

2012/2013 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NEWFOUNDLAND AND LABRADOR

Prepared by: Conestoga-Rovers & Associates

1118 Topsail Road P.O. Box 8353, Station A St. John's, Newfoundland Canada A1B 3N7

Office: (709) 364-5353 Fax: (709) 364-5368

web: http://www.CRAworld.com

MAY 2013 Ref. no. 056680 (6)

EXECUTIVE SUMMARY

Conestoga-Rovers & Associates (CRA) was retained by the Newfoundland and Labrador Department of Environment and Conservation (DOEC) to complete the 2012/13 monitoring and maintenance program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the DOEC Tier I schedule as outlined in the June 2012 Operations, Maintenance , and Monitoring (OMM) Manual.

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town of Come By Chance, Newfoundland and Labrador (NL). The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the Come By Chance Oil Refinery. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners as well as a drainage pipe system to manage excess fluid and provide a means for leachate discharge. A groundwater drainage system (GWDS) was installed in March 2009 starting at the east side of the landfill and is graded at one percent toward the northeast corner, then along the north side, and eventually discharging beyond the gravel road west of the Site.

The work completed by CRA during the 2012/13 monitoring and maintenance program generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, groundwater and surface water sampling, landfill cover inspection, groundwater drainage system inspection, clean-out inspection with cleaning (if required), and an assessment of potential infiltration sources into the leachate liner systems.

The summer Site sampling event was conducted in August 2012 with the leachate pumping event completed in November 2012 while the hydraulic pump down test of the secondary leachate chamber was completed in December 2012. A summary of the 2012/13 monitoring and maintenance program is provided below along with recommendations for future work.

E.1 <u>SAMPLING SCHEDULE</u>

In accordance with the OMM Manual, CRA recommend that future leachate sampling continue to be conducted using the Tier I schedule (once per year) since leachate

elevations were measured at less than 0.3 metres below the top of the valve chambers for the PLCS and SLCS again during the 2012 Site visit.

Monitoring and Maintenance Schedule: In accordance with the OMM Manual, CRA continue to recommend that groundwater, surface water, and leachate sampling be conducted using the Tier I schedule (once per year) since leachate elevations were measured at less than 0.3 metres below the top of the valve chambers for the PLCS and SLCS in 2012. In addition, the continued maintenance and inspection program for the landfill cover and groundwater drainage system clean-outs should be scheduled to coincide with the sampling program.

E.2 <u>GROUNDWATER</u>

In general, BTEX/mTPH, PAH, PCB, VOC, general chemistry, and metals analytical data show groundwater conditions to be of better quality compared to leachate analytical data; therefore, it does not appear that groundwater is being influenced by leachate from the secure landfill. Based on static groundwater levels measured during the 2012 Site visit, it also appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

E.3 <u>SURFACE WATER</u>

In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions as dramatically distinct in comparison to the leachate analytical data. Two metals (aluminum and iron) reported exceedances in the upgradient and downgradient surface water samples whereas the leachate analytical data reported exceedances for one metal (iron); however, iron concentrations in the leachate were approximately 15 times that of the surface water samples. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

E.4 LEACHATE AND POTENTIAL INFILTRATION SOURCES

In accordance with the OMM Manual, the pumping event consisted of two Site visits so that a desired flow rate of 15 L/min could be achieved. During the first Site visit for leachate pumping in November 2012, it was observed that the PLCS and SLCS valves

were in the open position with the discharge hose no longer connected to the PLCS valve. CRA determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculating in-flow. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not risen above the ground surface. It was also noted that leachate elevations in the PLCS and SLCS for two consecutive Site visits were less than 0.3 metres below the top of the valve chambers.

A review of the current and historical leachate pumping volumes from the PLCS and SLCS valve chambers demonstrates that pumped leachate volumes have decreased since the installation of the groundwater drainage system. A comparison of the average pumped leachate volumes from the PLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 40 percent. In addition, a comparison of the average pumped leachate volumes from the SLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 60 percent. Consequently, it appears the groundwater drainage system has contributed to the reduction of volumes of pumped leachate from the PLCS and SLCS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

E.5 <u>LANDFILL COVER AND VEGETATION CONTROL</u>

The landfill cover inspection was conducted on November 21, 2012, which indicated that minor maintenance is required. The only issue of concern related to maintenance is the cutting of vegetation, typically alders, which have reached 1.5 metres in height, considerably more than the OMM recommended height restriction of 0.3 metres. Meadow vole activity from tunneling and nesting was noted in numerous locations on the landfill cover; however, meadow voles typically limit their habitat to less than 300 mm from surface.

Upon reviewing the results of the elevation control survey, it was noted the elevation control points decreased by an average of 6.5 millimetres between the original elevations surveyed in August 2010 and the recent survey completed in November 2012. Based on this information, the difference in elevation of the control points indicate that very limited and insignificant settlement is occurring at the landfill cover, which in turn indicates the contents of the landfill are not settling.

E.6 <u>GROUNDWATER DRAINAGE SYSTEM</u>

Four GWDS clean-outs were previously installed as part of the original system construction; visual inspections confirmed that water was not present. The discharge location, previously located on the west side of the gravel service road, was excavated and reconstructed at the roadside embankment as part of redevelopment of the area, which was related to the construction of a new asphalt plant (J-1 Contracting) prior to the November 2012 Site visit; a rodent screen was not observed covering the pipe discharge. A very low flow of water was observed from the discharge of the GWDS.

Debris or blockages were not present in any of the clean-outs during the Site visit and combined with the water flow from the downgradient discharge, it was determined the GWDS was functioning properly and cleaning was not required.

E.7 <u>HYDRAULIC CONNECTIVITY OF LINER SYSTEMS</u>

A pump down test was completed that used the existing PLCS and SLCS manholes and monitoring wells to evaluate the potential for a hydraulic connection between the PLCS and SLCS. Pumping from the SLCS was completed over a 6 hour period in December 2012 during which leachate levels were monitored periodically in the PLCS. Over the 6 hour period, leachate in the PLCS dropped 0.063 metres; therefore, it was confirmed that hydraulic connection *does* exist between the PLCS and SLCS.

E.8 <u>HYDRAULIC CONNECTIVITY OF LANDFILL TO GROUNDWATER</u>

A pump down test was completed that used the existing SLCS manhole and monitoring wells to evaluate the potential for a hydraulic connection between the SLCS and groundwater in the immediate area of the landfill. Since the secondary liner forms the outermost layer of the landfill liner system and has historically required the pumping of large volumes of leachate, the pump down test involved the continual pumping of leachate from the SLCS manhole. Pumping from the SLCS was completed over a 6 hour in December 2012 during which groundwater levels in the nearby six monitor wells were gauged periodically. The two upgradient monitor wells reported an increase in groundwater elevations compared to starting groundwater elevations; therefore, it did not appear that pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and upgradient groundwater. Since the secondary liner at the bottom of the landfill was constructed at an assumed elevation of

approximately 14.0 masl, it appears that groundwater upgradient of the landfill is likely intercepted in the GWDS and directed around the landfill.

The two cross-gradient monitor wells reported an increase in groundwater elevation compared to starting groundwater elevations; therefore, it did not appear that pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and cross-gradient groundwater. The surface water elevation of the adjacent brook was very near the relatively constant groundwater elevation at the cross-gradient monitor wells. Since the secondary liner at the bottom of the landfill was constructed at an assumed elevation of approximately 14.0 masl, it *does not* appear that groundwater cross-gradient of the landfill has an impact on leachate elevations within the landfill during normal weather conditions. This may not be the case during very high precipitation events when the nearby brook has higher water flow with increased surface water elevations; however, the brook surface water elevation would have to increase by more than 0.6 metres before potentially affecting the landfill.

The two downgradient monitor wells reported a decrease in groundwater elevation compared to starting groundwater elevations; therefore, pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and downgradient groundwater. Based on the March 2009 AMEC Come By Chance Secure Landfill Groundwater Drainage System Construction Report, the extrapolated elevation of CO#4 would be relatively close to groundwater elevations at the nearby downgradient monitor wells; however, groundwater was measured at approximately 1.8 metres higher than the expected elevation of CO#4. Based on the information of a decrease in groundwater elevation at the downgradient monitor wells and depth of the secondary liner at the bottom of the landfill being constructed at an assumed elevation of approximately 14.0 masl, it <u>does</u> appear that a hydraulic connection exists between the secondary liner and groundwater downgradient from the landfill; however, it also appears the GWDS was not constructed to an effective depth between CO#2 and CO#4.

E.9 <u>PRECIPITATION INFILTRATION POTENTIAL</u>

A water balance for the landfill was originally intended to be calculated using potential precipitation infiltration in comparison to leachate volumes pumped from the landfill liner systems; however, leachate was not managed regularly to remove any accumulations except during semi-annual or annual pumping events associated with leachate and groundwater sampling. Therefore, potential precipitation infiltration was compared to volumes of leachate pumped from the SLCS and precipitation data.

Using local climatology data, landfill design drawings, combined with some default climate data assumptions in the HELP Model (Hydrologic Evaluation of Landfill Performance), CRA evaluated the top and side slopes of the landfill cover system based on two generalized groups of input parameters related to soil and landfill design as well as climate data that includes effects related to vegetative cover and topsoil.

The HELP model calculated an average annual precipitation of 1,315.6 mm, which was very near the actual average annual precipitation of 1,319.0 mm for Arnold's Cove, NL and 1,269.9 mm for Come By Chance, NL. The average annual infiltration or leakage through the landfill cover system was estimated at 3.4 mm per hectare per year at the top slope and 1.9 mm per hectare per year at the side slopes. The modeled infiltration multiplied by the area for the top and side slopes resulted in an estimated annual infiltration of approximately 2,650 L through the top slope and approximately 3,020 L through the side slopes for a combined annual infiltration of 5,670 L.

Only records for the SLCS pumping were available and as such, the estimated leachate generation from the HELP model was compared to leachate pumping volumes from the SLCS. Pumping volumes from the SLCS ranged from 19,475 L in February 2007 to 103,000 L in July 2007. The maximum and minimum pumping volumes coincided with extreme monthly precipitation data from Environment Canada – the lowest pumping volume in February 2007 reported 31 mm of precipitation while the highest pumping volume in July 2007 reported 334 mm of precipitation.

Based on the estimated annual leachate volume of 5,670 L generated from infiltration calculated using the HELP model, it is very obvious that leachate pumping volumes from the SLCS far exceed the estimated infiltration volume. When the pumping volumes of leachate from the PLCS are included, the difference is even more dramatic. Therefore, the liner systems of the landfill appear to be greatly influenced by the surrounding groundwater and indirectly by precipitation, thus confirming there are significant failures in the landfill liner systems.

E.10 <u>POTENTIAL LINER SYSTEM DEFICIENCIES</u>

Four potential failure mechanisms may be contributing to the high volumes of infiltration into the landfill liner systems as follows:

• Gas vent attachment to the landfill cover system that would permit precipitation to enter through a tear or failed weld between the vent pipe and liner.

- Leachate collection pipe liner wall penetrations through the boot where a tear or failed weld between the boot and liner would permit groundwater entry.
- Excessive and/or large punctures or tears in the liner systems that may have occurred during placement of the waste or as a result of differential settlement from the weight of the waste and large volumes of leachate/groundwater contained within the liner system.
- Construction of the landfill liner edges around the perimeter of the landfill.

The file review confirmed the construction detail used around the perimeter of the landfill for termination of the primary and secondary liners was essentially the same as the 1994 design drawings. The file review revealed the trenching detail was generally being followed during construction; however, the liner was noted to have pulled up about 25 % of the distance from the bottom of the trench after placement of the sand layer. Finally, the cover liner was specified to extend over and beyond the secondary and primary liner trenches, but there was no reference to welding of the primary or secondary liners to the cover liner. Based on this construction detail and when groundwater elevations are sufficiently high around the northeastern and eastern areas of the landfill, a route exists for possible groundwater infiltration into the landfill as the cover liner was not sealed to the primary and/or secondary liners.

E.11 <u>RECOMMENDATIONS</u>

Based on the findings of the 2012/13 monitoring and maintenance program along with data from previous monitoring programs, the following recommendations are offered for consideration by DOEC:

Monitoring and Maintenance Schedule: The leachate quality is continually reporting BTEX/TPH, PAH, PCB, general chemistry, and metals concentrations at levels that would not affect the surrounding environment, most notably groundwater and surface water. In addition, the landfill was constructed approximately 20 years ago and based on the historical analytical data reviewed in this report, it appears that leachate has reached a steady-state condition. Furthermore, groundwater infiltration has been evident for many years and has acted as a flushing mechanism for any contaminants that may have been present, although elevated levels of contaminants have not historically been identified. Therefore, CRA recommend that further monitoring of the landfill and pumping out of the PLCS and SLCS are not required; however, annual inspections should be continued to ensure the landfill cover system is not compromised by erosion. CRA understands that DOEC would prefer to continue monitoring activities at the landfill as a matter of due diligence.

Vegetation Control: CRA recommend that all vegetation on the landfill cover that measures over 0.3 metres in height should be cut down. This work can be completed in conjunction with vegetation control in the monitor well locations outside the fenced area of the landfill.

In addition, it was noted that access to two monitor wells (MW93-1 and MW93-1A) was somewhat difficult due to the excessive vegetative growth in the area with alders reaching heights of 1.8 metres. CRA recommend that alders be cut down in this location to better facilitate future field programs (i.e. the transport of field equipment such as water level meters, coolers, sample jars, etc.).

TABLE OF CONTENTS

EXECU	UTIVE SUN	1MARY	I	
	E.1	SAMPLING SCHEDULE	I	
	E.2	GROUNDWATER	II	
	E.3	SURFACE WATER	II	
	E.4	LEACHATE AND POTENTIAL INFILTRATION SOURCES	II	
	E.5 LANDFILL COVER AND VEGETATION CONTROL			
	E.6	GROUNDWATER DRAINAGE SYSTEM	.IV	
	E.7	HYDRAULIC CONNECTIVITY OF LINER SYSTEMS	.IV	
	E.8	HYDRAULIC CONNECTIVITY OF LANDFILL TO GROUNDWATER	.IV	
	E.9	PRECIPITATION INFILTRATION POTENTIAL	V	
	E.10	POTENTIAL LINER SYSTEM DEFICIENCIES	.VI	
	E.11	RECOMMENDATIONS	VII	
1.0	INTRODU	JCTION	1	
2.0	SITE DESCRIPTION 2			
3.0	METHOD	OLOGY	3	
	3.1	GROUNDWATER SAMPLING	3	
	3.2	SURFACE WATER SAMPLING	3	
	3.3	LEACHATE SAMPLING AND PUMPING	4	
	3.4	LANDFILL COVER INSPECTION AND ELEVATION CONTROL	4	
	3.5	GROUNDWATER DRAINAGE SYSTEM	5	
40	CLUDELINE ERAMEWORK			
1.0	4 1	GROUNDWATER	6	
	4.2	SURFACE WATER	0 6	
	43	I FACHATE	0 6	
	1. 0		0	
5.0	ANALYTI	CAL RESULTS	7	
	5.1	GROUNDWATER	7	
	5.1.1	BTEX/MTPH IN GROUNDWATER	7	
	5.1.2	PAHS IN GROUNDWATER	7	
	5.1.3	PCBS IN GROUNDWATER	7	
	5.1.4	VOCS IN GROUNDWATER	8	
	5.1.5	GENERAL CHEMISTRY IN GROUNDWATER	8	
	5.1.6	METALS IN GROUNDWATER	8	
	5.2	SURFACE WATER	9	
	5.2.1	BTEX/MTPH IN SURFACE WATER	9	
	5.2.2	PAHS IN SURFACE WATER	9	
	5.2.3	PCBS IN SURFACE WATER	9	
	5.2.4	VOCS IN SURFACE WATER	9	

	5.2.5	GENERAL CHEMISTRY IN SURFACE WATER	10
	5.2.6	METALS IN SURFACE WATER	10
	5.3	LEACHATE SAMPLING	10
	5.3.1	BTEX/MTPH IN LEACHATE	11
	5.3.2	PAHS IN LEACHATE	11
	5.3.3	PCBS IN LEACHATE	11
	5.3.4	VOCS IN LEACHATE	12
	5.3.5	GENERAL CHEMISTRY IN LEACHATE	12
	5.3.6	METALS IN LEACHATE	12
	5.3.7	TOXICITY IN LEACHATE	13
6.0	DISCUSS	ION	14
	6.1	GROUNDWATER	14
	6.2	SURFACE WATER	14
	6.3	LEACHATE	15
	6.3.1	NOVEMBER 2012 LEACHATE PUMPING EVENT	15
	6.3.2	LEACHATE PUMPING EVALUATION	15
	6.3.3	HYDRAULIC CONNECTIVITY OF LINER SYSTEMS	16
	6.3.4	HYDRAULIC CONNECTIVITY OF LANDFILL TO GROUNDWATER	17
	6.3.5	PRECIPITATION INFILTRATION POTENTIAL	19
	6.3.6	POTENTIAL LINER SYSTEM DEFICIENCIES	20
	6.4	LANDFILL COVER INSPECTION	21
	6.5	GROUNDWATER DRAINAGE SYSTEM	22
7.0	SUMMA	RY AND RECOMMENDATIONS	23
	7.1	2012/13 MONITORING AND MAINTENANCE SUMMARY	24
	7.1.1	GROUNDWATER	24
	7.1.2	SURFACE WATER	24
	7.1.3	LEACHATE	24
	7.1.4	LANDFILL COVER	25
	7.1.5	GROUNDWATER DRAINAGE SYSTEM	25
	7.1.6	HYDRAULIC CONNECTIVITY OF LINER SYSTEMS	26
	7.1.7	HYDRAULIC CONNECTIVITY OF LANDFILL TO GROUNDWATER	26
	7.1.8	PRECIPITATION INFILTRATION POTENTIAL	27
	7.1.9	POTENTIAL LINER SYSTEM DEFICIENCIES	28
	7.2	RECOMMENDATIONS	29
8.0	REFEREN	NCES	30
9.0	CLOSUR	Е	31

LIST OF FIGURES (Following Text)

- FIGURE 1 SITE LOCATION MAP
- FIGURE 2 SITE PLAN WITH SAMPLE LOCATIONS
- FIGURE 3 SITE PLAN WITH CROSS SECTION
- FIGURE 4 DRAINAGE AND SLAB DETAILS
- FIGURE 5 1994 PERIMETER TRENCH DESIGN DETAIL 1 BASED ON 1994 CONSTRUCTION DRAWINGS

LIST OF TABLES (Following Text)

- TABLE 1STATIC WATER LEVELS
- TABLE 2GPS CO-ORDINATES OF KEY SITE FEATURES
- TABLE 3
 PRIMARY LEACHATE COLLECTION SYSTEM
- TABLE 4
 SECONDARY LEACHATE COLLECTION SYSTEM
- TABLE 5LANDFILL CAP INSPECTION FORM
- TABLE 6ELEVATIONAL CONTROL POINT SURVEY
- TABLE 7GROUNDWATER ANALYTICAL DATA BTEX/ mTPH
- TABLE 8GROUNDWATER ANALYTICAL DATA PAHs
- TABLE 9GROUNDWATER ANALYTICAL DATA PCBs
- TABLE 10GROUNDWATER ANALYTICAL DATA VOCs
- TABLE 11
 GROUNDWATER ANALYTICAL DATA GENERAL CHEMISTRY
- TABLE 12GROUNDWATER ANALYTICAL DATA METALS
- TABLE 13SURFACE WATER ANALYTICAL DATA BTEX/mTPH
- TABLE 14SURFACE WATER ANALYTICAL DATA PAHs

056680 (6)

LIST OF TABLES (Following Text)

- TABLE 15SURFACE WATER ANALYTICAL DATA PCBs
- TABLE 16SURFACE WATER ANALYTICAL DATA VOCs
- TABLE 17SURFACE WATER ANALYTICAL DATA GENERAL CHEMISTRY
- TABLE 18SURFACE WATER ANALYTICAL DATA METALS
- TABLE 19LEACHATE ANALYTICAL DATA BTEX/ mTPH
- TABLE 20LEACHATE ANALYTICAL DATA PAHs
- TABLE 21LEACHATE ANALYTICAL DATA PCBs
- TABLE 22LEACHATE ANALYTICAL DATA VOCs
- TABLE 23LEACHATE ANALYTICAL DATA GENERAL CHEMISTRY
- TABLE 24LEACHATE ANALYTICAL DATA METALS
- TABLE 25PRIMARY LEACHATE CHAMBER IN-FLOW RATE SUMMARY
- TABLE 26SECONDARY LEACHATE CHAMBER IN-FLOW RATE SUMMARY
- TABLE 27LEACHATE CHAMBER PUMP DOWN TEST
- TABLE 28LEACHATE PUMPING VOLUMES vs MONTHLY PRECIPITATION AND
STATIC GROUNDWATER LEVELS

LIST OF APPENDICES

- APPENDIX A SITE PHOTOGRAPHS
- APPENDIX B LABORATORY CERTIFICATES OF ANALYSES
- APPENDIX C STANTEC LETHALITY LABORATORY REPORTS
- APPENDIX D PREVIOUS MONITORING DATA
- APPENDIX E HELP MODEL RESULTS

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) was retained by the Newfoundland and Labrador Department of Environment and Conservation (DOEC) to complete the 2012/13 monitoring and maintenance program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the DOEC Tier I schedule as outlined in the June 2012 Operations, Maintenance , and Monitoring (OMM) Manual.

The work generally involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, abandonment of two damaged monitor wells, installation of two replacement monitor wells, groundwater and surface water sampling, landfill cover inspection, and groundwater drainage system inspection, clean-out inspection with cleaning (if required), and an assessment of potential infiltration sources into the leachate liner systems.

The summer Site sampling event was conducted in August 2012 with the leachate pumping event completed in November 2012 while the hydraulic pump down test of the secondary leachate chamber was completed in December 2012.

2.0 SITE DESCRIPTION

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town of Come By Chance (Town), Newfoundland and Labrador (NL). The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the Come By Chance Oil Refinery. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners as well as a drainage pipe system to manage excess fluid and provide a means for leachate discharge.

A groundwater drainage system was installed in March 2009 starting at the east side of the landfill and is graded at one percent toward the northeast corner, then along the north side, and eventually discharging beyond the gravel road west of the Site. The system consists of 140 metres of perforated PVC pipe, 150 mm in diameter, installed in a trench of washed crushed stone measuring approximately 600 mm x 600 mm wrapped in filter fabric and 110 metres of corrugated steel pipe, 200 mm in diameter.

3.0 <u>METHODOLOGY</u>

3.1 <u>GROUNDWATER SAMPLING</u>

On August 30, 2012, static water levels were measured using an electronic product/water interface probe at the on-Site monitor wells (Table 1). The monitor wells were then developed, allowed to recover, and sampled using dedicated, disposable bailers. Seven groundwater samples were collected from the on-Site monitor wells during each sample event, including one field duplicate (DUP-03) from MW93-1A. Note that two monitor well locations (MW93-1 and MW93-2) were surrounded with very high vegetative growth in the area; alders were still noted to reach a height of approximately 1.8 metres.

All groundwater samples collected from the six existing monitor wells (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) were submitted for analysis of benzene, toluene, ethylbenzene, xylene (BTEX), modified total petroleum hydrocarbons (mTPH), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), general chemistry, and metals. Groundwater samples were submitted to Maxxam Analytics Inc. (Maxxam) in Bedford, Nova Scotia for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL.

3.2 SURFACE WATER SAMPLING

Surface water sampling was intended to demonstrate background analyte concentrations from the upgradient sample location (SURFACE-UP) and assess potential leachate infiltration into surface water by sampling downgradient (SURFACE-DOWN). The previous SURFACE-DOWN location was destroyed as a result of an industrial development with an asphalt plant (Refer to Photograph 5 of Appendix A); therefore, a new SURFACE-DOWN location was selected and sampled in November 2012. The surface water locations are located southeast of the fenced area and upstream (SURFACE-UP) along with one southwest of the Site beyond the gravel road and downstream (SURFACE-DOWN), both of which were submitted for analysis of BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals that included hexavalent and total chromium. All surface water samples were submitted to Maxxam in Bedford, NS for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were also recorded for the two surface water sample locations (Table 2), which are shown on Figure 2.

3.3 <u>LEACHATE SAMPLING AND PUMPING</u>

CRA collected leachate samples on August 30, 2012 from the primary and secondary containment leachate systems (PLCS and SLCS, respectively) for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, metals, and toxicity. All leachate samples were submitted to Maxxam in Bedford, NS for analysis except BTEX/mTPH samples that were submitted to Maxxam in St. John's, NL; toxicity samples were submitted to Stantec Consulting Ltd. (Stantec) in St. John's, NL. Note that all laboratories are CALA certified for the respective analyses that were completed. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were confirmed for the two leachate collection system valve chamber sample locations (Table 2), which are shown on Figure 2. Field data recorded prior to and during the PLCS and SLCS leachate discharge events are presented in Tables 3 and 4, respectively.

Leachate analytical data was required to determine if pumping down the PLCS and SLCS valve chambers and discharging into a nearby ditch was permitted under the Provincial Environmental Control Water and Sewer Regulations, Schedule A (2003) for the respective comparison criteria, where available. The tabulated analytical results from each sampling event were presented to DOEC for review and approval. Since the drainage ditch location planned for leachate discharge is within the Town boundaries, approval was also requested from the Town prior to discharging leachate from both collection systems into the nearby ditch.

3.4 LANDFILL COVER INSPECTION AND ELEVATION CONTROL

A landfill cover visual inspection was completed during the Site visit in November 2012 when less foliage was present on the vegetation with a more detailed inspection documented in Table 5 in accordance with the OMM Manual (Refer to Photograph 6 of Appendix A). The comprehensive landfill cover inspection conducted in November 2012 assessed the following:

- Height of vegetation;
- Condition of landfill vents;
- Condition of slopes

- Condition of lateral drains.
- Evidence or erosion/animal burrows

The ability to accurately measure potential settlement of the landfill cover was recently incorporated into the landfill surface with the installation of concrete elevation control points that were established at four locations on the landfill cover in 2010. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were available for the four

elevation control points and landfill vent locations (Table 2), which are shown on Figure 2. In addition, results of the elevational control point survey are presented in Table 6.

3.5 <u>GROUNDWATER DRAINAGE SYSTEM</u>

Historically, large volumes of leachate from the SLCS were required to be pumped during each Site visit, which was previously suspect to be a result of groundwater infiltration into the secondary liner. Consequently, a Groundwater Drainage System (GWDS) was installed in 2009 outside the fenced area of the secure landfill along the eastern and northern boundaries at an elevation that was anticipated to intercept groundwater and divert it through the drainage system.

A visual inspection of the groundwater drainage system was conducted during the August 2012 Site visit to determine if cleaning was required and/or if groundwater was present in the clean-out locations. GPS co-ordinates using NAD27 (UTM Zone 21) geo-reference were available for the four clean-out locations (Table 2), which are shown on Figure 2. Following construction of an asphalt plant on the western side of the gravel road beyond the secure landfill, the former discharge location for the GWDS was destroyed and relocated to an area immediately adjacent to the gravel road. Refer to Photographs 2 to 4 of Appendix A showing a typical clean-out location during the 2012 Site visit and the new discharge location, which did not have a rodent grill attached.

4.0 <u>GUIDELINE FRAMEWORK</u>

4.1 <u>GROUNDWATER</u>

As specified in the OMM Manual, petroleum hydrocarbon compound concentrations (BTEX/TPH) in groundwater were assessed in relation to the Atlantic Risk-Based Corrective Action (RBCA) Version 2.0 (March 2007) Tier I Risk-Based Screening Levels (RBSLs) for a commercial property with non-potable groundwater and coarse-grained soil.

PAH, PCB, VOC, metals, and general chemistry concentrations in groundwater were assessed in relation to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

4.2 <u>SURFACE WATER</u>

As specified in the OMM Manual, BTE, PAH, VOC, metals (including trivalent and hexavalent chromium), and general chemistry concentrations in surface water were evaluated in relation to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the Protection of Aquatic Life (Freshwater or FAL). The FAL were from the Canadian Environmental Quality Guidelines (Update 7.0, September 2007).

TPH in surface water was evaluated in relation to the British Columbia Contaminated Sites Regulation (B.C. Reg. 375/96) Schedule 6 Generic Numerical Water Standards for Aquatic Life (Aquatic Life Generic Standards - freshwater) for Total Petroleum Hydrocarbons.

4.3 <u>LEACHATE</u>

As specified in the OMM Manual, leachate was assessed in relation to the Newfoundland and Labrador Regulation 65/03, Environmental Control Water and Sewage Regulations, 2003, Schedule "A", under the Water Resources Act (Filed May 23, 2003) (referred to as Schedule "A" of the DOEC Regulations); and the CCME CWQGs for the Protection of FAL, updated 2007.

5.0 <u>ANALYTICAL RESULTS</u>

5.1 <u>GROUNDWATER</u>

Groundwater analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals are presented in Tables 7 to 12, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix B. Additional discussion is presented in Section 6.1 regarding the groundwater analytical results.

5.1.1 <u>BTEX/mTPH IN GROUNDWATER</u>

Laboratory analytical results for BTEX/mTPH from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 7, all of which reported BTEX/mTPH concentrations as non-detectable and below the applicable guidelines.

One field duplicate was also collected from MW93-1A during the August 2012 sampling event, which reported BTEX/mTPH concentrations consistent with the original sample results.

5.1.2 <u>PAHs IN GROUNDWATER</u>

Laboratory analytical results for PAHs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 8, all of which reported PAH concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate was also collected from MW93-1A that reported PAH concentrations consistent with the original sample results.

5.1.3 <u>PCBs IN GROUNDWATER</u>

Laboratory analytical results for PCBs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 9, all of which reported PCB concentrations as non-detectable and below the applicable guidelines.

In addition, one field duplicate was collected from MW93-1A that also reported PCB concentrations consistent with the original sample results.

5.1.4 <u>VOCs IN GROUNDWATER</u>

Laboratory analytical results for VOCs from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 10, all of which reported VOC concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate was collected from MW93-1A that also reported VOC concentrations consistent with the original sample results.

5.1.5 GENERAL CHEMISTRY IN GROUNDWATER

Laboratory analytical results for general chemistry from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 11, all of which reported general chemistry concentrations as non-detectable or below the applicable guidelines.

In addition, Maxxam conducted a laboratory duplicate analysis for Nitrogen on MW93-1A collected in August 2012, which reported Nitrogen concentrations as consistent with the original sample results. One field duplicate was collected from MW93-1A that also reported general chemistry concentrations consistent with the original sample results.

5.1.6 <u>METALS IN GROUNDWATER</u>

Laboratory analytical results for metals from the six groundwater samples (MW93-1, MW93-1A, MW93-2, MW93-2A, MW10-1, and MW10-1A) are presented in Table 12, all of which reported metals concentrations as non-detectable or below the applicable guidelines.

In addition, Maxxam conducted a laboratory duplicate analysis for metals on MW93-1A collected in August 2012, which reported metals concentrations as consistent with the original sample results. One field duplicate was collected from MW93-1A that also reported metals concentrations consistent with the original sample results.

5.2 <u>SURFACE WATER</u>

Surface water analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals that included hexavalent chromium were compared to applicable guidelines are shown in Tables 13 to 18, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix B. Additional discussion is presented in Section 6.2 regarding the surface water analytical results.

5.2.1 <u>BTEX/mTPH IN SURFACE WATER</u>

Laboratory analytical results for BTEX/mTPH from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected in November 2012 are presented in Table 13, both of which reported BTE, and petroleum hydrocarbon concentrations as non-detectable and below the applicable comparison criteria.

5.2.2 PAHs IN SURFACE WATER

Laboratory analytical results for PAHs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected in November 2012 are presented in Table 14, both all of which reported PAH concentrations as non-detectable or below the applicable guidelines.

5.2.3 <u>PCBs IN SURFACE WATER</u>

Laboratory analytical results for PCBs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected in November 2012 are presented in Table 15, all of which reported PCB concentrations as non-detectable. Note that CCME CWQGs (FAL) does not specify a criterion for PCBs in surface water.

5.2.4 <u>VOCs IN SURFACE WATER</u>

Laboratory analytical results for VOCs from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected in November 2012 are presented in Table 16, both all of which reported VOC concentrations as non-detectable and below the applicable guidelines.

5.2.5 <u>GENERAL CHEMISTRY IN SURFACE WATER</u>

Laboratory analytical results for general chemistry from the two surface water samples (SURFACE-UP and SURFACE-DOWN) collected in November 2012 are presented in Table 17, both of which reported general chemistry concentrations as non-detectable or below the applicable guidelines.

5.2.6 <u>METALS IN SURFACE WATER</u>

Laboratory analytical results for metals from two surface water samples (SURFACE-UP and SURFACE-DOWN) collected in November 2012 are presented in Table 18, all of which reported metals concentrations as non-detectable or below the applicable guidelines except exceedances for aluminum and iron.

The upgradient sample collected in November 2012 reported aluminum and iron exceedances at concentrations very similar. The summary table below demonstrates the difference in concentrations between the upgradient reference sample and the downgradient sample.

Summary Table of Upgradient vs. Downgradient Surface Water Sample							
Analyte	Upgradient Concentration (µg/L)	Downgradient Concentration (µg/L)	Difference				
Aluminum	113	117	1.04 x				
Iron	387	382	0.99 x				

^{#.##} Exceeds CCME CWQGs

The above-noted exceedances were identified in previous monitoring reports from 2008 to 2011.

5.3 <u>LEACHATE SAMPLING</u>

Leachate analytical results for BTEX/mTPH, PAHs, PCBs, VOCs, general chemistry, and metals are presented in Tables 19 to 24, respectively. Sample locations are shown on Figure 2 and Laboratory Certificates of Analyses are included as Appendix B. In addition, PLCS and SLCS toxicity analytical results for 2012 as reported by Stantec are

included as Appendix C. Further discussion is presented in Section 6.3 regarding the leachate analytical results.

5.3.1 <u>BTEX/mTPH IN LEACHATE</u>

Laboratory analytical results for BTEX/mTPH from the two leachate samples (PLCS and SLCS) collected in August 2012 are presented in Table 19, both of which reported BTEX/mTPH concentrations as very low or non-detectable. TPH concentrations were also below the Schedule A criterion for Provincial Environmental Control Water and Sewer regulations. In addition, BTE and TPH concentrations were below the BC and CCME CWQGs FAL criteria, respectively.

In addition, one field duplicate (DUP-04) was collected from PLCS that also reported BTEX/mTPH concentrations consistent with the original sample results.

5.3.2 PAHs IN LEACHATE

Laboratory analytical results for PAHs from the two leachate samples (PLCS and SLCS) collected in August 2012 are presented in Table 20, both of which reported PAH concentrations as very low or non-detectable and below CCME CWQGs (FAL), where applicable. Provincial regulations or guidelines for PAHs do not exist in consideration of discharging an effluent into a drainage ditch.

In addition, Maxxam conducted a laboratory duplicate analysis for PAHs on PLCS collected in August 2012, which reported PAH concentrations as consistent with the original sample results. One field duplicate (DUP-04) was collected from PLCS that also reported PAH concentrations consistent with the original sample results.

5.3.3 <u>PCBs IN LEACHATE</u>

Laboratory analytical results for PCBs from the two leachate samples (PLCS and SLCS) collected in August 2012 are presented in Table 21, both of which reported PCB concentrations as non-detectable. Provincial regulations or guidelines for PCBs do not exist in consideration of discharging an effluent into a drainage ditch and the CCME CWQGs (FAL) do not specify criteria for PCBs.

In addition, Maxxam conducted a laboratory duplicate analysis for PCBs on PLCS collected in August 2012, which reported PCB concentrations as consistent with the

original sample results. One field duplicate (DUP-04) was collected from PLCS that also reported PCB concentrations consistent with the original sample results.

5.3.4 <u>VOCs IN LEACHATE</u>

Laboratory analytical results for VOCs from the two leachate samples (PLCS and SLCS) collected in August 2012 are presented in Table 22, both of which reported VOC concentrations as non-detectable. Provincial regulations or guidelines for VOCs do not exist in consideration of discharging an effluent into a drainage ditch.

In addition, one field duplicate (DUP-04) was collected from PLCS that also reported VOC concentrations consistent with the original sample results.

5.3.5 GENERAL CHEMISTRY IN LEACHATE

Laboratory analytical results for general chemistry from the two leachate samples (PLCS and SLCS) collected in August 2012 are presented in Table 23, both of which reported general chemistry concentrations as non-detectable or below the applicable guidelines.

In addition, one field duplicate (DUP-04) was collected from PLCS that also reported general chemistry concentrations consistent with the original sample results.

5.3.6 <u>METALS IN LEACHATE</u>

Laboratory analytical results for metals from the two leachate samples (PLCS and SLCS) collected during the August 2012 sampling event are presented in Table 24, both of which reported metals concentrations as non-detectable or below the Provincial regulations except iron. This exceedance was previously reported during the August 2011 sampling event at PLCS as well as the 2008 and October 2009 sampling events at SLCS.

In addition, one field duplicate (DUP-04) was collected from PLCS that generally reported metals concentrations consistent with the original sample results.

5.3.7 <u>TOXICITY IN LEACHATE</u>

Leachate samples from the PLCS and SLCS were also submitted for toxicity analysis, which concluded the effluent from the PLCS and SLCS were non-toxic to rainbow trout with zero mortality for both samples after 96 hours.

6.0 <u>DISCUSSION</u>

6.1 <u>GROUNDWATER</u>

A review of groundwater analytical data from the August 2012 sampling event was compared to leachate analytical data collected from the PLCS and SLCS to determine if leachate appeared to be impacting groundwater. In general, BTEX/mTPH, PAH, PCB, VOC, general chemistry, and metals analytical data show groundwater conditions to be of better quality compared to leachate analytical data; therefore, it does not appear that groundwater is being influenced by leachate from the secure landfill. Groundwater data that includes previous monitoring programs from 2008 to 2012 is included in Appendix D.

Based on static groundwater levels measured during the 2012 Site visit, groundwater was confirmed to flow in a southwesterly direction toward Come By Chance Cove. In addition, static groundwater elevations in 2012 from the three sets of monitor wells and two surface water sample locations were compared to the PLCS and SLCS leachate elevations in the valve chambers. The groundwater elevations at MW93-1 and MW93-1A were measured at approximately 0.56 and 0.98 metres above the leachate elevation at the SLCS valve chamber, respectively. In comparison, groundwater elevations at MW93-2, MW93-2A, MW10-1, and MW10-1A measured approximately 0.9 to 1.8 metres below the leachate elevation at the SLCS valve chamber.

6.2 <u>SURFACE WATER</u>

A review of the downgradient surface water analytical data from the August 2012 sampling event was compared to leachate analytical data to determine if leachate may be impacting the surface water. In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions as dramatically distinct in comparison to the leachate analytical data. Two metals (aluminum and iron) reported exceedances in the upgradient and downgradient surface water samples whereas the leachate analytical data reported exceedances for one metal (iron); however, iron concentrations in the leachate were approximately 15 times that of the surface water samples. Surface water data that includes previous monitoring programs from 2008 to 2012 is included in Appendix D. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

6.3 <u>LEACHATE</u>

Prior to pumping and discharging leachate from the PLCS and SLCS, all analytical parameters were reviewed for compliance with Schedule A. In addition, copies of the results were submitted to DOEC and the Town for approval prior to the pumping event. On October 18 and November 1, 2012, approvals for discharge were received from DOEC and the Town, respectively. In accordance with the OMM Manual, the pumping event consisted of two Site visits so that a desired flow rate of 15 L/min was achieved on two successive days.

During the initial leachate pumping event in November 2012, it was observed that the PLCS and SLCS valves were in the open position with the discharge hose no longer connected to the PLCS valve. CRA determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculated in-flow rates. Maintaining these valves in the open position does not create any integrity issues for containment as the hydraulic head in the two leachate valve chambers has not risen above the ground surface.

6.3.1 NOVEMBER 2012 LEACHATE PUMPING EVENT

CRA returned to the Site on November 21, 2012 to initiate the leachate collection system pumping program. Approximately 12,200 Litres (L) were pumped from the PLCS valve chamber with a final measured in-flow rate of 14.9 L per minute (L/min) while approximately 24,900 L were pumped from the SLCS valve chamber with a final measured in-flow rate of 14.2 L/min. The desired in-flow rate of 15 L/min was achieved for the PLCS and SLCS during the initial pumping event.

CRA completed the subsequent leachate collection system pumping program on November 22, 2012. Approximately 6,500 L were pumped from the PLCS valve chamber with a final measured in-flow rate of 12.0 L/min while approximately 12,700 L were pumped from the SLCS valve chamber with a final measured in-flow rate of 12.2 L/min.

6.3.2 <u>LEACHATE PUMPING EVALUATION</u>

Volumes of leachate pumped and discharged from the PLCS and SLCS were compared to previous pumped volumes. A summary of leachate pumping from November 2000 to November 2012 is presented in the table below.

Summary of Leachate Pumping Volumes (Litres)						
Year	Month	PLCS	SLCS			
2000	November	13,000	70,000			
2003	November	15,000	56,000			
2004	August	NA	45,000			
2004	September	15,500	83,000			
2004	October	NA	32,000			
2006	October	NA	68,000			
2007	February	6,000	63,000			
2007	July	NA	103,000			
2008	November	NA	74,000			
Average Pre GWDS		~12,500	66,000			
2009	August	3,406	19,475			
2009	December	4,542	30,699			
2010	February	3,406	21,350			
2010	August	12,100	35,200			
2011	January	8,600	30,200			
2012	November	12,200	24,900			
Average Post GWDS		~7,400	~27,000			

GWDS: Groundwater drainage system installed in March 2009 NA: No leachate present / Not available

A review of the current and historical leachate pumping volumes from the PLCS and SLCS valve chambers demonstrates that pumped leachate volumes have decreased since the installation of the GWDS. A comparison of the average pumped leachate volumes from the PLCS prior to and following installation of the GWDS shows a decrease of approximately 40 percent. In addition, a comparison of the average pumped leachate volumes from the SLCS prior to and following installation of the GWDS shows a decrease of approximately 60 percent. Consequently, the GWDS appears to contribute to reduce volumes of pumped leachate from the PLCS and SLCS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

6.3.3 <u>HYDRAULIC CONNECTIVITY OF LINER SYSTEMS</u>

A pump down test was completed that used the existing PLCS and SLCS manholes and monitoring wells to evaluate the potential for a hydraulic connection between the PLCS and SLCS. Since the secondary liner forms the outermost layer of the landfill liner system and has historically required the pumping of dramatically more volumes of leachate compared to the PLCS, the pump down test involved the continual pumping of leachate from the SLCS manhole. Pumping from the SLCS was completed over a 6 hour period on December 18, 2012 during which leachate levels were monitored periodically in the PLCS. Over the 6 hour period, leachate in the PLCS dropped 0.063 metres; therefore, it was confirmed that hydraulic connection <u>does</u> exist between the PLCS and SLCS. Field measurements recorded during the pump down test are presented in Table 27.

6.3.4 <u>HYDRAULIC CONNECTIVITY OF LANDFILL TO GROUNDWATER</u>

A pump down test was completed that used the existing SLCS manhole and monitoring wells to evaluate the potential for a hydraulic connection between the SLCS and groundwater in the immediate area of the landfill. Since the secondary liner forms the outermost layer of the landfill liner system and has historically required the pumping of large volumes of leachate, the pump down test involved the continual pumping of leachate from the SLCS manhole. Pumping from the SLCS was completed over a 6 hour period on December 18, 2012 during which groundwater levels in the nearby six monitor wells were gauged periodically. The static leachate level in the SLCS at the start of pumping was 15.068 masl and was maintained at a level of approximately 12.1 to 13.5 masl throughout the pump down test. Field measurements recorded during the pump down test are presented in Table 27.

The two upgradient monitor wells (MW93-1 and MW93-1A) are located approximately 95 metres northeast of the landfill and reached depths of 11.2 and 7.8 masl with a ground surface elevation of approximately 16.3 masl; however, the landfill and these two monitor wells are separated by the GWDS at an approximate elevation of 13.5 masl. Groundwater levels measured in these two monitor wells reported an increase in groundwater elevations of 0.043 and 0.007 masl compared to starting groundwater elevations of 13.309 and 14.173 masl, respectively; therefore, it did not appear that pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and upgradient groundwater. Since the secondary liner at the bottom of the landfill was constructed at an assumed elevation of approximately 14.0 masl, it appears that groundwater upgradient of the landfill is likely intercepted in the GWDS and directed around the landfill.

The two cross-gradient monitor wells (MW93-2 and MW93-2A) are located approximately 40 metres south of the landfill and reached depths of 11.8 and 7.8 masl with a ground surface elevation of approximately 14.3 masl. Groundwater levels

measured in these two monitor wells reported an increase in groundwater elevation of 0.001 metres in MW93-2 and a decrease in groundwater elevation of 0.001 metres in MW93-2A compared to starting groundwater elevations of 15.468 and 16.037 masl for MW93-2 and MW93-2A, respectively; therefore, it did not appear that pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and cross-gradient groundwater. The surface water elevation of the adjacent brook was measured as 13.4 masl during the pumping event, which was very near the relatively constant groundwater elevation at MW93-2; groundwater in MW93-2A typically reported a constant elevation of 14.2 masl. Since the secondary liner at the bottom of the landfill was constructed at an assumed elevation of approximately 14.0 masl, it *does not* appear that groundwater cross-gradient of the landfill has an impact on leachate elevations within the landfill during normal weather conditions. This may not be the case during very high precipitation events when the nearby brook has higher water flow with increased surface water elevations; however, the brook surface water elevation would have to increase by more than 0.6 metres before potentially affecting the landfill.

The two downgradient monitor wells (MW10-1 and MW10-1A) are located approximately 40 metres northwest of the landfill and reached depths of 11.0 and 10.2 masl with a ground surface elevation of approximately 15.8 masl. Groundwater levels measured in these two monitor wells reported a decrease in groundwater elevation of 0.002 and 0.009 metres in MW10-1 and MW10-1A compared to starting groundwater elevations of 13.447 and 13.509 masl, respectively; therefore, pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and downgradient groundwater. Based on the March 2009 AMEC Come By Chance Secure Landfill Groundwater Drainage System Construction Report, a 1 % grade was used to construct the GWDS with a starting elevation of 14.00 masl at CO#1; therefore, the extrapolated elevation of CO#4 would be approximately 11.70 masl. The location of CO#4 is about 20 metres north of MW10-1 and MW10-1A and due the proximity of CO#4 to these monitor wells, groundwater elevations would be estimated as relatively close to the same depth as CO#4; however, groundwater elevations at the two nearby monitor wells were measured at approximately 13.5 masl, which is about 1.8 metres higher than the expected elevation of CO#4. When this information is combined with the GWDS discharge pipe inspection indicating little to no water in CO#4, it appears that CO#4 may have been constructed at a higher elevation than anticipated. Based on the information of a decrease in groundwater elevation at MW10-1 and MW10-1A and depth of the secondary liner at the bottom of the landfill being constructed at an assumed elevation of approximately 14.0 masl, it <u>does</u> appear that a hydraulic connection exists between the secondary liner and groundwater

downgradient from the landfill; however, it also appears the GWDS was not constructed to an effective depth between CO#2 and CO#4.

6.3.5 <u>PRECIPITATION INFILTRATION POTENTIAL</u>

A water balance for the landfill was originally intended to be calculated using potential precipitation infiltration in comparison to leachate volumes pumped from the landfill liner systems; however, leachate was not managed regularly to remove any accumulations except during semi-annual or annual pumping events associated with leachate and groundwater sampling. Therefore, potential precipitation infiltration was compared to volumes of leachate pumped from the SLCS and precipitation data. Leachate Pumping Volumes versus Monthly Precipitation and Static Groundwater Levels is presented in Table 28.

Using local climatology data, landfill design drawings, combined with some default climate data assumptions in the HELP Model (Hydrologic Evaluation of Landfill Performance), CRA calculated evaluated the top and side slopes of the landfill cover system. The HELP model requires two generalized groups of input parameters related to soil and design as well as climate data that includes effects related to vegetative cover and topsoil.

The HELP model calculated an average annual precipitation of 1,315.6 mm, which was very near the actual average annual precipitation of 1,319.0 mm for Arnold's Cove, NL and 1,269.9 mm for Come By Chance, NL according to Environment Canada's Canadian Climate Normals 1971-2000 (Climate Normals and Averages). The average annual infiltration or leakage through the landfill cover system was estimated as 3.4 mm per hectare per year at the top slope and 1.9 metres per hectare per year at the side slopes. Using the 1994 BAE Group design drawings for the landfill, the calculated area of the top slope was 0.078 hectares (ha) or 780 square metres (m²) while the area of the side slopes was 0.159 ha or 1,590 m². The modeled infiltration multiplied by the area for the top and side slopes resulted in an estimated annual infiltration of approximately 2,650 L through the top slope and approximately 3,020 L through the side slopes for a combined annual infiltration of 5,670 L.

Only records for the SLCS pumping were available and as such, the estimated leachate generation from the HELP model was compared to leachate pumping volumes from the SLCS. Pumping volumes from the SLCS ranged from 19,475 L in February 2007 to 103,000 L in July 2007. The maximum and minimum pumping volumes coincided with extreme monthly precipitation data from Environment Canada – the lowest pumping

volume in February 2007 reported 31 mm of precipitation while the highest pumping volume in July 2007 reported 334 mm of precipitation.

