaCO3)	mg/L	30.00	-	587	430	540	530	510	320	420	270	510	460	530	310
Carbonaceous BOD	mg/L	5.00	20	-	-	-	-	-	<	<	-	-	<	<	<
Dissolved Chloride (CI)	mg/L	1	-	67	40	54	48	48	32	43	29	44	38	42	26
Colour	TCU	5	-	-	17	19	15	15	12	56	10	12	13	12	10
Strong Acid Dissoc. Cyanide (CN)	mg/L	0.002	25	-	-	-	-	-	<	<	-	<0.0020	<(2)	<(2)	<
Nitrate + Nitrite	mg/L	0.05	-	-	0.10	<	<	<	0.37	0.10	0.48	0.067	0.1	<	0.23
Nitrite (N)	mg/L	0.01	-	<0.015	<	<	<	<	0.02	<	ND	<0.010	0.028	<	<
Nitrogen (Ammonia Nitrogen)	mg/L	0.05	2	0.43	0.40	0.50	0.50	0.50	0.12	0.26	ND	0.50	0.38	0.53	0.06
Total Organic Carbon (C)	mg/L	0.5	-	25.7	16.0	24.0	19.0	19.0	12.0	13.0	ND	20(1)	18	19(1)	7.3
Orthophosphate (P)	mg/L	0.01	-	-	<	<	<	<	<	<	ND	<0.010	<	<	<
рН	pН	N/A	5.5 - 9.0	6.80	7.40	7.00	7.10	7.10	7.67	7.72	7.92	7.66	7.11	7.02	7.45
Phenols-4AAP	mg/L	0.001	0.10	-	-	-	-	-	0.003	<0.01*	0.004	0.014	0.0088	0.0086	0.0015
Reactive Silica (SiO2)	mg/L	0.5	-	-	19.00	17.00	17.00	18.00	14.00	14.00	19	15	15	16	13
Total Suspended Solids (TSS)	mg/L	2.0	30	69	-	34	18	16	5	33	5	24	29	28	1.2
Dissolved Sulphate (SO4)	mg/L	2.0	-	-	54	64	90	88	69	60	34	44	40	43	17
Sulphide	mg/L	0.02	0.50	-	-	-	-	-	<	<	ND	0.060	<	<	<
Turbidity	NTU	0.1	-	-	140.0	200.0	77.0	65.0	6.6	17.0	0.9	280	130	220	0.64
Conductivity	uS/cm	1	-	1250	980	990	1200	1100	750	900	620	1100	950	1,100	630
Total Oil & Grease	mg/L	5.00	-	-	-	-	-	-	<	<	-	-	<	<	<
Coliform-Fecal	#/100mL	-	1,000/100 mL	-	-	-	-	-	0	- (1)	-	-	-	-	-
Coliform-Total	#/100mL	-	5,000/100 mL	-	-	-	-	-	>80	- (1)	-	-	-	-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

0.0

Coliform analysis completed by Newfoundland and Labrador Government Services in Grand Falls-Windsor, NL

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

= above criteria

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

DUP-04= Field Duplicate of PLCS

DUP-06= Field Duplicate of SLCS

RDL = Reportable Detection Limit

-= Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL LEACHATE ANALYTICAL DATA - TOTAL METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Demonster		Oniteniet						PLCS				
Parameter	RDL	Criteria*	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 30, 2012 DUP-04	Aug 28, 2013	Nov 25
Aluminum (Al)	5	-	35	<	<	36.8	<	41	14.2	22.2	18	-
Antimony (Sb)	1	-	<	<	<	<	<	-	<	<	<	-
Arsenic (As)	1	500	<	<	<	<	<	-	<	1.0	<	-
Barium (Ba)	1	5,000	7.0	73	71	13.3	51	11	72.7	85.7	85	13.
Beryllium (Be)	1	-	<	<	<	<	<	-	<	<	<	<
Bismuth (Bi)	2	-	<	<	<	<	<	-	<	<	<	<
Boron (B)	5	5,000	170	7,400	3,400	1,170	2,230	650	1,500	1,890	1,700	20
Cadmium (Cd)	0.017	50	<	<	<	<	<	-	<	<	0.012	<
Calcium (Ca)	100	-	-	-	-	58,400	138,000	46,100	140,000	159,000		41,0
Total Chromium (Cr)	1	1,000	<	<	<	<	<	-	<	<	<	<
Chromium VI	0.001	0.05	-	-	-	<	<	-	-	<	0.58	-
Cobalt (Co)	0.4	-	<	<	<	<	<	-	<	<	<	<
Copper (Cu)	2	300	4.0	<	<	2.50	<	2	<	<	<	<
Iron (Fe)	50	10,000	77	4,900	4,000	1,790	3,150	342	5,470	14,300	12,000	62
Lead (Pb)	5	200	<	<	<	<	<	-	<	<	<	<
Magnesium (Mg)	100	-	-	-	-	10,700	24,300	7,070	28,800	32,900	23,000	4,10
Manganese (Mn)	2	-	7.0	9,100	8,800	1,130	6,240	369	7,270	8,770	5,700	65
Mercury (Hg)	0.013	5	-	-	<	<	<	-	-	<	<	<
Molybdenum (Mo)	2	-	<	<	<	<	<	-	<	<	<	<
Nickel (Ni)	2	500	<	<	<	<	<	-	<	<	<	<
Phosphorus (P)	100	-	-	-	-	<	<	-	<	<	<	<
Potassium (K)	100	-	-	-	-	7,270	6,530	21,000	5,840	5,800	6,100	13,0
Selenium (Se)	1	10	<	<	<	<	<	-	<	<	<	<
Silver (Ag)	0.1	50	-	-	-	<	<	-	<	<	<	<
Sodium (Na)	100	-	<	<	<	9,880	22,500	14,300	21,100	23,700	19,000	11,0
Strontium (Sr)	2	-	52	360	350	156	289	104	318	362	300	90
Thallium (TI)	0.1	-	<	<	<	<	<	-	<	<	<	<
Tin (Sn)	2	-	<	<	<	<	<	-	<	<	<	<
Titanium (Ti)	2	-	<	<	<	<	<	-	<	2.00	<	2.3
Uranium (U)	1	-	0.1	<	<	0.25	<	0	0.79	0.94	0.66	0.1
Vanadium (V)	2	-	<	<	<	<	<	-	<	<	<	<
Zinc (Zn)	50	500	<	67.0	<	8.10	<	14	<	6.50	<	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

