

ANNUAL SUMMARY REPORT

2010/2011 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NEWFOUNDLAND AND LABRADOR

Prepared by: Conestoga-Rovers & Associates

1118 Topsail Road P.O. Box 8353, Station A St. John's, Newfoundland Canada A1B 3N7

Office: (709) 364-5353 Fax: (709) 364-5368

web: http://www.CRAworld.com

MARCH 2011 Ref. no. 056680 (3)

EXECUTIVE SUMMARY

Conestoga-Rovers & Associates (CRA) was retained by the Newfoundland and Labrador Department of Environment and Conservation (DOEC) to complete the 2010/11 monitoring and maintenance program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the AMEC Tier II schedule as outlined in the 2004/05 Operations and Maintenance Manual (OMM).

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town of Come By Chance, Newfoundland and Labrador (NL). The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the Come By Chance Oil Refinery. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners as well as a drainage pipe system to manage excess fluid and provide a means for leachate discharge. A groundwater drainage system was installed in March 2009 starting at the east side of the landfill and is graded at one percent toward the northeast corner, then along the north side, and eventually discharging beyond the gravel road west of the Site.

The work completed by CRA during the 2010/11 monitoring and maintenance program generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, abandonment of two damaged monitor wells, installation of two replacement monitor wells, groundwater and surface water sampling, landfill cover inspection, and groundwater drainage system inspection, clean-out repairs, and cleaning (if required).

The spring/summer Site visit was conducted between July and August 2010 while the fall/winter Site visit was conducted between December 2010 and January 2011. A summary of the 2010/11 monitoring and maintenance program is provided below along with recommendations for future work.

E.1 SAMPLING SCHEDULE

In accordance with the OMM, CRA recommend that future leachate sampling be conducted using the Tier I schedule (once per year) since leachate elevations were

i

measured at less than 0.3 metres below the top of the valve chambers for the PLCS and SLCS for two consecutive Site visits in 2010.

Monitoring and Maintenance Schedule: In accordance with the OMM, CRA recommend that groundwater, surface water, and leachate sampling be conducted using the Tier I schedule (once per year) since leachate elevations were measured at less than 0.3 metres below the top of the valve chambers for the PLCS and SLCS for two consecutive Site visits in 2010. In addition, the continued maintenance and inspection program for the landfill cover and groundwater drainage system clean-outs should be scheduled to coincide with the sampling program.

E.2 GROUNDWATER AND INSTALLATION OF ADDITIONAL MONITOR WELLS

In general, the BTEX/mTPH, PAH, PCB, VOC, general chemistry, and metals analytical data show groundwater conditions to be similar or in better condition compared to the leachate analytical data; therefore, it does not appear that groundwater condition is being influenced by leachate from the secure landfill. Based on static groundwater levels measured during the 2010 Site visits, it also appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

CRA recommend the installation of three additional monitor wells north and northeast of the secure landfill to confirm groundwater depths with proposed well placements between CO1 and CO2, between CO2 and CO3, and between CO3 and CO4. Information acquired from groundwater levels in these key areas will determine whether or not the groundwater drainage system was installed at the appropriate depth and if groundwater is infiltrating the secondary leachate containment system liner in the northeastern area of the landfill.

E.3 SURFACE WATER

In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions to be similar or better in quality compared to the leachate analytical data; however, pH was slightly acidic in the leachate compared to the more neutral downgradient surface water pH. In addition, six metals (aluminum, cadmium, copper, iron, lead, and zinc) reported one or more exceedances in the downgradient surface water samples whereas the leachate analytical data did not report any metals exceedances. Surface water data from previous monitoring programs is included in

Appendix E. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

CRA recommend that collection of an additional downgradient surface water sample be revised to a location near the landfill gated entrance to minimize potential impacts from nearby vehicular traffic and/or culvert. In addition and whenever possible, CRA also recommend that leachate sampling events be co-ordinated with measurable precipitation in the preceding days to avoid a situation where the sample location is dry (which is a common issue during the summer months).

E.4 LEACHATE AND POTENTIAL INFILTRATION SOURCES

In accordance with the OMM, both pumping events consisted of two Site visits so that a desired flow rate of 15 L/min could be achieved on two successive days. During the first Site visit for leachate pumping in August 2010, it was observed that the PLCS and SLCS valves were in the open position with the discharge hose no longer connected to the PLCS valve. CRA determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculating in-flow. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not risen above the ground surface, even shortly after the Hurricane Igor precipitation event in September 2010. It was also noted that leachate elevations in the PLCS and SLCS for two consecutive Site visits were less than 0.3 metres below the top of the valve chambers.

A review of the current and historical leachate pumping volumes from the PLCS and SLCS valve chambers demonstrates that pumped leachate volumes have decreased since the installation of the groundwater drainage system. A comparison of the average pumped leachate volumes from the PLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 50 percent. In addition, a comparison of the average pumped leachate volumes from the SLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 65 percent. Consequently, it appears the groundwater drainage system has contributed to the reduction of volumes of pumped leachate from the PCLS and SCLS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

Although pumped leachate volumes have dramatically diminished from the PLCS, significant leachate volumes are still being pumped from the SLCS; this contradicts the OMM, which anticipated that SLCS volumes would also diminish quite dramatically. Therefore, further evaluation of groundwater elevations upgradient from the landfill is key in identifying the potential source of high SLCS infiltration. As noted above, CRA recommend the installation of three monitor wells upgradient from landfill.

E.5 LANDFILL COVER AND VEGETATION CONTROL

Landfill cover inspections were conducted on July 16, 2010 and December 13, 2010, which indicated that minor maintenance is required. The only issue of concern related to maintenance is the cutting of vegetation, typically alders, which have reached 1.5 metres in height, considerably more than the OMM recommended height restriction of 0.3 metres.

Upon reviewing the results of the elevation control survey, it was noted the elevation control points decreased in elevation by an average of 40 millimetres between August and December 2010. The elevation control points may have settled slightly due to their recent installation; therefore, additional measurement data of the elevation control points is required over a longer period of time to determine if landfill cover settlement is occurring.

CRA recommend that all vegetation on the landfill cover that measures over 0.3 metres in height should be cut down. This work can be completed in conjunction with vegetation control in the monitor well locations outside the fenced area of the landfill.

In addition, it was noted that access to two monitor wells (MW93-1 and MW93-1A) was somewhat difficult due to the excessive vegetative growth in the area with alders reaching heights of 1.8 metres. CRA recommend that alders be cut down in this location to better facilitate future field programs (i.e. the transport of field equipment such as water level meters, coolers, sample jars, etc.).

E.6 GROUNDWATER DRAINAGE SYSTEM

Four groundwater drainage system clean-outs were previously installed as part of the original system construction; however, only one (CO1) was still visible for inspection. The four existing clean-outs were modified with PVC fittings that terminated near grade

using 100 mm diameter pipe, which were then completed with standard aluminum flush-mount covers.

Water was not observed discharging from the drainage system into the ditch on the opposite side of the gravel service road during the July 2010 Site visit. An impromptu inspection of the groundwater drainage system on September 25, 2010 confirmed that water was flowing from the discharge on the south side of the gravel service road. The observed water discharge in September 2010 was likely a result of a recent and very high precipitation event (Hurricane Igor) compared to limited precipitation in the weeks prior to the July 2010 Site visit.

Debris or blockages were not present in any of the clean-outs during both Site visits and combined with water flowing from the downgradient discharge, it was determined the groundwater drainage system was functioning properly and cleaning was not required.

TABLE OF CONTENTS

EXE	CUTIVE S	UMMARY	I
	E.1	SAMPLING SCHEDULE	
	E.2	GROUNDWATER AND INSTALLATION OF ADDITIONAL MONIT	
		WELLS	
	E.3	SURFACE WATER	
	E.4	LEACHATE AND POTENTIAL INFILTRATION SOURCES	
	E.5	LANDFILL COVER AND VEGETATION CONTROL	
	E.6	GROUNDWATER DRAINAGE SYSTEM	IV
1.0	INTRO	DUCTION	1
2.0	SITE D	ESCRIPTION	2
3.0	METHO	ODOLOGY	3
	3.1	MONITOR WELL REPLACEMENT	3
	3.2	GROUNDWATER SAMPLING	
	3.3	SURFACE WATER SAMPLING	4
	3.4	LEACHATE SAMPLING AND PUMPING	4
	3.5	LANDFILL COVER INSPECTION AND ELEVATION CONTROL	5
	3.6	GROUNDWATER DRAINAGE SYSTEM	5
4.0	GUIDE	LINE FRAMEWORK	7
	4.1	GROUNDWATER	7
	4.2	SURFACE WATER	7
	4.3	LEACHATE	7
5.0	ANAL	YTICAL RESULTS	9
	5.1	GROUNDWATER	9
	5.1.1	BTEX/MTPH IN GROUNDWATER	
	5.1.2	PAHS IN GROUNDWATER	
	5.1.3	PCBS IN GROUNDWATER	10
	5.1.4	VOCS IN GROUNDWATER	10
	5.1.5	GENERAL CHEMISTRY IN GROUNDWATER	10
	5.1.6	METALS IN GROUNDWATER	11
	5.2	SURFACE WATER	11
	5.2.1	BTEX/MTPH IN SURFACE WATER	11
	5.2.2	PAHS IN SURFACE WATER	
	5.2.3	PCBS IN SURFACE WATER	12
	5.2.4	VOCS IN SURFACE WATER	12
	5.2.5	GENERAL CHEMISTRY IN SURFACE WATER	12
	5.2.6	METALS IN SURFACE WATER	12
	5.3	LEACHATE SAMPLING	14

	5.3.1	BTEX/MTPH IN LEACHATE	14
	5.3.2	PAHS IN LEACHATE	
	5.3.3	PCBS IN LEACHATE	14
	5.3.4	VOCS IN LEACHATE	15
	5.3.5	GENERAL CHEMISTRY IN LEACHATE	15
	5.3.6	METALS IN LEACHATE	15
	5.3.7	TOXICITY IN LEACHATE	15
6.0	DISCUS	SSION	16
	6.1	GROUNDWATER	16
	6.2	SURFACE WATER	16
	6.3	LEACHATE	17
	6.3.1	AUGUST 2010 LEACHATE PUMPING EVENT	17
	6.3.2	JANUARY 2011 LEACHATE PUMPING EVENT	18
	6.3.3	LEACHATE PUMPING EVALUATION	18
	6.4	LANDFILL COVER	19
	6.5	GROUNDWATER DRAINAGE SYSTEM	20
7.0	SUMM	ARY AND RECOMMENDATIONS	21
	7.1	2010/11 MONITORING AND MAINTENANCE SUMMARY	22
	7.1.1	GROUNDWATER	
	7.1.2	SURFACE WATER	22
	7.1.3	LEACHATE	22
	7.1.4	LANDFILL COVER	23
	7.1.5	GROUNDWATER DRAINAGE SYSTEM	23
	7.2	RECOMMENDATIONS	24
8.0	REFER	ENCES	26
9.0	CLOSU	IRE	27

LIST OF FIGURES (Following Text)

SITE LOCATION MAP FIGURE 1

FIGURE 2 SITE PLAN WITH SAMPLE LOCATIONS

LIST OF TABLES

(Following Text)

TABLE 1	GPS CO-ORDINATES OF KEY SITE FEATURES
TABLE 2	STATIC WATER LEVELS
TABLE 3	PRIMARY LEACHATE COLLECTION SYSTEM
TABLE 4	SECONDARY LEACHATE COLLECTION SYSTEM
TABLE 5	LANDFILL CAP INSPECTION FORM
TABLE 6	GROUNDWATER ANALYTICAL DATA - BTEX/ mTPH
TABLE 7	GROUNDWATER ANALYTICAL DATA - PAHs
TABLE 8	GROUNDWATER ANALYTICAL DATA - PCBs
TABLE 9	GROUNDWATER ANALYTICAL DATA - VOCs
TABLE 10	GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY
TABLE 11	GROUNDWATER ANALYTICAL DATA - METALS
TABLE 12	SURFACE WATER ANALYTICAL DATA - BTEX/mTPH
TABLE 13	SURFACE WATER ANALYTICAL DATA - PAHs
TABLE 14	SURFACE WATER ANALYTICAL DATA - PCBs
TABLE 15	SURFACE WATER ANALYTICAL DATA - VOCs
TABLE 16	SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY
TABLE 17	SURFACE WATER ANALYTICAL DATA - METALS
TABLE 18	LEACHATE ANALYTICAL DATA - BTEX/ mTPH
TABLE 19	LEACHATE ANALYTICAL DATA - PAHs
TABLE 20	LEACHATE ANALYTICAL DATA - PCBs
TABLE 21	LEACHATE ANALYTICAL DATA - VOCs
TABLE 22	LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY

TABLE 23 LEACHATE ANALYTICAL DATA - METALS

LIST OF APPENDICES

APPENDIX A	SITE PHOTOGRAPHS

APPENDIX B MONITOR WELL ABANDONMENT AND INSTALLATION LOGS

APPENDIX C LABORATORY CERTIFICATES OF ANALYSES

APPENDIX D STANTEC LETHALITY LABORATORY REPORTS

APPENDIX E PREVIOUS MONITORING DATA

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) was retained by the Newfoundland and Labrador Department of Environment and Conservation (DOEC) to complete the 2010/11 monitoring and maintenance program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the AMEC Tier II schedule as outlined in the 2004/05 Operations and Maintenance Manual (OMM).

The work generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, abandonment of two damaged monitor wells, installation of two replacement monitor wells, groundwater and surface water sampling, landfill cover inspection, and groundwater drainage system inspection, clean-out repairs, and cleaning (if required).

The spring/summer Site visit was conducted between July and August 2010 while the fall/winter Site visit was conducted between December 2010 and January 2011.

2.0 <u>SITE DESCRIPTION</u>

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town of Come By Chance (Town), Newfoundland and Labrador (NL). The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the Come By Chance Oil Refinery. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners as well as a drainage pipe system to manage excess fluid and provide a means for leachate discharge.

A groundwater drainage system was installed in March 2009 starting at the east side of the landfill and is graded at one percent toward the northeast corner, then along the north side, and eventually discharging beyond the gravel road west of the Site. The system consists of 140 metres of perforated PVC pipe, 150 mm in diameter, installed in a trench of washed crushed stone measuring approximately 600 mm x 600 mm wrapped in filter fabric and 110 metres of corrugated steel pipe, 200 mm in diameter.

3.0 METHODOLOGY

3.1 MONITOR WELL REPLACEMENT

Two existing stick-up monitor wells (MW93-3 and MW93-3A) located immediately adjacent to the exterior northwest corner of the landfill fencing were previously damaged and unable to be sampled (Refer to Photograph 1 of Appendix A); therefore, two new monitor wells were required to complete groundwater sampling at this location. The two damaged wells were decommissioned in accordance with GD-PPD-024 rev.1 (Appendix D of the Guideline Document for the Management of Impacted Sites).

Logan Geotechnical Services (Logan) was retained by CRA to complete borehole drilling/monitor well installation. Using standard augers, two boreholes, both of which were subsequently converted to 50 mm diameter PVC monitor wells (MW10-1 and MW10-1A), were advanced at the Site on July 16, 2010 (Refer to Photograph 2 of Appendix A). GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were also recorded for all six monitor well locations (Table 1), which are shown on Figure 2. Monitor well abandonment logs for MW93-3 and MW93-3A along with monitor well logs for MW10-1 and MW10-1A are provided as Appendix B.

3.2 GROUNDWATER SAMPLING

On July 16 and December 13, 2010, static water levels were measured using an electronic product/water interface probe at the on-Site monitor wells (Table 2). The monitor wells were then developed, allowed to recover, and sampled using dedicated, disposable bailers. Seven groundwater samples were collected from the on-Site monitor wells during each sample event, including one field duplicate in July (DUP-01) and one in December (DUP-02) from MW10-1. Note that two monitor well locations (MW93-1 and MW93-2) were difficult to locate due to very high vegetative growth in the area; alders were noted to reach a height of approximately 1.8 metres.

All groundwater samples collected from the four existing monitor wells (MW93-1, MW93-1A, MW93-2, and MW93-2A) as well as the two newly installed monitor wells (MW10-1 and MW10-1A) were submitted for analysis of benzene, toluene, ethylbenzene, xylene (BTEX), modified total petroleum hydrocarbons (mTPH), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), general chemistry, and metals. Groundwater samples were submitted to

Maxxam Analytics Inc. (Maxxam) in Bedford, Nova Scotia for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL.

3.3 SURFACE WATER SAMPLING

Surface water sampling was intended to demonstrate background analyte concentrations from the upgradient sample (SURFACE-UP) and assess potential leachate infiltration into surface water by sampling downgradient (SURFACE-DOWN). Therefore, two surface water samples were collected near the Site during the July and December 2010 Site visits, one southeast of the fenced area and upstream (SURFACE-UP) along with one west of the Site beyond the gravel road and downstream (SURFACE-DOWN), both of which were submitted for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals. The original sample location for SURFACE-DOWN was intended to be in the drainage ditch along the gravel access road to the gated entrance of the landfill; however, the ditch was dry. To maintain consistency for the 2010/11 monitoring program, the December 2010 downgradient surface water sample was collected in the same location as the July 2010 sample. All surface water samples were submitted to Maxxam in Bedford, NS for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were also recorded for the two surface water sample locations (Table 1), which are shown on Figure 2.

3.4 <u>LEACHATE SAMPLING AND PUMPING</u>

CRA collected leachate samples during the July and December 2010 Site visits from the primary and secondary containment leachate systems (PLCS and SLCS, respectively) for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, metals, and toxicity. All leachate samples were submitted to Maxxam in Bedford, NS for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL; toxicity samples were submitted to Stantec Consulting Ltd. (Stantec) in St. John's, NL. Note that all laboratories are CALA certified for the respective analyses that were completed. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were also recorded for the two leachate collection system valve chamber sample locations (Table 1), which are shown on Figure 2. Field data recorded prior to and during the PCLS and SCLS leachate discharge events are presented in Tables 3 and 4, respectively. Refer to Photographs 3 and 4 showing the PLCS valve chamber prior to and following leachate pumping during the summer pumping event.

Leachate analytical data was required to determine if pumping down the PCLS and SCLS valve chambers and discharging into a nearby ditch was permitted under the Provincial Environmental Control Water and Sewer Regulations, Schedule A (2003) for the respective comparison criteria, where available. The tabulated analytical results from each sampling event were presented to DOEC for review and approval. Since the drainage ditch location planned for leachate discharge is within the Town boundaries, approval was also requested from the Town prior to discharging leachate from both collection systems into the nearby ditch.

3.5 <u>LANDFILL COVER INSPECTION AND ELEVATION CONTROL</u>

Landfill cover visual inspections were completed during both Site visits in accordance with the OMM (Refer to Photographs 5 and 6 of Appendix A). Comprehensive landfill cover inspections were conducted during the July and December 2010 Site visits were documented in Table 5, which assessed the following:

- Height of vegetation;
- Condition of landfill vents;
- Condition of slopes

- Condition of lateral drains.
- Evidence or erosion/animal burrows

The ability to accurately measure potential settlement of the landfill cover was not previously incorporated into the landfill construction; therefore, concrete elevation control points were established at four locations on the landfill cover and elevation surveys were conducted during both Site visits (Refer to Photograph 7 of Appendix A). GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were also recorded for the four elevation control points and landfill vent locations (Table 1), which are shown on Figure 2.

3.6 GROUNDWATER DRAINAGE SYSTEM

Historically, large volumes of leachate from the SCLS were required to be pumped during each Site visit, which was previously suspect to be a result of groundwater infiltration into the secondary liner. Consequently, a groundwater drainage system was installed in 2009 outside the fenced area of the secure landfill along the eastern and northern boundaries at an elevation that was anticipated to intercept groundwater and divert it through the drainage system.

During previous O&M efforts of 2009/10, the clean-outs were not located and during CRA's initial Site visit in July 2010, only one of four clean-outs installed in the system was located (Clean-out #1 located near the centre of the eastern fence boundary). Using As-Built drawings provided by DOEC, the four clean-out locations were confirmed, extended to surface, and covered with aluminum flush-mount covers. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were also recorded for the four clean-out locations (Table 1), which are shown on Figure 2. Refer to Photographs 8 and 9 of Appendix A showing a typical clean-out condition prior to and following repairs.

Upon completion of the clean-out modifications, a visual inspection of the groundwater drainage system was conducted.

4.0 GUIDELINE FRAMEWORK

4.1 **GROUNDWATER**

As specified in the OMM, the Atlantic Risk-Based Corrective Action (RBCA) Version 2.0 (March 2007) Tier I Risk-Based Screening Levels (RBSLs) for a commercial site with non-potable water and coarse-grained soil are the applicable Provincial guidelines for the assessment of BTEX/mTPH in groundwater. In addition, the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition are the applicable guidelines as specified in the OMM for the assessment of PAHs, PCBs, VOCs, general chemistry, and metals in groundwater.

4.2 SURFACE WATER

As specified in the OMM, the CCME Canadian Water Quality Guidelines (CWQGs) for the Protection of Freshwater Aquatic Life (FAL) (September 2007) are the applicable guidelines for the assessment of PAHs, VOCs, general chemistry, and metals. It is noted that the OMM did not specify guidelines for the assessment of BTEX/mTPH and PCBs in surface water. Guidelines are not available for xylenes, mTPH, and PCBs under the CCME FAL. The British Columbia Contaminated Sites Regulation (B.C. Reg. 375/96) Schedule 6 Generic Numerical Water Standards for Aquatic Life (Aquatic Life Generic Standards - freshwater) (for TPH) and the CCME Protection of Aquatic Life (AL) criteria (freshwater) (for BTE) were used as ecological benchmarks to determine whether surface water conditions downgradient from the Site have been exposed to any adverse risk to the ecological receptor from the hazardous landfill leachate. The freshwater ecological benchmark concentrations for BTE are 4.000 mg/L, 2.000 mg/L, and 0.390 mg/L. The ecological benchmark concentrations for TPH are 1.5 or 0.5 mg/L for gasoline or diesel, respectively. A parameter for Xylene does not currently exist under the CCME AL criteria for aquatic habitats.

4.3 LEACHATE

As specified in the OMM, the Newfoundland and Labrador Regulation 65/03 "Environmental Control Water and Sewage Regulations, 2003, Schedule "A", under the Water Resources Act (May 23, 2003) (Schedule A) are the applicable guidelines for the assessment of petroleum hydrocarbons (as total oils and grease), general chemistry, and

metals in leachate to be discharged into an open ditch. Since the pumped leachate eventually discharges from the ditch adjacent to the landfill and into a stream downgradient from the Site, the leachate was also compared to the CCME CWQGs (FAL) where Provincial regulations do not specify criteria for analytes. In addition, PLCS and SLCS samples from both sampling events were submitted for 96 hour LT50 toxicity analyses. Prior to pumping and discharging the PLCS and SLCS valve chambers, all analytical parameters were reviewed for compliance with these guidelines. Copies of the results were submitted to DOEC and the Town for approval prior to each pumping event.

5.0 <u>ANALYTICAL RESULTS</u>

5.1 **GROUNDWATER**

Groundwater analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals are presented in Tables 6 to 11, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix C. Additional discussion is presented in Section 6.1 regarding the groundwater analytical results.

5.1.1 BTEX/mTPH IN GROUNDWATER

Laboratory analytical results for BTEX/mTPH from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) plus one field duplicate collected during the July (DUP-01) and December (DUP-02) 2010 sampling events are presented in Table 6, all of which reported BTEX/mTPH concentrations as non-detectable or below the applicable guidelines.

Maxxam conducted a laboratory duplicate analysis for groundwater sample MW93-2 in July and December 2010, both of which reported BTEX/mTPH concentrations consistent with the original sample results. In addition, one field duplicate was collected from MW10-1 during each sampling event, both of which also reported BTEX/mTPH concentrations consistent with the original sample results.

5.1.2 PAHs IN GROUNDWATER

Laboratory analytical results for PAHs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) plus one field duplicate collected during the July (DUP-01) and December (DUP-02) 2010 sampling events are presented in Table 7, all of which reported PAH concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate was collected from MW10-1 during each sampling event, both of which also reported PAH concentrations consistent with the original sample results.

5.1.3 PCBs IN GROUNDWATER

Laboratory analytical results for PCBs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) plus one field duplicate collected during the July (DUP-01) and December (DUP-02) 2010 sampling events are presented in Table 8, all of which reported PCB concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate was collected from MW10-1 during each sampling event, both of which also reported PCB concentrations consistent with the original sample results.

5.1.4 **VOCs IN GROUNDWATER**

Laboratory analytical results for VOCs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) plus one field duplicate collected during the July (DUP-01) and December (DUP-02) 2010 sampling events are presented in Table 9, all of which reported VOC concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate was collected from MW10-1 during each sampling event, both of which also reported VOC concentrations consistent with the original sample results.

5.1.5 GENERAL CHEMISTRY IN GROUNDWATER

Laboratory analytical results for general chemistry from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) plus one field duplicate collected during the July (DUP-01) and December (DUP-02) 2010 sampling events are presented in Table 10, all of which reported general chemistry concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate was collected from MW10-1 during each sampling event, both of which also reported general chemistry concentrations consistent with the original sample results.

056680 (3)

5.1.6 METALS IN GROUNDWATER

Laboratory analytical results for metals from the six groundwater samples (MW93-1, MW93-1A, MW93-2A, MW93-2A, MW10-1, and MW10-1A) plus one field duplicate collected during the July (DUP-01) and December (DUP-02) 2010 sampling events are presented in Table 11, all of which reported metals concentrations as non-detectable or below the applicable guidelines except one parameter. Zinc was reported at a concentration that exceeded the Ontario MOE guideline for MW93-2A during the December 2010 sampling event, which was consistent with the previous monitoring report from 2009.

In addition, one field duplicate was collected from MW10-1 during each sampling event, both of which also reported general chemistry concentrations consistent with the original sample results.

5.2 **SURFACE WATER**

Surface water analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals as compared to applicable guidelines are shown in Tables 12 to 17, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix C. Additional discussion is presented in Section 6.2 regarding the surface water analytical results.

5.2.1 BTEX/mTPH IN SURFACE WATER

Laboratory analytical results for BTEX/mTPH from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected during the July and December 2010 sampling events are presented in Table 12, both of which reported BTE, and petroleum hydrocarbon concentrations as non-detectable or below the applicable comparison criteria.

5.2.2 PAHs IN SURFACE WATER

Laboratory analytical results for PAHs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected during the July and December 2010 sampling events are presented in Table 13, both all of which reported PAH concentrations as non-detectable or below the applicable guidelines.

5.2.3 PCBs IN SURFACE WATER

Laboratory analytical results for PCBs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected during the July and December 2010 sampling events are presented in Table 14, all of which reported PCB concentrations as non-detectable. Note that CCME CWQGs (FAL) does not specify a criterion for PCBs.

5.2.4 VOCs IN SURFACE WATER

Laboratory analytical results for VOCs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected during the July and December 2010 sampling events are presented in Table 15, both all of which reported VOC concentrations as non-detectable or below the applicable guidelines.

5.2.5 GENERAL CHEMISTRY IN SURFACE WATER

Laboratory analytical results for general chemistry from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected during the July and December 2010 sampling events are presented in Table 16, both all of which reported general chemistry concentrations as non-detectable or below the applicable guidelines.

In addition, Maxxam conducted a laboratory duplicate analysis for Turbidity on SURFACE-DOWN collected during the July 2010 sampling event and on SURFACE-UP collected during the December 2010 sampling event, both of which reported Turbidity concentrations consistent with the original sample results.

5.2.6 METALS IN SURFACE WATER

Laboratory analytical results for metals from two surface water samples (SURFACE-UP and SURFACE-DOWN) collected during the July and December 2010 sampling events are presented in Table 17, all of which reported metals concentrations as non-detectable or below the applicable guidelines except one or more exceedances for aluminum, cadmium, copper, iron, lead, and zinc.

The upgradient sample collected in July 2010 reported aluminum and cadmium exceedances; however, the downgradient sample collected at the same time reported aluminum, cadmium, copper, and iron exceedances. The summary table below

demonstrates the difference in concentrations between the upgradient reference sample and the downgradient sample.

Summary Table of Upgradient vs. Downgradient Surface Water Sample			
	Exceedances -	- July 2010	
Analyte	Upgradient Concentration (µg/L)	Downgradient Concentration (μg/L)	Difference
Aluminum	108	527	4.8 x
Cadmium	0.03	0.04	1.3 x
Copper	<2.0	12.7	6.4 x
Iron	289	1,820	6.3 x

#.## Exceeds CCME CWQGs

The upgradient sample collected in December 2010 reported aluminum, cadmium, and iron exceedances; however, the downgradient sample collected at the same time reported aluminum, cadmium, copper, iron, lead, and zinc exceedances. The summary table below demonstrates the percent difference in concentrations between the upgradient reference sample and the downgradient sample.

Summary Table of Upgradient vs. Downgradient Surface Water Sample Exceedances – December 2010			
Analyte	Upgradient Concentration (μg/L)	Downgradient Concentration (μg/L)	Difference
Aluminum	257	5,210	20.3 x
Cadmium	0.04	0.23	5.8 x
Copper	<2.0	32.9	16.4 x
Iron	722	10,900	15.1 x
Lead	<0.5	7.64	15.3 x
Zinc	10.7	103	9.6 x

#.## Exceeds CCME CWQGs

The above-noted exceedances were identified in previous monitoring reports from 2008 and 2009.

13

5.3 <u>LEACHATE SAMPLING</u>

Leachate analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals are presented in Tables 18 to 23, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix C. In addition, PLCS and SLCS toxicity analytical results for 2010 as reported by Stantec are included as Appendix D. Further discussion is presented in Section 6.3 regarding the leachate analytical results.

5.3.1 BTEX/mTPH IN LEACHATE

Laboratory analytical results for BTEX/mTPH from the two leachate samples (PCLS and SCLS) collected during the July and December 2010 sampling events are presented in Table 18, both of which reported BTEX/mTPH concentrations as non-detectable. TPH concentrations were below the Schedule A criterion for Provincial Environmental Control Water and Sewer regulations. In addition, BTE and TPH concentrations were below the BC and CCME CWQGs FAL criteria, respectively.

5.3.2 PAHs IN LEACHATE

Laboratory analytical results for PAHs from the two leachate samples (PCLS and SCLS) collected during the July and December 2010 sampling events are presented in Table 19, both of which reported PAH concentrations as non-detectable. Provincial regulations or guidelines for PAHs do not exist in consideration of discharging an effluent into a drainage ditch; however, the concentrations of anthracene, phenanthrene, and pyrene reported exceedances compared to the CCME CWQGs (FAL) in the December 2010 round of PLCS sampling. In addition, the pyrene concentration reported an exceedance compared to the CCME CWQGs (FAL) in the July 2010 round of SLCS sampling.

5.3.3 PCBs IN LEACHATE

Laboratory analytical results for PCBs from the two leachate samples (PCLS and SCLS) collected during the July and December 2010 sampling events are presented in Table 20, both of which reported PCB concentrations as non-detectable. Provincial regulations or guidelines for PCBs do not exist in consideration of discharging an effluent into a drainage ditch and the CCME CWQGs (FAL) do not specify criteria for PCBs.

14

5.3.4 VOCs IN LEACHATE

Laboratory analytical results for VOCs from the two leachate samples (PCLS and SCLS) collected during the July and December 2010 sampling events are presented in Table 21, both of which reported VOC concentrations as non-detectable. Provincial regulations or guidelines for VOCs do not exist in consideration of discharging an effluent into a drainage ditch.

5.3.5 GENERAL CHEMISTRY IN LEACHATE

Laboratory analytical results for general chemistry from the two leachate samples (PCLS and SCLS) collected during the July and December 2010 sampling events are presented in Table 22, both of which reported general chemistry concentrations as non-detectable or below the applicable guidelines except total suspended solids (TSS) during the December 2010 sampling event. This exceedance was consistent with previous sampling events in 2008 and 2009.

Maxxam conducted a laboratory duplicate analysis for two parameters (nitrogen and carbonaceous biological oxygen demand) on the SLCS sample collected during the July 2010 sampling event, both of which reported levels consistent with the original sample results.

5.3.6 METALS IN LEACHATE

Laboratory analytical results for metals from the two leachate samples (PCLS and SCLS) collected during the July and December 2010 sampling events are presented in Table 23, both of which reported metals concentrations as non-detectable or below the Provincila regulations.

5.3.7 TOXICITY IN LEACHATE

Leachate samples from the PCLS and SCLS were also submitted for toxicity analysis, which concluded the effluent from the PLCS and SLCS were non-toxic to rainbow trout.

6.0 DISCUSSION

6.1 **GROUNDWATER**

A review of groundwater analytical data from the July and December 2010 sampling events were compared to leachate analytical data collected from the PLCS and SLCS to determine if leachate appeared to be impacting groundwater. In general, BTEX/mTPH, PAH, PCB, VOC, general chemistry, and metals analytical data show groundwater conditions to be similar or better compared to leachate analytical data; therefore, it does not appear that groundwater is being influenced by leachate from the secure landfill. Groundwater data from previous monitoring programs is included in Appendix E.

Based on static groundwater levels measured during the 2010 Site visits, groundwater flows in a southwesterly direction toward Come By Chance Cove. In addition, static groundwater elevations for the two Site visits in 2010 from the three sets of monitor wells were compared to the PLCS and SLCS leachate elevations in the valve chambers. The groundwater elevations at MW93-1 and MW93-1A were measured at approximately 0.3 metres above the leachate elevations at PLCS and SLCS valve chambers. In comparison, groundwater elevations at MW93-2, MW93-2A, MW10-1, and MW10-1A measured approximately 2.0 metres below the leachate elevations at PLCS and SLCS valve chambers. Based on this limited evaluation, it appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

6.2 **SURFACE WATER**

A review of the downgradient surface water analytical data from the July and December 2010 sampling events were compared to leachate analytical data to determine if leachate may be impacting the surface water. In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions to be similar or better in quality compared to the leachate analytical data; however, pH was slightly acidic in the leachate measuring 6.37 to 7.59 compared to the more neutral downgradient surface water pH that was measured at 7.59 to 7.82. In addition, six metals (aluminum, cadmium, copper, iron, lead, and zinc) reported one or more exceedances in the downgradient surface water samples whereas the leachate analytical data did not report any metals exceedances. Surface water data from previous monitoring programs is included in Appendix E. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with

their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

6.3 LEACHATE

Prior to pumping and discharging leachate from the PLCS and SLCS, all analytical parameters were reviewed for compliance with Schedule A. In addition, copies of the results were sent to DOEC and the Town for approval prior to each pumping event. On August 19 and 25, 2010, approvals for discharge were received from DOEC and the Town, respectively, for the August 2010 pumping event. On January 10 and 11, 2011, approvals for discharge were received from DOEC and the Town, respectively, for the January 2011 pumping event. In accordance with the OMM, both pumping events consisted of two Site visits so that a desired flow rate of 15 L/min is achieved on two successive days. Appendix E includes leachate data from past monitoring programs.

During the first leachate pumping event in August 2010, it was observed that the PLCS and SLCS valves were in the open position with the discharge hose no longer connected to the PLCS valve (Refer to Photograph 2 of Appendix A). CRA determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculated in-flow. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not risen above the ground surface, even shortly after the Hurricane Igor precipitation event in September 2010.