Based on the estimated annual leachate generation from infiltration calculated using the HELP model of 5,670 L, it is very obvious that leachate pumping volumes from the SLCS far exceed the estimated infiltration volume. When the pumping volumes of leachate from the PLCS are included, the difference is even more dramatic. Therefore, the liner systems of the landfill appear to be greatly influenced by the surrounding groundwater and indirectly by precipitation, thus confirming there are significant failures in the landfill liner systems.

6.3.6 <u>POTENTIAL LINER SYSTEM DEFICIENCIES</u>

The integrity of any landfill containment system is contingent on the level of quality control implemented during construction of the containment system components. The primary point of failure beyond those that occur as a result of poor construction practices is where the geosynthetic materials attach to objects such as gas vents or leachate collection pipes, and structures such as manholes. In the case of this Site, four potential failure mechanisms may be contributing to the high volumes of infiltration into the landfill liner systems as follows:

- Gas vent attachment to the landfill cover system that would permit precipitation to enter through a tear or failed weld between the vent pipe and liner.
- Leachate collection pipe liner wall penetrations through the boot where a tear or failed weld between the boot and liner would permit groundwater entry.
- Excessive and/or large punctures or tears in the liner systems that may have occurred during placement of the waste or as a result of differential settlement from the weight of the waste and large volumes of leachate contained within the liner system.
- Construction of the landfill liner edges around the perimeter of the landfill.

A file review of photographs taken during construction confirmed the gas vents and leachate collection pipes were welded to the liner systems during construction. Information related to the placement of waste in the landfill was not located with the exception that waste was categorized into two types with Type A being placed near the primary liner and Type B being spatially placed in the centre of the landfill so that Type A was completely surrounded the Type B waste.

The file review did confirm the construction detail used around the perimeter of the landfill for termination of the primary and secondary liners, which was essentially the same as identified in the 1994 BAE Group design drawings. Figure 5 shows a reproduced version of the 1994 construction detail. This detail specified the secondary liner would terminate in a trench excavated approximately 1.10 metres in depth with the liner draping over the inner wall of the trench, but not extending across the bottom or up the opposite wall of the trench. The primary liner was then specified to extend over and beyond the secondary liner trench, then drape over the inner wall of this trench in the same manner as the secondary liner trench. The file review revealed the trenching detail was generally being followed during construction; however, the liner was noted to have pulled up about 25 % of the distance from the bottom of the trench after placement of the sand layer. Finally, the cover liner was specified to extend over and beyond the secondary and primary liner trenches, but there was no reference to welding of the primary or secondary liners to the cover liner. Based on this construction detail and when groundwater elevations are sufficiently high around the northeastern and eastern areas of the landfill, a route exists for possible groundwater infiltration into the landfill as the cover liner was not sealed to the primary and/or secondary liners.

6.4 LANDFILL COVER INSPECTION

A landfill cover inspection was conducted on November 21, 2012. Notable items resulting from the landfill cover inspection are outlined below:

- Vegetation height reaching 1.5 metres, typically alders, which exceeds the OMM requirement of maximum vegetation height of 0.3 metres.
- Landfill vents in good condition and not obstructed.
- No evidence of erosion or large animal burrows on the landfill cover.
- Evidence of vole activity with tunnels and nesting activities in at least six locations; however, voles limit their activities to the top 300 mm and are not expected to impact the integrity of the landfill cap membrane.
- Slopes in good condition and covered with vegetation with no signs of erosion.
- Lateral drains dry with occasional areas of standing water.

Landfill cover inspection data from previous monitoring programs is included in Appendix D.

Upon reviewing the results of the elevation control survey, it was noted the elevation control points increased slightly in elevation by an average of 6.5 millimetres between the original elevations surveyed in August 2010 and the recent survey completed in

November 2012. Based on this information, the difference in elevation of the control points indicate that very limited and insignificant settlement is occurring at the landfill cover, which in turn indicates the contents of the landfill are not settling.

6.5 <u>GROUNDWATER DRAINAGE SYSTEM</u>

Four GWDS clean-outs were previously installed as part of the original system construction; visual inspections confirmed that water was not present. The discharge location, previously located on the west side of the gravel service road, was excavated and reconstructed at the roadside embankment as part of redevelopment of the area, which was related to the construction of a new asphalt plant (J-1 Contracting) prior to the November 2012 Site visit; a rodent screen was not observed covering the pipe discharge (Refer to Photograph 4 of Appendix A). A very low flow of water was observed from the discharge of the GWDS.

Debris or blockages were not present in any of the clean-outs during the Site visit and combined with the water flow from the downgradient discharge, it was determined the GWDS was functioning properly and cleaning was not required.

7.0 SUMMARY AND RECOMMENDATIONS

Conestoga-Rovers & Associates (CRA) was retained by the Newfoundland and Labrador Department of Environment and Conservation (DOEC) to complete the 2012/13 monitoring and maintenance program at the Come By Chance Secure Landfill (Site) located on Refinery Road in Come By Chance, Newfoundland and Labrador (NL) as shown on Figure 1. Site visits and field activities were completed in accordance with the DOEC 2012 Operations and Maintenance Manual (OMM).

The Come By Chance Secure Landfill covers an area of approximately 19,778 square metres (m²) located approximately 2.5 km west of the Trans Canada Highway and approximately 4 km south of the Town, NL. The landfill was constructed between 1994 and 1996 to facilitate the clean-up of hazardous waste associated with the Come By Chance Oil Refinery. Leachate containment is achieved through the use of a redundant liner system consisting of independent primary and secondary liners as well as a drainage pipe system to manage excess fluid and provide a means for leachate discharge.

A groundwater drainage system was installed in March 2009 starting at the east side of the landfill and is graded at one percent toward the northeast corner, then along the north side, and eventually discharging beyond the gravel road west of the Site.

The work completed by CRA during the 2012/13 monitoring and maintenance program involved sampling of the primary and secondary leachate collection valve chambers in advance of pumping down the chambers by discharging to a nearby ditch, groundwater and surface water sampling, landfill cover inspection, and groundwater drainage system inspection, and clean-out repairs. In addition, a hydraulic connectivity investigation was conducted to determine if surrounding groundwater was influencing leachate levels and if a hydraulic connection existed between the primary and secondary liners.

The Site visit with leachate, groundwater, and surface water sampling was conducted in August 2012, the leachate pumping event was completed in November 2012, and the hydraulic connectivity investigation was conducted in December 2012. Information regarding the 2012/13 monitoring and maintenance program is summarized below in Section 7.1 with recommendations provided in Section 7.2.
7.1 <u>2012/13 MONITORING AND MAINTENANCE SUMMARY</u>

7.1.1 <u>GROUNDWATER</u>

In general, BTEX/mTPH, PAH, PCB, VOC, general chemistry, and metals analytical data show groundwater conditions to be of better quality compared to leachate analytical data; therefore, it does not appear that groundwater is being influenced by leachate from the secure landfill. Based on static groundwater levels measured during the 2012 Site visit, it also appears that groundwater infiltration may still be occurring at the northeastern area of the Site.

7.1.2 <u>SURFACE WATER</u>

In general, the BTEX/mTPH, PAH, PCB, VOC, and general chemistry analytical data show surface water conditions as dramatically distinct in comparison to the leachate analytical data. Two metals (aluminum and iron) reported exceedances in the upgradient and downgradient surface water samples whereas the leachate analytical data reported exceedances for one metal (iron); however, iron concentrations in the leachate were approximately 15 times that of the surface water samples. Based on this information, it does not appear that leachate is seeping from the landfill liners into the downgradient surface water; therefore, the secure landfill liners appear to be performing in accordance with their original intent of acting as a barrier between leachate accumulations within the landfill and surface water in the surrounding area.

7.1.3 <u>LEACHATE</u>

In accordance with the OMM, both pumping events consisted of two Site visits so that a desired flow rate of 15 L/min could be achieved on two successive days. During the Site visit for leachate pumping in November 2012, it was observed that the PLCS and SLCS valves were permanently in the open position with the discharge hose no longer connected to the PLCS valve. CRA determined in-flow rates by pumping down each valve chamber, measuring the change in head over a fixed period of time, then calculating in-flow. It was also noted that leachate elevations in the PLCS and SLCS for two consecutive Site visits were less than 0.3 metres below the top of the valve chambers.

A review of the current and historical leachate pumping volumes from the PLCS and SLCS valve chambers demonstrates that pumped leachate volumes have decreased since the installation of the groundwater drainage system. A comparison of the average

pumped leachate volumes from the PLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 40 percent. In addition, a comparison of the average pumped leachate volumes from the SLCS prior to and following installation of the groundwater drainage system shows a decrease of approximately 60 percent. Consequently, it appears the groundwater drainage system has contributed to the reduction of volumes of pumped leachate from the PLCS and SLCS; however, significant volumes of leachate are still present within the two liners that require pumping on a regular basis.

7.1.4 LANDFILL COVER

The landfill cover inspection was conducted on November 21, 2012, which indicated that minor maintenance is required. The only issue of concern related to maintenance is the cutting of vegetation, typically alders, which have reached 1.5 metres in height, considerably more than the OMM recommended height restriction of 0.3 metres. Meadow vole activity from tunneling and nesting was noted in numerous locations on the landfill cover; however, meadow voles typically limit their habitat to less than 300 mm from surface.

Upon reviewing the results of the elevation control survey, it was noted the elevation control points decreased by an average of 6.5 millimetres between the original elevations surveyed in August 2010 and the recent survey completed in November 2012. Based on this information, the difference in elevation of the control points indicate that very limited and insignificant settlement is occurring at the landfill cover, which in turn indicates the contents of the landfill are not settling.

7.1.5 <u>GROUNDWATER DRAINAGE SYSTEM</u>

Four GWDS clean-outs were previously installed as part of the original system construction; visual inspections confirmed that water was not present. The discharge location, previously located on the west side of the gravel service road, was excavated and reconstructed at the roadside embankment as part of redevelopment of the area, which was related to the construction of a new asphalt plant (J-1 Contracting) prior to the November 2012 Site visit; a rodent screen was not observed covering the pipe discharge. A very low flow of water was observed from the discharge of the GWDS.

Debris or blockages were not present in any of the clean-outs during the Site visit and combined with the water flow from the downgradient discharge, it was determined the GWDS was functioning properly and cleaning was not required.

7.1.6 <u>HYDRAULIC CONNECTIVITY OF LINER SYSTEMS</u>

A pump down test was completed that used the existing PLCS and SLCS manholes and monitoring wells to evaluate the potential for a hydraulic connection between the PLCS and SLCS. Pumping from the SLCS was completed over a 6 hour period in December 2012 during which leachate levels were monitored periodically in the PLCS. Over the 6 hour period, leachate in the PLCS dropped 0.063 metres; therefore, it was confirmed that hydraulic connection *does* exist between the PLCS and SLCS.

7.1.7 <u>HYDRAULIC CONNECTIVITY OF LANDFILL TO GROUNDWATER</u>

A pump down test was completed that used the existing SLCS manhole and monitoring wells to evaluate the potential for a hydraulic connection between the SLCS and groundwater in the immediate area of the landfill. Since the secondary liner forms the outermost layer of the landfill liner system and has historically required the pumping of large volumes of leachate, the pump down test involved the continual pumping of leachate from the SLCS manhole. Pumping from the SLCS was completed over a 6 hour in December 2012 during which groundwater levels in the nearby six monitor wells were gauged periodically. The two upgradient monitor wells reported an increase in groundwater elevations compared to starting groundwater elevations; therefore, it did not appear that pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and upgradient groundwater. Since the secondary liner at the bottom of the landfill was constructed at an assumed elevation of approximately 14.0 masl, it appears that groundwater upgradient of the landfill is likely intercepted in the GWDS and directed around the landfill.

The two cross-gradient monitor wells reported an increase in groundwater elevation compared to starting groundwater elevations; therefore, it did not appear that pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and cross-gradient groundwater. The surface water elevation of the adjacent brook was very near the relatively constant groundwater elevation at the cross-gradient monitor wells. Since the secondary liner at the bottom of the landfill was constructed at an assumed elevation of approximately 14.0 masl, it <u>does not</u> appear that groundwater cross-gradient of the landfill has an impact on leachate elevations within the landfill

during normal weather conditions. This may not be the case during very high precipitation events when the nearby brook has higher water flow with increased surface water elevations; however, the brook surface water elevation would have to increase by more than 0.6 metres before potentially affecting the landfill.

The two downgradient monitor wells reported a decrease in groundwater elevation compared to starting groundwater elevations; therefore, pumping down leachate from the SLCS provided confirmation of a hydraulic connection between the SLCS and downgradient groundwater. Based on the March 2009 AMEC Come By Chance Secure Landfill Groundwater Drainage System Construction Report, the extrapolated elevation of CO#4 would be relatively close to groundwater elevations at the nearby downgradient monitor wells; however, groundwater was measured at approximately 1.8 metres higher than the expected elevation of CO#4. Based on the information of a decrease in groundwater elevation at the downgradient monitor wells and depth of the secondary liner at the bottom of the landfill being constructed at an assumed elevation of approximately 14.0 masl, it <u>does</u> appear that a hydraulic connection exists between the secondary liner and groundwater downgradient from the landfill; however, it also appears the GWDS was not constructed to an effective depth between CO#2 and CO#4.

7.1.8 <u>PRECIPITATION INFILTRATION POTENTIAL</u>

A water balance for the landfill was originally intended to be calculated using potential precipitation infiltration in comparison to leachate volumes pumped from the landfill liner systems; however, leachate was not managed regularly to remove any accumulations except during semi-annual or annual pumping events associated with leachate and groundwater sampling. Therefore, potential precipitation infiltration was compared to volumes of leachate pumped from the SLCS and precipitation data.

Using local climatology data, landfill design drawings, combined with some default climate data assumptions in the HELP Model (Hydrologic Evaluation of Landfill Performance), CRA calculated evaluated the top and side slopes of the landfill cover system based on two generalized groups of input parameters related to soil and landfill design as well as climate data that includes effects related to vegetative cover and topsoil.

The HELP model calculated an average annual precipitation of 1,315.6 mm, which was very near the actual average annual precipitation of 1,319.0 mm for Arnold's Cove, NL and 1,269.9 mm for Come By Chance, NL. The average annual infiltration or leakage through the landfill cover system was estimated at 3.4 mm per hectare per year at the

top slope and 1.9 mm per hectare per year at the side slopes. The modeled infiltration multiplied by the area for the top and side slopes resulted in an estimated annual infiltration of approximately 2,650 L through the top slope and approximately 3,020 L through the side slopes for a combined annual infiltration of 5,670 L.

Only records for the SLCS pumping were available and as such, the estimated leachate generation from the HELP model was compared to leachate pumping volumes from the SLCS. Pumping volumes from the SLCS ranged from 19,475 L in February 2007 to 103,000 L in July 2007. The maximum and minimum pumping volumes coincided with extreme monthly precipitation data from Environment Canada – the lowest pumping volume in February 2007 reported 31 mm of precipitation while the highest pumping volume in July 2007 reported 334 mm of precipitation.

Based on the estimated annual leachate volume of 5,670 L generated from infiltration calculated using the HELP model, it is very obvious that leachate pumping volumes from the SLCS far exceed the estimated infiltration volume. When the pumping volumes of leachate from the PLCS are included, the difference is even more dramatic. Therefore, the liner systems of the landfill appear to be greatly influenced by the surrounding groundwater and indirectly by precipitation, thus confirming there are significant failures in the landfill liner systems.

7.1.9 POTENTIAL LINER SYSTEM DEFICIENCIES

Four potential failure mechanisms may be contributing to the high volumes of infiltration into the landfill liner systems as follows:

- Gas vent attachment to the landfill cover system that would permit precipitation to enter through a tear or failed weld between the vent pipe and liner.
- Leachate collection pipe liner wall penetrations through the boot where a tear or failed weld between the boot and liner would permit groundwater entry.
- Excessive and/or large punctures or tears in the liner systems that may have occurred during placement of the waste or as a result of differential settlement from the weight of the waste and large volumes of leachate/groundwater contained within the liner system.
- Construction of the landfill liner edges around the perimeter of the landfill.

The file review confirmed the construction detail used around the perimeter of the landfill for termination of the primary and secondary liners was essentially the same as the 1994 design drawings. The file review revealed the trenching detail was generally

being followed during construction; however, the liner was noted to have pulled up about 25 % of the distance from the bottom of the trench after placement of the sand layer. Finally, the cover liner was specified to extend over and beyond the secondary and primary liner trenches, but there was no reference to welding of the primary or secondary liners to the cover liner. Based on this construction detail and when groundwater elevations are sufficiently high around the northeastern and eastern areas of the landfill, a route exists for possible groundwater infiltration into the landfill as the cover liner was not sealed to the primary and/or secondary liners.

7.2 <u>RECOMMENDATIONS</u>

Based on the findings of the 2012/13 monitoring and maintenance program along with data from previous monitoring programs, the following recommendations are offered for consideration by DOEC:

Monitoring and Maintenance Schedule: The leachate quality is continually reporting BTEX/TPH, PAH, PCB, general chemistry, and metals concentrations at levels that would not affect the surrounding environment, most notably groundwater and surface water. In addition, the landfill was constructed approximately 20 years ago and based on the historical analytical data reviewed in this report, it appears that leachate has reached a steady-state condition. Furthermore, groundwater infiltration has been evident for many years and has acted as a flushing mechanism for any contaminants that may have been present, although elevated levels of contaminants have not historically been identified. Therefore, CRA recommend that further monitoring of the landfill and pumping out of the PLCS and SLCS are not required; however, annual inspections should be continued to ensure the landfill cover system is not compromised by erosion. CRA understands that DOEC would prefer to continue monitoring activities at the landfill as a matter of due diligence.

Vegetation Control: CRA recommend that all vegetation on the landfill cover that measures over 0.3 metres in height should be cut down. This work can be completed in conjunction with vegetation control in the monitor well locations outside the fenced area of the landfill.

In addition, it was noted that access to two monitor wells (MW93-1 and MW93-1A) was somewhat difficult due to the excessive vegetative growth in the area with alders reaching heights of 1.8 metres. CRA recommend that alders be cut down in this location to better facilitate future field programs (i.e. the transport of field equipment such as water level meters, coolers, sample jars, etc.).

8.0 <u>REFERENCES</u>

- Design Drawings entitled "*Come By Chance Rehabilitation of Waste Disposal Sites*" prepared by The BAE Group for Newfoundland and Labrador Department of Environment and Lands, dated April 1994.
- Report entitled "Annual Summary Report, 2009/2010 Environmental Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, Newfoundland" prepared by Pinchin Leblanc Environmental Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 2010.
- Report entitled "Annual Summary Report 2010/2011 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CRA Limited for Newfoundland and Labrador Department of Environment and Conservation, dated March 2011.
- Report entitled "2011/2012 Monitoring and Maintenance Program, Come By Chance Secure Landfill, Come By Chance, NL" prepared by CBCL Limited for Newfoundland and Labrador Department of Environment and Conservation, dated May 24, 2012.
- Report entitled "*Come By Chance Secure Landfill Operations, Maintenance and Monitoring* (*OMM*) *Manual*" prepared by Newfoundland and Labrador Department of Environment and Conservation, Pollution Prevention Division, dated June 2012.
- User's Guide entitled "*The Hydrologic Evaluation of Landfill Performance (HELP) Model for Version 3; EPA/600/R-94/168a*" prepared by Schroeder, P.R. et al with the USEPA in Washington, D.C., USA.
- Computer Model entitled "*The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3; EPA/600/R-94/168b*" prepared by Schroeder, P.R. et al with the USEPA in Washington, D.C., USA.
- Climate Data entitled "National Climate Data and Information Archive, Canadian Climate Normals 1971-2000 (Climate Normals and Averages) – Arnold's Cove and Come By Chance" published by Environment Canada; <u>http://climate.weatheroffice.gc.ca</u>.

9.0 <u>CLOSURE</u>

All of Which is Respectfully Submitted,

CONESTOGA-ROVERS & ASSOCIATES

Andre Byst

Brian Luffman, P. Eng.

Andrew Bryant, B.Sc.

STATIC WATER LEVELS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

ID	Ground Surface Elevation	Length of Stick-up	TOC Elevation	Groundwater Depth	Water Elevation	
ID ID				Dec 2012	Dec 2012	
	(masl)	(m)	(masl)	(mbTOC)	(masl)	
PLCS	15.960	-	15.960	0.89	15.070	
SLCS	15.955	-	15.955	0.892	15.063	
MW 93-1	16.300	1.100	17.400	1.780	15.620	
MW 93-1A	16.310	1.400	17.710	1.669	16.041	
MW 93-2	14.290	1.100	15.390	2.111	13.279	
MW 93-2A	14.310	1.100	15.410	1.234	14.176	
MW 10-1	15.790	0.846	16.636	3.188	13.448	
MW 10-1A	15.890	0.854	16.744	3.234	13.510	
SW-1	-	-	-	-	9.270	
SW-2	_	-	-	-	12.555	
SW-3	-	-	-	-	13.385	

Notes:

- m = Metres
- TOC = Top of Casing
- masl = Metres Above Sea Level
- mbTOC = Metres Below Top of Casing

GPS CO-ORDINATES OF KEY SITE FEATURES 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

ID	NORTHING	EASTING
	(m)	(m)
PLCS	5299282.569	724372.496
SLCS	5299280.034	724373.295
MW 93-1	5299421.760	724546.360
MW 93-1A	5299422.020	724548.440
MW 93-2	5299235.085	724470.927
MW 93-2A	5299232.673	724472.066
MW 10-1	5299332.811	724352.601
MW 10-1A	5299330.374	724354.471
SURFACE UP	5299241.840	724543.520
SURFACE DOWN	5299166.473	724273.883
ECP 1	5299300.345	724396.495
ECP 2	5299262.242	724421.331
ECP 3	5299284.519	724455.814
ECP 4	5299308.292	724454.469
CLEAN-OUT 1	5299162.490	724361.549
CLEAN-OUT2	5299172.051	724428.014
CLEAN-OUT 3	5299117.496	724456.616
CLEAN-OUT 4	5299348.991	724353.634
VENT 1	5299290.775	724406.665
VENT 2	5299307.780	724490.445
VOLE NEST	5299271.950	724496.792
VOLE 1	5299266.509	724404.806
VOLE 2	5299284.585	724403.246
VOLE 3	5299354.435	724457.444
VOLE 4	5299349.388	724496.201
VOLE 5	5299271.722	724468.868
VOLE 6	5299270.250	724430.847
VOLE 7	5299301.319	724397.222

Notes:

All points recorded using Universal Transverse Mercator Zone 21 as coordinate system

PLCS	= Primary Leachate Collection System Valve Chamber
SLCS	= Secondary Leachate Collection System Valve Chamber
MW	= Monitoring Well
ECP	= Elevation Control Point
VOLE	= Meadow Vole Hole

LEACHATE SAMPLING AND PUMPING INFORMATION PRIMARY LEACHATE COLLECTION SYSTEM 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	PLCS LEACHATE SAMPLING					PLCS PUMPING EVENT					
Date	Weather	Valve Condition	Initial head (mbTOVC)	Analysis Conducted Sample Condition	Date	Weather	Valve Condition	Final Flow Rate (L/min)	Pumping Time (hours)		
August 30, 2012	Sunny, +20 °C	Unknown*	0.6	BTEX, TPH, Gen. Chem., Metals, PAH, VOC, PCB, Toxicity	November 21, 2012	Overcast, -1 °C	Open, flowing freely, hose disconnected	14.9	5		

Always maintain samples at 4°C

Plan to deliver samples to analytical laboratory within 3 days of sampling

mbTOVC - Metres from water level to top of valve chamber

*PLCS valve chamber completely filled with leachate; therefore, unable to inspect valve

Elevation of Top of PLCS Valve Chamber = 15.960 m

Containers Required For Analysis

BTEX:	3 x 40 mL amber glass vials (filled, with no headspace)
TPH:	2 x 250 mL amber glass
Gen Chem:	1 x 1 L plastic
PAHs:	2 x 250 mL amber glass
VOCs:	3 x 40 mL amber glass vials (filled, with no headspace)
PCBs:	2 x 250 mL glass
Metals:	1 x 50 mL plastic tube or 1 x 250 mL plastic
Toxicity:	2 x 20 L plastic food grade

Notes:

LEACHATE SAMPLING AND PUMPING INFORMATION SECONDARY LEACHATE COLLECTION SYSTEM 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	S	LCS LEACHAT	FE SAMPLIN	G	SLCS PUMPING EVENT					
Date	Weather	Valve Condition	Initial head (mbTOVC)	Analysis Conducted Sample Condition	Date	Weather Valve Condition		Final Flow Rate (L/min)	Pumping Time (hours)	
August 30, 2012	Sunny, +20 °C	Unknown*	0.6	BTEX, TPH, Gen. Chem., Metals, PAH, VOC, PCB, Toxicity	November 21, 2012	Overcast, -1 °C	Open, flowing freely, hose disconnected	14.2	1.5	

Notes: Always maintain samples at 4°C

Plan to deliver samples to analytical laboratory within 3 days of sampling

mbTOVC - Metres from water level to top of manhole

*SLCS valve chamber completely filled with leachate; therefore, unable to inspect valve

Elevation of Top of SLCS Valve Chamber = 15.96 m

Containers Required For Analysis

BTEX:	3 x 40 mL amber glass vials (filled, with no headspace)
TPH:	2 x 250 mL amber glass
Gen Chem:	1 x 1 L plastic
PAHs:	2 x 250 mL amber glass
VOCs:	3 x 40 mL amber glass vials (filled, with no headspace)
PCBs:	2 x 250 mL glass
Metals:	1 x 50 mL plastic tube or 1 x 250 mL plastic
Toxicity:	2 x 20 L plastic food grade

LANDFILL CAP INSPECTION FORM 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

		Landfill Cap Inspection						Elevational Survey Control Points			
Date	Weather	Vegetative Height (metres)	Vent Condition	Evidence of Erosion / Animal Burrows	Condition of Slopes	Condition of Lateral Drains	Point 1	Point 2	Point 3	Point 4	
November 21, 2012	Overcast, -1 °C	0 - 1.5 m	No damage, not obstructed	8 Meadow Vole Communites	No erosion, damage noted	Dry, occasional puddles, grassy	20.460	20.467	20.945	21.192	

Notes: Elevations measured using an assumed benchmark of 15.960 m at top of PLCS valve chamber

ELEVATIONAL CONTROL POINT SURVEY DATA 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Original Su	Driginal Survey Date: Jul 16, 2010								
Recent Surv	vey Date:			Nov 2	1, 2012				
Location	Original	20	10	20	12				
Location	Elevation	Survey	DIFF	Survey	DIFF				
PLCS	15.960	-	-	-	-				
ECP1	20.439	20.388	0.051	20.450	-0.011				
ECP2	20.442	20.405	0.037	20.467	-0.025				
ECP3	20.935	20.896	0.039	20.945	-0.010				
ECP4	21.212	21.162	0.050	21.192	0.020				

Notes:

BM = PLCS

All measurements are in metres.

ECP = Elevational Control Point

DIFF = Difference of original versus current elevations

(Positive indicates amount of settlement)

Page 1 of 1

TABLE 7

GROUNDWATER ANALYTICAL DATA - BTEX/mTPH (mg/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	Data			Ethyl_			Т	otal Petrole	um Hydrocarbons	(TPH)
Sample Location	Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	ns (TPH) H Comments - - - - - - - - - - - - -
MW 93-1	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-
MW 93-1A	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-
DUP-03	Aug 30, 2012	<	<	<	<	<	<	<	<	-
MW 93-2	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-
MW 93-2A	Aug 30, 2012	<	<	<	<	<	<	<	<	-
MW 10-1	Aug 30, 2012	<	<	<	<	<	<	<	<	-
MW 10-1A	Aug 30, 2012	<	<	<	<	<	<	<	<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
				20					20	Gasoline
Atlantic RBCA Tie	r I RBSLs ¹	20	20		20	na	na	na	20	Diesel / #2 Fuel Oil
									20	# 6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1 Atlantic Risk-Based Corrective Action (RBCA) Tier I Risk-Based Screening Level (RBSL) Table values {commercial/non-potable/coarse grained soil}.

RDL = Reportable De	etection Limit	TPuH = Total Purgeable Hydrocarbons
< = Parameter below	detection limit	TExH = Total Extractable Hydrocarbons
- = Not analysed		TPH = Total Petroleum Hydrocarbons
0.0	= above criteria	Modified TPH = mTPH = TExH + TPuH
<(#) = Parameter belo	ow specified detection limit	TPH = mTPH + BTEX
DUP-03 = Field Dupl	icate of MW 93-1A	

MW = Monitor Well

G = Gasoline FO = Fuel Oil LO = Lube Oil W = Weathered

GROUNDWATER ANALYTICAL DATA - PAHs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW 93-1	MW 93-1A	DUP-03	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	RDL	Criteria*
		Aug 30, 2012								
1-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	0.05	1,800
2-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	0.05	1,800
Acenaphthene	ug/L	<	<	<	<	<	<	<	0.01	600
Acenaphthylene	ug/L	<	<	<	<	<	<	<	0.01	1.8
Anthracene	ug/L	<	<	<	<	<	<	<	0.01	2.4
Benzo(a)anthracene	ug/L	<	<	<	<	<	<	<	0.01	4.7
Benzo(a)pyrene	ug/L	<	<	<	<	<	<	<	0.01	0.8
Benzo(b)fluoranthene	ug/L	<	<	<	<	<	<	<	0.01	0.75
Benzo(g,h,i)perylene	ug/L	<	<	<	<	<	<	<	0.01	0.2
Benzo(j)fluoranthene	ug/L	<	<	<	<	<	<	<	0.01	-
Benzo(k)fluoranthene	ug/L	<	<	<	<	<	<	<	0.01	0.4
Chrysene	ug/L	<	<	<	<	<	<	<	0.01	1
Dibenz(a,h)anthracene	ug/L	<	<	<	<	<	<	<	0.01	0.52
Fluoranthene	ug/L	<	<	<	<	<	<	<	0.01	130
Fluorene	ug/L	<	<	<	<	<	<	<	0.01	400
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	<	<	<	0.01	0.2
Naphthalene	ug/L	<	<	<	<	<	<	<	0.20	1,400
Perylene	ug/L	<	<	<	<	<	<	0.017	0.01	-
Phenanthrene	ug/L	<	<	<	<	0.012	<	<	0.01	580
Pyrene	ug/L	<	<	<	<	<	<	<	0.01	68

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of

the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-

RDL = Reportable Detection Limit

0.0

MW = Monitor Well

- = Not analysed/No criteria

< = Parameter below detection limit

DUP-03 = Field Duplicate of MW 93-1A

GROUNDWATER ANALYTICAL DATA - PCBs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW 93-1	MW 93-1A	DUP-03	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	RDL	Criteria*
		Aug 30, 2012								
Total PCBs	ug/L	<	<	<	<	<	<	<	0.05	7.8

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use

Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site

Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit **0.0** = above criteria

MW = Monitor Well

< = Parameter below detection limit

DUP-03= Field Duplicate of MW 93-1A

GROUNDWATER ANALYTICAL DATA - VOCs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW 93-1	MW 93-1A	DUP-03	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	RDL	Criteria*
		Aug 30, 2012								
Benzene	ug/L	<	<	<	<	<	<	<	1.00	44
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	1.00	85,000
Bromoform	ug/L	<	<	<	<	<	<	<	1.00	380
Bromomethane	ug/L	<	<	<	<	<	<	<	3.00	5.6
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	1.00	0.79
Chlorobenzene	ug/L	<	<	<	<	<	<	<	1.00	630
Chloroethane	ug/L	<	<	<	<	<	<	<	8.00	-
Chloroform	ug/L	<	<	<	<	<	<	<	1.00	2.4
Chloromethane	ug/L	<	<	<	<	<	<	<	8.00	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	1.00	82,000
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	0.50	4,600
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	1.00	9,600
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	1.00	8
1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	2.00	320
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	1.00	1.6
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	0.50	1.6
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	2.00	1.6
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	2.00	1.6
1,2-Dichloropropane	ug/L	<	<	<	<	<	3.00	6.80	1.00	16
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	2.00	5.2
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	1.00	5.2
Ethylbenzene	ug/L	<	<	<	<	<	<	<	1.00	2,300
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<	3.00	610
Xylenes	ug/L	<	<	<	<	<	<	<	2.00	4,200
Styrene	ug/L	<	<	<	<	<	<	<	1.00	1,300
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	1.00	1.6
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	1.00	3.2
Toluene	ug/L	<	<	<	<	<	<	<	1.00	18,000
Trichloroethylene	ug/L	<	<	<	<	<	<	<	1.00	1.6
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	1.00	640
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	1.00	4.7
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<	<	8.00	2,500
Vinyl Chloride	ug/L	<	<	<	<	<	<	<	0.50	0.5

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

0.0 = above criteria

MW = Monitor Well -= Not analysed/No criteria < = Parameter below detection limit DUP-03= Field Duplicate of MW 93-1A

GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW 93-1	MW 93-1A	DUP-03	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	RDL	Criteria*
		Aug 30, 2012								
Anion Sum	me/L	6.51	6.5	6.47	6.36	1.37	3.24	2.11	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	270	260	250	210.0	11.0	140	77.0	1.00	-
Calculated TDS	mg/L	338	334	334	353.0	96.0	174	122.0	1.00	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	4.7	5.2	5.4	2.60	<	1.1	<	1.00	-
Cation Sum	me/L	6.14	5.89	5.94	5.99	1.44	3.11	1.98	N/A	-
Hardness (CaCO3)	mg/L	150	140	150	250	34	140	84	1.00	-
Ion Balance (% Difference)	%	2.92	4.92	4.27	3.00	2.49	2.05	3.18	N/A	-
Langelier Index (@ 20C)	N/A	0.815	0.826	0.846	0.90	-3.03	0.365	-0.60	N/A	-
Langelier Index (@ 4C)	N/A	0.566	0.577	0.597	0.65	-3.28	0.115	-0.85	N/A	-
Nitrate (N)	mg/L	<	<	<	<	<	0.16	0.08	0.05	-
Saturation pH (@ 20C)	N/A	7.45	7.5	7.5	7.22	9.28	7.55	8.00	N/A	-
Saturation pH (@ 4C)	N/A	7.69	7.75	7.75	7.47	9.53	7.8	8.25	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	280	260	260	220	12	140	77	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	5.00	-
Dissolved Chloride (Cl)	mg/L	11	30	30	20	17	3.8	4	1	-
Colour	TCU	<	<	<	<	41.00	5.6	7.70	5.00	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	0.00	-
Nitrate + Nitrite	mg/L	<	<	<	<	<	0.16	0.08	0.05	-
Nitrite (N)	mg/L	<	<	<	<	<	<	<	0.01	-
Nitrogen (Ammonia Nitrogen)	mg/L	<	<	<	<	0.40	<	0.11	0.05	-
Total Organic Carbon (C)	mg/L	<	1.4	1.5	0.88	22.00	2.7	8.70	0.50	-
Orthophosphate (P)	mg/L	<	<	<	<	<	<	<	0.01	-
pH	pН	8.26	8.33	8.35	8.12	6.25	7.91	7.40	N/A	-
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	0.00	12,000
Reactive Silica (SiO2)	mg/L	5.3	9.1	9.1	18.00	5.70	7.4	10.00	0.50	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	33	19	20	71	32	17	21	2	-
Sulphide	mg/L	-	-	-	-	-	-	-	0.02	-
Turbidity	NTU	590	5.9	5.7	4.0	120.0	26	240.0	0.1	-
Conductivity	uS/cm	580	580	590	580	150	300	200	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit **0.0** = above criteria

MW = Monitor Well

- = Not analysed/No criteria

< = Parameter below detection limit

DUP-03= Field Duplicate of MW 93-1A

GROUNDWATER ANALYTICAL DATA - METALS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	MW 93-1	MW 93-1A	DUP-03	MW 93-2	MW 93-2A	MW 10-1	MW 10-1A	RDL	Criteria*
		Aug 30, 2012								
Aluminum (Al)	ug/L	13.9	6.8	13.0	<5.0	246	21.7	39.8	5.0	-
Antimony (Sb)	ug/L	<	<	<	<	<	<	<	1.0	20,000
Arsenic (As)	ug/L	<	<	<	1.7	<	<	<	1.0	1,900
Barium (Ba)	ug/L	80.0	103	107	196	34.6	42.1	37.7	1.0	29,000
Beryllium (Be)	ug/L	<	<	<	<	<	<	<	1.0	67
Bismuth (Bi)	ug/L	<	<	<	<	<	<	<	2.0	-
Boron (B)	ug/L	78	118	118	991	<	<	<	5.0	45,000
Cadmium (Cd)	ug/L	<	<	<	<	1.50	0.060	0.044	0.017	2.7
Calcium (Ca)	ug/L	35500	32800	33000	77400	9930	49500	29400	100	-
Chromium (Cr)	ug/L	<	<	<	<	<	<	<	1.0	810/140 ⁽¹⁾
Cobalt (Co)	ug/L	0.58	<	<	<	0.82	<	8.15	0.4	66
Copper (Cu)	ug/L	<	<	6.8	<	2.7	6.4	8.5	2.0	87
Iron (Fe)	ug/L	<	50	55	54	8530	<	726	50	-
Lead (Pb)	ug/L	0.70	<	<	<	1.41	<	<	0.5	25
Magnesium (Mg)	ug/L	15000	15000	15400	14700	2240	3600	2520	100	-
Manganese (Mn)	ug/L	131	106	103	732	3490	10.5	618	2.0	-
Molybdenum (Mo)	ug/L	15.0	11.9	10.7	<	<	2.0	<	2.0	9,200
Nickel (Ni)	ug/L	<	<	<	<	<	2.6	9.1	2.0	490
Phosphorus (P)	ug/L	<	<	<	<	<	<	<	100	-
Potassium (K)	ug/L	2660	1680	1730	1280	1090	1510	874	100	-
Selenium (Se)	ug/L	<	<	<	<	<	<	<	1.0	63
Silver (Ag)	ug/L	<	<	<	<	<	<	<	0.1	1.5
Sodium (Na)	ug/L	70400	68200	68600	20300	9110	7020	5750	100	2,300,000
Strontium (Sr)	ug/L	247	246	249	229	40.3	104	67.0	2.0	-
Thallium (Tl)	ug/L	<	<	<	<	<	<	<	0.1	510
Tin (Sn)	ug/L	<	<	<	<	<	<	<	2.0	-
Titanium (Ti)	ug/L	<	<	<	<	<	<	<	2.0	-
Uranium (U)	ug/L	1.24	0.23	0.21	0.23	<	0.27	<	0.1	-
Vanadium (V)	ug/L	<	<	<	<	<	<	<	2.0	250
Zinc (Zn)	ug/L	<	<	<	<	835	8.0	15.5	5.0	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit

0.0 = above criteria

MW = Monitor Well

- = Not analysed/No criteria

< = Parameter below detection limit

DUP-03= Field Duplicate of MW 93-1A

(1) Criteria for Total Chromium = 810 ug/L, Criteria for Chromium (VI) = 140 ug/L

SURFACE WATER ANALYTICAL DATA - BTEX/mTPH (mg/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Sample Location	Date Sampled		Toluene	Etherl		Total Petroleum Hydrocarbons (TPH)					
		Benzene		benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	ТЕхН С ₂₁ -С ₃₂	Modified TPH	Comments	
SURFACE UP	Nov 07, 2012	<	<	<	<	<	<	<	<	-	
SURACE DOWN	Nov 07, 2012	<	<	<	<	<	<	<	<	-	
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-	
2012 RBCA Tier I	Ecological								1.5	Gasoline	
Screening Levels for the Protection of		2.10	0.77	0.32	0.33	-	-	-	0.1	Diesel /#2 Fuel Oil	
Aquatic Life ¹									0.1	#6 Oil	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Atlantic RBCA (Risk-Based Corrective Action) Version 3.0 (July 2012) Tier I Surface Water Screening Levels for the Protection of Freshwater and Marine Aquatic Life (mg/L)

RDL = Reportable Detection Limit							
< = Parameter below detection limit							
- = Not analysed							
DUP = Laboratory duplicate							
0.0	= above criteria						

TPuH = Total Purgeable Hydrocarbons	G = Gasoline
TExH = Total Extractable Hydrocarbons	FO = Fuel Oil
TPH = Total Petroleum Hydrocarbons	LO = Lube Oil
Modified TPH = $mTPH$ = $TExH$ + $TPuH$	W = Weathered
TPH = mTPH + BTEX	

SURFACE WATER ANALYTICAL DATA - PAHs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFACE UP	SURFACE DOWN	RDL	Criteria*
		Nov 07, 2012	Nov 07, 2012		
1-Methylnaphthalene	ug/L	<	<	0.05	-
2-Methylnaphthalene	ug/L	<	<	0.05	-
Acenaphthene	ug/L	<	<	0.01	5.8
Acenaphthylene	ug/L	<	<	0.01	-
Anthracene	ug/L	<	<	0.01	0.012
Benzo(a)anthracene	ug/L	<	<	0.01	0.018
Benzo(a)pyrene	ug/L	<	<	0.01	0.015
Benzo(b)fluoranthene	ug/L	<	<	0.01	-
Benzo(g,h,i)perylene	ug/L	<	<	0.01	-
Benzo(j)fluoranthene	ug/L	<	<	0.01	-
Benzo(k)fluoranthene	ug/L	<	<	0.01	-
Chrysene	ug/L	<	<	0.01	-
Dibenz(a,h)anthracene	ug/L	<	<	0.01	-
Fluoranthene	ug/L	<	<	0.01	0.04
Fluorene	ug/L	<	<	0.01	3.0
Indeno(1,2,3-cd)pyrene	ug/L	<	<	0.01	-
Naphthalene	ug/L	<	<	0.2	1.1
Perylene	ug/L	<	<	0.01	_
Phenanthrene	ug/L	0.011	0.012	0.01	0.4
Pyrene	ug/L	<	<	0.01	0.025

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

0.0

- = Not analysed/No criteria

< = Parameter below detection limit

SURFACE WATER ANALYTICAL DATA - TOTAL PCBs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFACE UP	SURFACE DOWN	RDL	Criteria*	
		Nov 07, 2012	Nov 07, 2012			
Fotal PCBsug/L		<	<	0.05	-	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit	0.0	= above criteria
< = Parameter below detection limit		

SURFACE WATER ANALYTICAL DATA - VOCs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFACE UP	SURFACE DOWN	RDL	Criteria*
		Nov 07, 2012	Nov 07, 2012		
Benzene	ug/L	<	<	1	370
Bromodichloromethane	ug/L	<	<	1	-
Bromoform	ug/L	<	<	1	-
Bromomethane	ug/L	<	<	3	-
Carbon Tetrachloride	ug/L	<	<	1	13.3
Chlorobenzene	ug/L	<	<	1	1.3
Chloroethane	ug/L	<	<	8	-
Chloroform	ug/L	<	<	1	1.8
Chloromethane	ug/L	<	<	8	-
Dibromochloromethane	ug/L	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	0.5	0.7
1,3-Dichlorobenzene	ug/L	<	<	1	150
1,4-Dichlorobenzene	ug/L	<	<	1	26
1,1-Dichloroethane	ug/L	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	1	100
1,1-Dichloroethylene	ug/L	<	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	2	-
1,2-Dichloropropane	ug/L	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	1	-
Ethylbenzene	ug/L	<	<	1	90
Methylene Chloride(Dichloromethane)	ug/L	<	<	3	98.1
o-Xylene	ug/L	<	<	1	-
p+m-Xylene	ug/L	<	<	2	-
Styrene	ug/L	<	<	1	300
Tetrachloroethylene	ug/L	<	<	1	72
1,1,2,2-Tetrachloroethane	ug/L	<	<	1	-
Toluene	ug/L	<	<	1	111
Trichloroethylene	ug/L	<	<	1	2.0
1,1,1-Trichloroethane	ug/L	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	8	21
Vinyl Chloride	ug/L	<	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

0.0 = above criteria

-= Not analysed/No criteria

< = Parameter below detection limit

SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFACE UP	SURFACE DOWN	RDL	Criteria*
		Nov 07, 2012	Nov 07, 2012		
Anion Sum	me/L	0.610	0.630	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	7.6	8.2	1	-
Calculated TDS	mg/L	38.0	39.0	1	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	<	<	1	-
Cation Sum	me/L	0.650	0.650	N/A	-
Hardness (CaCO3)	mg/L	14	14	1	-
Ion Balance (% Difference)	%	3.17	1.56	N/A	-
Langelier Index (@ 20C)	N/A	-2.97	-2.95	N/A	-
Langelier Index (@ 4C)	N/A	-3.22	-3.20	N/A	-
Nitrate (N)	mg/L	0.054	0.058	0.05	13
Saturation pH (@ 20C)	N/A	9.83	9.80	N/A	-
Saturation pH (@ 4C)	N/A	10.1	10.0	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	7.6	8.2	30	-
Carbonaceous BOD	mg/L	-	-	5	-
Dissolved Chloride (Cl)	mg/L	12	12	1	-
Colour	TCU	67	78	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	0.002	-
Nitrate + Nitrite	mg/L	0.054	0.058	0.05	-
Nitrite (N)	mg/L	<	<	0.01	0.06
Nitrogen (Ammonia Nitrogen)	mg/L	<	<	0.05	-
Total Organic Carbon (C)	mg/L	7.9	7.9	0.5	-
Orthophosphate (P)	mg/L	<	<	0.01	-
рН	pН	6.86	6.85	N/A	6.5 - 9
Phenols-4AAP	mg/L	-	-	0.001	-
Reactive Silica (SiO2)	mg/L	2.1	2.2	0.5	-
Total Suspended Solids (TSS)	mg/L	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	5.7	5.8	2	-
Sulphide	mg/L	-	-	0.02	-
Turbidity	NTU	0.72	0.88	0.1	-
Conductivity	uS/cm	66	67	1	-
Total Oil & Grease	mg/L	-	-	5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

0.0 = above criteria

-= Not analysed/No criteria

< = Parameter below detection limit

SURFACE WATER ANALYTICAL DATA - TOTAL METALS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	SURFACE UP	SURFACE DOWN	RDL	Criteria*	
		Nov 07, 2012	Nov 07, 2012			
Aluminum (Al)	ug/L	113	117	5.0	100 ⁽¹⁾	
Antimony (Sb)	ug/L	<	<	1.0	-	
Arsenic (As)	ug/L	<	<	1.0	5.0	
Barium (Ba)	ug/L	8.9	8.6	1.0	-	
Beryllium (Be)	ug/L	<	<	1.0	-	
Bismuth (Bi)	ug/L	<	<	2.0	-	
Boron (B)	ug/L	<	<	5.0	-	
Cadmium (Cd)	ug/L	<	<	0.017	0.015/0.036 ⁽²⁾	
Calcium (Ca)	ug/L	3,870	3,890	100	-	
Chromium (Cr)	ug/L	<	<	1.0	$8.9^{(3)}$	
Hexavalent Chromium (Cr ⁶⁺)	ug/L	<	<	1.0	1.0	
Cobalt (Co)	ug/L	<	<	0.4	-	
Copper (Cu)	ug/L	<	<	2.0	2 ⁽⁴⁾	
Iron (Fe)	ug/L	387	382	50	300	
Lead (Pb)	ug/L	<	<	0.50	1, 2 ⁽⁵⁾	
Magnesium (Mg)	ug/L	1,040	1,050	100	-	
Manganese (Mn)	ug/L	41.2	38.0	2.0	-	
Molybdenum (Mo)	ug/L	<	<	2.0	73.00	
Nickel (Ni)	ug/L	<	<	2.0	25, 65 ⁽⁶⁾	
Phosphorus (P)	ug/L	<	<	100	-	
Potassium (K)	ug/L	363	400	100	-	
Selenium (Se)	ug/L	<	<	1.0	1.0	
Silver (Ag)	ug/L	<	<	0.1	0.1	
Sodium (Na)	ug/L	7,930	7,880	100	-	
Strontium (Sr)	ug/L	13.4	13.3	2.0	-	
Thallium (Tl)	ug/L	<	<	0.1	0.8	
Tin (Sn)	ug/L	<	<	2.0	-	
Titanium (Ti)	ug/L	3.1	2.7	2.0	-	
Uranium (U)	ug/L	<	<	0.10	-	
Vanadium (V)	ug/L	<	<	2.0	-	
Zinc (Zn)	ug/L	<	<	5.0	30	
Hardness (CaCO3)	mg/L	14.0	14.0	1.0	-	
pH	N/A	6.86	6.85	-	6.5 - 9	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection L	imit	(4) Copper guideline = 2 ug/L at [CaCO ₃] = $0-120 \text{ mg/L}$				
- = Not analysed/No criteria		= 3 ug/L at [CaCO ₃] = 120-180 mg/L				
< = Parameter below detection	ı limit	= 4 ug/L at [CaCO ₃] >180 mg/L				
0.0	= above criteria	(5) Lead guideline = 1 ug/L at $[CaCO_3] = 0.60 \text{ mg/L}$				
	-	$= 2 \text{ ug/L} \text{ at } [\text{CaCO}_3] = 60-120 \text{ mg/L}$				
(1) Aluminum guideline = 5 u	g/L at pH < 6.5	= 4 ug/L at [CaCO ₃] = 120-180 mg/L				
= 10	00 ug/L at pH ≥ 6.5	= 7 ug/L at [CaCO ₃] >180 mg/L				
(2) Cadmium guideline = $10^{0.1}$	86[log(hardness)]-3.2}	(6) Nickel guideline = 25 ug/L at $[CaCO_3] = 0.60 \text{ mg/L}$				
		$= 65 \text{ ug/L} \text{ at } [\text{CaCO}_3] = 60-120 \text{ mg/L}$				
		= 110 ug/L at [CaCO ₃] = 120-180 mg/I				
(3) Criteria for Chromium (III)	= 8.9 ug/L, Criteria for	= 150 ug/L at [CaCO ₃] >180 mg/L				
Chromium (VI) = 1.0 ug/L						

LEACHATE ANALYTICAL DATA - BTEX/mTPH (mg/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				Etherl				Tota	l Petroleu	m Hydrocarbons	(TPH)
Sample Location	Date Sampled	Benzene	Toluene	benzene	benzene Xylenes	C ₆ -C ₁₀	C ₁₀ -C ₁₆	C ₁₆ -C ₂₁	C ₂₁ -C ₃₂	Modified TPH	Comments
PLCS	Aug 30, 2012	<	~	<	<	v	<	<	<	<	-
DUP-04	Aug 30, 2012	<	~	<	<	v	0.073	0.1	<	0.18	No resemblance to petroleum products in fuel oil range.
SLCS	Aug 30, 2012	<	<	<	<	~	0.059	0.1	<	0.16	No resemblance to petroleum products in fuel oil range.
R	DL	0.0013	0.0013	0.0013	0.0026	0.013	0.05	0.05	0.1	0.1 0.1 -	
Schedule A Water &	& Sewer Regulations ¹	-	-	-	-	-	-		-	15 -	
2007 COME Encologication A supplied Life										-	Gasoline
2007 CCIVIL Fresh	olinos ²	4.00	2.00	0.39	-	-	-	-	-	-	Diesel /#2 Fuel Oil
Guid	ennes										-
									1.5	Gasoline	
2012 Tier I Surface Wate	Vater ESL - Freshwater ³ 2.10 0	0.77	0.32	0.33	-	-	-	-	0.1	Diesel /#2 Fuel Oil	
										0.1	#6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

2. 2007 CCME Freshwater Aquatic Life Guidelines

3 Atlantic Risk-Based Corrective Action (RBCA) Tier I Surface Water Ecological Screening Level (ESL) Table values for protection of freshwater and marine aquatic life.