DUP-04 = Field Duplicate of PLCS

DUP-06 = Field Duplicate of SLCS

RDL = Reportable Detection Limit -= Not analysed/No criteria

< = Parameter below detection limit

0.0

<(#) = Parameter below AMEC laboratory detection limit

= above criteria

Nov 25, 2014 DUP-08
-
-
-
13
<
<
210
<
42,000
<
<
<
<
150
<
4,200
67
<
<
<
110.00
13,000
<
<
11,000
93
<
<
4.50
0.21
<
<

HISTORICAL LEACHATE ANALYTICAL DATA - TOTAL METALS (µg/L) 2017/18 MONITORING PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

								SI	LCS					
Parameter	RDL	Criteria*	AMEC 2008	Aug 19, 2009	Oct 13, 2009	Jan 26, 2010	Jan 26, 2010 Field Dup	Jul 16, 2010	Dec 13, 2010	Sep 02, 2011	Aug 30, 2012	Aug 28, 2013	Aug 28, 2013 DUP-06	Nov 25, 2014
Aluminum (Al)	5	-	42	<	100	<	<	23.1	<	23.7	16.3	22	28	-
Antimony (Sb)	1	-	<1	<	<	<	<	<	<	-	<	<	<	-
Arsenic (As)	1	500	2	<	<	<	<	<	<	-	1.1	<	1.1	-
Barium (Ba)	1	5,000	69.8	38	93	68	68	18.9	40	5.3	78.2	98	110	13
Beryllium (Be)	1	-	<0.1	<	<	<	<	<	<	-	<	<	<	<
Bismuth (Bi)	2	-	1.1	<	<	<	<	<	<	-	<	<	<	<
Boron (B)	5	5,000	-	2,800	3,100	2,300	2,400	1,970	1,870	1,350	2,500	2,300	2,400	1,200
Cadmium (Cd)	0.017	50	1.3	<	<	<	<	<	<	-	<	<	<	<
Calcium (Ca)	100	-	-	-	-	-	-	90,900	135,000	69,700	147,000	170,000	180,000	87,000
Total Chromium (Cr)	1	1,000	1	<	<	<	<	<	<	63.2	<	<	<	<
Chromium VI	0.001	0.05	-	-	-	-	-	<	<	-	-	<	<	-
Cobalt (Co)	0.4	-	<1	<	<	<	<	0.49	<	-	1.04	0.61	0.47	<
Copper (Cu)	2	300	1	<	<	<	<	<	<	-	<	<	<	<
Iron (Fe)	50	10,000	29,900	6,800	19,000	8,500	8,300	1,320	2,240	-	15,100	22,000	27,000	130
Lead (Pb)	5	200	6	<	<	<	<	<	<	-	<	<	<	<
Magnesium (Mg)	100	-	-	-	-	-	-	23,500	27,400	16900	33,200	34,000	35,000	16,000
Manganese (Mn)	2	-	11,000	5,400	10,000	8,900	9,000	3,270	5,120	241	8,250	9,300	9,500	850
Mercury (Hg)	0.013	5	-	-	-	<	<	<	<	-	-	<	<	<
Molybdenum (Mo)	2	-	2	<	<	<	<	<	<	-	7.20	<	<	<
Nickel (Ni)	2	500	1	<	<	<	<	<	<	-	2.40	<	<	<
Phosphorus (P)	100	-	-	-	-	-	-	<	<	-	<	<	<	<
Potassium (K)	100	-	-	-	-	-	-	<	7,750	28,400	8,870	9,100	10,000	22,000
Selenium (Se)	1	10	1	<	<	<	<	<	<	-	<	<	<	<
Silver (Ag)	0.1	50	-	-	-	-	-	<	<	-	<	<	<	<
Sodium (Na)	100	-	0.6	<	<	<	<	21,300	25,500	23,100	26,600	26,000	28,000	21,000
Strontium (Sr)	2	-	-	280	440	380	390	282	324	183	369	430	450	220
Thallium (TI)	0.1	-	-	<	<	<	<	<	<	-	<	<	<	<
Tin (Sn)	2	-	-	<	<	<	<	<	<	-	<	<	<	<
Titanium (Ti)	2	-	-	<	<	<	<	<	<	-	<	<	2.5	<
Uranium (U)	1	-	-	0.8	1	2	2	1.11	1	0.71	5.05	1.2	1.1	0.7
Vanadium (V)	2	-	4	<	<	<	<	<	<	-	<	<	<	<
Zinc (Zn)	50	500	7	<	<	<	<	5.20	<	32.2	8.30	16	180	<

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

DUP-04 = Field Duplicate of PLCS

DUP-06 = Field Duplicate of SLCS

RDL = Reportable Detection Limit -= Not analysed/No criteria

< = Parameter below detection limit

0.0

<(#) = Parameter below AMEC laboratory detection limit

= above criteria