6.3.1 AUGUST 2010 LEACHATE PUMPING EVENT

CRA returned to the Site on August 26, 2010 to initiate the first leachate collection system pumping program. Approximately 7,900 Litres (L) were pumped from the PLCS valve chamber with a final measured in-flow rate of 13.25 L per minute (L/min) while approximately 23,300 L were pumped from the SCLS valve chamber with a final measured in-flow rate of 70.14 L/min. Although the desired maximum in-flow rate of 15 L/min was achieved for the PLCS, the in-flow rate for the SLCS still greatly exceeded the maximum allowable in-flow and additional pumping was required.

CRA completed the leachate collection system pumping program on August 27, 2010. Approximately 4,200 L were pumped from the PLCS valve chamber with a final measured in-flow rate of 10.5 L/min while approximately 11,900 L were pumped from the SCLS valve chamber with a final measured in-flow rate of 11.4 L/min.

6.3.2 JANUARY 2011 LEACHATE PUMPING EVENT

CRA returned to the Site on January 18, 2011 to initiate the second leachate collection system pumping program. Approximately 4,500 L were pumped from the PLCS valve chamber with a final measured in-flow rate of 13.33 L/min while approximately 22,000 L were pumped from the SCLS valve chamber with a final measured in-flow rate of 70.14 L/min. Although the desired maximum in-flow rate of 14.7 L/min was achieved for the PLCS, the in-flow rate for the SLCS still greatly exceeded the maximum allowable in-flow and additional pumping was required.

CRA completed the leachate collection system pumping program on January 19, 2011. Approximately 4,100 Litres (L) were pumped from the PLCS valve chamber with a final measured in-flow rate of 10.0 L/min while approximately 8,200 L were pumped from the SCLS valve chamber with a final measured in-flow rate of 14.5 L/min.

6.3.3 <u>LEACHATE PUMPING EVALUATION</u>

Volumes of leachate pumped and discharged from the PLCS and SLCS were compared to previous pumped volumes. A summary of leachate pumping from November 2000 to January 2011 is presented in the table below.

Summary of Leachate Pumping Volumes (Litres)				
Year	Month	PLCS	SLCS	
2000	November	13,000	70,000	
2003	November	15,000	56,000	
2004	August	NA	45,000	
2004	September	15,500	83,000	
2004	October	NA	32,000	
2006	October	NA	68,000	
2007	February	6,000	63,000	
2007	July	NA	103,000	
2008	November	NA	74,000	
Average Pre GWDS		~12,500	66,000	
2009*	August	3,406	19,475	
2009	December	4,542	30,699	
2010	February	3,406	21,350	
2010	August	12,100	35,200	

Summary of Leachate Pumping Volumes (Litres)				
Year	Month	PLCS	SLCS	
2011	January	8,600	30,200	
Average Post GWDS		~6,400	~22,800	

GWDS: Groundwater drainage system installed in March 2009

NA: *No leachate present*

A review of the current and historical leachate pumping volumes from the PCLS and SCLS valve chambers demonstrates that pumped leachate volumes have decreased since the installation of the groundwater drainage system. A comparison of the average pumped leachate volumes from the PLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 50 percent. In addition, a comparison of the average pumped leachate volumes from the SLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 65 percent. Consequently, it appears the groundwater drainage system has contributed to the reduction of volumes of pumped leachate from the PCLS and SCLS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

6.4 LANDFILL COVER

Landfill cover inspections were conducted on July 16, 2010 and December 13, 2010. Notable items resulting from the landfill cover inspection are outlined below:

- Vegetation height reaching 1.5 metres, typically alders, which exceeds the OMM requirement of maximum vegetation height of 0.3 metres;
- Landfill vents in good condition and not obstructed;
- No evidence of erosion or animal burrows on the landfill cover;
- Slopes in good condition and covered with vegetation with no signs of erosion; and
- Lateral drains dry with occasional areas of standing water.

Landfill cover inspection data from previous monitoring programs is included in Appendix E.

Upon reviewing the results of the elevation control survey, it was noted the elevation control points decreased in elevation by an average of 40 millimetres between August and December 2010. The elevation control points were installed in August 2010 and may have settled slightly due to their recent installation; therefore, additional

measurement data of the elevation control points is required over a larger period of time to determine if landfill cover settlement is occurring.

6.5 GROUNDWATER DRAINAGE SYSTEM

Four groundwater drainage system clean-outs were previously installed as part of the original system construction; however, only one (CO1) was still visible for inspection. Based on information provided by DOEC, the remaining three clean-outs (CO2 to CO4) were located by CRA at depths ranging from 0.3 to 0.9 metres below grade (Refer to Photograph 8 of Appendix A); visual inspections confirmed that water was not present. The four existing clean-outs were modified with PVC fittings that terminated near grade using 100 mm diameter pipe, which were then completed with standard aluminum flush-mount covers (Refer to Photograph 9 of Appendix A).

Water was not observed discharging from the drainage system into the swale on the west side of the gravel service road during the July 2010 Site visit. An impromptu inspection of the groundwater drainage system on September 25, 2010 confirmed that water was flowing from the discharge on the west side of the gravel service road (Refer to Photograph 10 of Appendix A). The observed water discharge in September 2010 was likely a result of a recent and very high precipitation event (Hurricane Igor) compared to limited precipitation in the weeks prior to the July 2010 Site visit.

Debris or blockages were not present in any of the clean-outs during both Site visits and combined with water flowing from the downgradient discharge, it was determined the groundwater drainage system was functioning properly and cleaning was not required.

7.0 SUMMARY AND RECOMMENDATIONS

Conestoga-Rovers & Associates (CRA) was retained by the Newfoundland and Labrador Department of Environment and Conservation (DOEC) to complete the 2010/11 monitoring and maintenance program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the AMEC Tier II schedule as outlined in the 2004/05 Operations and Maintenance Manual (OMM).

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town, NL. The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the Come By Chance Oil Refinery. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners as well as a drainage pipe system to manage excess fluid and provide a means for leachate discharge.

A groundwater drainage system was installed in March 2009 starting at the east side of the landfill and is graded at one percent toward the northeast corner, then along the north side, and eventually discharging beyond the gravel road west of the Site.

The work completed by CRA during the 2010/11 monitoring and maintenance program involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, abandonment of two damaged monitor wells, installation of two replacement monitor wells, groundwater and surface water sampling, landfill cover inspection, and groundwater drainage system inspection, and clean-out repairs.

The spring/summer Site visit was conducted between July and August 2010 while the fall/winter Site visit was conducted between December 2010 and January 2011. Information regarding the 2010/11 monitoring and maintenance program is summarized below in Section 7.1 with recommendations provided in Section 7.2.

7.1 2010/11 MONITORING AND MAINTENANCE SUMMARY

7.1.1 GROUNDWATER

In general, the BTEX/mTPH, PAH, PCB, VOC, general chemistry, and metals analytical data show groundwater conditions to be similar or in better condition compared to the leachate analytical data; therefore, it does not appear that groundwater condition is being influenced by leachate from the secure landfill. Based on static groundwater levels measured during the 2010 Site visits, it also appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

7.1.2 SURFACE WATER

In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions to be similar or better in quality compared to the leachate analytical data; however, pH was slightly acidic in the leachate compared to the more neutral downgradient surface water pH. In addition, six metals (aluminum, cadmium, copper, iron, lead, and zinc) reported one or more exceedances in the downgradient surface water samples whereas the leachate analytical data did not report any metals exceedances. Surface water data from previous monitoring programs is included in Appendix E. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

7.1.3 LEACHATE

In accordance with the OMM, both pumping events consisted of two Site visits so that a desired flow rate of 15 L/min could be achieved on two successive days. During the first Site visit for leachate pumping in August 2010, it was observed that the PLCS and SLCS valves were permanently in the open position with the discharge hose no longer connected to the PLCS valve. CRA determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculating in-flow. It was also noted that leachate elevations in the PLCS and SLCS for two consecutive Site visits were less than 0.3 metres below the top of the valve chambers.

A review of the current and historical leachate pumping volumes from the PLCS and SLCS valve chambers demonstrates that pumped leachate volumes have decreased since the installation of the groundwater drainage system. A comparison of the average pumped leachate volumes from the PLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 50 percent. In addition, a comparison of the average pumped leachate volumes from the SLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 65 percent. Consequently, it appears the groundwater drainage system has contributed to the reduction of volumes of pumped leachate from the PCLS and SCLS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

7.1.4 LANDFILL COVER

Landfill cover inspections were conducted on July 16, 2010 and December 13, 2010, which indicated that minor maintenance is required. The only issue of concern related to maintenance is the cutting of vegetation, typically alders, which have reached 1.5 metres in height, considerably more than the OMM recommended height restriction of 0.3 metres.

Upon reviewing the results of the elevation control survey, it was noted the elevation control points decreased in elevation by an average of 40 millimetres between August and December 2010. The elevation control points were installed in August 2010 and may have settled slightly due to their recent installation; therefore, additional measurement data of the elevation control points is required over a longer period of time to determine if landfill cover settlement is occurring.

7.1.5 GROUNDWATER DRAINAGE SYSTEM

Four groundwater drainage system clean-outs were previously installed as part of the original system construction; however, only one (CO1) was still visible for inspection. The four existing clean-outs were modified with PVC fittings that terminated near grade using 100 mm diameter pipe, which were then completed with standard aluminum flush-mount covers.

Water was not observed discharging from the drainage system into the swale on the west side of the gravel service road during the July 2010 Site visit. An impromptu inspection of the groundwater drainage system on September 25, 2010 confirmed that

23

water was flowing from the discharge on the west side of the gravel service road. The observed water discharge in September 2010 was likely a result of a recent and very high precipitation event (Hurricane Igor) compared to limited precipitation in the weeks prior to the July 2010 Site visit.

Debris or blockages were not present in any of the clean-outs during both Site visits and combined with water flowing from the downgradient discharge, it was determined the groundwater drainage system was functioning properly and cleaning was not required.

7.2 <u>RECOMMENDATIONS</u>

Based on the findings of the 2010/11 monitoring and maintenance program along with data from previous monitoring programs, the following recommendations are offered for consideration by DOEC:

Monitoring and Maintenance Schedule: In accordance with the OMM, CRA recommend that groundwater, surface water, and leachate sampling be conducted using the Tier I schedule (once per year) since leachate elevations were measured at less than 0.3 metres below the top of the valve chambers for the PLCS and SLCS for two consecutive Site visits in 2010. In addition, the continued maintenance and inspection program for the landfill cover and groundwater drainage system clean-outs should be scheduled to coincide with the sampling program.

Installation of Additional Monitor Wells: CRA recommend the installation of three additional monitor wells north and northeast of the secure landfill to confirm groundwater depths with proposed well placements between CO1 and CO2, between CO2 and CO3, and between CO3 and CO4. Information acquired from groundwater levels in these key areas will determine whether or not the groundwater drainage system was installed at the appropriate depth and if groundwater is infiltrating the secondary leachate containment system liner in the northeastern area of the landfill.

Surface Water: CRA recommend that collection of an additional downgradient surface water sample be revised to a location near the landfill gated entrance to minimize potential impacts from nearby vehicular traffic and/or culvert. In addition and whenever possible, CRA also recommend that leachate sampling events be co-ordinated with measurable precipitation in the preceding days to avoid a situation where the sample location is dry (which is a common issue during the summer months).

24

Identify Potential Infiltration Sources: Although pumped leachate volumes have dramatically diminished from the PLCS, significant leachate volumes are still being pumped from the SLCS; this contradicts the OMM, which anticipated that SLCS volumes would also diminish quite dramatically. Therefore, further evaluation of groundwater elevations upgradient from the landfill is key in identifying the potential source of high SLCS infiltration. As noted above, CRA recommend the installation of three monitor wells upgradient from landfill.

Vegetation Control: CRA recommend that all vegetation on the landfill cover that measures over 0.3 metres in height should be cut down. This work can be completed in conjunction with vegetation control in the monitor well locations outside the fenced area of the landfill.

In addition, it was noted that access to two monitor wells (MW93-1 and MW93-1A) was somewhat difficult due to the excessive vegetative growth in the area with alders reaching heights of 1.8 metres. CRA recommend that alders be cut down in this location to better facilitate future field programs (i.e. the transport of field equipment such as water level meters, coolers, sample jars, etc.).

8.0 REFERENCES

- Report entitled "Annual Summary Report, 2009/2010 Environmental Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, Newfoundland" prepared by Pinchin Leblanc Environmental Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 2010
- Report entitled "Operations, Maintenance and Monitoring Manual, Come By Chance Secure Landfill, Come By Chance, Newfoundland" prepared by Pinchin Leblanc Environmental Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 2010
- Report entitled "Come By Chance Secure Landfill Groundwater Drainage System" prepared by AMEC Earth and Environmental for Newfoundland and Labrador Department of Environment and Conservation, dated March 2009

26

9.0 <u>CLOSURE</u>

All of Which is Respectfully Submitted,

CONESTOGA-ROVERS & ASSOCIATES

Brian Luffman, P. Eng.

Steve Forward, B.Eng

S. Forward

figure 1

SITE LOCATION MAP 2010/11 MONITORING AND MAINTENANCE PROGRAM DEPT. OF ENVIRONMENT AND CONSERVATION Come By Chance Secure Landfill, Come By Chance, NL

TABLE 1 Page 1 of 1

GPS CO-ORDINATES OF KEY SITE FEATURES 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

ID	NORTHING	EASTING
	(m)	(m)
PLCS	5299282.569	724372.496
SLCS	5299280.034	724373.295
MW 93-1	5299421.760	724546.360
MW 93-1A	5299422.020	724548.440
MW 93-2	5299235.085	724470.927
MW 93-2A	5299232.673	724472.066
MW 10-1	5299332.811	724352.601
MW 10-1A	5299330.374	724354.471
SURFACE UP	5299241.840	724543.520
SURFACE DOWN	5299275.880	724268.370
ECP 1	5299300.345	724396.495
ECP 2	5299262.242	724421.331
ECP 3	5299284.519	724455.814
ECP 4	5299308.292	724454.469
CLEAN-OUT 1	5299162.490	724361.549
CLEAN-OUT2	5299172.051	724428.014
CLEAN-OUT 3	5299117.496	724456.616
CLEAN-OUT 4	5299348.991	724353.634
VENT 1	5299290.775	724406.665
VENT 2	5299307.780	724490.445

Notes:

All points recorded using Universal Transverse Mercator Zone 21 as coordinate system

PLCS = Primary Leachate Collection System Valve Chamber SLCS = Secondary Leachate Collection System Valve Chamber

MW = Monitoring Well

ECP = Elevation Control Point

TABLE 2 Page 1 of 1

STATIC WATER LEVELS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

MW ID	Ground Surface Elevation	Length of Stick-up	TOC Elevation	Groundw	ater Depth	Groundwat	er Elevation
IVIVV ID	Lievation			Jul 2010	Dec 2010	Jul 2010	Dec 2010
	(masl)	(m)	(masl)	(mb)	ГОС)	(masl)	(masl)
PLCS	15.960	-	15.960	0.55	0.73	15.410	15.230
SLCS	15.955	-	15.955	0.52	0.713	15.435	15.242
MW 93-1	16.300	1.100	17.400	1.703	1.915	15.697	15.485
MW 93-1A	16.310	1.400	17.710	1.638	1.636	16.072	16.074
MW 93-2	14.290	1.100	15.390	2.084	2.147	13.306	13.243
MW 93-2A	14.310	1.100	15.410	1.456	1.375	13.954	14.035
MW 10-1	15.790	0.846	16.636	3.015	3.254	13.621	13.382
MW 10-1A	15.890	0.854	16.744	3.084	3.279	13.660	13.465

Notes:

m = Metres

TOC = Top of Casing

masl = Metres Above Sea Level mbTOC = Metres Below Top of Casing

LEACHATE SAMPLING AND PUMPING INFORMATION PRIMARY LEACHATE COLLECTION SYSTEM 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	P	LCS LEACHA	TE SAMPLIN	G		PLC	S PUMPING EVI	ENT	
Date	Weather	Valve Condition	Initial head (mbTOVC)		Date	Weather	Valve Condition	Final Flow Rate (L/min)	Pumping Time (hours)
July 16, 2010	Sunny, +20 °C	Unknown*	0.55	BTEX, TPH, Gen. Chem., Metals,	August 26, 2010	Sunny, +24°C	Open, flowing freely, hose disconnected	13.3	2
July 10, 2010	Sullity, 120°C	CHRIOWII	0.55	PAH, VOC, PCB, Toxicity	August 27, 2010	Overcast, misty, +15 °C	Open, flowing freely, hose disconnected	10.5	1
December 13, 2010	Sunny, -3 °C	Unknown*	0.71	BTEX, TPH, Gen. Chem., Metals,	January 18, 2011	Sunny, -5°C	Open, flowing freely, hose disconnected	13.3	2
December 13, 2010	Junity, -5 C	CHRIOWII	0.71	PAH, VOC, PCB, Toxicity	January 19, 2011	Overcast, +2 °C	Open, flowing freely, hose disconnected	10.0	1

Notes: Always maintain samples at 4°C

Plan to deliver samples to analytical laboratory within 3 days of sampling mbTOVC - Metres from water level to top of valve chamber

*PLCS valve chamber completely filled with leachate; therefore, unable to

inspect valve

Elevation of Top of PLCS Valve Chamber = 15.960 m

Containers Required For Analysis

BTEX: 3 x 40 mL amber glass vials (filled, with no headspace)

TPH: 2 x 250 mL amber glass

Gen Chem: 1 x 1 L plastic

PAHs: 2 x 250 mL amber glass

VOCs: 3 x 40 mL amber glass vials (filled, with no headspace)

PCBs: 2 x 250 mL glass

Metals: 1 x 50 mL plastic tube or 1 x 250 mL plastic

Toxicity: 2 x 20 L plastic food grade

LEACHATE SAMPLING AND PUMPING INFORMATION SECONDARY LEACHATE COLLECTION SYSTEM 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	S	LCS LEACHA	ΓE SAMPLIN	G		SLC	S PUMPING EVI	ENT	
Date	Weather	Valve Condition	Initial head (mbTOVC)	Analysis Conducted Sample Condition	Date	Weather	Valve Condition	Final Flow Rate (L/min)	Pumping Time (hours)
July 16, 2010	Sunny, +20 °C	Unknown*	0.52	BTEX, TPH, Gen. Chem., Metals,	August 26, 2010	Sunny, +24°C	Open, flowing freely, hose connected	70.14	6
July 10, 2010	Summy, 120°C	CHRIOWII	0.52	PAH, VOC, PCB, Toxicity	August 27, 2010	Overcast, misty, +15 °C	Open, flowing freely, hose connected	11.4	3
December 13, 2010	Sunny, -3 °C	Unknown*	0.71	BTEX, TPH, Gen. Chem., Metals,	January 18, 2011	Sunny, -5°C	Open, flowing freely, hose connected	14.7	5
December 13, 2010	Summy, -5 C	CHRIOWII	0.71	PAH, VOC, PCB, Toxicity	January 19, 2011	Overcast, misty, +15 °C	Open, flowing freely, hose connected	14.5	2

Notes: Always maintain samples at 4°C

Plan to deliver samples to analytical laboratory within 3 days of sampling

mbTOVC - Metres from water level to top of manhole

*SLCS valve chamber completely filled with leachate; therefore, unable to

inspect valve

Elevation of Top of SLCS Valve Chamber = 15.96 m

Containers Required For Analysis

BTEX: 3 x 40 mL amber glass vials (filled, with no headspace)

TPH: 2 x 250 mL amber glass

Gen Chem: 1 x 1 L plastic

PAHs: 2 x 250 mL amber glass

VOCs: 3 x 40 mL amber glass vials (filled, with no headspace)

PCBs: 2 x 250 mL glass

Metals: 1 x 50 mL plastic tube or 1 x 250 mL plastic

Toxicity: 2 x 20 L plastic food grade

LANDFILL CAP INSPECTION FORM 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				Landfill Cap Inspec	tion		Elev	ational Surv	ey Control Po	ints
Date	Weather	Vegetative Height (metres)	Vent Condition	Evidence of Erosion / Animal Burrows	Condition of Slopes	Condition of Lateral Drains	Point 1	Point 2	Point 3	Point 4
July 16, 2010	Sunny, +20 °C	0 - 1.5 m	No damage, not obstructed	None	No erosion, damage noted	Dry, occasional puddles, grassy	20.439	20.442	20.935	21.212
December 13, 2010	Sunny, 3°C	0 - 1.5 m	No damage, not obstructed	None	No erosion or damage noted	Dry, occasional puddles, grassy	20.390	20.407	20.898	21.164

Notes: Elevations measured using an assumed benchmark of 15.960 m at top of PLCS valve chamber

GROUNDWATER ANALYTICAL DATA - BTEX/mTPH (mg/L) 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	Data			Etherd			Tota	al Petroleun	Hydrocarbons (TI	PH)
Sample Location	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
MW 93-1	16-Jul-10	<	<	<	<	<	<	<	<	=
MW 93-1A	16-Jul-10	<	<	<	<	<	<	<	<	=
MW 93-1	13-Dec-10	<	<	<	<	<	<	<	<	-
MW 93-1A	13-Dec-10	<	<	<	<	<	<	<	<	=
MW 93-2	16-Jul-10	<	<	<	<	<	<	<	<	-
MW 93-2 Lab Dup	16-Jul-10	-	-	-	-	-	<	<	-	=
MW 93-2A	16-Jul-10	<	<	<	<	<	<	<	<	-
MW 93-2	13-Dec-10	<	<	<	<	<	<	<	<	-
MW 93-2 Lab Dup	13-Dec-10	-	-	-	-	-	<	<	-	=
MW 93-2A	13-Dec-10	<	<	<	<	<	<	<	<	=
MW 93-3	16-Jul-10	<	<	<	<	<	<	<	<	-
MW 93-3A	16-Jul-10	<	<	<	<	<	<	<	<	=
MW 10-1	13-Dec-10	<	<	<	<	<	<	<	<	-
MW 10-1A	13-Dec-10	<	<	<	<	<	<	<	<	=
DUP-01	16-Jul-10	<	<	<	<	<	<	<	<	-
DUP-02	13-Dec-10	<	<	<	<	<	<	<	<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
									20	Gasoline
Atlantic RBCA Tie	Atlantic RBCA Tier I RBSLs*	6.9	20	20	20	na	na	na	20	Diesel / #2 Fuel Oil
									20	# 6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Atlantic Risk-Based Corrective Action (RBCA) Tier I Risk-Based Screening Level (RBSL) Table values {commercial/non-potable/coarse grained soil}.

GROUNDWATER ANALYTICAL DATA - PAHs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW	93-1	MW	93-1A	MW	93-2	MW	93-2A	MW	7 10-1	MW	10-1A	DUP-01	DUP-02	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10										
1-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	13,000
2-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	13,000
Acenaphthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	1,700
Acenaphthylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	2,000
Acridine	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	-
Anthracene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	12
Benzo(a)anthracene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	5
Benzo(a)pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	1.9
Benzo(b)fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	7
Benzo(g,h,i)perylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.2
Benzo(k)fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.4
Chrysene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	3
Dibenz(a,h)anthracene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.25
Fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	130
Fluorene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	290
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.27
Naphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.20	5,900
Perylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	0.04	0.01	-
Phenanthrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	63
Pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	40
Quinoline	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	-

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample

- = Not analysed/No criteria
- < = Parameter below detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

GROUNDWATER ANALYTICAL DATA - PCBs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Paramet	er Uni	s MW	V 93-1	MW	93-1A	MW	93-2	MW	93-2A	MW	10-1	MW	10-1A	DUP-01	DUP-02	RDL	Criteria*
		16-Jul-10	13-Dec-10														
Total PCB	s ug/	`_ <	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	0.2

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit 0.0 = above criteria
SW = Surface Water Sample
< = Parameter below detection limit
DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

GROUNDWATER ANALYTICAL DATA - VOCS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW	93-1	MW	93-1A	MW	7 93-2	MW	93-2A	MW	7 10-1	MW	10-1A	DUP-01	DUP-02	RDL	Criteria*
		16-Jul-10	13-Dec-10														
Benzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	1,900
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	840
Bromomethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3.00	3.7
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	500
Chloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8.00	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	430
Chloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8.00	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	7,600
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	9,000
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.66
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	70
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	100
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	<	<	<	2.00	<	4.00	1.00	9.3
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	3.8
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	1.00	<	1.00	1.00	3.8
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	28,000
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3.00	50,000
o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,600
p+m-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	5,600
Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	940
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	22
Toluene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,900
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	200
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	16,000
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8.00	-
Vinyl Chloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.5

Notes

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

0.0 = above criteria

- SW = Surface Water Sample
- -= Not analysed/No criteria
- < = Parameter below detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW	93-1	MW	93-1A	MW	93-2	MW 93-2A	MW 93-2A Lab-Dup	MW 93-2A	MW	10-1	MW	10-1A	DUP-01	DUP-02	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
Anion Sum	me/L	5.87	5.52	7.33	7.46	6.30	6.58	6.43	-	1.31	3.87	2.63	3.86	3.08	3.89	2.70	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	229.0	210.0	293.0	297.0	205.0	219.0	212.0	-	14.0	94.0	92.0	94.0	114.0	96.0	95.0	1.00	-
Calculated TDS	mg/L	313.0	313.0	390.0	401.0	346.0	368.0	351.0	-	87.0	215.0	147.0	215.0	171.0	217.0	149.0	1.00	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	3.00	2.00	3.00	2.00	1.00	1.00	1.00	-	<	<	<	<	<	<	<	1.00	-
Cation Sum	me/L	5.62	5.90	7.02	7.19	5.66	6.19	5.70	-	1.15	3.60	2.55	3.61	3.08	3.66	2.57	N/A	-
Hardness (CaCO3)	mg/L	120	120	170	170	240	250	240	-	31	100	110	100	140	100	110	1.00	-
Ion Balance (% Difference)	%	2.18	3.33	2.16	1.84	5.35	3.05	6.02	-	6.50	3.61	1.54	3.35	0.00	3.05	2.47	N/A	-
Langelier Index (@ 20C)	N/A	0.47	0.38	0.62	0.61	0.53	0.54	0.48	-	-3.48	-0.23	-0.79	-0.36	-0.18	-0.31	-0.68	N/A	-
Langelier Index (@ 4C)	N/A	0.22	0.13	0.37	0.36	0.28	0.29	0.24	-	-3.73	-0.48	-1.05	-0.61	-0.43	-0.56	-0.93	N/A	-
Nitrate (N)	mg/L	<	< 0.05	<	< 0.05	<	< 0.05	<	-	0.15	<	0.24	<	0.26	<	0.25	0.05	-
Saturation pH (@ 20C)	N/A	7.64	7.64	7.37	7.32	7.28	7.20	7.27	-	9.25	7.93	7.79	7.92	7.64	7.91	7.77	N/A	-
Saturation pH (@ 4C)	N/A	7.89	7.89	7.62	7.57	7.53	7.45	7.52	-	9.50	8.18	8.05	8.17	7.89	8.16	8.02	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	230	210	300	300	210	220	210	-	14	95	92	95	110	96	96	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.00	-
Dissolved Chloride (Cl)	mg/L	19	15	11	11	23	21	23	-	14	56	12	56	14	56	12	1	-
Colour	TCU	<	<5	<	<5	<	<5	<	-	79.00	10.00	9.00	7.00	5.00	6.00	13.00	5.00	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	-
Nitrate + Nitrite	mg/L	<	<	<	<	<	<	<	-	<	<	<	<	<	<	<	0.05	-
Nitrite (N)	mg/L	<	<	<	<	<	<	<	-	<	<	<	<	<	<	<	0.01	2.00
Nitrogen (Ammonia Nitrogen)	mg/L	<	< 0.05	<	< 0.05	<	< 0.05	<	-	0.35	0.14	< 0.05	0.15	0.09	0.14	< 0.05	0.05	-
Total Organic Carbon (C)	mg/L	2.10	0.90	<5(1)	<5(1)	1.50	1.30	1.30	-	16.00	8(1)	33.00	8(1)	2.30	8(1)	18.00	0.50	-
Orthophosphate (P)	mg/L	<	< 0.01	<	0.04	<	< 0.01	<	-	< 0.01	<	< 0.01	<	< 0.01	<	< 0.01	0.01	-
рН	pН	8.11	8.02	7.99	7.93	7.81	7.74	7.75	7.83	5.77	7.70	7.00	7.56	7.46	7.60	7.09	N/A	-
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	26.00
Reactive Silica (SiO2)	mg/L	7.60	7.60	7.10	6.80	18.00	19.00	18.00	-	6.40	7.00	6.20	7.10	7.60	7.00	6.00	0.50	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	33	42	53	56	74	76	74	-	31	18	21	19	19	19	21	2	-
Sulphide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-			0.02	-
Turbidity	NTU	61.0	34.0	300.0	470.0	5.4	13.0	3.2		100.0	640.0	>1000	520.0	110.0	570.0	540.0	0.1	-
Conductivity	uS/cm	520	500	630	640	570	580	570	570	140	380	250	380	300	380	260	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit 0.0 = above criteria SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

(1) = Elevated detection limit due to matrix interference

GROUNDWATER ANALYTICAL DATA - METALS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW	93-1	MW 93-1A	MW 93-1A Lab-Dup	MW 93-1A	MW	93-2	MW	93-2A	MW	10-1	MW	10-1A	DUP-01	DUP-02	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
Aluminum (Al)	ug/L	37	17	15	15	31	9	<	<	150	200	38	100	11	160	36	5.0	-
Antimony (Sb)	ug/L	<	<	<	<	<	<	<	<	<	1	<	1	<	1	<	1.0	16,000
Arsenic (As)	ug/L	<	<	<	<	<	2	2	2	<	<	<	<	<	<	<	1.0	480
Barium (Ba)	ug/L	88	70	79	75	73	170	160	180	39	100	36	110	62	110	38	1.0	23,000
Beryllium (Be)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	53
Bismuth (Bi)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.0	-
Boron (B)	ug/L	100	99	56	56	57	980	1,100	1,000	24	45	9	42	13	38	9	5.0	50,000
Cadmium (Cd)	ug/L	0.02	0.05	0.03	0.03	0.07	0.15	0.10	0.15	3.50	0.03	<	0.02	0.03	0.03	<	0.0	11
Calcium (Ca)	ug/L	26,000	29,000	40,000	39,000	45,000	69,000	80,000	69,000	9,000	31,000	41,000	31,000	48,000	32,000	42,000	100	-
Chromium (Cr)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	$2000/110^{(1)}$
Cobalt (Co)	ug/L	<	<	0.7	0.8	0.4	<	0.4	<	1.4	2.3	1.4	2.5	3.3	2.4	1.4	0.4	100
Copper (Cu)	ug/L	<	<	2	3	<	<	<	<	<	5	9	4	<	5	9	2.0	23
Iron (Fe)	ug/L	<	<	<	<	<	<	<	<	1,900	120	50	82	<	140	59	50	-
Lead (Pb)	ug/L	<	<	<	<	<	«	<	~	0.8	«	<	<	<	<	<	1	32
Magnesium (Mg)	ug/L	14,000	12,000	17,000	17,000	14,000	16,000	13,000	16,000	2,200	5,800	2,300	5,900	3,900	5,900	2,300	100	-
Manganese (Mn)	ug/L	120	81	160	150	57	880	950	890	4,000	390	190	400	380	390	170	2.0	-
Molybdenum (Mo)	ug/L	20	18	15	15	14	«	<	~	<	16	3	14	5	16	3	2.0	7,300
Nickel (Ni)	ug/L	<	<	<	<	<	<	<	<	<	6	6	5	6	6	6	2.0	1,600
Phosphorus (P)	ug/L	<	<	<	<	130	«	150	~	<	«	150	<	<	<	<	100	-
Potassium (K)	ug/L	1,900	2,000	2,500	2,400	2,700	1,200	1,400	1,200	980	6,400	1,100	6,400	1,400	6,400	980	100	-
Selenium (Se)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	50
Silver (Ag)	ug/L	<	<	<	<	<	«	<	~	<	«	<	<	<	<	<	0.1	1
Strontium (Sr)	ug/L	230	220	300	290	280	240	230	240	41	98	85	99	100	99	87	2.0	-
Thallium (Tl)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.1	400
Tin (Sn)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.0	-
Titanium (Ti)	ug/L	<	<	<	<	2	<	<	<	2	3	<	2	<	3	<	2.0	-
Uranium (U)	ug/L	0.3	0.2	2.9	2.8	2.8	0.3	0.2	0.3	<	0.4	<	0.4	0.3	0.4	<	0.1	-
Vanadium (V)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.0	200
Zinc (Zn)	ug/L	10	10	<5	12	<5	19	18	17	1,300	5	11	5	10	6	11	5.0	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection L: 0.0 = above criteria SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

(1) Criteria for Total Chromium = 2000 ug/L, Criteria for Chromium (VI) = 110 ug/L

SURFACE WATER ANALYTICAL DATA - BTEX/mTPH (mg/L) 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	Date			Ethyl-			Total	Petroleum	Hydrocarbons (7	ГРН)
Sample Location	Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
SURFACE UP	16-Jul-10	<	<	<	<	<	<	<	<	-
SURFACE UP	13-Dec-10	<	<	<	<	<	<	<	<	-
SURACE DOWN	16-Jul-10	<	<	<	<	<	<	<	<	-
SURACE DOWN	13-Dec-10	<	<	<	<	<	<	<	<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
2007 CCME Freshwa	tor Aquatic								-	Gasoline
Life Guidelin		4.00	2.00	0.39	-	-	-	-	-	Diesel /#2 Fuel Oil
Ene Garden	ics								-	#6 Oil
1997 BC Guidelines fo	or Protection								-	-
of Aquatic L		-	-	-	-	1.5	0.5	-	-	-
of Aquatic E.									-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

- 1. 2007 CCME Freshwater Aquatic Life Guidelines
- 2. BC Ministry of Water, Land and Air Protection Guidelines for Protection of Aquatic Life

RDL = Reportable Detection Limit	TPuH = Total Purgeable Hydrocarbons	G = Gasoline
< = Parameter below detection limit	TExH = Total Extractable Hydrocarbons	FO = Fuel Oil
- = Not analysed	TPH = Total Petroleum Hydrocarbons	LO = Lube Oil
DUP = Laboratory duplicate	Modified TPH = $mTPH = TExH + TPuH$	W = Weathered
0.0 = above criteria	TPH = mTPH + BTEX	

SURFACE WATER ANALYTICAL DATA - PAHS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFA	ACE UP	SURFAC	E DOWN	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
1-Methylnaphthalene	ug/L	<	<	<	<	0.05	-
2-Methylnaphthalene	ug/L	<	<	<	<	0.05	-
Acenaphthene	ug/L	<	<	<	<	0.01	5.8
Acenaphthylene	ug/L	<	<	<	<	0.01	-
Acridine	ug/L	<	<	<	<	0.05	4.4
Anthracene	ug/L	<	<	<	<	0.01	0.012
Benzo(a)anthracene	ug/L	<	<	<	<	0.01	0.018
Benzo(a)pyrene	ug/L	<	<	<	<	0.01	0.015
Benzo(b)fluoranthene	ug/L	<	<	<	<	0.01	-
Benzo(g,h,i)perylene	ug/L	<	<	<	<	0.01	-
Benzo(k)fluoranthene	ug/L	<	<	<	<	0.01	-
Chrysene	ug/L	<	<	<	<	0.01	-
Dibenz(a,h)anthracene	ug/L	<	<	<	<	0.01	-
Fluoranthene	ug/L	<	<	<	<	0.01	0.04
Fluorene	ug/L	<	<	<	<	0.01	3.0
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	0.01	-
Naphthalene	ug/L	<	<	~	<	0.2	1.1
Perylene	ug/L	0.01	<	<	<	0.01	-
Phenanthrene	ug/L	<	<	<	<	0.01	0.4
Pyrene	ug/L	<	<	<	<	0.01	0.025
Quinoline	ug/L	<	<	<	<	0.05	3.4