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

RDL = Reportable Detection Limit

- < = Parameter below detection limit
- = Not analysed
- **0.00** = above criteria

LEACHATE ANALYTICAL DATA - PAHs (ug/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	PLCS	DUP-04	SLCS	RDL	Criteria	
	Aug 30, 2012	Aug 30, 2012	Aug 30, 2012		NL ¹	CCME ²
1-Methylnaphthalene	<	<	<	0.05	-	-
2-Methylnaphthalene	<	<	<	0.05	-	-
Acenaphthene	0.041	0.01	0.019	0.01	-	580
Acenaphthylene	<	<	0.018	0.01	-	-
Anthracene	<(0.15)	<(0.040)	<(0.20)	0.01	-	1.2
Benzo(a)anthracene	0.039	0.013	0.064	0.01	-	1.8
Benzo(a)pyrene	<	<	<	0.01	-	1.5
Benzo(b)fluoranthene	<	<	<	0.01	-	-
Benzo(g,h,i)perylene	<	<	<	0.01	-	-
Benzo(j)fluoranthene	<	<	<	0.01	-	-
Benzo(k)fluoranthene	<	<	<	0.01	-	-
Chrysene	0.064	0.024	0.10	0.01	-	-
Dibenz(a,h)anthracene	<	<	<	0.01	-	-
Fluoranthene	0.18	0.046	0.37	0.01	-	4
Fluorene	0.049	0.014	0.031	0.01	-	300
Indeno(1,2,3-cd)pyrene	<	<	<	0.01	-	-
Naphthalene	<	<	<	0.2	-	110
Perylene	<	<	<	0.01	-	-
Phenanthrene	<(0.20)	<(0.060)	<(0.30)	0.01	-	40
Pyrene	0.85	0.23	1.8	0.01	-	2.5

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS

1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

2. CCME Canadian Water Quality Guidelines for Protection of Freshwater Aquatic Life (2007 - Update 7.1) with a dilution factor of 100 based on distance between ditch and receiving waters and percolation through soil.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

< = Parameter below detection limit

<(0.0) = Parameter below elevated detection limit

0.0 = above CCME Criteria RDL = Reportable Detection Limit - = Not analysed/No criteria

LEACHATE ANALYTICAL DATA - TOTAL PCBs (ug/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	PLCS	DUP-04	SLCS	RDL	Criteria ¹	
	Aug 30, 2012 Aug 30, 2012	Aug 30, 2012				
Total PCBs	<	<	<	0.05	-	

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. 1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System< = Parameter below detection limit</th>SLCS = Secondary Leachate Collection System0.0= above Criteria

RDL = Reportable Detection Limit DUP-04 = Field Duplicate of PLCS - = Not analysed/No criteria

LEACHATE ANALYTICAL DATA - VOCs (ug/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	PLCS DUP-04		SLCS	RDL
	Aug 30, 2012	Aug 30, 2012	Aug 30, 2012	
Benzene	<	<	<	1
Bromodichloromethane	<	<	<	1
Bromoform	<	<	<	1
Bromomethane	<	<	<	3
Carbon Tetrachloride	<	<	<	1
Chlorobenzene	<	<	<	1
Chloroethane	<	<	<	8
Chloroform	<	<	<	1
Chloromethane	<	<	<	8
Dibromochloromethane	<	<	<	1
1,2-Dichlorobenzene	<	<	<	0.5
1,3-Dichlorobenzene	<	<	<	1
1,4-Dichlorobenzene	<	<	<	1
1,1-Dichloroethane	<	<	<	2
1,2-Dichloroethane	<	<	<	1
1,1-Dichloroethylene	<	<	<	0.5
cis-1,2-Dichloroethylene	<	<	<	2
trans-1,2-Dichloroethylene	<	<	<	2
1,2-Dichloropropane	<	<	<	1
cis-1,3-Dichloropropene	<	<	<	2
trans-1,3-Dichloropropene	<	<	<	1
Ethylbenzene	<	<	<	1
Methylene Chloride(Dichloromethane)	<	<	<	3
o-Xylene	<	<	<	1
p+m-Xylene	<	<	<	2
Styrene	<	<	<	1
Tetrachloroethylene	<	<	<	1
1,1,2,2-Tetrachloroethane	<	<	<	1
Toluene	<	<	<	1
Trichloroethylene	<	<	<	1
1,1,1-Trichloroethane	<	<	<	1
1,1,2-Trichloroethane	<	<	<	1
Trichlorofluoromethane (FREON 11)	<	<	<	8
Vinyl Chloride	<	<	<	0.5

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. 1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System < = Parameter below detection limit 0.0 = above Criteria

RDL = Reportable Detection Limit

- = Not analysed/No criteria

LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Units	Units	DUP-04	SLCS	RDL	Criteria ¹
		Aug 30, 2012	Aug 30, 2012	Aug 30, 2012		
Anion Sum	me/L	12.5	9.53	12.3	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	520	390	500	1	-
Calculated TDS	mg/L	624	564	647	1	1,000
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.6	2.3	2.2	1	-
Cation Sum	me/L	10.7	12.3	12.0	N/A	-
Hardness (CaCO3)	mg/L	470	530	500	1	-
Ion Balance (% Difference)	%	7.94	12.9	1.07	N/A	-
Langelier Index (@ 20C)	N/A	1.10	1.11	1.04	N/A	-
Langelier Index (@ 4C)	N/A	0.856	0.864	0.787	N/A	-
Nitrate (N)	mg/L	0.061	0.41	0.067	0.05	10
Saturation pH (@ 20C)	N/A	6.63	6.69	6.63	N/A	-
Saturation pH (@ 4C)	N/A	6.87	6.94	6.87	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	530	390	510	30.00	-
Dissolved Chloride (Cl)	mg/L	39	31	44	1	1,000
Colour	TCU	10	10	12	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	<	-	<	0.002	25
Nitrate + Nitrite	mg/L	0.061	0.41	0.067	0.05	-
Nitrite (N)	mg/L	<	<	<	0.01	-
Nitrogen (Ammonia Nitrogen)	mg/L	0.53	0.45	0.50	0.05	2
Total Organic Carbon (C)	mg/L	16(5)	20 (5)	20(5)	0.5	-
Orthophosphate (P)	mg/L	<	<	<	0.01	-
pH	pН	7.73	7.8	7.66	N/A	5.5 - 9.0
Phenols-4AAP	mg/L	0.012	-	0.014	0.001	0.10
Reactive Silica (SiO2)	mg/L	17	14	15	0.5	-
Total Suspended Solids (TSS)	mg/L	9.8	-	24	2.0	30
Dissolved Sulphate (SO4)	mg/L	43	36	44	2.0	-
Sulphide	mg/L	<	-	0.060	0.02	0.50
Turbidity	NTU	160	12	280	0.1	-
Conductivity	uS/cm	1,000	820	1,100	1	-
Total Oil & Grease	mg/L	<	-	<	5.00	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

< = Parameter below detection limit <(0.0) = Parameter below elevated detection limit DUP-04 = Field Duplicate of PLCS 0.0= above CriteriaRDL = Reportable Detection Limit- = Not analysed/No criteria
TABLE 24

LEACHATE ANALYTICAL DATA - TOTAL METALS (ug/L) 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	PLCS	DUP-04	SLCS	RDL	Criteria ¹
	Aug 30, 2012	Aug 30, 2012	Aug 30, 2012		
Aluminum (Al)	14.2	22.2	16.3	5	-
Antimony (Sb)	<	<	<	1	-
Arsenic (As)	<	1.0	1.1	1	500
Barium (Ba)	72.7	85.7	78.2	1	5,000
Beryllium (Be)	<	<	<	1	-
Bismuth (Bi)	<	<	<	2	-
Boron (B)	1,500	1,890	2,500	5	5,000
Cadmium (Cd)	<	<	<	0.017	50
Calcium (Ca)	140,000	159,000	147,000	100	-
Chromium (Cr)	<	<	<	1	1,000
Hexavalent Chromium (Cr ⁶⁺)	<	<	<	1	50
Cobalt (Co)	<	<	1.04	0.4	-
Copper (Cu)	<	<	<	2	300
Iron (Fe)	5,470	14,300	15,100	50	10,000
Lead (Pb)	<	<	<	0.5	200
Magnesium (Mg)	28,800	32,900	33,200	100	-
Manganese (Mn)	7,270	8,770	8,250	2	-
Mercury (Hg)	<	<	<	0.013	5
Molybdenum (Mo)	<	<	7.20	2	-
Nickel (Ni)	<	<	2.40	2	500
Phosphorus (P)	<	<	<	100	0.5
Potassium (K)	5,840	5,800	8,870	100	-
Selenium (Se)	<	<	<	1	10
Silver (Ag)	<	<	<	0.1	50
Sodium (Na)	21,100	23,700	26,600	100	-
Strontium (Sr)	318	362	369	2	-
Thallium (Tl)	<	<	<	0.1	-
Tin (Sn)	<	<	<	2	-
Titanium (Ti)	<	2.00	<	2	-
Uranium (U)	0.79	0.94	5.05	1	-
Vanadium (V)	<	<	<	2	-
Zinc (Zn)	<	6.50	8.30	5	500

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.1. Schedule A of NL Environmental Control Water and Sewer Regulations, 2003.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System

< = Parameter below detection limit

<(0.0) = Parameter below elevated detection limit DUP-04 = Field Duplicate of PLCS 0.0 = above Criteria RDL = Reportable Detection Limit - = Not analysed/No criteria

LEACHATE PUMPING LOG COME BY CHANCE SECURE LANDFILL, COME BY CHANCE, NL

NAME: The mart CHAMBER DIAMETER: 1.46 m AREA: 1.67 m²

NN21/12

	PUMPING /	DEPTH	(mbtoc)	ТІ	ME		1	CALCULATIONS	T	
INTERVAL	FILLING	START	END	START	END	∆D (⊯n)	VOLUME (m ³)	ΔΤ	Q (L/min)	< 15 L/min?
1	fum p	0,664	2.692	10:49	10:57	2.008	3.363	R	419	NA
2	FILL	2.692	2.466	10:57	11:09	0.22%	0.337	12	31.4	N
3	PUMP	2.466	2.050	11:05	11:13	0.284	0.641	4	160	NA
4	PUMP BE	EDA DOWN	4							
5	,									
6	PARFILL.	3.326	3.089	1:34):40	0.239	0,399	12	33.2	N
7	1	3.089	2.571	1:48	2:39	0.510	0.865	51	17.0	N
8		3.320	3.150	2:56	3:00	0.170	0.284	10	28.4	N
9		3.130	2-610	3100	3:38	0.540	0.902	30	20.1	Ň
10		3.300	3.100	3:43	31.55	0.194	0.324	10	32.4	N
11		3.106	2.965	3:55	1:05	0,141	0.235	10	23.5	Ň
12		2965	2.740	4:05	4:15	0.115	0.292	10	29.2	N.
13		2-790	2.620	4:15	4:25	0.170	0.284	10	28.4	M
14		2620	2.460	4:25	4:35	0,160	0.267	10	26.7	N
15		2.400	2.291	4:35	4:45	0169	0.282	10	28.2	Ň
16		3.250	3.078	4:53	5:03	0.172	0.787	10	28.7	N
17		3.078	2.925	5:03	5:13	0.153	0.256	10	256	N
18		2.925	2.795	513	5:23	0.130	0.217	10	21.7	Ŋ
19		2.795	2.615	5:23	5:33	0.180	0.301	10	30.1	N
20		2.615	2-465	_5:33	5:43	0,150	0.250	10	25.0	M
21		2.465	2.330	5:43	5:53	0.135	0.225	10	22.5	~~~
22		2.330	2.210	5:53	6:03	0.180	0.200	10	20.0	N
23		2.210	2.110	6:03	6:13	0.100	0.167	10	16.7	N
24		2.410	2.010	6:13	6:23	0.100	0.167	10	16.7	M
25	V DI vi	2.010	1.912	6:23	6:33	0.096	0.164	10	16.4	N
26	-ruateus	1.412	1.623	6:35	6:43	0.084	0.149	10	14.9	
27	- y									
28										
29										
30										

1

LEACHATE PUMPING LOG COME BY CHANCE SECURE LANDFILL, COME BY CHANCE, NL

NAME: SECON DAFY METER: 1.46 m AREA: 1.67 m²

Nov 21/12

	PUMPING /	DEPTH	(mbtoc)	TI	ME			CALCULATIONS	I	
INTERVAL	FILLING	START	END	START	END	ΔD (#n)	VOLUME (m ³)	ΔΤ	Q (L/min)	< 15 L/min?
1	Phone	0.591	2,955	10:30	11:06	2.364	3.946	10	395	NA.
2	File	7 955	2 393	11:06	11:13	0.562	0936	ζ	188	N
3	- ((2.393	9.41	11:03	11:19	0,440	0.745	6	124	N
4	1(1.947	1545	11:32						2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
5	PUMP	BEERKDa	J.L.							
6		<u> </u>								
7		7.788	1.750	2:39	2:57	1.038	1.733	18	96.3	N
8		3.004	2.884	3:47	3:57	0.120	0,200	10	20.0	N
9		2.884	2.765	3:57	A:07	0.099	0.165	10	. 16.5	N
10		2.765	2.695	4:07	4:17	0 090	0.150	10	15.0	N
11		7.695	2.1010	4:17	4:27	0.085	0.142	10	14.2	-
12				· · · · · · · · · · · · · · · · · · ·		·				
13				-						
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
- 30										

CHAMBER DIAMETER: AREA:

TABLE 27

PUMPING TEST ON SURROUNDING WATER LEVELS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

		PLCS			MW10-1			MW10-1A			MW93-1			MW93-1A	
TOC Elevation (masl)		15.96			16.636			16.744			17.4			17.71	
	Time	TOC to $H_2O(m)$	H ₂ O Elevation (masl)	Time	TOC to $H_2O(m)$	H ₂ O Elevation (masl)	Time	TOC to H ₂ O (m)	H ₂ O Elevation (masl)	Time	TOC to H ₂ O (m)	H ₂ O Elevation (masl)	Time	TOC to $H_2O(m)$	H ₂ O Elevation (masl)
	11:17 AM	0.890	15.070	11:30 AM	3.189	13.447	11:30 AM	3.235	13.509	11:35 AM	1.752	15.648	11:35 AM	1.673	16.037
	11:30 AM	0.906	15.054	12:35 PM	3.187	13.449	12:35 PM	3.239	13.505	12:30 PM	1.746	15.654	12:30 PM	1.667	16.043
	11:55 AM	0.912	15.048	1:30 PM	I 3.194 13.442 I 2.10 12.446		1:30 PM	3.238	13.506	1:25 PM	1.724	15.676	1:25 PM	1.666	16.044
	12:05 PM	0.917	15.043	2:45 PM	3.19 13.446		2:45 PM	3.242	13.502	2:40 PM	1.724	15.676	2:40 PM	1.667	16.043
	12:25 PM	0.922	15.038	3:35 PM	3.191	13.445	3:35 PM	3.241	13.503	3:30 PM	1.718	15.682	3:30 PM	1.667	16.043
	12:40 PM	0.927	15.033	5:00 PM	3.191	13.445	5:00 PM	3.244	13.5	4:50 PM	1.709	15.691	4:50 PM	1.666	16.044
	1:20 PM	0.929	15.031	Total Cha	ange (m)	0.002	Total Cha	ange (m)	0.009	Total Change (m)		-0.043	Total Cha	ange (m)	-0.007
	1:36 PM	0.931	15.029										_		
	2:30 PM	0.933	15.027		Г			MW93-2			MW93-2A				
	2:50 PM	0.934	15.026		TOC E	levation		15.390			15.41				
	3:15 PM	0.939	15.021		(m	asl)	Time	$H_{-}O(m)$	Flowation	Time	$H_{-}(m)$	Flowation			
	3:25 PM	0.943	15.017				11:30 AM	2.081	13.309	11:30 AM	1.237	14.173			
	4:00 PM	0.947	15.013				12:40 PM	2.08	13.310	12:40 PM	1.237	14.173			

1:30 PM

2:30 PM

3:30 PM

4:30 PM

5:10 PM

Total Change (m)

2.08

2.08

2.08

2.081

2.08

13.310

13.310

13.310

13.309

13.310

-0.001

1:30 PM

2:30 PM

3:30 PM

4:30 PM

5:10 PM

Total Change (m)

1.237

1.238

1.238

1.239

1.238

14.173

14.172

14.172

14.171

14.172

0.001

 4:30 PM
 0.950
 15.010

 5:00 PM
 0.949
 15.011

 5:15 PM
 0.953
 15.007

 Total Change (m)
 0.063

TOC = Top of Chamber/Casing

masl = metres above sea level

PLCS = Primary Leachate Collection System

TABLE 28

LEACHATE PUMPING VOLUMES vs. ANNUAL PRECIPITATION AND STATIC GROUNDWATER LEVELS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

	Summary	of Leachate Pu	umping Volu	mes (Litres)	Precipitation Data				(Groundwater	Elevation (m	asl)			
	Year	Month	PLCS	SLCS	Monthly (mm)	PLCS	SLCS	MW 93-1	MW 93-1A	MW 93-2	MW 93-2A	MW 93-3*	MW 93-3A*	MW 10-1	MW 10-1A
	2000	November	13,000	70,000	145										
	2003	November	15,000	56,000	124										
		August	NA	45,000	156				15.83	14.83			Dry		
s	2004	September	15,500	83,000	196				17.30	14.81					
WD		October	NA	32,000	147				17.55	15.11			14.70		
re G	2006	October	NA	68,000	78				15.60	13.26			12.53		
Ρ	2007	February	6,000	63,000	58										
	2007	July	NA	103,000	334										
	2008	November	NA	74,000	142										
	Av	erage	~12,500	~66,000	153										
	2009	August	3,406	19,475	113										
	2009	December	4,542	30,699	93										
/DS	2010	February	3,406	21,350	31										
E GW	2010	August	12,100	35,200	77	15.41	15.44	15.70	16.07	13.31	13.95			13.62	13.66
Post	2011	January	8,600	30,200	112	15.23	15.24	15.48	16.07	13.24	14.04			13.38	13.46
	2012	November	12,200	24,900	164	14.34	14.35	13.70	14.40	11.13	12.80			10.19	10.23
	Av	erage	~7,400	~27,000	98										

- PLCS Primary Leachate Collection System
- SLCS Secondary Leachate Collection System
- GWDS Groundwater Drainage System
- masl metres above sea level.
- -- No measurement
- * Decommissioned in July 2010.

APPENDIX A

SITE PHOTOGRAPHS

Photo 1: View, looking west, of the vegetative overgrowth around MW 93-1 and MW 93-1A during the August 2012 sampling event.

Photo 2: View, looking southeast, toward Clean-out 2 with the landfill fencing in the background

Photo 3: View of Clean-out 3.

Photo 4: View, looking northeast, of new discharge location of groundwater interception system during the August 2012 Site visit, which is located within the boundaries of the newly constructed asphalt plant. Note discharge pipe without a rodent screen.

Photo 5: View, looking northwest, of the former SURFACE-DOWN location following construction of a new asphalt plant in 2011.

Photo 6: View of typical Meadow Vole activity observed during the November 2012 landfill cover inspection.

Photo 7: View, looking west, during the initial leachate pump and discharge event in November 2012.

Photo 8: View, looking west, while preparing for the December 2012 pump down test of the SLCS valve chamber.

Photo 9: View, looking southeast, of the vegetative overgrowth around MW93-2 and MW93-2A during December 2012 pump down test.

APPENDIX B

LABORATORY CERTIFICATES OF ANALYSES

Your Project #: 056680-02 Site#: COME BY CHANCE M&M Your C.O.C. #: B088782

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2012/09/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B2D4739 Received: 2012/09/01, 11:04

Sample Matrix: Water # Samples Received: 11

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide (1)	10	N/A	2012/09/06 CAM SOP-00102	APHA 4500-CO2 D
Alkalinity (1)	10	N/A	2012/09/07 ATL SOP 00013	Based on EPA310.2
Chloride (1)	10	N/A	2012/09/10 ATL SOP 00014	Based on SM4500-CI-
Str. Acid Diss. Cyanide water (1,4)	2	N/A	2012/09/06 ATL SOP 00040	Based on EPA335.3
Colour (1)	10	N/A	2012/09/10 ATL SOP 00020	Based on SM2120C
Hexavalent Cr Low Level (Sub fr Bedford) (2)	2	2012/09/06	2012/09/07	
Conductance - water (1)	10	N/A	2012/09/06 ATL SOP 00004/00006	Based on SM2510B
Hardness (calculated as CaCO3) (1)	3	N/A	2012/09/07 ATL SOP 00048	Based on SM2340B
Hardness (calculated as CaCO3) (1)	7	N/A	2012/09/10 ATL SOP 00048	Based on SM2340B
Mercury - Total (CVAA,LL) (1)	3	2012/09/07	2012/09/07 ATL SOP 00026	Based on EPA245.1
Metals Water Diss. MS (as rec'd) (1)	7	N/A	2012/09/08 ATL SOP 00059	Based on EPA6020A
Metals Water Total MS (1)	1	2012/09/05	2012/09/06 ATL SOP 00059	Based on EPA6020A
Metals Water Total MS (1)	2	2012/09/06	2012/09/07 ATL SOP 00059	Based on EPA6020A
Ion Balance (% Difference) (1)	2	N/A	2012/09/10	
Ion Balance (% Difference) (1)	8	N/A	2012/09/11	
Anion and Cation Sum (1)	2	N/A	2012/09/07	
Anion and Cation Sum (1)	8	N/A	2012/09/11	
Nitrogen Ammonia - water (1)	2	N/A	2012/09/06 ATL SOP 00015	Based on USEPA 350.1
Nitrogen Ammonia - water (1)	8	N/A	2012/09/10 ATL SOP 00015	Based on USEPA 350.1
Nitrogen - Nitrate + Nitrite (1)	10	N/A	2012/09/10 ATL SOP 00016	Based on USGS - Enz.
Nitrogen - Nitrite (1)	10	N/A	2012/09/10 ATL SOP 00017	Based on SM4500-NO2B
Nitrogen - Nitrate (as N) (1)	10	N/A	2012/09/10 ATL SOP 00018	Based on ASTMD3867
PAH in Water by GC/MS (SIM) (1)	11	2012/09/05	2012/09/06 ATL SOP 00103	Based on EPA 8270C
PCBs in water by GC/ECD (1)	7	2012/09/06	2012/09/10 ATL SOP 00107	Based on EPA8082
PCBs in water by GC/ECD (1)	4	2012/09/06	2012/09/11 ATL SOP 00107	Based on EPA8082
Phenols (4-AAP) (1)	2	N/A	2012/09/11 ATL SOP 00039	Based on EPA 420.2
pH (1)	10	N/A	2012/09/06 ATL SOP 00003	Based on SM4500H+B
Phosphorus - ortho (1)	10	N/A	2012/09/10 ATL SOP 00021	Based on USEPA 365.1
Sat. pH and Langelier Index (@ 20C) (1)	2	N/A	2012/09/10	
Sat. pH and Langelier Index (@ 20C) (1)	8	N/A	2012/09/11	
Sat. pH and Langelier Index (@ 4C) (1)	2	N/A	2012/09/10	
Sat. pH and Langelier Index (@ 4C) (1)	8	N/A	2012/09/11	
Reactive Silica (1)	10	N/A	2012/09/07 ATL SOP 00022	Based on EPA 366.0
Sulphate (1)	10	N/A	2012/09/07 ATL SOP 00023	Based on EPA 375.4
Sulphide (3)	2	N/A	2012/09/06 CAM SOP-00455	SM 4500-S G
Total Dissolved Solids (TDS calc) (1)	2	N/A	2012/09/10	
Total Dissolved Solids (TDS calc) (1)	8	N/A	2012/09/11	
Organic carbon - Total (TOC) (1)	10	N/A	2012/09/10 ATL SOP 00037	Based on SM5310C
Total Oil and Grease - Water (1)	2	2012/09/07	2012/09/10 ATL SOP 00101	Based on EPA1664
Total Suspended Solids (1)	2	N/A	2012/09/10 ATL SOP 00007	based on EPA 160.2
Turbidity (1)	10	N/A	2012/09/07 ATL SOP 00011	based on EPA 180.1
Volatile Organic Compounds in Water (1)	10	2012/09/07	2012/09/10 ATL SOP 00122	Based on EPA624

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

-2-

Remarks:

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

* Results relate only to the items tested.

- (1) This test was performed by Bedford
- (2) This test was performed by Bedford to Burnaby Env
- (3) This test was performed by Maxxam Analytics Mississauga
- (4) Strong acid dissociable cyanide value may include contribution from thiocyanate.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902) 420-0203 Ext:289

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

RESULTS OF ANALYSES OF WATER

Maxxam ID		OS1057		OS1058			OS1060	OS1060			OS1061		
Sampling Date		2012/08/30		2012/08/30			2012/08/30	2012/08/30			2012/08/30		
	Units	PLCS	RDL	SLCS	RDL	QC Batch	MW93-1	MW93-1	RDL	QC Batch	MW93-1A	RDL	QC Batch
								Lab-Dup					
Calculated Parameters													
Anion Sum	me/L	12.5	N/A	12.3	N/A	2958383	6.51		N/A	2958383	6.50	N/A	2958383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	520	1.0	500	1.0	2958380	270		1.0	2958380	260	1.0	2958380
Calculated TDS	mg/L	624	1.0	647	1.0	2958388	338		1.0	2958388	334	1.0	2958388
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.6	1.0	2.2	1.0	2958380	4.7		1.0	2958380	5.2	1.0	2958380
Cation Sum	me/L	10.7	N/A	12.0	N/A	2958383	6.14		N/A	2958383	5.89	N/A	2958383
Hardness (CaCO3)	mg/L	470	1.0	500	1.0	2958381	150		1.0	2958381	140	1.0	2958381
Ion Balance (% Difference)	%	7.94	N/A	1.07	N/A	2958382	2.92		N/A	2958382	4.92	N/A	2958382
Langelier Index (@ 20C)	N/A	1.10		1.04		2958386	0.815			2958386	0.826		2958386
Langelier Index (@ 4C)	N/A	0.856		0.787		2958387	0.566			2958387	0.577		2958387
Nitrate (N)	mg/L	0.061	0.050	0.067	0.050	2958384	<0.050		0.050	2958384	<0.050	0.050	2958384
Saturation pH (@ 20C)	N/A	6.63		6.63		2958386	7.45			2958386	7.50		2958386
Saturation pH (@ 4C)	N/A	6.87		6.87		2958387	7.69			2958387	7.75		2958387
Inorganics													
Total Alkalinity (Total as CaCO3)	mg/L	530	50	510	50	2961273	280		25	2961273	260	25	2961273
Dissolved Chloride (Cl)	mg/L	39	1.0	44	1.0	2961277	11		1.0	2961277	30	1.0	2961277
Colour	TCU	10	5.0	12	5.0	2961284	<5.0		5.0	2961284	<5.0	5.0	2961284
Strong Acid Dissoc. Cyanide (CN)	mg/L	<0.0020	0.0020	<0.0020	0.0020	2961491							
Nitrate + Nitrite	mg/L	0.061	0.050	0.067	0.050	2961286	<0.050		0.050	2961286	<0.050	0.050	2961286
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	2961289	<0.010		0.010	2961289	<0.010	0.010	2961289
Nitrogen (Ammonia Nitrogen)	mg/L	0.53	0.050	0.50	0.050	2960191	<0.050	< 0.050	0.050	2962914	<0.050	0.050	2962919
Total Organic Carbon (C)	mg/L	16(1)	5.0	20(1)	5.0	2964775	<5.0(2)		5.0	2964775	1.4	0.50	2964775
Orthophosphate (P)	mg/L	<0.010	0.010	<0.010	0.010	2961285	<0.010		0.010	2961285	<0.010	0.010	2961285
рН	pН	7.73	N/A	7.66	N/A	2960983	8.26		N/A	2960983	8.33	N/A	2960983
Phenols-4AAP	mg/L	0.012	0.0010	0.014	0.0010	2966437							
Reactive Silica (SiO2)	mg/L	17	0.50	15	0.50	2961280	5.3		0.50	2961280	9.1	0.50	2961280
Total Suspended Solids	mg/L	9.8	1.0	24	2.0	2961076							
Dissolved Sulphate (SO4)	mg/L	43	10	44	10	2961278	33		2.0	2961278	19	2.0	2961278
Sulphide	mg/L	<0.020	0.020	0.060	0.020	2961247							
Turbidity	NTU	160	0.50	280	1.0	2962413	590		5.0	2962413	5.9	0.10	2962413
Conductivity	uS/cm	1000	1.0	1100	1.0	2960985	580		1.0	2960985	580	1.0	2960985

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - Elevated reporting limit due to sample matrix.

(2) - Reporting limit was increased due to turbidity.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

RESULTS OF ANALYSES OF WATER

Maxxam ID		OS1057		OS1058			OS1060	OS1060			OS1061		
Sampling Date		2012/08/30		2012/08/30			2012/08/30	2012/08/30			2012/08/30		
	Units	PLCS	RDL	SLCS	RDL	QC Batch	MW93-1	MW93-1	RDL	QC Batch	MW93-1A	RDL	QC Batch
								Lab-Dup					
Subcontracted Analysis		_	_		-		_		-	_	_	_	_
Subcontract Parameter	N/A	ATTACHED	N/A	ATTACHED	N/A	2961053							
Petroleum Hydrocarbons					_								
Total Oil & Grease	mg/L	<5.0	5.0	<5.0	5.0	2962401							

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

RESULTS OF ANALYSES OF WATER

Maxxam ID		OS1062		OS1063		OS1064		OS1065		OS1066		OS1114		
Sampling Date		2012/08/30		2012/08/30		2012/08/30		2012/08/30		2012/08/30		2012/08/30		
	Units	MW93-2	RDL	MW93-2A	RDL	MW10-1	RDL	MW10-1A	RDL	DUP-03	RDL	DUP-04	RDL	QC Batch
Calculated Parameters									_					
Anion Sum	me/L	6.36	N/A	1.37	N/A	3.24	N/A	2.11	N/A	6.47	N/A	9.53	N/A	2958383
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	210	1.0	11	1.0	140	1.0	77	1.0	250	1.0	390	1.0	2958380
Calculated TDS	mg/L	353	1.0	96.0	1.0	174	1.0	122	1.0	334	1.0	564	1.0	2958388
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.6	1.0	<1.0	1.0	1.1	1.0	<1.0	1.0	5.4	1.0	2.3	1.0	2958380
Cation Sum	me/L	5.99	N/A	1.44	N/A	3.11	N/A	1.98	N/A	5.94	N/A	12.3	N/A	2958383
Hardness (CaCO3)	mg/L	250	1.0	34	1.0	140	1.0	84	1.0	150	1.0	530	1.0	2958381
Ion Balance (% Difference)	%	3.00	N/A	2.49	N/A	2.05	N/A	3.18	N/A	4.27	N/A	12.9	N/A	2958382
Langelier Index (@ 20C)	N/A	0.903		-3.03		0.365		-0.597		0.846		1.11		2958386
Langelier Index (@ 4C)	N/A	0.654		-3.28		0.115		-0.847		0.597		0.864		2958387
Nitrate (N)	mg/L	<0.050	0.050	<0.050	0.050	0.16	0.050	0.077	0.050	<0.050	0.050	0.41	0.050	2958384
Saturation pH (@ 20C)	N/A	7.22		9.28		7.55		8.00		7.50		6.69		2958386
Saturation pH (@ 4C)	N/A	7.47		9.53		7.80		8.25		7.75		6.94		2958387
Inorganics			_	•			_			-	_			
Total Alkalinity (Total as CaCO3)	mg/L	220	25	12	5.0	140	25	77	5.0	260	25	390	25	2961273
Dissolved Chloride (Cl)	mg/L	20	1.0	17	1.0	3.8	1.0	4.2	1.0	30	1.0	31	1.0	2961277
Colour	TCU	<5.0	5.0	41	5.0	5.6	5.0	7.7	5.0	<5.0	5.0	10	5.0	2961284
Nitrate + Nitrite	mg/L	<0.050	0.050	<0.050	0.050	0.16	0.050	0.077	0.050	<0.050	0.050	0.41	0.050	2961286
Nitrite (N)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	2961289
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	0.050	0.40	0.050	<0.050	0.050	0.11	0.050	<0.050	0.050	0.45	0.050	2962919
Total Organic Carbon (C)	mg/L	0.88	0.50	22(1)	5.0	2.7	0.50	8.7	0.50	1.5	0.50	20(1)	5.0	2964777
Orthophosphate (P)	mg/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	2961285
рН	рΗ	8.12	N/A	6.25	N/A	7.91	N/A	7.40	N/A	8.35	N/A	7.80	N/A	2960983
Reactive Silica (SiO2)	mg/L	18	0.50	5.7	0.50	7.4	0.50	10	0.50	9.1	0.50	14	0.50	2961280
Dissolved Sulphate (SO4)	mg/L	71	10	32	2.0	17	2.0	21	2.0	20	2.0	36	2.0	2961278
Turbidity	NTU	4.0	0.10	120	1.0	26	0.10	240	1.0	5.7	0.10	12	0.10	2962415
Conductivity	uS/cm	580	1.0	150	1.0	300	1.0	200	1.0	590	1.0	820	1.0	2960985

N/A = Not Applicable

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - Elevated reporting limit due to sample matrix.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

MERCURY BY COLD VAPOUR AA (WATER)

Maxxam ID		OS1057	OS1058	OS1114		
Sampling Date		2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	SLCS	DUP-04	RDL	QC Batch
Metals						
Total Mercury (Hg)	ug/L	<0.013	< 0.013	<0.013	0.013	2963008

Page 6 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		OS1057		OS1058	OS1060	OS1060	OS1061		
Sampling Date		2012/08/30		2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	QC Batch	SLCS	MW93-1	MW93-1 Lab-Dup	MW93-1A	RDL	QC Batch
Metals			·						
Dissolved Aluminum (Al)	ug/L				13.9	12.1	6.8	5.0	2961238
Total Aluminum (Al)	ug/L	14.2	2959644	16.3				5.0	2961010
Dissolved Antimony (Sb)	ug/L				<1.0	<1.0	<1.0	1.0	2961238
Total Antimony (Sb)	ug/L	<1.0	2959644	<1.0				1.0	2961010
Dissolved Arsenic (As)	ug/L				<1.0	<1.0	<1.0	1.0	2961238
Total Arsenic (As)	ug/L	<1.0	2959644	1.1				1.0	2961010
Dissolved Barium (Ba)	ug/L				80.0	79.4	103	1.0	2961238
Total Barium (Ba)	ug/L	72.7	2959644	78.2				1.0	2961010
Dissolved Beryllium (Be)	ug/L				<1.0	<1.0	<1.0	1.0	2961238
Total Beryllium (Be)	ug/L	<1.0	2959644	<1.0				1.0	2961010
Dissolved Bismuth (Bi)	ug/L				<2.0	<2.0	<2.0	2.0	2961238
Total Bismuth (Bi)	ug/L	<2.0	2959644	<2.0				2.0	2961010
Dissolved Boron (B)	ug/L				78	78	118	50	2961238
Total Boron (B)	ug/L	1500	2959644	2500				50	2961010
Dissolved Cadmium (Cd)	ug/L				<0.017	<0.017	<0.017	0.017	2961238
Total Cadmium (Cd)	ug/L	<0.017	2959644	<0.017				0.017	2961010
Dissolved Calcium (Ca)	ug/L				35500	36000	32800	100	2961238
Total Calcium (Ca)	ug/L	140000	2959644	147000				100	2961010
Dissolved Chromium (Cr)	ug/L				<1.0	<1.0	<1.0	1.0	2961238
Total Chromium (Cr)	ug/L	<1.0	2959644	<1.0				1.0	2961010
Dissolved Cobalt (Co)	ug/L				0.58	0.61	<0.40	0.40	2961238
Total Cobalt (Co)	ug/L	<0.40	2959644	1.04				0.40	2961010
Dissolved Copper (Cu)	ug/L				<2.0	<2.0	<2.0	2.0	2961238
Total Copper (Cu)	ug/L	<2.0	2959644	<2.0				2.0	2961010
Dissolved Iron (Fe)	ug/L				<50	<50	50	50	2961238
Total Iron (Fe)	ug/L	5470	2959644	15100				50	2961010
Dissolved Lead (Pb)	ug/L				0.70	0.69	<0.50	0.50	2961238
Total Lead (Pb)	ug/L	<0.50	2959644	<0.50				0.50	2961010
Dissolved Magnesium (Mg)	ug/L				15000	14900	15000	100	2961238
Total Magnesium (Mg)	ug/L	28800	2959644	33200				100	2961010
Dissolved Manganese (Mn)	ug/L				131	129	106	2.0	2961238
Total Manganese (Mn)	ug/L	7270	2959644	8250				2.0	2961010
Dissolved Molybdenum (Mo)	ug/L				15.0	15.1	11.9	2.0	2961238
Total Molybdenum (Mo)	ug/L	<2.0	2959644	7.2				2.0	2961010

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		OS1057		OS1058	OS1060	OS1060	OS1061		
Sampling Date		2012/08/30		2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	QC Batch	SLCS	MW93-1	MW93-1	MW93-1A	RDL	QC Batch
						Lab-Dup			
Dissolved Nickel (Ni)	ug/L				<2.0	<2.0	<2.0	2.0	2961238
Total Nickel (Ni)	ug/L	<2.0	2959644	2.4				2.0	2961010
Dissolved Phosphorus (P)	ug/L				<100	<100	<100	100	2961238
Total Phosphorus (P)	ug/L	<100	2959644	<100				100	2961010
Dissolved Potassium (K)	ug/L				2660	2610	1680	100	2961238
Total Potassium (K)	ug/L	5840	2959644	8870				100	2961010
Dissolved Selenium (Se)	ug/L				<1.0	<1.0	<1.0	1.0	2961238
Total Selenium (Se)	ug/L	<1.0	2959644	<1.0				1.0	2961010
Dissolved Silver (Ag)	ug/L				<0.10	<0.10	<0.10	0.10	2961238
Total Silver (Ag)	ug/L	<0.10	2959644	<0.10				0.10	2961010
Dissolved Sodium (Na)	ug/L				70400	69500	68200	100	2961238
Total Sodium (Na)	ug/L	21100	2959644	26600				100	2961010
Dissolved Strontium (Sr)	ug/L				247	246	246	2.0	2961238
Total Strontium (Sr)	ug/L	318	2959644	369				2.0	2961010
Dissolved Thallium (TI)	ug/L				<0.10	<0.10	<0.10	0.10	2961238
Total Thallium (TI)	ug/L	<0.10	2959644	<0.10				0.10	2961010
Dissolved Tin (Sn)	ug/L				<2.0	<2.0	<2.0	2.0	2961238
Total Tin (Sn)	ug/L	<2.0	2959644	<2.0				2.0	2961010
Dissolved Titanium (Ti)	ug/L				<2.0	<2.0	<2.0	2.0	2961238
Total Titanium (Ti)	ug/L	<2.0	2959644	<2.0				2.0	2961010
Dissolved Uranium (U)	ug/L				1.24	1.22	0.23	0.10	2961238
Total Uranium (U)	ug/L	0.79	2959644	5.05				0.10	2961010
Dissolved Vanadium (V)	ug/L				<2.0	<2.0	<2.0	2.0	2961238
Total Vanadium (V)	ug/L	<2.0	2959644	<2.0				2.0	2961010
Dissolved Zinc (Zn)	ug/L				<5.0	<5.0	<5.0	5.0	2961238
Total Zinc (Zn)	ug/L	<5.0	2959644	8.3				5.0	2961010

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 8 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		OS1062	OS1063	OS1064	OS1065	OS1066	OS1114		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	MW93-2	MW93-2A	MW10-1	MW10-1A	DUP-03	DUP-04	RDL	QC Batch
Metals				.	1		1	1	
Dissolved Aluminum (Al)	ug/L	<5.0	246	21.7	39.8	13.0		5.0	2961238
Total Aluminum (Al)	ug/L						22.2	5.0	2961010
Dissolved Antimony (Sb)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0		1.0	2961238
Total Antimony (Sb)	ug/L						<1.0	1.0	2961010
Dissolved Arsenic (As)	ug/L	1.7	<1.0	<1.0	<1.0	<1.0		1.0	2961238
Total Arsenic (As)	ug/L						1.0	1.0	2961010
Dissolved Barium (Ba)	ug/L	196	34.6	42.1	37.7	107		1.0	2961238
Total Barium (Ba)	ug/L						85.7	1.0	2961010
Dissolved Beryllium (Be)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0		1.0	2961238
Total Beryllium (Be)	ug/L						<1.0	1.0	2961010
Dissolved Bismuth (Bi)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0		2.0	2961238
Total Bismuth (Bi)	ug/L						<2.0	2.0	2961010
Dissolved Boron (B)	ug/L	991	<50	<50	<50	118		50	2961238
Total Boron (B)	ug/L						1890	50	2961010
Dissolved Cadmium (Cd)	ug/L	<0.017	1.50	0.060	0.044	<0.017		0.017	2961238
Total Cadmium (Cd)	ug/L						<0.017	0.017	2961010
Dissolved Calcium (Ca)	ug/L	77400	9930	49500	29400	33000		100	2961238
Total Calcium (Ca)	ug/L						159000	100	2961010
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0		1.0	2961238
Total Chromium (Cr)	ug/L						<1.0	1.0	2961010
Dissolved Cobalt (Co)	ug/L	<0.40	0.82	<0.40	8.15	<0.40		0.40	2961238
Total Cobalt (Co)	ug/L						<0.40	0.40	2961010
Dissolved Copper (Cu)	ug/L	<2.0	2.7	6.4	8.5	6.8		2.0	2961238
Total Copper (Cu)	ug/L						<2.0	2.0	2961010
Dissolved Iron (Fe)	ug/L	54	8530	<50	726	55		50	2961238
Total Iron (Fe)	ug/L						14300	50	2961010
Dissolved Lead (Pb)	ug/L	<0.50	1.41	<0.50	<0.50	<0.50		0.50	2961238
Total Lead (Pb)	ug/L						<0.50	0.50	2961010
Dissolved Magnesium (Mg)	ug/L	14700	2240	3600	2520	15400		100	2961238
Total Magnesium (Mg)	ug/L						32900	100	2961010
Dissolved Manganese (Mn)	ug/L	732	3490	10.5	618	103		2.0	2961238
Total Manganese (Mn)	ug/L						8770	2.0	2961010
Dissolved Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	<2.0	10.7		2.0	2961238
Total Molybdenum (Mo)	ug/L						<2.0	2.0	2961010
Dissolved Nickel (Ni)	ug/L	<2.0	<2.0	2.6	9.1	<2.0		2.0	2961238

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		OS1062	OS1063	OS1064	OS1065	OS1066	OS1114		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	MW93-2	MW93-2A	MW10-1	MW10-1A	DUP-03	DUP-04	RDL	QC Batch
Total Nickel (Ni)	ug/L						<2.0	2.0	2961010
Dissolved Phosphorus (P)	ug/L	<100	<100	<100	<100	<100		100	2961238
Total Phosphorus (P)	ug/L						<100	100	2961010
Dissolved Potassium (K)	ug/L	1280	1090	1510	874	1730		100	2961238
Total Potassium (K)	ug/L						5800	100	2961010
Dissolved Selenium (Se)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0		1.0	2961238
Total Selenium (Se)	ug/L						<1.0	1.0	2961010
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10		0.10	2961238
Total Silver (Ag)	ug/L						<0.10	0.10	2961010
Dissolved Sodium (Na)	ug/L	20300	9110	7020	5750	68600		100	2961238
Total Sodium (Na)	ug/L						23700	100	2961010
Dissolved Strontium (Sr)	ug/L	229	40.3	104	67.0	249		2.0	2961238
Total Strontium (Sr)	ug/L						362	2.0	2961010
Dissolved Thallium (TI)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10		0.10	2961238
Total Thallium (TI)	ug/L						<0.10	0.10	2961010
Dissolved Tin (Sn)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0		2.0	2961238
Total Tin (Sn)	ug/L						<2.0	2.0	2961010
Dissolved Titanium (Ti)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0		2.0	2961238
Total Titanium (Ti)	ug/L						2.0	2.0	2961010
Dissolved Uranium (U)	ug/L	0.23	<0.10	0.27	<0.10	0.21		0.10	2961238
Total Uranium (U)	ug/L						0.94	0.10	2961010
Dissolved Vanadium (V)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0		2.0	2961238
Total Vanadium (V)	ug/L						<2.0	2.0	2961010
Dissolved Zinc (Zn)	ug/L	<5.0	835	8.0	15.5	<5.0		5.0	2961238
Total Zinc (Zn)	ug/L						6.5	5.0	2961010

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 10 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		OS1057		OS1057		OS1058		OS1059	OS1060	OS1061		
Sampling Date		2012/08/30		2012/08/30		2012/08/30		2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	RDL	PLCS	RDL	SLCS	RDL	SURFACE-UP	MW93-1	MW93-1A	RDL	QC Batch
				Lab-Dup								
Polyaromatic Hydrocarbons	5									•		
1-Methylnaphthalene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	0.050	2959473
2-Methylnaphthalene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	< 0.050	0.050	2959473
Acenaphthene	ug/L	0.041	0.010	0.018	0.010	0.019	0.010	<0.010	<0.010	<0.010	0.010	2959473
Acenaphthylene	ug/L	<0.010	0.010	<0.010	0.010	0.018	0.010	<0.010	<0.010	<0.010	0.010	2959473
Anthracene	ug/L	<0.15(1)	0.15	< 0.060(1)	0.060	<0.20(1)	0.20	<0.010	<0.010	<0.010	0.010	2959473
Benzo(a)anthracene	ug/L	0.039	0.010	0.020	0.010	0.064	0.010	<0.010	<0.010	<0.010	0.010	2959473
Benzo(a)pyrene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Benzo(b)fluoranthene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Benzo(g,h,i)perylene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Benzo(j)fluoranthene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Benzo(k)fluoranthene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Chrysene	ug/L	0.064	0.010	0.037	0.010	0.10	0.010	<0.010	<0.010	<0.010	0.010	2959473
Dibenz(a,h)anthracene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Fluoranthene	ug/L	0.18	0.010	0.079(2)	0.010	0.37	0.010	<0.010	<0.010	<0.010	0.010	2959473
Fluorene	ug/L	0.049	0.010	0.019	0.010	0.031	0.010	<0.010	<0.010	<0.010	0.010	2959473
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Naphthalene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20	<0.20	0.20	2959473
Perylene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	0.010	2959473
Phenanthrene	ug/L	<0.020(1)	0.020	< 0.040(1)	0.040	<0.30(1)	0.30	<0.010	<0.010	<0.010	0.010	2959473
Pyrene	ug/L	0.85	0.010	0.38(2)	0.010	1.8	0.010	<0.010	<0.010	<0.010	0.010	2959473
Surrogate Recovery (%)												
D10-Anthracene	%	91		96		96		88	103	92		2959473
D14-Terphenyl	%	92		86		99(3)		93	94(3)	95		2959473
D8-Acenaphthylene	%	94		95		96		89	97	97		2959473

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - Elevated PAH RDL(s) due to matrix / co-extractive interference.

(2) - Duplicate: < 10 % of compounds in multi-component analysis in violation.