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria
- < = Parameter below detection limit

0.0 = above criteria

^{*} Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

TABLE 14 Page 1 of 1

SURFACE WATER ANALYTICAL DATA - TOTAL PCBs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFA	ACE UP	SURFAC	E DOWN	RDL	Criteria*	
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10			
Total PCBs	ug/L	<	<	<	<	0.05	-	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SW = Surface Water Sample < = Parameter below detection limit **0.0** = above criteria

TABLE 15 Page 1 of 1

SURFACE WATER ANALYTICAL DATA - VOCs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFA	ACE UP	SURFAC	E DOWN	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	1	
Benzene	ug/L	<	<	<	<	1	370
Bromodichloromethane	ug/L	<	<	<	<	1	-
Bromoform	ug/L	<	<	<	<	1	-
Bromomethane	ug/L	<	<	<	<	3	-
Carbon Tetrachloride	ug/L	<	<	<	<	1	13.3
Chlorobenzene	ug/L	<	<	<	<	1	1.3
Chloroethane	ug/L	<	<	<	<	8	-
Chloroform	ug/L	<	<	<	<	1	1.8
Chloromethane	ug/L	<	<	<	<	8	-
Dibromochloromethane	ug/L	<	<	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	<	<	0.5	0.7
1,3-Dichlorobenzene	ug/L	<	<	<	<	1	150
1,4-Dichlorobenzene	ug/L	<	<	<	<	1	26
1,1-Dichloroethane	ug/L	<	<	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	<	<	1	100
1,1-Dichloroethylene	ug/L	<	<	<	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	2	-
1,2-Dichloropropane	ug/L	<	<	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	<	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	<	<	1	-
Ethylbenzene	ug/L	<	<	<	<	1	90
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	3	98.1
o-Xylene	ug/L	<	<	<	<	1	-
p+m-Xylene	ug/L	<	<	<	<	2	-
Styrene	ug/L	<	<	<	<	1	300
Tetrachloroethylene	ug/L	<	<	<	<	1	72
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	1	-
Toluene	ug/L	<	<	<	<	1	111
Trichloroethylene	ug/L	<	<	<	<	1	2.0
1,1,1-Trichloroethane	ug/L	<	<	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	8	21
Vinyl Chloride	ug/L	<	<	<	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SW = Surface Water Sample **0.0** = above criteria

-= Not analysed/No criteria

TABLE 16 Page 1 of 1

SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFA	ACE UP	SURFACE UP- Lab Dup	SURFACE DOWN	SURFACE DOWN - Lab Dup	SURFACE DOWN	RDL	Criteria*
		16-Jul-10	13-Dec-10	13-Dec-10	16-Jul-10	16-Jul-10	13-Dec-10		
Anion Sum	me/L	1.14	0.34	-	2.69	-	1.53	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	38	6	-	117	-	12	1	-
Calculated TDS	mg/L	62	23	-	140	-	122	1	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	<	<	-	<	-	<	1	-
Cation Sum	me/L	1.05	0.43	-	2.54	-	2.4	N/A	-
Hardness (CaCO3)	mg/L	41	10	-	110	-	70	1	-
Ion Balance (% Difference)	%	4.11	11.7	-	2.87	-	22.1	N/A	-
Langelier Index (@ 20C)	N/A	-1.36	-3.49	-	-0.099	-	-2.64	N/A	-
Langelier Index (@ 4C)	N/A	-1.61	-3.74	-	-0.35	-	-2.89	N/A	-
Nitrate (N)	mg/L	0.17	<	-	<	-	2	0.05	13
Saturation pH (@ 20C)	N/A	8.62	10.1	-	7.69	-	9.01	N/A	-
Saturation pH (@ 4C)	N/A	8.87	10.3	-	7.94	-	9.26	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	39	39	-	120	-	120	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	5	-
Dissolved Chloride (CI)	mg/L	5	6	-	1	-	23	1	-
Colour	TCU	38	49	-	39	-	120	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	0.002	-
Nitrate + Nitrite	mg/L	0.17	<	-	<	-	2	0.05	-
Nitrite (N)	mg/L	<	<	-	<	-	<	0.01	0.06
Nitrogen (Ammonia Nitrogen)	mg/L	<	<	-	0.19	-	0.06	0.05	-
Total Organic Carbon (C)	mg/L	6	6.4	-	5.4	-	18	0.5	-
Orthophosphate (P)	mg/L	<	<	-	<	-	<	0.01	-
pН	pН	7.26	6.58	-	7.59	-	6.37	N/A	6.5 - 9
Phenols-4AAP	mg/L	-	=	-	-	-	-	0.001	-
Reactive Silica (SiO2)	mg/L	1.5	1.5	-	3.1	-	7.4	0.5	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	11	3	-	15	-	24	2	-
Sulphide	mg/L	-	-	-	-	-	-	0.02	-
Turbidity	NTU	3.8	2.2	2.1	39	37	140	0.1	-
Conductivity	uS/cm	110	43	-	240	-	170	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	5	-

Notes:

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SW = Surface Water Sample -= Not analysed/No criteria < = Parameter below detection limit

0.0 = above criteria

TABLE 17 Page 1 of 1

SURFACE WATER ANALYTICAL DATA - TOTAL METALS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFA	ACE UP	SURFAC	E DOWN	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
Aluminum (Al)	ug/L	108	257	527	5,210	5.0	$100^{(1)}$
Antimony (Sb)	ug/L	<	<	<	<	1.0	-
Arsenic (As)	ug/L	<	<	1.1	3.3	1.0	5.0
Barium (Ba)	ug/L	22.3	9.4	102.0	289.0	1.0	-
Beryllium (Be)	ug/L	<	<	<	<	1.0	-
Bismuth (Bi)	ug/L	<	<	<	<	2.0	-
Boron (B)	ug/L	9.4	6.9	27.1	9.0	5.0	-
Cadmium (Cd)	ug/L	0.03	0.04	0.04	0.23	0.02	$0.015/0.036^{(2)}$
Calcium (Ca)	ug/L	12,900	2,960	40,100	18,300	100	-
Chromium (Cr)	ug/L	<	<	<	8.0	1.0	8.9/1.0 ⁽³⁾
Cobalt (Co)	ug/L	<	<	0.9	6.7	0.4	-
Copper (Cu)	ug/L	<	<	12.7	32.9	2.0	$2^{(4)}$
Iron (Fe)	ug/L	289	722	1,820	10,900	50	300
Lead (Pb)	ug/L	<	<	1.48	7.64	0.50	1, 2 ⁽⁵⁾
Magnesium (Mg)	ug/L	2,140	713	3,320	5,840	100	-
Manganese (Mn)	ug/L	97.9	142.0	481.0	427.0	2.0	-
Molybdenum (Mo)	ug/L	<	<	<	<	2.0	73.00
Nickel (Ni)	ug/L	<	<	3.0	16.7	2.0	25, 65 ⁽⁶⁾
Phosphorus (P)	ug/L	<	<	120	852	100	-
Potassium (K)	ug/L	588	295	1,080	4,060	100	-
Selenium (Se)	ug/L	<	<	<	<	1.0	1.0
Silver (Ag)	ug/L	<	<	<	<	0.1	0.1
Sodium (Na)	ug/L	4,720	3,680	4,300	11,500	100	-
Strontium (Sr)	ug/L	40.7	9.7	85.4	49.9	2.0	-
Thallium (Tl)	ug/L	<	<	<	<	0.1	0.8
Tin (Sn)	ug/L	<	<	<	<	2.0	-
Titanium (Ti)	ug/L	2.1	7.9	17.2	148.0	2.0	-
Uranium (U)	ug/L	<	<	0.38	0.38	0.10	-
Vanadium (V)	ug/L	<	<	<	0.3	2.0	-
Zinc (Zn)	ug/L	9.2	10.7	25.2	103	5.0	30
Hardness (CaCO3)	mg/L	41.0	10.0	110.0	70.0	1.0	-
pН	pН	7.26	6.58	7.59	6.37	-	6.5 - 9

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

0.0 = above criteria

(1) Aluminum guideline = 5 ug/L at pH < 6.5= 100 ug/L at pH ≥ 6.5

(2) Cadmium guideline = $10^{\{0.86[\log(\text{hardness})]-3.2\}}$

(4) Copper guideline = 2 ug/L at $[CaCO_3] = 0.120 \text{ mg/L}$ = 3 ug/L at $[CaCO_3] = 120.180 \text{ mg}$

= 4 ug/L at [CaCO₃] >180 mg/L

(5) Lead guideline = 1 ug/L at $[CaCO_3]$ = 0-60 mg/L

 $= 2 \text{ ug/L} \text{ at } [\text{CaCO}_3] = 60-120 \text{ mg/L}$

 $= 4 \text{ ug/L at } [\text{CaCO}_3] = 120-180 \text{ mg/L}$

 $= 7 \text{ ug/L at } [\text{CaCO}_3] > 180 \text{ mg/L}$

(6) Nickel guideline = 25 ug/L at $[CaCO_3] = 0.60 \text{ mg/L}$

 $= 65 \text{ ug/L at } [\text{CaCO}_3] = 60-120 \text{ mg/}$

 $= 110 \text{ ug/L at } [\text{CaCO}_3] = 120-180 \text{ m}_3$

= 150 ug/L at [CaCO₃] >180 mg/L

TABLE 18 Page 1 of 1

LEACHATE ANALYTICAL DATA - BTEX/MTPH 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				Ethyl-			Total	Petroleun	n Hydrocarbons	(TPH)	
Sample Location	Date Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments	
PLCS	16-Jul-10	<	<	<	<	<	<	<	<	-	
PLCS Lab-Dup	16-Jul-10	-	-	-	-	-	<	<	-	-	
PLCS	13-Dec-10	<	<	<	<	<	<	<	<	-	
PLCS Lab-Dup	13-Dec-10	<	<	<	<	<	-	-	-	-	
SLCS	16-Jul-10	<	<	<	<	<	<	<	<	_	
SLCS	13-Dec-10	<	<	<	<	<	0.05	<	<	-	
R	RDL	0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-	
Schedule A Water &	& Sewer Regulations ¹	-	-	-	-	-	-	-	15	-	
2007 CCMF Free!	nwater Aquatic Life								-	Gasoline	
	lelines ²	4.00	2.00	0.39	-	-	-	-	-	Diesel/#2 Fuel Oil	
Guid	territes								-	#6 Oil	
1997 BC Guidelir	1997 BC Guidelines for Protection of Freshwater Aquatic Life ³								-	-	
			-	-	-	1.5	1.5 0.5	; <u>-</u>	-	-	
Trestivater	riquate zire								-	-	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

- 1. Schedule A of Environmental Control Water and Sewer Regulations, 2003.
- 2. 2007 CCME Freshwater Aquatic Life Guidelines
- $3.\ BC\ Ministry\ of\ Water,\ Land\ and\ Air\ Protection\ Guidelines\ for\ Protection\ of\ Aquatic\ Life$

PLCS = Primary Leachate Collection System TPuH = Total Purgeable Hydrocarbons G = Gasoline SLCS = Secondary Leachate Collection System TExH = Total Extractable Hydrocarbons FO = Fuel Oil RDL = Reportable Detection Limit TPH = Total Petroleum Hydrocarbons LO = Lube Oil < = Parameter below detection limit Modified TPH = mTPH = TExH + TPuHW = Weathered - = Not analysed TPH = mTPH + BTEX0.0 = above criteria

TABLE 19 Page 1 of 1

LEACHATE ANALYTICAL DATA - PAHS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	PL	CS	SL	cs	RDL	Crit	eria
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		NL 1	CCME ²
1-Methylnaphthalene	ug/L	<	<	<	<	0.05	-	-
2-Methylnaphthalene	ug/L	<	<	0.22	<	0.05	-	-
Acenaphthene	ug/L	<	<	<	<	0.01	-	5.8
Acenaphthylene	ug/L	<	<	<	<	0.01	-	-
Acridine	ug/L	<	<	<	<	0.05	1	4.4
Anthracene	ug/L	<	0.04	<	<	0.01	-	0.012
Benzo(a)anthracene	ug/L	<	<	<	<	0.01	-	0.018
Benzo(a)pyrene	ug/L	<	<	<	<	0.01	-	0.015
Benzo(b)fluoranthene	ug/L	<	<	<	<	0.01	-	-
Benzo(g,h,i)perylene	ug/L	<	<	<	<	0.01	-	-
Benzo(k)fluoranthene	ug/L	<	<	<	<	0.01	-	-
Chrysene	ug/L	<	0.02	<	0.01	0.01	-	-
Dibenz(a,h)anthracene	ug/L	<	<	<	<	0.01	-	-
Fluoranthene	ug/L	<	0.04	0.01	<	0.01	=	0.04
Fluorene	ug/L	<	<	<	<	0.01	=	3.0
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	0.01	=	-
Naphthalene	ug/L	<	<	<	<	0.2	=	1.1
Perylene	ug/L	<	<	<	<	0.01	-	=
Phenanthrene	ug/L	<	0.07	0.02	0.01	0.01	=	0.4
Pyrene	ug/L	<	<u>0.17</u>	0.06	<	0.01	=	0.025
Quinoline	ug/L	<	<	<	<	0.05	-	3.4

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. NL Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, NL Regulation 65/03.

2. CCME Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

0.0 = above NL criteria

<u>0.0</u> = above CCME criteria for surface water

TABLE 20 Page 1 of 1

LEACHATE ANALYTICAL DATA - TOTAL PCBs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	PL	CS	SL	CS	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
Total PCBs	ug/L	<	<	<	<	0.05	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

SW = Surface Water Sample

< = Parameter below detection limit

0.0 = above criteria

TABLE 21 Page 1 of 1

LEACHATE ANALYTICAL DATA - VOCs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	PL	CS	SL	CS	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
Benzene	ug/L	<	<	<	<	1	-
Bromodichloromethane	ug/L	<	<	<	<	1	-
Bromoform	ug/L	<	<	<	<	1	-
Bromomethane	ug/L	<	<	<	<	3	-
Carbon Tetrachloride	ug/L	<	<	<	<	1	-
Chlorobenzene	ug/L	<	<	<	<	1	-
Chloroethane	ug/L	<	<	<	<	8	-
Chloroform	ug/L	<	<	<	<	1	-
Chloromethane	ug/L	<	<	<	<	8	-
Dibromochloromethane	ug/L	<	<	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	<	<	0.5	-
1,3-Dichlorobenzene	ug/L	<	<	<	<	1	-
1,4-Dichlorobenzene	ug/L	<	<	<	<	1	-
1,1-Dichloroethane	ug/L	<	<	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	<	<	1	-
1,1-Dichloroethylene	ug/L	<	<	<	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	2	-
1,2-Dichloropropane	ug/L	<	<	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	<	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	<	<	1	-
Ethylbenzene	ug/L	<	<	<	<	1	-
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	3	-
o-Xylene	ug/L	<	<	<	<	1	-
p+m-Xylene	ug/L	<	<	<	<	2	-
Styrene	ug/L	<	<	<	<	1	-
Tetrachloroethylene	ug/L	<	<	<	<	1	-
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	1	-
Toluene	ug/L	<	<	<	<	1	-
Trichloroethylene	ug/L	<	<	<	<	1	-
1,1,1-Trichloroethane	ug/L	<	<	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	8	-
Vinyl Chloride	ug/L	<	<	<	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

0.0 = above criteria

 $SW = Surface\ Water\ Sample$

-= Not analysed/No criteria

TABLE 22 Page 1 of 1

LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	PL	CS	SLCS	SLCS - Lab Dup	SLCS	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	16-Jul-10	13-Dec-10		
Anion Sum	me/L	4.86	10.10	8.68	-	10.90	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	176	400	315	-	420	1	-
Calculated TDS	mg/L	263	546	460	-	574	1	1,000
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	1	1	-	2	1	-
Cation Sum	me/L	4.47	10.10	7.81	-	10.40	N/A	-
Hardness (CaCO3)	mg/L	190	190	320	-	320	1	-
Ion Balance (% Difference)	%	4.18	0.00	5.28	-	2.44	N/A	-
Langelier Index (@ 20C)	N/A	0.42	0.86	0.67	-	0.99	N/A	-
Langelier Index (@ 4C)	N/A	0.17	0.61	0.42	-	0.74	N/A	-
Nitrate (N)	mg/L	0.35	0.28	0.35	-	0.10	0.05	10
Saturation pH (@ 20C)	N/A	7.40	6.74	7.00	-	6.73	N/A	-
Saturation pH (@ 4C)	N/A	7.65	6.98	7.25	-	6.98	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	180	400	320	-	420	30.00	-
Carbonaceous BOD	mg/L	<	<	<	<	<	5.00	20
Dissolved Chloride (Cl)	mg/L	11	29	32	-	43	1	-
Colour	TCU	15	17	12	-	56	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	<	<	<	-	<	0.002	25
Nitrate + Nitrite	mg/L	0.37	0.28	0.37	-	0.10	0.05	-
Nitrite (N)	mg/L	0.03	<	0.02	-	<	0.01	-
Nitrogen (Ammonia Nitrogen)	mg/L	<	0.10	0.12	0.12	0.26	0.05	2
Total Organic Carbon (C)	mg/L	6.4	11.0	12.0	-	13.0	0.5	-
Orthophosphate (P)	mg/L	<	<	<	-	<	0.01	-
pН	pН	7.82	7.59	7.67	-	7.72	N/A	5.5 - 9.0
Phenols-4AAP	mg/L	0.01	0.003	0.003	-	<0.01*	0.001	0.10
Reactive Silica (SiO2)	mg/L	8.40	13.00	14.00	-	14.00	0.5	-
Total Suspended Solids (TSS)	mg/L	11	17	5	-	33	2.0	30
Dissolved Sulphate (SO4)	mg/L	47	61	69	-	60	2.0	-
Sulphide	mg/L	<	<	<	-	<	0.02	0.50
Turbidity	NTU	1.6	16.0	6.6	-	17.0	0.1	-
Conductivity	uS/cm	440	840	750	-	900	1	-
Total Oil & Grease	mg/L	<	<	<	-	<	5.00	-
Coliform-Fecal	#/100mL	0	0	0	-	- ⁽¹⁾	-	1,000/100 mL
Coliform-Total	#/100mL	>80	>80	>80	-	_ (1)	-	5,000/100 mL

Notes

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL. Coliform analysis completed by Newfoundland and Labrador Government Services in Grand Falls-Windsor, NL

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit SW = Surface Water Sample **0.0** = above criteria

-= Not analysed/No criteria

^{*} Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

TABLE 23 Page 1 of 1

LEACHATE ANALYTICAL DATA - TOTAL METALS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	PL	cs	SL	CS	RDL	Criteria*
		16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10		
Aluminum (Al)	ug/L	36.8	<	23.1	<	5	-
Antimony (Sb)	ug/L	<	<	<	<	1	-
Arsenic (As)	ug/L	<	<	<	<	1	500
Barium (Ba)	ug/L	13.3	51	18.9	40	1	5,000
Beryllium (Be)	ug/L	<	<	<	<	1	-
Bismuth (Bi)	ug/L	<	<	<	<	2	-
Boron (B)	ug/L	1,170	2,230	1,970	1,870	5	5,000
Cadmium (Cd)	ug/L	<	<	<	<	0.017	50
Calcium (Ca)	ug/L	58,400	138,000	90,900	135,000	100	-
Total Chromium (Cr)	ug/L	<	<	<	<	1	1,000
Chromium VI	mg/L	<	<	<	<	0.001	0.05
Cobalt (Co)	ug/L	<	<	0.49	<	0.4	-
Copper (Cu)	ug/L	2.50	<	<	<	2	300
Iron (Fe)	ug/L	1,790	3,150	1,320	2,240	50	10,000
Lead (Pb)	ug/L	<	<	<	<	5	200
Magnesium (Mg)	ug/L	10,700	24,300	23,500	27,400	100	-
Manganese (Mn)	ug/L	1,130	6,240	3,270	5,120	2	-
Mercury (Hg)	ug/L	<	<	<	<	0.013	5
Molybdenum (Mo)	ug/L	<	<	<	<	2	-
Nickel (Ni)	ug/L	<	<	<	<	2	500
Phosphorus (P)	ug/L	<	<	<	<	100	0.5
Potassium (K)	ug/L	7,270	6,530	<	7,750	100	-
Selenium (Se)	ug/L	<	<	<	<	1	10
Silver (Ag)	ug/L	<	<	<	<	0.1	50
Sodium (Na)	ug/L	9,880	22,500	21,300	25,500	100	-
Strontium (Sr)	ug/L	156	289	282	324	2	-
Thallium (Tl)	ug/L	<	<	<	<	0.1	-
Tin (Sn)	ug/L	<	<	<	<	2	-
Titanium (Ti)	ug/L	<	<	<	<	2	-
Uranium (U)	ug/L	0.25	<	1.11	1	1	-
Vanadium (V)	ug/L	<	<	<	<	2	-
Zinc (Zn)	ug/L	8.10	<	5.20	<	50	500

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

 * Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

0.0

= above criteria

SW = Surface Water Sample

- = Not analysed/No criteria

APPENDIX A

SITE PHOTOGRAPHS

Photo 1: View, looking north, of the damaged stick-up monitor wells 93-3 and 93-3A.

Photo 2: View, looking northeast, of the newly installed groundwater monitor wells (MW10-1 and MW10-1A).

Photo 3: View of PLCS valve chamber prior to July 2010 sampling event. Note discharge hose floating in the chamber (upper corner).

Photo 4: View of PLCS valve chamber with discharge hose disconnected.

Photo 5: View, looking west, of the typical vegetative overgrowth along the southern slope of the landfill cover.

Photo 6: View, looking east, of the typical vegetative overgrowth along the northern slope of the landfill cover.

Photo 7: View, looking east, of a typical elevational survey control point installed on the landfill cover.

Photo 8: View, looking southeast, showing Clean-out 2 prior to modifications (typical).

Photo 9: View, looking northeast, showing Clean-out 2 after modifications (typical) with painted flushmount cover.

Photo 10: View, looking northeast, showing groundwater discharge from the groundwater drainage system beyond the service road.

APPENDIX B

MONITOR WELL LOGS

Date: September 21, 2010

Project Number: 056680-01 Project Name: Monitor Well Decommissioning

Location: Come By Chance Secured Landfill, NL Form Completed By: H. Anderson

Sub-Contractor: Logan Geotechnical	Well: MW93-3
Date Completed: July 16, 2010	Lithology: Silty Sand and Gravel

MONITOR WELL SPECIFICATIONS

MATERIALS REMOVED

Well Depth:	5.49	(m)	Well Protector:	Yes	Type: Flushmount Enclosure
Casing Stick-up:	N/A	(m)	Casing: 0.50	(m)	Screen: 3.45 (m)
Borehole/Pack Diameter:	50/200	(mm)	Other:		
Screen Length:	0.50	(m)			
Sand Pack Length:	4.99	(m)			
Static Water Level:	2.262	(m)			

ABANDONMENT PROCEDURE

ABANDONED BOREHOLE LOG

Grout Pumping M	Method: Manual Pour		Description of Material Emplaced	Strata Plot	Emplaced Material Depth From: To:
. –	iroplug Medium Bentonite Ch	ps	0.000		
Volume Grout Used: 0.11 m ³		Native backfill	• •	From 0.00 to 0.30 mbgs	
SUM	IMARY OF MATERIAL	S USED	0.03		
Item	Specifications	Volume Used			
Asphalt			Bentonite Seal (PVC Removed)		From 0.30 to 3.95 mbgs
Sand					
Bentonite	Wyo-Ben Enviroplug Medium	0.11 m ³	3.95 mbgs		
Cement			Bentonite Seal		From 3.95 to 5.49 mbgs
			Bentomic Scar		110m 3.93 to 3.49 mogs
			EOH – 5.49 mbgs	IHIII	
1					
1					

Date: September 21, 2010

Project Number: 056680-01 Project Name: Monitor Well Decommissioning

Location: Come By Chance Secured Landfill, Form Completed By: H. Anderson

Come By Chance, NL

Sub-Contractor: Logan Geotechnical	Well: MW93-3A
Date Completed: July 16, 2010	Lithology: Silty Sand and Gravel

MONITOR WELL SPECIFICATIONS

MATERIALS REMOVED

Well Depth:	8.49	(m)	Well Protector: Yes		s Type	Enclosure	
Casing Stick-up:	N/A	(m)	Casing: 1	.80 (1	m)	Screen:	(m)
Borehole/Pack Diameter:	50/200	(mm)	Other:				
Screen Length:	6.00	(m)					
Sand Pack Length:	7.49	(m)					
Static Water Level:	1.240	(m)					

ABANDONMENT PROCEDURE

ABANDONED BOREHOLE LOG

Grout Pumping M	Iethod: Manual Pour		Description of Material Emplaced	Strata Plot	Emplaced Material Depth From: To:
	iroplug Medium Bentonite Ch	ips	0.000		
Volume Grout Used: 0.26 m ³			Native backfill	•	From 0.00 to 0.30 mbgs
SUM	IMARY OF MATERIAL	S USED	0.03		
Item	Specifications	Volume Used	Bentonite Seal		
Asphalt			(PVC Removed)		From 0.30 to 1.80 mbgs
Sand			1.80 mbgs		
Bentonite	Wyo-Ben Enviroplug Medium	0.26 m^3			
Cement					From 1.80 to 8.49 mbgs
			Bentonite Seal		
			EOH – 8.49 mbgs		

Client: DOEC

Project No: 056680-01

Civic Address: Secure Landfill Site

City & Province: Come By Chance, NL

PID Number: N/A
UTM Easting: N/A

UTM Northing: N/A

Date Started: July 16, 2010

Date Finished: July 16, 2010

Drilling Contractor: Logan Geotechnical

Drill Type: CME 55

Drill Method: Hollow Stem Auger/Coring

Logged By: H. Anderson

TOC Elevation: 16.636 metres **GL Elevation:** 15.790 metres

Final Depth: 8.467 metres

Depth to Water Strike: 2.169 metres

Depth to Bedrock 5.500 metres

Monitor Well: MW10-1

Page: 1 of 1

Depth (m)	Lithology	USCS Classification	Description	Elevation (mamsl)	Sample ID	Sample Type	N-Value/RQD (%)	Recovery (%)	Headspace (ppm/% LEL)	Analysis	Well Construction	Well Details
0.0-				15.8							П	Casing stick-up protector
1.0			Silty Sand and Gravel Brown silty sand and gravel, occasional cobbles and boulders, moist to wet at approximately 2.20 mbgs, odourless.	15.0 14.0 13.0 11.							<u> </u>	Groundwater at approx. 2.169 mbgs "No. 20" slot PVC screen
6.0] :] :		Bedrock Severely fractured grey siltstone bedrock.	9.0	RC1	RC	0	25	NA			Bentonite seal
8.0] :] :			8.0	RC2	RC	7	43	NA			"No. 2" silica sand pack End point
9.0				7.0							-	

Client: DOEC

Project No: 056680-01

Civic Address: Secure Landfill Site

City & Province: Come By Chance, NL

PID Number: N/A

UTM Easting: N/A

UTM Northing: N/A

Date Started: July 16, 2010

Date Finished: July 16, 2010

Drilling Contractor: Logan Geotechnical

Drill Type: CME 55

Drill Method: Hollow Stem Auger/Coring

Logged By: H. Anderson

TOC Elevation: 16.744 metres **GL Elevation:** 15.890 metres

Final Depth: 5.111 metres

Depth to Water Strike: 2.230 metres

Depth to Bedrock 5.100 metres

Monitor Well: MW10-1A

Page: 1 of 1

Depth (m)	Lithology	USCS Classification	Description	Elevation (mamsl)	Sample ID	Sample Type	N-Value/RQD (%)	Recovery (%)	Headspace (ppm/% LEL)	Analysis	Well Construction	Well Details
0.0				35.0							П	Casing stick-up protector
1.0 - 2.0 - 3.0 -			Silty Sand and Gravel Brown silty sand and gravel, occasional cobbles and boulders, moist to wet at approximately 2.30 mbgs, odourless.	15.0								"No. 20" slot PVC screen Groundwater at approx. 2.230 mbgs "No. 2" silica sand pack
7.0				9.0								

APPENDIX C

LABORATORY CERTIFICATES OF ANALYSES

Your Project #: 056680-01 Site: COME BY CHANCE LANDFILL Your C.O.C. #: N/A

Attention: Dave Mccoll
Conestoga-Rovers and Associates Ltd
Mount Pearl/St. John's
PO Box 8353 Stn A
1118 Topsail Rd
St. John's, NL
A1B 3N7

Report Date: 2011/02/24

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B095073 Received: 2010/07/19, 10:40

Sample Matrix: Water # Samples Received: 11

	Date	Date	Method
Quantity	Extracted	Analyzed Laboratory Method	Reference
4	2010/07/20	2010/07/26 ATL SOP 00198 R2	Based on Atl. PIRI
2	2010/07/20	2010/07/27 ATL SOP 00198 R2	Based on Atl. PIRI
5	2010/07/21	2010/07/22 ATL SOP 00198 R2	Based on Atl. PIRI
11	2010/07/21	2010/07/21 ATL SOP 00200 R4	Based on Atl. PIRI
5	N/A	2010/07/22	Based on Atl. PIRI
6	N/A	2010/07/27	Based on Atl. PIRI
	4 2 5	Quantity Extracted 4 2010/07/20 2 2010/07/20 5 2010/07/21 11 2010/07/21 5 N/A	Quantity Extracted Analyzed Laboratory Method 4 2010/07/20 2010/07/26 ATL SOP 00198 R2 2 2010/07/20 2010/07/27 ATL SOP 00198 R2 5 2010/07/21 2010/07/22 ATL SOP 00198 R2 11 2010/07/21 2010/07/21 ATL SOP 00200 R4 5 N/A 2010/07/22

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ROB WHELAN, Project Manager Email: RWhelan@maxxam.ca Phone# (709) 754-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

^{*} Results relate only to the items tested.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-01 Project name: COME BY CHANCE LANDFILL

ATLANTIC RBCA HYDROCARBONS (WATER)

Maxxam ID		GN7331	GN7331	GN7332	GN7333	GN7334	GN7335	GN7336		
Sampling Date		2010/07/16	2010/07/16	2010/07/16	2010/07/16	2010/07/16	2010/07/16	2010/07/16		
Received Temperature (°C)		3.3	3.3	3.3	3.3	3.3	3.3	3.3		
	Units	Primary	Primary Liner	Secondary	Surface Up	Surface	MW 93-1	MW 93-1A	RDL	QC Batch
		Liner	Lab-Dup	Liner		Down				
Petroleum Hydrocarbons										
Benzene	mg/L	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	0.001	2212461
Toluene	mg/L	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	0.001	2212461
Ethylbenzene	mg/L	<0.001		<0.001	<0.001	<0.001	<0.001	<0.001	0.001	2212461
Xylene (Total)	mg/L	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002	0.002	2212461
C6 - C10 (less BTEX)	mg/L	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2212461
>C10-C21 Hydrocarbons	mg/L	< 0.05	<0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	0.05	2211442
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>0.1</td><td>2211442</td></c32>	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2211442
Modified TPH (Tier1)	mg/L	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2210277
Surrogate Recovery (%)										
Isobutylbenzene - Extractable	%	65	91	89	62	102	87	93		2211442
Isobutylbenzene - Volatile	%	90		88	84	88	91	87		2212461
n-Dotriacontane - Extractable	%	30(1)	80	68(2)	8.1(3)	80(4)	74(4)	76(4)		2211442

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

^{(1) -} Isobutylbenzene/n-Dotriacontane recovery(ies) not within acceptance limits. Analysis repeated with similar results.

^{(2) -} Weathered fuel oil fraction. Isobutylbenzene/n-Dotriacontane recovery(ies) not within acceptance limits due to matrix/co-extractive interference.

^{(3) -} Isobutylbenzene/n-Dotriacontane recovery(ies) not within acceptance limits due to sediment interference.

^{(4) -} TEH sample contained sediment.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-01 Project name: COME BY CHANCE LANDFILL

ATLANTIC RBCA HYDROCARBONS (WATER)

Maxxam ID		GN7337	GN7337	GN7338	GN7339	GN7340	GN7341		
Sampling Date		2010/07/16	2010/07/16	2010/07/16	2010/07/16	2010/07/16	2010/07/16		
Received Temperature (°C)		3.3	3.3	3.3	3.3	3.3	3.3		
	Units	MW 93-2	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	DUP-01	RDL	QC Batch
			Lab-Dup						
Petroleum Hydrocarbons									
Benzene	mg/L	<0.001		<0.001	<0.001	<0.001	< 0.001	0.001	2212461
Toluene	mg/L	<0.001		<0.001	<0.001	< 0.001	< 0.001	0.001	2212461
Ethylbenzene	mg/L	<0.001		<0.001	<0.001	< 0.001	< 0.001	0.001	2212461
Xylene (Total)	mg/L	<0.002		<0.002	<0.002	< 0.002	< 0.002	0.002	2212461
C6 - C10 (less BTEX)	mg/L	<0.01		<0.01	<0.01	<0.01	<0.01	0.01	2212461
>C10-C21 Hydrocarbons	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2212612
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>0.1</td><td>2212612</td></c32>	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2212612
Modified TPH (Tier1)	mg/L	<0.1		<0.1	<0.1	<0.1	<0.1	0.1	2210277
Surrogate Recovery (%)									
Isobutylbenzene - Extractable	%	93	97	98	54	60	87		2212612
Isobutylbenzene - Volatile	%	84		88	85	92	89		2212461
n-Dotriacontane - Extractable	%	91	95	97	29(1)	7.8(1)	74(2)		2212612

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

^{(1) -} Isobutylbenzene/n-Dotriacontane recovery(ies) not within acceptance limits due to sediment interference.