(3) - PAH sample contained sediment.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		OS1062	OS1063	OS1064	OS1065	OS1066		OS1114		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		2012/08/30		
	Units	MW93-2	MW93-2A	MW10-1	MW10-1A	DUP-03	RDL	DUP-04	RDL	QC Batch
Polyaromatic Hydrocarbons	5									
1-Methylnaphthalene	ug/L	<0.050	< 0.050	< 0.050	<0.050	<0.050	0.050	<0.050	0.050	2959473
2-Methylnaphthalene	ug/L	<0.050	< 0.050	< 0.050	< 0.050	<0.050	0.050	<0.050	0.050	2959473
Acenaphthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.010	0.010	2959473
Acenaphthylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.040(1)	0.040	2959473
Benzo(a)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.013	0.010	2959473
Benzo(a)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Benzo(b)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Benzo(g,h,i)perylene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Benzo(j)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Benzo(k)fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Chrysene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.024	0.010	2959473
Dibenz(a,h)anthracene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Fluoranthene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.046	0.010	2959473
Fluorene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.014	0.010	2959473
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	<0.010	0.010	2959473
Naphthalene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	<0.20	0.20	2959473
Perylene	ug/L	<0.010	<0.010	<0.010	0.017	<0.010	0.010	<0.010	0.010	2959473
Phenanthrene	ug/L	<0.010	0.012	<0.010	<0.010	<0.010	0.010	<0.060(1)	0.060	2959473
Pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	0.23	0.010	2959473
Surrogate Recovery (%)										
D10-Anthracene	%	102	92	107	90	102		86		2959473
D14-Terphenyl	%	97	87	101(2)	93(2)	96		86		2959473
D8-Acenaphthylene	%	96	87	97	88	97		97		2959473

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - Elevated PAH RDL(s) due to matrix / co-extractive interference.

(2) - PAH sample contained sediment.

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		OS1057	OS1058	OS1060	OS1061		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	SLCS	MW93-1	MW93-1A	RDL	QC Batch
Chlorobenzenes							
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	2962500
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 13 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		OS1057	OS1058	OS1060	OS1061		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	SLCS	MW93-1	MW93-1A	RDL	QC Batch
Volatile Organics							
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,1-Dichloroethane	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	2962500
1,1-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	2962500
1,2-Dichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,2-Dichloropropane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Bromomethane	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	2962500
Carbon Tetrachloride	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Chloroethane	ug/L	<8.0	<8.0	<8.0	<8.0	8.0	2962500
Chloroform	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Chloromethane	ug/L	<8.0	<8.0	<8.0	<8.0	8.0	2962500
cis-1,2-Dichloroethylene	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	2962500
cis-1,3-Dichloropropene	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	2962500
Dibromochloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Ethylbenzene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Ethylene Dibromide	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	<3.0	<3.0	3.0	2962500
o-Xylene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
p+m-Xylene	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	2962500
Styrene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Tetrachloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Toluene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
trans-1,2-Dichloroethylene	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	2962500
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Trichloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	<8.0	<8.0	8.0	2962500
Vinyl Chloride	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	2962500
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	99	99	99	99		2962500
D4-1,2-Dichloroethane	%	106	104	103	105		2962500
D8-Toluene	%	101	99	100	100		2962500

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		OS1062	OS1063	OS1064	OS1065	OS1066	OS1114		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	MW93-2	MW93-2A	MW10-1	MW10-1A	DUP-03	DUP-04	RDL	QC Batch
Chlorobenzenes									
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	2962500
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Chlorobenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 15 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		OS1062	OS1063	OS1064	OS1065	OS1066	OS1114		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	MW93-2	MW93-2A	MW10-1	MW10-1A	DUP-03	DUP-04	RDL	QC Batch
Volatile Organics									
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,1-Dichloroethane	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2962500
1,1-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	2962500
1,2-Dichloroethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
1,2-Dichloropropane	ug/L	<1.0	<1.0	3.0	6.8	<1.0	<1.0	1.0	2962500
Benzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Bromomethane	ug/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	3.0	2962500
Carbon Tetrachloride	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Chloroethane	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	2962500
Chloroform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Chloromethane	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	2962500
cis-1,2-Dichloroethylene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2962500
cis-1,3-Dichloropropene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2962500
Dibromochloromethane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Ethylbenzene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Ethylene Dibromide	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	3.0	2962500
o-Xylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
p+m-Xylene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2962500
Styrene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Tetrachloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Toluene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
trans-1,2-Dichloroethylene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	2962500
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Trichloroethylene	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	2962500
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	2962500
Vinyl Chloride	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	2962500
Surrogate Recovery (%)									
4-Bromofluorobenzene	%	100	99	100	99	98	98		2962500
D4-1,2-Dichloroethane	%	104	103	104	104	105	104		2962500
D8-Toluene	%	101	100	102	101	101	100		2962500

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		OS1057	OS1057	OS1058	OS1059	OS1060	OS1061	OS1062		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		
	Units	PLCS	PLCS	SLCS	SURFACE-UP	MW93-1	MW93-1A	MW93-2	RDL	QC Batch
			Lab-Dup							
PCBs										
Total PCB	ug/L	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	2961017
Surrogate Recovery (%)										
Decachlorobiphenyl	%	67	71	68(1)	65	54(2)	91	94		2961017

Maxxam ID		OS1063		OS1064	OS1065	OS1066	OS1114			
Sampling Date		2012/08/30		2012/08/30	2012/08/30	2012/08/30	2012/08/30			
	Units	MW93-2A	QC Batch	MW10-1	MW10-1A	DUP-03	DUP-04	RDL	QC Batch	
PCBs										
Total PCB	ug/L	<0.050	2961017	< 0.050	<0.050	< 0.050	<0.050	0.050	2963005	
Surrogate Recovery (%)										
Decachlorobiphenyl	%	66	2961017	89	85	96	35		2963005	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) - PCB sample contained sediment. PCB:Unidentified (possibly halogenated) compounds detected.

(2) - PCB sample contained sediment.

Page 17 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

GENERAL COMMENTS

Sample OS1057-01: Poor RCAp Ion Balance due to sample matrix.

Sample OS1114-01: Poor RCAp Ion Balance due to sample matrix.

Page 18 of 29

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

QC Batch Parameter Date % Recovery QC Limits % Recovery QC Limits Value Units Value (%) QC Limits % Recovery 2959473 D10-Anthracene 2012/09/05 94 30 - 130 100 30 - 130 109 % <	QC Limits
2959473 D10-Anthracene 2012/09/05 94 30 - 130 100 30 - 130 109 % 2959473 D14-Terphenyl 2012/09/05 90 30 - 130 100 30 - 130 101 %	
2959473 D14-Terphenyl 2012/09/05 90 30 - 130 100 30 - 130 101 %	
2959473 D8-Acenaphthylene 2012/09/05 86 30 - 130 99 30 - 130 98 %	
2959473 1-Methylnaphthalene 2012/09/06 80(1) 30 - 130 93 30 - 130 <0.050 ug/L NC(2) 40	
2959473 2-Methylnaphthalene 2012/09/06 83(1) 30 - 130 97 30 - 130 <0.050 ug/L NC(2) 40	
2959473 Acenaphthene 2012/09/06 92(1) 30 - 130 102 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Acenaphthylene 2012/09/06 81(1) 30 - 130 94 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Anthracene 2012/09/06 77(1) 30 - 130 89 30 - 130 <0.010 ug/L NC(3,2) 40	
2959473 Benzo(a)anthracene 2012/09/06 84(1) 30 - 130 102 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Benzo(a)pyrene 2012/09/06 88(1) 30 - 130 94 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Benzo(b)fluoranthene 2012/09/06 88(1) 30 - 130 88 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Benzo(g,h,i)perylene 2012/09/06 94(1) 30 - 130 108 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Benzo(j)fluoranthene 2012/09/06 81(1) 30 - 130 85 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Benzo(k)fluoranthene 2012/09/06 80(1) 30 - 130 82 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Chrysene 2012/09/06 81(1) 30 - 130 91 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Dibenz(a,h)anthracene 2012/09/06 83(1) 30 - 130 92 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Fluoranthene 2012/09/06 80(1) 30 - 130 92 30 - 130 <0.010 ug/L 78.0(4.5.2) 40	
2959473 Fluorene 2012/09/06 89(1) 30 - 130 104 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Indeno(1,2,3-cd)pyrene 2012/09/06 87(1) 30 - 130 98 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Naphthalene 2012/09/06 78(1) 30 - 130 90 30 - 130 <0.20 ug/L NC(2) 40	
2959473 Perylene 2012/09/06 86(1) 30 - 130 95 30 - 130 <0.010 ug/L NC(2) 40	
2959473 Phenanthrene 2012/09/06 86(1) 30 - 130 100 30 - 130 <0.010 ug/L NC(3, 2) 40	
2959473 Pyrene 2012/09/06 81(1) 30 - 130 91 30 - 130 <0.010 ug/L 76.0(4.5.2) 40	
2959644 Total Aluminum (Al) 2012/09/06 101 80 - 120 105 80 - 120 5.8, RDL=5.0 ug/L	
2959644 Total Antimony (Sb) 2012/09/06 101 80 - 120 106 80 - 120 <1.0 ug/L	
2959644 Total Arsenic (As) 2012/09/06 95 80 - 120 97 80 - 120 <1.0 ug/L	
2959644 Total Barium (Ba) 2012/09/06 95 80 - 120 97 80 - 120 <1.0 ug/L	
2959644 Total Beryllium (Be) 2012/09/06 98 80 - 120 101 80 - 120 <1.0 ug/L	
2959644 Total Bismuth (Bi) 2012/09/06 98 80 - 120 101 80 - 120 <2.0 ug/L	
2959644 Total Boron (B) 2012/09/06 98 80 - 120 102 80 - 120 <50 ug/L	
2959644 Total Cadmium (Cd) 2012/09/06 94 80 - 120 97 80 - 120 <0.017 ug/L	
2959644 Total Calcium (Ca) 2012/09/06 99 80 - 120 100 80 - 120 <100 ug/L	
2959644 Total Chromium (Cr) 2012/09/06 95 80 - 120 99 80 - 120 <1.0 ug/L	
2959644 Total Cobalt (Co) 2012/09/06 96 80 - 120 99 80 - 120 <0.40 ug/L	
2959644 Total Copper (Cu) 2012/09/06 92 80 - 120 96 80 - 120 <2.0 ug/L	
2959644 Total Iron (Fe) 2012/09/06 104 80 - 120 107 80 - 120 <50 ug/L NC 25	
2959644 Total Lead (Pb) 2012/09/06 94 80 - 120 96 80 - 120 <0.50 ug/L	
2959644 Total Magnesium (Mg) 2012/09/06 105 80 - 120 108 80 - 120 <100 ug/L	
2959644 Total Manganese (Mn) 2012/09/06 99 80 - 120 102 80 - 120 <2.0 ug/L	
2959644 Total Molybdenum (Mo) 2012/09/06 96 80 - 120 103 80 - 120 <2.0 ug/L	

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

			Matrix	Spike	Spiked	Blank	Method BI	ank	RF	RPD		ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2959644	Total Nickel (Ni)	2012/09/06	95	80 - 120	100	80 - 120	<2.0	ug/L				
2959644	Total Phosphorus (P)	2012/09/06	102	80 - 120	101	80 - 120	<100	ug/L				
2959644	Total Potassium (K)	2012/09/06	101	80 - 120	100	80 - 120	<100	ug/L				
2959644	Total Selenium (Se)	2012/09/06	94	80 - 120	98	80 - 120	<1.0	ug/L				
2959644	Total Silver (Ag)	2012/09/06	100	80 - 120	100	80 - 120	<0.10	ug/L				
2959644	Total Sodium (Na)	2012/09/06	NC	80 - 120	105	80 - 120	<100	ug/L				
2959644	Total Strontium (Sr)	2012/09/06	94	80 - 120	95	80 - 120	<2.0	ug/L				
2959644	Total Thallium (TI)	2012/09/06	97	80 - 120	99	80 - 120	<0.10	ug/L				
2959644	Total Tin (Sn)	2012/09/06	99	80 - 120	101	80 - 120	<2.0	ug/L				
2959644	Total Titanium (Ti)	2012/09/06	99	80 - 120	105	80 - 120	<2.0	ug/L				
2959644	Total Uranium (U)	2012/09/06	105	80 - 120	106	80 - 120	<0.10	ug/L				
2959644	Total Vanadium (V)	2012/09/06	98	80 - 120	101	80 - 120	<2.0	ug/L				
2959644	Total Zinc (Zn)	2012/09/06	94	80 - 120	98	80 - 120	<5.0	ug/L				
2960191	Nitrogen (Ammonia Nitrogen)	2012/09/06	92	80 - 120	101	80 - 120	<0.050	mg/L	NC	25	104	80 - 120
2960983	рН	2012/09/06							0.2	25	100	80 - 120
2960985	Conductivity	2012/09/06			100	80 - 120	<1.0	uS/cm	0.7	25		
2961010	Total Aluminum (Al)	2012/09/06	103	80 - 120	104	80 - 120	<5.0	ug/L				
2961010	Total Antimony (Sb)	2012/09/06	107	80 - 120	112	80 - 120	<1.0	ug/L				
2961010	Total Arsenic (As)	2012/09/06	96	80 - 120	98	80 - 120	<1.0	ug/L				
2961010	Total Barium (Ba)	2012/09/06	NC	80 - 120	99	80 - 120	<1.0	ug/L				
2961010	Total Beryllium (Be)	2012/09/06	99	80 - 120	105	80 - 120	<1.0	ug/L				
2961010	Total Bismuth (Bi)	2012/09/06	101	80 - 120	107	80 - 120	<2.0	ug/L				
2961010	Total Boron (B)	2012/09/06	NC	80 - 120	108	80 - 120	<50	ug/L				
2961010	Total Cadmium (Cd)	2012/09/06	95	80 - 120	97	80 - 120	<0.017	ug/L				
2961010	Total Calcium (Ca)	2012/09/06	102	80 - 120	103	80 - 120	<100	ug/L				
2961010	Total Chromium (Cr)	2012/09/06	96	80 - 120	99	80 - 120	<1.0	ug/L				
2961010	Total Cobalt (Co)	2012/09/06	96	80 - 120	99	80 - 120	<0.40	ug/L				
2961010	Total Copper (Cu)	2012/09/06	91	80 - 120	97	80 - 120	<2.0	ug/L				
2961010	Total Iron (Fe)	2012/09/07	107	80 - 120	110	80 - 120	<50	ug/L	NC	25		
2961010	Total Lead (Pb)	2012/09/06	95	80 - 120	99	80 - 120	<0.50	ug/L				
2961010	Total Magnesium (Mg)	2012/09/06	108	80 - 120	112	80 - 120	<100	ug/L				
2961010	Total Manganese (Mn)	2012/09/07	99	80 - 120	104	80 - 120	<2.0	ug/L	NC	25		
2961010	Total Molybdenum (Mo)	2012/09/06	101	80 - 120	107	80 - 120	<2.0	ug/L				
2961010	Total Nickel (Ni)	2012/09/06	96	80 - 120	101	80 - 120	<2.0	ug/L				
2961010	Total Phosphorus (P)	2012/09/06	101	80 - 120	104	80 - 120	<100	ug/L				
2961010	Total Potassium (K)	2012/09/06	101	80 - 120	104	80 - 120	<100	ua/L				
2961010	Total Selenium (Se)	2012/09/06	94	80 - 120	97	80 - 120	<1.0	ug/L				
2961010	Total Silver (Ag)	2012/09/06	101	80 - 120	105	80 - 120	<0.10	ug/L				
2961010	Total Sodium (Na)	2012/09/06	NC	80 - 120	107	80 - 120	<100	ug/L				
2961010	Total Strontium (Sr)	2012/09/06	93	80 - 120	100	80 - 120	<2.0	ug/L				

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

			Matrix Spike Spiked Blank		Method Blank		RPD		QC Star	ndard		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2961010	Total Thallium (TI)	2012/09/06	100	80 - 120	104	80 - 120	<0.10	ug/L				
2961010	Total Tin (Sn)	2012/09/06	103	80 - 120	106	80 - 120	<2.0	ug/L				
2961010	Total Titanium (Ti)	2012/09/06	101	80 - 120	106	80 - 120	<2.0	ug/L				
2961010	Total Uranium (U)	2012/09/06	108	80 - 120	110	80 - 120	<0.10	ug/L				
2961010	Total Vanadium (V)	2012/09/06	98	80 - 120	102	80 - 120	<2.0	ug/L				
2961010	Total Zinc (Zn)	2012/09/07	96	80 - 120	100	80 - 120	<5.0	ug/L	2.4	25		
2961017	Decachlorobiphenyl	2012/09/10	67	30 - 130	51	30 - 130	56	%				
2961017	Total PCB	2012/09/10	101(6)	70 - 130	126	70 - 130	<0.050	ug/L	NC (7)	40		
2961076	Total Suspended Solids	2012/09/10					<1.0	mg/L	11.8	25	99	80 - 120
2961238	Dissolved Aluminum (Al)	2012/09/08	99(8)	80 - 120	98	80 - 120	<5.0	ug/L	NC (9)	25		
2961238	Dissolved Antimony (Sb)	2012/09/08	113(8)	80 - 120	110	80 - 120	<1.0	ug/L	NC (9)	25		
2961238	Dissolved Arsenic (As)	2012/09/08	100(8)	80 - 120	98	80 - 120	<1.0	ug/L	NC (9)	25		
2961238	Dissolved Barium (Ba)	2012/09/08	NC (8)	80 - 120	96	80 - 120	<1.0	ug/L	0.7(9)	25		
2961238	Dissolved Beryllium (Be)	2012/09/08	103(8)	80 - 120	100	80 - 120	<1.0	ug/L	NC (9)	25		
2961238	Dissolved Bismuth (Bi)	2012/09/08	101 (8)	80 - 120	103	80 - 120	<2.0	ug/L	NC (9)	25		
2961238	Dissolved Boron (B)	2012/09/08	102(8)	80 - 120	101	80 - 120	<50	ug/L	NC (9)	25		
2961238	Dissolved Cadmium (Cd)	2012/09/08	99(8)	80 - 120	98	80 - 120	<0.017	ug/L	NC (9)	25		
2961238	Dissolved Calcium (Ca)	2012/09/08	NC (8)	80 - 120	98	80 - 120	<100	ug/L	1.5(9)	25		
2961238	Dissolved Chromium (Cr)	2012/09/08	95(8)	80 - 120	94	80 - 120	<1.0	ug/L	NC (9)	25		
2961238	Dissolved Cobalt (Co)	2012/09/08	94(8)	80 - 120	94	80 - 120	<0.40	ug/L	NC (9)	25		
2961238	Dissolved Copper (Cu)	2012/09/08	92(8)	80 - 120	94	80 - 120	<2.0	ug/L	NC (9)	25		
2961238	Dissolved Iron (Fe)	2012/09/08	102(8)	80 - 120	102	80 - 120	<50	ug/L	NC (9)	25		
2961238	Dissolved Lead (Pb)	2012/09/08	97(8)	80 - 120	98	80 - 120	<0.50	ug/L	NC (9)	25		
2961238	Dissolved Magnesium (Mg)	2012/09/08	NC (8)	80 - 120	101	80 - 120	<100	ug/L	1.1 (9)	25		
2961238	Dissolved Manganese (Mn)	2012/09/08	NC (8)	80 - 120	100	80 - 120	<2.0	ug/L	1.7(9)	25		
2961238	Dissolved Molybdenum (Mo)	2012/09/08	NC (8)	80 - 120	101	80 - 120	<2.0	ug/L	0.9(9)	25		
2961238	Dissolved Nickel (Ni)	2012/09/08	95(8)	80 - 120	96	80 - 120	<2.0	ug/L	NC (9)	25		
2961238	Dissolved Phosphorus (P)	2012/09/08	109(8)	80 - 120	105	80 - 120	<100	ug/L	NC (9)	25		
2961238	Dissolved Potassium (K)	2012/09/08	103(8)	80 - 120	102	80 - 120	<100	ug/L	1.7(9)	25		
2961238	Dissolved Selenium (Se)	2012/09/08	99(8)	80 - 120	97	80 - 120	<1.0	ug/L	NC (9)	25		
2961238	Dissolved Silver (Ag)	2012/09/08	95(8)	80 - 120	101	80 - 120	<0.10	ug/L	NC (9)	25		
2961238	Dissolved Sodium (Na)	2012/09/08	NC (8)	80 - 120	98	80 - 120	<100	ug/L	1.3(9)	25		
2961238	Dissolved Strontium (Sr)	2012/09/08	NC (8)	80 - 120	98	80 - 120	<2.0	ug/L	0.6(9)	25		
2961238	Dissolved Thallium (TI)	2012/09/08	101(8)	80 - 120	101	80 - 120	<0.10	ug/L	NC (9)	25		
2961238	Dissolved Tin (Sn)	2012/09/08	107(8)	80 - 120	101	80 - 120	<2.0	ug/L	NC (9)	25		
2961238	Dissolved Titanium (Ti)	2012/09/08	101(8)	80 - 120	98	80 - 120	<2.0	ug/L	NC (9)	25		
2961238	Dissolved Uranium (U)	2012/09/08	108(8)	80 - 120	107	80 - 120	<0.10	ug/L	1.9(9)	25		
2961238	Dissolved Vanadium (V)	2012/09/08	98(8)	80 - 120	96	80 - 120	<2.0	ug/L	NC (9)	25		
2961238	Dissolved Zinc (Zn)	2012/09/08	98(8)	80 - 120	98	80 - 120	<5.0	ug/L	NC (9)	25		
2961247	Sulphide	2012/09/06	88	80 - 120	92	80 - 120	<0.020	mg/L	NC	20		

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

			Matrix Spike		Spiked Blank		Method Blank		RPD		QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2961273	Total Alkalinity (Total as CaCO3)	2012/09/07	NC	80 - 120	103	80 - 120	<5.0	mg/L	1.9	25	105	80 - 120
2961277	Dissolved Chloride (CI)	2012/09/10	99	80 - 120	101	80 - 120	<1.0	mg/L	1.2	25	103	80 - 120
2961278	Dissolved Sulphate (SO4)	2012/09/07	101	80 - 120	103	80 - 120	<2.0	mg/L	NC	25	105	80 - 120
2961280	Reactive Silica (SiO2)	2012/09/07	NC	80 - 120	100	80 - 120	<0.50	mg/L	0.4	25	106	75 - 125
2961284	Colour	2012/09/10					<5.0	TCU	NC	25	102	80 - 120
2961285	Orthophosphate (P)	2012/09/10	76(4, 10)	80 - 120	99	80 - 120	<0.010	mg/L	NC	25	97	80 - 120
2961286	Nitrate + Nitrite	2012/09/10	97	80 - 120	100	80 - 120	<0.050	mg/L	NC	25	102	80 - 120
2961289	Nitrite (N)	2012/09/10	99	80 - 120	99	80 - 120	<0.010	mg/L	NC	25	100	80 - 120
2961491	Strong Acid Dissoc. Cyanide (CN)	2012/09/06	90	80 - 120	104	80 - 120	<0.0020	mg/L	NC	25		
2962401	Total Oil & Grease	2012/09/10	82	70 - 130	81	70 - 130	<5.0	mg/L	NC	40		
2962413	Turbidity	2012/09/07					<0.10	NTU	NC	25	100	80 - 120
2962415	Turbidity	2012/09/07					<0.10	NTU	3.8	25	100	80 - 120
2962500	1,2-Dichlorobenzene	2012/09/09	111	70 - 130	108	70 - 130	<0.50	ug/L	NC	40		
2962500	1,3-Dichlorobenzene	2012/09/09	111	70 - 130	109	70 - 130	<1.0	ug/L	NC	40		
2962500	1,4-Dichlorobenzene	2012/09/09	111	70 - 130	109	70 - 130	<1.0	ug/L	NC	40		
2962500	Chlorobenzene	2012/09/09	105	70 - 130	109	70 - 130	<1.0	ug/L	NC	40		
2962500	1,1,1-Trichloroethane	2012/09/09	111	70 - 130	110	70 - 130	<1.0	ug/L	NC	40		
2962500	1,1,2,2-Tetrachloroethane	2012/09/09	105	70 - 130	109	70 - 130	<1.0	ug/L	NC	40		
2962500	1,1,2-Trichloroethane	2012/09/09	105	70 - 130	109	70 - 130	<1.0	ug/L	NC	40		
2962500	1,1-Dichloroethane	2012/09/09	105	70 - 130	108	70 - 130	<2.0	ug/L	NC	40		
2962500	1,1-Dichloroethylene	2012/09/09	111	70 - 130	112	70 - 130	<0.50	ug/L	NC	40		
2962500	1,2-Dichloroethane	2012/09/09	116	70 - 130	117	70 - 130	<1.0	ug/L	NC	40		
2962500	1,2-Dichloropropane	2012/09/09	100	70 - 130	107	70 - 130	<1.0	ug/L	NC	40		
2962500	4-Bromofluorobenzene	2012/09/09	101	70 - 130	100	70 - 130	99	%				
2962500	Benzene	2012/09/09	112	70 - 130	112	70 - 130	<1.0	ug/L	NC	40		
2962500	Bromodichloromethane	2012/09/09	100	70 - 130	106	70 - 130	<1.0	ug/L	NC	40		
2962500	Bromoform	2012/09/09	89	70 - 130	94	70 - 130	<1.0	ug/L	NC	40		
2962500	Bromomethane	2012/09/09	74	70 - 130	93	70 - 130	<3.0	ug/L	NC	40		
2962500	Carbon Tetrachloride	2012/09/09	105	70 - 130	106	70 - 130	<1.0	ug/L	NC	40		
2962500	Chloroethane	2012/09/09	111	70 - 130	109	70 - 130	<8.0	ug/L	NC	40		
2962500	Chloroform	2012/09/09	105	70 - 130	108	70 - 130	<1.0	ug/L	NC	40		
2962500	Chloromethane	2012/09/09	79	70 - 130	86	70 - 130	<8.0	ug/L	NC	40		
2962500	cis-1,2-Dichloroethylene	2012/09/09	110	70 - 130	112	70 - 130	<2.0	ug/L	NC	40		
2962500	cis-1.3-Dichloropropene	2012/09/09	111	70 - 130	117	70 - 130	<2.0	ua/L	NC	40		
2962500	D4-1.2-Dichloroethane	2012/09/09	102	70 - 130	102	70 - 130	103	%				
2962500	D8-Toluene	2012/09/09	102	70 - 130	102	70 - 130	101	%				
2962500	Dibromochloromethane	2012/09/09	95	70 - 130	102	70 - 130	<1.0	ug/L	NC	40		
2962500	Ethylbenzene	2012/09/09	111	70 - 130	113	70 - 130	<1.0	ug/L	NC	40		
2962500	Ethylene Dibromide	2012/09/09	110	70 - 130	112	70 - 130	<1.0	ug/L	NC	40		
2962500	MethyleneChloride(Dichloromethane)	2012/09/09	105	70 - 130	113	70 - 130	<3.0	ug/L	NC	40		

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

			Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2962500	o-Xylene	2012/09/09	115	70 - 130	117	70 - 130	<1.0	ug/L	NC	40		
2962500	p+m-Xylene	2012/09/09	115	70 - 130	115	70 - 130	<2.0	ug/L	NC	40		
2962500	Styrene	2012/09/09	115	70 - 130	115	70 - 130	<1.0	ug/L	NC	40		
2962500	Tetrachloroethylene	2012/09/09	116	70 - 130	116	70 - 130	<1.0	ug/L	NC	40		
2962500	Toluene	2012/09/09	NC	70 - 130	114	70 - 130	<1.0	ug/L	NC	40		
2962500	trans-1,2-Dichloroethylene	2012/09/09	111	70 - 130	116	70 - 130	<2.0	ug/L	NC	40		
2962500	trans-1,3-Dichloropropene	2012/09/09	105	70 - 130	114	70 - 130	<1.0	ug/L	NC	40		
2962500	Trichloroethylene	2012/09/09	110	70 - 130	111	70 - 130	<1.0	ug/L	NC	40		
2962500	Trichlorofluoromethane (FREON 11)	2012/09/09	105	70 - 130	110	70 - 130	<8.0	ug/L	NC	40		
2962500	Vinyl Chloride	2012/09/09	105	70 - 130	109	70 - 130	<0.50	ug/L	NC	40		
2962914	Nitrogen (Ammonia Nitrogen)	2012/09/10	90(11)	80 - 120	100	80 - 120	<0.050	mg/L	NC (12)	25	103	80 - 120
2962919	Nitrogen (Ammonia Nitrogen)	2012/09/10	95	80 - 120	100	80 - 120	<0.050	mg/L	NC	25	103	80 - 120
2963005	Decachlorobiphenyl	2012/09/11	104	30 - 130	120	30 - 130	35	%				
2963005	Total PCB	2012/09/11	104	70 - 130	111	70 - 130	<0.050	ug/L	NC	40		
2963008	Total Mercury (Hg)	2012/09/07	99	80 - 120	100	80 - 120	<0.013	ug/L	NC	25	100	80 - 120
2964775	Total Organic Carbon (C)	2012/09/10	90	80 - 120	92	80 - 120	<0.50	mg/L	NC	25		

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

QUALITY ASSURANCE REPORT

		Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2964777	Total Organic Carbon (C)	2012/09/10	91	80 - 120	93	80 - 120	<0.50	mg/L	NC	25		
2966437	Phenols-4AAP	2012/09/11	99	80 - 120	102	80 - 120	<0.0010	mg/L	NC	25	101	N/A

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Matrix Spike Parent ID [OS1059-05]

(10) - Poor spike recovery due to matrix interference, recovery confirmed by repeat analysis.

(11) - Matrix Spike Parent ID [OS1060-06]

- (12) Duplicate Parent ID [OS1060-06]
- (2) Duplicate Parent ID [OS1057-05]
- (3) Elevated PAH RDL(s) due to matrix / co-extractive interference.
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (5) Duplicate: < 10 % of compounds in multi-component analysis in violation.
- (6) Matrix Spike Parent ID [OS1058-02]
- (7) Duplicate Parent ID [OS1057-02]

Page 24 of 29

Maxxam Job #: B2D4739 Report Date: 2012/09/11

(8) - Matrix Spike Parent ID [OS1060-03](9) - Duplicate Parent ID [OS1060-03]

Success Through Science®

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02

Sampler Initials: MM

Validation Signature Page

Maxxam Job #: B2D4739

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Erie Bearman, Scientific Specialist

Brad Newman, Scientific Specialist

Polin Inith austory

Robin Smith-Armstrong, Bedford SemiVol Spvsr

Mike The Sullis

Mike Macgillivray, Scientific Specialist (Inorganics)

Validation Signature Page

Maxxam Job #: B2D4739

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Alan Stewart, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 27 of 29

÷		8	с 1				
Mavyam	200 Bluewater Road, Suite 105, Bedford, Nova 49 Elizabeth Ave., St John's, NL A1A 1W9	a Scotia B4B 1G9 Tel: 902- Tel: 709-	420-0203 Fax: 902-42 754-0203 Fax: 709-75	0-8612 Toll Free: 1-800-565-7/ 4-8612 Toll Free: 1-888-492-7/	227 MAXXAM C	hain of Custody Record	
	90 Esplanade Sydney, NS B1P 1A1 5 www.maxxamanalytics.com E-m	Tel: 902- nail: Clientservicesbedf	567-1255 Fax: 902-53 ord@maxxamanaly	9-6504 Toll Free: 1-888-535-7 lics.com	770 COC #: B	088782	Page of
This column for Job use only:	INVOICE INFORMATION:	RI	EPORT INFORMAT	TION (if differs from invo	oice):		
Client Code 16275	Company Name: Conestogo	Rovers & Associated Ca	ompany Name:	1000 C	Project # / Phas	*** 056660-02	Standard 🖄
Maxxam Job #	Contact Name: Brigh Lu	fman co	ontact Name:	<u></u>	Project Name /	Site Location	10 day
8204739	Address: [118 Topsa.]	Road An	ddress:	Sanne_	Guote B2	4460	in Hush Specny Date:
Temp ct t	St. Johns, NC Code 1	41B 3N7	5.1781 - 58678	Code	Task Order #	by Chance M&AM	Pre-schedule rush work
ooler IC eal Pre- eal Inta eal Inta eal D 2 amp 2 amp 3 verage	(109) 2111 5252 - (1	huttman@crawerU. Er	nail:		Sampled by	y 1 Mondrey	Charge for # Jars used but
	Guideline Requirements / Detection	9)361~> <u>268</u> Ph in Limits / Special Ins	n: Intructions	Fax:		1 14 Maher/ Bryat	not submitted
600	Place C.C	datarles	n p	Vietals Vietals Cod)	thod oean A for CCN outtural	H, Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-C	2 20 5 2 2
		ws	rld comp	hoose hoose hoose M Methoose se wate	est Me - for O F/HCLC F/HCLC Boour A Boour A Soron	vel T.E., Quinc	PC(
Integrity Integrity / Checklist by	TPH Done	Must ic MI	& Pre	atar C C C C C C C C C C C C C C C C C C C	Prouty able Diges INC3/HNC3/HNC3/HNC3/HNC3/HNC3/HNC3/HNC3/H	Acriding Acriding	Phone Bridge
ES DO	*Snacify Matrix: Surface/Salt/Ground/7		tered	0 Tc IS Tc Digest olved ound w	ult Avail ult Avail als Tota als Tota als Tota ury cury level by nium (ic nium (ic dential, Mater s	A Hydry A Hydry Social Policy A PH, S with / s with /	0:1
Labelled by Location / Bin #	Potable/NonPotable/Ti	ssue/Soil/Sludge/Metal/	Seawater	AP-3 Tota Diss	Metta Defa Merta Merta Resid Hot	PAH PAH PAH	Per porte
ļ		Matrix Sampled	bottles 🗒	Water	Metals Soll	Hydrocarbons	
	PLAS	Leachatz Hugsall	1 25		<u> </u>		
	° SLCS	Leachate Aug 30/12	25				XXXXX
	³ SURFACE - UP	Surface Ang 30/12	第15			XXX	X
	4 MW93-1	Ground Aug 30/	2 16 X	Ø			
	5 MW 93-1A	Ground Arrazoli	2 16 X	D		XXX	XIIII
	6 MW 93-2	Ground Aug3di	16 X	D		XIX	
SHIPPED FROM	7 MW93-2A	Ground Aug 30/12	16 X	D		X X	
	8 MW 10 -1	Ground Aug30/12	216 X	D		X X	
MAYYAN NI	· MWID-1A	Ground Augzoli	216 X	D			
MARAMIN	10 DUP-03	Carcynd Augzoll	216 X	D			X
GROUPPWATER & Pre	eserved And 12	nature/Print)	Date AUG 31/12	Time REC	EIVED BY: (Signature/Print) MCUA nUm	2012/03/3	Time 2:25pm
for Metak	ANDRED	J BRYANT	And		2D	LOE GASNETS	
							22917 - 92Q/
	W	hite: Maxxam	Yellow : Mail	Pink: C	lient	4	TI ECD 00149 / Revision 10

Page 28 of 29

Maxaan Analytics International Corporation o/a Maxxam Analytics 49-55 Elizabeth Ave, Suite 1014, St.Johnis, NL, Canada A1A 1W9 Tel: 709-754-0203 Toll Free 888-492-7227 Fax 709-754-8612 www.maxxamca

-t-

Maxian 400	: I Bluewater Road, Suite 105, Bedford, Nova Scotia Elizabeth Ave., St John's, NL A1A 1W9 Esplanade Sydney, NS B1P 1A1 vw.maxxamanalytics.com E-mail: Cl	848 1G9 Tel: 902-420-020 Tel: 708-754-020 Tel: 902-567-125 ientservicesbedford@m	13 Fax: 902-420-8612 Toll f 13 Fax: 709-754-8612 Toll f 15 Fax: 902-639-6504 Toll f naxxamanalytics.com	ree: 1-800-565-7227 ree: 1-888-492-7227 ree: 1-888-535-7770	MAXXAM Chain of Custody Record	Page 2 of 2
the education for a property invo	OICE INFORMATION:	REPORT	T INFORMATION (if diff.	are from invoice).	P0#	TURNAROUND TIME
Client Code	many Name Caucher Brings h	Auto		<u>non monce</u> .	Project # / Phase #	Standard
Maxxam Job #	npany waine. <u>Constory</u> (1000) x	o Dociatic Compar	ny Name:		Project Name / Site Location	10 day
Con	tact Name: IStich Luiting	1 Contact	t Name:		Quote Collui	If RUSH Specify Date:
8204739 Add	ress: <u>1118 top54;118</u>	Address		al	Site #	
	f. John's NL Code AIB	3N/) Cod	9	Lome by Chance MAN	Pre-schedule rush work
small a s s s s s s s s s s s s s s s s s	ail: datanl@craworld.com, bluttingn@cr	reworld con Email:			Somelad hu	Charge for #
<u>ଁ ଓ ଓ ଓ ଜୁନ୍ନ ନି</u> ଧି Ph:((109)364-5353 Fax: (709)364	-5362 Ph:			Mike Migher / Andrew Bryan	not submitted
	Jeline Requirements / Detection Lini	its / Special Instruction	ons <u>s</u>			S TH N E N
OOO Ple	ase c.c. datant Quran	orld.com	Mer Mer	Alerhoc Ocean	AA aricultu d for (h, NS F TEX, C TEX, C	A FILLER
	ТРНМ	list	Disc Disc	HIT ME COE WE AF/HC	Agrount Agroun	
Integrity Integrity / Checklist by	Done ir	n NL	Red Red	r, surfactor able D Dige:	Cold Cold Version Cold Version Cold Version Cold Version Cold Version Cold Version Ver	
YES NO	6		7 7 and	Und wate wate Inv Ved Ved Ved Ved Ved Ved Ved Ved Ved Ved	with / VPH, VPH, VPH, VPH, VPH, VPH, VPH, VPH,	
Labelled by Location / Bin # *Spe	cify Matrix: Surface/Salt/Ground/Tapwate Potable/NonPotable/Tissue/S	er/Sewage/Effluent/ Soil/Sludge/Metal/Seawa	ter Filte	for we bisso bisso bisso bisso bisso bisso bisso Metal	Merca Selenic Hot With BECA Hot With MECA Hot With MECA Hot Merca Hot Merca	
Fi	ield Sample Identification Mat	trix* Date/Time #&ty Sampled bot	Hies Hies Hies	Metals Water Me	stals Soil Hydrocarbons	
1 1	DUP-04 Lead	hate Aug 30/12 11				Lage Lage Lage Lage Lage Lage Lage Lage
2		J.				
	/					
3	A	\				λ
4						
5						
6						
7						
SHIPPED FROM®						
SHITTED THOM			-+++-		┥┥┥┧╎┥┥┥	╂┼┽╲╋╌┼╴┧
MAXXAM NI 19				1		
Field Filtered & P	Presorved RELINQUISHED BY: (Signature/P	rint) AMI	Date Time (+30/12 (:00	New PMC	(Signature/Print) Date April 2012/09/	Time 31 225pm
for Metals	ANDREW BRY	ANT		2	De Joe GARNETI	
	UNISHS: LA	woman .	52.00 CF 11	Dista Official		

Your Project #: DB2D4739 Site Location: 056680-02 Your C.O.C. #: 08357157

Attention: BEDFORD CLIENT SERVICE

MAXXAM ANALYTICS 200 BLUEWATER ROAD, SUITE 105 BEDFORD, NS CANADA B4B 1G9

Report Date: 2012/09/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B279486 Received: 2012/09/06, 09:15

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chromium, Hexavalent	2	N/A	2012/09/06	BBY6SOP-00015	SM-3500Cr B

* Results relate only to the items tested.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Morgan Melnychuk, Burnaby Project Manager Email: MMelnychuk@maxxam.ca Phone# (604) 638-8034

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Maxxam Job #: B279486 Report Date: 2012/09/07 MAXXAM ANALYTICS Client Project #: DB2D4739 Site Location: 056680-02

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		EJ9461	EJ9462		
Sampling Date		2012/08/30	2012/08/30		
	UNITS	PLCS (OS1057-10R)	SLCS (OS1058-10R)	RDL	QC Batch
Metals		-	_		
Hex. Chromium (Cr 6+)	mg/L	<0.0010	<0.0010	0.0010	6145742

Maxxam Job #: B279486 Report Date: 2012/09/07

MAXXAM ANALYTICS Client Project #: DB2D4739 Site Location: 056680-02

Package 1	6.7°C

 Package 1
 6.7°C

 Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Maxxam Job #: B279486 Report Date: 2012/09/07 MAXXAM ANALYTICS Client Project #: DB2D4739 Site Location: 056680-02

QUALITY ASSURANCE REPORT

		Matrix Spike		Spiked I	Blank	Method	Blank	RPD					
	QC Batch	Parameter	Date % Recove		Date % Recovery QC I		QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
	6145742	Hex. Chromium (Cr 6+)	2012/09/06	92	80 - 120	101	80 - 120	<0.0010	mg/L	NC	20		

N/A = Not Applicable

RPD = Relative Percent Difference

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B279486

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

prely to

===

Andy Lu, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 056680 Site Location: COME BY CHANCE SECURE LANDFILL Your C.O.C. #: B 088785

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2012/09/17

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B2D7409 Received: 2012/09/07, 09:14

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Carbonaceous BOD (1)	2	N/A	2012/09/12 ATL SOP 00041	Based on APHA 5210B

Remarks:

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- * Results relate only to the items tested.

(1) This test was performed by Bedford

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902) 420-0203 Ext:289

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 6

Maxxam Job #: B2D7409 Report Date: 2012/09/17 Conestoga-Rovers and Associates Ltd Client Project #: 056680 Site Location: COME BY CHANCE SECURE LANDFILL Sampler Initials: AB

Sampler Initials: AB RESULTS OF ANALYSES OF WATER

Maxxam ID		OT4661	OT4662		
Sampling Date		2012/09/05 16:15	2012/09/05 16:15		
	Units	PLCS	SLCS	RDL	QC Batch
Inorganics	-		_	-	
Carbonaceous BOD	mg/L	<5.0	<5.0	5.0	2962441

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 2 of 6

Success Through Science®

Maxxam Job #: B2D7409 Report Date: 2012/09/17 Conestoga-Rovers and Associates Ltd Client Project #: 056680 Site Location: COME BY CHANCE SECURE LANDFILL Sampler Initials: AB

QUALITY ASSURANCE REPORT

		Spiked Blank		Method	Blank	RP	D	QC Standard		
QC Batch	Parameter	Date	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
2962441	Carbonaceous BOD	2012/09/12	100	80 - 120	<5.0	mg/L	NC	25	89	80 - 120

N/A = Not Applicable

RPD = Relative Percent Difference

QC Standard: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Maxxam

Maxxam Job #: B2D7409 Report Date: 2012/09/17 Conestoga-Rovers and Associates Ltd Client Project #: 056680 Site Location: COME BY CHANCE SECURE LANDFILL Sampler Initials: AB

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination. NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Page 4 of 6

Validation Signature Page

Maxxam Job #: B2D7409

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike The Julie

Mike Macgillivray, Scientific Specialist (Inorganics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International Corporation o/a Maxxam Analytics 49-55 Elizabeth Ave, Suite 101A, St.John's, NL, Canada A1A 1W9 Tel: 709-754-0203 Toll Free: 888-492-7227 Fax: 709-754-8612 www.maxxam.ca

	Tel:	709-754-0203 Fr	ax: 902-420- ax: 709-754-	B612 1	ioll Free: 1 Ioll Free: 1	-800-56 -888-49	5-7227 2-7227	MAX	(AM Ch	ain of C	ustody i	Record				
Analytics www.maxxamanalytics.com	Tel: mail: Clientservicest-	902-567-1255 Fa Dedford@maxxa	ax: 902-539- Imanalytic	6504 T S.COM	oll Free: 1	-888-53	5-7770	coc	#: B	08	878	35	Pa	ge	of	
This column for lab use only: INVOICE INFORMATION:		REPORT INF	ORMATI	ON (if c	liffers f	irom ir	voice):	PO #					T	URNA	ROUN) TIME
Client Code 16275 Company Name: Con stude Ri	vers & Associates L	Company Na	me:					Projec	# / Phase	* 05	6680	>	s	Standa	rd 🛛	⊈
Maxxam Job # Contact Name: Brigh L	iffman	Contact Nan	ne:		ド	,	*	Projec	Name/Si	te Locatio	n Cacure	Landf;	<u>п</u>]э	0 day	Ļ	1
Address: 1118 Topsail Rd. Pr	30x 8353	Address:	D	P	~~~		A14 25	Quote	-24	460			U	RUSH	Specif	y Dale:
BLD THUT ESTN'A STJAM'S NL Code	ANB 3N7		ST	P	ostal		5 6	Site #	ome l	oy Cha	nce M	14M				
₽ 5 Email: Bluffmen@CRAwwrld.com	datanlocanwall.co	^ Email:		2	-			Task O	rder #					Pre-scho Charge 1	duie ru	sh work
8 8 8 4 4 5353 Fax:	109-364-5368	Ph:	10-10-10-10	F	ax:			Sampl	A.F		+			lars use not subm	d but titted	Ø
Guideline Requirements / Detec	tion Limits / Special	Instructions		s	2	110		WE	100	5						
Please C.C. datanl@	CKAwsild Com	Х.	B	e Meta	Meta fod)		ethod Ocean	AA (AA	Itural)	NS FU	H		oline	WY		
abryan	F@CKAworld, Cox	h	serv	Diss	Lit Met		gest M	PHOL BOUL	Boron Agricu	ns otable), evel B	Vel T.E	1	e, Quit	DUM (
Integrity Integrity / Checklist by			& Pre	tal or O	(Defai	ater	able D	Cold V	Parklan	32) 32) Soil (P	Water Low Is nation	1 TELE	loridin	3		
(VES THO LLIT			ered	₽ 	0 10 10	hed bund w	ury s & Me it Avail s Total	ents (F	ential, later s	C-00-00 Darbons	vPH, ractio		with /	len /	$\left\{ \right\}$	
Labelled by Location / Bin # *Specify Matrix: Surface/Salt/Ground Potable/NonPotable	i/Tapwater/Sewage/Ef /Tissue/Soil/Sludge/M	fluent/ etal/Seawater		P-30	tor we	Disso for gr	Merci Metal Defau Metal	Merci Merci	Hot W		TPHIE	PAHS	PAHS	Ceve		
Field Sample Identification	Matrix* Date/ Sam	Time # & type of bottles	Field	RC/		letals Vater	K	letals S	bil	Hy	drocarb	ons	ie,	R R		
1 SURFACE-UP	Surface Sept. 5	12 ZX50ml	No No	1.1	Г					1				X		
2 PLCS	Lenchate Sept.5	112 x 500ml	NoNo											X		
³ SLLS	Leachate 4	12 X500mL	No No											X		
4		8	ľΤ													
5														2		
6													1			
7												SHIP	PE	DF	RO	1
8												6	g d			
9		_								1.150	5	MÁ	F 9 4	S P M N	1) .	<u>in (19</u>
10					_		++		-1-1	-		1.000	A THE			
RELINQUISHED BY: (Signature/Print)	Date		Time		F	ECEIVED B	Y: (Signatu	e/Print)			Date		Tim	e	
Andrew B	yant	_ Sept	.6/1Z	- 9	:DO_	r	m	Ω	e	6-		201	9	09	Q(_ م
Az	de legal	~ 1	2									C	<u>];</u> /	10		2
	0	- Pa	ae 6 .of 6				lun	1 Fla	en	ERI	NF	RAS	SEK	2.		

Your Project #: 056680-02 Site Location: COME BY CHANCE M&M Your C.O.C. #: B 088782

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2012/09/17

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B2D4730

Received: 2012/08/31, 14:25

Sample Matrix: Water # Samples Received: 11

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TEH in Water (PIRI)	10	2012/09/05	2012/09/07	ATL SOP 00198	Based on Atl. PIRI
TEH in Water (PIRI)	1	2012/09/05	2012/09/10	ATL SOP 00198	Based on Atl. PIRI
VPH in Water (PIRI) (1)	6	2012/09/07	2012/09/13	ATL SOP 00118	Based on Atl. PIRI
VPH in Water (PIRI) (1)	4	2012/09/10	2012/09/13	ATL SOP 00118	Based on Atl. PIRI
VPH in Water (PIRI) (1)	1	2012/09/10	2012/09/14	ATL SOP 00118	Based on Atl. PIRI
ModTPH (T1) Calc. for Water	10	N/A	2012/09/14		Based on Atl. PIRI
ModTPH (T1) Calc. for Water	1	N/A	2012/09/15		Based on Atl. PIRI

Remarks:

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bedford

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Rob Whelan, Project Manager Email: RWhelan@maxxam.ca Phone# (709) 754-0203

5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 8

Success Through Science®

Maxxam Job #: B2D4730 Report Date: 2012/09/17 Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Sampler Initials: MM

ATLANTIC MUST IN WATER - PIRI TIER I (WATER)

Maxxam ID		OS1030	OS1032	OS1033	OS1034	OS1035		
Sampling Date		2012/08/30	2012/08/30	2012/08/30	2012/08/30	2012/08/30		
COC Number		B 088782	B 088782	B 088782	B 088782	B 088782		
	Units	PLCS	SLCS	SURFACE-UP	MW93-1	MW93-1A	RDL	QC Batch
r		1	1	1	1	1	1	r
Petroleum Hydrocarbons								
Benzene	mg/L	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.0013	2969005
Toluene	mg/L	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.0013	2969005
Ethylbenzene	mg/L	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	0.0013	2969005
Xylene (Total)	mg/L	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	0.0026	2969005
C6 - C10 (less BTEX)	mg/L	<0.013	<0.013	<0.013	<0.013	<0.013	0.013	2969005
>C10-C16 Hydrocarbons	mg/L	<0.050	0.059	<0.050	<0.050	<0.050	0.050	2959672
>C16-C21 Hydrocarbons	mg/L	<0.050	0.10	<0.050	<0.050	<0.050	0.050	2959672
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.10</td><td><0.10</td><td><0.10</td><td><0.10</td><td><0.10</td><td>0.10</td><td>2959672</td></c32>	mg/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	2959672
Modified TPH (Tier1)	mg/L	<0.10	0.16	<0.10	<0.10	<0.10	0.10	2958248
Reached Baseline at C32	mg/L	Yes	Yes	Yes	Yes	Yes	N/A	2959672
Hydrocarbon Resemblance	mg/L		SEECOMMENT (1))			N/A	2959672
Surrogate Recovery (%)								
Isobutylbenzene - Extractable	%	133 (2)	96	118	104	102		2959672
n-Dotriacontane - Extractable	%	136 (3)	95	120	103 (4)	103		2959672
Isobutylbenzene - Volatile	%	94 (5)	96 (5)	96 (5)	95 (5)	93 (5)		2969005

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) No resemblance to petroleum products in fuel oil range.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(3) Isobutylbenzene/n-Dotriacontane recovery(ies) not within acceptance limits. Analysis repeated with similar results.

(4) TEH sample contained sediment.

(5) VPH analysis performed on previously opened vial.

Maxxam Job #: B2D4730 Report Date: 2012/09/17

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Sampler Initials: MM

ATLANTIC MUST IN WATER - PIRI TIER I (WATER)

						-		
	OS1036			OS1037		OS1038		
	2012/08/30			2012/08/30		2012/08/30		
	B 088782			B 088782		B 088782		
Units	MW93-2	RDL	QC Batch	MW93-2A	QC Batch	MW10-1	RDL	QC Batch
	1		1	1	1	1		1
mg/L	<0.0013	0.0013	2969005	<0.0010	2970359	<0.0010	0.0010	2969005
mg/L	<0.0013	0.0013	2969005	<0.0010	2970359	<0.0010	0.0010	2969005
mg/L	<0.0013	0.0013	2969005	<0.0010	2970359	<0.0010	0.0010	2969005
mg/L	<0.0026	0.0026	2969005	<0.0020	2970359	<0.0020	0.0020	2969005
mg/L	<0.013	0.013	2969005	<0.010	2970359	<0.010	0.010	2969005
mg/L	<0.050	0.050	2959672	<0.050	2959672	<0.050	0.050	2959672
mg/L	<0.050	0.050	2959672	<0.050	2959672	<0.050	0.050	2959672
mg/L	<0.10	0.10	2959672	<0.10	2959672	<0.10	0.10	2959672
mg/L	<0.10	0.10	2958248	<0.10	2958248	<0.10	0.10	2958248
mg/L	Yes	N/A	2959672	Yes	2959672	Yes	N/A	2959672
%	99		2959672	100	2959672	95		2959672
%	99		2959672	99 (1)	2959672	97		2959672
%	97 (2)		2969005	99 (3)	2970359	95		2969005
	Units	OS1036 2012/08/30 B 088782 Units MW93-2 mg/L <0.0013	OS1036 2012/08/30 B 088782 Units MW93-2 RDL mg/L <0.0013	OS1036 Image: Constraint of the system 2012/08/30 Image: Constraint of the system B 088782 Image: Constraint of the system Units MW93-2 RDL QC Batch Img/L <0.0013	OS1036 OS1037 2012/08/30 2012/08/30 B 088782 B 088782 Units MW93-2 RDL QC Batch MW93-2A mg/L <0.0013	OS1036 OS1037 2012/08/30 2012/08/30 B 088782 B 088782 Units MW93-2 RDL QC Batch MW93-2A QC Batch mg/L <0.0013	OS1036 OS1037 OS1038 2012/08/30 2012/08/30 2012/08/30 2012/08/30 B 088782 B 088782 B 088782 B 088782 Units MW93-2 RDL QC Batch MW93-2A QC Batch MW10-1 mg/L <0.0013	OS1036 OS1037 OS1038 2012/08/30 2012/08/30 2012/08/30 2012/08/30 B 088782 B 088782 B 088782 B 088782 B 088782 Units MW93-2 RDL QC Batch MW93-2A QC Batch MW10-1 RDL mg/L <0.0013

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

(1) TEH sample contained sediment.

(2) VPH analysis performed on previously opened vial.
(3) VPH sample analysed past recommended hold time as per client request.

Maxxam Job #: B2D4730 Report Date: 2012/09/17

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Sampler Initials: MM

ATLANTIC MUST IN WATER - PIRI TIER I (WATER)

Maxxam ID		OS1039	OS1040		OS1041		
Sampling Date		2012/08/30	2012/08/30		2012/08/30		
COC Number		B 088782	B 088782		B 088782		
	Units	MW10-1A	DUP-03	RDL	DUP-04	RDL	QC Batch
				1		1	-
Petroleum Hydrocarbons							
Benzene	mg/L	<0.0010	<0.0010	0.0010	<0.0013	0.0013	2969005
Toluene	mg/L	<0.0010	<0.0010	0.0010	<0.0013	0.0013	2969005
Ethylbenzene	mg/L	<0.0010	<0.0010	0.0010	<0.0013	0.0013	2969005
Xylene (Total)	mg/L	<0.0020	<0.0020	0.0020	<0.0026	0.0026	2969005
C6 - C10 (less BTEX)	mg/L	<0.010	<0.010	0.010	<0.013	0.013	2969005
>C10-C16 Hydrocarbons	mg/L	<0.050	<0.050	0.050	0.073	0.050	2959672
>C16-C21 Hydrocarbons	mg/L	<0.050	<0.050	0.050	0.10	0.050	2959672
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.10</td><td><0.10</td><td>0.10</td><td><0.10</td><td>0.10</td><td>2959672</td></c32>	mg/L	<0.10	<0.10	0.10	<0.10	0.10	2959672
Modified TPH (Tier1)	mg/L	<0.10	<0.10	0.10	0.18	0.10	2958248
Reached Baseline at C32	mg/L	Yes	Yes	N/A	Yes	N/A	2959672
Hydrocarbon Resemblance	mg/L				SEECOMMENT (1)	N/A	2959672
Surrogate Recovery (%)							
Isobutylbenzene - Extractable	%	111	102		98		2959672
n-Dotriacontane - Extractable	%	110 (2)	103		98		2959672
Isobutylbenzene - Volatile	%	94	95		93 (3)		2969005

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

No resemblance to petroleum products in fuel oil range.
 TEH sample contained sediment.

(3) VPH analysis performed on previously opened vial.

Maxxam Job #: B2D4730 Report Date: 2012/09/17 Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Sampler Initials: MM

GENERAL COMMENTS

Results relate only to the items tested.

Page 5 of 8

Conestoga-Rovers and Associates Ltd Attention: Brian Luffman Client Project #: 056680-02 P.O. #: Site Location: COME BY CHANCE M&M

Quality Assurance Report

Maxxam Job Number: ZB2D4730

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2959672 SPI	Matrix Spike	Isobutylbenzene - Extractable	2012/09/07		92	%	30 - 130
		n-Dotriacontane - Extractable	2012/09/07		104	%	30 - 130
		>C10-C16 Hydrocarbons	2012/09/07		108	%	30 - 130
		>C16-C21 Hydrocarbons	2012/09/07		120	%	30 - 130
		>C21- <c32 hydrocarbons<="" td=""><td>2012/09/07</td><td></td><td>89</td><td>%</td><td>30 - 130</td></c32>	2012/09/07		89	%	30 - 130
	Spiked Blank	Isobutylbenzene - Extractable	2012/09/07		99	%	30 - 130
		n-Dotriacontane - Extractable	2012/09/07		106	%	30 - 130
		>C10-C16 Hydrocarbons	2012/09/07		107	%	30 - 130
		>C16-C21 Hydrocarbons	2012/09/07		116	%	30 - 130
		>C21- <c32 hydrocarbons<="" td=""><td>2012/09/07</td><td></td><td>99</td><td>%</td><td>30 - 130</td></c32>	2012/09/07		99	%	30 - 130
	Method Blank	Isobutylbenzene - Extractable	2012/09/07		99	%	30 - 130
		n-Dotriacontane - Extractable	2012/09/07		99	%	30 - 130
		>C10-C16 Hydrocarbons	2012/09/07	<0.050		mg/L	
		>C16-C21 Hydrocarbons	2012/09/07	<0.050		mg/L	
		>C21- <c32 hydrocarbons<="" td=""><td>2012/09/07</td><td><0.10</td><td></td><td>mg/L</td><td></td></c32>	2012/09/07	<0.10		mg/L	
	RPD	>C10-C16 Hydrocarbons	2012/09/07	NC		%	40
		>C16-C21 Hydrocarbons	2012/09/07	NC		%	40
		>C21- <c32 hydrocarbons<="" td=""><td>2012/09/07</td><td>NC</td><td></td><td>%</td><td>40</td></c32>	2012/09/07	NC		%	40
2969005 TWE	Matrix Spike	Isobutylbenzene - Volatile	2012/09/13		95	%	70 - 130
		Benzene	2012/09/13		104	%	70 - 130
		Toluene	2012/09/13		109	%	70 - 130
		Ethylbenzene	2012/09/13		109	%	70 - 130
		Xylene (Total)	2012/09/13		113	%	70 - 130
	Spiked Blank	Isobutylbenzene - Volatile	2012/09/13		93	%	70 - 130
		Benzene	2012/09/13		107	%	70 - 130
		Toluene	2012/09/13		109	%	70 - 130
		Ethylbenzene	2012/09/13		106	%	70 - 130
		Xylene (Total)	2012/09/13		112	%	70 - 130
	Method Blank	Isobutylbenzene - Volatile	2012/09/13		95	%	70 - 130
		Benzene	2012/09/13	<0.0010		mg/L	
		Toluene	2012/09/13	<0.0010		mg/L	
		Ethylbenzene	2012/09/13	<0.0010		mg/L	
		Xylene (Total)	2012/09/13	<0.0020		mg/L	
		C6 - C10 (less BTEX)	2012/09/13	<0.010		mg/L	
	RPD	Benzene	2012/09/13	NC		%	40
		Toluene	2012/09/13	NC		%	40
		Ethylbenzene	2012/09/13	NC		%	40
		Xylene (Total)	2012/09/13	NC		%	40
		C6 - C10 (less BTEX)	2012/09/13	NC		%	40
2970359 THL	Matrix Spike	Isobutylbenzene - Volatile	2012/09/14		92	%	70 - 130
		Benzene	2012/09/14		109	%	70 - 130
		Toluene	2012/09/14		113	%	70 - 130
		Ethylbenzene	2012/09/14		117	%	70 - 130
		Xylene (Total)	2012/09/14		117	%	70 - 130
	Spiked Blank	Isobutylbenzene - Volatile	2012/09/14		99	%	70 - 130
		Benzene	2012/09/14		110	%	70 - 130
		loluene	2012/09/14		112	%	70 - 130
		Ethylbenzene	2012/09/14		114	%	70 - 130
		Xylene (Total)	2012/09/14		116	%	70 - 130
	wethod Blank	Isobutyidenzene - Volatile	2012/09/14	0.0010	103	%	70 - 130
		Denzene	2012/09/14	<0.0010		mg/L	
			2012/09/14	<0.0010		mg/L	
			2012/09/14	<0.0010		mg/L	
			2012/09/14	<0.0020		mg/L	
		CO - CTU (1855 DTEA)	2012/09/14	<0.010		mg/∟	

Page 6 of 8

Conestoga-Rovers and Associates Ltd Attention: Brian Luffman Client Project #: 056680-02 P.O. #: Site Location: COME BY CHANCE M&M

Quality Assurance Report (Continued)

Maxxam Job Number: ZB2D4730

01/00			Data				
QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
2970359 THL	RPD	Benzene	2012/09/14	NC		%	40
		Toluene	2012/09/14	NC		%	40
		Ethylbenzene	2012/09/14	NC		%	40
		Xylene (Total)	2012/09/14	NC		%	40
		C6 - C10 (less BTEX)	2012/09/14	NC		%	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B2D4730

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

<u>faula</u> Chaplin Paula Chaplin, Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 20-014525 Your Project #: 056680-02 Site Location: COME BY CHANCE M&M Your C.O.C. #: B 088859

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2012/11/16

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B2H5752 Received: 2012/11/08, 12:15

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
TEH in Water (PIRI)	2	2012/11/13	2012/11/15 ATL SOP 00198	Based on Atl. PIRI
VPH in Water (PIRI)	2	2012/11/09	2012/11/10 ATL SOP 00200	Based on Atl. PIRI
ModTPH (T1) Calc. for Water	2	N/A	2012/11/15	Based on Atl. PIRI

Remarks:

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

* Results relate only to the items tested.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Rob Whelan, Project Manager Email: RWhelan@maxxam.ca Phone# (709) 754-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 6

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

ATLANTIC RBCA HYDROCARBONS (WATER)

Maxxam ID		PN7251	PN7252		
Sampling Date		2012/11/07	2012/11/07		
Received Temperature (°C)		8.5	8.5		
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Petroleum Hydrocarbons					
Benzene	mg/L	<0.0010	<0.0010	0.0010	3031337
Toluene	mg/L	<0.0010	<0.0010	0.0010	3031337
Ethylbenzene	mg/L	<0.0010	<0.0010	0.0010	3031337
Xylene (Total)	mg/L	<0.0020	<0.0020	0.0020	3031337
C6 - C10 (less BTEX)	mg/L	<0.010	<0.010	0.010	3031337
>C10-C16 Hydrocarbons	mg/L	<0.050	<0.050	0.050	3034166
>C16-C21 Hydrocarbons	mg/L	<0.050	<0.050	0.050	3034166
>C21- <c32 hydrocarbons<="" td=""><td>mg/L</td><td><0.10</td><td><0.10</td><td>0.10</td><td>3034166</td></c32>	mg/L	<0.10	<0.10	0.10	3034166
Modified TPH (Tier1)	mg/L	<0.10	<0.10	0.10	3029718
Reached Baseline at C32	mg/L	YES	YES	N/A	3034166
Surrogate Recovery (%)	-				•
Isobutylbenzene - Extractable	%	98	97		3034166
Isobutylbenzene - Volatile	%	88	88		3031337
n-Dotriacontane - Extractable	%	96	100		3034166

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

GENERAL COMMENTS

Page 3 of 6

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

QUALITY ASSURANCE REPORT

		_	Matrix	Spike	Spiked Blank		Method Blank		RF	PD
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
3031337	Isobutylbenzene - Volatile	2012/11/13	93	70 - 130	89	70 - 130	100	%		
3031337	Benzene	2012/11/09	95	70 - 130	90	70 - 130	<0.0010	mg/L	NC	40
3031337	Toluene	2012/11/09	90	70 - 130	90	70 - 130	<0.0010	mg/L	NC	40
3031337	Ethylbenzene	2012/11/09	90	70 - 130	90	70 - 130	<0.0010	mg/L	NC	40
3031337	Xylene (Total)	2012/11/09	93	70 - 130	92	70 - 130	<0.0020	mg/L	NC	40
3031337	C6 - C10 (less BTEX)	2012/11/09					<0.010	mg/L	NC	40
3034166	Isobutylbenzene - Extractable	2012/11/15	106	30 - 130	101	30 - 130	100	%		
3034166	n-Dotriacontane - Extractable	2012/11/15	105(1)	30 - 130	107	30 - 130	99	%		
3034166	>C10-C16 Hydrocarbons	2012/11/15	12(2)	30 - 130	91	30 - 130	<0.050	mg/L	NC	40
3034166	>C16-C21 Hydrocarbons	2012/11/15	9.0(2)	30 - 130	104	30 - 130	<0.050	mg/L	NC	40
3034166	>C21- <c32hydrocarbons< td=""><td>2012/11/15</td><td>7.0(2)</td><td>30 - 130</td><td>81</td><td>30 - 130</td><td><0.10</td><td>mg/L</td><td>NC</td><td>40</td></c32hydrocarbons<>	2012/11/15	7.0(2)	30 - 130	81	30 - 130	<0.10	mg/L	NC	40

N/A = Not Applicable

RPD = Relative Percent Difference

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix to which a known amount of the analyte has been added. Used to evaluate analyte recovery.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Fuel/lube oil range recovery(ies) not within acceptance limits. Insufficient sample to repeat.

(2) - Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 4 of 6

Validation Signature Page

Maxxam Job #: B2H5752

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Paula Chaplin, Project Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Мах	kam Analytics	200 Bluewater Road, Suite 105, Bedford, Nov 49 Elizabeth Ave., St John's, NL A1A 1W9 90 Esplanade Sydney, NS B1P 1A1 www.maxxamanalytics.com E-r	a Scotia B4B 1G9 Te Te Te nail: Clientservices	al: 902-420-0203 al: 709-754-0203 al: 902-567-1255 sbedford@maxx	Fax: 902-42 Fax: 709-75 Fax: 902-53 amanaly1	0-8612 4-8612 9-6504 tics.cc	Toll Free: 1 Toll Free: 1 Toll Free: 1	1-800-56 1-888-49 1-888-53	5-7227 2-7227 5-7770	MAXX COC :	ам сі #: В	nain of Cu	ustody R 885	ecord 9	Page	of	<u> </u>
This column fo	or lab use only:	INVOICE INFORMATION:		REPORT IN	FORMAT	ION (if differs	from in	voice):	PO #	_	- 2	0-040	525	TURNA	ROUND	TIME
Client Code	275	Company Name: Conestoga-Ro	verson Associate	S Company N	ame:		н н. н. н. С	3 8 3 4	/	Project	# / Phas	* 056	680-0	12	Standa	rd 🖸	
Maxxam Job #		Contact Name: Brian Luffr	nan	Contact Na	ne:		~ /			Project	Name / S	Site Location	1		10 day		i Į
Bahs	752	Address: 1118 Topsail Road	. St. John's	Address:	с Г	AN	E			Quote	B24	460			If RUSH	Specify	Date:
	<u>e</u>	Station "A" Postal Code	AIB 3NT	,	7	/	Postal Code	÷.,	×.,	Site #	Come	by Char	nce M	8 M			
1D Itact	ge Ten	Email: datanl@ CRAworld.com	duffman@crawd	4 Email:	/					Task Or	der#	1			Pre-sche Charge f	dule rust	n work
Seal P	Temp Averag	(709) 364-5253 (104) Ph: 364-5253 Fax: 3	64-5368	Ph:			Fax:	1.19	,	Sample	d by	revi Brv	ont/Rhy	Gillind	Jars used	i but	Ø
8	78180	Guideline Requirements / Detection	on Limits / Specia	Instructions	0	0	o			L L	_	3		L L		Γľ	\top
		Please C.C. datanl@cra	world.com		P	Vetal	Metal od)		cean	A For CC	cultura ural)	K Fuel	Ŧ	oline			
┝╼┞╼┞╾┠╸	+ + +-+				Serve red	liss N	Diss Diss Meth		for O	Pour A	s, Agri oron	s table), 1 ref BTE	el T.E.	Quine			
Integrity	Integrity / Checklist by				Pres	o Ch	Ch Default	94	oury le Dige	O3/HF old Val	uble B CME A	arbon:) oil (Pol ow Lev	ater ow lev stion	ridine			
YES NO	MO	. *		in to		Tota	vater, vater,	ad wat	& Mer Availab Total D	nts (HN n (low	tial, Pa ter sol	bons Solicy L	PH, L	ith Ac			
Labelled by	Location / Bin #	*Specify Matrix: Surface/Salt/Ground/	apwater/Sewage/E	ffluent/	Itrati	Ŗ	-MS otal Di	r grou	letals efault etals	ercury ow leve	esiden ot Wat	BCA H STEX, O Vdrocar	B Pota TEX, V PH Fra	AH'S AH'S W	S'é	1.8	
MD	*	Field Sample Identification	Matrix* Date	Time # & type o	t leid j	CAP	N TO P	letals		al≥ ⊐los Aetals So	<u>∝≖s</u> il	<u>रू ध±</u> ा Hyd	drocarbo	ns ns	30		
	I	1 5.05.45	Surf Nov.	7/12 15	V		7	ater		1.		VI		X	VX		
		SURFACE-UP	Surrace 10:1	7/12 1-	K/	×	-					\bigcirc		$\dot{\mathbf{x}}$	КЖ́		
· · · · · · · · · · · · · · · · · · ·		² SURFACE - DOWN	Surface 10:1	5AM 15	X	-	1			H	_			X	XX	\vdash	
		3	-1	100		×		- - 1	11								XI
		4				1				· · · · ·	X					\Box	$\left(- \right)$
			+ $+$		† †	-				1	+					1	1. 2. 1
		°	+ $+$ $+$ $+$	1000	11-	-				· .	-11-				$\left \right $	+	
		6				η.					-						1.1
		7			1 .								-				· **
		. /	+	\rightarrow	++	-	-	$ \wedge$			+					1-t	
		°				-		$\vee \downarrow$	44	1.	1-				1	1	
· · · · · · · · · · · · · · · · · · ·		9		\backslash		с. П								X		· .	
		10						2			· .					-	
		RELINQUISHED BY: (Sig	nature/Print)	Dat		Time		R	ECEIVED BY	: (Signature	/Print)			Date	Tim	e	
Some bran	ge cap bulle	to rield And By	- FIANDRE	W BRYANT	NOV.8	12	430A	MK	Panin	fact	in		HOTZ	111/0	8 /3	:B	m
preserved	tor Total M	0						4	//								
				Р	age 6 of	6									. *		-
			Vhite: Mayyam	Vol	low - Mail			Dink	Client	1.				-	TI FCD 001	49 / Rev	rision 10

Maxxam Analytics International Corporation o/a Maxxam Analytics 49-55 Elizabeth Ave, Suite 101A, St. John's, NL, Canada A1A 1W9 Tel: 709-754-0203 Toll Free: 888-492-7227 Fax: 709-754-8612 www.maxxam.ca

Your P.O. #: 20-014525 Your Project #: 056680-02 Site Location: COME BY CHANCE M&M Your C.O.C. #: B088859

Attention: Brian Luffman

Conestoga-Rovers and Associates Ltd Mount Pearl/St. John's PO Box 8353 Stn A 1118 Topsail Rd St. John's, NL A1B 3N7

Report Date: 2012/11/21

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B2H6200 Received: 2012/11/09, 10:10

Sample Matrix: Water # Samples Received: 3

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Carbonate, Bicarbonate and Hydroxide (1)	2	N/A	2012/11/15 CAM SOP-00102	APHA 4500-CO2 D
Alkalinity (1)	2	N/A	2012/11/14 ATL SOP 00013	Based on EPA310.2
Chloride (1)	2	N/A	2012/11/14 ATL SOP 00014	Based on SM4500-CI-
Colour (1)	2	N/A	2012/11/15 ATL SOP 00020	Based on SM2120C
Chromium 3+ by calculation (1)	2	2012/11/13	2012/11/21	
Hexavalent Cr Low Level (Sub fr Bedford) (2)	3	2012/11/14	2012/11/21	
Conductance - water (1)	2	N/A	2012/11/15 ATL SOP 00004/00006	Based on SM2510B
Hardness (calculated as CaCO3) (1)	2	N/A	2012/11/15 ATL SOP 00048	Based on SM2340B
Metals Water Total MS (1)	2	2012/11/14	2012/11/14 ATL SOP 00059	Based on EPA6020A
Ion Balance (% Difference) (1)	2	N/A	2012/11/16	
Anion and Cation Sum (1)	2	N/A	2012/11/15	
Nitrogen Ammonia - water (1)	2	N/A	2012/11/14 ATL SOP 00015	Based on USEPA 350.1
Nitrogen - Nitrate + Nitrite (1)	2	N/A	2012/11/15 ATL SOP 00016	Based on USGS - Enz.
Nitrogen - Nitrite (1)	2	N/A	2012/11/14 ATL SOP 00017	Based on SM4500-NO2B
Nitrogen - Nitrate (as N) (1)	2	N/A	2012/11/15 ATL SOP 00018	Based on ASTMD3867
PAH in Water by GC/MS (SIM) (1)	2	2012/11/14	2012/11/16 ATL SOP 00103	Based on EPA 8270C
PCBs in water by GC/ECD (1)	2	2012/11/14	2012/11/15 ATL SOP 00107	Based on EPA8082
pH (1)	2	N/A	2012/11/15 ATL SOP 00003	Based on SM4500H+B
Phosphorus - ortho (1)	2	N/A	2012/11/15 ATL SOP 00021	Based on USEPA 365.1
Sat. pH and Langelier Index (@ 20C) (1)	2	N/A	2012/11/16	
Sat. pH and Langelier Index (@ 4C) (1)	2	N/A	2012/11/16	
Reactive Silica (1)	2	N/A	2012/11/14 ATL SOP 00022	Based on EPA 366.0
Sulphate (1)	2	N/A	2012/11/15 ATL SOP 00023	Based on EPA 375.4
Total Dissolved Solids (TDS calc) (1)	2	N/A	2012/11/16	
Organic carbon - Total (TOC) (1)	2	N/A	2012/11/14 ATL SOP 00037	Based on SM5310C
Turbidity (1)	2	N/A	2012/11/15 ATL SOP 00011	based on EPA 180.1
Volatile Organic Compounds in Water (1)	2	2012/11/15	2012/11/16 ATL SOP 00122	Based on EPA624

Remarks:

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

* Results relate only to the items tested.

(1) This test was performed by Bedford

(2) This test was performed by Bedford to Burnaby Env

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

-2-

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902) 420-0203 Ext:289

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2

Page 2 of 16

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

RESULTS OF ANALYSES OF WATER

Maxxam ID		PN9443		PN9444	PO9032		
Sampling Date		2012/11/07		2012/11/07 10:15	2012/11/07		
		10:00			10:15		
	Units	SURFACE-UP	QC Batch	SURFACE-DOWN	SURFACE-A	RDL	QC Batch
Calculated Parameters		•					
Anion Sum	me/L	0.610	3034699	0.630		N/A	3034699
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	7.6	3034696	8.2		1.0	3034696
Calculated TDS	mg/L	38.0	3031295	39.0		1.0	3034702
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	3034696	<1.0		1.0	3034696
Cation Sum	me/L	0.650	3034699	0.650		N/A	3034699
Chromium (+3)	mg/L	<0.001	3034808	<0.001		0.001	3034808
Hardness (CaCO3)	mg/L	14	3034697	14		1.0	3034697
Ion Balance (% Difference)	%	3.17	3034698	1.56		N/A	3034698
Langelier Index (@ 20C)	N/A	-2.97	3034700	-2.95			3034700
Langelier Index (@ 4C)	N/A	-3.22	3034701	-3.20			3034701
Nitrate (N)	mg/L	0.054	3031291	0.058		0.050	3031291
Saturation pH (@ 20C)	N/A	9.83	3034700	9.80			3034700
Saturation pH (@ 4C)	N/A	10.1	3034701	10.0			3034701
Inorganics							
Total Alkalinity (Total as CaCO3)	mg/L	7.6	3034640	8.2		5.0	3034640
Dissolved Chloride (Cl)	mg/L	12	3034642	12		1.0	3034642
Colour	TCU	67	3034645	78		25	3034645
Nitrate + Nitrite	mg/L	0.054	3034647	0.058		0.050	3034647
Nitrite (N)	mg/L	<0.010	3034648	<0.010		0.010	3034648
Nitrogen (Ammonia Nitrogen)	mg/L	<0.050	3035611	<0.050		0.050	3035611
Total Organic Carbon (C)	mg/L	7.9	3035762	7.9		0.50	3035762
Orthophosphate (P)	mg/L	<0.010	3034646	<0.010		0.010	3034646
pH	рН	6.86	3036979	6.85		N/A	3036979
Reactive Silica (SiO2)	mg/L	2.1	3034644	2.2		0.50	3034644
Dissolved Sulphate (SO4)	mg/L	5.7	3034643	5.8		2.0	3034643
Turbidity	NTU	0.72	3036970	0.88		0.10	3036970
Conductivity	uS/cm	66	3036982	67		1.0	3036982
Subcontracted Analysis							
Subcontract Parameter	N/A	ATTACHED	3035777	ATTACHED	ATTACHED	N/A	3035777

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		PN9443	PN9444		
Sampling Date		2012/11/07 10:00	2012/11/07 10:15		
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Metals	-			-	
Total Aluminum (Al)	ug/L	113	117	5.0	3035426
Total Antimony (Sb)	ug/L	<1.0	<1.0	1.0	3035426
Total Arsenic (As)	ug/L	<1.0	<1.0	1.0	3035426
Total Barium (Ba)	ug/L	8.9	8.6	1.0	3035426
Total Beryllium (Be)	ug/L	<1.0	<1.0	1.0	3035426
Total Bismuth (Bi)	ug/L	<2.0	<2.0	2.0	3035426
Total Boron (B)	ug/L	<50	<50	50	3035426
Total Cadmium (Cd)	ug/L	<0.017	<0.017	0.017	3035426
Total Calcium (Ca)	ug/L	3870	3890	100	3035426
Total Chromium (Cr)	ug/L	<1.0	<1.0	1.0	3035426
Total Cobalt (Co)	ug/L	<0.40	<0.40	0.40	3035426
Total Copper (Cu)	ug/L	<2.0	<2.0	2.0	3035426
Total Iron (Fe)	ug/L	387	382	50	3035426
Total Lead (Pb)	ug/L	<0.50	<0.50	0.50	3035426
Total Magnesium (Mg)	ug/L	1040	1050	100	3035426
Total Manganese (Mn)	ug/L	41.2	38.0	2.0	3035426
Total Molybdenum (Mo)	ug/L	<2.0	<2.0	2.0	3035426
Total Nickel (Ni)	ug/L	<2.0	<2.0	2.0	3035426
Total Phosphorus (P)	ug/L	<100	<100	100	3035426
Total Potassium (K)	ug/L	363	400	100	3035426
Total Selenium (Se)	ug/L	<1.0	<1.0	1.0	3035426
Total Silver (Ag)	ug/L	<0.10	<0.10	0.10	3035426
Total Sodium (Na)	ug/L	7930	7880	100	3035426
Total Strontium (Sr)	ug/L	13.4	13.3	2.0	3035426
Total Thallium (TI)	ug/L	<0.10	<0.10	0.10	3035426
Total Tin (Sn)	ug/L	<2.0	<2.0	2.0	3035426
Total Titanium (Ti)	ug/L	3.1	2.7	2.0	3035426
Total Uranium (U)	ug/L	<0.10	<0.10	0.10	3035426
Total Vanadium (V)	ug/L	<2.0	<2.0	2.0	3035426
Total Zinc (Zn)	ug/L	<5.0	<5.0	5.0	3035426

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		PN9443	PN9444		
Sampling Date		2012/11/07 10:00	2012/11/07 10:15		
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Polyaromatic Hydrocarbons	5				
1-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	3035418
2-Methylnaphthalene	ug/L	<0.050	<0.050	0.050	3035418
Acenaphthene	ug/L	<0.010	<0.010	0.010	3035418
Acenaphthylene	ug/L	<0.010	<0.010	0.010	3035418
Anthracene	ug/L	<0.010	<0.010	0.010	3035418
Benzo(a)anthracene	ug/L	<0.010	<0.010	0.010	3035418
Benzo(a)pyrene	ug/L	<0.010	<0.010	0.010	3035418
Benzo(b)fluoranthene	ug/L	<0.010	<0.010	0.010	3035418
Benzo(g,h,i)perylene	ug/L	<0.010	<0.010	0.010	3035418
Benzo(j)fluoranthene	ug/L	<0.010	<0.010	0.010	3035418
Benzo(k)fluoranthene	ug/L	<0.010	<0.010	0.010	3035418
Chrysene	ug/L	<0.010	<0.010	0.010	3035418
Dibenz(a,h)anthracene	ug/L	<0.010	<0.010	0.010	3035418
Fluoranthene	ug/L	<0.010	<0.010	0.010	3035418
Fluorene	ug/L	<0.010	<0.010	0.010	3035418
Indeno(1,2,3-cd)pyrene	ug/L	<0.010	<0.010	0.010	3035418
Naphthalene	ug/L	<0.20	<0.20	0.20	3035418
Perylene	ug/L	<0.010	<0.010	0.010	3035418
Phenanthrene	ug/L	0.011	0.012	0.010	3035418
Pyrene	ug/L	<0.010	<0.010	0.010	3035418
Surrogate Recovery (%)					
D10-Anthracene	%	91	95		3035418
D14-Terphenyl	%	97	98		3035418
D8-Acenaphthylene	%	94	94		3035418

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Page 5 of 16

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		PN9443	PN9444		
Sampling Date		2012/11/07 10:00	2012/11/07 10:15		
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Chlorobenzenes					
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	3037372
1,3-Dichlorobenzene	ug/L	<1.0	<1.0	1.0	3037372
1,4-Dichlorobenzene	ug/L	<1.0	<1.0	1.0	3037372
Chlorobenzene	ug/L	<1.0	<1.0	1.0	3037372

Page 6 of 16

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		PN9443	PN9444		
Sampling Date		2012/11/07 10:00	2012/11/07 10:15		
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Volatile Organics	-				
1,1,1-Trichloroethane	ug/L	<1.0	<1.0	1.0	3037372
1,1,2,2-Tetrachloroethane	ug/L	<1.0	<1.0	1.0	3037372
1,1,2-Trichloroethane	ug/L	<1.0	<1.0	1.0	3037372
1,1-Dichloroethane	ug/L	<2.0	<2.0	2.0	3037372
1,1-Dichloroethylene	ug/L	<0.50	<0.50	0.50	3037372
1,2-Dichloroethane	ug/L	<1.0	<1.0	1.0	3037372
1,2-Dichloropropane	ug/L	<1.0	<1.0	1.0	3037372
Benzene	ug/L	<1.0	<1.0	1.0	3037372
Bromodichloromethane	ug/L	<1.0	<1.0	1.0	3037372
Bromoform	ug/L	<1.0	<1.0	1.0	3037372
Bromomethane	ug/L	<3.0	<3.0	3.0	3037372
Carbon Tetrachloride	ug/L	<1.0	<1.0	1.0	3037372
Chloroethane	ug/L	<8.0	<8.0	8.0	3037372
Chloroform	ug/L	<1.0	<1.0	1.0	3037372
Chloromethane	ug/L	<8.0	<8.0	8.0	3037372
cis-1,2-Dichloroethylene	ug/L	<2.0	<2.0	2.0	3037372
cis-1,3-Dichloropropene	ug/L	<2.0	<2.0	2.0	3037372
Dibromochloromethane	ug/L	<1.0	<1.0	1.0	3037372
Ethylbenzene	ug/L	<1.0	<1.0	1.0	3037372
Ethylene Dibromide	ug/L	<1.0	<1.0	1.0	3037372
Methylene Chloride(Dichloromethane)	ug/L	<3.0	<3.0	3.0	3037372
o-Xylene	ug/L	<1.0	<1.0	1.0	3037372
p+m-Xylene	ug/L	<2.0	<2.0	2.0	3037372
Styrene	ug/L	<1.0	<1.0	1.0	3037372
Tetrachloroethylene	ug/L	<1.0	<1.0	1.0	3037372
Toluene	ug/L	<1.0	<1.0	1.0	3037372
trans-1,2-Dichloroethylene	ug/L	<2.0	<2.0	2.0	3037372
trans-1,3-Dichloropropene	ug/L	<1.0	<1.0	1.0	3037372
Trichloroethylene	ug/L	<1.0	<1.0	1.0	3037372
Trichlorofluoromethane (FREON 11)	ug/L	<8.0	<8.0	8.0	3037372
Vinyl Chloride	ug/L	<0.50	<0.50	0.50	3037372

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		PN9443	PN9444		
Sampling Date		2012/11/07 10:00	2012/11/07 10:15		
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	99	100		3037372
D4-1,2-Dichloroethane	%	97	103		3037372
D8-Toluene	%	101	100		3037372

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		PN9443	PN9444						
Sampling Date		2012/11/07 10:00	2012/11/07 10:15						
	Units	SURFACE-UP	SURFACE-DOWN	RDL	QC Batch				
PCBs		_		-					
Total PCB	ug/L	<0.050	<0.050	0.050	3035511				
Surrogate Recovery (%)									
Decachlorobiphenyl	%	73	68		3035511				

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

Package 1	8.5°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked Blank		Method Blank		RPD		QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
3034640	Total Alkalinity (Total as CaCO3)	2012/11/14	97	80 - 120	102	80 - 120	<5.0	mg/L	NC	25	105	80 - 120
3034642	Dissolved Chloride (CI)	2012/11/14	99	80 - 120	101	80 - 120	<1.0	mg/L	1.1	25	104	80 - 120
3034643	Dissolved Sulphate (SO4)	2012/11/15	87	80 - 120	102	80 - 120	<2.0	mg/L	NC	25	103	80 - 120
3034644	Reactive Silica (SiO2)	2012/11/14	100	80 - 120	101	80 - 120	<0.50	mg/L	0.4	25		
3034645	Colour	2012/11/15					<5.0	TCU	NC	25	105	80 - 120
3034646	Orthophosphate (P)	2012/11/15	86	80 - 120	97	80 - 120	<0.010	mg/L	NC	25	101	80 - 120
3034647	Nitrate + Nitrite	2012/11/15	95	80 - 120	97	80 - 120	<0.050	mg/L	NC	25	99	80 - 120
3034648	Nitrite (N)	2012/11/14	82	80 - 120	104	80 - 120	<0.010	mg/L	NC	25	104	80 - 120
3035418	D10-Anthracene	2012/11/16	86	30 - 130	98	30 - 130	100	%				
3035418	D14-Terphenyl	2012/11/16	95	30 - 130	97	30 - 130	105	%				
3035418	D8-Acenaphthylene	2012/11/16	87	30 - 130	105	30 - 130	103	%				
3035418	1-Methylnaphthalene	2012/11/16	NC	30 - 130	96	30 - 130	<0.050	ug/L	NC	40		
3035418	2-Methylnaphthalene	2012/11/16	66	30 - 130	103	30 - 130	<0.050	ug/L	NC	40		
3035418	Acenaphthene	2012/11/16	86	30 - 130	108	30 - 130	<0.010	ug/L	NC	40		
3035418	Acenaphthylene	2012/11/16	83	30 - 130	99	30 - 130	<0.010	ug/L	NC	40		
3035418	Anthracene	2012/11/16	81	30 - 130	97	30 - 130	<0.010	ug/L	NC	40		
3035418	Benzo(a)anthracene	2012/11/16	86	30 - 130	87	30 - 130	<0.010	ug/L	NC	40		
3035418	Benzo(a)pyrene	2012/11/16	83	30 - 130	95	30 - 130	<0.010	ug/L	NC	40		
3035418	Benzo(b)fluoranthene	2012/11/16	83	30 - 130	95	30 - 130	<0.010	ug/L	NC	40		
3035418	Benzo(g,h,i)perylene	2012/11/16	89	30 - 130	106	30 - 130	<0.010	ug/L	NC	40		
3035418	Benzo(j)fluoranthene	2012/11/16	81	30 - 130	95	30 - 130	<0.010	ug/L	NC	40		
3035418	Benzo(k)fluoranthene	2012/11/16	79	30 - 130	90	30 - 130	<0.010	ug/L	NC	40		
3035418	Chrysene	2012/11/16	89	30 - 130	95	30 - 130	<0.010	ug/L	NC	40		
3035418	Dibenz(a,h)anthracene	2012/11/16	76	30 - 130	83	30 - 130	<0.010	ug/L	NC	40		
3035418	Fluoranthene	2012/11/16	90	30 - 130	99	30 - 130	<0.010	ug/L	NC	40		
3035418	Fluorene	2012/11/16	87	30 - 130	108	30 - 130	<0.010	ug/L	NC	40		
3035418	Indeno(1,2,3-cd)pyrene	2012/11/16	79	30 - 130	97	30 - 130	<0.010	ug/L	NC	40		
3035418	Naphthalene	2012/11/16	NC	30 - 130	102	30 - 130	<0.20	ug/L	NC	40		
3035418	Perylene	2012/11/16	85	30 - 130	95	30 - 130	<0.010	ug/L	NC	40		
3035418	Phenanthrene	2012/11/16	90	30 - 130	101	30 - 130	<0.010	ug/L	NC	40		
3035418	Pyrene	2012/11/16	91	30 - 130	97	30 - 130	<0.010	ug/L	NC	40		
3035426	Total Aluminum (Al)	2012/11/14	104	80 - 120	108	80 - 120	8.3, RDL=5.0	ug/L				
3035426	Total Antimony (Sb)	2012/11/14	99	80 - 120	75(1,2)	80 - 120	<1.0	ug/L				
3035426	Total Arsenic (As)	2012/11/14	98	80 - 120	103	80 - 120	<1.0	ug/L	NC	25		
3035426	Total Barium (Ba)	2012/11/14	NC	80 - 120	101	80 - 120	<1.0	ug/L				
3035426	Total Beryllium (Be)	2012/11/14	106	80 - 120	110	80 - 120	<1.0	ug/L				
3035426	Total Bismuth (Bi)	2012/11/14	102	80 - 120	75(1,2)	80 - 120	<2.0	ug/L				
3035426	Total Boron (B)	2012/11/14	100	80 - 120	75(1,2)	80 - 120	<50	ug/L				
3035426	Total Cadmium (Cd)	2012/11/14	102	80 - 120	106	80 - 120	<0.017	ug/L				

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked Blank		Method Blank		RPD		QC Star	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
3035426	Total Calcium (Ca)	2012/11/14	94	80 - 120	101	80 - 120	<100	ug/L				
3035426	Total Chromium (Cr)	2012/11/14	102	80 - 120	107	80 - 120	<1.0	ug/L				
3035426	Total Cobalt (Co)	2012/11/14	104	80 - 120	107	80 - 120	<0.40	ug/L				
3035426	Total Copper (Cu)	2012/11/14	103	80 - 120	106	80 - 120	<2.0	ug/L				
3035426	Total Iron (Fe)	2012/11/14	103	80 - 120	108	80 - 120	<50	ug/L				
3035426	Total Lead (Pb)	2012/11/14	103	80 - 120	105	80 - 120	<0.50	ug/L				
3035426	Total Magnesium (Mg)	2012/11/14	107	80 - 120	111	80 - 120	<100	ug/L				
3035426	Total Manganese (Mn)	2012/11/14	101	80 - 120	104	80 - 120	<2.0	ug/L				
3035426	Total Molybdenum (Mo)	2012/11/14	103	80 - 120	76(1,2)	80 - 120	<2.0	ug/L				
3035426	Total Nickel (Ni)	2012/11/14	101	80 - 120	104	80 - 120	<2.0	ug/L				
3035426	Total Phosphorus (P)	2012/11/14	103	80 - 120	109	80 - 120	<100	ug/L				
3035426	Total Potassium (K)	2012/11/14	100	80 - 120	106	80 - 120	<100	ug/L				
3035426	Total Selenium (Se)	2012/11/14	100	80 - 120	104	80 - 120	<1.0	ug/L				
3035426	Total Silver (Ag)	2012/11/14	104	80 - 120	106	80 - 120	<0.10	ug/L				
3035426	Total Sodium (Na)	2012/11/14	103	80 - 120	109	80 - 120	<100	ug/L				
3035426	Total Strontium (Sr)	2012/11/14	97	80 - 120	102	80 - 120	<2.0	ug/L				
3035426	Total Thallium (TI)	2012/11/14	102	80 - 120	76(1,2)	80 - 120	<0.10	ug/L				
3035426	Total Tin (Sn)	2012/11/14	102	80 - 120	77(1,2)	80 - 120	<2.0	ug/L				
3035426	Total Titanium (Ti)	2012/11/14	104	80 - 120	109	80 - 120	<2.0	ug/L				
3035426	Total Uranium (U)	2012/11/14	105	80 - 120	109	80 - 120	<0.10	ug/L	2.6	25		
3035426	Total Vanadium (V)	2012/11/14	103	80 - 120	107	80 - 120	<2.0	ug/L				
3035426	Total Zinc (Zn)	2012/11/14	103	80 - 120	89	80 - 120	<5.0	ug/L				
3035511	Decachlorobiphenyl	2012/11/15	63	30 - 130	67	30 - 130	59	%				
3035511	Total PCB	2012/11/15	79(3)	70 - 130	89	70 - 130	< 0.050	ug/L	NC	40		
3035611	Nitrogen (Ammonia Nitrogen)	2012/11/14	109	80 - 120	99	80 - 120	<0.050	mg/L	NC	25	102	80 - 120
3035762	Total Organic Carbon (C)	2012/11/14	NC	80 - 120	92	80 - 120	<0.50	mg/L	1.8	25		
3036970	Turbidity	2012/11/15							0.8	25	102	80 - 120
3036979	рН	2012/11/15							0	25	100	80 - 120
3036982	Conductivity	2012/11/15			99	80 - 120	<1.0	uS/cm	0.2	25		
3037372	1,2-Dichlorobenzene	2012/11/16	100	70 - 130	100	70 - 130	<0.50	ug/L	NC	40		
3037372	1,3-Dichlorobenzene	2012/11/16	100	70 - 130	102	70 - 130	<1.0	ug/L	NC	40		
3037372	1,4-Dichlorobenzene	2012/11/16	100	70 - 130	101	70 - 130	<1.0	ug/L	NC	40		
3037372	Chlorobenzene	2012/11/16	100	70 - 130	102	70 - 130	<1.0	ug/L	NC	40		
3037372	1,1,1-Trichloroethane	2012/11/16	105	70 - 130	105	70 - 130	<1.0	ug/L	NC	40		
3037372	1,1,2,2-Tetrachloroethane	2012/11/16	105	70 - 130	101	70 - 130	<1.0	ug/L	NC	40		
3037372	1,1,2-Trichloroethane	2012/11/16	105	70 - 130	101	70 - 130	<1.0	ug/L	NC	40		
3037372	1,1-Dichloroethane	2012/11/16	105	70 - 130	104	70 - 130	<2.0	ug/L	NC	40		
3037372	1,1-Dichloroethylene	2012/11/16	105	70 - 130	107	70 - 130	<0.50	ug/L	NC	40		
3037372	1,2-Dichloroethane	2012/11/16	105	70 - 130	106	70 - 130	<1.0	ug/L	NC	40		

Page 11 of 16

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

QUALITY ASSURANCE REPORT

			Matrix S	Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits	
3037372	1,2-Dichloropropane	2012/11/16	105	70 - 130	103	70 - 130	<1.0	ug/L	NC	40			
3037372	4-Bromofluorobenzene	2012/11/16	99	70 - 130	100	70 - 130	102	%					
3037372	Benzene	2012/11/16	109	70 - 130	107	70 - 130	<1.0	ug/L	1.3	40			
3037372	Bromodichloromethane	2012/11/16	100	70 - 130	99	70 - 130	<1.0	ug/L	NC	40			
3037372	Bromoform	2012/11/16	89	70 - 130	87	70 - 130	<1.0	ug/L	NC	40			
3037372	Bromomethane	2012/11/16	84	70 - 130	98	70 - 130	<3.0	ug/L	NC	40			
3037372	Carbon Tetrachloride	2012/11/16	100	70 - 130	97	70 - 130	<1.0	ug/L	NC	40			
3037372	Chloroethane	2012/11/16	121	70 - 130	109	70 - 130	<8.0	ug/L	NC	40			
3037372	Chloroform	2012/11/16	100	70 - 130	102	70 - 130	<1.0	ug/L	NC	40			
3037372	Chloromethane	2012/11/16	95	70 - 130	98	70 - 130	<8.0	ug/L	NC	40			
3037372	cis-1,2-Dichloroethylene	2012/11/16	110	70 - 130	107	70 - 130	<2.0	ug/L	NC	40			
3037372	cis-1,3-Dichloropropene	2012/11/16	111	70 - 130	111	70 - 130	<2.0	ug/L	NC	40			
3037372	D4-1,2-Dichloroethane	2012/11/16	100	70 - 130	97	70 - 130	99	%					
3037372	D8-Toluene	2012/11/16	102	70 - 130	100	70 - 130	101	%					
3037372	Dibromochloromethane	2012/11/16	100	70 - 130	97	70 - 130	<1.0	ug/L	NC	40			
3037372	Ethylbenzene	2012/11/16	105	70 - 130	106	70 - 130	<1.0	ug/L	NC	40			
3037372	Ethylene Dibromide	2012/11/16	105	70 - 130	106	70 - 130	<1.0	ug/L	NC	40			
3037372	MethyleneChloride(Dichloromethane)	2012/11/16	105	70 - 130	105	70 - 130	<3.0	ug/L	NC	40			
3037372	o-Xylene	2012/11/16	115	70 - 130	112	70 - 130	<1.0	ug/L	NC	40			
3037372	p+m-Xylene	2012/11/16	110	70 - 130	109	70 - 130	<2.0	ug/L	NC	40			
3037372	Styrene	2012/11/16	110	70 - 130	109	70 - 130	<1.0	ug/L	NC	40			
3037372	Tetrachloroethylene	2012/11/16	105	70 - 130	106	70 - 130	<1.0	ug/L	NC	40			
3037372	Toluene	2012/11/16	105	70 - 130	106	70 - 130	<1.0	ug/L	NC	40			
3037372	trans-1,2-Dichloroethylene	2012/11/16	116	70 - 130	115	70 - 130	<2.0	ug/L	NC	40			
3037372	trans-1,3-Dichloropropene	2012/11/16	105	70 - 130	109	70 - 130	<1.0	ug/L	NC	40			
3037372	Trichloroethylene	2012/11/16	106	70 - 130	105	70 - 130	<1.0	ug/L	NC	40			

Conestoga-Rovers and Associates Ltd Client Project #: 056680-02 Site Location: COME BY CHANCE M&M Your P.O. #: 20-014525 Sampler Initials: AB

QUALITY ASSURANCE REPORT

		Matrix Spike		Spiked Blank		Method Blank		RPD		QC Standard		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
3037372	Trichlorofluoromethane (FREON 11)	2012/11/16	105	70 - 130	107	70 - 130	<8.0	ug/L	NC	40		
3037372	Vinyl Chloride	2012/11/16	116	70 - 130	120	70 - 130	<0.50	ug/L	NC	40		

N/A = Not Applicable

RDL = Reportable Detection Limit

RPD = Relative Percent Difference

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) - Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) - Low recovery due to pipetting error. Secondary QC is acceptable. No impact on data quality.