^{(2) -} TEH sample contained sediment.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-01 Project name: COME BY CHANCE LANDFILL

GENERAL COMMENTS

Revised report due to changes in sample IDs 2011-02-24.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-01 Project name: COME BY CHANCE LANDFILL

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method	l Blank	RF	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2211442	Isobutylbenzene - Extractable	2010/07/21	83	30 - 130	92	30 - 130	92	%		
2211442	n-Dotriacontane - Extractable	2010/07/21	66	30 - 130	99	30 - 130	85	%		
2211442	>C10-C21 Hydrocarbons	2010/07/26	72(1)	30 - 130	112	30 - 130	< 0.05	mg/L	NC (2)	40
2211442	>C21- <c32 hydrocarbons<="" td=""><td>2010/07/26</td><td>77(1)</td><td>30 - 130</td><td>117</td><td>30 - 130</td><td><0.1</td><td>mg/L</td><td>NC (2)</td><td>40</td></c32>	2010/07/26	77(1)	30 - 130	117	30 - 130	<0.1	mg/L	NC (2)	40
2212461	Isobutylbenzene - Volatile	2010/07/22	84	70 - 130	90	70 - 130	100	%		
2212461	Benzene	2010/07/21	105	70 - 130	105	70 - 130	<0.001	mg/L	NC	40
2212461	Toluene	2010/07/21	100	70 - 130	105	70 - 130	<0.001	mg/L	NC	40
2212461	Ethylbenzene	2010/07/21	100	70 - 130	105	70 - 130	<0.001	mg/L	2.1	40
2212461	Xylene (Total)	2010/07/21	103	70 - 130	105	70 - 130	<0.002	mg/L	5.7	40
2212461	C6 - C10 (less BTEX)	2010/07/21					<0.01	mg/L	16.2	40
2212612	Isobutylbenzene - Extractable	2010/07/22	100	30 - 130	98	30 - 130	100	%		
2212612	n-Dotriacontane - Extractable	2010/07/22	111	30 - 130	110	30 - 130	100	%		
2212612	>C10-C21 Hydrocarbons	2010/07/22	111(3)	30 - 130	112	30 - 130	<0.05	mg/L	NC (4)	40
2212612	>C21- <c32 hydrocarbons<="" td=""><td>2010/07/22</td><td>113(3)</td><td>30 - 130</td><td>116</td><td>30 - 130</td><td><0.1</td><td>mg/L</td><td>NC (4)</td><td>40</td></c32>	2010/07/22	113(3)	30 - 130	116	30 - 130	<0.1	mg/L	NC (4)	40

N/A = Not Applicable

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Matrix Spike Parent ID [GN7332-01]

(2) - Duplicate Parent ID [GN7331-01]

(3) - Matrix Spike Parent ID [GN7338-01]

(4) - Duplicate Parent ID [GN7337-01]

Validation Signature Page

Maxxam Job	#: B095073			

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Haula Chaplin PAULA CHAPLIN, Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		/1	
M	ax	Xa	m
	- ()	Anal	ytics

200 Bluewater Road, Suite 105, Bedford, Nova Scota B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8512 Toll Free: 1-800-565-7227 www.maxxamanalytics.com E-mail; Clientservicesbedford@maxxamanalytics.com

MAXXAM Chain of Custody Record

	Analytic	www.maxxamanalytics.com E-m	rail; Clients	ervicesbed	lford@maxxa	man	alytic	s.con	П						CO	C#:						Page	b.	1 0	f 2
This column for lab	use only:	INVOICE INFORMATION:			REPORT INF	OR	MAT	ON (f diffe	ers fr	om īr	nvoic	e):		POF				-	-			TUR	NARC	OUND TIM
Client Code		Company Name: Conestoga Rovers and A	Associates		Company Na	ame:	ALLICE S	-				-	-			of#: 5	52306735	October 1					Stan	dard	X
16975)	Contact Name: Dave McColl	040.1909		Contact Nan	ne:		,	1	11	1	1			CO	ME	BY	CH	ANCE	LA	MOFIL	l	10 da	diam.	
BO9 50	173	Address: 1118 Topsall Rd, PO Bo			Address:			1	7	11	./	L	-		ASSESS.	E: 10-11	MKG						II RU	SH Sp	ecify Date
	TIT	Foetal Co St. John's Nt. A1B 2N7	de		-				Postal	Code					Site #				į.	1			Pre	schedu	ile nesh wor
Physical phy	p 3 rage	Email: dmccoli@craworld.com			Email:										1110000	Order	-	120		-	-		12200	irge for	
Cooler ld Seal Phrae Seal Intact Terrip 1	Temp 3 Average Temp	Email: dmccoli@craworld.com Ph: 709-364-5353 Fax: 709-364			Ph:			_		Fax	0		_		Samp	ried by	Н	.AA	DEF	402	1/51	FORWA	Dict.	ubmitu	, U
2:	53	Guideline Requirements/ Detection I	.imits/ Spe	ecial Instru	uctions																				
YES NO	nty/Checklet by	1. Please report phosphates as P ₂ O ₃ 2. Select samples will be compared to fithe Environment O.Reg. 153 states. 3. Lab Filtration is required for ground the same selection.	to Ontario indards indwater s	amples	247/00/	PH MUST	3	FWAL	1	RCAPMS (DISSOLVED) FWAL	(Total) FWAL 12	1	ī	II & Grease	1	1	Phanolics		um III & VI						
Labelled by: Loca	ation/Bin#	* Specify Matrix; Surface/Salt/Gro Potable/NonPotable/Te	und/Tapwat ssue/Soil/Slu	er/Sewage/ doe/Metal/Se Date/Time	eawater	втех/трн	VOCs	PAHs F	PCBs	APMS	RCAPMS	0	S	Total Oil	Cyanide	Mercury	Total Pt	Sulfides	Chromium	Ш					
		Field Sample Identification	Matrix *	Sampled	bottles	BT	>	P A	P.	8	22	BOD	TSS	2	ŝ	ž	10	Su	to	+	+	+	H	+	+
		Primary Liner	Leachate	July16	10 2/ (NAPOUS)	x	X	X	x	L	x	х	X	X	X-	Х	×	×	х	Ш		100	Ш	7	
		2 Secondary Liner	Leachate	4)	21(vacua)	x	x	x	х		×	×	x	x	×	X	×	X	×	Ш					
		3 Surface Up	Surface	: a:	12	x	x	×	х		×								35					5:	
		4 Surface Down	Surface	li	12	x	×	×	×		×														
		5 MW 93-1	Ground	11	1d	х	×	×	x	×															
		8 MW 93-1A	Ground	(1	1d	×	x	x	×	x															8
		7 MW 93-2	Ground	11	10	х	x	x	x	X										Ш	\perp				
		8 MW 93-2A	Ground	0	10	X.	x	х	X	x															
****************		9 MW 93-3	Ground	- 11	10	х	х	x	x	x										Ц	\perp		Ш		
		¹⁰ MW 93-3A	Ground	(3)		x	x	x	X	x		,		1	/	2_									
		RELINQUISHED BY: (Signature Print) A. Anglewan / N. 260 Angle	Sew J.	Date 214 (9/)	Time (O ()	00	5 0	m		REG	ENVED	10	V	VF-0.79.	int)	_	_	- 6	-	Date T/O	1/07	7/19		10.	:40
										-														7	
		l			Page	? 7 o	f 8			_	200										74.	CD 801	MCT I	*10.72	200

		/;	
\sim	ax	$\langle x a \rangle$	m
(S) (M) (M)	/.	Anal	ytics

200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

www.mayyamanabtics.com F-mail: Clientserviceshedford@mayyamanabtics.com

MAXXAM Chain of Custody Record

INVOICE INFORMATION (II differs from invoice) Company Name; Consider Review and Association Contact Name; Consider Review Review Contact Name; Conta	Analytic	🔝 www.maxxamanalytics.com E-mail: Clients	servicesbed	ford@maxxar	nanaly	ics.co	m					C	DC#:					Pag	0	2 0	f 2	
Company Marine: Conseque Recommend Associates Contact Name: Dave Nacion Contact Name: Dave Nacion Contact Name: Dave Nacion Borg 5 0 7 3 Address: 1119 Topical Ind. Po Soci 1933 Sits A Address: St. John M. Address: Dave Nacion Femall: Macrocolling reworld com Email: Macrocolling reworld co	This column for lab use only :	INVOICE INFORMATION:		REPORT INF	ORMA	TION	if diffe	rs fro	om inv	voice) <u>:</u>	1						****	TUR	NARO	UND T	'IME
Address: 118 Topas Rd, PD Base 1832 Sin A Four Code Sin # Four	Client Code	Company Name: Conestoga Rovers and Associates		Company Na	me:	(1	۸.	1	ł	411000000	Pro	ject#:0)56680 ·	10				Stan	dard	×	,
Address: 1115 Tepest Re, DO Base 583 Sin A Posted Core Siz. Jebris Na. Posted Core Siz. Jebris Na. A15 21V Pre-schedule nat work. Email: Pre-schedule nat work. Email: Pre-schedule nat work. Character of F. Pax: Ph. AAUCECSA S. Fo BURED 1. Please report phosphates as P.O. 2. Select samples will be compared to Ontario Ministry of the Environment O. Reg. 133 standards 1. Please report phosphates as P.O. 2. Select samples will be compared to Ontario Ministry of the Environment O. Reg. 133 standards 3. Lab Filtration is required *Specify Matrix; Standards Matrix Severals Field Sample Identification Severals Field Sample	(691)	Contact Name: Dave McColl		Contact Nam	ie:		$\sqrt{\Lambda}$	1/1	1			Pro	jectNam	e/Site L	ocation	ヒレ	ANDFI	L	10 d	ау		
Support phosphates as P.O. 2. Select samples will be compared to Ontario Ministry of the Emriniment Cream 15 standards 1. Please report phosphates as P.O. 2. Select samples will be compared to Ontario Ministry of the Emriniment Cream 15 standards 3. Lab Flittation is required *Specify Matrix: Surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and the first surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and the first surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and the first surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and the first surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and the first surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and the first surface/StitiCrount/T powder/Swrapa-Ethient/ Enables from table fritude constraints and table from table f	Maxxam Job#	Address: 1118 Topsail Rd. PO Box 8353 Stn A		Address:		(7	11 1	M	,	300	Qu	ote: 10-1	94KG					If RU	SH Sp	ecify D	Jate:
Barrier Barr		Postal Code				30-302	Postal	Code				Site	#	**************************************	43: S4II)		- 10					
Guideline Requirements/ Detection Limits/ Special Instructions 1. Please report phosphates as P ₂ O ₂ 2. Select samples will be compared to Ontario Ministry of the Environment O.Rep. 158 standards 1. Please report phosphates as P ₂ O ₂ 2. Select samples will be compared to Ontario Ministry of the Environment O.Rep. 158 standards 1. Ab Filtration is required * Specify Matrix; Surface/Salt/Ground/Tspwater/Sewage/Effluent/ Potable/Month/orbitable/Tsswale/Solt/Subscheft/Sewage/Effluent/ Potable/Month/orbitable/Tsswale/Solt/Solt/Solt/Solt/Solt/Solt/Solt/Solt	e e e			# <u>1 20</u>	# · ·				22431			Tas	k Orden	#		P-10-1		¥-2			92	work
Guideline Requirements/ Detection Limits/ Special Instructions 1. Please report phosphates as P ₂ O ₂ 2. Select samples will be compared to Ontario Ministry of the Environment O.Rep. 158 standards 1. Please report phosphates as P ₂ O ₂ 2. Select samples will be compared to Ontario Ministry of the Environment O.Rep. 158 standards 1. Ab Filtration is required * Specify Matrix; Surface/Salt/Ground/Tspwater/Sewage/Effluent/ Potable/Month/orbitable/Tsswale/Solt/Subscheft/Sewage/Effluent/ Potable/Month/orbitable/Tsswale/Solt/Solt/Solt/Solt/Solt/Solt/Solt/Solt	oler Id	Email: dmccoli@craworld.com		Email:							*****	Sai	npled by			1		-	Jars	used b	ut [7
1. Please report phosphates as P ₂ O ₅ 2. Select samples will be compared to Ontario Ministry of the Environment O.Reg. 153 standards YES NO *Specify Matrix; SurfaceSalt/Ground/Tapwater/Sewage/Effluent/ Potsble/Non-Potsblu/Tissue/Solt/Studaw/Meta-Sewage/Effluent/ Potsblu/Tissue/Solt/Studaw/Meta-Sewage/Effluent/ Potsblu/Tissue/Solt/Studaw/Meta-Sewage/Tissue/Tissue/Solt/Studaw/Meta-Sewage/Tissue/Tissue/Solt/Studaw/Meta-Sewage/Tis							T	Fax:			- 1		H.A	MOB	RSON	15.F	ORWIN	<u> 2D</u>	not s	submitte	ed /	7
I. Please report phosphates as P ₂ O ₅ 2. Select samples will be compared to Ontario Ministry of the Environment O.Reg. 153 standards 3. Lab Filtration is required *Specify Matrix; Surface/Salt/Ground/Tapwater/Sewage/Effluent/ Potsible/Non-Potsible/N	253	Guideline Requirements/ Detection Limits/ Sp.	ecial Instru	ictions				2														
TI DUP-01 Ground July W I I I X X X X X X X X X X X X X X X X		1 Please report phosphates as P.O.			ا ہے			- 22			1							1				
TI DUP-01 Ground July W I I I X X X X X X X X X X X X X X X X	 	2. Select samples will be compared to Ontario	Ministry		J 3	5 (11	FW.								5	p.			20		
TI DUP-01 Ground July W I I I X X X X X X X X X X X X X X X X	Integrity Integrity/Checklist by:			2	IST			LVED	FWAL			ease		9								
TI DUP-01 Ground July W I I I X X X X X X X X X X X X X X X X	YES NO	30°			Ĭ	¥		ISSO	otal)			5		nolit						(#)		- 24
TI DUP-01 Ground July W I I I X X X X X X X X X X X X X X X X	Labelled by: Location/Bin#	* Specify Matrix; Surface/Salt/Ground/Tapwa	ter/Sewage/E	Effluent/	5	. ₹		MS (D	T) SM			5 5	È	Phe	es	ja						
TI DUP-01 Ground July MO 10 x x x x x x x x x x x x x x x x x x		**************************************	Date/Time	# & type of	E S	Ž Ž	Š	CAP	CAP	30D	SS	otal	Verc	otal	ž Į					t s		
RELINGUISHED BY: (Signature/Print) Date Time RECOVED BY: (Signature/Print) Date Time		11	V v Li				****	1							42		1 8		\Box	0		\Box
		DUP-01 Ground	Onlitak	0 101	x x	X	X	Х		\dashv	+				\dashv	-		-	\vdash	6	+	\vdash
				ä								St.										
			es mei de			GIS.		,					0.081200			30375		1				
				+			9	-						a ar		265		+	egthanking		+	H
				3							\leftarrow		1		123		- 100	_		\downarrow	_	\blacksquare
								1												\mathcal{A}		
					Ġ.	10				3:8 SA		1	8 *	es ausa	***	32 103					χ	Ħ
	***************************************		\			Mark II					- Rock	_/	\leftarrow					_ _	ouevence		1	\leftarrow
		ā										86	/						į.			
		1													8		10					
	***************************************	2 02 20									-	-			/	-	++	-	╅		-	\vdash
	**		55														18					
	45							6						8		8					49	
19/1 de a 11/mar 1 mars 1 1/10/0 mm		RELINQUISHED BY: (Signature/Print)	Date	Time			1	RESS	VED T	Y: (Si	gnature	/Print/r	5	L	$\overline{}$	Dat	te	Tim	e		ď J	Щ
1. Anderson HUBERT ANDERSON JULY 19/10 11:00 am 1-76 USE 2010/07/19 1040		H. Anderson / HUBERT ANDERSON	July 19	1/10 NIC	00 or	n		1	P	20	Ry				les,	10/	07/	19		104	40	
		V a 15 10000000000000000000000000000000000							1		74.		10			148		5.0		7	•	
		* * * * * * * * * * * * * * * * * * * *	17 - 18 0/11/1	N			E .		*	ě									-2-0	78		
Page 8 of 8 White: Maxxam Yellow: Mail Pink: Client ATL FCD 00149 / Revision 9		White Mayon	ting it the			31_W81			Plok · C	lien!					- 000 d 1990		ΔTI	FCD 00	149 / Pi	vision	9	

Your Project #: 056680

Site Location: COME BY CHANCE SECURE LANDFILL

Your C.O.C. #: N/A

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2011/01/05

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B0I1347 Received: 2010/12/16, 9:30

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Carbonaceous BOD	2	N/A	2010/12/22 ATL SOP 00041 R5	Based on APHA 5210B
Str. Acid Diss. Cyanide water @	2	N/A	2010/12/17 ATL SOP 00040 R4	Based on EPA335.3
Hexavalent chromium in water	2	N/A	2010/12/22 ATL SOP 00056 R1	Based on SM3500-Cr-B
Mercury - Total (CVAA,LL)	2	2010/12/21	2010/12/22 ATL SOP 00026 R6	Based on EPA245.1
Phenols (4-AAP)	1	N/A	2010/12/20 ATL SOP 00039 R5	Based on EPA 420.2
Phenols (4-AAP)	1	N/A	2010/12/21 ATL SOP 00039 R5	Based on EPA 420.2
Sulphide ()	2	N/A	2010/12/20 CAM SOP-00455	SM 4500-S G
Total Oil and Grease - Water	2	2010/12/22	2011/01/05 ATL SOP 00101 R3	Based on EPA1664
Phosphorus Total Colourimetry	2	N/A	2010/12/24 ATL SOP 00057 R2	Based on EPA365.1
Total Suspended Solids	2	N/A	2010/12/17 ATL SOP 00007 R3	based on EPA 160.2

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- * Results relate only to the items tested.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) Strong acid dissociable cyanide value may include contribution from thiocyanate.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MICHELLE HILL, Project Manager Email: MHill@maxxam.ca Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

RESULTS OF ANALYSES OF WATER

Maxxam ID		IE3322	IE3322			IE3482		
Sampling Date		2010/12/14	2010/12/14			2010/12/14		
	Units	PRIMARY LINER	PRIMARY LINER Lab-Dup	RDL	QC Batch	SECONDARY LINER	RDL	QC Batch
Inorganics								
Carbonaceous BOD	mg/L	<5		5	2362431	<5	5	2362431
Chromium (VI)	mg/L	<0.001	<0.001	0.001	2365430	<0.001	0.001	2365430
Strong Acid Dissoc. Cyanide (CN)	mg/L	<0.002		0.002	2362518	<0.002	0.002	2362518
Phenols-4AAP	mg/L	0.003		0.001	2364544	<0.01(1)	0.01	2365649
Total Phosphorus	mg/L	<0.02		0.02	2368190	<0.02	0.02	2368190
Total Suspended Solids	mg/L	17		2	2361912	33	2	2361912
Sulphide	mg/L	<0.02		0.02	2364391	<0.02	0.02	2364391
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	<5		5	2366551	<5	5	2366551

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		IE3322	IE3482		
Sampling Date		2010/12/14	2010/12/14		
	Units	PRIMARY LINER	SECONDARY LINER	RDL	QC Batch
Metals					
Total Mercury (Hg)	ug/L	<0.013	<0.013	0.013	2366115

^{(1) -} Elevated detection limit due to matrix interference.

Conestoga-Rovers and Associates Ltd Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

GENERAL COMMENTS

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method	Blank	RF	D	QC Star	ndard
QC Batch	Parameter	Date	% Recovery			QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2361912	Total Suspended Solids	2010/12/17					<1	mg/L	NC	25	98	80 - 120
2362431	Carbonaceous BOD	2010/12/22			93	80 - 120	<5	mg/L	NC	25	81	80 - 120
2362518	Strong Acid Dissoc. Cyanide (CN)	2010/12/17	101	80 - 120	105	80 - 120	<0.002	mg/L	NC	25	96	80 - 120
2364391	Sulphide	2010/12/20	93	80 - 120	101	85 - 115	<0.02	mg/L	NC	25		
2364544	Phenols-4AAP	2010/12/20	94	80 - 120	104	80 - 120	<0.001	mg/L	NC	25	105	80 - 120
2365430	Chromium (VI)	2010/12/22	90(1)	80 - 120	98	80 - 120	<0.001	mg/L	NC (2)	25	100	80 - 120
2365649	Phenols-4AAP	2010/12/21	82	80 - 120	103	80 - 120	<0.001	mg/L	0.9	25	102	80 - 120
2366115	Total Mercury (Hg)	2010/12/22	108	80 - 120	108	80 - 120	<0.013	ug/L	NC	25	108	80 - 120
2366551	Total Oil & Grease	2010/12/24	85	70 - 130	85	70 - 130	<5	mg/L	NC	40		
2368190	Total Phosphorus	2010/12/24	115	80 - 120	108	80 - 120	<0.02	mg/L	NC	25		

N/A = Not Applicable

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Matrix Spike Parent ID [IE3322-01]

(2) - Duplicate Parent ID [IE3322-01]

Validation Signature Page

Maxxam	Job #: B011	347			

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

COLLEEN ACKER,

CRISTINA CARRIERE, Scientific Services

KEVIN MACDONALD, Inorganics Supervisor

ROBIN SMITH.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of

M	13	XXam	ŝ
1000	15.215	Analytics	74

200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 502-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

MAXXAM Chain of Custody Record

This column t	for lab use only :	www.maxxamanelytics.com E-r			REPORT IN					re fr	am in	voice	-1-		PO#		N/A						TUR	NAROL	JND TIME
Cient Code 162	75	20-00-00-00-00-00-00-00-00-00-00-00-00-0	Grander and the		9-04-18-0-18-0-18-0-18-0-18-0-18-0-18-0-1	100000	******************	ON III	uiiie	15 111	um m	YDIC	11.		Projec		05668	18					Stan	dard	
10/0-		Company Name: Conestoga Rovers and	Associates		Company N		_		_	_	_					othiam	e/Site	Locat					10 d	GEORGE PER PE	
Maxxam Job#	Ø 3 '	Contact Name: Brian Luffman			Contact Nan	ne:	_		- 3	S241742	W-1		_	_	Quete		y Cha	nce Se	cure Li	indSII		- 1	12000		cify Date
BOI19	21/7	Address: 1118 Topsail Rd, PO B:			Address:		_		_	AM	E				Site #		10-15	4KG							3
130-13		St. John's Nt. A1B 2N7	oge						Postal	Looe -						10	A						Pra-	schedule	rush work
id act	- 8 8	Email: bluffman@craworld.com			Email:										Tank		N/A						1000	erga for #	
Cooter Id Sent Presen Seet Intact	Temp 1 Temp 2 Temp 3 Average Temp 3														Samp		Forwa	nd						used bur	
	CONTRACTOR CONTRACTOR	Ph: 709-364-5353 Fax: 709-364 Guideline Requirements/ Detection			Ph:					Fax						-	Colwa			Т	1	$\overline{}$	189		1
	7.116474	Guideline Requirements/ Detection	Lillinear ape	ciai msu t	ictions											Η				П					
		1. Please report phosphates as P ₂ O								7						М									
		2. Select samples will be compared	to Ontario	Ministry						FWAL	5-25									Н					
Integrity	Integrity Checklist by	of the Environment O.Reg. 153 st. 3. Lab Filtration is required for grou	indwater sa	imples		ST				VED	WAL			Grease			95		> 8	П					
YES (NO	VIS	4. Please cc Results to: datani@crav	world.com			2		A.L.		SSOI	(lest			& Gr			nollic			Н			•		
Labelled by:	Location/Bin#	* Specify Matrix; Surface/Salt/Gro	und/Tapwati	er/Sewage/	Effluent/	Į.	19550	FWAL	247	a) SI	IS (To			õ	qo	ķ	Pho	50	niun						
		Potable/NonPotable/Ti		Date/Time	# & type of	BTEX/TPH MUST	VOCS	PAHS	PCBs	RCAPMS (DISSOLVED)	RCAPMS (Total) FWAL	BOD	TSS	Total	Cyanido	Morcury	Total Phenolics	Suffides	Chromium III	П			П		1 17
		Field Sample Identification	Matrix *	Sampled	1	100	>	۵	0.	産	22		-		-	1				Н	+	+		+	+
IF 33.	50,10-6E	1 Primary Liner	Leachate	14-Dec-10	(Various)							Х	Х	X	X	Х	Х	Х	Х				38		
	2-01,02	2			9							x	x	x	x	х	x	x	×						
10 270	2 01,00	Secondary Liner	Leachate	14-Dec-10	(Various)				_							-				H	+	+	H	+	++-
																Ш									
	A0000000000000000000000000000000000000																								
					_	\vdash					-		-	-	\dashv	-		-	_	+	+	+	H	_	+
														+											
			1		-	-									\dashv				_	H	+	+	-		++
																			-				90		
2245-F1001019-S-22-2	A.S																								
									-			-	-		\dashv				-		+			-	
		•																							
001/255110071103		RELINQUISHED BY; (Signature/Print)		Date	Time					RECE	IVED	BY: (5	ignati	re/Pri	nt)				- 1	Date:		Time			
		S. Perry 15 Franch	Are	15/2010	10:00	041	4			~	5	0	30	Ł	0-			~	010	3.1	2.1	15	10	2:10	
		The state of the s			4.5					-	7	RI	ALF	PIT	1								III (S		
					Page	6 of 6	6			-	1	1	hara		В	OL	(3)	he	td	+			604		
Maxxam An	nalytics Internation	 aal Corporation o/a Maxxam Analytics	te 105. Bedford	d Nov	va Sc	otia Ca	neda	B4B 1	G9 Te	1:902-	420-0	203 T	oll-fre	e:80	0-565	-722	7 Fex:	902-42	20-861	2 200000	maxx	amanal	etics com		

Your Project #: 056680

Site Location: COME BY CHANCE SECURE LANDFILL

Your C.O.C. #: N/A

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2011/02/24

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B0I0108 Received: 2010/12/14, 13:30

Sample Matrix: Water # Samples Received: 11

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TEH in Water (PIRI)	3	2010/12/17	2010/12/20	ATL SOP 00198 R2	Based on Atl. PIRI
TEH in Water (PIRI)	8	2010/12/20	2010/12/21	ATL SOP 00198 R2	Based on Atl. PIRI
VPH in Water (PIRI)	11	2010/12/16	2010/12/22	ATL SOP 00200 R4	Based on Atl. PIRI
ModTPH (T1) Calc. for Water	11	N/A	2010/12/22		Based on Atl. PIRI

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

ROB WHELAN, Project Manager Email: RWhelan@maxxam.ca Phone# (709) 754-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

^{*} Results relate only to the items tested.

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

ATLANTIC RBCA HYDROCARBONS (WATER)

Maxxam ID		ID7416	ID7416	ID7426		ID7427		ID7428	ID7429		
Sampling Date		2010/12/13	2010/12/13	2010/12/13		2010/12/13		2010/12/13	2010/12/13		
Received Temperature (°C)		6.0C	6.0C	6.0C		6.0C		6.0C	6.0C		
	Units	Primary	Primary Liner	Secondary Liner	QC Batch	Surface Up	QC Batch	Surface	MW93-1	RDL	QC Batch
		Liner	Lab-Dup					Down			
Petroleum Hydrocarbons											
Benzene	mg/L	<0.001	<0.001	<0.001	2361377	<0.001	2361377	<0.001	<0.001	0.001	2361377
Toluene	mg/L	<0.001	<0.001	<0.001	2361377	<0.001	2361377	<0.001	<0.001	0.001	2361377
Ethylbenzene	mg/L	<0.001	<0.001	<0.001	2361377	<0.001	2361377	<0.001	<0.001	0.001	2361377
Xylene (Total)	mg/L	<0.002	<0.002	<0.002	2361377	<0.002	2361377	<0.002	<0.002	0.002	2361377
C6 - C10 (less BTEX)	mg/L	<0.01	<0.01	<0.01	2361377	<0.01	2361377	<0.01	<0.01	0.01	2361377
>C10-C16 Hydrocarbons	mg/L	< 0.05		0.05	2362210	< 0.05	2362210	<0.05	< 0.05	0.05	2363989
>C16-C21 Hydrocarbons	mg/L	< 0.05		<0.05	2362210	< 0.05	2362210	<0.05	< 0.05	0.05	2363989
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.1</td><td></td><td><0.1</td><td>2362210</td><td><0.1</td><td>2362210</td><td><0.1</td><td><0.1</td><td>0.1</td><td>2363989</td></c32>	mg/L	<0.1		<0.1	2362210	<0.1	2362210	<0.1	<0.1	0.1	2363989
Modified TPH (Tier1)	mg/L	<0.1		<0.1	2358314	<0.1	2358573	<0.1	<0.1	0.1	2358573
Reached Baseline at C32	mg/L	YES		YES	2362210	YES	2362210	YES	YES	N/A	2363989
Hydrocarbon Resemblance	mg/L			SEECOMMENT(1	2362210					N/A	
Surrogate Recovery (%)								-			
Isobutylbenzene - Extractable	%	96		104	2362210	79	2362210	88	100		2363989
Isobutylbenzene - Volatile	%	98	98	100	2361377	106	2361377	105	100		2361377
n-Dotriacontane - Extractable	%	93		102	2362210	74	2362210	84	91		2363989

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

^{(1) -} No resemblance to petroleum products in fuel oil range.

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

ATLANTIC RBCA HYDROCARBONS (WATER)

Maxxam ID		ID7430	ID7431	ID7432	ID7433	ID7434	ID7435		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
Received Temperature (°C)		6.0C	6.0C	6.0C	6.0C	6.0C	6.0C		
	Units	MW93-1A	MW93-2	MW93-2A	MW10-1	MW10-1A	DUP-02	RDL	QC Batch
Petroleum Hydrocarbons									
Benzene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	2361377
Toluene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	0.001	2361377
Ethylbenzene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	0.001	2361377
Xylene (Total)	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	2361377
C6 - C10 (less BTEX)	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361377
>C10-C16 Hydrocarbons	mg/L	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2363989
>C16-C21 Hydrocarbons	mg/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2363989
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td><0.1</td><td>0.1</td><td>2363989</td></c32>	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2363989
Modified TPH (Tier1)	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	2358573
Reached Baseline at C32	mg/L	YES	YES	YES	YES	YES	YES	N/A	2363989
Surrogate Recovery (%)		_							
Isobutylbenzene - Extractable	%	97	100	84	86	98	88		2363989
Isobutylbenzene - Volatile	%	102	106	108	106	102	108		2361377
n-Dotriacontane - Extractable	%	92(1)	95	77	80(1)	97(1)	81(1)		2363989

QC Batch = Quality Control Batch

^{(1) -} TEH sample contained sediment.

Conestoga-Rovers and Associates Ltd Client Project #: 056680 Project name: COME BY CHANCE SECURE LANDFILL

GENERAL COMMENTS

Revised report due to changes in sample IDs 2011-02-24.

Conestoga-Rovers and Associates Ltd Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method	l Blank	RF	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
2361377	Isobutylbenzene - Volatile	2010/12/22	108	70 - 130	105	70 - 130	102	%		
2361377	Benzene	2010/12/22	130(1)	70 - 130	120	70 - 130	<0.001	mg/L	NC (2)	40
2361377	Toluene	2010/12/22	130(1)	70 - 130	120	70 - 130	<0.001	mg/L	NC (2)	40
2361377	Ethylbenzene	2010/12/22	130(1)	70 - 130	125	70 - 130	<0.001	mg/L	NC (2)	40
2361377	Xylene (Total)	2010/12/22	133(3, 1)	70 - 130	120	70 - 130	<0.002	mg/L	NC (2)	40
2361377	C6 - C10 (less BTEX)	2010/12/22					<0.01	mg/L	NC (2)	40
2362210	Isobutylbenzene - Extractable	2010/12/20	99	30 - 130	99	30 - 130	105	%		
2362210	n-Dotriacontane - Extractable	2010/12/20	101	30 - 130	102	30 - 130	100	%		
2362210	>C10-C16 Hydrocarbons	2010/12/20	82	N/A	104	N/A	<0.05	mg/L	NC	40
2362210	>C16-C21 Hydrocarbons	2010/12/20	87	N/A	109	N/A	<0.05	mg/L	NC	40
2362210	>C21- <c32 hydrocarbons<="" td=""><td>2010/12/20</td><td>84</td><td>30 - 130</td><td>95</td><td>30 - 130</td><td><0.1</td><td>mg/L</td><td>NC</td><td>40</td></c32>	2010/12/20	84	30 - 130	95	30 - 130	<0.1	mg/L	NC	40
2363989	Isobutylbenzene - Extractable	2010/12/21	96	30 - 130	96	30 - 130	98	%		
2363989	n-Dotriacontane - Extractable	2010/12/21	97	30 - 130	101	30 - 130	97	%		
2363989	>C10-C16 Hydrocarbons	2010/12/21	89	N/A	102	N/A	<0.05	mg/L	NC	40
2363989	>C16-C21 Hydrocarbons	2010/12/21	93	N/A	107	N/A	<0.05	mg/L	NC	40
2363989	>C21- <c32 hydrocarbons<="" td=""><td>2010/12/21</td><td>86</td><td>30 - 130</td><td>97</td><td>30 - 130</td><td><0.1</td><td>mg/L</td><td>NC</td><td>40</td></c32>	2010/12/21	86	30 - 130	97	30 - 130	<0.1	mg/L	NC	40

N/A = Not Applicable

RPD = Relative Percent Difference

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

- (1) Matrix Spike Parent ID [ID7426-01]
- (2) Duplicate Parent ID [ID7416-01]
- (3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Validation Signature Page

Maxxam Jo	b #: B0I0108			

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Haula Chaplin PAULA CHAPLIN, Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

M	axxam	1
	Analytic	5

200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

MAXXAM Chain of Custody Record

COC#:

1 of 2

This column for lab use only :	INVOICE INFORMATION: REPORT INFORMATION (if differs from								!	١.	P	0#	N	l/A						TURN	AROU	ND TIN	ΛE		
Client Code	INVOICE INFORMATION:		-				JN (II	ате	rs irc	om inv	voice	Ŀ	F	roject	#:							Stand	ard		- 1
16275	Company Name: Conestoga Rovers and A	ssociates		Company Na	me:								F	roject		56680 Site L	ocatio	in	- 77			10 day	v [- 1
10213	Contact Name: Brian Luffman			Contact Nam	e:	-								Con Quote:	e By	Chanc	e Sec	ure La	ndfill	_	_		H Spec		te:
Maxxam Job#	Address: 1118 Topsail Rd, PO Box	8353 Stn A		Address:				S	AM	E			`	adote.	10	0-194K	G					, in Nee			
BOIOIOS	Postal Cod	е						Postal (Code				8	Site #	N/A							Dec 0	chedule	nich w	ork
E .				. —								2	7	ask O		/A							ge for #		-
Presen Intact pp 1 pp 2 pp 3 srage np	Email: <u>bluffman@craworld.com</u>			Email:	_			A					-	Sample		-			-			Jars u	used but		
Seal Preser Seal Intact Temp 1 Temp 2 Temp 3 Average Temp	Ph: 709-364-5353 Fax: 709-364-			Ph:					Fax:	_				_	C. Ti	ucker/	S. For	ward				not st	ubmitted	10	4
6656	Guideline Requirements/ Detection L	imits/ Speci	al Instru	ctions												-1								1 1	
-++	4 Blassa report phosphatos as B.O.											- [$ \cdot $					1 1	. 1			
	1. Please report phosphates as P₂O₅ 2. Select samples will be compared to Ontario Ministry																								
	of the Environment O.Reg. 153 standards								Se				-	5							- 1				
Integrity Integrity/Checklist by:	Lab Filtration is required for groundwater samples Please cc Results to: datanl@craworld.com									Grease			Sics	-	∞5						1 1				
YES (NO) PMC										∞ఠ			end	_	Ē	П					1 1				
Labelled by: Location/Bin#	* Specify Matrix; Surface/Salt/Groun Potable/NonPotable/Tis	Effluent/ awater	5	o,	S FI	ø	SMc	SMC	_		Total Oil	ig	G. G.	Total Phenolics	ides	Chromium							. 1		
emc	Field Sample Identification	# & type of bottles	BTE	VOCS	PAHs	PCBs	RCAI	RCAI	BOD	TSS	Tota	Cyanide	Mercury	열	Sulfides	访						\perp			
	4	Matrix *		12				,						\neg		\neg					T.				
	Primary Liner	Leachate	13-Dec-10	(Various)	X	X	Х	X	_	X	-		-	\dashv	+	-	+		H	+	+-	++	+	+	Н
	2 Secondary Liner	Leachate	13-Dec-10	12 (Various)	x	x	x	x		x]								\perp		
	Georidal y Einer	Loadinato		12										\neg	-	П			×		T				
	Surface Up	Surface	13-Dec-10		X	Х	X	X	ļ	X			_	-	\dashv		-		\vdash	+	+	╂╾┼		+-	
	4	0	40 Dec 40	12 (Various)	x	x	X	v		х					- 1		1			1		H			
	Surface Down	Surface	13-Dec-10	(Various)	_	^	^	_	\vdash	^				\dashv	\neg	\dashv	\neg	_	\Box		\top				
	⁵ MW 93-1	Ground	13-Dec-10		X	Х	Х	X	Х			Ш		_	\perp	-	4		Н		1	╁┵	-	+-	-
	6			12			l,																		
	MW 93-1A	Ground	13-Dec-10		X	X	X	X_	X				\dashv	+		+	+	-	+	_	+	+-+	_		
2	7 MW 93-2	Ground	13-Dec-10	12 (Various)	x	х	х	х_	х														_	4-	\vdash
	8	-		12	į	×									T									-	
`	MW 93-2A	Ground	13-Dec-10	(Various)	×	X	Х	Х	X	-	-			\dashv	-	\dashv			╁┤	+	+-	1-	-	+	\vdash
	9 MW 94-4	Ground	13-Dec-10	12 (Various)	×	x	X	x	x			2													1
		12										\dashv				П									
	MW 94-4A	Ground	13-Dec-10	er I new year tree	Х			Х	X	VED	PV- /6	icutati	ro/Pri	nt)					Date		Tir	ne			_
,	RELINQUISHED BY: (Signature/Print)	kan	Date	12010	1/	100	21	An	1	17	7	61	"	,			2	2	11	1/1	16		30	,	
	Jan Jan Chard in		KUIY	1/010		V°	U	7)10	1	4		7					٧,	٢٩	110	('	4	<u> </u>	رر		
																								-	
		Dog 7 of 0																							
l		Page 7 of 8								Dink ·	Client				-				-	ATI F	ECD 0	0149 / R	evision	9	