(3) - Matrix Spike Parent ID [PN9444-06]

Validation Signature Page

Maxxam Job #: B2H6200

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Alan Stewart, Scientific Specialist (Organics)

Erie Bearman, Scientific Specialist

Kevin Macdonald, Inorganics Supervisor

Mike The Gilling

Mike Macgillivray, Scientific Specialist (Inorganics)

Page 14 of 16

Validation Signature Page

Maxxam Job #: B2H6200

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Astin Smith austrong

Robin Smith-Armstrong, Bedford SemiVol Spvsr

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 15 of 16

Maxan 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 169 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 Maxan Maxan Chain of Custody Revealed Value A nalytics Solaria F-mail: Clienteen/revealed Tel: 902-420-9203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 Maxan Chain of Custody Revealed Value Solaria F-mail: Clienteen/revealed Tel: 902-420-9203 Fax: 902-598-6504 Toll Free: 1-808-565-7227 Toll Free: 1-808-5	ecord '
Client Code 1/ 01-	525 TORIVAROUND TIME
10215 Company Name: Conestoga - Boilts on Associates Company Name: 056680-1	22Standard
(a) Ray 10 mold	10 day
(2) B2F1(2200 Address: 1118 Topsail Road St. John's Address: , CAME (Quote B24460	If RUSH Specify Date:
E Station "A" Postal Code A1B 3N7 Postal Code Site " Come by Chance M	&M
Email: datanle CRAws. 1d. com. bluffman@craws. 1d. email:	Pre-schedule rush work Charge for #
8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	Jars used but
8781 80 Guideline Requirements / Detection Limits / Special Instructions	
Please C.C. datant@craworld.com	ecilio
A fill the serve	Outing
	ique i
	th Acr
Labelled by Location / Bin # *Specify Matrix: Surface/Salt/Ground/Tapwater/Sewage/Effluent/	H ² A S S S S S S S S S S S S S S S S S S S
Potable/NonPotable/Tissue/Soll/Sludge/Metal/Seawater 법 값 点 으려고 호 호리호 호 호 호 호 호 호 호 호 호 호 호 호 호 호 호 호 호 호 호	PC DC DA
Nov.7/12	
SURFACE-UP Surface 10:00AM 15 X 1	
² SURFACE - DOWN Surface 10:15AM 15 X T	
3	
5	
6	
9	
50mL Drange cap bullets field A R FIA at Any Alay also Time RECEIVED BY: (Signature/Print)	Date 2012 Note 9 AM10-10
preserved For total metals Prace 17ANDREW BRYANT NUV. 8/12 130AM Kgannafar da 19012	11108 1J:15pm
TPH Must	

p===

.

Maxxam Analytics International Corporation o/a Maxxam Analytics 49-55 Elizabeth Ave, Suite 101A, St. John's, NL, Canada A1A 1W9 Tel: 709-754-0203 Toll Free: 888-492-7227 Fax: 709-754-8612 www.maxxam.ca

Your Project #: DB2H6200 Site Location: 056680-02 Your C.O.C. #: 08361182

Attention: BEDFORD SUBCONTRACT

MAXXAM ANALYTICS 200 BLUEWATER ROAD, SUITE 105 BEDFORD, NS CANADA B4B 1G9

Report Date: 2012/11/20

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B2A3947 Received: 2012/11/15, 09:30

Sample Matrix: Water # Samples Received: 3

		Date	Date	
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Analytical Method
Chromium, Hexavalent	3	N/A	2012/11/20 BBY6SOP-00015	SM-3500Cr B

* Results relate only to the items tested.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Morgan Melnychuk, Burnaby Project Manager Email: MMelnychuk@maxxam.ca Phone# (604) 638-8034

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Maxxam Job #: B2A3947 Report Date: 2012/11/20 MAXXAM ANALYTICS Client Project #: DB2H6200 Site Location: 056680-02

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		FA0753	FA0754	FA0755		
Sampling Date		2012/11/07 10:00	2012/11/07 10:15	2012/11/07 10:15		
	UNITS	SURFACE-UP	SURFACE-DOWN	SURFACE-A	RDL	QC Batch
		(PN9443-03R)	(PN9444-03R)	(PO9032-01R)		
Metals	_			_		
Hex. Chromium (Cr 6+)	mg/L	<0.0010	<0.0010	0.0014	0.0010	6360120

Maxxam Job #: B2A3947 Report Date: 2012/11/20

MAXXAM ANALYTICS Client Project #: DB2H6200 Site Location: 056680-02

Package 1	2.3°C

 Package 1
 2.3°C

 Each temperature is the average of up to three cooler temperatures taken at receipt

General Comments

Maxxam Job #: B2A3947 Report Date: 2012/11/20 MAXXAM ANALYTICS Client Project #: DB2H6200 Site Location: 056680-02

QUALITY ASSURANCE REPORT

			Matrix S	Spike	Spiked	Blank	Method	Blank	RF	D
QC Batch	Batch Parameter Date		% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6360120	Hex. Chromium (Cr 6+)	2012/11/20	97	80 - 120	100	80 - 120	<0.0010	mg/L	NC	20

N/A = Not Applicable

RPD = Relative Percent Difference

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B2A3947

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

prely to

===

Andy Lu, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

APPENDIX C

STANTEC LETHALITY LABORATORY REPORTS

Stantec Consulting Ltd Science Laboratory 422 Logy Bay Road St. John's, NL A1A 5C6 Tel: (709) 576-4804 Fax: (709) 576-0008

Registered to ISO 9001:2000 ISO/IEC 17025:2005 Accredited SCC-Food Scope (No. 268) CALA – Environmental Scope (No. 2709)

September 13, 2012 Project: 10938. Lab Refer No.: B-3520-09

Conestoga-Rovers & Associates 1118 Topsail Rd. St. John's, NL A1N 3N7 Tel: (709) 364-5353 Fax: (709) 364-5368

Attention: Brian Luffman

Dear Mr. Luffman,

Reference: Toxicology Testing Results

Please find enclosed the results of the 96-hour static bioassay conducted September 4 - 8, 2012. This toxicity test was performed on the PLCS - Come by Chance, NL effluent. This effluent was collected on August 30, 2012. The sample was received in acceptable condition.

Test conditions for a multi concentration test were followed according to the Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition, December 2000 and May 2007 amendment). All tests parameters were maintained within the recommended levels outlined in the above protocol.

The PLCS - Come by Chance, NL effluent is not acutely lethal to the fish since less than 50.00 % of the fish died in the 100.00 % effluent during the 96 hour period. The SoftTox[™] Program was used to calculate the LC50 value. The LC50 for the PLCS - Come by Chance, NL effluent was determined to be greater than 100.00 %.

Please call if you have any questions regarding these results.

Sincerely,

STANTEC CONSULTING LTD

her

Dianne Hunt-Hall, M.Env., B.Tech Laboratory Supervisor, Science Laboratory

Attachments: A- Bench Data Sheet(s) Report No.: 04600

September 13, 2012 Attention: Brian Luffman

Page 2 of 7

Reference: Toxicology Testing Results

SAMPLE

Lab Refer.No.: Company: Sample Material: Sampling Method: Sample Condition: Collected: Collected By: B-3520-09 Conestoga-Rovers & Associates PLCS - Come by Chance, NL Grab Received in acceptable condition August 30, 2012; 12:00 pm A. Bryant

SAMPLE CHARACTERIZATION

Received (Date and Time): Volume: Temperature: Dissolved Oxygen: pH: Conductivity: Colour: Odour: Storage: August 31, 2012; 3:05 pm 2 x 20 L 14.8°C 9.3 mg/L 7.4 pH units 757 μ S/cm Cloudy/turbid, yellow None 96 hrs @ 4.0 ± 2.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source: Dissolved Oxygen: Conductivity: Hardness: pH: Date Revised: St. John's Dechlorinated 9.6 \pm 0.4 mg/L 128 \pm 7 μ S/cm 17 \pm 8 mg/L 7.1 \pm 0.2 pH units September 4, 2012

TEST CONDITIONS

Started (Date and Time): Ended (Date and Time): Type of Test: Volume of Test Solutions: Photoperiod: Light Intensity: Aeration Rate: Preaeration Time: Test Temperature: Duration:

TEST ORGANISM

Species: Source: Batch Number: Number per Tank: % Mortality: Mean Fork Length (cm): Mean Total Weight (g): Loading Density: September 4, 2012; 1:35 pm September 8, 2012; 1:35 pm Static Acute 96 hour LC_{50} 20 Litres 16h Light/08h Dark 393 Lux $6.5 \pm 1.0 \text{ mL/min.L}^{-1}$ 30 mins $15 \pm 1 \ ^{\circ}C$ 96 hours

Rainbow Trout (Oncorhynchus mykiss)Rainbow Springs Hatchery12-11100.39 % (7 days prior to testing) 3.8 ± 0.3 Range (cm): 3.5 ± 0.1 Range (g):0.3 = 0.70.3 g/L

September 13, 2012 Attention: Brian Luffman

Page 3 of 7

Reference: Toxicology Testing Results

TEST RESULTS

Lab Refer No.: Sample Material: Collection Date: Protocol: Test Type: LC₅₀ value (static, acute): 95% Confidence Intervals: B-3520-09 PLCS - Come by Chance, NL August 30, 2012; 12:00 pm EPS 1/RM/13 LC₅₀ > 100.00 % 100.00 % – Infinity

Effluent	Tem	p(°C)	D.O. ((mg/L)	pH (units)	Cond.(μS/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	Init.	Final	🔹 Init.	Final	(%)
100	14.6	14.5	10.0	9.9	7.9	8.3	742	495	0
50	14.4	14.6	9.9	9.6	7.5	8.3	437	445	0
25	14.5	14.6	9.8	9.7	7.6	7.7	289	297	0
12.5	14.7	14.5	9.8	9.6	7.8	7.6	211	221	0
6.25	14.7	14.6	9.7	9.5	7.5	7.5	178	186	0
0	15.6	14.9	9.9	9.7	7.4	7.3	129	137	0

COMMENTS:

- Arrival temperature of 23.8°C.
- The sample contained small suspended particles which partially settled during the bioassay.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism: Toxicant: Fish Batch No.: Reference Toxicant Date: LC_{50} Value: 95% Confidence Limits: Historic Mean ± 2 SD (Warning Limits): Oncorhynchus mykiss Phenol 12-11 August 20 - 24, 2012 1.04 mg/L 0.70 - 1.18 mg/L 0.98 ± 0.15 mg/L

Performed by: Stephanie Ryan/Trevor Bennett/Lana Combdon

Technical Reviewer: Jul Wheaton Jule (Print Name/Signature) 10 wheaton Suzette Winter Jus (Print Name/Signature) Senior Reviewer:

Date: Sept. 16 19012

September 13, 2012 Attention: Brian Luffman

Page 4 of 7

Reference: Toxicology Testing Results

Project: 10938. Report No.: 04600

ATTACHMENT A

Bench Data Sheet (s)

	1	WA Jac	ques '	Whitfor	l Envis	onmen.	t Limit	æd		Л	WEL LAD F	'earm: Bio	-00 10								
		Lat	borator	y Divisi	n	-				D	abe;	Mar	7 30, 2003	-							
						L	C50 Fi	sh Bioa	assay Da	ata Sh	eet										
	C	ient: CF	RA					Sa	mple ID	# B	-3520-0	9									
		Da 11 St. (70 (70	vid M 18 Top John's N 3N7 09) 364	cCoil/Jan osail Road , NL -5353 -5368	nes O'N d PO B	leill ox 8353		Cli	ent #	12	2151093	8									
Sample M	Material: Pl	LCS						Preaera	tion Time:	ą	30		Clar	ity (I): 🧲	louc	ly /	turb	bid .			
Test Peri	od: 090	412	(start)					Test Org	g - Batch #	t: 1	2-1	1	Colo	our (I): 👌	ello	ŝ					
	090	2180	(finish))				Source:	R	25+	4 ·		Odo	ur (I): K	one						
Date Coll	lected: 8/	30/2012	Time (Collected:	12:00 F	M		Test Sta	art Date:	09	041	2	Sus	p. Part. (I)	Sm	allpa	arts	thro	ugho	JT	
Date Rec	c'd: 8/	31/2012	Time F	Rec'd:	3:05 PI	M		Test Sta	art Time:	11	35		Othe	er (I): Ar	riva	1 ter	npl	3 93	3.8°C	Colle	cted
Light Inte Int. Amm Fin. Amm	ensity: 子 ionia (ppm): nonia (ppm):	73 IU NI	Å	Conc:	1	00'	%		Conc: 5	0%	50	0%		Conc: 2	5%	25	50/	D	k	>y A∙	B.
Time	Day	Monit By	HR.	Mort #	TEMP (°C)	DO (mg/i)	pН	COND (µs/cm)	Mort #	TEMP (°C)	DO (mg/l)	pН	COND (µs/cm)	Mort #	TEMP (°C)	DO (mg/l)	pН	COND (µs/cm)			
1.05	090417	SP	INT		14.8	93	74	157	•			79	0000	the							
1:35	L	T	0		14.6	10.0	19	742		14.4	9.9	1377	437	gillen and a second	14.5	9.8	1.6	289			
10120	-0-5110	-R	24			17	De.	1.91		410	aJ	00	4.01			00	057	107	-		
10.00	COSIC	10	40		14.9	1.1	02	CEE		1910	00	02	451		14.5	1.0	74	001	,		
10.33	Blook	175	40	-	M.5	10.0	0.2	533	-	1903	1M	0.0	1170		19.5	0.0	11	west m	-		
1.30	070112	u	72	-	14.4	99	83	500	-	146	15	8.6	435		MS	9.6	1.8	010	-		
135	1090812	lic	96	-	145	44	8.3	495	-	14.b	9.6	813	445		14.6	9.7	14	Stit			
Fish Bo LC50 Val 95% Con	ehaviour lue: > (0)		nts	All	45 961	in C	2/20	e @						1							
Pretreatm	nent: Com	posite	Disso		Temp	W	ater Irdness	Oth	er 🗌	Co	omments:	EPS1/	RM / 13	Second E	dition - D	ecembe	r 2000				

	ſ	WA J	acques	Whitfor	d Envi	ronmen	t Lim	ited		J	WEL Leb	Form: B	io-0010						
	L	ĽL	aborato	ry Divisi	on						labe;	M	lay 30, 200	3					
							LC50	Fish Bi	oassay	Data S	sheet				6				
	С	lient: (CRA					S	ample I	D#]	B-3520-	09							
		1 1 2 2 	David M 1118 To St. John A1N 3N (709) 36 (709) 36	IcCoil/Ja psail Ro 's, NL 17 54-5353 54-5368	ad PO	Neill Box 835	3	С	lient #		1215109	938							
Sample N	Material: F	PLCS						Control/Di	il Water:	Decle	orinated V	Water		Clarity (F): S1	ight	14 (lord	Y
Test Peri	od: 090	42	(sta	irt)				Aeration F	Rate:	6.5 ±	mL/min.	L-1		Colour (F): phi	h y	un	-	
	090	2180	(fini	sh)				Test Finis	h Date:	09	081	2.		Odour (F)	: n	me	. of	1514	ned
Volume:	Oxo	D. L						Test Finis	h Time:	- 1	35			Susp. Pa	rt. (F):	perm	ique	por	
Durauon.								Static.		рни	Amplent:			Other (F)	N/A		~		
Light Inter	nsity: 3	13 "	XL				-			-				Storage:	Stor	ed ·	mon	<u>80 n</u>	BIIC-04041C
	+			Conc:	12	2.5	D/o		Conc:	6	.29	0/0		Conc:	Control	0	0/0	•	Tempered in
Time	Day	Monit E	By HR.	Mort #	TEMP (°C)	DO (mg/l)	pH	COND (µS/cm)	Mort #	TEMP (°C)	DO (mg/l)	рН	COND (µS/cm) Mort #	TEMP (C)	DO (mg/l)	pН	COND (µS/cm)	awbersti
135	090412	58	- 0		147	9.8	7.8	211	1923994	147	9.7	7.S	178		15.6	9.9	7.4	129	-
:0120	ing.en		24		100	a7	77	717		1114	07	7,	176		WICZ	al	72	121	-
10135	0102	TR	48		144.6	100	1.1	ac	C 20020000	19.1	101	1.0	100		14.0	111	112	124	-
1.20	(ANT	11	72	-	140	94	11.	27		140	ar	1.0	101		1110	96	12	17.7	-
125	094507	14	96	-	ME	QIA	70	771	-	IUIS	9e	95	101		14.8	97	13	133	-
Fish Be	ahaviour (Comm	ents	MI QUI	45	h a w/	live	Cenel		174	1.3	1-143	106		17.0	<u>[[]</u>		<u>[[]</u>	
				61	ha	ion		~~~~~~				· · · · ·		>					
						Fis	h Meas	urements	Loading I	Density	(g/l):	0.	25	••••••					
Fork Len	igth (cm.):	4.2,	3.5	3.	8,4	1 2	39	1 4.0	0,3	3.8	3.6	, 3.	7 Me	an: 3.	84.	+ (3.34	/	_
wet wei	yn (y): (I.S.	0.4	6.9	1,0.	6,0	1.5	05	, 0	.6,	0.4	10.	5	an: 0,	44	().()		
			-									4.3							
												67							

SoftTox[™] Bioassay Calculator Test Date: 090412-0908/2 Analyst: LC/51/72 B-B3570-09 Control Group LA 10938 Number exposed: 10 Number dead: 0 Mortality: 0%

Group Number	Concentration	Number Exposed	Number Dead	Percent Mortality	
1	100.00	10	· 0	0 %	
2	50.00	10	0	0 %	
3	25.00	10	0	0 %	
4	12.50	10	0	0 %	
5	6.25	10	0	0 %	

L.C. 50 Result:

Upper 95% Confidence Limit: Lower 95% Confidence Limit:

1001.

Infinity 100.00

Calculated with Binomial Probability

Stantec Consulting Ltd Science Laboratory 422 Logy Bay Road St. John's, NL A1A 5C6 Tel: (709) 576-4804 Fax: (709) 576-0008

Registered to ISO 9001:2000 ISO/IEC 17025:2005 Accredited SCC-Food Scope (No. 268) CALA – Environmental Scope (No. 2709)

September 13, 2012 Project: 10938. Lab Refer No.: B-3521-09

Conestoga-Rovers & Associates 1118 Topsail Rd. St. John's, NL A1N 3N7 Tel: (709) 364-5353 Fax: (709) 364-5368

Attention: Brian Luffman

Dear Mr. Luffman,

Reference: Toxicology Testing Results

Please find enclosed the results of the 96-hour static bioassay conducted September 4 - 8, 2012. This toxicity test was performed on the SLCS - Come by Chance, NL effluent. This effluent was collected on August 30, 2012. The sample was received in acceptable condition.

Test conditions for a multi concentration test were followed according to the Reference Method: For Determining Acute Lethality of Effluents to Rainbow Trout (Report EPS 1/RM/13 Second Edition, December 2000 and May 2007 amendment). All tests parameters were maintained within the recommended levels outlined in the above protocol.

The SLCS - Come by Chance, NL effluent is not acutely lethal to the fish since less than 50.00 % of the fish died in the 100.00 % effluent during the 96 hour period. The SoftTox[™] Program was used to calculate the LC50 value. The LC50 for the SLCS - Come by Chance, NL effluent was determined to be greater than 100.00 %.

Please call if you have any questions regarding these results.

Sincerely,

STANTEC CONSULTING LTD

Writer

Dianne Hunt-Hall, M.Env., B.Tech Laboratory Supervisor, Science Laboratory

Attachments: A- Bench Data Sheet(s) Report No.: 04601

September 13, 2012 Attention: Brian Luffman

Page 2 of 7

Reference: Toxicology Testing Results

SAMPLE

Lab Refer.No.: Company: Sample Material: Sampling Method: Sample Condition: Collected: Collected By: B-3521-09 Conestoga-Rovers & Associates SLCS - Come by Chance, NL Grab Received in acceptable condition August 30, 2012; 12:00 pm A. Bryant

SAMPLE CHARACTERIZATION

Received (Date and Time): Volume: Temperature: Dissolved Oxygen: pH: Conductivity: Colour: Odour: Storage: August 31, 2012; 3:05 pm 2 x 20 L 14.7°C 8.0 mg/L 7.0 pH units 809 μ S/cm Cloudy/turbid, yellow None 96 hrs @ 4.0 \pm 2.0 °C

DILUTION WATER CHARACTERIZATION (MONTHLY AVERAGE)

Source: Dissolved Oxygen: Conductivity: Hardness: pH: Date Revised: St. John's Dechlorinated 9.6 \pm 0.4 mg/L 128 \pm 7 μ S/cm 17 \pm 8 mg/L 7.1 \pm 0.2 pH units September 4, 2012

TEST CONDITIONS

Started (Date and Time): Ended (Date and Time): Type of Test: Volume of Test Solutions: Photoperiod: Light Intensity: Aeration Rate: Preaeration Time: Test Temperature: Duration:

TEST ORGANISM

Species: Source: Batch Number: Number per Tank: % Mortality: Mean Fork Length (cm): Mean Total Weight (g): Loading Density: September 4, 2012; 1:30 pm September 8, 2012; 1:30 pm Static Acute 96 hour LC_{50} 20 Litres 16h Light/08h Dark 390 Lux $6.5 \pm 1.0 \text{ mL/min.L}^{-1}$ 30 mins $15 \pm 1 \ ^{\circ}C$ 96 hours

Rainbow Trout (Oncorhynchus mykiss)Rainbow Springs Hatchery12-11100.39 % (7 days prior to testing) 4.2 ± 0.4 Range (cm):3.5 - 4.6 0.6 ± 0.2 Range (g):0.3 g/L

September 13, 2012 Attention: Brian Luffman

Page 3 of 7

Reference: Toxicology Testing Results

TEST RESULTS

Lab Refer No.: Sample Material: Collection Date: Protocol: Test Type: LC₅₀ value (static, acute): 95% Confidence Intervals:

B-3521-09 SLCS - Come by Chance, NL August 30, 2012; 12:00 pm EPS 1/RM/13 LC₅₀ > 100.00 % 100.00 % – Infinity

Effluent	Tem	p(°C)	D.O. ((mg/L)	рН (units)	Cond.(μS/cm)	Mortality
Conc.(%)	Init.	Final	Init.	Final	Init.	Final	Init.	Final	(%)
100	14.3	14.3	10.0	9.9	8.2	8.4	803	565	0
50	14.4	14.3	9.9	9.8	8.1	8.3	487	465	0
25	14.5	14.3	9.8	9.7	8.0	7.6	301	313	0
12.5	14.7	14.3	9.8	9.8	7.4	7.4	217	229	0
6.25	14.7	14.6	9.7	9.7	7.4	7.4	178	184	0
0	15.4	14.5	9.9	9.6	7.4	7.3	127	138	0

COMMENTS:

- Arrival temperature of 23.8°C.
- The sample contained small suspended particles which partially settled during the bioassay.
- Samples have not been pH adjusted or filtered.
- The above analysis was conducted according to protocols indicated. The above results, which refer to the sample(s) tested only, are for your information and will be held in the strictest of confidence by this firm.
- Sample controls are considered a part of a sample test and as such are subject to the same treatment. (This includes, but is not limited to, aeration and temperature testing requirements.)

REFERENCE TOXICITY TEST DATA (LOG SCALE)

Test Organism: Toxicant: Fish Batch No.: Reference Toxicant Date: LC_{50} Value: 95% Confidence Limits: Historic Mean ± 2 SD (Warning Limits): *Oncorhynchus mykiss* Phenol 12-11 August 20 - 24, 2012 1.04 mg/L 0.70 - 1.18 mg/L 0.98 ± 0.15 mg/L

Performed by: Stephanie Ryan/Trevor Bennett/Lana Combdon

Technical Daviawa	Tu constan Cim una ton			
recinical Reviewe	(Print Name/Signature)			
	(I mit Name/Signature)			
Senior Reviewer:	Juzette Winter Xulii	Date:	Sept. 16	201
	(Print Name/Signature)		~	

September 13, 2012 Attention: Brian Luffman

Page 4 of 7

Reference: Toxicology Testing Results

Project: 10938. Report No.: 04601

ATTACHMENT A

Bench Data Sheet (s)

	MA	Jacq ues	Whitfor	l Envir	onment	Limit	ed		JU	KLLD F	nam: Bio-	0010							
	U	Laborato	ry Divisio	on	1		1. Carlos and		Da	be;	May	30, 2003							
					LO	C50 Fi	sh Bioa	ssay Da	ata She	eet									
	Client:	CRA					Sar	nple ID	# Ŗ-	3521-09)								
	1118 Topsail Road PO Box 835: St. John's, NL A1N 3N7 (709) 364-5353 (709) 364-5368 Material: SLCS eriod: OQOA 12 (start) OQOA 12 (finish)							ent #	12	151093	8								
Sample Material	: SLCS					~ 7	Preaerat	ion Time:	3	0		Clari	ty (I): C	laud	Hype	rurbi	d ·		
Test Period: O	90412	2 (start)				Test Org	- Batch #	: 19	- 11		Colo	ur (I): J	ello					
O	90812	2 (finish	ר)				Source:	RS	H		-	Odou	ur (l): 🎧	one	11	ال سال		about	
Date Collected:	8/30/201	2 Time	Collected:	12:00 P	М		Test Sta	rt Date:	04	041	2	Susp). Part. (I)	sno	in par	דפן			4
Date Rec'd:	8/31/201	2 Time	Rec'd:	3:05 PN	1		Test Sta	rt Time:	1.	30		Otne	r (I): Ar	rival	terr	1PC	203	SC. Collecte	a
Light Intensity: Int. Ammonia (p Fin. Ammonia (p	390 pm): N	iux A L	Conc;	1	000	°/0		Conc: - 5	0%	50	0%		Conc: 2	5% -	2	5°/	0	by A.B.	
Time Da	iy Moni	t By HR.	Mort #	TEMP (°C)	DO (mg/l)	pН	COND (µs/cm)	Mort #	TEMP . (°C)	DO (mg/l)	pН	COND (µs/cm)	Mort #	TEMP (°C)	DO (mg/l)	pН	COND (µs/cm)		
1.00 090	AR S			14.7	8.0	1.0	809	algoan									301	QUAUAIC	
1:30 1	- 1	0		14.3	10.0	82	740	-	144	99	81	487	-	145	98	8.0	789		
						0.0	803										2	+	
10:45 090	512 1	8 24	- casting	143	9.7	8.4	749		14.4	9.5	83	452		14.4	9.6	80	302	-	
10:55 090	1612 TE	3 48		143	10.0	83	643		14.2	9.9	8.3	453	-	14.1	10.0	7.9	303		
1.840 096	ANZ LO	72	-	142	9.9	8.3	572	-	143	95	8.3	454	-	142	9.4	78	305	Ť.	
1:30 69	5672 U	L 96	-	143	9.9	84	565	-	143	9.8	8:3	465	-	14.3	9.7	7.6	313]	
Fish Behavio LC50 Value: 95% Conf Inter:	our Com >10001	ments	All a	tis med	La Glow - bet	í.ve s	our				•			>					
Pretreatment:	Composite	Diss	solved /gen	Temp	Wa Ha	ater rdness	Othe	er 🗌	Cor	nments:	EPS1/I	RM / 13 5	Second E	dition - D	ecember	2000			

	ſ	WA Ja	acques	Whitfor	d Envi	ro nmen	t Limi	ited			WKL L&	Form: B	io-0010									
		Ľ	aborato	ry Divisi	on					[1	Date:	M	ay 30, 2003									
							LC50	Fish Bi	oassay	Data	Sheet											
	С	lient: (1 2 2 ((CRA David N 1118 To St. John A1N 3N 709) 30 709) 30	AcCoil/Ja opsail Ro i's, NL 17 54-5353 54-5368	ames O' ad PO I	Neill Box 835	3	S	ample I lient #	D #	B-3521- 121510	-09 938										
Sample M Test Peri Volume: Duration:	Material: S iod: OAC OAC Q X G	5LCS 0412 0812 00 L 96 h	(sta (fini	art) ish)				Control/D Aeration F Test Finis Test Finis Static:	il Water: Rate: sh Date: sh Time:	Decl 6.5 d O P H	lorinated EmL/min 081 30 Ambient:	Water . L-1		Clarity (F) Colour (F) Odour (F) Susp. Par Other (F):	1: 51.0): Pu 1: Ne nt. (F): /	hte ye and parti	J Cl cliss	settl	cd			
Light Inter	nsity: 20		IX											Storage:	Rto	d.	from	0.08	2117	-04	2041	7
				Conc:	10	25	0/0		Conc:	6	.20	5%	5	Conc:	Control	C)0/0		a 4	125	WR	mpere
Time 1:30	Day OPICAR	Monit E	By HR.	Mort #	темр (°С) 14.7	DO (mg/l) 9.8	рн 1.4	COND (µS/cm) 217	Mort #	темр (°С) 14,7	DO (mg/l) 9.7	рн 7.4	COND (µS/cm)	Mort #	TEMP (C)	DO (mg/l) 9.9	_{рн} 1.4	COND (µS/cm) 127				,
10:45	090512	TB	24	-	M.1	9.6	7.8	221		14.4	9.6	7.5	175		14.3	9.7	7.4	131	-			
1.40	096972	LC	48	-	14.3	93	7.7	223		14.9	9.3	7.5	178		14.5	10.0	7.4	135	-			
1.30	090812		96	-	14.3	98	7.4	229	-	14.6	97	7.4	1841		145	9.6	73	138		1		
Fish Be	ehaviour (Comme	ents	Alla 9/01 hom	e Cip pros mal	ush w/	all N.O	ve@							>		~					
						Fis	h Measu	urements	Loading	Density	(g/l):	0.2	9]			
Fork Ler Wet Wei	ngth (cm.): L ight (g): D	1.5	4.4	3.5	4.4	, 4.5 , 0.6	7, 4 7 C	:5	4.6	3.5	30.7	1,3:	7 Mea 4 Mea	an: 4.7	20 +	<u>6</u> 0	44 . [7					

SoftTox[™] Bioassay Calculator

Test Date: 090412-090812

Analyst: LC/SR/73

B 3521-09 **Control Group** 22 10938 Number dead: 0 Number exposed: 10 Mortality: 0 %

Group Number	Concentration	Number Exposed	Number Dead	Percent Mortality	
1	100.00	10	· 0	0 %	
2	50.00	10	0	0%	
3	25.00	10	0	0 %	
4	12.50	10	0	0%	
5	6.25	10	0	0 %	

L.C. 50 Result:

Upper 95% Confidence Limit: Lower 95% Confidence Limit: 100 × 100 1/2

Infinity 100.00

Calculated with Binomial Probability

APPENDIX D

PREVIOUS MONITORING DATA

HISTORICAL STATIC GROUNDWATER LEVELS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Location	Ground Surface	Length of	TOC						G	Groundwa	ater Dept	h (mbTo	C)					
Location	Elevation	Stick-up	Elevation	Mar	Jul	Sep	Oct	Jun	Jul	Oct	Dec	Oct	Sep	Mar	Jul	Dec	Sep	Dec
	(masl)	(m)	(masl)		20	004			20	006		2007	2008	2009	20)10	2011	2012
PLCS	15.960		15.960												0.55	0.73	0.59	0.89
SLCS	15.955		15.955												0.52	0.713	0.55	0.892
MW 93-1	16.300	1.100	17.400											1.975	1.703	1.915	1.921	1.780
MW 93-1A	16.310	1.400	17.710	0.39	1.88	0.41	0.16	2.06	1.68	2.11	1.84	1.67	2.17	2.50	1.638	1.636	2.204	1.669
MW 93-2	14.290	1.100	15.390	0.67	0.56	0.58	0.28	1.85	2.16	2.13		1.72	2.18	2.20	2.084	2.147		2.111
MW 93-2A	14.310	1.100	15.410											1.84	1.456	1.375		1.234
MW 93-3*														1.335				
MW 93-3A*				2.37	Dry		1.20	Dry	3.21	3.37		3.32	Dry	3.52				
MW 10-1	15.790	0.846	16.636												3.015	3.254	3.551	3.188
MW 10-1A	15.890	0.854	16.744												3.084	3.279	3.662	3.234

Location	Ground Surface	Length of	TOC						G	roundwa	ter Eleva	tion (mas	51)					
Location	Elevation	Suck-up	Elevation	Mar	Jul	Sep	Oct	Jun	Jul	Oct	Dec	Oct	Sep	Mar	Jul	Dec	Sep	Dec
	(masl)	(m)	(masl)		20	04			20	06		2007	2008	2009	20	10	2011	2012
PLCS	15.960		15.960												15.410	15.230	15.370	14.340
SLCS	15.955		15.955												15.435	15.242	15.410	14.350
MW 93-1	16.300	1.100	17.400											15.425	15.697	15.485	14.039	13.705
MW 93-1A	16.310	1.400	17.710	17.320	15.830	17.300	17.550	15.650	16.030	15.600	15.870	16.040	15.540	15.210	16.072	16.074	13.756	14.405
MW 93-2	14.290	1.100	15.390	14.720	14.830	14.810	15.110	13.540	13.230	13.260		13.670	13.210	13.190	13.306	13.243		11.132
MW 93-2A	14.310	1.100	15.410											13.570	13.954	14.035		12.801
MW 93-3*																		
MW 93-3A*			15.900	13.530	Dry		14.700	Dry	12.690	12.530		12.580	Dry	12.380				
MW 10-1	15.790	0.846	16.636												13.621	13.382	12.409	10.194
MW 10-1A	15.890	0.854	16.744												13.660	13.465	12.298	10.231

Metres

Top of Casing

masl

mbTOC

=

=

=

=

m

TOC

Metres Above Sea Level

Metres Below Top of Casing

Notes:

PLCS = Primary Leachate Collection System Valve Chamber

SLCS = Secondary Leachate Collection System Valve Chamber

MW = Monitor Well

- Secondary Leachate Collection System valve Char

* = Monitor Well Decommissioned in July 2010

CRA 056680

HISTORICAL GROUNDWATER ANALYTICAL DATA - BTEX/mTPH 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				Etherl		Total Petroleum Hydrocarbons (TPH)						
Sample Location	Date Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments		
	Aug 19, 2009	<	<	<	<	<	<	<	<	-		
MW 93-1	Aug 19, 2009 ¹	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010	<	<	<	<	<	<	<	<	-		
	Dec 13, 2010	<	<	<	<	<	<	<	<	-		
	Sep 02, 2011	<	<	<	<	<	<	<	<	-		
	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-		
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	$<(0.05)^2$	$<(0.05)^2$	$<(0.05)^2$	$<(0.15)^2$	-		
MW 93-1A	Aug 19, 2009	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010	<	<	<	<	<	<	<	<	-		
	Dec 13, 2010	<	<	<	<	<	<	<	<	-		
	Sep 02, 2011	<	<	<	<	<	<	<	<	-		
	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-		
DUP-03	Aug 30, 2012	<	<	<	<	<	<	<	<	-		
MW 93-2	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	$<(0.05)^2$	$<(0.05)^2$	$<(0.05)^2$	$<(0.15)^2$	-		
	Aug 19, 2009	<	<	<	<	<	<	< <		-		
	Jul 16, 2010	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010 ³	-	-	-	-	-	<	<	-	-		
	Dec 13, 2010	<	<	<	<	<	<	<	<	-		
	Dec 13, 2010 ³	-	-	-	-	-	<	<	-	-		
	Sep 02, 2011	<	<	<	<	<	<	<	<	-		
	Aug 30, 2012	<(0.0013)	<(0.0013)	<(0.0013)	<(0.0026)	<(0.013)	<	<	<	-		
	Aug 19, 2009	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010	<	<	<	<	<	<	<	<	-		
MW 93-2A	Dec 13, 2010	<	<	<	<	<	<	<	<	-		
	Sep 02, 2011	<	<	<	<	<	<	<	<	-		
	Aug 30, 2012	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010 ¹	<	<	<	<	<	<	<	<	-		
MW 10-1	Dec 13, 2010	<	<	<	<	<	<	<	<	-		
	Sep 02, 2011	<	<	<	<	<	<	0.4	0.4	possible lube oil fraction		
	Aug 30, 2012	<	<	<	<	<	<	<	<	-		
	Jul 16, 2010	<	<	<	<	<	<	<	<	-		
	Dec 13, 2010	<	<	<	<	<	<	<	<	-		
MW 10-1A	Dec 13, 2010 ¹	<	<	<	<	<	<	<	<	-		
	Sep 02, 2011	<	<	<	<	<	<	<	<	-		
	Aug 30, 2012	<	<	<	<	<	<	<	<	-		
Dup- A	Sep 02, 2011	<	<	<	<	<	<	<	<	-		
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-		
									20	Gasoline		
Atlantic RBCA Tier	I RBSLs [*]	6.9	20	20	20	na	na	na	20	Diesel / #2 Fuel Oil		
								20	# 6 Oil			

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

= above criteria

1. Field Duplicate

2. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report

3. Lab Duplicate

DUP-A= Field Dup of MW 10-1A

DUP-03= Field Dup of MW 93-1A

* Atlantic Risk-Based Corrective Action (RBCA) Tier I Risk-Based Screening Level (RBSL) Table values {commercial/non-potable/coarse grained soil}.

RDL = Reportable Detection Limit < = Parameter below detection limit - = Not analysed

0.0

TPuH = Total Purgeable Hydrocarbons TExH = Total Extractable Hydrocarbons TPH = Total Petroleum Hydrocarbons Modified TPH = mTPH = TExH + TPuH TPH = mTPH + BTEX G = Gasoline FO = Fuel Oil LO = Lube Oil W = Weathered

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Paramotor	Unito		MW 93-1								MV	V 93-1A			DUP-03		MW 93-2						Culturiat
rarameter	Units	19-Aug-09	19-Aug-09 Field Dup	19-Aug-09 Lab Dup	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	KDL	Criteria
1-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	< 0.03	<	<	<	<	<	0.05	13,000
2-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	< 0.03	<	<	<	<	<	0.05	13,000
Acenaphthene	ug/L	<	<	<	<	<	0.01	<	< 0.04	<	<	<	<	<	<	< 0.04	<	<	<	<	<	0.01	1,700
Acenaphthylene	ug/L	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	2,000
Acridine	ug/L	-	-	-	<	<	-	-	-	-	<	<	-	-	-	-	-	<	<	-	-	0.05	-
Anthracene	ug/L	<	<	<	<	<	<	<	< 0.01	<	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	12
Benzo(a)anthracene	ug/L	<	<	<	<	<	<	<	< 0.01	<	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	5
Benzo(a)pyrene	ug/L	<	0.01	<	<	<	<	<	< 0.01	<	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	1.9
Benzo(b)fluoranthene	ug/L	<	0.02	<	<	<	<	<	< 0.05	<	<	<	<	<	<	< 0.05	<	<	<	<	<	0.01	7
Benzo(g,h,i)perylene	ug/L	<	0.02	<	<	<	<	<	< 0.03	<	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	0.2
Benzo(k)fluoranthene	ug/L	<	0.02	<	<	<	<	<	< 0.05	<	<	<	<	<	<	< 0.05	<	<	<	<	<	0.01	0.4
Chrysene	ug/L	<	<	<	<	<	<	<	< 0.04	<	<	<	<	<	<	< 0.04	<	<	<	<	<	0.01	3
Dibenz(a,h)anthracene	ug/L	<	0.03	<	<	<	<	<	-	<	<	<	<	<	<	-	<	<	<	<	<	0.01	0.25
Fluoranthene	ug/L	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	130
Fluorene	ug/L	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	290
Indeno(1,2,3-cd)pyrene	ug/L	<	0.02	<	<	<	<	<	< 0.05	<	<	<	<	<	<	< 0.05	<	<	<	<	<	0.01	0.27
Naphthalene	ug/L	<	<	<	<	<	<	<	-	<	<	<	<	<	<	-	<	<	<	<	<	0.20	5,900
Perylene	ug/L	<	<	<	<	<	<	<	-	<	<	<	<	<	<	-	<	<	<	<	<	0.01	-
Phenanthrene	ug/L	0.01	<	<	<	<	<	<	< 0.04	0.01	~	<	<	<	<	< 0.04	0.01	<	<	<	<	0.01	63
Pyrene	ug/L	<	<	<	<	<	<	<	< 0.01	<	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	40
Quinoline	ug/L	-	-	-	<	<	-	-	-	-	<	<	-	-	-	-	-	<	<	-	-	0.05	-

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth

Generic Site Condition Standards in a Non-Potable Ground Water Condition 0.0 = above criteria

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria
 < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

DUP-A= Field Duplicate of MW-101A

DUP-03= Field Duplicate of MW 93-1A

(1)= Elevated PAH RDL(s) due to matrix/co-extractive interference

HISTORICAL GROUNDWATER ANALYTICAL DATA - PAHs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Deservoios	Unito				MW 93-2A					DUP-A	PDI	Critoria							
Parameter Units	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	16-Jul-10	16-Jul-10 DUP-01	13-Dec-10	13-Dec-10 DUP-02	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	2-Sep-11	KDL	Cineria	
1-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	13,000
2-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.05	13,000
Acenaphthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	1,700
Acenaphthylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	2,000
Acridine	ug/L	-	<	<	-	-	<	<	<	<	-	-	<	<	-	-	-	0.05	-
Anthracene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	12
Benzo(a)anthracene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	5
Benzo(a)pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	1.9
Benzo(b)fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	7
Benzo(g,h,i)perylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.2
Benzo(k)fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.4
Chrysene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	3
Dibenz(a,h)anthracene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.25
Fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	130
Fluorene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	290
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	0.27
Naphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.20	5,900
Perylene	ug/L	<	<	<	0.02	<	<	<	<	0.04	<	<	<	<	<	0.017	<	0.01	-
Phenanthrene	ug/L	0.01	<	<	<	0.012	<	<	<	<	<	<	<	<	<	<	<	0.01	63
Pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	40
Quinoline	ug/L	-	<	<	-	-	<	<	<	<	-	-	<	<	<	-	<	0.05	-

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth

Generic Site Condition Standards in a Non-Potable Ground Water Condition 0.0 = above criteria

RDL = Reportable Detection Limit

SW = Surface Water Sample

- = Not analysed/No criteria < = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

DUP-A= Field Duplicate of MW-101A DUP-03= Field Duplicate of MW 93-1A

(1)= Elevated PAH RDL(s) due to matrix/co-extractive interference

GROUNDWATER ANALYTICAL DATA - PCBs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Sample Location	Date Sampled	Total PCBs (ug/L)								
	Aug 19, 2009	<								
	Aug 19, 2009	<1								
	Aug 19, 2009	<2								
MW 93-1	Jul 16, 2010	<								
	Dec 13, 2010	<								
	Sep 02, 2011	<								
	Aug 30, 2012	<								
	AMEC 2008	< 0.04								
	Aug 19, 2009	0.1								
MMA7 02 1 A	Jul 16, 2010	<								
WIW 95-1A	Dec 13, 2010	<								
	Sep 02, 2011	<								
	Aug 30, 2012	<								
DUP-03	Aug 30, 2012	<								
	AMEC 2008	< 0.04								
	Aug 19, 2009	<								
MW 93-2	Jul 16, 2010	<								
10100 50-2	Dec 13, 2010	<								
	Sep 02, 2011	<								
	Aug 30, 2012	<								
	Aug 19, 2009	0.11								
	Jul 16, 2010	<								
MW 93-2A	Dec 13, 2010	<								
	Sep 02, 2011	<								
	Aug 30, 2012	<								
	Jul 16, 2010	<								
101/101	Jul 16, 2010	<-								
MW 10-1	Dec 13, 2010	<								
	Sep 02, 2011	<								
	Aug 30, 2012	<								
	Jul 16, 2010	<								
101/10 14	Dec 13, 2010	2								
MW 10-1A	Dec 13, 2010	<-								
	Sep 02, 2011	<								
	Aug 30, 2012	<								
DUP-A	DUP-A Sep 02, 2011									
RDL	0.05									
Criteria - Ontar	0.2									

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. 1. Lab Duplicate

2. Field Duplicate

* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Ground Water Condition

MW = Monitor Well

DUP-01 = Field Duplicate of MW 10-1, First Sampling Event

DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

DUP-A = Field Duplicate of MW 10-1A

DUP-03= Field Duplicate of MW 93-1A

DUP-04= Field Duplicate of PLCS

RDL = Reportable Detection Limit < = Parameter below detection limit

0.0 = above criteria
HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

_				MW	V 93-1						MW 93-1A				DUP-03			MW 93-2					
Parameter	Units	19-Aug-09	19-Aug-09 Field Dup	19-Aug-09 LabDup	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	RDL	Criteria*
Benzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	1,900
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	840
Bromomethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3.00	3.7
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	500
Chloroethane	ug/L	<	<	<	<	<	<10 (1)	<	<	<	<	<	<10(1)	<	<	<	<	<	<	<10(1)	<	8.00	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	430
Chloromethane	ug/L	<	<	<	<	<	<10 (1)	<	<	<	<	<	<10 (1)	<	<	<	<	<	<	<10(1)	<	8.00	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<0.7 (1)	<	<	<	<	<	<0.7 (1)	<	<	<	<	<	<	<0.7 (1)	<	0.50	7,600
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1,1-Dichloroethane	ug/L	<	<	<	<	<	<3 (1)	<	<	<	<	<	<3 (1)	<	<	<	<	<	<	<3 (1)	<	2.00	9,000
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.66
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<3 (1)	<	<	<	<	<	<3 (1)	<	<	<	<	<	<	<3 (1)	<	2.00	70
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	100
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	9.3
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	3.8
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	3.8
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	28,000
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<4 (1)	<	<	<	<	<	<4 (1)	<	<	<	<	<	<	<4 (1)	<	3.00	50,000
o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,600
p+m-Xylene	ug/L	<	<	<	<	<	<3 (1)	<	<	<	<	<	<3 (1)	<	<	<	<	<	<	<3 (1)	<	2.00	5,600
Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	940
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	22
Toluene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,900
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	200
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	16,000
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<10 (1)	<	<	<	<	<	<10 (1)	<	<	<	<	<	<	<10(1)	<	8.00	-
Vinyl Chloride	ug/L	<	<	<	<	<	<	<	0.2	<	<	<	<	<	<	0.2	<	<	<	<	<	0.50	0.5

Notes:

Audes. Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. * Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit SW = Surface Water Sample 0.0 = above criteria SW – Surface Weat Sample – Not analysed/No criteria < = Parameter below detection limit DUP-01 = Field Duplicate of MW 10-1, First Sampling Event DUP-A= Field Duplicate of MW 10-1, Second Sampling Event DUP-A= Field Duplicate of MW 10-1A DUP-A= Field Duplicate of MW 10-1A DUP-03= Field Duplicate of MW 93-1A (1)=Elevated RDL for analyzed VOC(s)

HISTORICAL GROUNDWATER ANALYTICAL DATA - VOCs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

December	T		MW	93-2A					MW 10-1	L				MW 10-1A			DUP- A	DDI	C 11. 1.*
Parameter	Units	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	16-Jul-10 DUP-01	13-Dec-10 DUP-02	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	2-Sep-11	KDL	Criteria
Benzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	1,900
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	840
Bromomethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	3.00	3.7
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	500
Chloroethane	ug/L	<	<	<	<10 (1)	<	<	<	<	<	<10 (1)	<	<	<	<10 (1)	<	<10(1)	8.00	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	430
Chloromethane	ug/L	<	<	<	<10 (1)	<	<	<	<	<	<10 (1)	<	<	<	<10 (1)	<	<10(1)	8.00	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50,000
1,2-Dichlorobenzene	ug/L	<	<	<	<0.7 (1)	<	<	<	<	<	<0.7 (1)	<	<	<	<0.7 (1)	<	<0.7 (1)	0.50	7,600
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	7,600
1,1-Dichloroethane	ug/L	<	<	<	<3 (1)	<	<	<	<	<	<3 (1)	<	<	<	<3 (1)	<	<3 (1)	2.00	9,000
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	17
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.66
cis-1,2-Dichloroethylene	ug/L	<	<	<	<3 (1)	<	<	<	<	<	<3 (1)	<	<	<	<3 (1)	<	<3 (1)	2.00	70
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	100
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	4.00	2.00	<	<	2.00	7.00	3.00	7.00	1.00	9.3
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.00	3.8
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	1.00	<	<	<	1.00	<	<	<	1.00	3.8
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	28,000
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<4 (1)	<	<	<	<	<	<4 (1)	<	<	<	<4 (1)	<	<4 (1)	3.00	50,000
o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,600
p+m-Xylene	ug/L	<	<	<	<3 (1)	<	<	<	<	<	<3 (1)	<	<	<	<3 (1)	<	<3 (1)	2.00	5,600
Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	940
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	22
Toluene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	5,900
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	50
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	200
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.00	16,000
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<10 (1)	<	<	<	<	<	<10 (1)	<	<	<	<10 (1)	<	<10(1)	8.00	-
Vinyl Chloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.50	0.5

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.
 Ontario Ministry of the Environment (MOE) 'Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental

Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

RDL = Reportable Detection Limit SW = Surface Water Sample 0.0 = above criteria -= Not analysed/No criteria -= Not analysed/No criteria < = Parameter below detection limit DUP-01 = Field Duplicate of MW 10-1, First Sampling Event DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event DUP-03 = Field Duplicate of MW 93-1A (1)=Elevated RDL for analyzed VOC(s)

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				MW	93-1					MW 93	3-1A			DUP-03				MW 93-2					
Parameter	Units	19-Aug-09	19-Aug-09 Field Dup	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	19-Aug-09 Lab Dup	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	KDL	Criteria*
Anion Sum	me/L	6.10	7.22	5.87	5.52	7.47	6.51	-	7.22	7.33	7.46	5.61	6.5	6.47	-	6.90	-	6.30	6.58	6.42	6.36	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	236.0	292.0	229.0	210.0	304.0	270	-	285.0	293.0	297.0	216.0	260	250	-	232.0	-	205.0	219.0	210.0	210.0	1.00	-
Calculated TDS	mg/L	338.0	375.0	313.0	313.0	389.0	338	265.0	447.0	390.0	401.0	302.0	334	334	331.0	380.0	-	346.0	368.0	361.0	353.0	1.00	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	2.00	3.00	3.00	2.00	4.00	4.7	-	3.00	3.00	2.00	3.00	5.2	5.4	-	1.00	-	1.00	1.00	2.00	2.60	1.00	-
Cation Sum	me/L	6.60	6.77	5.62	5.90	6.90	6.14	-	9.57	7.02	7.19	5.35	5.89	5.94	-	6.50	-	5.66	6.19	6.10	5.99	N/A	-
Hardness (CaCO3)	mg/L	160	160	120	120	180	150	205	210	170	170	120	140	150	245	270	-	240	250	260	250	1.00	-
Ion Balance (% Difference)	%	4.00	3.22	2.18	3.33	3.97	2.92	-	14.00	2.16	1.84	2.37	4.92	4.27	-	2.60	-	5.35	3.05	2.56	3.00	N/A	-
Langelier Index (@ 20C)	N/A	0.50	0.62	0.47	0.38	0.80	0.815	-	0.70	0.62	0.61	0.55	0.826	0.846	-	0.50	-	0.53	0.54	0.68	0.90	N/A	-
Langelier Index (@ 4C)	N/A	0.30	0.37	0.22	0.13	0.55	0.566	0.00	0.45	0.37	0.36	0.31	0.577	0.597	-	0.30	-	0.28	0.29	0.43	0.65	N/A	-
Nitrate (N)	mg/L	<	<	<	< 0.05	< 0.05	<	-	<	<	< 0.05	< 0.05	<	<	-	<	-	<	< 0.05	< 0.05	<	0.05	-
Saturation pH (@ 20C)	N/A	7.50	7.41	7.64	7.64	7.32	7.45	-	7.31	7.37	7.32	7.67	7.5	7.5	-	7.20	-	7.28	7.20	7.23	7.22	N/A	-
Saturation pH (@ 4C)	N/A	7.80	7.66	7.89	7.89	7.57	7.69		7.55	7.62	7.57	7.92	7.75	7.75	-	7.40	-	7.53	7.45	7.47	7.47	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	240	300	230	210	310	280	290	290	300	300	220	260	260	205	2,320	-	210	220	210	220	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.00	-
Dissolved Chloride (Cl)	mg/L	36	35	19	15	11	11	11	12	11	11	16	30	30	24	24	-	23	21	20	20	1	-
Colour	TCU	<	<	<	<5	<5	<	-	<	<	<5	<5	<	<	-	<	-	<	<5	<5	<	5.00	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	-
Nitrate + Nitrite	mg/L	<	<	<	<	<	<	< 0.05	<	<	~	<	<	<	< 0.05	<	-	<	<	<	<	0.05	-
Nitrite (N)	mg/L	<	<	<	<	<	<	< 0.015	<	<	~	<	<	<	< 0.015	<	-	<	<	<	<	0.01	2.00
Nitrogen (Ammonia Nitrogen)	mg/L	0.10	<	<	< 0.05	< 0.05	<	0.02	<	<	< 0.05	< 0.05	<	<	< 0.01	<	<	<	< 0.05	< 0.05	<	0.05	-
Total Organic Carbon (C)	mg/L	1.20	1.00	2.10	0.90	930.00	<	2.00	<	<5(1)	<5(1)	< 0.5	1.4	1.5	2.00	0.50	0.90	1.50	1.30	1.00	0.88	0.50	-
Orthophosphate (P)	mg/L	<	<	<	< 0.01	<	<	-	<	<	0.04	<	<	<	-	<	-	<	< 0.01	<	<	0.01	-
pH	pH	8.00	8.03	8.11	8.02	8.12	8.26	8.02	8.00	7.99	7.93	8.22	8.33	8.35	7.50	7.70	-	7.81	7.74	7.90	8.12	N/A	-
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	26.00
Reactive Silica (SiO2)	mg/L	9.90	10.00	7.60	7.60	6.90	5.3	-	5.00	7.10	6.80	7.70	9.1	9.1	-	19.00	-	18.00	19.00	19.00	18.00	0.50	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
Dissolved Sulphate (SO4)	mg/L	2	16	33	42	48	33	-	55	53	56	38	19	20	-	73	-	74	76	78	71	2	-
Sulphide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-
Turbidity	NTU	0.5	1.3	61.0	34.0	<1000	590	-	350.0	300.0	470.0	1.1	5.9	5.7	-	13.0	-	5.4	13.0	3.9	4.0	0.1	-
Conductivity	uS/cm	580	580	520	500	630	580	511	610	630	640	500	580	590	549	560	-	570	580	570	580	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-

Notes:

CRA 056680

Autors completed by Massam Analytics Inc. laboratory in St. John's, NL. Analysis completed by Massam Analytics Inc. laboratory in St. John's, NL. * Ontario Ministry of the Environment IDOD 'Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards. In ADN-Potable Ground Water Condition

 RDL = Reportable Detection Limit
 0.0
 = above criteria

 SW = Surface Water Sample
 -= Not analysed/No criteria

 <= Parameter below detection limit</td>

 <(#) = Parameter below AMEC laboratory detection limit</td>

 UUP-01 = Field Duplicate of MW 10-1, First Sampling Event

 DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-02 = Field Duplicate of MW 93-1A

 (1) = Elevated detection limit due to matrix interference

TABLE	D6
TADLE	D0

HISTORICAL GROUNDWATER ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

					MW 93-2A						MV	V 10-1				MW 10	-1A		DUP-A		
Parameter	Units	19-Aug-09	19-Aug-09 Lab Dup	16-Jul-10	16-Jul-10 Lab Dup	13-Dec-10	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	16-Jul-10 DUP-01	13-Dec-10 DUP-02	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	2-Sep-11	RDL	Criteria*
Anion Sum	me/L	2.69	-	6.43	-	1.31	2.42	1.37	3.87	2.63	3.89	2.70	3.48	3.24	3.86	3.08	1.43	2.11	1.44	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	62.0	-	212.0	-	14.0	61.0	11.0	94.0	92.0	96.0	95.0	144.0	140	94.0	114.0	50.0	77.0	51.0	1.00	-
Calculated TDS	mg/L	184.0	-	351.0	-	87.0	145.0	96.0	215.0	147.0	217.0	149.0	185.0	174	215.0	171.0	95.0	122.0	95.0	1.00	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	<	-	1.00	-	<	<	<	<	<	<	<	<	1.1	<	<	<	<	<	1.00	-
Cation Sum	me/L	3.43	-	5.70	-	1.15	2.09	1.44	3.60	2.55	3.66	2.57	3.27	3.11	3.61	3.08	1.57	1.98	1.59	N/A	-
Hardness (CaCO3)	mg/L	120	-	240	-	31	73	34	100	110	100	110	150	140	100	140	61	84	61	1.00	-
Ion Balance (% Difference)	%	12.10	-		-	6.50	7.32	2.49	3.61	1.54	3.05	2.47	3.11	2.05	3.35	0.00	4.67	3.18	4.95	N/A	-
Langelier Index (@ 20C)	N/A	-1.51	-	0.48	-	-3.48	-1.21	-3.03	-0.23	-0.79	-0.31	-0.68	0.34	0.365	-0.36	-0.18	-1.18	-0.60	-1.11	N/A	-
Langelier Index (@ 4C)	N/A	-1.76	-	0.24	-	-3.73	-1.46	-3.28	-0.48	-1.05	-0.56	-0.93	0.09	0.115	-0.61	-0.43	-1.43	-0.85	-1.36	N/A	-
Nitrate (N)	mg/L	<	-	<	-	0.15	< 0.05	<	<	0.24	<	0.25	< 0.05	0.16	<	0.26	0.10	0.08	0.08	0.05	-
Saturation pH (@ 20C)	N/A	8.06	-	7.27	-	9.25	8.27	9.28	7.93	7.79	7.91	7.77	7.51	7.55	7.92	7.64	8.32	8.00	8.31	N/A	-
Saturation pH (@ 4C)	N/A	8.31	-	7.52	-	9.50	8.52	9.53	8.18	8.05	8.16	8.02	7.76	7.8	8.17	7.89	8.57	8.25	8.56	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	62	-	210	-	14	61	12	95	92	96	96	140	140	95	110	51	77	51	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.00	-
Dissolved Chloride (Cl)	mg/L	21	68	23	-	14	16	17	56	12	56	12	6	3.8	56	14	3	4	3	1	-
Colour	TCU	6.00	21.00	<	-	79.00	120.00	41.00	10.00	9.00	6.00	13.00	9.00	5.6	7.00	5.00	22.00	7.70	18.00	5.00	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	-
Nitrate + Nitrite	mg/L	<	5.00	<	-	<	<	<	<	<	<	<	0.90	0.16	<	<	0.11	0.08	0.08	0.05	-
Nitrite (N)	mg/L	<	<	<	-	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.01	2.00
Nitrogen (Ammonia Nitrogen)	mg/L	0.24	<	<	-	0.35	0.25	0.40	0.14	< 0.05	0.14	< 0.05	0.28	<	0.15	0.09	<	0.11	<	0.05	-
Total Organic Carbon (C)	mg/L	6.20	-	1.30	-	16.00	17.00	22.00	8(1)	33.00	8(1)	18.00	18.00	2.7	8(1)	2.30	15.00	8.70	18.00	0.50	-
Orthophosphate (P)	mg/L	<	-	<	-	< 0.01	<	<	<	< 0.01	<	< 0.01	<	<	<	< 0.01	<	<	<	0.01	-
pH	pH	6.55	<	7.75	7.83	5.77	7.06	6.25	7.70	7.00	7.60	7.09	7.85	7.91	7.56	7.46	7.14	7.40	7.20	N/A	-
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	26.00
Reactive Silica (SiO2)	mg/L	12.00	-	18.00	-	6.40	11.00	5.70	7.00	6.20	7.00	6.00	8.00	7.4	7.10	7.60	10.00	10.00	10.00	0.50	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7,000	-	9,400	2	-
Dissolved Sulphate (SO4)	mg/L	41	12	74	-	31	36	32	18	21	19	21	20	17	19	19	22	21	22	2	-
Sulphide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	-
Turbidity	NTU	84.0	40.0	3.2	-	100.0	190.0	120.0	640.0	>1000	570.0	540.0	320.0	26	520.0	110.0	>1000	240.0	>1000	0.1	-
Conductivity	uS/cm	260	-	570	570	140	230	150	380	250	380	260	320	300	380	300	150	200	150	1	-
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-

Notes: Analysis completed by Maxxam Analytics Inc. Iaboratory in SL John's, NL. * Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

 RDL = Reportable Detection Limit
 0.0
 = above criteria

 SW = Surface Water Sample
 - = Not analysed/ No criteria

 < = Parameter below detection limit</td>

 <(#) = Parameter bolow AMEC laboratory detection limit</td>

 UP-01 = Field Duplicate of MW 10-1, First Sampling Event

 DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-03 = Field Duplicate of MW 10-1, Isret Sampling Event

 DUP-03 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-03 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-03 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-04 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-05 = Field Duplicate of MW 10-1, Second Sampling Event

CRA 056680

HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				MW	93-1						MW	93-1A				DUP-03			MW	/ 93-2			DDI	
Parameter	Units	19-Aug-09	19-Aug-09 Field Dup	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	16-Jul-10 Lab Dup	13-Dec-10	2-Sep-11	2-Sep-11 Lab Dup	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	KDL	Criteria*
Aluminum (Al)	ug/L	100	120	37	17	73.7	73.7	42000	13,000	15	15	31	5.9	5.7	5.9	13.0	484	460	9	<	<	<	5.0	-
Antimony (Sb)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	16,000
Arsenic (As)	ug/L	<	<	<	<	<	<	36	7	<	<	<	<	<	<	<	3	2	2	2	1.2	1.2	1.0	480
Barium (Ba)	ug/L	130	150	88	70	77.9	77.9	426	240	79	75	73	68.6	67.6	68.6	107	131	180	170	160	171	171	1.0	23,000
Beryllium (Be)	ug/L	<	<	<	<	<1	<1	2	<	<	<	<	<	<	<	<	<0.1	<	<	<	<	<	1.0	53
Bismuth (Bi)	ug/L	<	<	<	<	<2	<2	-	<	<	<	<	<	<	<	<	< 0.5	<	<	<	<	<	2.0	-
Boron (B)	ug/L	120	120	100	99	63	63	-	58	56	56	57	96	97	96	118	-	1100	980	1100	<	<	5.0	50,000
Cadmium (Cd)	ug/L	0.4	<	0.02	0.05	<	<	3	<	0.03	0.03	0.07	<	<	<	<	-	<	0.15	0.1	1160	1160	0.0	11
Calcium (Ca)	ug/L	-	-	26000	29000	43500	43500	-	-	40000	39000	45000	26300	25600	26300	33000	-	-	69000	80000	0.038	0.038	100	-
Chromium (Cr)	ug/L	<	<	<	<	<	<	54	39	<	<	<	<	<	<	<	1	<	<	<	77300	77300	1.0	2000/110 ⁽¹⁾
Cobalt (Co)	ug/L	<	<	<	<	0.44	0.44	110	170	0.7	0.8	0.4	<	< 0.4	<	<	1	<	<	0.4	<	<	0.4	100
Copper (Cu)	ug/L	6	3	<	<	<2	<2	370	170	2	3	<	<	<2	<	6.8	8	5	<	<	0.56	0.56	2.0	23
Iron (Fe)	ug/L	670	550	<	<	65	65	370	37000	<	<	<	<	<	<	55	1300	980	<	<	<	<	50	-
Lead (Pb)	ug/L	4.6	1	<	<	<	<	45	17	<	<	<	<	<	<	<	5	2	<	<	<	<	1	32
Magnesium (Mg)	ug/L	-	-	14000	12000	16400	16400	-	-	17000	17000	14000	12200	12100	12200	15400	-	-	16000	13000	15600	15600	100	-
Manganese (Mn)	ug/L	110	120	120	81	60	60	2620	1200	160	150	57	259	258	259	103	15300	1200	880	950	1120	1120	2.0	-
Molybdenum (Mo)	ug/L	6	6	20	18	16.3	16.3	20	11	15	15	14	19.2	18.8	19.2	10.7	2	<	<	<	<	<	2.0	7,300
Nickel (Ni)	ug/L	6	<	<	<	<	<	154	87	<	<	<	<	<	<	<	1	<	<	<	<	<	2.0	1,600
Phosphorus (P)	ug/L	-	-	<	<	-	-	-	-	<	<	130	-	-	-	<	-	-	<	150	-	-	100	-
Potassium (K)	ug/L	-	-	1900	2000	2680	2680	-	-	2500	2400	2700	1830	1840	1830	1730	-	-	1200	1400	1560	1560	100	-
Selenium (Se)	ug/L	<	<	<	<	<	<	<1	<	<	<	<	<	<	<	<	1	<	<	<	<	<	1.0	50
Silver (Ag)	ug/L	<	<	<	<	<	<	1	<	<	<	<	<	<	<	<	-	<	<	<	<	<	0.1	1
Sodium	ug/L	-	-	-	-	76,100	70,400	-	-	-	-	-	68,600	68,400	68,200	68,600	-	-	-	-	21,000	20,300	100.0	2,300,000
Strontium (Sr)	ug/L	250	260	230	220	263	263	-	300	300	290	280	192	190	192	249	-	230	240	230	210	210	2.0	-
Thallium (Tl)	ug/L	<	<	<	<	<	<	-	-	<	<	<	<	<0.1	<	<	-	<	<	<	<	<	0.1	400
Tin (Sn)	ug/L	<	<	<	<	<2	<2	-	<	<	<	<	<	<	<	<	-	<	<	<	<	<	2.0	-
Titanium (Ti)	ug/L	3	3	<	<	2.6	2.6	-	720	<	<	2	<	<	<	<	-	21	<	<	<	<	2.0	-
Uranium (U)	ug/L	0.2	0.2	0.3	0.2	3.06	3.06	-	6	2.9	2.8	2.8	0.4	0.42	0.4	0.21	-	0	0.3	0.2	0.24	0.24	0.1	-
Vanadium (V)	ug/L	<	<	<	<	<	<	155	28	<	<	<	<	<	<	<	2	<	<	<	<	<	2.0	200
Zinc (Zn)	ug/L	360	32	10	10	<	<	443	250	<	12	<	<	<	<	<	33	41	19	18	5	5	5.0	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. * Ontario Ministry of the Environment (MOE) 'Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act", March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

0.0 = above criteria

 RDL = Reportable Detection Limit
 0.0
 = above crit

 SW = Surface Water Sample
 - = Not analysed/No criteria

 < = Parameter below detection limit</td>

 <(#) = Parameter below detection limit</td>

 UUP-01 = Field Duplicate of MW 10-1, First Sampling Event

 UUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

 UUP-03 = Field Duplicate of MW 93-1A

 (1) Criteria for Total Chromium = 2000 ug/L, Criteria for Chromium (VI) = 110 ug/L

HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Paramatar	Unito			MW 93-2A					MW	10-1				MW	10-1A		DUP A D of MW10-1.	RDI	Critoria*
ratainetei	Units	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	16-Jul-10 DUP-01	13-Dec-10 DUP-02	2-Sep-11	30-Aug-12	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	2-Sep-11	KDL	Citteria
Aluminum (Al)	ug/L	630	<	150	86.6	86.6	200	38	160	36	41.8	41.8	100	11	74.5	74.5	68.3	5.0	-
Antimony (Sb)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	16,000
Arsenic (As)	ug/L	<	2	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	480
Barium (Ba)	ug/L	69	180	39	54.1	54.1	100	36	110	38	50.2	50.2	110	62	28.8	28.8	29.4	1.0	23,000
Beryllium (Be)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	53
Bismuth (Bi)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.0	-
Boron (B)	ug/L	440.0	1000	24	317	317	45	9	38	9	<	<	42	13	<	<	<	5.0	50,000
Cadmium (Cd)	ug/L	11	0.15	3.5	0.304	0.304	0.03	<	0.03	<	0.032	0.032	0.02	0.03	0.039	0.039	0.036	0.0	11
Calcium (Ca)	ug/L	-	69000	9000	20600	20600	31000	41000	32000	42000	51100	51100	31000	48000	20600	20600	20800	100	-
Chromium (Cr)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	2000/110(1)
Cobalt (Co)	ug/L	1	<	1.4	1.19	1.19	2.3	1.4	2.4	1.4	4.91	4.91	2.5	3.3	1.54	1.54	2.07	0.4	100
Copper (Cu)	ug/L	6	<	<	<	<	5	9	5	9	7.3	7.3	4	<	9.4	9.4	9.1	2.0	23
Iron (Fe)	ug/L	9900	<	1900	3000	3000	120	50	140	59	50	50	82	<	96	96	92	50	-
Lead (Pb)	ug/L	6.9	<	0.8	1.17	1.17	<	<	<	<	<	<	<	<	<	<	2.66	1	32
Magnesium (Mg)	ug/L		16000	2200	5220	5220	5800	2300	5900	2300	4540	4540	5900	3900	2190	2190	2150	100	-
Manganese (Mn)	ug/L	4300	890	4000	4190	4190	390	190	390	170	239	239	400	380	106	106	139	2.0	-
Molybdenum (Mo)	ug/L	<	<	<	<	<	16	3	16	3	2.5	2.5	14	5	8.5	8.5	6.1	2.0	7,300
Nickel (Ni)	ug/L	<	<	<	<	<	6	6	6	6	6.5	6.5	5	6	8.9	8.9	8.3	2.0	1,600
Phosphorus (P)	ug/L	-	<	<	-	-	<	150	<	<	-	-	<	<	-	-	-	100	-
Potassium (K)	ug/L	-	1200	980	1040	1040	6400	1100	6400	980	1360	1360	6400	1400	714	714	693	100	-
Selenium (Se)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1.0	50
Silver (Ag)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.1	1
Sodium	ug/L	-	-	-	11,000	9,100	-	-	-	-	6,570	7,020	-	-	4,670	5,750	4,600	100.0	2,300,000
Strontium (Sr)	ug/L	100	240	41	70.6	70.6	98	85	99	87	106	106	99	100	46.9	46.9	45.4	2.0	-
Thallium (Tl)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	0.1	400
Tin (Sn)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.0	-
Titanium (Ti)	ug/L	20	<	2	<	<	3	<	3	<	<	<	2	<	2.1	2.1	<	2.0	-
Uranium (U)	ug/L	0.3	0.3	<	<	<	0.4	<	0.4	<	0.43	0.43	0.4	0.3	<	<	<	0.1	-
Vanadium (V)	ug/L	4	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2.0	200
Zinc (Zn)	ug/L	1700	17	1300	568	568	5	11	6	11	9	9	5	10	8.9	8.9	10.1	5.0	1,100

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. * Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standrads for Use Under Part XV.1 of the Environmental Protection Act^{*}, March 9, 2004, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

0.0 = above criteria

 RDL = Reportable Detection Limit
 0.0
 = above crit

 Swrface Water Sample
 - = Not analysed/NO-criteria

 < = Parameter below detection limit</td>

 UP-01 = Field Duplicate of MW 10-1, First Sampling Event
 DUP-02 = Field Duplicate of MW 10-1, Second Sampling Event

 DUP-03 = Field Duplicate of MW 10-1, Second Sampling Event
 DUP-03 = Field Duplicate of MW 93-1A

 (1) Criteria for Total Chromium = 2000 ug/L, Criteria for Chromium (VI) = 110 ug/L

HISTORICAL SURFACE WATER ANALYTICAL DATA - BTEX/MTPH 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				Ethyl			Tota	al Petroleum	n Hydrocarbons (T	PH)
Sample Location	Date Sampled	Benzene	Toluene	benzene	Xylenes	TPuH C ₆ -C ₁₀	TExH C ₁₀ -C ₂₁	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	$<(0.05)^{1}$	$<(0.05)^{1}$	$<(0.05)^{1}$	<(0.15) ¹	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
SURFACEUP	Jul 16, 2010	<	<	<	<	<	<	<	<	-
SURFACE OF	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Sep 02, 2011	<	<	<	<	<	<	<	<	-
	Nov 07, 2012	<	<	<	<	<	<	<	<	-
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	$<(0.05)^{1}$	$<(0.05)^{1}$	$<(0.05)^{1}$	$<(0.15)^{1}$	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
SURACE DOWN	Jul 16, 2010	<	<	<	<	<	<	<	<	-
bennet bown	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Sep 02, 2011	<	0.02	<	<	<	<	<	<	-
	Nov 07, 2012	<	<	<	<	<	<	<	<	-
RDL		0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
2007 CCME Freshwat	or Aquatic Lifa								-	Gasoline
2007 CCME Heshwat	er Aquatic Life	4.00	2.00	0.39	-	-	-	-	-	Diesel /#2 Fuel Oil
Guideini	65								-	#6 Oil
1007 BC Cuidalinas f	97 BC Guidelines for Protection o								-	-
Aquatic L	97 BC Guidelines for Protection of	-	-	-	-	1.5	0.5	-	-	-
Aquatic L.	iic								-	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL.

1. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report

2. 2007 CCME Freshwater Aquatic Life Guidelines

3. BC Ministry of Water, Land and Air Protection Guidelines for Protection of Aquatic Life

RDL = Reportable Detection Limit	TPuH = Total Purgeable Hydrocarbons	G = Gasoline
< = Parameter below detection limit	TExH = Total Extractable Hydrocarbons	FO = Fuel Oil
- = Not analysed	TPH = Total Petroleum Hydrocarbons	LO = Lube Oil
DUP = Laboratory duplicate	Modified TPH = mTPH = TExH + TPuH	W = Weathered
0.0 = above criteria	TPH = mTPH + BTEX	

<(#) = Parameter below AMEC laboratory detection limit

Page 1 of 1

HISTORICAL SURFACE WATER ANALYTICAL DATA - PAHs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Baramatar	Unite			SUI	RFACE UP					SURFACE	DOWN			RDI	Critoria*
i alameter	Onits	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	KDL	Cinteria
1-Methylnaphthalene	ug/L	< 0.03	<	<	<	<	<	< 0.03	<	<	<	<	<	0.05	-
2-Methylnaphthalene	ug/L	< 0.03	<	<	<	<	<	< 0.03	<	<	<	<	<	0.05	-
Acenaphthene	ug/L	< 0.04	<	<	<	<	<	< 0.04	<	<	<	<	<	0.01	5.8
Acenaphthylene	ug/L	< 0.03	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	-
Acridine	ug/L	-	-	<	<	-	-	-	-	<	<	-	-	0.05	4.4
Anthracene	ug/L	< 0.01	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	0.012
Benzo(a)anthracene	ug/L	< 0.01	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	0.018
Benzo(a)pyrene	ug/L	< 0.01	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	0.015
Benzo(b)fluoranthene	ug/L	< 0.05	<	<	<	<	<	< 0.05	<	<	<	<	<	0.01	
Benzo(g,h,i)perylene	ug/L	< 0.03	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	-
Benzo(j)fluoranthene	ug/L	-	-	-	-	<	<	-	-	-	-	<	<	0.01	(
Benzo(k)fluoranthene	ug/L	< 0.05	<	<	<	<	<	< 0.05	<	<	<	<	<	0.01	-
Chrysene	ug/L	< 0.04	<	<	<	<	<	< 0.04	<	<	<	<	<	0.01	-
Dibenz(a,h)anthracene	ug/L	-	<	<	<	<	<	NA	<	<	<	<	<	0.01	-
Fluoranthene	ug/L	< 0.03	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	0.04
Fluorene	ug/L	< 0.03	<	<	<	<	<	< 0.03	<	<	<	<	<	0.01	3.0
Indeno(1,2,3-cd)pyrene	ug/L	< 0.05	<	<	<	<	<	< 0.05	<	<	<	<	<	0.01	
Naphthalene	ug/L	-	<	<	<	<	<	NA	<	<	<	<	<	0.2	1.1
Perylene	ug/L	-	<	0.01	<	<	<	NA	<	<	<	<	<	0.01	-
Phenanthrene	ug/L	< 0.04	<	<	<	<	0.011	< 0.04	0.01	<	<	<	0.012	0.01	0.4
Pyrene	ug/L	< 0.01	<	<	<	<	<	< 0.01	<	<	<	<	<	0.01	0.025
Quinoline	ug/L	-	-	<	<	-	-	-	-	<	<	-	-	0.05	3.4

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL. * Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit SW = Surface Water Sample - = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

0.0 = above criteria

HISTORICAL SURFACE WATER ANALYTICAL DATA - PCBs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Unite			SURI	FACE UP					SURFA	CE DOWN			זרוא	Critoria*
Parameter Uni		AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	RDL	Cinteria
Total PCBs	ug/L	< 0.04	0.11	<	<	<	<	< 0.04	0.13	<	<	<	<	0.05	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample

< = Parameter below detection limit

< (#) = Parameter below AMEC laboratory detection limit

HISTORICAL SURFACE WATER ANALYTICAL DATA - VOCs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Darametar	Unite			SURF	ACE UP					SURFAC	E DOWN			PDI	Critoria*
Farameter	Units	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	KDL	Cinteria
Benzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	370
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromomethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	3	-
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	13.3
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	1.3
Chloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	8	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	1.8
Chloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	8	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	0.5	0.7
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	150
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	26
1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	100
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	90
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	3	98.1
o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
p+m-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	2	-
Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	300
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	72
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Toluene	ug/L	<	<	<	<	2	<	<	<	<	<	<	<	1	111
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	2.0
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	8	21
Vinyl Chloride	ug/L	0.2	<	<	<	<	<	0.2	<	<	<	<	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Limit

0.0 = above criteria

SW = Surface Water Sample

- = Not analysed/No criteria

< = Parameter below detection limit

Page 1 of 1

HISTORICAL SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

					SURFACE UP							SURFACE DOWN					
Parameter	Units	AMEC 2008	19/08/2009	16-Jul-10	13-Dec-10	13-Dec-10 Lab Dup	2-Sep-11	7-Nov-12	AMEC 2008	19/08/2009	16-Jul-10	16-Jul-10 Lab Dup	13-Dec-10	2-Sep-11	7-Nov-12	RDL	Criteria*
Anion Sum	me/L	-	4.8	1.14	0.34	-	0.68	0.610	-	3.78	2.69	-	1.53	3.8	0.630	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	-	118	38	6	-	17	7.6	-	150	117	-	12	159	8.2	1	-
Calculated TDS	mg/L	53	267	62	23	-	63	38.0	145	205	140	-	122	204	39.0	1	-
Carb. Alkalinity (calc. as CaCO3)	mg/L	-	<	<	<	-	<	<	-	3	<	-	<	<	<	1	-
Cation Sum	me/L	-	4.8	1.05	0.43	-	1.45	0.650	-	3.8	2.54	-	2.4	3.85	0.650	N/A	-
Hardness (CaCO3)	mg/L	21.5	100	41	10	-	29	14	138	170	110	-	70	170	14	1	-
Ion Balance (% Difference)	%	-	0.6	4.11	11.7	-	36.2	3.17	-	0.26	2.87	-	22.1	0.65	1.56	N/A	-
Langelier Index (@ 20C)	N/A	-	-0.4	-1.36	-3.49	-	-3.19	-2.97	-	0.996	-0.099	-	-2.64	0.248	-2.95	N/A	-
Langelier Index (@ 4C)	N/A	-	-0.7	-1.61	-3.74	-	3.44	-3.22	-	0.746	-0.35	-	-2.89	-0.002	-3.20	N/A	-
Nitrate (N)	mg/L	<	<	0.17	<	-	<	0.054	<	<	<	-	2	1.6	0.058	0.05	13
Saturation pH (@ 20C)	N/A	-	7.8	8.62	10.1	-	9.18	9.83	-	7.39	7.69	-	9.01	7.39	9.80	N/A	-
Saturation pH (@ 4C)	N/A	-	8.1	8.87	10.3	-	9.43	10.1	-	7.64	7.94	-	9.26	7.64	10.0	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	24	120	39	39	-	17	7.6	136	150	120	-	120	160	8.2	30	-
Carbonaceous BOD	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-
Dissolved Chloride (Cl)	mg/L	8.9	79	5	6	-	7	12	3.6	4	1	-	23	8	12	1	-
Colour	TCU	-	44	38	49	-	140	67	-	23	39	-	120	32	78	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.002	-
Nitrate + Nitrite	mg/L	-	<	0.17	<	-	<	0.054	-	<	<	-	2	1.6	0.058	0.05	-
Nitrite (N)	mg/L	< 0.015	<	<	<	-	<	<	< 0.015	<	<	-	<	<	<	0.01	0.06
Nitrogen (Ammonia Nitrogen)	mg/L	-	0.1	<	<	-	<	<	-	<	0.19	-	0.06	<	<	0.05	-
Total Organic Carbon (C)	mg/L	9.5	5.7	6	6.4	-	41	7.9	9.2	4.3	5.4	-	18	2.8	7.9	0.5	-
Orthophosphate (P)	mg/L	-	<	<	<	-	<	<	-	<	<	-	<	<	<	0.01	-
pH	pH	6.9	7.4	7.26	6.58	-	5.99	6.86	7.48	8.39	7.59	-	6.37	7.64	6.85	N/A	6.5 - 9
Phenols-4AAP	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.001	-
Reactive Silica (SiO2)	mg/L	-	6.3	1.5	1.5	-	3.5	2.1	-	4	3.1	-	7.4	1.8	2.2	0.5	-
Total Suspended Solids (TSS)	mg/L	-	-	-	-	-	840	-	-	-	-	-	-	160	-	2	-
Dissolved Sulphate (SO4)	mg/L	-	8	11	3	-	-	5.7	-	29	15	-	24	-	5.8	2	-
Sulphide	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.02	
Turbidity	NTU	-	2.9	3.8	2.2	2.1	30	0.72	-	5.2	39	37	140	5.6	0.88	0.1	-
Conductivity	uS/cm	87	470	110	43	-	72	66	275	290	240	-	170	340	67	1	1 -
Total Oil & Grease	mg/L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	-

Notes: Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. * Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

 RDL = Reportable Detection Limit
 0.0
 = above criteria

 SW = Surface Water Sample
 -= Not analysed/No criteria

 < = Parameter below detection limit</td>
 <(#) = Parameter below AMEC laboratory detection limit</td>

HISTORICAL SURFACE WATER ANALYTICAL DATA - METALS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Demonster	11-11-			SURF	ACE UP					SURFAC	E DOWN			DDI	Criteriat
Parameter	Units	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	AMEC 2008	19-Aug-09	16-Jul-10	13-Dec-10	2-Sep-11	7-Nov-12	KDL	Criteria
Aluminum (Al)	ug/L	484	18	108	257	1,140	113	42,000	69	527	5,210	941	117	5.0	100 ⁽¹⁾
Antimony (Sb)	ug/L	<	<	<	<	-	<	<1	<	<	<	<1	<	1.0	-
Arsenic (As)	ug/L	3	<	<	<	2.50	<	36	<	1.1	3.3	2.5	<	1.0	5.0
Barium (Ba)	ug/L	131	26	22.3	9.4	132.0	8.9	426	82	102	289	179	8.6	1.0	-
Beryllium (Be)	ug/L	< 0.1	<	<	<	<1	<	1.8	<	<	<	<1	<	1.0	-
Bismuth (Bi)	ug/L	<0.5	<	<	<	<2	<	< 0.1	<	<	<	<2	<	2.0	-
Boron (B)	ug/L	-	14	9.4	6.9	<50	<	-	22	27.1	9	<50	<	5	-
Cadmium (Cd)	ug/L	0.273	<	0.028	0.04	0.066	<	2.65	<	0.044	0.232	-	<	0.017	0.015/0.036 ⁽²⁾
Calcium (Ca)	ug/L	-	-	12900	2960	8230	3,870	-	-	40100	18300	62300	3,890	100	-
Chromium (Cr)	ug/L	1	<	<	<	2.3	<	110	<	<	8	163	<	1	8.9/1.0 ⁽³⁾
Hexavalent Chromium (Cr ⁶⁺)	ug/L						<						<	1	1.00
Cobalt (Co)	ug/L	1	<	<	<	1.9	<	307	<	0.9	6.69	1.98	<	0.4	-
Copper (Cu)	ug/L	8	<	<	<	5.3	<	370	<	12.7	32.9	3	<	2	2 ⁽⁴⁾
Iron (Fe)	ug/L	1300	1300	289	722	16700	387	59000	380	1820	10900	4130	382	50	300
Lead (Pb)	ug/L	5	<	<	<	0.5	<	45	<	1.48	7.64	0.69	<	0.5	1, 2 ⁽⁵⁾
Magnesium (Mg)	ug/L	-	-	2140	713	100	1,040	-	-	3320	5840	3830	1,050	100	-
Manganese (Mn)	ug/L	1260	230	97.9	142	2	41.2	2620	62	481	427	1760	38.0	2	-
Molybdenum (Mo)	ug/L	2	3.0	<	<	2	<	0.09	<	<	<	<2	<	2	73.00
Nickel (Ni)	ug/L	1	<	<	<	2	<	2	<	3	16.7	-	<	2	25, 65 ⁽⁶⁾
Phosphorus (P)	ug/L	-	-	<	<	-	<	-	-	120	852	-	<	100	-
Potassium (K)	ug/L	-	-	588	295	100	363	-	-	1080	4060	1030	400	100	-
Selenium (Se)	ug/L	1	<	<	<	1	<	<	<	<	<	<1	<	1	1.0
Silver (Ag)	ug/L	< 0.1	<	<	<	0.1	<	0.5	<	<	<	<0.1	<	0.1	0.1
Sodium (Na)	ug/L	-	-	4720	3680	100	7,930	-	-	4300	11500	5820	7,880	100	-
Strontium (Sr)	ug/L	-	90	40.7	9.7	2	13.4	-	110	85.4	49.9	110	13.3	2	-
Thallium (Tl)	ug/L	-	<	<	<	0.1	<	-	<	<	<	< 0.1	<	0.1	0.8
Tin (Sn)	ug/L	-	<	<	<	2	<	-	<	<	<	<2	<	2	-
Titanium (Ti)	ug/L	-	<	2.1	7.9	2	3.1	-	2.0	17.2	148	37.2	2.7	2	-
Uranium (U)	ug/L	-	0.2	<	<	0.1	<	-	0.9	0.38	0.38	0.35	<	0.1	-
Vanadium (V)	ug/L	<2	<	<	<	2	<	155	<	<	0.34	2.8	<	2	-
Zinc (Zn)	ug/L	33	<	9.2	10.7	5	<	443	<	25.2	103	12.4	<	5	30
Hardness (CaCO3)	mg/L	. 21.5	100	41	10	29	14.0	138	170	110	70	170	14.0	1	-
pH	pН	6.9	7.4	7.26	6.58	5.99	6.86	7.48	8.39	7.59	6.37	7.64	6.85	-	6.5 - 9

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. * Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines

for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

RDL = Reportable Detection Li	mit	(4) Copper guideline = 2 ug/L at [CaCO ₃] = 0-120 mg/L
SW = Surface Water Sample		= 3 ug/L at [CaCO ₃] = 120-180 mg/L
- = Not analysed/No criteria		= 4 ug/L at [CaCO ₃] >180 mg/L
< = Parameter below detection	limit	(5) Lead guideline = 1 ug/L at [CaCO ₃] = 0-60 mg/L
0.0	= above criteria	= 2 ug/L at [CaCO ₃] = 60-120 mg/L
		= 4 ug/L at [CaCO ₃] = 120-180 mg/L
(1) Aluminum guideline = 5 ug	g/L at pH < 6.5	= 7 ug/L at [CaCO ₃] >180 mg/L
= 100) ug/L at pH ≥ 6.5	(6) Nickel guideline = 25 ug/L at [CaCO ₃] = 0-60 mg/L
(2) Cadmium guideline = $10^{10.8}$	i6[log(hardness)]-3.2}	= 65 ug/L at [CaCO ₃] = 60-120 mg/L
		= 110 ug/L at [CaCO ₃] = 120-180 mg/L
		= 150 ug/L at [CaCO ₃] >180 mg/L

(3) Criteria for Chromium (III) = 8.9 ug/L, Criteria for Chromium (VI) = 1.0 ug/L

HISTORICAL LEACHATE ANALYTICAL DATA - BTEX/MTPH 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

								Total I	Petroleum Hydroca	arbons (TPH)
Sample Location	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	TPuH C6-C10	TExH C10-C21	TExH C ₂₁ -C ₃₂	Modified TPH	Comments
	Aug 19, 2009	<	<	<	<	<	0.08	0.1	0.2	NR
	Aug 19, 20091	<	<	<	<	<	0.11	0.1	<	NR
	Oct 13, 2009	<	<	<	<	<	0.2	0.1	0.3	WFO
	Jan 26, 2010	<	<	<	<	<	0.09	<	<	WFO
	Jul 16, 2010	<	<	<	<	<	<	<	<	-
PLCS	Jul 16, 2010 ¹	-	-	-	-	-	<	<	-	-
	Dec 13, 2010	<	<	<	<	<	<	<	<	-
	Dec 13, 2010 ¹	<	<	<	<	<				-
	Sep 02, 2011	<	<	<	<	<	0.05	<	<	-
	Feb 07, 2012	<	<	<	<	<	0.05	<	<	
	Aug 30, 2012	<	<	<	<	<	<	<	<	-
DUP-04	Aug 30, 2012	<	<	<	<	<	0.173	<	0.18	No resemblance to petroleum products in fuel oil range.
	2008 (AMEC)	<(0.2)	<(0.2)	<(0.2)	<(0.6)	$<(0.05)^2$	$<(0.05)^2$	$<(0.05)^2$	$<(0.15)^2$	-
	Aug 19, 2009	<	<	<	<	<	<	<	<	-
	Oct 13, 2009	<	<	<	<	<	0.14	<	0.1	WFO
	Jan 26, 2010	<	<	<	<	<	0.11	<	0.1	WFO
	Jan 26, 2010 ³	<	<	<	<	<	0.11	<	0.1	WFO
SLCS	Jul 16, 2010	<	<	<	<	<	<	<	<	-
0100	Dec 13, 2010	<	<	<	<	<	0.05	<	<	-
	Sep 02, 2011	<	<	<	<	<	0.05	<	<	-
	Feb 07, 2012	<	<	<	<	<	0.11	<	0.21	One product in fuel/ lube oil range
	Feb 07, 2012 (DUP)	<	<	<	<	<	0.11	<	0.11	One product in fuel/ lube oil range
	Aug 30, 2012	<	<	<	<	<	0.159	<	0.16	No resemblance to petroleum products in fuel oil range.
	RDL	0.001	0.001	0.001	0.002	0.01	0.05	0.1	0.1	-
	1								-	-
2007 CCME Fre	snwater Aquatic Life	4.00	2.00	0.39	-	-	-	-	-	-
Gu	luennes								-	-
Schedule A Reg	Water & Sewer ulations*	-	-	-	-	-	-	-	15	-
2012 Tim I C	unfa an Minkan FCI								1.5	Gasoline
2012 Her I St	2012 Tier I Surface Water ESL -	2.10	0.77	0.32	0.33	-	-	-	0.1	Diesel /#2 Fuel Oil
rre	simatei								0.1	#6 Oil

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in St. John's, NL. * Schedule A of Environmental Control Water and Sewer Regulations, 2003.

1. Lab Duplicate

2. Assumed transcript error by factor of 1,000 from Pinchin LeBlanc Environmental Table 2 from March 2010 OMM Report

TPuH = Total Purgeable Hydrocarbons

TExH = Total Extractable Hydrocarbons

Modified TPH = mTPH = TExH + TPuH

TPH = Total Petroleum Hydrocarbons

TPH = mTPH + BTEX

3. Field Duplicate

4. 2007 CCME Freshwater Aquatic Life Guidelines

5. Atlantic Risk-Based Corrective Action (RBCA) Tier I Surface Water Ecological Screening Level (ESL) Table values for protection of freshwater and marine aquatic life.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System DUP-04 = Field Duplicate of PLCS

 RDL = Reportable Detection Limit

 < = Parameter below detection limit</td>

 - = Not analysed

 0.0

 = above criteria

G = Gasoline FO = Fuel Oil LO = Lube Oil W = Weathered

HISTORICAL LEACHATE ANALYTICAL DATA - PAHs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Barramator	Parameter Units										DUP-04				SLCS							RDI	Criteri	a*
rarameter	Units	19-Aug-09	13-Oct-09	25-Jan-10	25-Jan-10 Lab Dup	16-Jul-10	13-Dec-10	2-Sep-12	7-Feb-12	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	13-Oct-09	25-Jan-10	25-Jan-10 Field Dup	16-Jul-10	13-Dec-10	2-Sep-12	7-Feb-12	30-Aug-12	KDL	NL ¹	CCME ²
1-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	0.05	-	-
2-Methylnaphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	< 0.03	<	<	<	<	0.22	<	<	<	<	0.05	-	-
Acenaphthene	ug/L	<	0.01	0.01	0.02	<	<	<	0.011	0.041	0.01	< 0.04	<	<	0.01	<	<	<	<	<	0.019	0.01	-	580
Acenaphthylene	ug/L	<	<	<	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	<	<	0.018	0.01	-	-
Acridine	ug/L	-	-		-	<	<	<	<		<						<	<	<	<	-	0.05		1
Anthracene	ug/L	<	0.05	0.06	0.06	<	0.04	<	<	< 0.15 (1)	< 0.040 (1)	< 0.01	<	0.1	0.06	0.06	<	<	<	<	< 0.20 (1)	0.01	-	1.2
Benzo(a)anthracene	ug/L	<	0.01	0.02	0.02	<	<	<	<	0.039	0.013	< 0.01	<	0.06	0.02	0.03	<	<	<	<	0.064	0.01	-	1.8
Benzo(a)pyrene	ug/L	<	<	<	<	<	<	<	<	<	<	< 0.01	<	<	<	<	<	<	<	<	<	0.01	-	1.5
Benzo(b)fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	<0.05	<	<	<	<	<	<	<	<	<	0.01	-	-
Benzo(g,h,i)perylene	ug/L	<	<	<	<	<	<	<	<	<	<	< 0.03	<	<	<	<	<	<	<	<	<	0.01	-	-
Benzo(j)fluoranthene	ug/L																					0.01	-	-
Benzo(k)fluoranthene	ug/L	<	<	<	<	<	<	<	<	<	<	< 0.05	<	<	<	<	<	<	<	<	<	0.01	-	-
Chrysene	ug/L	<	0.04	0.03	0.03	<	0.02	<	<	0.064	0.024	< 0.04	<	0.09	0.04	0.04	<	0.01	<	0.013	0.10	0.01	-	-
Dibenz(a,h)anthracene	ug/L	<	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	0.01	-	-
Fluoranthene	ug/L	<	0.05	0.07	0.06	<	0.04	<	0.011	0.18	0.046	< 0.03	<	0.26	0.11	0.11	0.01	<	<	0.018	0.37	0.01	-	4
Fluorene	ug/L	<	0.02	0.02	0.02	<	<	<		0.049	0.014	< 0.03	<	0.02	<	<	<	<	<	<	0.031	0.01	-	300
Indeno(1,2,3-cd)pyrene	ug/L	<	<	<	<	<	<	<	0.017	<	<	<0.05	<	<	<	<	<	<	<	<	<	0.01	-	-
Naphthalene	ug/L	<	<	<	<	<	<	<	<	<	<	-	<	<	<	<	<	<	<	<	<	0.2	-	110
Perylene	ug/L	<	<	<	<	<	<	<	<	<	<	-	<	<	<	<	<	<	<	<	<	0.01	-	-
Phenanthrene	ug/L	<	0.17	0.23	0.2	<	0.07	<	0.034	< 0.020 (1)	< 0.060(1)	< 0.04	<	0.4	0.13	0.07	0.02	0.01	<	0.012	< 0.30 (1)	0.01	-	40
Pyrene	ug/L	<	0.36	0.32	0.29	<	0.17	0.2	0.046	0.85	0.01	< 0.01	<	1.5	0.55	0.55	0.06	<	<	0.085	1.8	0.01	-	2.5
Quinoline	ug/L	<	-	-	-	<	<	-	-	-	-	-	-	-	-	-	<	<	-	-	-	0.05	-	-

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

NL = Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador

Regulation 65/03. CCME = Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of

Freshwater Aquatic Life (2007 - Update 7.1).

PLCS = Primary Leachate Collection System

SLCS = Secondary Leachate Collection System

 SLCS = Secondary Leachate Collection System

 DUP-04= Field Duplicate of PLCS

 (1) = Elevated PAH RDL(s) due to matrix / co-extractive interference.