Maxxam 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

MAXXAM Chain of Custody Record

Analyti	www.maxxamanalytics.com E-ma	ail: Clientse	ervicesbed	ford@maxxan	nanal	lytics	.com							COC	<u> </u>			- 1			Page		2 0	1	
his column for lab use only :	INVOICE INFORMATION:		Į.	REPORT INF	ORM	ATIC	N (if	differ	s fro	m in	voice	<u>):</u>	L	PO#		N/A						TUR	NARC	DUND	TIME
lient Code	Company Name: Conestoga Rovers and A	ssociates		Company Na	me:									Project	0	56680						Stan	dard		
16275	Contact Name: Brian Luffman			Contact Nam	e:													ure Lan	ndfill			10 d			
laxxam Job#	Address: 1118 Topsail Rd, PO Box	8353 Stn A		Address:	-			S	AMI	E.,			ľ	Quote:	1	0-194H	G					If RU	SH Sp	ecify	Date:
BOI 0108	Postal Coo				-			Postal C	Code				,	Site #	N/A			×				D			to conside
E 7	St. John's NL A1B 2N7							2,722					7	Task O	der#					7,00			arge for		sh work
Cooler Id Seal Intact Seal Intact Temp 1 Temp 2 Temp 3 Average	Email: <u>bluffman@craworld.com</u> Ph: 709-364-5353			Email:					_				-	Sample	d by	ucker/	S Ear	ward				Jars	used to	out	40
Sea Sea Ter Ter Ter Av	Ph: 709-364-5353 Fax: 709-364-			Ph:		-			Fax:			1	\dashv		T	ucken	3. FO	waru	Т	Т	T	- 1		+	10
6656	Guideline Requirements/ Detection L	.imits/ Spe	ciai mstru	ictions										1	- [×		
	1. Please report phosphates as P ₂ O ₅								i.						1					ľ					
	2. Select samples will be compared to of the Environment O.Reg. 153 sta	o Ontario	Ministry						FW/					- 1											
Integrity/Checklist b	3. Lab Filtration is required				IST				LVED	FWAL			Grease			S		8		+-	+	-			
YES (NO) Pric	4. Please cc Results to: datanl@crav	vorld.com			ĭ		AL		ISSO	otal)			05			lo l		≣						- 1	
abelled by: Location/Bin#	* Specify Matrix; Surface/Salt/Gro	und/Tapwat	er/Sewage/	Effluent/	E L		Æ		MS (D	MS (T			ō	ide	LIZ.	Phe	des	i ii							
enc	Field Sample Identification	Matrix *	Date/Time Sampled	# & type of	BTEX/TPH MUST	VOCs	PAHS FWAL	PCBs	RCAPMS (DISSOLVED) FWAL	RCAPMS (Total) FWAL	вор	TSS	Total Oil &	Cyanide	Mercury	Total Phenolics	Sulfides	Chromium III			1				z
<u>V</u>	11 DUP-01	Ground	13-Dec-10	12 (Various)	x	X	X	х	x																
	DOP-01	Giodila	10-060-11	(Vanous)	_										\neg		\neg								
		7.10				_							\dashv	-+	\dashv	\dashv	\dashv		+	+-	-		1	+	+
															4		4			-	\perp	<u> </u>	- 1	4	
																*									
						-			-											\top			. 1	7	
		-			\vdash			-					\vdash	+	\dashv	+	\dashv		\vdash	+-	+	-	\vdash	\dashv	\dashv
							_							\perp	_	\dashv	4		-	+	-		\vdash	-	4
el .				6.	4		7												Ш	\perp			Ш		
																		20.0				Г	\prod		
	RELINQUISHED BY: (Signature/Print)	<u> </u>	Date	Time				- 1	RE	EIVED	BY (S	gnate	re/Pri	ונים	_		_	$\overline{}$	Date	1	Tim	e			
2	PhylophyCheryttu	cken	Dec 14	12010	Ш	02	01	m	L	\prec	16	1	1	\leq	_		_	10	10	1/2	1/1	1	1:	3	<u> </u>
					1																/				
				Page	8 of	8			18																
L		-		268			-	-	_	Dink :	Oliona				_					ATI E	CD 00	1/0/5	Pevisio	n 0	

Your Project #: 056680

Site Location: COME BY CHANCE SECURE LANDFILL

Your C.O.C. #: N/A

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2011/02/24

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B010761 Received: 2010/12/15, 9:19

Sample Matrix: Water # Samples Received: 11

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Metho	d Reference
Carbonate, Bicarbonate and Hydroxide	7	N/A	2010/12/20 CAM SOP-00102	APHA 4500-CO2 D
Carbonate, Bicarbonate and Hydroxide	4	N/A	2010/12/21 CAM SOP-00102	APHA 4500-CO2 D
Alkalinity	11	N/A	2010/12/16 ATL SOP 00013 F	R4 Based on EPA310.2
Chloride	11	N/A	2010/12/16 ATL SOP 00014 F	R6 Based on SM4500-CI-
Colour	11	N/A	2010/12/17 ATL SOP 00020 F	R3. Based on SM2120C
Conductance - water	11	N/A	2010/12/20 ATL SOP 00004	Based on SM2510B
			R5/00006 R4	
Hardness (calculated as CaCO3)	11	N/A	2010/12/21 ATL SOP 00048	Based on SM2340B
Metals Water Diss. MS	7	N/A	2010/12/17 ATL SOP 00059 F	R1 Based on EPA6020A
Metals Water Total MS	4	2010/12/16	2010/12/17 ATL SOP 00059 F	R1 Based on EPA6020A
Ion Balance (% Difference)	11	N/A	2010/12/22	
Anion and Cation Sum	11	N/A	2010/12/22	
Nitrogen Ammonia - water	11	N/A	2010/12/20 ATL SOP 00015 F	R5 Based on USEPA 350.1
Nitrogen - Nitrate + Nitrite	11	N/A	2010/12/17 ATL SOP 00016 F	R4 Based on USGS - Enz.
Nitrogen - Nitrite	11	N/A	2010/12/16 ATL SOP 00017 F	R4 Based on SM4500-NO2B
Nitrogen - Nitrate (as N)	11	N/A	2010/12/17 ATL SOP 00018 F	R3 Based on ASTMD3867
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	2	2010/12/17	2010/12/24 ATL SOP-00103 F	R2 Based on EPA 8270C
PAH (FWAL) in Water (A/Q) by GC/MS (SIM)	9	2010/12/17	2010/12/25 ATL SOP-00103 F	R2 Based on EPA 8270C
PCBs in water by GC/ECD	9	2010/12/17	2010/12/22 ATL SOP 00107 F	R3 Based on EPA8082
PCBs in water by GC/ECD	2	2010/12/23	2010/12/29 ATL SOP 00107 F	R3 Based on EPA8082
pH	11	N/A	2010/12/20 ATL SOP 00003	Based on SM4500H+
			R5/00005 R7	
Phosphorus - ortho	11	N/A	2010/12/16 ATL SOP 00021 F	R3 Based on USEPA 365.1
Sat. pH and Langelier Index (@ 20C)	11	N/A	2010/12/22	
Sat. pH and Langelier Index (@ 4C)	11	N/A	2010/12/22	
Reactive Silica	11	N/A	2010/12/17 ATL SOP 00022 F	R3 Based on EPA 366.0
Sulphate	11	N/A	2010/12/16 ATL SOP 00023 F	R3 Based on EPA 375.4
Total Dissolved Solids (TDS calc)	11	N/A	2010/12/22	
Organic carbon - Total (TOC)	11	N/A	2010/12/21 ATL SOP 00037 F	R4 Based on SM5310C
Turbidity	11	N/A	2010/12/18 ATL SOP 00011 F	R5 based on EPA 180.1
Volatile Organic Compounds in Water	11	2010/12/17	2010/12/18 ATL SOP 00122 F	R4 Based on EPA624

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

^{*} Results relate only to the items tested.

Conestoga-Rovers and Associates Ltd Client Project #: 056680 Project name: COME BY CHANCE SECURE LANDFILL

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

MICHELLE HILL, Project Manager Email: MHill@maxxam.ca Phone# (902) 420-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

RESULTS OF ANALYSES OF WATER

Maxxam ID		IE1124		IE1143		IE1146	IE1146		
Sampling Date		2010/12/13		2010/12/13		2010/12/13	2010/12/13		
	Units	PRIMARY	RDL	SECONDARY	RDL	SURFACE	SURFACE	RDL	QC Batch
		LINER		LINER		UP	UP		
							Lab-Dup		
Calculated Parameters									
Anion Sum	me/L	10.1	N/A	10.9	N/A	0.340		N/A	2359338
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	400	1	420	1	6		1	2359335
Calculated TDS	mg/L	546	1	574	1	23		1	2359344
Carb. Alkalinity (calc. as CaCO3)	mg/L	1	1	2	1	<1		1	2359335
Cation Sum	me/L	10.1	N/A	10.4	N/A	0.430		N/A	2359338
Hardness (CaCO3)	mg/L	440	1	450	1	10		1	2359336
Ion Balance (% Difference)	%	0.00	N/A	2.44	N/A	11.7		N/A	2359337
Langelier Index (@ 20C)	N/A	0.855		0.991		-3.49			2359342
Langelier Index (@ 4C)	N/A	0.607		0.743		-3.74			2359343
Nitrate (N)	mg/L	0.28	0.05	0.10	0.05	< 0.05		0.05	2359339
Saturation pH (@ 20C)	N/A	6.74		6.73		10.1			2359342
Saturation pH (@ 4C)	N/A	6.98		6.98		10.3			2359343
Inorganics									
Total Alkalinity (Total as CaCO3)	mg/L	400	30	420	30	6		5	2360803
Dissolved Chloride (CI)	mg/L	29	1	43	1	6		1	2360807
Colour	TCU	17	5	56	30	49		5	2360816
Nitrate + Nitrite	mg/L	0.28	0.05	0.10	0.05	< 0.05		0.05	2360821
Nitrite (N)	mg/L	<0.01	0.01	<0.01	0.01	<0.01		0.01	2360824
Nitrogen (Ammonia Nitrogen)	mg/L	0.10	0.05	0.26	0.05	< 0.05		0.05	2364598
Total Organic Carbon (C)	mg/L	11	5	13	5	6.4		0.5	2365464
Orthophosphate (P)	mg/L	<0.01	0.01	<0.01	0.01	<0.01		0.01	2360817
pH	рН	7.59	N/A	7.72	N/A	6.58		N/A	2364137
Reactive Silica (SiO2)	mg/L	13	0.5	14	0.5	1.5		0.5	2360812
Dissolved Sulphate (SO4)	mg/L	61	2	60	2	3		2	2360809
Turbidity	NTU	16	0.1	17	0.1	2.2	2.1	0.1	2363442
Conductivity	uS/cm	840	1	900	1	43		1	2364141

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

RESULTS OF ANALYSES OF WATER

Maxxam ID		IE1147		IE1154		IE1155			IE1156		
Sampling Date		2010/12/13		2010/12/13		2010/12/13			2010/12/13		
	Units	SURFACE	RDL	MW 93-1	RDL	MW 93-1A	RDL	QC Batch	MW 93-2	RDL	QC Batch
		DOWN									
Calculated Parameters											
Anion Sum	me/L	1.53	N/A	5.52	N/A	7.46	N/A	2359338	6.58	N/A	2359338
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	12	1	210	1	297	1	2359335	219	1	2359335
Calculated TDS	mg/L	122	1	313	1	401	1	2359344	368	1	2359344
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1	1	2	1	2	1	2359335	1	1	2359335
Cation Sum	me/L	2.40	N/A	5.90	N/A	7.19	N/A	2359338	6.19	N/A	2359338
Hardness (CaCO3)	mg/L	70	1	120	1	170	1	2359336	250	1	2359336
Ion Balance (% Difference)	%	22.1	N/A	3.33	N/A	1.84	N/A	2359337	3.05	N/A	2359337
Langelier Index (@ 20C)	N/A	-2.64		0.382		0.608		2359342	0.543		2359342
Langelier Index (@ 4C)	N/A	-2.89		0.133		0.359		2359343	0.294		2359343
Nitrate (N)	mg/L	2.0	0.05	< 0.05	0.05	< 0.05	0.05	2359339	<0.05	0.05	2359339
Saturation pH (@ 20C)	N/A	9.01		7.64		7.32		2359342	7.20		2359342
Saturation pH (@ 4C)	N/A	9.26		7.89		7.57		2359343	7.45		2359343
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	12	5	210	30	300	30	2360803	220	30	2360803
Dissolved Chloride (CI)	mg/L	23	1	15	1	11	1	2360807	21	1	2360807
Colour	TCU	120	30	<5	5	<5	5	2360816	<5	5	2360816
Nitrate + Nitrite	mg/L	2.0	0.05	< 0.05	0.05	< 0.05	0.05	2360821	< 0.05	0.05	2360821
Nitrite (N)	mg/L	<0.01	0.01	<0.01	0.01	<0.01	0.01	2360824	<0.01	0.01	2360824
Nitrogen (Ammonia Nitrogen)	mg/L	0.06	0.05	< 0.05	0.05	< 0.05	0.05	2364598	< 0.05	0.05	2364598
Total Organic Carbon (C)	mg/L	18	5	0.9	0.5	<5(1)	5	2365464	1.3	0.5	2365464
Orthophosphate (P)	mg/L	<0.01	0.01	<0.01	0.01	0.04	0.01	2360817	<0.01	0.01	2360817
рН	рН	6.37	N/A	8.02	N/A	7.93	N/A	2364137	7.74	N/A	2364137
Reactive Silica (SiO2)	mg/L	7.4	0.5	7.6	0.5	6.8	0.5	2360812	19	0.5	2360812
Dissolved Sulphate (SO4)	mg/L	24	2	42	2	56	2	2360809	76	2	2360809
Turbidity	NTU	140	0.5	34	0.1	470	3	2363442	13	0.1	2363445
Conductivity	uS/cm	170	1	500	1	640	1	2364141	580	1	2364141

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

^{(1) -} Elevated detection limit due to matrix interference.

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

RESULTS OF ANALYSES OF WATER

Maxxam ID		IE1157			IE1158		IE1159		IE1160		
Sampling Date		2010/12/13			2010/12/13		2010/12/13		2010/12/13		
	Units	MW 93-2A	RDL	QC Batch	MW 10-1	RDL	MW 10-1A	RDL	DUP-02	RDL	QC Batch
Calculated Parameters											
Anion Sum	me/L	1.31	N/A	2359338	2.63	N/A	3.08	N/A	2.70	N/A	2359338
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	14	1	2359335	92	1	114	1	95	1	2359335
Calculated TDS	mg/L	87	1	2359344	147	1	171	1	149	1	2359344
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1	1	2359335	<1	1	<1	1	<1	1	2359335
Cation Sum	me/L	1.15	N/A	2359338	2.55	N/A	3.08	N/A	2.57	N/A	2359338
Hardness (CaCO3)	mg/L	31	1	2359336	110	1	140	1	110	1	2359336
Ion Balance (% Difference)	%	6.50	N/A	2359337	1.54	N/A	0.00	N/A	2.47	N/A	2359337
Langelier Index (@ 20C)	N/A	-3.48		2359342	-0.794		-0.180		-0.676		2359342
Langelier Index (@ 4C)	N/A	-3.73		2359343	-1.05		-0.430		-0.927		2359343
Nitrate (N)	mg/L	0.15	0.05	2359339	0.24	0.05	0.26	0.05	0.25	0.05	2359789
Saturation pH (@ 20C)	N/A	9.25		2359342	7.79		7.64		7.77		2359342
Saturation pH (@ 4C)	N/A	9.50		2359343	8.05		7.89		8.02		2359343
Inorganics											
Total Alkalinity (Total as CaCO3)	mg/L	14	5	2360803	92	5	110	30	96	5	2360803
Dissolved Chloride (CI)	mg/L	14	1	2360807	12	1	14	1	12	1	2360807
Colour	TCU	79	30	2360816	9	5	5	5	13	5	2360816
Nitrate + Nitrite	mg/L	0.15	0.05	2360821	0.24	0.05	0.26	0.05	0.25	0.05	2360821
Nitrite (N)	mg/L	<0.01	0.01	2360824	<0.01	0.01	<0.01	0.01	<0.01	0.01	2360824
Nitrogen (Ammonia Nitrogen)	mg/L	0.35	0.05	2364598	< 0.05	0.05	0.09	0.05	< 0.05	0.05	2364598
Total Organic Carbon (C)	mg/L	16	5	2365464	33	5	2.3	0.5	18	5	2365464
Orthophosphate (P)	mg/L	<0.01	0.01	2360817	<0.01	0.01	<0.01	0.01	<0.01	0.01	2360817
pH	рН	5.77	N/A	2364162	7.00	N/A	7.46	N/A	7.09	N/A	2364162
Reactive Silica (SiO2)	mg/L	6.4	0.5	2360812	6.2	0.5	7.6	0.5	6.0	0.5	2360812
Dissolved Sulphate (SO4)	mg/L	31	2	2360809	21	2	19	2	21	2	2360809
Turbidity	NTU	100	1	2363445	>1000	10	110	1	540	3	2363445
Conductivity	uS/cm	140	1	2364169	250	1	300	1	260	1	2364169

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		IE1124	IE1143		IE1146	IE1147	IE1154		
Sampling Date		2010/12/13	2010/12/13		2010/12/13	2010/12/13	2010/12/13		
	Units	PRIMARY	SECONDARY	RDL	SURFACE	SURFACE	MW 93-1	RDL	QC Batch
		LINER	LINER		UP	DOWN			
Metals									
Dissolved Aluminum (AI)	ug/L						17.2	5.0	2362445
Total Aluminum (AI)	ug/L	<50	<50	50	257	5210		5.0	2362440
Dissolved Antimony (Sb)	ug/L						<1.0	1.0	2362445
Total Antimony (Sb)	ug/L	<10	<10	10	<1.0	<1.0		1.0	2362440
Dissolved Arsenic (As)	ug/L						<1.0	1.0	2362445
Total Arsenic (As)	ug/L	<10	<10	10	<1.0	3.3		1.0	2362440
Dissolved Barium (Ba)	ug/L						70.0	1.0	2362445
Total Barium (Ba)	ug/L	51	40	10	9.4	289		1.0	2362440
Dissolved Beryllium (Be)	ug/L						<1.0	1.0	2362445
Total Beryllium (Be)	ug/L	<10	<10	10	<1.0	<1.0		1.0	2362440
Dissolved Bismuth (Bi)	ug/L						<2.0	2.0	2362445
Total Bismuth (Bi)	ug/L	<20	<20	20	<2.0	<2.0		2.0	2362440
Dissolved Boron (B)	ug/L						99.5	5.0	2362445
Total Boron (B)	ug/L	2230	1870	50	6.9	9.0		5.0	2362440
Dissolved Cadmium (Cd)	ug/L						0.052	0.017	2362445
Total Cadmium (Cd)	ug/L	<0.17	<0.17	0.17	0.040	0.232		0.017	2362440
Dissolved Calcium (Ca)	ug/L						29000	100	2362445
Total Calcium (Ca)	ug/L	138000	135000	1000	2960	18300		100	2362440
Dissolved Chromium (Cr)	ug/L						<1.0	1.0	2362445
Total Chromium (Cr)	ug/L	<10	<10	10	<1.0	8.0		1.0	2362440
Dissolved Cobalt (Co)	ug/L						<0.40	0.40	2362445
Total Cobalt (Co)	ug/L	<4.0	<4.0	4.0	<0.40	6.69		0.40	2362440
Dissolved Copper (Cu)	ug/L						<2.0	2.0	2362445
Total Copper (Cu)	ug/L	<20	<20	20	<2.0	32.9		2.0	2362440
Dissolved Iron (Fe)	ug/L						<50	50	2362445
Total Iron (Fe)	ug/L	3150	2240	500	722	10900		50	2362440
Dissolved Lead (Pb)	ug/L						<0.50	0.50	2362445
Total Lead (Pb)	ug/L	<5.0	<5.0	5.0	<0.50	7.64		0.50	2362440
Dissolved Magnesium (Mg)	ug/L						12100	100	2362445
Total Magnesium (Mg)	ug/L	24300	27400	1000	713	5840		100	2362440
Dissolved Manganese (Mn)	ug/L						81.2	2.0	2362445
Total Manganese (Mn)	ug/L	6240	5120	20	142	427		2.0	2362440
Dissolved Molybdenum (Mo)	ug/L						17.8	2.0	2362445
Total Molybdenum (Mo)	ug/L	<20	<20	20	<2.0	<2.0		2.0	2362440

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		IE1124	IE1143		IE1146	IE1147	IE1154		
Sampling Date		2010/12/13	2010/12/13		2010/12/13	2010/12/13	2010/12/13		
	Units	PRIMARY	SECONDARY	RDL	SURFACE	SURFACE	MW 93-1	RDL	QC Batch
		LINER	LINER		UP	DOWN			
Dissolved Nickel (Ni)	ug/L						<2.0	2.0	2362445
Total Nickel (Ni)	ug/L	<20	<20	20	<2.0	16.7		2.0	2362440
Dissolved Phosphorus (P)	ug/L						<100	100	2362445
Total Phosphorus (P)	ug/L	<100	<100	100	<100	852		100	2362440
Dissolved Potassium (K)	ug/L						2030	100	2362445
Total Potassium (K)	ug/L	6530	7750	100	295	4060		100	2362440
Dissolved Selenium (Se)	ug/L						<1.0	1.0	2362445
Total Selenium (Se)	ug/L	<10	<10	10	<1.0	<1.0		1.0	2362440
Dissolved Silver (Ag)	ug/L						<0.10	0.10	2362445
Total Silver (Ag)	ug/L	<1.0	<1.0	1.0	<0.10	<0.10		0.10	2362440
Dissolved Sodium (Na)	ug/L						78300	100	2362445
Total Sodium (Na)	ug/L	22500	25500	100	4300	11500		100	2362440
Dissolved Strontium (Sr)	ug/L						222	2.0	2362445
Total Strontium (Sr)	ug/L	289	324	20	9.7	49.9		2.0	2362440
Dissolved Thallium (TI)	ug/L						<0.10	0.10	2362445
Total Thallium (TI)	ug/L	<1.0	<1.0	1.0	<0.10	<0.10		0.10	2362440
Dissolved Tin (Sn)	ug/L						<2.0	2.0	2362445
Total Tin (Sn)	ug/L	<20	<20	20	<2.0	<2.0		2.0	2362440
Dissolved Titanium (Ti)	ug/L						<2.0	2.0	2362445
Total Titanium (Ti)	ug/L	<20	<20	20	7.9	148		2.0	2362440
Dissolved Uranium (U)	ug/L						0.19	0.10	2362445
Total Uranium (U)	ug/L	<1.0	1.0	1.0	<0.10	0.34		0.10	2362440
Dissolved Vanadium (V)	ug/L						<2.0	2.0	2362445
Total Vanadium (V)	ug/L	<20	<20	20	2.2	23.0		2.0	2362440
Dissolved Zinc (Zn)	ug/L						10.5	5.0	2362445
Total Zinc (Zn)	ug/L	<50	<50	50	10.7	103		5.0	2362440

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		IE1155	IE1156	IE1157	IE1158	IE1159	IE1160		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
Camping Date	Units	MW 93-1A	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	DUP-02	RDL	QC Batch
Metals	· · · · · ·	1		, <u></u>	,	,			140 2410
Dissolved Aluminum (AI)	ug/L	30.8	<5.0	145	37.9	11.5	36.0	5.0	2362445
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2362445
Dissolved Arsenic (As)	ug/L	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	1.0	2362445
Dissolved Barium (Ba)	ug/L	72.9	161	38.6	36.3	62.0	37.8	1.0	2362445
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2362445
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2362445
Dissolved Boron (B)	ug/L	57.2	1070	23.6	8.6	13.3	8.6	5.0	2362445
Dissolved Cadmium (Cd)	ug/L	0.070	0.100	3.54	<0.017	0.027	0.020	0.017	2362445
Dissolved Calcium (Ca)	ug/L	44700	79500	9020	40500	47800	41700	100	2362445
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2362445
Dissolved Cobalt (Co)	ug/L	0.43	0.42	1.39	1.42	3.32	1.37	0.40	2362445
Dissolved Copper (Cu)	ug/L	<2.0	<2.0	<2.0	8.6	<2.0	9.0	2.0	2362445
Dissolved Iron (Fe)	ug/L	<50	<50	1930	50	<50	59	50	2362445
Dissolved Lead (Pb)	ug/L	<0.50	< 0.50	0.83	<0.50	<0.50	<0.50	0.50	2362445
Dissolved Magnesium (Mg)	ug/L	14100	13300	2150	2310	3890	2320	100	2362445
Dissolved Manganese (Mn)	ug/L	57.1	948	4010	190	377	174	2.0	2362445
Dissolved Molybdenum (Mo)	ug/L	14.4	<2.0	<2.0	2.8	4.7	2.7	2.0	2362445
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	<2.0	5.5	6.4	5.8	2.0	2362445
Dissolved Phosphorus (P)	ug/L	130	145	<100	145	<100	<100	100	2362445
Dissolved Potassium (K)	ug/L	2750	1410	984	1060	1360	984	100	2362445
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2362445
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	2362445
Dissolved Sodium (Na)	ug/L	85700	25000	9290	7230	7630	6290	100	2362445
Dissolved Strontium (Sr)	ug/L	279	228	40.9	84.8	103	86.7	2.0	2362445
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	2362445
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2362445
Dissolved Titanium (Ti)	ug/L	2.3	<2.0	2.1	<2.0	<2.0	<2.0	2.0	2362445
Dissolved Uranium (U)	ug/L	2.79	0.25	<0.10	<0.10	0.29	<0.10	0.10	2362445
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2362445
Dissolved Zinc (Zn)	ug/L	<5.0	17.7	1310	11.0	9.8	10.5	5.0	2362445

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		IE1124	IE1143	IE1146	IE1147	IE1154	IE1154		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	PRIMARY	SECONDARY	SURFACE	SURFACE	MW 93-1	MW 93-1	RDL	QC Batch
		LINER	LINER	UP	DOWN		Lab-Dup		
Polyaromatic Hydrocarbons	3								
1-Methylnaphthalene	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2361974
2-Methylnaphthalene	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2361974
Acenaphthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Acenaphthylene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Acridine	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2361974
Anthracene	ug/L	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(a)anthracene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(a)pyrene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(b)fluoranthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(g,h,i)perylene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(k)fluoranthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Chrysene	ug/L	0.02	0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Dibenz(a,h)anthracene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Fluoranthene	ug/L	0.04	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Fluorene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Indeno(1,2,3-cd)pyrene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Naphthalene	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	2361974
Perylene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Phenanthrene	ug/L	0.07	0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Pyrene	ug/L	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Quinoline	ug/L	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2361974
Surrogate Recovery (%)									
D10-Anthracene	%	56(1)	39(1)	98	37(1)	72	74		2361974
D14-Terphenyl	%	89	59	112	71	76	78		2361974
D8-Acenaphthylene	%	119	78	115	100	95	85		2361974

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

^{(1) -} PAH surrogate(s) not within acceptance limits. Sample past recommended hold time for repeat analysis.

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		IE1155	IE1156	IE1157	IE1158	IE1159	IE1160		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	MW 93-1A	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	DUP-02	RDL	QC Batch
Polyaromatic Hydrocarbon	ış								_
1-Methylnaphthalene	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2361974
2-Methylnaphthalene	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2361974
Acenaphthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Acenaphthylene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Acridine	ug/L	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	2361974
Anthracene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(a)anthracene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(a)pyrene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(b)fluoranthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(g,h,i)perylene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Benzo(k)fluoranthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Chrysene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Dibenz(a,h)anthracene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Fluoranthene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Fluorene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Indeno(1,2,3-cd)pyrene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Naphthalene	ug/L	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	2361974
Perylene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.01	2361974
Phenanthrene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Pyrene	ug/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	2361974
Quinoline	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	2361974
Surrogate Recovery (%)									
D10-Anthracene	%	97	80	100	98	80	66		2361974
D14-Terphenyl	%	81(1)	71(1)	71(1)	67(1)	69(1)	53(2)		2361974
D8-Acenaphthylene	%	82	76	77	108	113	94		2361974

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

^{(1) -} PAH sample contained sediment.

^{(2) -} PAH sample contained sediment. PAH surrogate(s) not within acceptance limits. Sample past recommended hold time for repeat analysis.

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		IE1124	IE1143	IE1146	IE1147	IE1154	IE1155		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	PRIMARY	SECONDARY	SURFACE	SURFACE	MW 93-1	MW 93-1A	RDL	QC Batch
		LINER	LINER	UP	DOWN				
Chlorobenzenes									
1,2-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2362100
1,3-Dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,4-Dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		IE1124	IE1143	IE1146	IE1147	IE1154	IE1155		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	PRIMARY	SECONDARY	SURFACE	SURFACE	MW 93-1	MW 93-1A	RDL	QC Batch
		LINER	LINER	UP	DOWN				
Volatile Organics									
1,1,1-Trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,1,2,2-Tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,1,2-Trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,1-Dichloroethane	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
1,1-Dichloroethylene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.5	2362100
1,2-Dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,2-Dichloropropane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Benzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Bromomethane	ug/L	<3	<3	<3	<3	<3	<3	3	2362100
Carbon Tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Chloroethane	ug/L	<8	<8	<8	<8	<8	<8	8	2362100
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Chloromethane	ug/L	<8	<8	<8	<8	<8	<8	8	2362100
cis-1,2-Dichloroethylene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
cis-1,3-Dichloropropene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Ethylene Dibromide	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Methylene Chloride(Dichloromethane)	ug/L	<3	<3	<3	<3	<3	<3	3	2362100
o-Xylene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
p+m-Xylene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
Styrene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Toluene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
trans-1,2-Dichloroethylene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
trans-1,3-Dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Trichloroethylene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Trichlorofluoromethane (FREON 11)	ug/L	<8	<8	<8	<8	<8	<8	8	2362100
Vinyl Chloride	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2362100

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		IE1124	IE1143	IE1146	IE1147	IE1154	IE1155		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	PRIMARY	SECONDARY	SURFACE	SURFACE	MW 93-1	MW 93-1A	RDL	QC Batch
		LINER	LINER	UP	DOWN				
Surrogate Recovery (%)									
4-Bromofluorobenzene	%	96	95	97	97	99	96		2362100
D4-1,2-Dichloroethane	%	94	93	93	94	92	93		2362100
D8-Toluene	%	99	100	99	100	100	100		2362100

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		IE1156	IE1157	IE1158	IE1159	IE1159	IE1160		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	MW 10-1A	DUP-02	RDL	QC Batch
						Lab-Dup			
Chlorobenzenes									
1,2-Dichlorobenzene	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2362100
1,3-Dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,4-Dichlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Chlorobenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		IE1156	IE1157	IE1158	IE1159	IE1159	IE1160		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	MW 10-1A	DUP-02	RDL	QC Batch
						Lab-Dup			
Volatile Organics									
1,1,1-Trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,1,2,2-Tetrachloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,1,2-Trichloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,1-Dichloroethane	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
1,1-Dichloroethylene	ug/L	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	0.5	2362100
1,2-Dichloroethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
1,2-Dichloropropane	ug/L	<1	<1	2	4	4	2	1	2362100
Benzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Bromodichloromethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Bromoform	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Bromomethane	ug/L	<3	<3	<3	<3	<3	<3	3	2362100
Carbon Tetrachloride	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Chloroethane	ug/L	<8	<8	<8	<8	<8	<8	8	2362100
Chloroform	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Chloromethane	ug/L	<8	<8	<8	<8	<8	<8	8	2362100
cis-1,2-Dichloroethylene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
cis-1,3-Dichloropropene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
Dibromochloromethane	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Ethylbenzene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Ethylene Dibromide	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Methylene Chloride(Dichloromethane)	ug/L	<3	<3	<3	<3	<3	<3	3	2362100
o-Xylene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
p+m-Xylene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
Styrene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Tetrachloroethylene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Toluene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
trans-1,2-Dichloroethylene	ug/L	<2	<2	<2	<2	<2	<2	2	2362100
trans-1,3-Dichloropropene	ug/L	<1	<1	<1	<1	<1	<1	1	2362100
Trichloroethylene	ug/L	<1	<1	1	1	1	1	1	2362100
Trichlorofluoromethane (FREON 11)	ug/L	<8	<8	<8	<8	<8	<8	8	2362100
Vinyl Chloride	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	2362100

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		IE1156	IE1157	IE1158	IE1159	IE1159	IE1160		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	MW 10-1A	DUP-02	RDL	QC Batch
						Lab-Dup			
Surrogate Recovery (%)			_						
Surrogate Recovery (%) 4-Bromofluorobenzene	%	97	98	97	97	97	97		2362100
J , ,	%	97 92	98 92	97 94	97 93	97 93	97 94		2362100 2362100

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		IE1124	IE1143	IE1146	IE1147		IE1154		IE1155		
Sampling Date		2010/12/13	2010/12/13	2010/12/13	2010/12/13		2010/12/13		2010/12/13		
	Units	PRIMARY	SECONDARY	SURFACE	SURFACE	QC Batch	MW 93-1	QC Batch	MW 93-1A	RDL	QC Batch
		LINER	LINER	UP	DOWN						
PCBs											
Total PCB	ug/L	<0.05	<0.05	<0.05	<0.05	2362189	<0.05	2367645	<0.05	0.05	2362189
Surrogate Recovery (%)											
Decachlorobiphenyl	%	84	82	75	55	2362189	86(1)	2367645	83(2)		2362189

Maxxam ID		IE1156		IE1157	IE1158	IE1159	IE1160		
Sampling Date		2010/12/13		2010/12/13	2010/12/13	2010/12/13	2010/12/13		
	Units	MW 93-2	QC Batch	MW 93-2A	MW 10-1	MW 10-1A	DUP-02	RDL	QC Batch
PCBs									
Total PCB	ug/L	<0.05	2367645	< 0.05	< 0.05	< 0.05	<0.05	0.05	2362189
Surrogate Recovery (%)									
Decachlorobiphenyl	%	76(1)	2367645	72	67(2)	80(2)	66(2)		2362189

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

^{(1) -} PCB sample contained sediment. PCB sample analysed past recommended hold time as per client request.

^{(2) -} PCB sample contained sediment.

Conestoga-Rovers and Associates Ltd Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

GENERAL COMMENTS

Revised report: Change sample IDs as per client request.

Change sample ID MW 94-4 to read MW 10-1 Change sample ID MW 94-4A to read MW 10-1A Change sample ID DUP-01 to read DUP-02

2/24/11 MMC

Sample IE1124-01: Elevated reporting limits for trace metals due to sample matrix.

Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1143-01: Elevated reporting limits for trace metals due to sample matrix.

Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1146-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample IE1147-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Poor RCAp Ion Balance due to sample matrix. Excess cations due to presence of turbidity.

Sample IE1154-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1155-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1156-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1157-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES. RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meg/L.

Sample IE1158-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1159-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Sample IE1160-01: Results for sodium, phosphorus and potassium were reported from the ICP-OES.

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

			Matrix S	Spike	Spiked	Blank	Method Bla	nk	RF	PD	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2360803	Total Alkalinity (Total as CaCO3)	2010/12/16	NC	80 - 120	108	80 - 120	<5	mg/L	0.7	25	108	80 - 120
2360807	Dissolved Chloride (CI)	2010/12/16	NC	80 - 120	104	80 - 120	<1	mg/L	0.2	25	103	80 - 120
2360809	Dissolved Sulphate (SO4)	2010/12/16	90	80 - 120	114	80 - 120	<2	mg/L	21.7	25	112	80 - 120
2360812	Reactive Silica (SiO2)	2010/12/17	NC	80 - 120	99	80 - 120	<0.5	mg/L	0.2	25	97	75 - 125
2360816	Colour	2010/12/17					<5	TCU	NC	25	109	80 - 120
2360817	Orthophosphate (P)	2010/12/16	89	80 - 120	100	80 - 120	<0.01	mg/L	NC	25	100	80 - 120
2360821	Nitrate + Nitrite	2010/12/17	NC	80 - 120	98	80 - 120	<0.05	mg/L	0.07	25	101	80 - 120
2360824	Nitrite (N)	2010/12/16	76(1, 2)	80 - 120	100	80 - 120	<0.01	mg/L	NC	25	101	80 - 120
2361974	D10-Anthracene	2010/12/24	78	30 - 130	55	30 - 130	114	%				
2361974	D14-Terphenyl	2010/12/24	72	30 - 130	64	30 - 130	91	%				
2361974	D8-Acenaphthylene	2010/12/24	83	30 - 130	57	30 - 130	79	%				
2361974	1-Methylnaphthalene	2010/12/25	79(3, 4)	30 - 130	105	30 - 130	<0.05	ug/L	NC (5)	40		
2361974	2-Methylnaphthalene	2010/12/25	71 (3, 4)	30 - 130	104(6)	30 - 130	<0.05	ug/L	NC (5)	40		
2361974	Acenaphthene	2010/12/25	88(4)	30 - 130	97	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Acenaphthylene	2010/12/25	67(7, 4)	30 - 130	107	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Acridine	2010/12/25	107(4)	30 - 130	86	30 - 130	< 0.05	ug/L	NC (5)	40		
2361974	Anthracene	2010/12/25	117(3, 4)	30 - 130	97	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Benzo(a)anthracene	2010/12/25	80(4)	30 - 130	94	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Benzo(a)pyrene	2010/12/25	108(4)	30 - 130	87	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Benzo(b)fluoranthene	2010/12/25	75(4)	30 - 130	109	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Benzo(g,h,i)perylene	2010/12/25	91(4)	30 - 130	82	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Benzo(k)fluoranthene	2010/12/25	101(4)	30 - 130	103	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Chrysene	2010/12/25	82(4)	30 - 130	90	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Dibenz(a,h)anthracene	2010/12/25	100(4)	30 - 130	81	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Fluoranthene	2010/12/25	82(4)	30 - 130	112	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Fluorene	2010/12/25	78(4)	30 - 130	92	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Indeno(1,2,3-cd)pyrene	2010/12/25	123(4)	30 - 130	80	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Naphthalene	2010/12/25	87(4)	30 - 130	103	30 - 130	<0.2	ug/L	NC (5)	40		
2361974	Perylene	2010/12/25	100(4)	30 - 130	71	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Phenanthrene	2010/12/25	83(4)	30 - 130	113	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Pyrene	2010/12/25	84(4)	30 - 130	107	30 - 130	<0.01	ug/L	NC (5)	40		
2361974	Quinoline	2010/12/25	86(4)	30 - 130	85(6)	30 - 130	<0.05	ug/L	NC (5)	40		
2362100	1,2-Dichlorobenzene	2010/12/18	100(8)	70 - 130	97	70 - 130	<0.5	ug/L	NC (9)	40		
2362100	1,3-Dichlorobenzene	2010/12/18	95(8)	70 - 130	96	70 - 130	<1	ug/L	NC (9)	40		
2362100	1,4-Dichlorobenzene	2010/12/18	95(8)	70 - 130	95	70 - 130	<1	ug/L	NC (9)	40		
2362100	Chlorobenzene	2010/12/18	105(8)	70 - 130	103	70 - 130	<1	ug/L	NC (9)	40		
2362100	1,1,1-Trichloroethane	2010/12/18	111(8)	70 - 130	105	70 - 130	<1	ug/L	NC (9)	40		
2362100	1,1,2,2-Tetrachloroethane	2010/12/18	95(8)	70 - 130	92	70 - 130	<1	ug/L	NC (9)	40		
2362100	1,1,2-Trichloroethane	2010/12/18	105(8)	70 - 130	105	70 - 130	<1	ug/L	NC (9)	40		
2362100	1,1-Dichloroethane	2010/12/18	111(8)	70 - 130	110	70 - 130	<2	ug/L	NC (9)	40		

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

			Matrix S	Spike	Spiked	Blank	Method Bla	nk	RF	D	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2362100	1,1-Dichloroethylene	2010/12/18	116(8)	70 - 130	108	70 - 130	<0.5	ug/L	NC (9)	40		
2362100	1,2-Dichloroethane	2010/12/18	95(8)	70 - 130	95	70 - 130	<1	ug/L	NC (9)	40		
2362100	1,2-Dichloropropane	2010/12/18	109(8)	70 - 130	109	70 - 130	<1	ug/L	NC (9)	40		
2362100	4-Bromofluorobenzene	2010/12/18	98	70 - 130	98	70 - 130	97	%				
2362100	Benzene	2010/12/18	111(8)	70 - 130	108	70 - 130	<1	ug/L	NC (9)	40		
2362100	Bromodichloromethane	2010/12/18	100(8)	70 - 130	96	70 - 130	<1	ug/L	NC (9)	40		
2362100	Bromoform	2010/12/18	79(8)	70 - 130	77	70 - 130	<1	ug/L	NC (9)	40		
2362100	Bromomethane	2010/12/18	95(8)	70 - 130	90	70 - 130	<3	ug/L	NC (9)	40		
2362100	Carbon Tetrachloride	2010/12/18	126(8)	70 - 130	116	70 - 130	<1	ug/L	NC (9)	40		
2362100	Chloroethane	2010/12/18	121(8)	70 - 130	118	70 - 130	<8	ug/L	NC (9)	40		
2362100	Chloroform	2010/12/18	111(8)	70 - 130	110	70 - 130	<1	ug/L	NC (9)	40		
2362100	Chloromethane	2010/12/18	116(8)	70 - 130	116	70 - 130	<8	ug/L	NC (9)	40		
2362100	cis-1,2-Dichloroethylene	2010/12/18	110(8)	70 - 130	109	70 - 130	<2	ug/L	NC (9)	40		
2362100	cis-1,3-Dichloropropene	2010/12/18	84(8)	70 - 130	86	70 - 130	<2	ug/L	NC (9)	40		
2362100	D4-1,2-Dichloroethane	2010/12/18	94	70 - 130	93	70 - 130	94	%				
2362100	D8-Toluene	2010/12/18	100	70 - 130	98	70 - 130	99	%				
2362100	Dibromochloromethane	2010/12/18	95(8)	70 - 130	93	70 - 130	<1	ug/L	NC (9)	40		
2362100	Ethylbenzene	2010/12/18	105(8)	70 - 130	101	70 - 130	<1	ug/L	NC (9)	40		
2362100	Ethylene Dibromide	2010/12/18	100(8)	70 - 130	101	70 - 130	<1	ug/L	NC (9)	40		
2362100	MethyleneChloride(Dichloromethane)	2010/12/18	116(8)	70 - 130	122	70 - 130	<3	ug/L	NC (9)	40		
2362100	o-Xylene	2010/12/18	105(8)	70 - 130	102	70 - 130	<1	ug/L	NC (9)	40		
2362100	p+m-Xylene	2010/12/18	105(8)	70 - 130	101	70 - 130	<2	ug/L	NC (9)	40		
2362100	Styrene	2010/12/18	95(8)	70 - 130	101	70 - 130	<1	ug/L	NC (9)	40		
2362100	Tetrachloroethylene	2010/12/18	116(8)	70 - 130	110	70 - 130	<1	ug/L	NC (9)	40		
2362100	Toluene	2010/12/18	105(8)	70 - 130	104	70 - 130	<1	ug/L	NC (9)	40		
2362100	trans-1,2-Dichloroethylene	2010/12/18	111(8)	70 - 130	107	70 - 130	<2	ug/L	NC (9)	40		
2362100	trans-1,3-Dichloropropene	2010/12/18	68(1, 7, 8)	70 - 130	70	70 - 130	<1	ug/L	NC (9)	40		
2362100	Trichloroethylene	2010/12/18	111(8)	70 - 130	110	70 - 130	<1	ug/L	NC (9)	40		
2362100	Trichlorofluoromethane (FREON 11)	2010/12/18	121(8)	70 - 130	114	70 - 130	<8	ug/L	NC (9)	40		
2362100	Vinyl Chloride	2010/12/18	116(8)	70 - 130	113	70 - 130	<0.5	ug/L	NC (9)	40		
2362189	Decachlorobiphenyl	2010/12/22	70	30 - 130	77	30 - 130	74	%				
2362189	Total PCB	2010/12/22	115	70 - 130	115	70 - 130	<0.05	ug/L	NC	40		
2362440	Total Aluminum (AI)	2010/12/17	94	80 - 120	100	80 - 120	<5.0	ug/L	NC	25		
2362440	Total Antimony (Sb)	2010/12/17	112	80 - 120	107	80 - 120	<1.0	ug/L	NC	25		
2362440	Total Arsenic (As)	2010/12/17	98	80 - 120	93	80 - 120	<1.0	ug/L	NC	25		
2362440	Total Barium (Ba)	2010/12/17	NC	80 - 120	99	80 - 120	<1.0	ug/L	3.9	25		
2362440	Total Beryllium (Be)	2010/12/17	105	80 - 120	97	80 - 120	<1.0	ug/L	NC	25		
2362440	Total Bismuth (Bi)	2010/12/17	91	80 - 120	92	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Boron (B)	2010/12/17	101	80 - 120	97	80 - 120	<5.0	ug/L	NC	25		
2362440	Total Cadmium (Cd)	2010/12/17	99	80 - 120	96	80 - 120	<0.017	ug/L	NC	25		

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

			Matrix S	Spike	Spiked I	Blank	Method Bla	nk	RF	D	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2362440	Total Calcium (Ca)	2010/12/17	NC	80 - 120	107	80 - 120	<100	ug/L	3.1	25		
2362440	Total Chromium (Cr)	2010/12/17	97	80 - 120	105	80 - 120	<1.0	ug/L	NC	25		
2362440	Total Cobalt (Co)	2010/12/17	97	80 - 120	100	80 - 120	<0.40	ug/L	NC	25		
2362440	Total Copper (Cu)	2010/12/17	98	80 - 120	103	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Iron (Fe)	2010/12/17	107	80 - 120	101	80 - 120	<50	ug/L	NC	25		
2362440	Total Lead (Pb)	2010/12/17	93	80 - 120	95	80 - 120	<0.50	ug/L	NC	25		
2362440	Total Magnesium (Mg)	2010/12/17	NC	80 - 120	99	80 - 120	<100	ug/L	6.1	25		
2362440	Total Manganese (Mn)	2010/12/17	NC	80 - 120	99	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Molybdenum (Mo)	2010/12/17	112	80 - 120	108	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Nickel (Ni)	2010/12/17	95	80 - 120	99	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Phosphorus (P)	2010/12/17	89	80 - 120	90	80 - 120	<100	ug/L	NC	25		
2362440	Total Potassium (K)	2010/12/17	94	80 - 120	93	80 - 120	<100	ug/L	4.0	25		
2362440	Total Selenium (Se)	2010/12/17	104	80 - 120	91	80 - 120	<1.0	ug/L	NC	25		
2362440	Total Silver (Ag)	2010/12/17	95	80 - 120	94	80 - 120	<0.10	ug/L	NC	25		
2362440	Total Sodium (Na)	2010/12/17	NC	80 - 120	96	80 - 120	<100	ug/L	4.2	25		
2362440	Total Strontium (Sr)	2010/12/17	NC	80 - 120	107	80 - 120	<2.0	ug/L	7.4	25		
2362440	Total Thallium (TI)	2010/12/17	96	80 - 120	95	80 - 120	<0.10	ug/L	NC	25		
2362440	Total Tin (Sn)	2010/12/17	102	80 - 120	101	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Titanium (Ti)	2010/12/17	103	80 - 120	108	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Uranium (U)	2010/12/17	98	80 - 120	102	80 - 120	<0.10	ug/L	NC	25		
2362440	Total Vanadium (V)	2010/12/17	103	80 - 120	108	80 - 120	<2.0	ug/L	NC	25		
2362440	Total Zinc (Zn)	2010/12/17	99	80 - 120	101	80 - 120	<5.0	ug/L	NC	25		
2362445	Dissolved Aluminum (AI)	2010/12/17	88(10)	80 - 120	94	80 - 120	<5.0	ug/L				
2362445	Dissolved Antimony (Sb)	2010/12/17	109(10)	80 - 120	106	80 - 120	<1.0	ug/L				
2362445	Dissolved Arsenic (As)	2010/12/17	103(10)	80 - 120	92	80 - 120	<1.0	ug/L				
2362445	Dissolved Barium (Ba)	2010/12/17	NC (10)	80 - 120	98	80 - 120	<1.0	ug/L				
2362445	Dissolved Beryllium (Be)	2010/12/17	103(10)	80 - 120	101	80 - 120	<1.0	ug/L				
2362445	Dissolved Bismuth (Bi)	2010/12/17	92(10)	80 - 120	91	80 - 120	<2.0	ug/L				
2362445	Dissolved Boron (B)	2010/12/17	NC (10)	80 - 120	98	80 - 120	<5.0	ug/L				
2362445	Dissolved Cadmium (Cd)	2010/12/17	96(10)	80 - 120	93	80 - 120	<0.017	ug/L				
2362445	Dissolved Calcium (Ca)	2010/12/17	NC (10)	80 - 120	102	80 - 120	<100	ug/L	0.03	25		
2362445	Dissolved Chromium (Cr)	2010/12/17	93(10)	80 - 120	100	80 - 120	<1.0	ug/L				
2362445	Dissolved Cobalt (Co)	2010/12/17	98(10)	80 - 120	97	80 - 120	<0.40	ug/L				
2362445	Dissolved Copper (Cu)	2010/12/17	90(10)	80 - 120	96	80 - 120	<2.0	ug/L				
2362445	Dissolved Iron (Fe)	2010/12/17	93(10)	80 - 120	96	80 - 120	<50	ug/L				
2362445	Dissolved Lead (Pb)	2010/12/17	95(10)	80 - 120	95	80 - 120	<0.50	ug/L				
2362445	Dissolved Magnesium (Mg)	2010/12/17	NC (10)	80 - 120	93	80 - 120	<100	ug/L				
2362445	Dissolved Manganese (Mn)	2010/12/17	NC (10)	80 - 120	94	80 - 120	<2.0	ug/L				
2362445	Dissolved Molybdenum (Mo)	2010/12/17	NC (10)	80 - 120	103	80 - 120	<2.0	ug/L				
2362445	Dissolved Nickel (Ni)	2010/12/17	93(10)	80 - 120	93	80 - 120	<2.0	ug/L				

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

			Matrix S	pike	Spiked	Blank	Method Bla	nk	RF	PD	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2362445	Dissolved Phosphorus (P)	2010/12/17	91 (10)	80 - 120	91	80 - 120	<100	ug/L				
2362445	Dissolved Potassium (K)	2010/12/17	90(10)	80 - 120	90	80 - 120	<100	ug/L				
2362445	Dissolved Selenium (Se)	2010/12/17	110(10)	80 - 120	97	80 - 120	<1.0	ug/L				
2362445	Dissolved Silver (Ag)	2010/12/17	64(1, 11, 10)	80 - 120	97	80 - 120	<0.10	ug/L				
2362445	Dissolved Sodium (Na)	2010/12/17	NC (10)	80 - 120	94	80 - 120	<100	ug/L				
2362445	Dissolved Strontium (Sr)	2010/12/17	NC (10)	80 - 120	103	80 - 120	<2.0	ug/L				
2362445	Dissolved Thallium (TI)	2010/12/17	96(10)	80 - 120	96	80 - 120	<0.10	ug/L				
2362445	Dissolved Tin (Sn)	2010/12/17	99(10)	80 - 120	96	80 - 120	<2.0	ug/L				
2362445	Dissolved Titanium (Ti)	2010/12/17	103(10)	80 - 120	96	80 - 120	<2.0	ug/L				
2362445	Dissolved Uranium (U)	2010/12/17	100(10)	80 - 120	95	80 - 120	<0.10	ug/L				
2362445	Dissolved Vanadium (V)	2010/12/17	103(10)	80 - 120	102	80 - 120	<2.0	ug/L				
2362445	Dissolved Zinc (Zn)	2010/12/17	117(10)	80 - 120	107	80 - 120	<5.0	ug/L				
2363442	Turbidity	2010/12/18					<0.1	NTU	4.2(12)	25	97	80 - 120
2363445	Turbidity	2010/12/18					<0.1	NTU	NC	25	95	80 - 120
2364137	pH	2010/12/20					5.36, RDL=N/A	рН	0.9	25	99	80 - 120
2364141	Conductivity	2010/12/20					1, RDL=1	uS/cm	0.4	25	101	80 - 120
2364162	pH	2010/12/20					5.41, RDL=N/A	pН	1.1	25	99	80 - 120
2364169	Conductivity	2010/12/20					1, RDL=1	uS/cm	0.2	25	102	80 - 120
2364598	Nitrogen (Ammonia Nitrogen)	2010/12/20	100	80 - 120	98	80 - 120	<0.05	mg/L	NC	25	97	80 - 120
2365464	Total Organic Carbon (C)	2010/12/21	96	80 - 120	99	80 - 120	<0.5	mg/L	NC	25	100	80 - 120

Conestoga-Rovers and Associates Ltd

Client Project #: 056680

Project name: COME BY CHANCE SECURE LANDFILL

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked I	Blank	Method Bla	nk	RF	D	QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2367645	Decachlorobiphenyl	2010/12/29			93	30 - 130	90	%				
2367645	Total PCB	2010/12/29			119	70 - 130	< 0.05	ug/L				

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

- (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (10) Matrix Spike Parent ID [IE1154-01]
- (11) Low recovery due to sample matrix.
- (12) Duplicate Parent ID [IE1146-01]
- (2) Low spike recovery due to sample matrix. Recovery confirmed by repeat analysis.
- (3) PAH surrogate(s) not within acceptance limits. Sample past recommended hold time for repeat analysis.
- (4) Matrix Spike Parent ID [IE1156-02]
- (5) Duplicate Parent ID [IE1154-02]
- (6) Spike: < 10 % of compounds in multi-component analysis in violation.
- (7) Matrix Spike: < 10 % of compounds in multi-component analysis in violation.
- (8) Matrix Spike Parent ID [IE1160-02]
- (9) Duplicate Parent ID [IE1159-02]

Validation Signature Page

Maxxam Job #: B010761

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

ROBIN SMITH,

MIKE MACGILLIVRAY Bedford Inorg Spvsr

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

APPENDIX D

STANTEC LETHALITY LABORATORY REPORTS

Stantec Consulting Ltd Science Laboratory 422 Logy Bay Road St. John's, NL A1A 5C6 Tel: (709) 576-4804 Fax: (709) 576-0008

Registered to ISO 9001:2000 ISO/IEC 17025:2005 Accredited SCC-Food Scope (No. 268) CALA – Environmental Scope (No. 2709)

July 27, 2010

Job: 10529.

JW Lab Refer No.: B-1362-09 & B-1363-09

Report No.: 03520

CRA P.O Box 8353 1118 Topsail Rd St. John's, NL A1N 3N7

Tel: (709) 364-5353 Fax: (709) 364-5268

Attention:

Dave McColl

Dear Mr. McColl,

Reference:

Toxicology Testing Results

Please find enclosed the results of the 96 hour bioassays conducted July 19 - 23, 2010. These toxicity tests were performed on the Primary Liner and Secondary Liner. These effluents were collected on July 16, 2010. The samples were received in an acceptable condition.

Test conditions for a single concentration test were followed according to the Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition-December 2000 and May 2007 amendment). All test parameters were maintained within the recommended levels outlined in the above protocol.

Since less than 50.00 % of the fish died during the 96 hour period in the 100.00 % effluents for the Primary Liner and Secondary Liner, these effluents are considered to be non toxic to the fish. The LT50's were determined to be greater than 96 hours.

Please call if you have any questions regarding these results.

Sincerely,

STANTEC CONSULTING LTD

Michelle Pve. B.Sc.

Toxicology Lead, Science Laboratory

Attachments:

A- Bench Data Sheet(s)

July 27, 2010

Attention: Dave McColl

Job: 10529. Report No.: 03520

Page 2 of 8

Reference: Toxicology Testing Results

SAMPLE

JW Lab Refer.No.:

B-1362-09

Company:

CRA

Sample Material:

Primary Liner Not provided

Sampling Method: Sample Condition:

Received in acceptable condition

Collected:

July 16, 2010; 5:00 pm

Collected By:

H. Anderson

SAMPLE CHARACTERIZATION

Received (Date and Time):

July 19, 2010; 10:30 am

Volume:

2 x 20 L

Temperature:

14.7 °C

Dissolved Oxygen:

8.3 mg/L

pH:

7.1 pH units

Conductivity:

716 µS/cm

Colour:

Cloudy, orange

Odour:

None

Storage:

0 Hours @ 4.0 ± 2.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source:

St. John's Dechlorinated

Dissolved Oxygen:

 $9.6 \pm 0.3 \, \text{mg/L}$

Conductivity:

 $146 \pm 16 \mu S/cm$

Hardness:

 25 ± 1.1 mg/L

:Ha

 7.6 ± 0.3 pH units

Date Revised:

July 5, 2010

TEST CONDITIONS

Started (Date and Time):

July 19, 2010; 11:50 am

Ended (Date and Time):

July 23, 2010; 11:50 am

Type of Test:

96 hour static LT₅₀ (Pass/Fail) 20 Litres

Volume of Test Solutions: Photoperiod:

16 Light/08 Dark

Light Intensity:

227 Lux

Aeration Rate:

 $6.5 \pm 1.0 \text{ mL/min.L}^{-1}$

Preaeration Time:

30 mins

Test Temperature:

15 ± 1 °C

Duration:

96 hours

TEST ORGANISM

Species:

Rainbow Trout (Oncorhynchus mykiss)

Source:

Rainbow Springs Hatchery

Batch Number:

10-07

Number per Tank:

10

% Mortality:

0% (7 days prior to testing)

3.4 - 3.6

Mean Fork Length (cm):

 3.5 ± 0.1

Range (cm):

Loading Density:

Mean Total Weight (g):

 0.4 ± 0.1

Range (g):

0.3 - 0.5

0.2 g/L

July 27, 2010

Attention: Dave McColl

Job: 10529.

Report No.: 03520

Page 3 of 8

Reference: Toxicology Testing Results

TEST RESULTS

JW Lab Refer No.:

B-1362-09

Sample Material:

Primary Liner

Collection Date:

July 16, 2010; 5:00 pm

Protocol:

EPS 1/RM/13

Test Type:

LT₅₀ (Pass/Fail)

LT₅₀ value (static, acute):

> 96 hrs

95% Confidence Intervals:

N/A

Effluent	Tem	p(°C)	D.O.	(mg/L)	pH (units)	Cond.(μ s/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	lnit.	Final	lnit.	Final	(%)
100	15.2	15.3	9.2	9.2	7.3	8.1	720	692	0
0	15.3	15.3	9.6	9.5	7.1	7.2	138	150	0

COMMENTS:

- Arrival temperature of 5.5 °C.
- The sample contained a few suspended particles.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism:

Oncorhynchus mykiss

Toxicant:

Phenol

Fish Batch No.:

10-07

Reference Toxicant Date:

June 28 - July 2, 2010

LC₅₀ Value:

1.1 mg/L

95% Confidence Limits:

1.0 - 1.2 mg/L

Historic Mean ± 2 SD (Warning Limits):

 $1.1 \pm 0.1 \, \text{mg/L}$

Performed by: Michelle Pye/Trevor Whiteway

Technical Paviower

int Name/Signature)

Senior Reviewer:

(Print Name/Signature)

Date

ate: 0/14/28/201

July 27, 2010

Attention: Dave McColl

Job: 10529.

Report No.: 03520

Page 4 of 8

Reference: Toxicology Testing Results

SAMPLE

JW Lab Refer.No.:

B-1363-09

Company:

CRA

Sample Material:

Secondary Liner

Sampling Method:

Not provided

Sample Condition:

Received in acceptable condition

Collected:

July 16, 2010; 5:30 pm

Collected By:

H. Anderson

SAMPLE CHARACTERIZATION

Received (Date and Time):

July 19, 2010; 10:30 am

Volume:

2 x 20 L

Temperature:

14.8 °C

Dissolved Oxygen:

8.5 mg/L

pH:

7.1 pH units

Conductivity:

947 μS/cm

Colour: Odour:

Cloudy, orange None

Storage:

0 Hours @ 4.0 ± 2.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source:

St. John's Dechlorinated

Dissolved Oxygen:

 $9.6 \pm 0.3 \, \text{mg/L}$

Conductivity:

 $146 \pm 16 \mu S/cm$

Hardness:

 $25 \pm 1.1 \, \text{mg/L}$

:Ha

 7.6 ± 0.3 pH units

Date Revised:

July 5, 2010

TEST CONDITIONS

Started (Date and Time):

Volume of Test Solutions:

July 19, 2010; 11:55 am

Ended (Date and Time):

July 23, 2010; 11:55 am 96 hour static LT₅₀ (Pass/Fail)

Type of Test:

20 Litres

Photoperiod:

16 Light/08 Dark

Light Intensity:

235 Lux

Aeration Rate:

 $6.5 \pm 1.0 \text{ mL/min.L}^{-1}$

Preaeration Time:

30 mins

Test Temperature:

15 ± 1 °C

Duration:

96 hours

TEST ORGANISM

Species:

Rainbow Trout (Oncorhynchus mykiss)

Source:

Rainbow Springs Hatchery

Batch Number:

10-07

Number per Tank:

10

% Mortality:

0% (7 days prior to testing)

 3.5 ± 0.3

Range (cm): Range (g):

Mean Fork Length (cm): Mean Total Weight (g):

3.2 - 3.90.2 - 0.8

Loading Density:

 0.4 ± 0.3

0.2 g/L

July 27, 2010

Attention: Dave McColl

Job: 10529.

Report No.: 03520

Page 5 of 8

Reference: Toxicology Testing Results

TEST RESULTS

JW Lab Refer No.:

B-1363-09

Sample Material:

Secondary Liner

Collection Date:

July 16, 2010; 5:30 pm

Protocol:

EPS 1/RM/13

Test Type:

LT₅₀ (Pass/Fail)

LT₅₀ value (static, acute):

> 96 hrs

N/A

95% Confidence Intervals:

Effluent	Tem	p(°C)	D.O.	(mg/L)	pH (ı	units)	Cond.	μ s/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	lnit.	Final	lnit.	Final	(%)
100	14.8	15.2	9.0	9.6	7.2	8.9	950	893	0
0	15.1	15.3	9.1	9.2	7.2	7.6	137	162	0

COMMENTS:

- Arrival temperature of 5.5 °C.
- The sample contained a few suspended particles.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism:

Oncorhynchus mykiss

Toxicant:

Phenol

Fish Batch No .:

10-07

Reference Toxicant Date:

June 28 - July 2, 2010

LC₅₀ Value:

1.1 mg/L

95% Confidence Limits:

1.0 - 1.2 mg/L

Historic Mean ± 2 SD (Warning Limits):

 $1.1 \pm 0.1 \, mg/L$

Performed by: Michelle Pye/Trevor Whiteway

July 27, 2010 Attention: Dave McColl

Page 6 of 8

Reference: Toxicology Testing Results

Job: 10529. Report No.: 03520

Bench Data Sheet (s)

ATTACHMENT A

Jacques Whitford E Laboratory Division	nvironment Limited
-	LT50 Fish Big

JWKL Lab Form: Bio-0011 Date: May 30, 2003

oassay Data Sheet

Client: CRA

Sample ID # B-1362-09

Dave McColl 1118 Topsail Road PO Box 8353

Client#

121510529

St. John's, NL A1N 3N7 (709) 364-5353 (709) 364-5368

lux Light Intensity: Ammonia (Init.):

		(,	709) 36	04-5368										Ammonia (i	Fin.):	
Sample N	/laterial: pri						Pread	eration Time:	30	min.		Clai	rity (I): ()	Udy		1
Start Date	_	1910					Test	Org - Batch #:	io.	· 70-			our (1): Ora	vag		
Finish Da	ite: 0	152	10				Source	ce: RSH		O ,		Odo		nge D		
	ected: 🔿 🦳						Test	Start Date:	0719	10				afu		
Date Rec	eived: ひ〜	1910) Tir	ne Recei	ved: 10	`.30 Ar	Test	Start Time:	- 1	1.50 p	· w				500, an: 5	500
Aeration	Rate: 6.5 ± m	L/min. L	-1	Conc:	(1009		JUL	Conc:					Volume: 0	Litres 2) (,] ,
				Salinity	: D ~	lppt_		vscd.	Salinit	y:	00%			Storage: A	Litres × 2 rec	eived
			1				· · · · · · · · · · · · · · · · · · ·	2800			رين ريز	NY	ol,	NA ,	tempered in w	1 for
Time	Day	Monit By	HR.	Mort #	Temp (°C)	DO (mg/l)	pН	Cond (µS/cm)	Mort #	Temp (°C)	DO (mg/l)	Hq	Cond (uS/cm)	-		45 min.
11.20	071910	1/0	INT		14.7	8.3	7.1	716						Fish Meas	Wet Weight (g)	-
11,20		v	0		12.5		7.3	720	-	15.3	9,6	7. (138	3.4	0.4	†
	-										,			3.6	0.5	1
														3.4	0.3	1
8:50	073010	100	24		15.1	9.3	8-5	689		15.2	94	7.4	155	3.5	0.4	
9:40	572410	M	48		1.9	9.2	8.3	685		15.2		7.5	152	3.4	0.3	
9:42	07220	M	72	; —	151	9.3	8.9	690	-	15.3	9.4	7.6		3.5	0.4	
1,20	0)330	m	96	_	15.3	9,2	8.1	692	_	15.3	T	7.2		35	0.5	
Fish Be	haviour C	omme	nts		<u> </u>		^ ^				1. 1 -	1 1 4		3.5	0.5	
				A		o ks a		•						3.6	0.5	
					ali	re	NB				->			3.4	0.3	
Pretreatn	nent: Con	nposite	y Te	emp	Oth	er 📓			Clarity (F) Q	- <u>-</u>			Mean +		
		solved	_	•		20,966			Colour (F):	me	٧, دی	itial	3.5 0.1	0.4 0.1	
	Оху	• /	۳ Ha	ardness			-		Odour (i	•		1		Loading Density (g/i)	<u> </u>	
Comment	s EPS1/	RM / 13	Second	d Edition -	Decembe	er 2000			Susp. P	•			-	LT50:	0.2	
!									Other (F			1			14hb-	
												v	.1	/	○ · ·	1

			W	Jacq ues	Whitfor	d Enviro	nment	Limited		JU	/KL Lab Four	n: Bio-001	1			
		L			ory Divis					Da		May 30,	2003			
-							LT	50 Fish Bio	assay	Data She	eet					
	Clie	ent: CR	LA.			*		Sample II) # B	-1363-09						
		Da 11 St. A1 (70	ve Mo 18 Top John's N 3N 09) 36	psail Roa s, NL	ad PO Bo	x 8353		Client #	12	21510529				Light Intensit Ammonia (In Ammonia (F	it.):	
ample Ma	aterial: sec	ondary li	ner					•	30	min.			yil): Wor) dy		
itart Date:	0719	OIÊ					Test C	Org - Batch #:	10	-07		Colo	0,	ing		
inish Date	æ o `⊃ ′	2310	3		\mathcal{L}	Bopm	Sourc	~ .	5 <i>H</i>			Odot	ur (I):	7 .		
)ate Colle	cted: 0 🥎	16,0	•					Start Date:		11910	`	Othe). Paπ. (I): Ο.	100.		5.5%
)ate Rece	ived: 5	191	J Tin	ne Receiv	red: (U.			Start Time:	1	11:23	,		1 (1).	W.A.ATIGE	Litres Karca empared in w	
eration R	ate: 6.5 ± ml	L/min. L-	1	Conc:		(00		Dor	Conc:		00%	>		Volume: 3.7	rines x7 cc	reived
				Salinity:	(12ppt	_	used	Salinit	y:	10°	lost	L	NA 1+	empared in w	18#1 to
Time	Day	Monit	HR.	Mort #	Temp	DO	pН	Cond	Mort #	Temp	DO	рН	Cond		45	min.
Time		Ву			(°C)	(mg/l)		(µS/cm)	10.000	(°C)	(mg/l)		(uS/cm)	Fish Meas		_
11:25	071910	NP	INT		14.8	8.5	7.1	947.	26 0000		a .			Fork Length (cm)	Wet Weight (g)	-
11:55	+	F	0	-	14.8	9.0	<u> フ</u> ユ	950		15.1	9.1	7.2	137	3.2	0.3	_
														3.3		
											10			3.8	3.5	
2245	טוט דט	n	24		14.9	9.4	8.5	892		15.0	9.6	7.4	154	3.1	3.3	
-	572112		48		15.0	9.3	8.7	894		15.1	9.4	7.3	152	3.3	0.3	
	0720		72	_	15.3	9.2	8.6	885	-	15.2	9.3	7.2	165	3.9	0.8	_
1' 5/	0)230	1 -	96	1	15.2		89	893	ton.	15.3	9.2	7.6	162	3.8	0:5	
4.72					1, 1		10 ' 1	<u> </u>		1.5 =				3.3	5.0	_
Fish Be	haviour (Commo	ents	L A.	+ 96	hrc	10 F	ish						3.5	0.4	
					ali		NB.	.311				- >		3.4	0.3	
									01	(E). C			0		+/- SD	
Pretreatr	nent: Co	mposite	T	Temp	Ott	ner 🏢			Clarity	(F): 5 (aneo	ni O	ふかん	3.5 0.3	0.4 0.3	<u> </u>
		solved ygen	ستهنينا	Vater Hardness					Odour		ſ			Loading Density (g	/I): O.Z	
Commen			/		- Decemb	er 2000				Part. (F):				LT50: 7	96hs.	

Stantec Consulting Ltd Science Laboratory 422 Logy Bay Road St. John's, NL A1A 5C6 Tel: (709) 576-4804 Fax: (709) 576-0008

Registered to ISO 9001:2000 ISO/IEC 17025:2005 Accredited SCC-Food Scope (No. 268) CALA – Environmental Scope (No. 2709)

December 20, 2010

Job: 10529.

JW Lab Refer No.: B-1921-09 & B-1922-09

Report No.: 03695

CRA P.O Box 8353 1118 Topsail Rd St. John's, NL A1N 3N7

Tel: (709) 364-5353 Fax: (709) 364-5268

Attention:

Dave McColl

Dear Mr. McColl,

Reference:

Toxicology Testing Results

Please find enclosed the results of the 96 hour bioassays conducted December 14 - 18, 2010. These toxicity tests were performed on the SLCS and PLCS. These effluents were collected on December 13, 2010. The samples were received in an acceptable condition.

Test conditions for a single concentration test were followed according to the Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition-December 2000 and May 2007 amendment). All test parameters were maintained within the recommended levels outlined in the above protocol.

Since less than 50.00 % of the fish died during the 96 hour period in the 100.00 % effluents for the SLCS and PLCS, these effluents are considered to be non toxic to the fish. The LT50's were determined to be greater than 96 hours.

Please call if you have any questions regarding these results.

Sincerely,

STANTEC CONSULTING LTD

Michelle Pye, B.Sc.

Toxicology Lead, Science Laboratory

Attachments:

A- Bench Data Sheet(s)

December 20, 2010 Attention: Dave McColl Job: 10529.

Report No.: 03695

Page 2 of 8

Reference: Toxicology Testing Results

SAMPLE

JW Lab Refer.No.:

B-1921-09

Company:

CRA

Sample Material:

SLCS

Sampling Method:

Not provided

Sample Condition: Collected:

Received in acceptable condition

December 13, 2010; 3:30 pm

Collected By:

Brian Luffman

SAMPLE CHARACTERIZATION

Received (Date and Time):

December 14, 2010; 8:30 am

Volume:

2 x 20 L

Temperature:

14.4 °C

Dissolved Oxygen: pH:

9.3 mg/L 7.6 pH units

Conductivity:

1001 µS/cm Cloudy, yellow

Colour: Odour:

None

Storage:

0 Hours @ 4.0 ± 2.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source:

St. John's Dechlorinated

Dissolved Oxygen:

 $9.6 \pm 0.3 \, \text{mg/L}$

Conductivity:

 $156 \pm 5 \mu S/cm$

Hardness:

 $28 \pm 6 \text{ mg/L}$

pH:

 7.5 ± 0.3 pH units

Date Revised:

December 1, 2010

TEST CONDITIONS

Started (Date and Time):

December 14, 2010; 11:45 am

Ended (Date and Time):

December 18, 2010; 11:45 am

Type of Test:

96 hour static LT₅₀ (Pass/Fail)

Volume of Test Solutions:

20 Litres

Photoperiod:

16 Light/08 Dark

Light Intensity:

341 Lux

Aeration Rate:

 $6.5 \pm 1.0 \text{ mL/min.L}^{-1}$ 30 mins

Preaeration Time: Test Temperature:

15 ± 1 °C

Duration:

96 hours

TEST ORGANISM

Species:

Rainbow Trout (Oncorhynchus mykiss)

Source:

Rainbow Springs Hatchery

Batch Number:

10-13

Number per Tank:

10

% Mortality:

0% (7 days prior to testing)

Mean Fork Length (cm):

Range (cm): 3.5 - 5.0

Mean Total Weight (g):

 4.3 ± 0.5 0.8 ± 0.3

Range (g): 0.4 - 1.1

Loading Density:

0.4 g/L

December 20, 2010 Attention: Dave McColl Job: 10529.

Report No.: 03695

Page 3 of 8

Reference: Toxicology Testing Results

TEST RESULTS

JW Lab Refer No.:

B-1921-09

Sample Material:

SLCS

Collection Date:

December 13, 2010; 3:30 pm

Protocol:

EPS 1/RM/13

Test Type:

LT₅₀ (Pass/Fail)

LT₅₀ value (static, acute):

> 96 hrs

95% Confidence Intervals:

N/A

Effluent	Tem	p(°C)	D.O.	(mg/L)	pH (units)	Cond.(μ s/cm)	Mortality
Conc.(%)	Init.	Final	lnit.	Final	lnit.	Final	Init.	Final	(%)
100	14.7	16.0	9.1	9.2	7.5	8.3	1004	685	0
0	15.7	16.1	9.1	9.3	7.8	7.6	163	172	0

COMMENTS:

- Arrival temperature of 5.0 °C.
- The sample did not contain suspended particles.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism:

Oncorhynchus mykiss

Toxicant:

Phenol

Fish Batch No.:

10-13

Reference Toxicant Date:

November 22 - 26, 2010

LC₅₀ Value:

1.1 mg/L

95% Confidence Limits:

1.0 - 1.2 mg/L

Historic Mean ± 2 SD (Warning Limits):

 $1.1 \pm 0.1 \, \text{mg/L}$

Performed by: Michelle Pye/Jill Wheaton/Johann Pickett

Technical Reviewer

Print Namo/Signature

Senior Reviewer:

(Print Name/Signature)

Date:

Dec 21, 2013

December 20, 2010 Attention: Dave McColl

Page 4 of 8

Reference: Toxicology Testing Results

SAMPLE

JW Lab Refer.No.:

B-1922-09

Company:

CRA

Sample Material:

PLCS

Sampling Method:

Not provided

Sample Condition:

Received in acceptable condition December 13, 2010; 3:30 pm

Collected:

Collected By:

Brain Luffman

SAMPLE CHARACTERIZATION

Received (Date and Time):

December 14, 2010; 8:30 am

Volume:

2 x 20 L

Temperature:

14.0 °C

Dissolved Oxygen: pH:

9.4 mg/L 7.6 pH units

Conductivity:

938 μS/cm

Colour:

Cloudy, yellow

Odour:

None

Storage:

0 Hours @ 4.0 ± 2.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source:

St. John's Dechlorinated

Dissolved Oxygen:

 $9.6 \pm 0.3 \, \text{mg/L}$

Conductivity:

 $156 \pm 5 \mu S/cm$

Hardness:

 $28 \pm 6 \text{ mg/L}$

:Ha

 7.5 ± 0.3 pH units

Date Revised:

December 1, 2010

TEST CONDITIONS

Started (Date and Time):

December 14, 2010; 11:45 am

Ended (Date and Time):

December 18, 2010; 11:45 am

Type of Test:

96 hour static LT₅₀ (Pass/Fail) 20 Litres

Volume of Test Solutions: Photoperiod:

16 Light/08 Dark

Light Intensity:

355 Lux

Aeration Rate:

 $6.5 \pm 1.0 \text{ mL/min.L}^{-1}$

Preaeration Time:

30 mins

Test Temperature:

15 ± 1 °C

Duration:

96 hours

TEST ORGANISM

Species:

Rainbow Trout (Oncorhynchus mykiss)

Source:

Rainbow Springs Hatchery

Batch Number:

10-13

Number per Tank:

10

% Mortality:

0% (7 days prior to testing)

Mean Fork Length (cm):

Range (cm):

3.2 - 4.6

Job: 10529.

Report No.: 03695

Mean Total Weight (g):

 4.1 ± 0.5

Range (g):

0.5 - 1.1

Loading Density:

 0.8 ± 0.3 0.4 g/L

December 20, 2010 Attention: Dave McColl

Page 5 of 8

Reference: Toxicology Testing Results

TEST RESULTS

JW Lab Refer No.:

B-1922-09

Sample Material: Collection Date:

PLCS December 13, 2010; 3:30 pm

Protocol:

EPS 1/RM/13

Test Type:

LT₅₀ (Pass/Fail)

LT₅₀ value (static, acute):

> 96 hrs

95% Confidence Intervals:

N/A

Effluent	Tem	ıp(°C)	D.O.	(mg/L)	pH (units)	Cond.	(μ s/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	lnit.	Final	lnit.	Final	(%)
100	14.2	16.1	9.3	9.2	7.5	8.2	936	669	0
0	15.4	16.0	9.1	9.1	7.8	7.6	163	172	0

COMMENTS:

- Arrival temperature of 5.0 °C.
- The sample did not contain suspended particles.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment.
 (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism:

Oncorhynchus mykiss

Toxicant:

Phenol

Fish Batch No.:

10-13

Reference Toxicant Date:

November 22 - 26, 2010

LC₅₀ Value:

1.1 mg/L

95% Confidence Limits:

1.0 - 1.2 mg/L

Historic Mean ± 2 SD (Warning Limits):

 $1.1 \pm 0.1 \, \text{mg/L}$

Performed by: Michelle Pye/Johann Pickett/Jill Wheaton

Technical Reviewer

THE FORCE

Senior Reviewer:

(Print Name/Signature)

Date

1 Lec 21, 2010

Job: 10529.

Report No.: 03695

December 20, 2010 Attention: Dave McColl

Page 6 of 8

Reference: Toxicology Testing Results

Job: 10529.

Report No.: 03695

ATTACHMENT A

Bench Data Sheet (s)

	The second secon		(6.27)	T	1771	B I II		er eng eng mengen anggan dagan	, ,			er van van de gregor	neritarione de la companya del companya del companya de la company	AND THE STATE OF T	and a second of the second of
			12	Labor	atory Div	19 14 Envi Vision	10 HI H.e1	nt Limited		<u> </u>	JWEL Lab 1				
			L		y 2211	131011		T50 Fish B	iooooo		Date:	May	30, 2003		
	CI		Dave N		oad PO E	30x 8353	-	Sample Client #	ID#	B-1921-0 12151052	9 .)	
			A1N 3 (709) 3 (709) 3	64-5353 64-5368										Light Inten Ammonia	' /
Start Date Finish Date Date Colle Date Rece	Material: sa e: 121416 te: 1218 ected: 121 eived: 12	0 10 310 2141	ιτ ιτ C	ime Collec	cted: 3	30	Test Sour Test	eration Time: Org - Batch #: ce: RSH Start Date: 1 2 Start Time: 11	.1410			Col Odd Sus	rity (1): c(ou our (1): yello our (1): no op. Part. (1): no er (1): Collect	d4 	finan Arrival ten
Aeration R	Rate: 6.5 ± m	nL/min.	L-1	Conc: Salinity	100	ppt ppt		201 used	Conc		/ .			Volume: 2x25	
Time	Day	Monit By	HR.	Mort #	Temp (°C)	DO (mg/l)	pН	Cond (µS/cm)	Mort #	Temp (°C)	DO (mg/l)	рН	Cond (uS/cm)		surements
11:15	121410	JP.	INT	7 1 1 1	14.4	9.3	7.6	1001					,	Fork Length (cm)	Wet Weight (g)
11:45		<u> </u>	0		14.7	9.1	75	1004		15.7	9.1	7.8	163	5. O	1.3
					·							,	163	4.5	1.0
				ļ										4.2	0.8
8:40	121510	10	24	-	15.0	8.9	8.3	967	_	15.1	9.1	7.8	163	4.6	1.1
9:70	1216,2	N	48		12,15	9.1	8.0	962	_	15.3	9,2	7.7	165	4.1	0.7
9:15	121710	10	M ⁷²		15.3	92	8.1	965	_	15.2		29	163	4.9	0.7
11:45	121810	TW	96	_	0.91	9.9	83	685		16.1	9.3	76	177 	43	0.7
Fish Bel	haviour C	omme	ents	0000	ልነ <u></u> ናክ ር	uù e								35	65
				CUSIC Y	U1511		· ier	טו	COM	s Dizu	ani	~ ~10	7117 <i>3</i> 1	3.6	0.4
													·*	47	1.0
Pretreatme	ent: Com	posite	Te	emp	Othe	er 📗			Clarity (F): Uou	dy			Mean -	
				ater [(F): Your	•			4.27 0.47	083 028
Comments					<u> </u>					F): no				Loading Density (g/l	
Comments	LF31/F	WI / 13	Second	i Edition -	December	2000 .				art. (F): ೧	0			LT50: 796his	

and the second of the second o	entantidade e l'escription revenue per de conservation de la conservat	MATERIAL STATES				The state of the s		and reconstructive eventual constructive and an executive constructive			an an a the last of the company	orner dere den en e		Compression of the second seco	data da il digra da interiore e di sense e committà de specifica que l	
			W	Jacqu	es Whitf	ord Envi	ro umei	nt Limited		J	WELLsb Fo	aana: Bio-	0011			
				Lraoor	atory Div	ision)ade;	May	30, 2003			
							L	.T50 Fish Bi	ioassa	y Data Sh	eet				_	
	Ci	lient: (CRA Dave M	[cColl				Sample		B-1922-09						
					oad PO B	ox 8353		Client #		121510529)					
		A (*	•							$(/\nu)$					Light Intens Ammonia (sity: 355 lux (Init.):
Sample A	fotorial:														Ammonia (i	Fin.): /
	Material; ⊸ea e: 12141⊂		PLC	.'5			11	eration Time:	30	min.		Cla	rity (1): cloud	4		
1	te: 1218							Org - Batch #:	10-13			Col	our (1): Yello	نر		
ì	ected: 121		Tir	ne Collec	ted: 3.3	3 0	-11	ce: RSH					our (I): ^O			
	eived: /2	-			ved: 8:			Start Date: 17					p. Part. (I): 心			
	Rate: 6.5 ± m				100		1650	Start Time: /	1.45			Oth	er (1): Collect	d by 1	3. Luffma	in Arrival temp
, teration i	(ale. 0.5 ± 11	iDillili. L	1	Conc: Salinity			2	iol used	. Conc	O /				Volume:	2×25	Litres
		ī	1	Jainity	0.5	5 PP F			Salini	ty:				Storage:	Temperæ	d at 1511°C 11
Time	Day	Monit By	HR.	Mort #	Temp (°C)	DO (mg/l)	pН	Cond (µS/cm)	Mort #	Temp (°C)	DO (mg/l)	рН	Cond (uS/cm)		Field Ba	
11:15	121410	N	INT		14.0	9.4	7.6	938					,	Forkle	ength (cm)	surements Wet Weight (g)
11:45	L	9	0	_	14.2	9.3	7.5	936	-	15.4	9,1	7.8	163	4.4		O.9
												1.0	140	4.4		1.1
														3.4	•	
8:42	121510	10	24	-	15.0	8.9	8.4	866		15.0	8.5*	7.9	164	<u> </u>		0.3
9:45	12160	M	48		15.2	9,1	8.2		_	15.0	8.9	7.8		1		0.7
9:17	121710		72		176	92	8.1	872	-	17.0	9.2	7.5		4.6		1.0
11:45	121810	T	96		16.1	4.9							163	36		O·5
							8.7	669		16.0	9.1	7.6	172	4.4		0.8
LISU RE	haviour C	omme	nts	age	fish o	ans 6	- 96 h	x5.	لفن	eish	au	4 6	96hrs.	4.5	<u> </u>	0.9
														4.3	i	0.8
Dest	- 1 0:								* aera	tion was	almost	off ir	egdjusted.	3.5		05
Pretreatm	ent: Com	posite	Te	mp	Othe	er 🔳			Clarity (F): (9 0	12	1510	Ur.		Mean -	+/- SD

Clarity (F): Cloudy

Colour (F): Jeleto

Susp. Part. (F): nO*

Odour (F): no

Other (F):

Dissolved Water Oxygen Hardness

Comments EPS1 / RM / 13 Second Edition - December 2000

Loading Density (g/l): 038

LT50: 796915

6.75 0.75

APPENDIX E

PREVIOUS MONITORING DATA

HISTORICAL STATIC GROUNDWATER LEVELS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Location	Ground Surface Elevation	Length of Stick-up	TOC Elevation						Groun	ıdwater I	Depth (m	bToC)				
Location	Elevation	Stick-up	Elevation	Mar	Jul	Sep	Oct	Jun	Jul	Oct	Dec	Oct	Sep	Mar	Jul	Dec
	(masl)	(m)	(masl)		20	04			20	06		2007	2008	2009	20	10
PLCS	15.960		15.960												0.55	0.73
SLCS	15.955		15.955												0.52	0.713
MW 93-1	16.300	1.100	17.400											1.975	1.703	1.915
MW 93-1A	16.310	1.400	17.710	0.39	1.88	0.41	0.16	2.06	1.68	2.11	1.84	1.67	2.17	2.50	1.638	1.636
MW 93-2	14.290	1.100	15.390	0.67	0.56	0.58	0.28	1.85	2.16	2.13		1.72	2.18	2.20	2.084	2.147
MW 93-2A	14.310	1.100	15.410											1.84	1.456	1.375
MW 93-3*														1.335		
MW 93-3A*				2.37	Dry		1.20	Dry	3.21	3.37		3.32	Dry	3.52		
MW 10-1	15.790	0.846	16.636												3.015	3.254
MW 10-1A	15.890	0.854	16.744												3.084	3.279

Location	Ground Surface Elevation	Length of Stick-up	TOC Elevation						Groun	dwater E	levation	(masl)				
Location	Elevation	Stick-up	Elevation	Mar	Jul	Sep	Oct	Jun	Jul	Oct	Dec	Oct	Sep	Mar	Jul	Dec
	(masl)	(m)	(masl)		20	04			20	06		2007	2008	2009	20	10
PLCS	15.960		15.960												15.410	15.230
SLCS	15.955		15.955												15.435	15.242
MW 93-1	16.300	1.100	17.400											15.425	15.697	15.485
MW 93-1A	16.310	1.400	17.710	17.320	15.830	17.300	17.550	15.650	16.030	15.600	15.870	16.040	15.540	15.210	16.072	16.074
MW 93-2	14.290	1.100	15.390	14.720	14.830	14.810	15.110	13.540	13.230	13.260		13.670	13.210	13.190	13.306	13.243
MW 93-2A	14.310	1.100	15.410											13.570	13.954	14.035
MW 93-3*																
MW 93-3A*			15.900	13.530	Dry		14.700	Dry	12.690	12.530		12.580	Dry	12.380		
MW 10-1	15.790	0.846	16.636												13.621	13.382
MW 10-1A	15.890	0.854	16.744												13.660	13.465

Notes:

PLCS = Primary Leachate Collection System Valve Chamber m = Metres masl = Metres Above Sea Level
SLCS = Secondary Leachate Collection System Valve Chamber TOC = Top of Casing mbTOC = Metres Below Top of Casing

MW = Monitor Well

* = Monitor Well Decommissioned in July 2010

HISTORICAL GROUNDWATER ANALYTICAL DATA - BTEX/mTPH 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Sample				Ethyl-			Tota	l Petroleum	Hydrocarbons (Tl	PH)
Location	Date Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
MW 93-1	Aug 19, 2009 ¹	<	<	<	<	<	<	~	<	-
1414 55-1	Jul 16, 2010	v	<	<	<	<	<	<	<	=
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ²	<(0.05) ²	<(0.05) ²	<(0.15) ²	-
MW 93-1A	Aug 19, 2009	<	<	<	<	<	<	<	<	-
11111 30 111	Jul 16, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ²	<(0.05) ²	<(0.05) ²	<(0.15) ²	-
	Aug 19, 2009	v	<	<	<	<	<	<	<	=
MW 93-2	Jul 16, 2010	<	<	<	<	<	<	<	<	-
10100 93-2	Jul 16, 2010 ³	-	-	-	-	-	<	<	-	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010 ³	-	-	-	-	-	<	<	-	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
MW 93-2A	Jul 16, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
MW 10-1	Jul 16, 2010 ¹	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
MW 10-1A	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	12/13/2010 ¹	<	<	<	<	<	<	<	<	-
R	DL	0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
									20	Gasoline
Atlantic RBCA	A Tier I RBSLs*	6.9	20	20	20	na	na	na	20	Diesel / #2 Fuel Oil
									20	# 6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

- 1. Field Duplicate
- 2. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report
- 3. Lab Duplicate
- * Atlantic Risk-Based Corrective Action (RBCA) Tier I Risk-Based Screening Level (RBSL) Table values {commercial/non-potable/coarse grained soil}.

RDL = Reportable Detection Limit

< = Parameter below detection limit

- = Not analysed

THH = Total Purgeable Hydrocarbons

TEXH = Total Extractable Hydrocarbons

FO = Fuel Oil

TPH = Total Petroleum Hydrocarbons

LO = Lube Oil

Modified TPH = mTPH = TEXH + TPuH

TPH = mTPH + BTEX

W = Weathered

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Posterior	TT. *f.			MW 93-1				MW 9	93-1A			MW	93-2			MW 93-2A			MW	7 10-1		MW	10-1A	npr	
Parameter	Units		19-Aug-09 Field Dup		16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	19-Aug-09	16-Jul-10	13-Dec-10	16-Jul-10	16-Jul-10 DUP-01	13-Dec-10	13-Dec-10 DUP-02	16-Jul-10	13-Dec-10	RDL	Criteria*
1-Methylnaphthalene	ug/L	<	<	<	<	<	< 0.03	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	0.05	13,000
2-Methylnaphthalene	ug/L	<	<	<	<	<	< 0.03	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	0.05	13,000
Acenaphthene	ug/L	<	<	<	<	<	< 0.04	<	<	<	< 0.04	<	<	<	<	<	<	<	<	<	<	<	<	0.01	1,700
Acenaphthylene	ug/L	<	<	<	<	<	< 0.03	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	0.01	2,000
Acridine	ug/L	-	-	-	<	<	-	-	<	<	-	-	<	<	-	<	<	<	<	<	<	<	<	0.05	-
Anthracene	ug/L	<	<	<	<	<	< 0.01	<	<	<	< 0.01	<	<	<	<	<	<	<	<	<	<	<	<	0.01	12
Benzo(a)anthracene	ug/L	<	<	<	<	<	< 0.01	<	<	<	< 0.01	<	<	<	<	<	<	<	<	<	<	<	<	0.01	5
Benzo(a)pyrene	ug/L	<	0.01	<	<	<	< 0.01	<	<	<	< 0.01	<	<	<	<	<	<	<	<	<	<	<	<	0.01	1.9
Benzo(b)fluoranthene	ug/L	<	0.02	<	<	<	< 0.05	<	<	<	< 0.05	<	<	<	<	<	<	<	<	<	<	<	<	0.01	7
Benzo(g,h,i)perylene	ug/L	<	0.02	<	<	<	< 0.03	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.2
Benzo(k)fluoranthene	ug/L	<	0.02	<	<	<	< 0.05	<	<	<	< 0.05	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.4
Chrysene	ug/L	<	<	<	<	<	< 0.04	<	<	<	< 0.04	<	<	<	<	<	<	<	<	<	<	<	<	0.01	3
Dibenz(a,h)anthracene	ug/L	<	0.03	<	<	<	-	<	<	<	_	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.25
Fluoranthene	ug/L	<	<	<	<	<	< 0.03	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	0.01	130
Fluorene	ug/L	<	<	<	<	<	< 0.03	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	<	<	<	0.01	290
Indeno(1,2,3-cd)pyrene	ug/L	<	0.02	<	<	<	< 0.05	<	<	<	< 0.05	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.27
Naphthalene	ug/L	<	<	<	<	<	-	<	<	<	-	<	<	<	<	<	<	<	<	<	<	<	<	0.20	5,900
Perylene	ug/L	<	<	<	<	<	-	<	<	<	-	<	<	<	<	<	<	<	<	<	0.04	<	<	0.01	-
Phenanthrene	ug/L	0.01	<	<	<	<	< 0.04	0.01	<	<	< 0.04	0.01	<	<	0.01	<	<	<	<	<	<	<	<	0.01	63
Pyrene	ug/L	<	<	<	<	<	< 0.01	<	<	<	< 0.01	<	<	<	<	<	<	<	<	<	<	<	<	0.01	40
Quinoline	ug/L	-	-	-	<	<	-	-	<	<	-	-	<	<	-	<	<	<	<	<	<	<	<	0.05	-

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

0.0 = above criteria

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

GROUNDWATER ANALYTICAL DATA - PCBs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Sample Location	Date Sampled	Total PCBs (ug/L)
	Aug 19, 2009	<
	Aug 19, 2009	<1
MW 93-1	Aug 19, 2009	<2
	Jul 16, 2010	<
	Dec 13, 2010	<
	AMEC 2008	< 0.04
MW 93-1A	Aug 19, 2009	0.1
WW 95-1A	Jul 16, 2010	<
	Dec 13, 2010	<
	AMEC 2008	< 0.04
MW 93-2	Aug 19, 2009	<
14144 33-2	Jul 16, 2010	<
	Dec 13, 2010	<
	Aug 19, 2009	0.11
MW 93-2A	Jul 16, 2010	<
	Dec 13, 2010	<
	Jul 16, 2010	<
MW 10-1	Jul 16, 2010	<2
	Dec 13, 2010	<
	Jul 16, 2010	<
MW 10-1A	Dec 13, 2010	<
	Dec 13, 2010	<2
RDL		0.05
Criteria [*] - Onta	rio MOE	0.2

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

- 1. Lab Duplicate
- 2. Field Duplicate
- * Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Ground Water Condition

MW = Monitor Well

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

RDL = Reportable Detection Limit

< = Parameter below detection limit

0.0 = above criteria

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

trans-1,2-Dichloroethylene		COME DI CHANCE, NL																								
Part					MW 93-1				MW	93-1A			MW	93-2			MW 93-2A			MW	7 10-1		MW	10-1A	RDL	
Sometisticone	Parameter	Units	19-Aug-09			16-Jul-10	13-Dec-10		19-Aug-09	16-Jul-10	13-Dec-10		19-Aug-09	16-Jul-10	13-Dec-10	19-Aug-09	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	,		16-Jul-10	13-Dec-10		Criteria*
Bomondom 90/L	Benzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	1,900
Semination March March	Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
Carbon terzachieride	Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	840
Chloresharee yy_1	Bromomethane	ug/L	<	<	<	<	<	<	<	<	<	'	<	<	<	<	<	<	'	~	<	<	<	<	3.00	3.7
Chlorethane	Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	>	<	<	1.00	17
Chloredram yy	Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	500
Chlorenthame My/L C C C C C C C C C	Chloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8.00	-
Dibromchicomethane	Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	>	<	<	1.00	430
1.2-Dichlorobenzene	Chloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8.00	-
13-Dichlorobenzene	Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	7,600
	1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1.1-Dichloroethylene	1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	9,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
trans-1,2-Dichloroethylene	1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	70
cis-1,3-Dichloropropene ug/L	trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	100
Trans-1,3-Dichloropropene ug/L	1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	4.00	<	2.00	1.00	9.3
Ethylbenzene ug/L	cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	3.8
	trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	<	1.00	1.00	3.8
o-Xylene	Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	28,000
P+m-Xylene	Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3.00	50,000
Styrene ug/L	o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,600
Tetrachloroethylene ug/L </th <th>p+m-Xylene</th> <th>ug/L</th> <th><</th> <th>2.00</th> <th>5,600</th>	p+m-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	5,600
1,1,2,2-Tetrachloroethane ug/L 1.00 22 Toluene ug/L <t< th=""><th>Styrene</th><th>ug/L</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th>1.00</th><th>940</th></t<>	Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	940
Toluene	Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5
Trichloroethylene ug/L <th>1,1,2,2-Tetrachloroethane</th> <th>ug/L</th> <th><</th> <th>1.00</th> <th>22</th>	1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	22
1,1,1-Trichloroethane ug/L 1.00 200 1,1,2-Trichloroethane ug/L 1.00 200 1,1,2-Trichloroethane ug/L 1.00 16,000 Trichlorofluoromethane (FREON 11) ug/L <t< th=""><th>Toluene</th><th>ug/L</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th><</th><th>1.00</th><th>5,900</th></t<>	Toluene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,900
1,1,2-Trichloroethane	Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50
1,1,2-Trichloroethane ug/L 1,00 16,000 Trichlorofluoromethane (FREON 11) ug/L <th>1,1,1-Trichloroethane</th> <th>ug/L</th> <th><</th> <th>1.00</th> <th>200</th>	1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	200
	1,1,2-Trichloroethane		<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	16,000
Vinyl Chloride ug/L < < < < < < < < <		ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	8.00	-
	Vinyl Chloride	ug/L	<	<	<	<	<	0.2	<	<	<	0.2	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.5

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample
-= Not analysed/No criteria

< = Parameter below detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

DUP-02 = Field Duplicate of MW 10-1, First Sampling Event

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

			MW	93-1			MW	93-1A				MW 93-2					MW 93-2A				MW	7 10-1		MW	10-1A		
Parameter	Units	19-Aug-09	19-Aug-09 Field Dup	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	19-Aug-09 Lab Dup	16-Jul-10	13-Dec-10	19-Aug-09	19-Aug-09 Lab Dup	16-Jul-10	16-Jul-10 Lab Dup	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10 DUP-01	13-Dec-10 DUP-02	16-Jul-10	13-Dec-10		Criteria*
Anion Sum	me/L	6.10	7.22	5.87	5.52	-	7.22	7.33	7.46	-	6.90	-	6.30	6.58	2.69	-	6.43	-	1.31	3.87	2.63	3.89	2.70	3.86	3.08	N/A	- 1
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	236.0	292.0	229.0	210.0	-	285.0	293.0	297.0	-	232.0	-	205.0	219.0	62.0	-	212.0	-	14.0	94.0	92.0	96.0	95.0	94.0	114.0	1.00	- 1
Calculated TDS	mg/L	338.0	375.0	313.0	313.0	265.0	447.0	390.0	401.0	331.0	380.0	-	346.0	368.0	184.0	-	351.0	-	87.0	215.0	147.0	217.0	149.0	215.0	171.0	1.00	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.00	3.00	3.00	2.00	-	3.00	3.00	2.00	-	1.00	-	1.00	1.00	<	-	1.00	-	<	<	<	<	<	<	<	1.00	-
Cation Sum	me/L	6.60	6.77	5.62	5.90	-	9.57	7.02	7.19	-	6.50	-	5.66	6.19	3.43	-	5.70	-	1.15	3.60	2.55	3.66	2.57	3.61	3.08	N/A	-
Hardness (CaCO3)	mg/L	160	160	120	120	205	210	170	170	245	270	-	240	250	120	-	240	-	31	100	110	100	110	100	140	1.00	- 1
Ion Balance (% Difference)	%	4.00	3.22	2.18	3.33	-	14.00	2.16	1.84	-	2.60	-	5.35	3.05	12.10	-	`	-	6.50	3.61	1.54	3.05	2.47	3.35	0.00	N/A	- 1
Langelier Index (@ 20C)	N/A	0.50	0.62	0.47	0.38	-	0.70	0.62	0.61	-	0.50	-	0.53	0.54	-1.51	-	0.48	-	-3.48	-0.23	-0.79	-0.31	-0.68	-0.36	-0.18	N/A	- 1
Langelier Index (@ 4C)	N/A	0.30	0.37	0.22	0.13	-	0.45	0.37	0.36	-	0.30	-	0.28	0.29	-1.76	-	0.24	-	-3.73	-0.48	-1.05	-0.56	-0.93	-0.61	-0.43	N/A	- 1
Nitrate (N)	mg/L	<	<	<	< 0.05	-	<	<	< 0.05	-	<	-	<	< 0.05	<	-	<	-	0.15	<	0.24	<	0.25	<	0.26	0.05	-
Saturation pH (@ 20C)	N/A	7.50	7.41	7.64	7.64	-	7.31	7.37	7.32	-	7.20	-	7.28	7.20	8.06	-	7.27	-	9.25	7.93	7.79	7.91	7.77	7.92	7.64	N/A	-
Saturation pH (@ 4C)	N/A	7.80	7.66	7.89	7.89	-	7.55	7.62	7.57	-	7.40	-	7.53	7.45	8.31	-	7.52	-	9.50	8.18	8.05	8.16	8.02	8.17	7.89	N/A	- 1
Total Alkalinity (Total as CaCO3)	mg/L	240	300	230	210	290	290	300	300	205	2,320	-	210	220	62	-	210	-	14	95	92	96	96	95	110	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	5.00	-
Dissolved Chloride (Cl)	mg/L	36	35	19	15	11	12	11	11	24	24	-	23	21	21	68	23	-	14	56	12	56	12	56	14	1	-
Colour	TCU	<	<	<	<5	-	<	<	< 5	-	<	-	<	<5	6.00	21.00	<	-	79.00	10.00	9.00	6.00	13.00	7.00	5.00	5.00	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	-
Nitrate + Nitrite	mg/L	<	<	<	<	< 0.05	<	<	<	< 0.05	<	-	<	<	<	5.00	<	-	<	<	<	<	<	<	<	0.05	-
Nitrite (N)	mg/L	<	<	<	<	< 0.015	<	<	<	< 0.015	<	-	<	<	<	<	<	-	<	<	<	<	<	<	<	0.01	2.00
Nitrogen (Ammonia Nitrogen)	mg/L	0.10	<	<	< 0.05	0.02	<	<	< 0.05	< 0.01	<	<	<	< 0.05	0.24	<	<	-	0.35	0.14	< 0.05	0.14	< 0.05	0.15	0.09	0.05	-
Total Organic Carbon (C)	mg/L	1.20	1.00	2.10	0.90	2.00	<	<5(1)	<5(1)	2.00	0.50	0.90	1.50	1.30	6.20	-	1.30	-	16.00	8(1)	33.00	8(1)	18.00	8(1)	2.30	0.50	- 1
Orthophosphate (P)	mg/L	<	<	<	< 0.01	-	<	<	0.04	-	<	-	<	< 0.01	<	-	<	-	< 0.01	<	< 0.01	<	< 0.01	<	< 0.01	0.01	- 1
рН	pН	8.00	8.03	8.11	8.02	8.02	8.00	7.99	7.93	7.50	7.70	-	7.81	7.74	6.55	<	7.75	7.83	5.77	7.70	7.00	7.60	7.09	7.56	7.46	N/A	- 1
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	26.00
Reactive Silica (SiO2)	mg/L	9.90	10.00	7.60	7.60	-	5.00	7.10	6.80	-	19.00	-	18.00	19.00	12.00	-	18.00	-	6.40	7.00	6.20	7.00	6.00	7.10	7.60	0.50	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	2	16	33	42	-	55	53	56	-	73	-	74	76	41	12	74	-	31	18	21	19	21	19	19	2	
Sulphide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	0.02	-
Turbidity	NTU	0.5	1.3	61.0	34.0	-	350.0	300.0	470.0	-	13.0	-	5.4	13.0	84.0	40.0	3.2	-	100.0	640.0	>1000	570.0	540.0	520.0	110.0	0.1	-
Conductivity	uS/cm	580	580	520	500	511	610	630	640	549	560	-	570	580	260	-	570	570	140	380	250	380	260	380	300	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample - = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

(1) = Elevated detection limit due to matrix interference

HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL

COME BY CHANCE, NL

n .	** **		MW	93-1				MW 93-1A				MW	93-2			MW 93-2A			MW	10-1		MW	10-1A	l nov	<i>.</i>
Parameter	Units	19-Aug-09	19-Aug-09 Field Dup	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	16-Jul-10 Lab Dup	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	19-Aug-09	16-Jul-10	13-Dec-10	16-Jul-10	13-Dec-10	16-Jul-10 DUP-01	13-Dec-10 DUP-02	16-Jul-10	13-Dec-10	KDL	Criteria*
Aluminum (Al)	ug/L	100	120	37	17	42,000	13,000	15	15	31	484	460	9	<	630	<	150	200	38	160	36	100	11	5.0	-
Antimony (Sb)	ug/L	<	<	<	<	<1	<	<	<	<	<1	<	<	<	<	<	<	1	<	1	<	1	<	1.0	16,000
Arsenic (As)	ug/L	<	<	<	<	36	7	<	<	<	3	2	2	2	<	2	<	<	<	<	<	<	<	1.0	480
Barium (Ba)	ug/L	130	150	88	70	426	240	79	75	73	131	180	170	160	69	180	39	100	36	110	38	110	62	1.0	23,000
Beryllium (Be)	ug/L	<	<	<	<	2	<	<	<	<	<0.1	~	<	<	<	<	<	<	<	<	<	<	<	1.0	53
Bismuth (Bi)	ug/L	<	<	<	<	-	<	<	<	<	<0.5	~	<	<	<	<	<	<	<	<	<	<	<	2.0	-
Boron (B)	ug/L	120	120	100	99	-	58	56	56	57	-	1100	980	1,100	440.0	1,000	24	45	9	38	9	42	13	5.0	50,000
Cadmium (Cd)	ug/L	0.40	<	0.02	0.05	3	<	0.03	0.03	0.07	-	<	0.15	0.10	11	0.15	3.50	0.03	<	0.03	<	0.02	0.03	0.0	11
Calcium (Ca)	ug/L	-	-	26,000	29,000	-	-	40,000	39,000	45,000	-	-	69,000	80,000	-	69,000	9,000	31,000	41,000	32,000	42,000	31,000	48,000	100	-
Chromium (Cr)	ug/L	<	<	<	<	54	39	<	<	<	1	<	<	<	<	<	<	<	<	<	<	<	<	1.0	$2000/110^{(1)}$
Cobalt (Co)	ug/L	<	<	<	<	110	170	0.7	0.8	0.4	1	<	<	0.4	1	<	1.4	2.3	1.4	2.4	1.4	2.5	3.3	0.4	100
Copper (Cu)	ug/L	6	3	<	<	370	170	2	3	<	8	5	<	<	6	<	<	5	9	5	9	4	<	2.0	23
Iron (Fe)	ug/L	670	550	<	<	370	37,000	<	<	<	1,300	980	<	<	9900	<	1,900	120	50	140	59	82	<	50	-
Lead (Pb)	ug/L	5	1	<	<	45	17	<	<	<	5	2	<	<	6.9	<	0.8	<	<	<	<	<	<	1	32
Magnesium (Mg)	ug/L	-	-	14,000	12,000	-		17,000	17,000	14,000	-	-	16,000	13,000		16,000	2,200	5,800	2,300	5,900	2,300	5,900	3,900	100	-
Manganese (Mn)	ug/L	110	120	120	81	2,620	1200	160	150	57	15,300	1200	880	950	4300	890	4,000	390	190	390	170	400	380	2.0	-
Molybdenum (Mo)	ug/L	6	6	20	18	20	11	15	15	14	2	v	<	<	<	<	<	16	3	16	3	14	5	2.0	7,300
Nickel (Ni)	ug/L	6	<	<	<	154	87	<	<	<	1	<	<	<	<	<	<	6	6	6	6	5	6	2.0	1,600
Phosphorus (P)	ug/L	-	-	<	<	-	-	<	<	130	-	-	<	150	-	<	<	<	150	<	<	<	<	100	-
Potassium (K)	ug/L	-	-	1,900	2,000	-	-	2,500	2,400	2,700	-	-	1,200	1,400	-	1,200	980	6,400	1,100	6,400	980	6,400	1,400	100	-
Selenium (Se)	ug/L	<	<	<	<	<1	<	<	<	<	1	<	<	<	<	<	<	<	<	<	<	<	<	1.0	50
Silver (Ag)	ug/L	<	<	<	<	1	<	<	<	<	-	<	<	<	<	<	<	<	<	<	<	<	<	0.1	1
Strontium (Sr)	ug/L	250	260	230	220	-	300	300	290	280	-	230	240	230	100	240	41	98	85	99	87	99	100	2.0	-
Thallium (Tl)	ug/L	<	<	<	<	-	-	<	<	<	-	<	<	<	<	<	<	<	<	<	<	<	<	0.1	400
Tin (Sn)	ug/L	<	<	<	<	-	<	<	<	<	-	<	<	<	<	<	<	<	<	<	<	<	<	2.0	-
Titanium (Ti)	ug/L	3	3	<	<	-	720	<	<	2	-	21	<	<	20	<	2	3	<	3	<	2	<	2.0	-
Uranium (U)	ug/L	0.2	0.2	0.3	0.2	-	6	2.9	2.8	2.8	-	0	0.3	0.2	0.3	0.3	<	0.4	<	0.4	<	0.4	0.3	0.1	-
Vanadium (V)	ug/L	<	<	<	<	155	28	<	<	<	2	<	<	<	4	<	<	<	<	<	<	<	<	2.0	200
Zinc (Zn)	ug/L	360	32	10	10	443	250	< 5	12	<5	33	41	19	18	1,700	17	1,300	5	11	6	11	5	10	5.0	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

0.0 = above criteria

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

(1) Criteria for Total Chromium = 2000 ug/L, Criteria for Chromium (VI) = 110 ug/L

HISTORICAL SURFACE WATER ANALYTICAL DATA - BTEX/MTPH 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				Ethyl-			Tota	al Petroleun	n Hydrocarbons (TI	PH)
Sample Location	Date Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ¹	<(0.05) ¹	<(0.05) ¹	<(0.15) ¹	-
SURFACE UP	Aug 19, 2009	<	<	<	<	<	<	<	<	-
SORT MEE OF	Jul 16, 2010	<	~	~	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ¹	<(0.05) ¹	<(0.05) ¹	<(0.15) ¹	-
SURACE DOWN	Aug 19, 2009	<	<	<	<	<	<	<	<	-
SORTICE DOVIN	Jul 16, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
2007 CCME Freshwate	or Aguatic Life								-	Gasoline
		4.00	2.00	0.39	-	-	-	-	-	Diesel /#2 Fuel Oil
Guideilin	Guidelines ² 997 BC Guidelines for Protection of Aquatic Life ³								-	#6 Oil
1997 BC Guidelines fo									-	-
		-	-	-	-	1.5	0.5	-	-	-
riquatic El									-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

- 1. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report
- 2. 2007 CCME Freshwater Aquatic Life Guidelines
- 3. BC Ministry of Water, Land and Air Protection Guidelines for Protection of Aquatic Life

RDL = Reportable Detection Limit	TPuH = Total Purgeable Hydrocarbons	G = Gasoline
< = Parameter below detection limit	TExH = Total Extractable Hydrocarbons	FO = Fuel Oil
- = Not analysed	TPH = Total Petroleum Hydrocarbons	LO = Lube Oil
DUP = Laboratory duplicate	Modified TPH = $mTPH$ = $TExH$ + $TPuH$	W = Weathered

0.0 = above criteria TPH = mTPH + BTEX

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - PAHS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units		SURFA	CE UP			SURFAC	E DOWN		RDL	Criteria*
Taranecer	Oints	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	KDL	Citciia
1-Methylnaphthalene	ug/L	< 0.03	<	<	<	< 0.03	<	<	<	0.05	-
2-Methylnaphthalene	ug/L	< 0.03	<	<	<	< 0.03	<	<	<	0.05	-
Acenaphthene	ug/L	< 0.04	<	<	<	< 0.04	<	<	<	0.01	5.8
Acenaphthylene	ug/L	< 0.03	<	<	<	< 0.03	<	<	<	0.01	-
Acridine	ug/L	1	-	<	<			<	<	0.05	4.4
Anthracene	ug/L	< 0.01	<	<	<	< 0.01	<	<	<	0.01	0.012
Benzo(a)anthracene	ug/L	< 0.01	<	<	<	< 0.01	<	<	<	0.01	0.018
Benzo(a)pyrene	ug/L	< 0.01	<	<	<	< 0.01	<	<	<	0.01	0.015
Benzo(b)fluoranthene	ug/L	< 0.05	<	<	<	< 0.05	<	<	<	0.01	-
Benzo(g,h,i)perylene	ug/L	< 0.03	<	<	<	< 0.03	<	~	<	0.01	-
Benzo(k)fluoranthene	ug/L	< 0.05	<	<	<	<0.05	<	<	<	0.01	-
Chrysene	ug/L	< 0.04	<	<	<	< 0.04	<	~	<	0.01	-
Dibenz(a,h)anthracene	ug/L	ı	<	<	<	NA	<	~	<	0.01	-
Fluoranthene	ug/L	< 0.03	<	<	<	< 0.03	<	~	<	0.01	0.04
Fluorene	ug/L	< 0.03	<	<	<	< 0.03	<	<	<	0.01	3.0
Indeno(1,2,3-cd)pyrene	ug/L	< 0.05	<	<	<	< 0.05	<	<	<	0.01	-
Naphthalene	ug/L	1	<	<	<	NA	<	<	<	0.2	1.1
Perylene	ug/L	1	<	0.01	<	NA	<	<	<	0.01	-
Phenanthrene	ug/L	< 0.04	<	<	<	< 0.04	0.01	<	<	0.01	0.4
Pyrene	ug/L	< 0.01	<	<	<	< 0.01	<	<	<	0.01	0.025
Quinoline	ug/L	ı	-	<	<	-	-	<	<	0.05	3.4

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample

- = Not analysed/No criteria
- < = Parameter below detection limit
- <(#) = Parameter below AMEC laboratory detection limit

^{*} Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

HISTORICAL SURFACE WATER ANALYTICAL DATA - PCBs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units		SUR	FACE UP			SURFA	ACE DOWN		RDL	Criteria*
Parameter	Cints	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	KDL	Cincila
Total PCBs	ug/L	< 0.04	0.11	<	<	< 0.04	0.13	<	<	0.05	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit 0.0 = above criteria

SW = Surface Water Sample

< = Parameter below detection limit

< (#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - VOCS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Personatur	Units		SURFA	CE UP			SURFAC	E DOWN		RDL	Criteria*
Parameter	Units	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	KDL	Criteria
Benzene	ug/L	<	<	<	<	<	<	<	<	1	370
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	1	-
Bromoform	ug/L	<	<	~	<	<	<	<	<	1	-
Bromomethane	ug/L	<	<	<	<	<	<	<	<	3	-
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	1	13.3
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	1	1.3
Chloroethane	ug/L	<	<	<	<	<	<	<	<	8	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	1	1.8
Chloromethane	ug/L	<	<	<	<	<	<	<	<	8	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	0.5	0.7
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	1	150
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	1	26
1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	1	100
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	2	-
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	1	-
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	1	90
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<	<	3	98.1
o-Xylene	ug/L	<	<	<	<	<	<	<	<	1	-
p+m-Xylene	ug/L	<	<	<	<	<	<	<	<	2	-
Styrene	ug/L	<	<	<	<	<	<	<	<	1	300
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	1	72
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	1	-
Toluene	ug/L	<	<	<	<	<	<	<	<	1	111
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	1	2.0
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<	<	<	8	21
Vinyl Chloride	ug/L	0.2	<	<	<	0.2	<	<	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

rtable Detection Limit 0.0 = above criteria

HISTORICAL SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

P	TT 14			SURFACE UP					SURFACE DOWN			npr	<i>C</i> '' ' '
Parameter	Units	AMEC 2008	19/08/2009	16-Jul-10	13-Dec-10	13-Dec-10 Lab Dup	AMEC 2008	19/08/2009	16-Jul-10	16-Jul-10 Lab Dup	13-Dec-10	RDL	Criteria*
Anion Sum	me/L	-	4.8	1.14	0.34	-	-	3.78	2.69	-	1.53	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	118	38	6	-	-	150	117	-	12	1	-
Calculated TDS	mg/L	53	267	62	23	-	145	205	140	-	122	1	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	<	<	<	-	-	3	<	-	<	1	-
Cation Sum	me/L	-	4.8	1.05	0.43	-	-	3.8	2.54	-	2.4	N/A	-
Hardness (CaCO3)	mg/L	21.5	100	41	10	-	138	170	110	-	70	1	-
Ion Balance (% Difference)	%	-	0.6	4.11	11.7	-	-	0.26	2.87	-	22.1	N/A	-
Langelier Index (@ 20C)	N/A	-	-0.4	-1.36	-3.49	-	-	0.996	-0.099	-	-2.64	N/A	-
Langelier Index (@ 4C)	N/A	-	-0.7	-1.61	-3.74	-	-	0.746	-0.35	-	-2.89	N/A	-
Nitrate (N)	mg/L	<	<	0.17	<	-	<	<	<	-	2	0.05	13
Saturation pH (@ 20C)	N/A	-	7.8	8.62	10.1	-	-	7.39	7.69	-	9.01	N/A	-
Saturation pH (@ 4C)	N/A	-	8.1	8.87	10.3	-	-	7.64	7.94	-	9.26	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	24	120	39	39	-	136	150	120	-	120	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	-	-	-	5	-
Dissolved Chloride (Cl)	mg/L	8.9	79	5	6	-	3.6	4	1	-	23	1	-
Colour	TCU	-	44	38	49	-	-	23	39	-	120	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	-	-	-	0.002	-
Nitrate + Nitrite	mg/L	-	<	0.17	<	-	-	<	<	-	2	0.05	-
Nitrite (N)	mg/L	< 0.015	<	<	<	-	< 0.015	<	<	-	<	0.01	0.06
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.1	<	<	-	-	<	0.19	-	0.06	0.05	-
Total Organic Carbon (C)	mg/L	9.5	5.7	6	6.4	-	9.2	4.3	5.4	-	18	0.5	-
Orthophosphate (P)	mg/L	-	<	<	<	-	-	<	<	-	<	0.01	-
рН	pН	6.9	7.4	7.26	6.58	-	7.48	8.39	7.59	-	6.37	N/A	6.5 - 9
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	-	-	-	0.001	-
Reactive Silica (SiO2)	mg/L	-	6.3	1.5	1.5	-	-	4	3.1	-	7.4	0.5	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	-	-	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	-	8	11	3	-	-	29	15	-	24	2	-
Sulphide	mg/L	-	-	-	-	-	-	-	-	-	-	0.02	-
Turbidity	NTU	-	2.9	3.8	2.2	2.1	-	5.2	39	37	140	0.1	-
Conductivity	uS/cm	87	470	110	43	-	275	290	240	-	170	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	-	-	-	5	-

Notes

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample

-= Not analysed/No criteria

< = Parameter below detection limit

< (#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - METALS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units		SURFA	ACE UP			SURFAC	E DOWN		RDL	Criteria*
1 arameter	Omts	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	KDL	Cinteria
Aluminum (Al)	ug/L	484	18	108	257	42,000	69	527	5,210	5.0	100 ⁽¹⁾
Antimony (Sb)	ug/L	<	<	<	<	<1	<	<	<	1.0	i
Arsenic (As)	ug/L	3	<	<	<	36	<	1.1	3.3	1.0	5.0
Barium (Ba)	ug/L	131	26	22.3	9.4	426	82	102	289	1.0	i
Beryllium (Be)	ug/L	< 0.1	<	<	<	1.8	<	<	<	1.0	i
Bismuth (Bi)	ug/L	< 0.5	<	<	<	<0.1	<	<	<	2.0	-
Boron (B)	ug/L	-	14	9.4	6.9	-	22	27.1	9.0	5.0	i
Cadmium (Cd)	ug/L	0.273	<	0.03	0.04	2.65	<	0.04	0.23	0.02	0.015/0.036 ⁽²⁾
Calcium (Ca)	ug/L	-	-	12,900	2,960	-	-	40,100	18,300	100	-
Chromium (Cr)	ug/L	1	<	<	<	110	<	<	8.0	1.0	8.9/1.0 ⁽³⁾
Cobalt (Co)	ug/L	1	<	<	<	307	<	0.9	6.7	0.4	-
Copper (Cu)	ug/L	8	<	<	<	370	<	12.7	32.9	2.0	2 ⁽⁴⁾
Iron (Fe)	ug/L	1,300	1,300	289	722	59,000	380	1,820	10,900	50	300
Lead (Pb)	ug/L	5	<	<	<	45	<	1.48	7.64	0.50	1, 2 ⁽⁵⁾
Magnesium (Mg)	ug/L	-	-	2,140	713	-	-	3,320	5,840	100	-
Manganese (Mn)	ug/L	1,260	230	97.9	142.0	2,620	62	481	427	2.0	-
Molybdenum (Mo)	ug/L	2	3.0	<	<	0.09	<	<	<	2.0	73.00
Nickel (Ni)	ug/L	1	<	<	<	2	<	3.0	16.7	2.0	25, 65 ⁽⁶⁾
Phosphorus (P)	ug/L	-	-	<	<	-	-	120	852	100	-
Potassium (K)	ug/L	-	-	588	295	-	-	1,080	4,060	100	-
Selenium (Se)	ug/L	1	<	<	<	<	<	<	<	1.0	1.0
Silver (Ag)	ug/L	< 0.1	<	<	<	0.5	<	<	<	0.1	0.1
Sodium (Na)	ug/L	-	-	4,720	3,680	-	-	4,300	11,500	100	-
Strontium (Sr)	ug/L	-	90	40.7	9.7	-	110	85.4	49.9	2.0	i
Thallium (Tl)	ug/L	1	<	<	<	-	<	<	<	0.1	0.8
Tin (Sn)	ug/L	-	<	<	<	-	<	<	<	2.0	i
Titanium (Ti)	ug/L	1	<	2.1	7.9	-	2.0	17.2	148.0	2.0	-
Uranium (U)	ug/L	-	0.2	<	<	-	0.9	0.38	0.38	0.10	-
Vanadium (V)	ug/L	<2	<	<	<	155	<	<	0.3	2.0	-
Zinc (Zn)	ug/L	33	<	9.2	10.7	443	<	25.2	103	5.0	30
Hardness (CaCO3)	mg/L	21.5	100	41.0	10.0	138	170	110.0	70.0	1.0	-
pH	pН	6.9	7.4	7.26	6.58	7.48	8.39	7.59	6.37	-	6.5 - 9

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SW = Surface Water Sample - = Not analysed/No criteria

< = Parameter below detection limit

0.0 = above criteria

(1) Aluminum guideline = 5 ug/L at pH < 6.5= $100 \text{ ug/L at pH} \ge 6.5$

(2) Cadmium guideline = $10^{[0.86[\log(\text{hardness})]-3.2]}$

(4) Copper guideline = 2 ug/L at [CaCO₃] = 0-120 mg/L

= 3 ug/L at [CaCO₃] = 120-180 mg/L

= 4 ug/L at [CaCO₃] >180 mg/L

(5) Lead guideline = 1 ug/L at [CaCO₃] = 0-60 mg/L

= 2 ug/L at [CaCO₃] = 60-120 mg/L

= 4 ug/L at [CaCO₃] = 120-180 mg/L

= 7 ug/L at [CaCO₃] >180 mg/L

(6) Nickel guideline = 25 ug/L at $[\text{CaCO}_3] = 0.60 \text{ mg/L}$

= 65 ug/L at [CaCO₃] = 60-120 mg/L

= 110 ug/L at [CaCO₃] = 120-180 mg/L

= 150 ug/L at [CaCO₃] >180 mg/L

HISTORICAL LEACHATE ANALYTICAL DATA - BTEX/MTPH 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

C 1 .				Total			Tot	al Petroleu	m Hydrocarbons (T	ГРН)
Sample Location	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
	Aug 19, 2009	<	<	<	<	<	0.08	0.1	0.2	NR
	Aug 19, 2009 ¹	<	<	<	<	<	0.11	0.1	<	NR
	Oct 13, 2009	<	<	<	<	<	0.2	0.1	0.3	WFO
PLCS	Jan 26, 2010	<	<	<	<	<	0.09	<	<	WFO
FLCS	Jul 16, 2010	<	<	<	<	<	<	<	<	=
	Jul 16, 2010 ¹	-	-	-	-	-	<	<	-	
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010 ¹	<	<	<	<	<	-	-	-	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	<(0.05) ²	<(0.05) ²	<(0.05) ²	<(0.15) ²	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
	Oct 13, 2009	<	<	<	<	<	0.14	<	0.1	WFO
SLCS	Jan 26, 2010	<	<	<	<	<	0.11	<	0.1	WFO
	Jan 26, 2010 ³	<	<	<	<	<	0.11	<	0.1	WFO
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010	<	<	<	<	<	0.05	<	<	-
]	RDL	0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
2007 CCME Fa	reshwater Aquatic								-	-
	uidelines ⁴	4.00	2.00	0.39	-	-	-	-	-	-
Zire o									-	-
	Water & Sewer ulations*	-	-	-	-	-	-	-	15	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Schedule A of Environmental Control Water and Sewer Regulations, 2003.

- 1. Lab Duplicate
- 2. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report
- 3. Field Duplicate
- 4. 2007 CCME Freshwater Aquatic Life Guidelines

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit TPuH = Total Purgeable Hydrocarbons G = Gasoline

< = Parameter below detection limit TExH = Total Extractable Hydrocarbons FO = Fuel Oil

- = Not analysed TPH = Total Petroleum Hydrocarbons LO = Lube Oil

0.0 above criteria Modified TPH = mTPH = TEXH + TPuH W = Weathered

TPH = mTPH + BTEX

HISTORICAL LEACHATE ANALYTICAL DATA - PAHs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units			PL	.cs						SLCS				RDL	Crite	eria*
i arameter	Offits	19-Aug-09	13-Oct-09	25-Jan-10	25-Jan-10 Lab Dup	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	13-Oct-09	25-Jan-10	25-Jan-10 Field Dup	16-Jul-10	13-Dec-10	KDL	NL	ССМЕ
1-Methylnaphthalene	ug/L	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	0.05	-	-
2-Methylnaphthalene	ug/L	<	<	<	<	<	<	< 0.03	<	<	<	<	0.22	<	0.05	-	-
Acenaphthene	ug/L	<	0.01	0.01	0.02	<	<	< 0.04	<	<	0.01	<	<	<	0.01	-	5.8
Acenaphthylene	ug/L	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	0.01	-	-
Acridine	ug/L	-	-	-	-	<	<	-					<	<	0.05	-	4.4
Anthracene	ug/L	<	0.05	0.06	0.06	<	0.04	< 0.01	<	0.1	0.06	0.06	<	<	0.01	-	0.012
Benzo(a)anthracene	ug/L	<	0.01	0.02	0.02	~	<	< 0.01	<	0.06	0.02	0.03	<	<	0.01	-	0.018
Benzo(a)pyrene	ug/L	<	<	<	<	~	<	< 0.01	<	<	<	<	<	<	0.01	-	0.015
Benzo(b)fluoranthene	ug/L	<	<	<	<	~	<	< 0.05	<	<	<	<	<	<	0.01	-	-
Benzo(g,h,i)perylene	ug/L	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	0.01	-	-
Benzo(k)fluoranthene	ug/L	<	<	<	<	<	<	< 0.05	<	<	<	<	<	<	0.01	-	-
Chrysene	ug/L	<	0.04	0.03	0.03	<	0.02	< 0.04	<	0.09	0.04	0.04	<	0.01	0.01	-	-
Dibenz(a,h)anthracene	ug/L	<	<	<	<	<	<	-	<	<	<	<	<	<	0.01	-	-
Fluoranthene	ug/L	<	0.05	0.07	0.06	<	0.04	< 0.03	<	0.26	0.11	0.11	0.01	<	0.01	-	0.04
Fluorene	ug/L	<	0.02	0.02	0.02	<	<	< 0.03	<	0.02	<	<	<	<	0.01	-	3.0
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	<	<	< 0.05	<	<	<	<	<	<	0.01	-	-
Naphthalene	ug/L	<	<	<	<	<	<	-	<	<	<	<	<	<	0.2	-	1.1
Perylene	ug/L	<	<	<	<	<	<	-	<	<	<	<	<	<	0.01	-	-
Phenanthrene	ug/L	<	0.17	0.23	0.2	<	0.07	< 0.04	<	0.4	0.13	0.07	0.02	0.01	0.01	-	0.4
Pyrene	ug/L	<	0.36	0.32	0.29	<	0.17	< 0.01	<	1.5	0.55	0.55	0.06	<	0.01	-	0.025
Quinoline	ug/L	<	-	-	-	<	<	-	-	-	-	-	<	<	0.05	-	3.4

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

NL = Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

CCME = Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

= above NL criteria

SW = Surface Water Sample

0.0

= above CCME criteria for surface water

- = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

HISTORICAL LEACHATE ANALYTICAL DATA - PCBs 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Unite			PLCS					SLO	CS .			RDL	Criteria*
Parameter Units	Cilits	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	KDL	Citeria
Total PCBs	ug/L	0.16	<	<	<	<	< 0.04	<	<	<	<	<	0.05	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

< = Parameter below detection limit

SW = Surface Water Sample <(#) = Parameter below AMEC laboratory detection limit

0.0 = above criteria

HISTORICAL LEACHATE ANALYTICAL DATA - VOCS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				PLCS						SLCS					
Parameter	Units	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	26-Jan-10 Field Dup	16-Jul-10	13-Dec-10	RDL	Criteria*
Benzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromomethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	3	-
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	~	<	1	-
Chloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	8	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	~	<	1	-
Chloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	8	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	0.5	-
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	3	-
o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
p+m-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Toluene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	8	-
Vinyl Chloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

- = Not analysed/No criteria

SLCS = Secondary Leachate Collection System

< = Parameter below detection limit

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample

HISTORICAL LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				PLCS			COME BY	CHANCE, NL			SLCS					RDL	Criteria*
Parameter	Units	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	26-Jan-10 Field Dup	26-Jan-10 Lab Dup	16-Jul-10	16-Jul-10 Lab-Dup	13-Dec-10	KDL	Cinteria
Anion Sum	me/L	2.30	12.20	12.20	4.86	10.10	-	10.80	13.70	13.60	13.40	-	8.68	-	10.90	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	90	482	453	176	400	-	428	542	532	509	-	315	-	420	1	-
Calculated TDS	mg/L	133	640	662	263	546	780	598	737	728	716	-	460	-	574	1	1,000
Carb. Alkalinity (calc. as CaCO3)	mg/L	<	<	<	1	1	-	<	<	<	<	-	1	-	2	1	-
Cation Sum	me/L	2.30	11.60	11.90	4.47	10.10	-	10.70	13.90	12.90	13.10	-	7.81	-	10.40	N/A	-
Hardness (CaCO3)	mg/L	71	510	540	190	190	658	410	580	560	570	-	320	-	320	1	-
Ion Balance (% Difference)	%	0.40	2.40	1.30	4.18	0.00	-	0.50	0.70	3.70	1.10	-	5.28	-	2.44	N/A	-
Langelier Index (@ 20C)	N/A	-0.10	0.60	0.60	0.42	0.86	-	0.60	0.40	0.50	0.60	-	0.67	-	0.99	N/A	-
Langelier Index (@ 4C)	N/A	-0.40	0.30	0.30	0.17	0.61	-	0.40	0.20	0.30	0.30	-	0.42	-	0.74	N/A	-
Nitrate (N)	mg/L	0.30	<	0.10	0.35	0.28	< 0.05	0.10	<	<	<	-	0.35	-	0.10	0.05	10
Saturation pH (@ 20C)	N/A	8.00	6.60	6.60	7.40	6.74	-	6.80	6.60	6.60	6.60	-	7.00	-	6.73	N/A	-
Saturation pH (@ 4C)	N/A	8.30	6.90	6.90	7.65	6.98	-	7.00	6.80	6.80	6.80	-	7.25	-	6.98	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	91	480	450	180	400	587	430	540	530	510	520	320	-	420	30.00	-
Carbonaceous BOD	mg/L	-	-	-	<	<	-	-	-	-	-	-	<	<	<	5.00	20
Dissolved Chloride (Cl)	mg/L	8	40	33	11	29	67	40	54	48	48	47	32	-	43	1	-
Colour	TCU	31	35	20	15	17	-	17	19	15	15	16	12	-	56	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	<	<	-	-	-	-	-	-	<	-	<	0.002	25
Nitrate + Nitrite	mg/L	0.30	<	0.10	0.37	0.28	-	0.10	<	<	<	-	0.37	-	0.10	0.05	-
Nitrite (N)	mg/L	<	<	<	0.03	<	< 0.015	<	<	<	<	-	0.02	-	<	0.01	-
Nitrogen (Ammonia Nitrogen)	mg/L	<	0.30	0.40	<	0.10	0.43	0.40	0.50	0.50	0.50	-	0.12	0.12	0.26	0.05	2
Total Organic Carbon (C)	mg/L	4.7	25.0	16.0	6.4	11.0	25.7	16.0	24.0	19.0	19.0	-	12.0	-	13.0	0.5	-
Orthophosphate (P)	mg/L	<	<	<	<	<	-	<	<	<	<	-	<	-	<	0.01	-
pH	pН	7.90	7.20	7.20	7.82	7.59	6.80	7.40	7.00	7.10	7.10	-	7.67	-	7.72	N/A	5.5 - 9.0
Phenols-4AAP	mg/L	-	-	-	0.01	0.003	-	-	-	-	-	-	0.003	-	<0.01*	0.001	0.10
Reactive Silica (SiO2)	mg/L	4.30	16.00	16.00	8.40	13.00	-	19.00	17.00	17.00	18.00	18.00	14.00	-	14.00	0.5	-
Total Suspended Solids (TSS)	mg/L	-	2	6	11	17	69	-	34	18	16	-	5	-	33	2.0	30
Dissolved Sulphate (SO4)	mg/L	11	66	110	47	61	-	54	64	90	88	88	69	-	60	2.0	-
Sulphide	mg/L	-	-	-	<	<	-	-	-	-	-	-	<	-	<	0.02	0.50
Turbidity	NTU	0.4	62.0	6.8	1.6	16.0	-	140.0	200.0	77.0	65.0	59.0	6.6	-	17.0	0.1	-
Conductivity	uS/cm	220	1000	1000	440	840	1250	980	990	1200	1100	-	750	-	900	1	-
Total Oil & Grease	mg/L	-	-	-	<	<	-	-	-	-	-	-	<	-	<	5.00	-
Coliform-Fecal	#/100mL	-	-	-	0	0	-	-	-	-	-	-	0	-	- ⁽¹⁾	-	1,000/100 mL
Coliform-Total	#/100mL	-	-	-	>80	>80	-	-	-	-	-	-	>80	-	- ⁽¹⁾	-	5,000/100 mL

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

Coliform analysis completed by Newfoundland and Labrador Government Services in Grand Falls-Windsor, NL

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

0.0 = above criteria

-= Not analysed/No criteria

< = Parameter below detection limit

HISTORICAL LEACHATE ANALYTICAL DATA - TOTAL METALS 2010/11 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units							SLCS							Criteria*
		19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	26-Jan-10 Field Dup	16-Jul-10	13-Dec-10	RDL C	Ciiteila
Aluminum (Al)	ug/L	35	<	<	36.8	<	42	<	100	<	<	23.1	<	5	-
Antimony (Sb)	ug/L	<	<	<	<	<	<1	<	<	<	<	<	<	1	-
Arsenic (As)	ug/L	<	<	<	<	<	2	<	<	<	<	<	<	1	500
Barium (Ba)	ug/L	7.0	73	71	13.3	51	69.8	38	93	68	68	18.9	40	1	5,000
Beryllium (Be)	ug/L	<	<	<	<	<	<0.1	<	<	<	<	<	<	1	-
Bismuth (Bi)	ug/L	<	<	<	<	<	1.1	<	<	<	<	<	<	2	-
Boron (B)	ug/L	170	7,400	3,400	1,170	2,230	-	2,800	3,100	2,300	2,400	1,970	1,870	5	5,000
Cadmium (Cd)	ug/L	<	<	<	<	<	1.3	<	<	<	<	<	<	0.017	50
Calcium (Ca)	ug/L	-	-	-	58,400	138,000	-	-	-	-	-	90,900	135,000	100	-
Total Chromium (Cr)	ug/L	<	<	<	<	<	1	<	<	<	<	<	<	1	1,000
Chromium VI	mg/L	-	-	-	<	<	-	-	-	-	-	<	<	0.001	0.05
Cobalt (Co)	ug/L	<	<	<	<	<	<1	<	<	<	<	0.49	<	0.4	-
Copper (Cu)	ug/L	4.0	<	<	2.50	<	1	<	<	<	<	<	<	2	300
Iron (Fe)	ug/L	77	4,900	4,000	1,790	3,150	29,900	6,800	19,000	8,500	8,300	1,320	2,240	50	10,000
Lead (Pb)	ug/L	<	<	<	<	<	6	<	<	<	<	<	<	5	200
Magnesium (Mg)	ug/L	-	-	-	10,700	24,300	-	-	-	-	-	23,500	27,400	100	-
Manganese (Mn)	ug/L	7.0	9,100	8,800	1,130	6,240	11,000	5,400	10,000	8,900	9,000	3,270	5,120	2	-
Mercury (Hg)	ug/L	-	-	<	<	<	-	-	-	<	<	<	<	0.013	5
Molybdenum (Mo)	ug/L	<	<	<	<	<	2	<	<	<	<	<	<	2	-
Nickel (Ni)	ug/L	<	<	<	<	<	1	<	<	<	<	<	<	2	500
Phosphorus (P)	ug/L	-	-	-	<	<	-	-	-	-	-	<	<	100	0.5
Potassium (K)	ug/L	-	-	-	7,270	6,530	-	-	-	-	-	<	7,750	100	-
Selenium (Se)	ug/L	<	<	<	<	<	1	<	<	<	<	<	<	1	10
Silver (Ag)	ug/L	-	-	-	<	<	-	-	-	-	-	<	<	0.1	50
Sodium (Na)	ug/L	<	<	<	9,880	22,500	0.6	<	<	<	<	21,300	25,500	100	-
Strontium (Sr)	ug/L	52	360	350	156	289	-	280	440	380	390	282	324	2	-
Thallium (Tl)	ug/L	<	<	<	<	<	-	<	<	<	<	<	<	0.1	-
Tin (Sn)	ug/L	<	<	<	<	<	-	<	<	<	<	<	<	2	-
Titanium (Ti)	ug/L	<	<	<	<	<	-	<	<	<	<	<	<	2	-
Uranium (U)	ug/L	0.1	<	<	0.25	<	-	0.8	1	2	2	1.11	1	1	-
Vanadium (V)	ug/L	<	<	<	<	<	4	<	<	<	<	<	<	2	-
Zinc (Zn)	ug/L	<	67.0	<	8.10	<	7	<	<	<	<	5.20	<	50	500

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit 0.0 = above criteria