 PDI = Renortable Detection Limit

 0.0

 = above NL criteria

 0.0

 = above CCME criteria

SW = Surface Water Sample 0.0 = above CCME criteria for surface water

- = Not analysed/No criteria

< = Parameter below detection limit

<(#) = Parameter below AMEC laboratory detection limit

Page 1 of 1

HISTORICAL LEACHATE ANALYTICAL DATA - PCBs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Parameter	Unite			PLCS						DUP-04			SL	CS						RDI	Critoria*
rarameter	Units	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	2-Sep-11	7-Feb-12	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	2-Sep-11	7-Feb-12	30-Aug-12	KDL	Criteria
Total PCBs	ug/L	0.16	<	<	<	<	<	<	<	<	< 0.04	<	<	<	<	<	<	<	<	0.05	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

 PLCS = Primary Leachate Collection System

 SLCS = Secondary Leachate Collection System

 DUP-04= Field Duplicate of PLCS

 RDL = Reportable Detection Limit

 SW = Surface Water Sample

 0.0

 = above criteria

HISTORICAL LEACHATE ANALYTICAL DATA - VOCs 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

Devenuelar	Theite				PL	CS				DUP-04				SLCS							BDI	Criteriet
r'arameter	Units	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	2-Sep-11	7-Feb-12	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	26-Jan-10 Field Dup	16-Jul-10	13-Dec-10	2-Sep-11	7-Feb-12	30-Aug-12	KDL	Criteria
Benzene	ug/L	<	<	<	<	<	<	<	<	<		<	<	<	<	<	<	<	<	<	1	-
Bromodichloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromoform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Bromomethane	ug/L	<	<	<	<	<	<	<(4)	<	<	<	<	<	<	<	<	<	<(4)	<(4)	<	3	-
Carbon Tetrachloride	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Chlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Chloroethane	ug/L	<	<	<	<	<	<	<(10)	<	<	<	<	<	<	<	<	<	<(10)	<(10)	<	8	-
Chloroform	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Chloromethane	ug/L	<	<	<	<	<	<	<(10)	<	<	<	<	<	<	<	<	<	<(10)	<(10)	<	8	-
Dibromochloromethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,2-Dichlorobenzene	ug/L	<	<	<	<	<	<	<(0.7)	<	<	<	<	<	<	<	<	<	<(0.7)	<(0.7)	<	0.5	-
1,3-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,4-Dichlorobenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	2	-
1,2-Dichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1-Dichloroethylene	ug/L	<	<	<	<	<	<	<(0.7)	<	<	<	<	<	<	<	<	<	<(0.7)	<(0.7)	<	0.5	-
cis-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<(3)	<	<	<	<	<	<	<	<	<	<(3)	<(3)	<	2	-
trans-1,2-Dichloroethylene	ug/L	<	<	<	<	<	<	<(3)	<	<	<	<	<	<	<	<	<	<(3)	<(3)	<	2	-
1,2-Dichloropropane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
cis-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<(3)	<	<	<	<	<	<	<	<	<	<(3)	<(3)	<	2	-
trans-1,3-Dichloropropene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Ethylbenzene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Methylene Chloride(Dichloromethane)	ug/L	<	<	<	<	<	<	<(4)	<	<	<	<	<	<	<	<	<	<(4)	<(4)	<	3	-
o-Xylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
p+m-Xylene	ug/L	<	<	<	<	<	<	<(3)	<	<	<	<	<	<	<	<	<	<(3)	<(3)	<	2	-
Styrene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Tetrachloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,2,2-Tetrachloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Toluene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Trichloroethylene	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,1-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
1,1,2-Trichloroethane	ug/L	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	1	-
Trichlorofluoromethane (FREON 11)	ug/L	<	<	<	<	<	<	<(10)	<	<	<	<	<	<	<	<	<	<(10)	<(10)	<	8	-
Vinyl Chloride	ug/L	<	<	<	<	<	<	<(0.7)	<	<	<	<	<	<	<	<	<	<(0.7)	<(0.7)	<	0.5	-

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

 PLCS = Primary Leachate Collection System
 - = Not analysed/No criteria

 SLCS = Secondary Leachate Collection System
 < = Parameter below detection limit</td>

 DUP-04 = Field Duplicate of PLCS
 RDL = Reportable Detection Limit
 0.0
 = above criteria

HISTORICAL LEACHATE ANALYTICAL DATA - GENERAL CHEMISTRY 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

				PLCS					DUP-04					SLCS							RDL	Criteria*
Parameter	Units	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12	30-Aug-12	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	26-Jan-10	26-Jan-10	16-Jul-10	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-12		
				,										Field Dup	Lab Dup		Lab-Dup					
Anion Sum	me/L	2.30	12.20	12.20	4.86	10.10	4.21	12.5	9.53	-	10.80	13.70	13.60	13.40	-	8.68	-	10.90	6.93	12.3	N/A	-
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	90	482	453	176	400	167	520	390	-	428	542	532	509	-	315	-	420	267	500	1	-
Calculated TDS	mg/L	133	640	662	263	546	239	624	564	780	598	737	728	716	-	460	-	574	383	647	1	1,000
Carb. Alkalinity (calc. as CaCO3)	mg/L	<	<	<	1	1	1	2.6	2.3	-	<	<	<	<	-	1	-	2	2	2.2	1	-
Cation Sum	me/L	2.30	11.60	11.90	4.47	10.10	4.06	10.7	12.3	-	10.70	13.90	12.90	13.10	-	7.81	-	10.40	6.6	12.0	N/A	-
Hardness (CaCO3)	mg/L	71	510	540	190	190	140	470	530	658	410	580	560	570	-	320	-	320	240	500	1	-
Ion Balance (% Difference)	%	0.40	2.40	1.30	4.18	0.00	1.81	7.94	12.9	-	0.50	0.70	3.70	1.10	-	5.28	-	2.44	2.44	1.07	N/A	-
Langelier Index (@ 20C)	N/A	-0.10	0.60	0.60	0.42	0.86	0.366	1.10	1.11	-	0.60	0.40	0.50	0.60	-	0.67	-	0.99	0.749	1.04	N/A	-
Langelier Index (@ 4C)	N/A	-0.40	0.30	0.30	0.17	0.61	0.116	0.856	0.864	-	0.40	0.20	0.30	0.30	-	0.42	-	0.74	0.5	0.787	N/A	-
Nitrate (N)	mg/L	0.30	<	0.10	0.35	0.28	0.32	0.061	0.41	< 0.05	0.10	<	<	<	-	0.35	-	0.10	0.48	0.067	0.05	10
Saturation pH (@ 20C)	N/A	8.00	6.60	6.60	7.40	6.74	7.51	6.63	6.69	-	6.80	6.60	6.60	6.60	-	7.00	-	6.73	7.17	6.63	N/A	-
Saturation pH (@ 4C)	N/A	8.30	6.90	6.90	7.65	6.98	7.76	6.87	6.94	-	7.00	6.80	6.80	6.80	-	7.25	-	6.98	7.42	6.87	N/A	-
Total Alkalinity (Total as CaCO3)	mg/L	91	480	450	180	400	170	530	390	587	430	540	530	510	520	320	-	420	270	510	30.00	-
Carbonaceous BOD	mg/L	-	-	-	<	<	-	-	-	-	-	-	-	-	-	<	<	<	-	-	5.00	20
Dissolved Chloride (Cl)	mg/L	8	40	33	11	29	11	39	31	67	40	54	48	48	47	32	-	43	29	44	1	-
Colour	TCU	31	35	20	15	17	18	10	10	-	17	19	15	15	16	12	-	56	10	12	5	-
Strong Acid Dissoc. Cyanide (CN)	mg/L	-	-	-	<	<	-	< 0.0020	-	-	-	-	-	-	-	<	-	<	-	< 0.0020	0.002	25
Nitrate + Nitrite	mg/L	0.30	<	0.10	0.37	0.28	0.32	0.061	0.41	-	0.10	<	<	<	-	0.37	-	0.10	0.48	0.067	0.05	-
Nitrite (N)	mg/L	<	<	<	0.03	<	ND	< 0.010	<	< 0.015	<	<	<	<	-	0.02	-	<	ND	< 0.010	0.01	-
Nitrogen (Ammonia Nitrogen)	mg/L	<	0.30	0.40	<	0.10	ND	0.53	0.45	0.43	0.40	0.50	0.50	0.50	-	0.12	0.12	0.26	ND	0.50	0.05	2
Total Organic Carbon (C)	mg/L	4.7	25.0	16.0	6.4	11.0	5.1	16(1)	20 (5)	25.7	16.0	24.0	19.0	19.0	-	12.0	-	13.0	ND	20(1)	0.5	-
Orthophosphate (P)	mg/L	<	<	<	<	<	ND	< 0.010	<	-	<	<	<	<	-	<	-	<	ND	< 0.010	0.01	-
pH	pH	7.90	7.20	7.20	7.82	7.59	7.88	7.73	7.8	6.80	7.40	7.00	7.10	7.10	-	7.67	-	7.72	7.92	7.66	N/A	5.5 - 9.0
Phenols-4AAP	mg/L	-	-	-	0.01	0.003	0.003	0.012	-	-	-	-	-	-	-	0.003	-	< 0.01*	0.004	0.014	0.001	0.10
Reactive Silica (SiO2)	mg/L	4.30	16.00	16.00	8.40	13.00	12	17	14	-	19.00	17.00	17.00	18.00	18.00	14.00	-	14.00	19	15	0.5	-
Total Suspended Solids (TSS)	mg/L	-	2	6	11	17	5	9.8	-	69	-	34	18	16	-	5	-	33	5	24	2.0	30
Dissolved Sulphate (SO4)	mg/L	11	66	110	47	61	25	43	36	-	54	64	90	88	88	69	-	60	34	44	2.0	-
Sulphide	mg/L	-	-	-	<	<	ND	< 0.020	-	-	-	-	-	-	-	<	-	<	ND	0.060	0.02	0.50
Turbidity	NTU	0.4	62.0	6.8	1.6	16.0	0.7	160	12	-	140.0	200.0	77.0	65.0	59.0	6.6	-	17.0	0.9	280	0.1	-
Conductivity	uS/cm	220	1000	1000	440	840	400	1000	820	1250	980	990	1200	1100	-	750	-	900	620	1100	1	-
Total Oil & Grease	mg/L	-	-	-	<	<	-	-	-	-	-	-	-	-	-	<	-	<	-	-	5.00	-
Coliform-Fecal	#/100mL	-	-	-	0	0	-	-	-	-	-	-	-	-	-	0	-	- (1)	-	-	-	1,000/100 mL
Coliform-Total	#/100mL	-	-	-	>80	>80	-	-	-	-	-	-	-	-	-	>80	-	- (1)	-	-	-	5,000/100 mL

Notes:

Notes: Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS. Coliform analysis completed by Newfoundland and Labrador Government Services in Grand Falls-Windsor, NL. * Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65 (03. PLCS = Primary Leachate Collection System DUP-04= Field Duplicate of PLCS

RDL = Reportable Detection Limit 0.0 = above criteria

Not analysed/No criteria
 < = Parameter below detection limit
 <(#) = Parameter below AMEC laboratory detection limit

HISTORICAL LEACHATE ANALYTICAL DATA - TOTAL METALS 2012/13 MONITORING AND MAINTENANCE PROGRAM COME BY CHANCE SECURE LANDFILL COME BY CHANCE, NL

									DUP-04				SLCS							
Parameter	Units	19-Aug-09	13-Oct-09	26-Jan-10	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-11	30-Aug-11	AMEC 2008	19-Aug-09	13-Oct-09	26-Jan-10	26-Jan-10 Field Dup	16-Jul-10	13-Dec-10	2-Sep-11	30-Aug-11	KDL	Criteria*
Aluminum (Al)	ug/L	35	<	<	36.8	<	41	14.2	22.2	42	<	100	<	<	23.1	<	23.7	16.3	5	-
Antimony (Sb)	ug/L	<	<	<	<	<	-	<	<	<1	<	<	<	<	<	<	-	<	1	-
Arsenic (As)	ug/L	<	<	<	<	<	-	<	1.0	2	<	<	<	<	<	<	-	1.1	1	500
Barium (Ba)	ug/L	7.0	73	71	13.3	51	11	72.7	85.7	69.8	38	93	68	68	18.9	40	5.3	78.2	1	5,000
Beryllium (Be)	ug/L	<	<	<	<	<	-	<	<	< 0.1	<	<	<	<	<	<	-	<	1	-
Bismuth (Bi)	ug/L	<	<	<	<	<	-	<	<	1.1	<	<	<	<	<	<	-	<	2	-
Boron (B)	ug/L	170	7,400	3,400	1,170	2,230	650	1,500	1,890	-	2,800	3,100	2,300	2,400	1,970	1,870	1350	2,500	5	5,000
Cadmium (Cd)	ug/L	<	<	<	<	<	-	<	<	1.3	<	<	<	<	<	<	-	<	0.017	50
Calcium (Ca)	ug/L	-	-	-	58,400	138,000	46,100	140,000	159,000	-	-	-	-	-	90,900	135,000	69700	147,000	100	-
Total Chromium (Cr)	ug/L	<	<	<	<	<	-	<	<	1	<	<	<	<	<	<	63.2	<	1	1,000
Chromium VI	mg/L	-	-	-	<	<	-	-	<	-	-	-	-	-	<	<	-	-	0.001	0.05
Cobalt (Co)	ug/L	<	<	<	<	<	-	<	<	<1	<	<	<	<	0.49	<	-	1.04	0.4	-
Copper (Cu)	ug/L	4.0	<	<	2.50	<	2	<	<	1	<	<	<	<	<	<	-	<	2	300
Iron (Fe)	ug/L	77	4,900	4,000	1,790	3,150	342	5,470	14,300	29,900	6,800	19,000	8,500	8,300	1,320	2,240	-	15,100	50	10,000
Lead (Pb)	ug/L	<	<	<	<	<	-	<	<	6	<	<	<	<	<	<	-	<	5	200
Magnesium (Mg)	ug/L	-	-	-	10,700	24,300	7,070	28,800	32,900	-	-	-	-	-	23,500	27,400	16900	33,200	100	-
Manganese (Mn)	ug/L	7.0	9,100	8,800	1,130	6,240	369	7,270	8,770	11,000	5,400	10,000	8,900	9,000	3,270	5,120	241	8,250	2	-
Mercury (Hg)	ug/L	-	-	<	<	<	-	-	<	-	-	-	<	<	<	<	-	-	0.013	5
Molybdenum (Mo)	ug/L	<	<	<	<	<	-	<	<	2	<	<	<	<	<	<	-	7.20	2	-
Nickel (Ni)	ug/L	<	<	<	<	<	-	<	<	1	<	<	<	<	<	<	-	2.40	2	500
Phosphorus (P)	ug/L	-	-	-	<	<	-	<	<	-	-	-	-	-	<	<	-	<	100	0.5
Potassium (K)	ug/L	-	-	-	7,270	6,530	21,000	5,840	5,800	-	-	-	-	-	<	7,750	28400	8,870.00	100	-
Selenium (Se)	ug/L	<	<	<	<	<	-	<	<	1	<	<	<	<	<	<	-	<	1	10
Silver (Ag)	ug/L	-	-	-	<	<	-	<	<	-	-	-	-	-	<	<	-	<	0.1	50
Sodium (Na)	ug/L	<	<	<	9,880	22,500	14,300	21,100	23,700	0.6	<	<	<	<	21,300	25,500	23100	26,600	100	-
Strontium (Sr)	ug/L	52	360	350	156	289	104	318	362	-	280	440	380	390	282	324	183	369	2	-
Thallium (Tl)	ug/L	<	<	<	<	<	-	<	<	-	<	<	<	<	<	<	-	<	0.1	-
Tin (Sn)	ug/L	<	<	<	<	<	-	<	<	-	<	<	<	<	<	<	-	<	2	-
Titanium (Ti)	ug/L	<	<	<	<	<	-	<	2.00	-	<	<	<	<	<	<	-	<	2	-
Uranium (U)	ug/L	0.1	<	<	0.25	<	0	0.79	0.94	-	0.8	1	2	2	1.11	1	0.71	5.05	1	-
Vanadium (V)	ug/L	<	<	<	<	<	-	<	<	4	<	<	<	<	<	<	-	<	2	-
Zinc (Zn)	ug/L	<	67.0	<	8.10	<	14	<	6.50	7	<	<	<	<	5.20	<	32.2	8.30	50	500

Notes:

Analysis completed by Maxxam Analytics Inc. laboratory in Bedford, NS.

* Environmental Control Water and Sewer Regulations, 2003, under the Water Resources Act, Newfoundland and Labrador Regulation 65/03.

PLCS = Primary Leachate Collection System SLCS = Secondary Leachate Collection System DUP-04= Field Duplicate of PLCS RDL = Reportable Detection Limit 0.0 = above criteria

-= Not analysed/No criteria

< = Parameter below detection limit
<(#) = Parameter below AMEC laboratory detection limit</pre>

APPENDIX E

HELP MODEL RESULTS

651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 Telephone: (519) 884-0510 Fax: (519) 884-0525 www.CRAworld.com

MEMORANDUM

To:	Brian Luffman, P.Eng.	N70	REF. NO.:	056680-02
FROM:	David Barton, M.Eng., P.Eng., P.E./mg/1	1.K	DATE:	June 11, 2013
RE:	HELP Model Results - Secure Landfill, Cor	ne by Chance, Ne	ewfoundland	and Labrador

INTRODUCTION

The Hydrologic Evaluation of Landfill Performance (HELP) model Version 3.07 (Schroeder, et al., 1994a and 1994b) has been used to evaluate the top and side slopes of the final cover system at the Secure Landfill located in Come by Chance, Newfoundland and Labrador (NL). The evaluations are referred to as "Secure Landfill, Come by Chance, NL – Top Slope" and "Secure Landfill, Come by Chance, NL – Side Slope". Both evaluations have been completed using a combination of Site-specific and default climate data.

The following text discusses the HELP model, model input parameters, surface cover parameters, results, and references.

HELP MODEL

The HELP model was developed specifically to simulate the hydrologic components related to landfill operations. Therefore, the HELP model is well suited for estimating the infiltration rate through the existing final cover system for this Site. The following description of the HELP model, taken directly from Schroeder, *et al.*,(1994a), provides an overview of both the landfill design parameters and hydrologic processes that can be simulated by the model:

"The Hydrologic Evaluation of Landfill Performance (HELP) computer program is a quasi-two-dimensional hydrologic model of water movement across, into, through and out of landfills. The model accepts weather, soil and design data and uses solution techniques that account for the effects of surface storage, snowmelt, runoff, infiltration, evapotranspiration, vegetative growth, soil moisture storage, lateral subsurface drainage, leachate recirculation, unsaturated vertical drainage, and leakage through soil, geomembrane or composite liners. Landfill systems including various combinations of vegetation, cover soils, waste cells, lateral drain layers, low permeability barrier soils, and synthetic geomembrane liners may be modeled. The program was developed to conduct water balance analyses of landfills, cover systems, and solid waste disposal and containment facilities. As such, the model facilitates rapid estimation of the amounts of runoff, evapotranspiration, drainage, leachate collection, and liner leakage that may be expected to result from the operation of a wide variety of landfill designs. The primary purpose of the model is to assist in the comparison of design alternatives as judged by their water balances. The model, applicable to open, partially closed, and fully closed sites, is a tool for both designers and permit writers."

The United States Army Corps of Engineers, under endorsement from the United States Environmental Protection Agency (USEPA), developed the HELP model.

MODEL INPUT PARAMETERS

The HELP model requires two generalized groups of input parameters:

- Climate Data
- Soil and Design Data

<u>Climate Data</u>

The HELP model permits manual input of Site-specific climate data or the use of historical climate data as provided by the HELP model defaults for select geographical locations. For the purpose of this evaluation, CRA has used relative humidity data for St. John's, NL, and growing season [i.e., day 171 (Julian Date) through today 274], windspeed, precipitation, and temperature data for Arnold's Cove, NL, as available through Environment Canada's Canadian Climate Normals 1971 – 2000 (Climate Normals and Averages).

HELP model guidance was used to establish reasonable evaporative depths (20 centimetres based on the design details for the Site) and a maximum leaf area index (assumed to be 2.0 for a fair stand of grass).

Default HELP model climate data for Portland, Maine, was used for solar radiation (with an adjustment for latitude to that of the Site) and model coefficients to develop synthetically generated precipitation, temperature, and solar radiation data over a 100 year time frame.

<u>Soil and Design Data</u>

The HELP model allows for either manual input of soil and design data or the use of default soil and design data as provided by the HELP model. The required soil and design data input parameters include soil layer type [i.e., (i) vertical percolation layer; (ii) lateral drainage layer; (iii) barrier soil liner; and (iv) flexible membrane liner], soil layer thickness and texture number, and the length and slope of the lateral drainage layer.

Values that best represent the proposed soil layer type, thickness, length, and slope of the lateral drainage layer were used as input to the HELP model. Where possible, CRA selected HELP model soil layer texture numbers to best reflect the existing final cover system and associated material, including the use of default soil and design data as provided in the HELP model for the soil porosity, field capacity, wilting point, and hydraulic conductivity.

The selected soil layer type, associated texture number, and saturated hydraulic conductivity are as follows:

- Vertical percolation layer (i.e., topsoil layer): HELP Material Texture Number 4; Unified Soil Classification System (USCS) Group Symbol SM (silty sands, sand-silt mixtures, > 12 percent fines); Saturated Hydraulic Conductivity 1.7 x 10-3 centimeters per sec (cm/sec)
- Lateral drainage layer (i.e., Granular Class "A"): HELP Material Texture Number 2; USCS Group Symbol SW (well graded sands, gravelly sands, < 5 percent fines); Saturated Hydraulic Conductivity 5.8 x 10⁻³ cm/sec
- Barrier soil liner (i.e., glacial till): HELP Material Texture Number 26; USCS Group Symbol CL (inorganic clays of low plasticity, gravelly, sandy, or silty clays, lean clays); Saturated Hydraulic Conductivity 1.9 x 10⁻⁶ cm/sec

- Flexible Membrane Liner (FML) (i.e., 1.5 millimetre textured HDPE geomembrane): HELP Material Texture Number 35; (High Density Polyethylene [HDPE]); Saturated Hydraulic Conductivity 2.0 x 10⁻¹³ cm/sec
- Vertical percolation layer (i.e., municipal solid waste): HELP Material Texture Number 18; Unified Soil Classification System (USCS) Group Symbol SM (municipal waste); Saturated Hydraulic Conductivity 1.0 x 10-3 centimeters per sec (cm/sec)

CRA assumed a pinhole density of two holes per hectare (considered by the model to be "typical") and installation defects of eight holes per hectare (considered by the model to be "Fair" installation quality).

A summary of soil and design data for existing final cover system is presented in Table 1.

SURFACE COVER PARAMETERS

The following surface cover parameters were used in the analysis:

- Ground Cover: "Fair Stand of Grass"
- Maximum Leaf Area Index: 2.0 for "Fair Stand of Grass"
- Evaporative Zone Depth: 20 centimetres representing the topsoil layer

A United States Department of Agriculture (USDA) Soil Conservation Service (SCS) runoff curve number of 64.4 and 67.7 for the top slope and side slope, respectively, was computed from a default soil database using HELP Material Texture Number 4, USCS Group Symbol SM (silty sands, sand-silt mixtures, > 12 percent fines). A fair stand of grass, a top slope of 2 percent, a side slope of 25 percent on the slope of the landfill, and a slope length of 11.5 metres and 10.5 metres for the top slope and side slope, respectively, were also assumed to calculate the runoff number.

The HELP model default porosity (0.437), field capacity (0.105), wilting point (0.047), and hydraulic conductivity (1.7 x 10-3 cm/sec) for Texture Number 4 were also used.

RESULTS

The HELP model computed a synthetically generated average annual precipitation of 1,315.6 millimetres, similar to the actual average annual precipitation of 1,319.0 millimetres for Arnold's Cove, NL (1,269.9 millimetres for Come by Chance, NL), as reported by Environment Canada's Canadian Climate Normals 1971 – 2000 (Climate Normals and Averages).

The average annual infiltration percolation / leakage through the final cover system at the Site are estimated to be:

- Top Slope: 3.4 millimetres per hectare per year
- Side Slope: 1.9 millimetres per hectare per year

A summary of the HELP model inputs and results is provided in Table 1. Copies of the HELP model output for each of the top slope and side slope are presented in Attachment A.

REFERENCES

Schroeder, P.R. et al., 1994a. The Hydrologic Evaluation of Landfill Performance (HELP) Model: User's Guide for Version 3; EPA/600/R-94/168a; USEPA, Washington, DC

Schroeder, P.R. ct al., 1994b. The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3EPA/600/R-94/168b; USEPA, Washington, DC

TABLE 1 SUMMARY OF HELP MODEL INPUTS AND RESULTS SECURE LANDFILL COME BY CHANCE, NL

	Тор	Slope
Layer 1 - Vertical Percolation		
Material Texture Number	4	4
Effective Saturated Hydraulic Conductivity (cm/s)	$1.7 \ge 10^{-3}$	1.7 x 10 ⁻³
Thickness (centimetres)	20	20
Layer 2 - Lateral Drainage		
Material Texture Number	2	2
Effective Saturated Hydraulic Conductivity (cm/s)	5.8×10^{-3}	5.8 x 10 ⁻³
Thickness (centimetres)	20	20
Layer 3 - Barrier Soil		
Material Texture Number	60	60
Effective Saturated Hydraulic Conductivity (cm/s)	$1.9 \ge 10^{-6}$	1.9 x 10 ⁻⁶
Thickness (centimetres)	60	60
Layer 4 - Flexible Memrbrane		
Material Texture Number	35	35
Effective Saturated Hydraulic Conductivity (cm/s)	2.0×10^{-13}	$2.0 \ge 10^{-13}$
Thickness (centimetres)	0.15	0.15
Layer 5 - Vertical Percolation		
Material Texture Number	18	18
Effective Saturated Hydraulic Conductivity (cm/s)	$1.0 \ge 10^{-3}$	$1.0 \ge 10^{-3}$
Thickness (centimetres)	30	30
Slope	2%	25%
SCS Curve Number	64.4	67.7
Evaporative Depth Zone (centimetres)	20	20
Annual Averages (millimetres)		
Precipitation	1315.63	1315.63
Runoff	400.12	394.56
Evapotranspiration	438.08	437.80
Lateral Drainage Collected from Layer 2	474.32	481.34
Percolation/Leakage Through Layer 4	3.42	1.87
Average Head on Top of Layer 3	64.17	5.86
Percolation/Leakage Through Layer 5	3.47	1.92
Change in Water Storage	-0.36	0.02

ATTACHMENT A

* * * * * * * * * * * * * * *	******	* *
* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
* * * * * * * * * * * * * * *	***************************************	* *
* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *

PRECIPITATION DATA FILE:	C:\HELP\data\056680\SECURE.D4
TEMPERATURE DATA FILE:	$C:\HELP\data\056680\SECURE.D7$
SOLAR RADIATION DATA FILE:	C:\HELP\data\056680\SECURE.D13
EVAPOTRANSPIRATION DATA:	$C:\HELP\data\056680\SECURE.D11$
SOIL AND DESIGN DATA FILE:	c:\help\data\056680\SECURE-1.D10
OUTPUT DATA FILE:	C:\HELP\data\056680\SECURE-1.OUT

TIME: 12:38 DATE: 6/11/2013

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 20.00 CM THICKNESS = 0.4370 VOL/VOL POROSITY = FIELD CAPACITY 0.1050 VOL/VOL = WILTING POINT 0.0470 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3600 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.17000002000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 – LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 2

THICKNESS	=	20.00 CM
POROSITY	=	0.4370 VOL/VOL
FIELD CAPACITY	=	0.0620 VOL/VOL
WILTING POINT	=	0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.2510 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.579999993000E-02 CM/SEC
SLOPE	=	2.00 PERCENT
DRAINAGE LENGTH	=	11.5 METERS

LAYER 3

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 26 THICKNESS = 60.00 CM POROSITY 0.4450 VOL/VOL = FIELD CAPACITY 0.3930 VOL/VOL = WILTING POINT 0.2770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.4450 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.19000003000E-05 CM/SEC

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS	=	0.15 CM
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/HECTARE
FML INSTALLATION DEFECTS	=	8.00 HOLES/HECTARE
FML PLACEMENT QUALITY	=	3 - GOOD
···· · · ····· · · ··· · · · · · · · ·		5 6665

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

THICKNESS	=	30.00	CM
POROSITY	=	0.6710	VOL/VOL
FIELD CAPACITY	=	0.2920	VOL/VOL
WILTING POINT	=	0.0770	VOL/VOL

INITIAL SOIL WATER CONTENT = 0.1799 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.10000005000E-02 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 4 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 11. METERS.

SCS RUNOFF CURVE NUMBER 64.40 = FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.0000 HECTARES EVAPORATIVE ZONE DEPTH 20.0 CM = INITIAL WATER IN EVAPORATIVE ZONE = 7.199 CM UPPER LIMIT OF EVAPORATIVE STORAGE = 8.740 CM LOWER LIMIT OF EVAPORATIVE STORAGE = 0.940 CM 0.000 CM INITIAL SNOW WATER = INITIAL WATER IN LAYER MATERIALS = 44.316 CM TOTAL INITIAL WATER 44.316 CM = TOTAL SUBSURFACE INFLOW = 0.00 MM/YR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ARNOLD'S COVE NL

STATION LATIT	UDE			=	47.81	DEGREES
MAXIMUM LEAF .	AREA IN	IDEX		=	2.00	
START OF GROW	ING SEA	SON (JUL]	IAN DATE)	=	171	
END OF GROWIN	G SEASC	N (JULIAN	J DATE)	=	274	
EVAPORATIVE Z	ONE DEF	TH		=	20.0	CM
AVERAGE ANNUA	L WIND	SPEED		=	21.00	KPH
AVERAGE 1ST Q	UARTER	RELATIVE	HUMIDITY	=	80.50	010
AVERAGE 2ND Q	UARTER	RELATIVE	HUMIDITY	=	80.10	00
AVERAGE 3RD Q	UARTER	RELATIVE	HUMIDITY	=	79.70	00
AVERAGE 4TH Q	UARTER	RELATIVE	HUMIDITY	=	82.10	olo

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PORTLAND MAINE

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
120.7	107.2	100.6	86.0	92.7	126.2
95.2	103.2	109.2	138.0	128.6	111.5

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PORTLAND MAINE

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
-4.4	-5.1	-2.0	2.3	5.9	9.5
13.8	15.3	12.6	7.9	3.4	-1.5

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PORTLAND MAINE AND STATION LATITUDE = 47.81 DEGREES

AVERAGE MO	NTHLY VALUE	S (MM) FO	R YEARS	1 THROU	GH 100	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	112.97	109.48	95.30	90.22	94.38	137.99
	94.17	106.86	107.91	125.32	124.78	116.26
STD. DEVIATIONS	49.20	51.05	44.93	39.72	38.54	61.58
	49.90	44.00	52.93	73.74	58.66	51.68
RUNOFF						
TOTALS	28.436	40.726	143.532	141.604	22.053	0.980
	0.074	0.107	0.953	3.038	4.050	14.571
STD. DEVIATIONS	42.555	56.601	93.008	111.573	43.551	4.072
	0.516	0.574	5.946	16.025	20.636	29.785
EVAPOTRANSPIRATION						
TOTALS	11.158	9.017	9.207	18.295	58.130	74.526
	66.037	70.472	52.267	35.282	21.064	12.625
STD. DEVIATIONS	1.898	1.561	2.648	13.535	18.770	19.061
	24.538	20.128	14.828	9.314	4.406	3.961
LATERAL DRAINAGE COL	LECTED FROM	LAYER 2				
TOTALS	19.4577	4.0444	1.1723	12.3759	48.0531	48.744
	47.5351	34.6260	43.0692	65.1568	85.1084	64.979
STD. DEVIATIONS	14.6183	2.9885	2.5173	19.4331	18.3095	30.246
	29.6510	21.7515	29.0945	41.3039	44.4860	34.084

PERCOLATION/LEAKAGE THRC	DUGH LAYEF	R 4				
TOTALS	0.2938 0.3135	0.2561 0.3049	0.2539 0.3011	0.1472 0.3241	0.273	1 0. 3 0.
STD. DEVIATIONS	0.0108 0.0194	0.0083 0.0153	0.0609 0.0186	0.0992 0.0252	0.070	00. 40.
PERCOLATION/LEAKAGE THRC	DUGH LAYEF	۶ 5				
TOTALS	0.3387 0.3040	0.3130 0.3122	0.3131 0.2958	0.1707 0.2946	0.253	30. 90.
STD. DEVIATIONS	0.0542 0.0290	0.0422 0.0244	0.0831 0.0234	0.1136 0.0275	0.076	40. 60.
AVERAGES	OF MONTHI	LY AVERA	GED DAILY	HEADS (CM	I)	
DAILY AVERAGE HEAD ON TO	OP OF LAYP	ER 3				
	2 1600	0.8228	0.2109	2.0230	7.930	98.
AVERAGES	7.7728	5.9022	7.2516	10.0678	13.143	6 10.
AVERAGES STD. DEVIATIONS	2.3717 4.2403	5.9022 0.6106 3.3382	7.2516 0.4083 4.1800	10.0678 3.0878 5.4781 *****	13.143 2.702 5.918	6 10. 6 4. 2 4. *****
AVERAGES STD. DEVIATIONS ************************************	5.4000 7.7728 2.3717 4.2403 ***********	5.9022 0.6106 3.3382	7.2516 0.4083 4.1800 ********** ***********	10.0678 3.0878 5.4781 ********* ********	13.143 2.702 5.918 *******	6 10. 6 4. 2 4. ****** ******
AVERAGES STD. DEVIATIONS ************************************	5.4000 7.7728 2.3717 4.2403 ************************************	5.9022 0.6106 3.3382 ******** DEVIATI	7.2516 0.4083 4.1800 ********** *********** ONS) FOR Y	10.0678 3.0878 5.4781 ********* ********* EARS 1 CU. ME	13.143 2.702 5.918 ******* ******* THROUG	6 10. 6 4. 2 4. ****** ****** H 100 PERC
AVERAGES STD. DEVIATIONS ************************************	5.4000 7.7728 2.3717 4.2403 *********** 5 & (STD. 1315	5.9022 0.6106 3.3382 ******** DEVIATI MM 	7.2516 0.4083 4.1800 ********** *********** ONS) FOR Y 	10.0678 3.0878 5.4781 ********* EARS 1 CU. ME 	13.143 2.702 5.918 ******* ******* THROUGE TERS 6.3	6 10. 6 4. 2 4. ******* H 100 PERC 100.0
AVERAGES STD. DEVIATIONS ************************************	5.4000 7.7728 2.3717 4.2403 *********** 5 & (STD. 1315. 400.	5.9022 0.6106 3.3382 ******** DEVIATIONE MM 	7.2516 0.4083 4.1800 ********** *********** ONS) FOR Y 	10.0678 3.0878 5.4781 ********** EARS 1 CU. ME 1315 400	13.143 2.702 5.918 ******* ******* THROUGH TTERS 6.3 1.23	6 10. 6 4. 2 4. ******* H 100 PERC 100.0 30.4
AVERAGES STD. DEVIATIONS ************************************	5 & (STD. 1315 4.28 	5.9022 0.6106 3.3382 ******** DEVIATI MM .63 (.123 (.081 (7.2516 0.4083 4.1800 ********** ********** ONS) FOR Y 	10.0678 3.0878 5.4781 ********* EARS 1 CU. ME 1315 400 438	13.143 2.702 5.918 ******* ******* THROUGH TTERS 6.3 1.23 0.81	6 10. 6 4. 2 4. ******* H 100 PERC 100.0 30.4 33.2
AVERAGES STD. DEVIATIONS ************************************	5.4000 7.7728 2.3717 4.2403 *********** 5 & (STD. 	5.9022 0.6106 3.3382 ******** DEVIATI 	7.2516 0.4083 4.1800 ********** *********** ONS) FOR Y 	10.0678 3.0878 5.4781 ********* EARS 1 CU. ME 1315 400 438 474	13.143 2.702 5.918 ******* ******* THROUGE TERS 6.3 1.23 0.81 3.229	6 10. 6 4. 2 4. ******* ***************************
AVERAGES STD. DEVIATIONS ************************************	 3.4000 7.7728 2.3717 4.2403 ************************************	5.9022 0.6106 3.3382 ******** DEVIATI MM .63 (.123 (.081 (.32285 (.42481 (7.2516 0.4083 4.1800 ********** *********** ONS) FOR Y 	10.0678 3.0878 5.4781 ********* EARS 1 CU. ME 1315 400 438 474 3	13.143 2.702 5.918 ******* ******* THROUGH TERS 	6 10. 6 4. 2 4. ******* H 100 PERC 100.0 30.4 33.2 36.05 0.2
AVERAGES STD. DEVIATIONS ************************************	5.4000 7.7728 2.3717 4.2403 *********** 5 & (STD. 	5.9022 0.6106 3.3382 ******** DEVIATI MM 	7.2516 0.4083 4.1800 ********** ONS) FOR Y 175.952) 115.5778) 49.3480) 112.03805) 0.16781) 12.934)	10.0678 3.0878 5.4781 ********** EARS 1 1315 400 438 474 3	13.143 2.702 5.918 ******* ******* THROUG TERS 6.3 1.23 0.81 3.229 4.248	6 10. 6 4. 2 4. ******* ***************************
AVERAGES STD. DEVIATIONS ************************************	7.7728 2.3717 4.2403 *********** 5 & (STD. 	5.9022 0.6106 3.3382 ******** DEVIATI 	7.2516 0.4083 4.1800 *********** ONS) FOR Y 	10.0678 3.0878 5.4781 ************************************	13.143 2.702 5.918 ******* ******* THROUGH TERS 6.3 1.23 0.81 3.229 4.248 4.653	6 10. 6 4. 2 4. ************************************

* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *
PEAK DAILY VALUES FOR YEARS	1 THROUGH 1	00
	(MM)	(CU. METERS)
PRECIPITATION	132.10	1321.000
RUNOFF	167.901	1679.0057
DRAINAGE COLLECTED FROM LAYER 2	11.21282	112.12825
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.014939	0.14939
AVERAGE HEAD ON TOP OF LAYER 3	399.995	
MAXIMUM HEAD ON TOP OF LAYER 3	469.628	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	8.2 METERS	
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.028591	0.28591
SNOW WATER	450.58	4505.7515
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4370
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0470
*** Maximum heads are computed using	McEnroe's equa	tions. ***
Reference: Maximum Saturated De by Bruce M. McEnroe, ASCE Journal of Envi Vol. 119, No. 2, Mar	pth over Landfi University of ronmental Engin ch 1993, pp. 26	ll Liner Kansas eering 2-270.

FINAL WATER	STORAGE AT E	IND OF YEAR 100	
LAYER	(CM)	(VOL/VOL)	
1	7.2787	0.3639	
2	1.6729	0.0836	
3	26.7000	0.4450	
4	0.0000	0.0000	
5	4.9934	0.1664	
SNOW WATER	0.079		
*****	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	******

* * * * * * * * * * * * * * *	*****	* *
* * * * * * * * * * * * * * *	***************************************	* *
* *		* *
* *		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
* * * * * * * * * * * * * * *	***************************************	* *
* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *

PRECIPITATION DATA FILE:	C:\HELP\data\056680\SECURE.D4
TEMPERATURE DATA FILE:	C:\HELP\data\056680\SECURE.D7
SOLAR RADIATION DATA FILE:	C:\HELP\data\056680\SECURE.D13
EVAPOTRANSPIRATION DATA:	C:\HELP\data\056680\SECURE.D11
SOIL AND DESIGN DATA FILE:	c:\help\data\056680\SECURE-2.D10
OUTPUT DATA FILE:	C:\HELP\data\056680\SECURE-2.OUT

TIME: 12:38 DATE: 6/11/2013

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 4 20.00 CM THICKNESS = 0.4370 VOL/VOL POROSITY = FIELD CAPACITY 0.1050 VOL/VOL = WILTING POINT 0.0470 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.3358 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.17000002000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 – LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 2

THICKNESS	=	20.00 CM
POROSITY	=	0.4370 VOL/VOL
FIELD CAPACITY	=	0.0620 VOL/VOL
WILTING POINT	=	0.0240 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0620 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.579999993000E-02 CM/SEC
SLOPE	=	25.00 PERCENT
DRAINAGE LENGTH	=	10.5 METERS

LAYER 3

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 26 THICKNESS = 60.00 CM POROSITY 0.4450 VOL/VOL = FIELD CAPACITY 0.3930 VOL/VOL = WILTING POINT 0.2770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.4450 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.19000003000E-05 CM/SEC

LAYER 4

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS	=	0.15 CM
POROSITY	=	0.0000 VOL/VOL
FIELD CAPACITY	=	0.0000 VOL/VOL
WILTING POINT	=	0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	=	0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	=	0.199999996000E-12 CM/SEC
FML PINHOLE DENSITY	=	2.00 HOLES/HECTARE
FML INSTALLATION DEFECTS	=	8.00 HOLES/HECTARE
FML PLACEMENT QUALITY	=	3 - GOOD

LAYER 5

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18

THICKNESS	=	30.00	CM
POROSITY	=	0.6710	VOL/VOL
FIELD CAPACITY	=	0.2920	VOL/VOL
WILTING POINT	=	0.0770	VOL/VOL

INITIAL SOIL WATER CONTENT = 0.1805 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.10000005000E-02 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 4 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 10. METERS.

SCS RUNOFF CURVE NUMBER 67.70 = FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.0000 HECTARES = EVAPORATIVE ZONE DEPTH 20.0 CM INITIAL WATER IN EVAPORATIVE ZONE = 6.715 CM UPPER LIMIT OF EVAPORATIVE STORAGE = 8.740 CM LOWER LIMIT OF EVAPORATIVE STORAGE = 0.940 CM 0.000 CM INITIAL SNOW WATER = INITIAL WATER IN LAYER MATERIALS = 40.069 CM 40.069 CM TOTAL INITIAL WATER = 0.00 MM/YR TOTAL SUBSURFACE INFLOW =

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM ARNOLD'S COVE NL

STATION LATITUD)Έ		=	47.81	DEGREES
MAXIMUM LEAF AR	EA INDEX		=	2.00	
START OF GROWIN	IG SEASON (JUL	IAN DATE)	=	171	
END OF GROWING	SEASON (JULIA	N DATE)	=	274	
EVAPORATIVE ZON	IE DEPTH		=	20.0	CM
AVERAGE ANNUAL	WIND SPEED		=	21.00	KPH
AVERAGE 1ST QUA	RTER RELATIVE	HUMIDITY	=	80.50	00
AVERAGE 2ND QUA	RTER RELATIVE	HUMIDITY	=	80.10	00
AVERAGE 3RD QUA	RTER RELATIVE	HUMIDITY	=	79.70	00
AVERAGE 4TH QUA	RTER RELATIVE	HUMIDITY	=	82.10	00

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PORTLAND MAINE

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
120.7	107.2	100.6	86.0	92.7	126.2
95.2	103.2	109.2	138.0	128.6	111.5
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PORTLAND MAINE

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
-4.4	-5.1	-2.0	2.3	5.9	9.5
13.8	15.3	12.6	7.9	3.4	-1.5

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR PORTLAND MAINE AND STATION LATITUDE = 47.81 DEGREES

AVERAGE MONTHLY VALUES (MM) FOR YEAR			R YEARS	5 1 THROUGH 100		
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	112.97	109.48	95.30	90.22	94.38	137.99
	94.17	106.86	107.91	125.32	124.78	116.26
STD. DEVIATIONS	49.20	51.05	44.93	39.72	38.54	61.58
	49.90	44.00	52.93	73.74	58.66	51.68
RUNOFF						
TOTALS	28.245	40.595	143.303	141.414	22.093	0.844
	0.077	0.204	0.508	1.069	2.124	14.082
STD. DEVIATIONS	42.551	56.634	92.990	111.328	43.569	3.150
	0.372	0.950	1.801	3.014	17.421	29.215
EVAPOTRANSPIRATION						
TOTALS	11.158	9.017	9.197	18.330	58.087	74.570
	65.898	70.406	52.213	35.248	21.054	12.624
STD. DEVIATIONS	1.898	1.561	2.611	13.575	18.718	19.050
	24.566	20.099	14.824	9.274	4.411	3.960
LATERAL DRAINAGE COL	LECTED FROM	LAYER 2				
TOTALS	1.9324 36.8575	0.0000 34.8326	0.6152 50.2042	30.4938 77.0059	55.0465 94.0546	55.230 45.065
STD. DEVIATIONS	8.1109	0.0000	6.1525	33.6847	30.0939	41.439
	35.5610	28.7232	40.7396	62.2800	56.6691	42.775

TOTALS	0.0213 0.2135	0.000	0 0.0009 9 0.2189	0.0453 0.2436	0.210 0.263	4 0.229 2 0.20
STD. DEVIATIONS	0.0427 0.0602	0.000	0 0.0091 6 0.0514	0.0661 0.0612	0.061 0.031	0 0.052 6 0.07
PERCOLATION/LEAKAGE THE	OUGH LAYE	R 5				
TOTALS	0.0233 0.2333	0.000	0 0.0008 1 0.2314	0.0427 0.2384	0.221 0.244	0 0.24 2 0.20
STD. DEVIATIONS	0.0426 0.0536	0.000 0.054	0 0.0083 2 0.0495	0.0627 0.0556	0.090 0.036	2 0.06 1 0.07
AVERAGES	OF MONTH	LY AVER	AGED DAILY	HEADS (CM)	
DAILY AVERAGE HEAD ON T	OP OF LAY	ER 3				
AVERAGES	0.0278 0.5298	0.000	0 0.0088 3 0.7452	0.4526 1.1080	0.790 1.396	7 0.81 4 0.64
SULTATIONS	0.1165	0 000	0 0 0 8 8 4	0 5000	0 432	3 0.61
****	0.5121	0.412	6 0.6047 ****	0.9040	0.842	4 0.61
AVERAGE ANNUAL TOTAL	0.5121 ************ **********************	0.412 ******* ******* DEVIAT	6 0.6047 ************ ***********************	0.9040 ********* ********* EARS 1	0.152 0.842 ******* ******* THROUG	4 0.61 ******** ******** H 100
AVERAGE ANNUAL TOTAL	0.5121 *********** S & (STD.	0.412 ******* DEVIAT	6 0.6047 ************ ************ IONS) FOR Y	0.9040 ********* EARS 1 	0.152 0.842 ******* ******* THROUG TERS	4 0.61 ******** ******** H 100 PERCEN
AVERAGE ANNUAL TOTAL	0.5121 ***********************************	0.412 ******* DEVIAT MM 	6 0.6047 ************ ions) For Y 	0.9040 ********* EARS 1 CU. ME' 	0.132 0.842 ******* THROUG TERS 6.3	4 0.61 ********* H 100 PERCEN 100.00
AVERAGE ANNUAL TOTAL	0.5121 ***********************************	0.412 ******* DEVIAT .63 .558	6 0.6081 6 0.6047 *********** ions) for y (175.952) (114.4752)	0.9040 ********* EARS 1 CU. ME' 1315	0.132 0.842 ******* THROUG TERS 6.3 5.58	4 0.61 ********* H 100 PERCEN 100.00 29.990
AVERAGE ANNUAL TOTAL PRECIPITATION RUNOFF	0.5121 ***********************************	0.412 ******* DEVIAT: .63 .558 .803	<pre>6 0.0001 6 0.6047 ************************************</pre>	0.9040 ********** EARS 1 	0.132 0.842 ******* THROUG TERS 6.3 5.58 8.03	4 0.61 ********* H 100 PERCEN 100.00 29.990 33.277
AVERAGE ANNUAL TOTAL PRECIPITATION RUNOFF EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECT FROM LAYER 2	0.5121 ***********************************	0.412 ******* DEVIAT .63 .558 .803 .33899	6 0.6047 ************************************	0.9040 ********* EARS 1 CU. ME' 1315 394 437 481	0.132 0.842 ******* THROUG TERS 6.3 5.58 8.03 3.390	4 0.61 ********* H 100 100.00 29.990 33.277 36.5861
AVERAGE ANNUAL TOTAL AVERAGE ANNUAL TOTAL PRECIPITATION RUNOFF EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECT FROM LAYER 2 PERCOLATION/LEAKAGE THRO LAYER 4	0.5121 ***********************************	0.412 ******* DEVIAT: .63 .558 .803 .33899 .86880	<pre>6 0.0001 6 0.6047 ************************************</pre>	0.9040 ********* EARS 1 1315 394 437 481	0.132 0.842 ******* THROUG TERS 6.3 5.58 8.03 3.390 8.688	4 0.61 ********* H 100 100.00 29.990 33.277 36.5861 0.142
AVERAGE ANNUAL TOTAL PRECIPITATION RUNOFF EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECT FROM LAYER 2 PERCOLATION/LEAKAGE THRO LAYER 4 AVERAGE HEAD ON TOP OF LAYER 3	0.5121 ***********************************	0.412 ******* DEVIAT: .63 .558 .803 .33899 .86880 .856 (<pre>6 0.0001 6 0.6047 ************************************</pre>	0.9040 ********* EARS 1 CU. ME' 1315 394 437 481	0.132 0.842 ******* THROUG TERS 6.3 5.58 8.03 3.390 8.688	4 0.61 ********* H 100 100.00 29.990 33.277 36.5861 0.142
AVERAGE ANNUAL TOTAL AVERAGE ANNUAL TOTAL PRECIPITATION RUNOFF EVAPOTRANSPIRATION LATERAL DRAINAGE COLLECT FROM LAYER 2 PERCOLATION/LEAKAGE THRO LAYER 4 AVERAGE HEAD ON TOP OF LAYER 3 PERCOLATION/LEAKAGE THRO LAYER 5	0.5121 ***********************************	0.412 ******* DEVIAT: .63 .558 .803 .33899 .86880 .856 (.91695	<pre>6 0.6081 6 0.6047 ************************************</pre>	0.9040 ********** EARS 1 	0.132 0.842 ******* THROUG 6.3 5.58 8.03 3.390 8.688 9.169	4 0.61 ********* H 100 100.00 29.990 33.277 36.5861 0.142 0.145

* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *

***************************************	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *
PEAK DAILY VALUES FOR YEARS	1 THROUGH 1	00
	(MM)	(CU. METERS)
PRECIPITATION	132.10	1321.000
RUNOFF	167.901	1679.0068
DRAINAGE COLLECTED FROM LAYER 2	50.49998	504.99985
PERCOLATION/LEAKAGE THROUGH LAYER 4	0.013014	0.13014
AVERAGE HEAD ON TOP OF LAYER 3	272.586	
MAXIMUM HEAD ON TOP OF LAYER 3	422.223	
LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN)	2.0 METERS	
PERCOLATION/LEAKAGE THROUGH LAYER 5	0.035406	0.35406
SNOW WATER	450.58	4505.7515
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	4346
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.	0470
*** Maximum heads are computed using	McEnroe's equa	tions. ***
Reference: Maximum Saturated De by Bruce M. McEnroe, ASCE Journal of Envi Vol. 119, No. 2, Mar	pth over Landfi University of ronmental Engin ch 1993, pp. 26	ll Liner Kansas eering 2-270.

FINAL WAT	ER STORAGE AT	END OF YEAR 100	
LAYER	(CM)	(VOL/VOL)	
1	7.2788	0.3639	
2	1.2400	0.0620	
3	26.7000	0.4450	
4	0.0000	0.0000	
5	4.9321	0.1644	
SNOW WATER	0.079		
*****	* * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *