Implementation of the Remedial Action Plan and Additional Delineation – Year 5, Former U.S. Military Site, Hopedale, NL

Prepared for: Newfoundland Department of Environment and Conservation 4th Floor Confederation Building, West Block St. John's, NL A1B 4J6

Prepared by: Aivek Stantec Limited Partnership 141 Kelsey Drive St. John's, NL A1B 0L2 Tel: (709) 576-1458 Fax: (709) 576-2126

Final Report

File No. 121413099

Executive Summary

Aivek Stantec Limited Partnership (Stantec) was retained by the Newfoundland and Labrador Department of Environment and Conservation (NLDEC) to monitor environmental site remediation, conduct confirmatory sampling and carry out additional delineation during Year 5 of the Implementation of the Remedial Action Plan (RAP) at the Former United States (U.S.) Military Site in Hopedale, Newfoundland and Labrador (NL) (the "Site") (see Drawing No. 121413099-200-EE-01 in Appendix A). The remediation program was carried out in response to a Remedial Action Plan/Risk Management Plan (RAP/RMP) prepared for the Site in 2010 (refer to Stantec Report No. 121410103, dated May 17, 2010).

In 2014, the Government of Newfoundland and Labrador committed funds to support ongoing remediation efforts in Hopedale for three (3) years. The following scope of work was proposed for Year 5 of the Implementation of the RAP:

- 1. Biopile Maintenance and Monitoring
 - Collect five (5) representative soil samples from the impacted material within the biopile and submit for laboratory analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX) and total petroleum hydrocarbons (TPH), inorganics, available metals, microbiology and grain size to document baseline petroleum hydrocarbon concentrations and soil characteristics, and to determine requirements for soil augmentation;
 - Supervise the addition of fertilizer/nutrients to the biopile and biopile cover installation; and,
 - Perform biopile maintenance and monitoring, as required.
- 2. Remediation of Polychlorinated Biphenyl (PCB)-Impacted Soil
 - Supervise the remediation of PCB-impacted soil at the Main Base, in accordance with budget allowances;
 - Collect confirmatory soil samples from the final limits of the excavation(s) and submit for analysis of Total PCBs (rush turnaround time); and,
 - Once confirming results have been received, monitor the backfilling of the excavations with clean fill material (to be sourced from the Community of Hopedale) or site grading, as necessary.
- 3. Remediation of Metals-Impacted Soil
 - Monitor the remediation of metals-impacted soil at the BMEWS, Main Base and POL Compound sites, in accordance with budget allowances;
 - Collect confirmatory soil samples from the final limits of the excavation(s) and submit for analysis of available metals (rush turnaround time); and,
 - Once confirming results have been received, monitor the backfilling of the excavations with clean fill material (to be sourced from the Community of Hopedale) or site grading, as necessary.

- 4. Additional Delineation
 - Perform additional delineation of impacts in soil in areas where historical exceedances were found and the extent of impacts were not delineated at Main Base-Area 1, Old Base 1-Area 1, Old Base 1- Area 2, Pit No. 1–Area 1 and Pit No. 1–Area 2 for PCBs, POL Compound-Area 4 for metals and Pit No. 3-Area 1 for petroleum hydrocarbon by placing test pits with the aid of an excavator and/or collecting surface soil samples manually using shovels.
 - by collecting surface soil samples manually using a shovel.
 - Perform additional delineation of petroleum hydrocarbon impacts in soil in areas where historical exceedances were found and the extent of impacts were not delineated including by collecting surface soil samples manually using a shovel.

Stantec personnel were onsite during site remediation between August 19, 2015 and September 1, 2015. The loading of the impacted soil to the ship took place between September 14 and 16, 2015. Remedial activities were undertaken by Sanexen Environmental Services Inc. (Sanexen) of Brossard, Quebec (QC), who engaged Budgell's Equipment and Rentals (Budgell's) of Triton, NL and local hires. Stantec personnel maintained a record of activities while on-site and collected confirmatory soil samples.

The following is a summary of the results of the remedial and on-site activities carried out at the Site in Year 5.

The existing biopile was sampled following NLDEC's standard Certificate of Approval (COA) for soil treatment facilities. Concentrations of TPH in the composite soil samples exceeded 1,000 mg/kg; therefore, the soil required additional treatment before it could be disposed. Biopile maintenance activities, consisting of the addition of specified nutrients and mechanical aeration were carried out following the placement of TPH-impacted soil in the biopile containment cell. The treatability of the biopile was evaluated and the biopile treatment is anticipated to be effective given the observed baseline soil conditions, however several follow-up activities will be required to ensure successful completion, including: monitoring, addition of specified nutrients, irrigation and aeration.

A total of 749 tonnes of PCB-impacted soil was removed from the north and west areas of Main Base-Area 1 and was transported to Saint-Ambroise, QC by sea for PCB destruction. Confirmatory soil sampling was carried out along the limits of the remedial excavation to determine if the soil remaining on-site contained concentrations of PCBs below the residential site specific target level (SSTL) of 9 mg/kg. To meet the SSTL, additional soil removal is required to the north, centre and west of the Main Base-Area 1 excavations in the vicinity of samples 15-MB-BS103, 15-MB-BS104, 15-MB-BS111, 15-MB-BS112, 15-MB-BS114, 15-MB-BS115 and 15-MB-TP102-BS1. PCB-soil removal is also required in the vicinity of samples 22705 (referred to as "Main Base-Area 4"), 6546 (referred to as "Main Base-Area 5") and 13-POLW-BS10 (referred to as "POL West-Area 1") that have not yet been remediated. Sludge removal is required at the septic tank along the northern of the Main Base (referred to as "Main Base-Area 6").

- A total of 201.6 tonnes of metals-impacted soil was removed from impacted areas of the Site and was transported to Chicoutimi, QC for treatment. Confirmatory soil sampling was carried out along the limits of the remedial excavations to determine if soil remaining on-site contained concentrations of metals below the applicable SSTLs. Metals-impacted soil was removed from the following areas:
- BMEWS: 16 tonnes of metals-impacted soil was removed from the area surrounding sample BS1 (referred to as "BMEWS-Area 4") and from the area surrounding sample BS7 (referred to as "BMEWS-Area 5"). To meet the SSTLs, additional soil removal is required in the areas of samples 15-BMEWS-BS401 to 15-BMEWS-BS404, 15-BMEWS-BS501, 15-BMEWS-BS503 and 15-BMEWS-BS504.
- Main Base: 147 tonnes of metals-impacted soil was removed from the area surrounding samples TP-10, MB-TP2 and MB-TP3 (referred to as "Main Base-Area 2"). To meet the SSTLs, additional soil removal is required in the vicinity of samples 15-MB-BS201 to 15-MB-BS206.
- POL Compound: 18 tonnes of metals-impacted soil was removed from the area surrounding sample BS41 (referred to as "POL-Area 3") and from the area surrounding sample BS39 (referred to as "POL-Area 4"). To meet the SSTLs, additional soil removal is required in the vicinity of samples 15-POL-BS301 to 15-POL-BS303, 15-POL-BS401, 15-POL-BS402 and 15-POL-BS404.
- PCB analysis was conducted on three (3) sediment samples and three (3) surface water samples collected from the Swimming Pond and on five (5) soil samples collected from along the main access road to BMEWS and Main Base. PCBs were not detected in the samples collected from the Swimming Pond. Concentrations of PCBs in the soil samples collected from the road did not exceed the residential SSTL of 9 mg/kg.
- Additional delineation in soil was carried out at the areas known as Main Base-Area 1, Old Base 1-Area 1, Old Base 1-Area 2, Mid-Canada Line-Area 1, Pit No. 1–Area 1, Pit No. 1–Area 2, POL Compound-Area 4 and Pit No. 3-Area 1 where historical exceedances were found and the extent of impacts were not delineated. PCBs in samples 15-MB-BS114, 15-MB-BS115 and 15-MB-TP102-BS1 from Main Base-Area 1 and samples 15-P1-TP201-BS1, 15-P1-TP202-BS2 and 15-P1-TP202-BS3 from Pit No. 2-Area 2 exceeded the SSTL. Some metal parameters in samples 15-POL-BS405 to 15-POL-BS407 at POL Compound-Area 4, samples 15-MCL-BS101 to 15-MCL-BS104 and 15-MCL-BS204 at Mid-Canada Line Areas-1 and 2 and sample 15-OB1-BS101 at Old Base 1-Area 1 exceeded the SSTLs. TPH in samples 15-P3-TP101-BS1, 15-P3-TP102-BS1 and 15-P3-TP103-BS1 at Pit No. 3-Area 1 exceeded the ecological SSTL of 1,700 mg/kg.
- Metal debris removed from the PCB remedial excavation at Main Base (1.66 tonnes) was stockpiled on tarps at the Laydown Area at Pit No. 1. This metal was kept separate from the metal debris unearthed at the BMEWS site. Boulders were placed at the entrance to Pit No.1 to block public access over the winter months. PCBs were detected in the swabs collected from the five (5) pieces of metal that were randomly selected for sampling. The results indicate that PCBs are present on the metal surface or in the residual soil on the debris. The metal debris will be transported to an appropriate treatment or recycling facility at a later date (dependent on the results of additional sampling to be carried out following additional surface cleaning).
- As part of the 2010 Human Health and Ecological Risk Assessment (HHERA) and RAP (Stantec, 2010), certain areas with high concentrations of TPH and metals-impacted soil were

selected for remediation in an attempt to achieve area- and site-wide Exposure Point Concentrations (EPCs) that would be less than the applicable SSTLs. As a result, not all soil with concentrations of TPH and metals exceeding the SSTLs would necessarily be remediated. The final area- and site-wide EPCs can only be verified once the site has been fully remediated and confirmatory soil sample results are available to characterize the actual concentrations of chemicals of concern (COCs) remaining on site.

- As part of the current assessment, forecasted EPCs were generated using available confirmatory soil sampling results and predicted confirmatory soil sampling results (based on concentrations of COCs observed in nearby samples) to predict EPCs once areas designated in the 2010 HHERA and RAP have been remediated. A comparison of the historical versus forecasted EPCs indicates a substantial decrease in EPCs as a result of the multi-year remediation program (1 to 2 orders of magnitude); however, some EPCs are forecasted to remain above the SSTLs for the protection of ecological health. This may indicate the need for re-evaluation of the Ecological Risk Assessment with potential additional remediation. These EPCs include:
 - o modified TPH Areas 1 & 2
 - o antimony Area 3
 - o cadmium Areas 1 & 2, Whole Site
 - o chromium Areas 2 & 3, Whole Site
 - o lead Areas 2 & 3

Recommendations

Based on the results of the Year 5 of the Implementation of the RAP program, Stantec makes the following recommendations:

- 1. Complete the removal of TPH-impacted soil exceeding the ecological SSTL of 1,700 mg/kg in areas specified for remediation at BMEWS (estimated 240 tonnes), Main Base (estimated 530 tonnes) and Pit No. 3 (estimated 7,700 tonnes) as per Table 5.1. Once clean boundaries are obtained, return the site to its original condition. This will include backfilling, levelling and/or the placement of topsoil, as necessary.
- 2. Complete the removal of PCB-impacted soil exceeding the residential SSTL of 9 mg/kg at Main Base (estimated 636 tonnes), Old Base 1 (estimated 170 tonnes) and Pit No. 1 (estimated 420 tonnes) as per Table 5.1. Once clean boundaries are obtained, return the Site to its original condition. This will include backfilling, levelling and/or the placement of topsoil, as necessary.
- 3. Complete the removal of metals-impacted soil exceeding the ecological SSTLs of 1.3 mg/kg for cadmium, 20 mg/kg for chromium and 75 mg/kg for lead at the Mid-Canada Line (estimated 17 tonnes) as per Table 5.1. Once clean boundaries are obtained, return the Site to its original condition. This will include backfilling, levelling and/or the placement of topsoil, as necessary.
- 4. Remove excess soil from the metal debris removed from Main Base and re-sample. The metal debris is currently stockpiled on liners at the Laydown Area. If metal contains PCBs, treat as PCB-impacted waste and transport to an appropriate facility for treatment and disposal; otherwise, transport off-site to a metal recycling facility.
- 5. Transport un-impacted metal debris from BMEWS off-site to a metal recycling facility. The metal debris is currently stockpiled on liners at the Laydown Area.

- 6. Monitor concentrations of TPH in the biopile and perform maintenance activities, as necessary. Collect composite soil samples for the laboratory analysis of metals leachability to confirm disposal options.
- 7. Once site remediation is complete, re-evaluate area- and site-wide EPCs for comparison to the SSTLs.
- 8. Continue remediation efforts at the Former U.S. Military Site in accordance with the RAP/RMP and the recommendations provided by the Stakeholder Scientific Advisory Working Group.

The statements made in the Executive Summary are subject to the same limitations included in the Closure Section 7.0 and are to be read in conjunction with the remainder of this report.

Table of Contents

EXECU	JTIVE SUMA	1ARY	I
1.0	INTRODUC		1
1.1	Site Descr	iption and History	1
1.2	Previous Environmental Investigations		
1.3	Scope of	Work	9
1.4	Regulator	y Framework	10
2.0	DESCRIPTI	ON OF SITE WORK	11
2.1	Biopile Co	onfirmatory Soil Sampling	12
2.2	Site Prepo	aration	.13
2.3	Excavatio	on of PCB-Impacted Soil and Confirmatory Sampling	14
	2.3.1	Main Base	.14
2.4	Excavatio	on of Metals-Impacted Soil and Confirmatory Sampling	15
	2.4.1	BMEWS	.16
	2.4.2	Main Base	.16
	2.4.3	POL Compound	16
2.5	Shipment	of PCB and Metals-Impacted Soil	.17
2.6	Biopile Mo	aintenance	18
2.7	Backfilling	and Reinstatement Activities	18
2.8	Addition	I Delineation	. 19
	2.8.1	Main Base	.19
	2.8.2	POL Compound	.19
	2.8.3	Mid-Canada Line	19
	2.8.4	Old Base 1	20
	2.8.5	Pit No. 1	20
	2.8.6	Pit No. 3	20
3.0	LABORAT	ORY RESULTS	21
3.1	Petroleum	n Hydrocarbons	.21
	3.1.1	Biopile	.21
	3.1.2	Main Base	21
	3.1.3	Pit No. 3	21
3.2	Available	Metals	.22
	3.2.1	Biopile	22
	3.2.2	BMEWS	22
	3.2.3	Main Base	23
	3.2.4	POL Compound	23
	3.2.5	Mid-Canada Line	24
3.3	PCBs		.25
	3.3.1	Main Base	25
	3.3.2	Old Base 1	25
	3.3.3	Pit No. 1	.26

	3.3.4 Main Access R	20ad	26
	3.3.5 Swab Samples	5	26
	3.3.6 Swimming Por	nd2	27
3.4	Inorganics		27
	3.4.1 Biopile		27
3.5	Microbiology		27
	3.5.1 Biopile		27
3.6	Grain-Size		28
	3.6.1 Biopile		28
4.0	EVALUATION OF BIOPILE	SOIL TREATABILITY	28
4.1	Soil Physical Composition	۲۲	28
4.2	Nutrients	2	<u>28</u>
4.3	Biodegradation Indicate	vrs	<u>2</u> 9
4.4	Toxicity to Microorganism	ns2	<u>2</u> 9
4.5	Temperature	2	<u>2</u> 9
4.6	Treatment Time		<u>2</u> 9
4.7	Conclusion		30
5.0	SUMMARY OF ADDITION	AL SOIL REQUIRING REMEDIATION	30
5.1	Forecasted EPCs		32
6.0	CONCLUSIONS AND REC	OMMENDATIONS	35
6.1	Conclusions		35
6.2	Recommendations		37
7.0	CLOSURE		38
8.0	REFERENCES	4	10

LIST OF APPENDICES

APPENDIX A	Drawings
APPENDIX B	Site Photographs
APPENDIX C	Laboratory Analytical Results Summary Tables
APPENDIX D	Laboratory Analytical Reports
APPENDIX E	Symbols and Terms, Test Pit Logs
APPENDIX F	PCB Destruction Certificates and Metal-Impacted Soil Bill of
	Ladings/Weigh Slips
APPENDIX G	ProUCL Output

LIST OF DRAWINGS

Drawing No. 121413099-200-EE-01	Site Location Plan	Appendix A
Drawing No. 121413099-200-EE-02	Site Plan	Appendix A
Drawing No. 121413099-200-EE-03	Remediation Areas and Sample	
	Location Plan – BMEWS	Appendix A
Drawing No. 121413099-200-EE-04	Remediation Areas and Sample	
	Location Plan – Main Base	Appendix A
Drawing No. 121413099-200-EE-05	Remediation Areas and Sample	
	Location Plan – POL Compound	Appendix A
Drawing No. 121413099-200-EE-06	Sample Location Plan – Old Base 1.	Appendix A
Drawing No. 121413099-200-EE-07	Sample Location Plan – Mid-	
	Canada Line	Appendix A
Drawing No. 121413099-200-EE-08	Sample Location Plan – Pit No. 1	Appendix A
Drawing No. 121413099-200-EE-09	Sample Location Plan – Pit No. 3	Appendix A
Drawing No. 121413099-200-EE-10	Sample Location Plan – Swimming	
	Pond	Appendix A
Drawing No. 121413099-200-EE-11	Test Pit Location Plan – Biopile	Appendix A

LIST OF TABLES

Table 1.1	Summary of Remedial Targets
Table 2.1	Assigned Names for Remedial Areas
Table 5.1	Summary of TPH, PCB and Metals-Impacted Soil Requiring
	Remediation Based on SSTLs and EPCs – BMEWS, Old Base 1, Main
	Base, Mid-Canada Line, Pit No. 1 and Pit No. 3
Table 5.2	Exposure Point Concentrations
Table C.1	Results of Laboratory Analysis of Petroleum Hydrocarbons
	in Soil – Biopile Appendix C
Table C.2	Results of Laboratory Analysis of Petroleum Hydrocarbons
	in Soil – Main Base
Table C.3	Results of Laboratory Analysis of Petroleum Hydrocarbons
	in Soil – Pit No. 3 Appendix C
Table C.4	Results of Laboratory Analysis of Available Metals in
	Soil – Biopile
Table C.5	Results of Laboratory Analysis of Available Metals in
	Soil – BMEWS Appendix C
Table C.6	Results of Laboratory Analysis of Available Metals in
	Soil – Main Base Appendix C
Table C.7	Results of Laboratory Analysis of Available Metals in Soil
	in Soil – POL Compound
Table C.8	Results of Laboratory Analysis of Available Metals in Soil
	in Soil – Mid-Canada Line
Table C.9	Results of Laboratory Analysis of PCBs in Soil – Main Base Appendix C
Table C.10	Results of Laboratory Analysis of PCBs in Soil – Old Base 1 Appendix C
Table C.11	Results of Laboratory Analysis of PCBs in Soil – Pit No. 1 Appendix C
• • •	

Table C.12 Table C.13	Results of Laboratory Analysis of PCBs in Soil – Road Appendix C Results of Laboratory Analysis of PCBs on Metal Debris Appendix C
Table C.14	Results of Laboratory Analysis of PCBs in Sediment –
	Swimming Pond
Table C.15	Results of Laboratory Analysis of PCBs in Surface Water –
	Swimming Pond Appendix C
Table C.16	Results of Laboratory Analysis of Inorganics in Soil - Biopile Appendix C
Table C.17	Results of Laboratory Analysis of PCBs in Microbiology in
	Soil - Biopile Appendix C
Table C.18	Results of Laboratory Grain Size Analysis of Soil - Biopile Appendix C

INTRODUCTION August 26, 2016

1.0 INTRODUCTION

Aivek Stantec Limited Partnership (Stantec) was retained by the Newfoundland and Labrador Department of Environment and Conservation (NLDEC) to monitor environmental site remediation, conduct confirmatory sampling and carry out additional delineation during Year 5 of the Implementation of the Remedial Action Plan (RAP) at the Former United States (U.S.) Military Site in Hopedale, Newfoundland and Labrador (NL) (the "Site") (see Drawing No. 121413099-200-EE-01 in Appendix A). The remediation program was carried out in response to a Remedial Action Plan/Risk Management Plan (RAP/RMP) prepared for the Site in 2010 (refer to Stantec Report No. 121410103, dated May 17, 2010).

The following report describes the work completed during Year 5 of the Implementation of the RAP field program and was prepared specifically and solely for the above project. It presents all of the factual findings and laboratory results of the field work completed at the Site between August and November 2015.

1.1 Site Description and History

The Inuit Community of Hopedale is located on the Labrador coast, 148 air miles to the north of Goose Bay, Labrador and has no outside road access. Coastal boat service is available to the community from mid-summer to late fall.

Construction of a military base and radar site in Hopedale, NL commenced in 1952 and was completed in 1957. The military base and radar site in Hopedale was a station on the United States Air Force (USAF) Pinetree Line and was also the most easterly site on the Mid-Canada Line of antennae stations which had extended across the country. The military base and radar site was one of a series of sites that functioned as a Ballistic Missile Early Warning System (BMEWS) where enemy aircraft penetrating the northeastern approaches to the continent were identified and information was communicated to the United States. It has been reported that, during peak operations, the Site housed up to 300 personnel.

In Hopedale, the Former U.S. Military Site consists of three (3) main hilltop installations located north of the community, with various support sites located along the gravel road that extends from the wharf up to the hilltop sites. The three (3) hilltop installations of the Former U.S. Military Site are elevated between 100 m and 150 m above sea level, and include (from west to east): the BMEWS area, the Main Base and the Mid-Canada Line antennae area.

The military base and radar site in Hopedale were operated from 1957 until 1969 by the United States government. The base was closed down in 1969 and the radome and radar antennae were removed. Portions of the remaining site were operated by Canadian Marconi as a telecommunications site until 1972 and by ITT as a telecommunications site until 1975. The complex was finally closed in 1975. Most of the remaining aboveground structures were

INTRODUCTION August 26, 2016

demolished and buried in several undocumented locations throughout the Site in the mid-1980s. At that time, limited clean-up efforts were carried out and included the removal and disposal of polychlorinated biphenyl (PCB)-containing transformers. All that currently remains of the Former U.S. Military Site are the foundations and floor slabs of buildings and the foundations and bases of antennae. Two (2) antennae, with associated operations buildings and satellite dishes, are currently being operated by Bell Aliant in the BMEWS area. Four (4) antennae, with associated operations buildings and a helicopter pad, are currently being operated by Nav Canada in the Mid-Canada Line area.

The natural environment in Hopedale is typical of Labrador Coastal Barrens. Bedrock is granite and gneiss, and is largely exposed. Where present, soil cover on the hills is relatively thin (generally < 0.5 m), with accumulations of rock, gravel, sand and organic matter in low lying areas. Deeply incised U-shaped valleys occur in conjunction with steep-sided, rounded mountains and fjords that extend well inland. Large bogs can be found in the low-lying areas.

Drainage from the BMEWS area is in all directions (i.e., to the north, east, south and west), including to the south towards the community's main drinking water supply source, Reservoir Lake (approximately 300 m to the south). Drainage from the Main Base and Mid-Canada Line is in all directions, including to the south and southwest towards the Small Pond Bog, which empties into the stream that flows through the Residential Subdivision and empties into Hopedale Harbour.

During Year 5 of the Implementation of the RAP, remedial activities were carried out in three (3) areas of the Former U.S. Military Site: the BMEWS area, Main Base and the POL Compound. The former Helicopter Pad/Pit No. 1 was used as a staging area for the temporary storage of impacted materials. Test pits were placed at the biopile and additional delineation was also carried out at the Main Base, POL Compound, Old Base 1, Mid-Canada Line, Pit No. 1 and Pit No. 3. At the request of the NLDEC, sediment and surface water samples were collected at the Swimming Pond and soil samples were collected from the roadway to the Site. The locations of these areas in relation to the overall Site are shown on Drawing No. 121413099-200-EE-02 in Appendix A. Sample location plans showing the locations of current samples as well as general site features and sample locations from previous site investigations are provided in Drawing Nos. 121413099-200-EE-03 to 121413099-200-EE-11 in Appendix A.

The BMEWS site has an area of approximately one (1) hectare and is located on top of a hill approximately 800 m northwest of a Residential Subdivision in the Community of Hopedale. The area formerly included four (4) troposcatter antennae (two large and two small) that served as a Ballistic Missile Early Warning System (BMEWS). The area also included operations buildings. Historical photographs indicate the presence of two large aboveground storage tanks in the BMEWS area. All that currently remains in the BMEWS area are the antennae bases (i.e., concrete foundations) and building foundations. Operational telecommunications structures and towers are located in the southwest portion of the BMEWS area. Terrain in the BMEWS area is moderately to steeply sloped and surface drainage (apparent groundwater flow

INTRODUCTION August 26, 2016

direction) appears to be in all directions. Two drainage courses were identified that could potentially transport water from the BMEWS area to Reservoir Lake. Vegetation in the area is limited and consists of patches of grasses and some low bushes. Bedrock and boulder outcroppings are common in the BMEWS area.

The Main Base (also referred to as "the old base", "the upper site" and the "TACAN site" in previous environmental reports) has an area of approximately 45 hectares and is located on the top of a hill approximately 600 m northeast of a Residential Subdivision in the Community of Hopedale. The Main Base served as the Tactical Air Navigation Site (TACAN) when the Site was operational and included the radar complex, maintenance building, generator building, accommodations buildings and several additional buildings required to service the complex. All that remains of the former site infrastructure are the concrete foundations. Terrain in the vicinity of the Main Base is moderately sloped and surface drainage (apparent groundwater flow direction) appears to be in all directions. There are distinct drainage courses in the Main Base area that drain to the northwest through the former sewage outfall area, to the southeast towards Pit No. 2 and to the southwest. The area consists of gravel, bedrock outcrops and low vegetation and alders.

The POL Compound is located south of the main access road, immediately south of Pit No. 1/Helipad. Previous environmental reports revealed that the area was likely used as a former storage area for petroleum, oil and lubricants (POL). It is believed that waste materials at the Site may have been disposed of by pushing materials into the gully to the south. Terrain at the POL Compound consists of a relatively flat area of exposed bedrock and soil, with a vegetated gully located further south. The area is relatively flat, allowing for water to pool in the area during rainfall events. Surface drainage (apparent groundwater flow direction) is expected to be south/southwest towards Old Dump Pond. Standing water and tar-like debris were previously observed in this area.

Old Base 1 is located on a rock outcrop, southwest of the Main Base area. Old Base 1 formerly consisted of a troposcanner communications dish and possibly an emergency shelter for the United States Air Force (USAF). All that currently remains in the area are the concrete communications dish foundations. During previous environmental investigations, a tar-like spill was discovered flowing down a rock outcrop northeast of the communications dish foundations. The spill material was reported as having very high PCB levels (1,020,000 mg/kg) (ESG, 2006). In 2009, the PCB-impacted tar was removed from the Site. PCB-impacted tar and rock were manually removed from the surface of bedrock using hand scrapers and powered chippers.

Pit No. 3 is located south of the Main Base and east of Pit No. 1/Helipad, on the north side of the main access road. The area is heavily worked and consists of gravel, boulders and bedrock outcroppings with low vegetation and some trees along the perimeter of the pit. Terrain in the area slopes moderately to the southwest. Surface drainage (apparent groundwater flow direction) is expected to be to the southeast towards the Small Pond Bog and the Residential Subdivision.

INTRODUCTION August 26, 2016

A Laydown Area was established at the Pit No. 1/Helipad site during Year 1 of the Implementation of the RAP to temporarily store PCB-impacted soil pending shipment out of Hopedale. The Pit No. 1/Helipad area is located off of the main access road. The area is a heavily worked area consisting of gravel and boulders with low vegetation along the perimeter. Terrain in the area is relatively flat, with pooled water along the northwest boundary of the area and a steep drop to the southeast. Surface drainage (apparent groundwater flow direction) is expected to be to the southeast towards Pit No. 3. This area has been identified as a possible former waste site/drum storage area (ESG, 2007).

In 2011, a temporary biopile was constructed adjacent to the community's landfill to receive 5,322 tonnes of total petroleum hydrocarbon (TPH)-impacted soil from the Old School Site in Hopedale, NL (project completed on behalf of the Newfoundland and Labrador Department of Education). Ex-situ soil treatment was carried out in the biopile using enhanced natural attenuation. The biopile consists of one (1) containment cell that measures approximately 61 m long by 22 m wide by 2.5 m deep. In 2014, the biopile was sampled following NLDEC's standard Certificate of Approval (COA) for soil treatment facilities and concentrations of TPH in the composite soil samples were below the landfill acceptance criteria of 1,000 mg/kg. Approvals were obtained from the Happy Valley-Goose Bay Government Service Centre (now Service NL) and the Inuit Community Government of Hopedale to dispose of treated soil in the Hopedale landfill. Soil was transported to the landfill on October 7, 2014 and was stockpiled in a designated area for use as landfill cover material. A 450 mm thick layer of soil was left in place at the bottom of the biopile containment cell to minimize the risk of damage to the bottom liner. In 2014 during Year 4 of the implementation of the remedial action plan, approximately 1,700 tonnes of TPH-impacted soil was removed from impacted areas of the Site (BMEWS, the Main Base and the POL Compound) and placed in the biopile containment cell for treatment. Biopile maintenance activities, consisting of the addition of specified nutrients and mechanical aeration, were carried out following the placement of TPH-impacted soil. A cover was placed over the biopile and was secured in place using clean sand. The cell is constructed with impermeable high density polyethylene (HDPE) liners that extend over perimeter berms with an approximate 1:1 slope. An entrance ramp with a 4:1 slope is present along the southeast portion of the cell. The ground surface surrounding the biopile slopes slightly towards the northeast and is covered with grass, shrubs and some trees. The biopile is bordered by the local landfill to the west, a cemetery to the east and undeveloped land to the northeast and south/southwest. A northeast flowing drainage ditch runs around the biopile, through the local landfill and empties into the waters of Black Head Tickle.

1.2 Previous Environmental Investigations

Several environmental assessment reports have been produced (mainly since 1996) relating to potential and actual contamination at and in the vicinity of the Former U.S. Military Site and Residential Subdivision in Hopedale, Labrador. In 2009 and 2010, Stantec conducted a Phase II/III Environmental Site Assessment (ESA), Human Health and Ecological Risk Assessment (HHERA) and Remedial Action Plan/Risk Management Plan (RAP/RMP) at the Former U.S. Military Site and

INTRODUCTION August 26, 2016

Residential Subdivision on behalf of the NLDEC (refer to Stantec, 2010). Stantec also supervised limited-remediation of PCB-impacted tar in three (3) areas of the site at that time and the removal of total of three (3) tandem dump truck loads of debris from the stream in the Residential Subdivision (surficial debris) and from test pits excavated in the Residential Subdivision (excavated debris).

For the purposes of the 2010 human health risk assessment, the Site was divided into the following two (2) areas to adequately reflect the expected human exposure time and activities: the "Residential Area" where residents of Hopedale would be expected to spend the majority of their time and the "Former Radar Site" where residents of Hopedale would be expected to occasionally visit for recreational purposes (e.g., berry picking, hunting, walking). Ecological receptors with relatively small home ranges could spend their entire life in one particular portion of the Site; therefore, the Site was divided into three (3) areas for the purposes of risk modelling for ecological receptors with relatively small home ranges. Representative Exposure Point Concentrations (EPCs) were used to evaluate potential risks associated with COCs in the various media. An EPC is an estimate of a reasonable upper limit value for the average chemical concentration in the medium, determined for each exposure unit (USEPA, 1989). The appropriate upper confidence limit (UCL) provides reasonable confidence that the true site average will not be underestimated (USEPA, 1992). The results of the HHERA indicated the potential for adverse risks to human and/or ecological receptors from exposure to TPH, PCBs and/or metals impacts at the Site; therefore, precautionary actions, remedial activities and risk management strategies were recommended for the control of hazards identified at the Site.

Stantec recommended that soil be remediated in certain areas of the Site in order to eliminate unacceptable risks to individual human receptors and to populations of ecological receptors. It was recommended that all soil containing concentrations of chemicals of concern (COCs) in exceedance of site-specific target levels (SSTLs) derived for the protection of human health be remediated (PCB and antimony-impacted soil in the Residential Area and PCB-impacted soil at the Former Radar Site). In 2014, NLDEC requested that Stantec apply the residential SSTL of 9 mg/kg to PCB-impacted soil over the entire site. This decision was made following consultation with the Inuit Community Government of Hopedale (ICGH) based on their potential future plans for residential expansion in certain areas of the Former Radar Site, as well as their concerns with maintaining traditional use of the land around the Former Radar Site.

It was also recommended that selected areas containing concentrations of COCs in exceedance of SSTLs derived for the protection of ecological health (TPH, lead, antimony, chromium and cadmium) be remediated in order to produce area- and site-wide EPCs less than the calculated SSTLs.

The remedial targets applied in the RAP and areas requiring remediation are summarized in Table 1.1. Additional information on how the SSTLs were calculated and how the remedial areas were selected is provided in the 2010 HHERA (Stantec, 2010).

INTRODUCTION August 26, 2016

Chemical of Concern	Remedial Target (mg/kg)	Source	Areas Requiring Remediation
		HHRA	Old Dump Pond*
	9		Wharf Area/Pipeline**
			Residential Subdivision (stream)**
PCBs			BMEWS**
			Main Base*
			Old Base1
			Pit No. 1
	1,700	ERA	BMEWS*
TPH			Main Base*
			Pit No. 3
Metals (Residential Area)	Antimony: 30	HHRA	Old Dump Pond*
	Antimony: 5	ERA	BMEWS
Metals (Former	Chromium: 20		Main Base
Radar Site)	Cadmium: 1.3		Mid-Canada Line
	Lead: 75		POL Compound*
Notes:			
* Area partially remediated during Years 1 to 4 of the Implementation of the RAP. ** Area fully remediated during Years 1 to 4 of the Implementation of the RAP.			

Table 1.1 Summary of Remedial Targets

In the summer of 2010, Stantec conducted additional soil and sediment delineation, soil vapour monitoring, and a preliminary marine sampling program at the Site to address data gaps and/or actions recommended in the 2010 Phase II/III ESA and HHERA report, and recommendations provided through consultation with the Nunatsiavut Government (NG) (refer to Stantec, 2011). Volume estimates were refined for areas requiring soil remediation. Elevated concentrations of PCBs were detected in sediment and fish samples collected from Hopedale Harbour and from select sediment samples collected from freshwater ponds and streams near the Former U.S. Military Base; therefore, a comprehensive marine study was recommended.

A Stakeholder Scientific Advisory Working Group (referred to as the "Stakeholder Committee") consisting of representatives from the Inuit Community Government of Hopedale (ICGH), NG, Labrador Grenfell Health, the Labrador and Aboriginal Affairs Office, NLDEC and technical advisors was established in 2011 to advise on go-forward work plans at the Site. Based on the remedial options evaluation, the preferred options for soil remediation were as follows:

- PCB-Impacted Soil: Stockpile soil and transport to a licensed soil treatment facility.
- TPH-Impacted Soil: Pre-treat soil in temporary on-site biopile and place soil in the local landfill once treated.
- Metals-Impacted Soil: Stockpile soil and transport to a licensed soil treatment facility.

INTRODUCTION August 26, 2016

Priorities were assigned to different areas requiring remediation, with the highest priority assigned to PCB-impacted soil in the Residential Area and PCB-impacted soil located up-gradient of the community water supply source (the BMEWS site), followed by PCB-impacted areas in the remaining areas, then TPH-impacted areas and then metals-impacted areas. Consideration was given to the anticipated soil treatment times for TPH when preparing a go forward work plan.

In 2011, the Government of Newfoundland and Labrador committed funds to support remediation efforts in Hopedale for three (3) years. During each year, site remediation and investigative work was conducted in accordance with NLDEC budget allowances. Between 2011 and 2013, remediation was carried out in the Residential Subdivision, Old Dump Pond, Pipeline/Wharf and BMEWS areas. A total of 2,265.15 tonnes of PCB-impacted soil was transported off-site for treatment and disposal at an approved soil treatment facility in Saint-Ambroise, Québec (QC). With the exception of a strip of un-remediated soil located adjacent to the Old Dump Pond, no further PCB remediation was deemed necessary in these areas in accordance with SSTLs calculated for the Site as part of the HHERA (Stantec, 2010). The calculated SSTLs for PCBs in soil were 9 mg/kg for the Residential Subdivision, the Old Dump Pond area and the Wharf Area/Pipeline area, and 22 mg/kg for the BMEWS area. Remedial activities were described in written reports prepared following each year of Implementation of the RAP (refer to Stantec, 2012, Stantec, 2014a and Stantec, 2014b). During the 2011 to 2013 period, a comprehensive Marine Study was also carried out in Hopedale Harbour and in freshwater lakes surrounding Hopedale. The results of the Marine Study were summarized in a Summary Report on Loadings, Sediment Inventory and Present and Future Outlook for PCB Impacts in Hopedale Harbour report (refer to Stantec, 2014c) and were included in a Human Health Risk Assessment for the Consumption of Country Foods in the Town of Hopedale (Stantec, 2014d). Additional soil delineation was carried out in several areas of the Site in 2014 to refine volume estimates in support of future remediation programs (Stantec, 2014e).

In 2014, the Government of Newfoundland and Labrador committed funds for an additional three (3) years to support ongoing remediation efforts in Hopedale. The following scope of work was recommended for Years 4 to 6 of the Implementation of the RAP:

<u>Year 4 (2014-2015)</u>

- Removal of treated soil from the temporary biopile.
- Remediation of PCB-impacted soil at the Main Base (estimated 1,500 tonnes).
- Remediation of TPH-impacted soil at the Main Base, BMEWS and POL Compound, with associated soil placement in the temporary biopile (estimated 1,700 tonnes).

INTRODUCTION August 26, 2016

Year 5 (2015-2016)

- Remediation of impacted soil in areas that were not finished in Year 4, if necessary.
- Remediation of PCB-impacted soil at Old Base 1 and Pit No. 1 (estimated 670 tonnes).
- Remediation of metals-impacted soil at Old Dump Pond, BMEWS, Main Base, Mid-Canada Line and POL Compound (estimated 200 tonnes).
- Biopile maintenance, including soil tilling and nutrient placement.

<u>Year 6 (2016-2017)</u>

- Remediation of impacted soil in areas that were not finished in Year 4 or 5, if necessary.
- Removal of treated soil from the temporary biopile.
- Remediation of TPH-impacted soil at Pit No. 3 (estimated 7,110 tonnes).

Site remediation and investigative work was to be conducted in accordance with annual NLDEC budget allowances. The work scope was meant to be revised each year and was meant to be flexible based on the actual volumes of soil removed from each site and the time required for treatment of TPH-impacted soil in the biopile. The proposed work scope was designed based on the assumption that it would take only 2 years for concentrations of TPH in soil to be reduced below the landfill acceptance criteria of 1,000 mg/kg. The Stakeholder Committee agreed with the above recommendations for the Years 4 to 6 of the Implementation of the RAP.

In 2014, remediation was carried out in the Main Base, BMEWS and POL Compound areas. Remedial activities were described in the written report prepared in 2015 (refer to Stantec, 2015a). A total of 1,513.62 tonnes of PCB-impacted soil was removed from the Main Base area and transported off-site for treatment and disposal at an approved soil treatment facility in Saint-Ambroise, QC. Following remediation, additional soil removal was required along the northern limits of the remedial excavation, in the area of Main Base-Area 4, Main Base-Area 5 and POL West-Area 1 in accordance with the SSTL for PCBs calculated for the Site as part of the HHERA (Stantec, 2010). Sludge removal was also required at the septic tank at Main Base-Area 6. Metal debris removed from the PCB remedial excavation at Main Base (1.66 tonnes) was stockpiled on tarps at the Laydown Area at Pit No. 1. Removed metal debris was to be transported to an appropriate treatment or recycling facility at a later date (dependent on the results of additional sampling to be carried out following additional surface cleaning).

In 2014, the biopile was sampled following NLDEC's standard Certificate of Approval (COA) for soil treatment facilities and concentrations of TPH in the composite soil samples were below the landfill acceptance criteria of 1,000 mg/kg. Approvals were obtained from the Happy Valley-Goose Bay Government Service Centre (now Service NL) and the Inuit Community Government of Hopedale to dispose of treated soil in the Hopedale landfill. Soil was transported to the landfill on October 7, 2014 and was stockpiled in a designated area for use as landfill cover material. A 450 mm thick layer of soil was left in place at the bottom of the biopile containment cell to minimize the risk of damage to the bottom liner. Approximately 1,700 tonnes of TPH-impacted

INTRODUCTION August 26, 2016

soil was then removed from impacted areas of the Site (BMEWS, the Main Base and the POL Compound) and placed in the biopile containment cell for treatment. Biopile maintenance activities, consisting of the addition of specified nutrients and mechanical aeration, were carried out following the placement of TPH-impacted soil. A cover was placed over the biopile and was secured in place using clean sand. Metal debris removed from the TPH remedial excavations at BMEWS was stockpiled on tarps at the Laydown Area at Pit No. 1 and kept separate from the metal debris unearthed at the Main Base site. Metal debris will be transported to a metal recycling facility at a later date. Following site remediation, additional TPH-impacted soil removal was required based on the SSTL along the southeast sidewall of BMEWS-Area 1, in the area of BMEWS-Area 3, to the east, south and west of Main Base-Area 7 and in the area of Main Base-Area 9. Remediation of TPH-impacted soil at Main Base-Area 7 and at the POL Compound is deemed complete in accordance with the SSTL calculated for the Site as part of the HHERA (Stantec, 2010).

1.3 Scope of Work

The scope of work for Year 5 of the Implementation of the Remedial Action Plan was as follows:

- 1. Biopile Maintenance and Monitoring
 - Collect five (5) representative soil samples from the impacted material within the biopile and submit for laboratory analysis of TPH/BTEX, inorganics, available metals, microbiology and grain size to document baseline petroleum hydrocarbon concentrations and soil characteristics, and to determine requirements for soil augmentation;
 - Supervise the addition of fertilizer/nutrients to the biopile and biopile cover installation; and,
 - Perform biopile maintenance and monitoring, as required.
- 2. Remediation of PCB-Impacted Soil
 - Supervise the remediation of PCB-impacted soil at the Main Base, in accordance with budget allowances;
 - Collect confirmatory soil samples from the final limits of the excavation(s) and submit for analysis of Total PCBs (rush turnaround time); and,
 - Once confirming results have been received, monitor the backfilling of the excavations with clean fill material (to be sourced from the Community of Hopedale) or site grading, as necessary.
- 3. Remediation of Metals-Impacted Soil
 - Monitor the remediation of metals-impacted soil at the BMEWS, Main Base and POL Compound sites, in accordance with budget allowances;
 - Collect confirmatory soil samples from the final limits of the excavation(s) and submit for analysis of available metals (rush turnaround time); and,
 - Once confirming results have been received, monitor the backfilling of the excavations with clean fill material (to be sourced from the Community of Hopedale) or site grading, as necessary.

INTRODUCTION August 26, 2016

- 4. Additional Delineation
 - Perform additional delineation of PCB impacts in soil in areas where historical exceedances were found and the extent of impacts were not delineated including Main Base-Area 1, Old Base 1-Area 1, Old Base 1- Area 2, Pit No. 1–Area 1, Pit No. 1–Area 2 by placing test pits with the aid of an excavator and/or collecting surface soil samples manually using shovels.
 - Perform additional delineation of metals impacts in soil in areas where historical exceedances were found and the extent of impacts were not delineated including POL Compound-Area 4 by collecting surface soil samples manually using a shovel.
 - Perform additional delineation of petroleum hydrocarbon impacts in soil in areas where historical exceedances were found and the extent of impacts were not delineated including Pit No. 3-Area 1 by collecting surface soil samples manually using a shovel.

Backfilling was only completed in areas that were fully remediated in Year 5 in order to reduce the potential for contamination of clean material. Topsoil was not placed in Year 5 due to wet conditions at the time remediation was completed and the increased potential for soil erosion. These items will be completed before the end of the 3-year contract.

Following the tendering process in 2014, Sanexen Environmental Services Inc. (Sanexen) was retained by NLDEC for remedial work at the Former U.S. Military Site and Residential Subdivision during Years 4 to 6 of the Implementation of the RAP. Sanexen was responsible for site preparation, the excavation of impacted soil and debris from specified areas, and the proper disposal of impacted materials (including shipment).

1.4 Regulatory Framework

NLDEC Policy Directive PPD05-01 allows a site owner to use either of two approaches when remediating chemical impacts on a site. These approaches are outlined in the *Guidance Document for the Management of Impacted Sites*, Version 2.0 (January 2014). The purpose of this guidance document is to provide a clear process for the management of impacted sites in Newfoundland and Labrador that result in the satisfactory resolution of environmental contamination, which may present an unacceptable risk to human health and ecological receptors. The guidance document incorporates recent scientific and regulatory advances in this area that have resulted from work at the international, national and regional levels.

Remediation of chemical impacts in various site media (e.g., soil, sediment, groundwater, surface water) can be completed using a criteria-based approach or a risk-based approach. Under the criteria-based remedial approach, the defined site impacts are remediated to levels below existing regulatory guidelines for the appropriate media. Under the risk-based remedial approach, the defined site impacts are remediated to levels below site-specific target levels (SSTLs) that are developed for the site during a site-specific human health risk assessment (HHRA) and ecological risk assessment (ERA) (if necessary).

DESCRIPTION OF SITE WORK August 26, 2016

For simple sites and sites with limited impacts, a criteria-based approach to remediation is often applied to guide the extent of removal of impacted media from the site. For more complex sites and sites with extensive impacts from multiple COCs, a human health and/or ecological risk assessment is often completed, based on the actual site conditions and the actual human and ecological usage of the site, to derive SSTLs to determine remedial options or a risk management strategy for the site. Experience at other former Pinetree military sites in Newfoundland and Labrador indicates that a risk-based remedial approach is the most appropriate for a complex site such as the one in Hopedale.

As part of the HHERA (Stantec, 2010), SSTLs were calculated for certain metals, petroleum hydrocarbons and PCBs. Where necessary, SSTLs were derived in accordance with the methods presented in A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines (Canadian Council of Ministers of the Environment (CCME), 2006). The specific methods employed to develop the SSTLs are consistent with CCME and Health Canada protocols as referenced above, and with standard human health risk assessment methodologies. The derivation of SSTLs for petroleum hydrocarbons (TPH, BTEX) was made with the aid of Groundwater Services, Inc. (GSI) RBCA Toolkit for Atlantic Canada, Version 2.1. The spreadsheet model is based on the exposure and mass transport equations presented in the appendix of the ASTM PS-104 Standard Provisional Guide for Risk-Based Corrective Action (ASTM, 2000). Table 1.1 in Section 1.2 summarizes the SSTLs applied as remedial targets at the Site.

For the work completed at the biopile, the provincial Guidelines for Construction and Operation of Facilities using Ex-Situ Bioremediation for the Treatment of Petroleum Contaminated Soil (GD-PPD013 rev. 4, dated August 2008) were referenced. "Clean soils" are defined as those having concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) parameters below the Canadian Council of Ministers of the Environment (CCME) Canadian Soil Guidelines (CSQGs) for a commercial site and below 1,000 mg/kg for TPH. Inorganic parameters were also compared to the CCME CSQGs for a commercial site. Landfill facilities in Newfoundland and Labrador typically accept "clean soils" for use as cover material; however, soil acceptance is ultimately at the discretion of the landfill operator. The latest update of the CCME CSQGs was obtained online at http://ceqg-rcqe.ccme.ca/.

2.0 DESCRIPTION OF SITE WORK

Year 5 site remediation activities at the Former U.S. Military Site consisted of site preparation, biopile maintenance activities, the excavation and removal of TPH and PCB-impacted soil (Main Base-Area 1), the excavation and removal of metals-impacted soil (BMEWS-Area 4, BMEWS-Area 5, Main Base-Area 2, POL-Area 3 and POL-Area 4), confirmatory soil sampling, shipment of PCB-impacted soil to an approved soil treatment facility, shipment of metals-impacted soil to an approved soil treatment. Stantec personnel were onsite during

DESCRIPTION OF SITE WORK August 26, 2016

site remediation between August 19, 2015 and September 1, 2015. The loading of the impacted soil to the ship took place between September 14 and 16, 2015.

Remedial activities were undertaken by Sanexen Environmental Services Inc. (Sanexen) of Brossard, Quebec (QC) under separate contract to NLDEC. Sanexen engaged Budgell's Equipment and Rentals (Budgell's) of Triton, NL, who provided heavy equipment, including excavators, loaders and dump trucks, equipment operators and labourers. Sanexen supplied a scale system to weigh remediated soil, metal debris and backfill. The scale was installed on a front end loader and was calibrated on-site. Stantec personnel maintained a record of activities while on-site and collected confirmatory soil samples.

Between October 30 and November 1, 2015, Stantec personnel collected additional soil samples from hand-dug or machine excavated test pits at Main Base-Area 1, Old Base 1-Area 1, Old Base 1-Area 2, Pit No. 1–Area 1, Pit No. 1–Area 2, POL Compound-Area 4 and Pit No. 3-Area 1. Due to the shallow depth to bedrock in some areas, an excavator was not deemed necessary for all of the test pit excavations. Sample locations were selected in the field by Stantec personnel. Subsurface conditions encountered in the test pits were logged by Stantec personnel at the time of sampling.

2.1 Biopile Confirmatory Soil Sampling

On August 19, 2015, confirmatory soil sampling was carried out at the biopile to confirm that concentrations of TPH in soil were below the landfill acceptance criteria of 1,000 mg/kg and to document soil characteristics (i.e., microbial content, nutrient concentrations, soil texture, moisture content, pH, etc.) to determine future requirements for soil augmentation. The HDPE cover was removed and test pits were excavated with the aid of a track-mounted excavator supplied and operated by Budgell's. Stantec personnel recorded details of subsurface conditions encountered during excavation and collected confirmatory soil samples.

Soil sampling was carried out following composite soil sampling protocols outlined in NLDEC's standard Certificate of Approval (COA) for soil treatment facilities. Soil samples were collected from fifteen (15) test pits by bulk sample methods over continuous 0.5 m intervals, to a maximum depth of 2.0 m. The test pits were not extended to the bottom of the biopile (approximately 2.5 m deep) in order to prevent damage to the bottom liner. To obtain average petroleum hydrocarbon concentrations within each horizon of the biopile, soil samples from the same depths were combined to form composite samples following the confirmatory sampling protocol provided in NLDEC's standard COA for soil treatment facilities. Two (2) composite samples from the 0.0 m to 0.5 m horizon (15-BP-COMP-A1 and 15-BP-COMP-A2), two (2) composite samples from the 0.5 m to 1.0 m horizon (15-BP-COMP-B1 and 15-BP-COMP-B2), two (2) composite samples from the 1.0 m to 1.5 m horizon (15-BP-COMP-C1 and 15-BP-COMP-C2) and two (2) composite samples from the 1.5 m to 2.0 m horizon (15-BP-COMP-D1 and 15-BP-COMP-D1) were submitted to Maxxam Analytics in St. John's, NL for analysis of petroleum

DESCRIPTION OF SITE WORK August 26, 2016

hydrocarbons. The test pit locations are shown on Drawing No. 121413099-200-EE-11 in Appendix A. Photos taken of the biopile are provided in Appendix B.

The results of biopile sampling indicated that concentrations of TPH in soil were greater than the typical landfill acceptance limit of 1,000 mg/kg; therefore, further *in-situ* treatment of the soil is recommended.

2.2 Site Preparation

Nine (9) areas were assigned for remediation in Year 5, but only six (6) areas were remediated as the maximum allowable tonnages for PCB and metals-impacted soil in Year 5 were reached after the completion of six (6) areas. Table 2.1 presents the names that were used to identify the remedial areas during Year 5 of the Implementation of the RAP.

Assigned Name	Remedial Objective	Impacted Sample Locations
BMEWS-Area 4	Metals	BS1
BMEWS-Area 5	Metals	BS7
Main Base-Area 1	PCBs, TPH	Main Base-Area 1
Main Base-Area 2	Metals	TP10, MB-TP2 and MB-TP3
POL-Area 3	Metals	BS41 and POL-BS10
POL-Area 4	Metals	B\$39
MCL-Area 1 (not remediated in 2015)	Metals	MCL-BS10, BS135
MCL-Area 2 (not remediated in 2015)	Metals	BS257

Table 2.1 Assigned Names for Remedial Areas

The following site preparations were undertaken prior to the commencement of the Year 5 remedial activities:

- The areas requiring remediation were marked out in the field using survey stakes and spray paint based on the results of previous investigations.
- Prior to the remedial excavation of impacted soil, confirmatory soil sampling was conducted along the limits of the marked out remedial areas in areas that were accessible and shallow. Samples were collected at BMEWS-Area 4 (15-BMEWS-BS401 to 15-BMEWS-BS404), BMEWS-Area 5 (15-BMEWS-BS501 to 15-BMEWS-BS504), Main Base-Area 1 (15-MB-BS101 to 15-MB-BS107), Main Base-Area 2 (15-MB-BS201 to 15-MB-BS206), POL-Area 3 (15-POL-BS301 to 15-POL-BS303), POL-Area 4 (15-POL-BS401 to 15-POL-BS404), Mid-Canada Line-Area 1 (15-MCL-BS101 to 15-MCL-BS104) and Mid-Canada Line-Area 2 (15-MCL-BS101 to 15-MCL-BS104). The samples were collected manually by bulk sample methods. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass

DESCRIPTION OF SITE WORK August 26, 2016

> jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in St. John's, NL and Bedford, NS for analysis of TPH, available metals or PCBs, based on the contaminant of concern. Unsubmitted duplicate samples were shipped to Stantec's office in St. John's, NL to be archived. Sample locations are shown on Drawing Nos. 121413099-200-EE-03 to 121413099-EE-11 in Appendix A.

The following site preparations were undertaken at Pit No. 1 prior to the commencement of the Year 4 and 5 remedial activities:

- Boulders at the entrance to the pit were moved to allow access.
- Crushed stone was used to level the Staging Area that would be used to fill soil bags and the Laydown Areas designated for temporary storage of filled soil bags, pending transportation out of Hopedale. Berms were formed along the southeast (downgradient) limits of the worked areas. The staging and laydown areas were covered with 40 mil HDPE liners.

2.3 Excavation of PCB-Impacted Soil and Confirmatory Sampling

2.3.1 Main Base

The remediation of PCB-impacted soil was carried out at Main Base between August 23 and 24, 2015. Remediation progressed until clean boundaries (i.e., less than the remedial target) were encountered or until the annual tonnage allowance was reached. Soil was removed with a Deere 270D track-mounted excavator, a Deere 50C track-mounted mini-excavator and manually using shovels. Soil was loaded into rock trucks and was transported to the Staging Area at Pit No. 1 where it was loaded into UN-approved Quatrex-27 bulk bags with internal membrane using a Deere 50C track-mounted mini-excavator. Once filled, the soil bags were tied shut and temporarily stacked on liners at the Laydown Area. Photos taken during Year 5 of the Implementation of the RAP are provided in Appendix B.

The excavation of PCB-impacted soil at Main Base began in the southern portion of Main Base-Area 1 and extended up-hill to the northwest and northeast. The results of the initial round of confirmatory soil sampling at Main Base-Area 1 indicated that soil along the PCB/TPH remedial excavation boundary at sample locations 15-MB-BS105 to 15-MB-BS107 contained PCBs below the residential SSTL of 9 mg/kg; however, samples 15-MB-BS103 and 15-MB-BS104 contained PCBs exceeding the SSTL (refer to Section 3.2 for further details). The excavation extended to bedrock. The overburden thickness at Main Base-Area 1 ranged from 0 m (exposed bedrock) to approximately 1.9 m. Groundwater was not encountered in the remedial excavation. During the excavation activities, petroleum hydrocarbon staining on the soil was observed in the northeastern corner of the excavation. Sample 15-MB-BS108 was collected from this area. The concentration of PCBs in sample 15-MB-BS108 did not exceed the SSTL of 9 mg/kg, but the TPH concentration in the sample did exceed the SSTL of 1,700 mg/kg. Sample locations are shown on Drawing No. 121413099-200-EE-04 in Appendix A.

DESCRIPTION OF SITE WORK August 26, 2016

The remediation excavation was halted on August 24, 2015 and the Year 5 tonnage was estimated to be 749 tonnes. The Staging Area was remediated at that time by excavating and bagging bottom liners and the upper layer of soil (approx. 5 cm). A total of 480 bags were filled with PCB-impacted soil during Year 5 of the Implementation of the RAP.

Once the remediation of PCB-impacted soil was completed, confirmatory soil samples were collected along the northeast sidewall of the excavation (15-MB-BS109 to 15-MB-BS112) to verify the concentrations of PCBs in soil remaining on the site. No confirmatory soil sampling was conducted along the southeast, southwest or north-central sidewalls of the excavation due to the presence of exposed bedrock. The confirmatory soil samples were collected by bulk sample methods. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of PCBs. Unsubmitted duplicate samples were shipped to Stantec's office in St. John's, NL to be archived. Samples 15-MB-BS111 and 15-MB-BS112 contained PCBs and TPH exceeding the SSTLs.

Buried metal debris was encountered in the Main Base-Area 1 remedial excavation. Metal debris consisted of pipes, girders and rebar and other small pieces of metal. Metal encountered in the excavation was manually segregated from the soil. Residual soil was shaken/scraped from the metal and placed in soil bags, then the metal was transported to the Laydown Area where it was weighed and stockpiled on tarps for sampling and temporary storage. The total weight of metal recovered from the Main Base remedial excavation was 2.26 tonnes. This metal was kept separate from the metal unearthed at BMEWS in 2014. On August 27, 2015, Stantec randomly selected five (5) pieces of metal in the Main Base metal stockpile for PCB sampling. Each piece was swabbed over a 10 cm by 10 cm area (i.e., 100 cm²) using a swab provided by Maxxam Analytics that was saturated with hexane (15-Swab-1 to 15-Swab-5). All swab samples were frozen and shipped on ice in sample coolers to Maxxam Analytics in Bedford, NS for analysis of PCB content.

2.4 Excavation of Metals-Impacted Soil and Confirmatory Sampling

The remediation of metals-impacted soil was carried out at BMEWS-Area 4, BMEWS-Area 5, Main Base-Area 2, POL-Area 3 and POL-Area 4 in Year 5. Remediation progressed in the areas until clean boundaries (i.e., less than the remedial target) were encountered or until the annual tonnage allowance was reached. Soil was removed with a Deere 270D track-mounted excavator and was loaded into rock trucks or tandem dump trucks for transportation to the Staging Area at Pit No. 1. In areas that were difficult to access with heavy machinery and in areas of shallow overburden over bedrock, soil was manually excavated into enviro-bags using shovels and transported to the Staging Area. Photos taken during Year 5 of the Implementation of the RAP are provided in Appendix B.

Confirmatory soil sampling was conducted as remediation progressed to confirm that concentrations of metals in soil remaining at the Site were below the applicable SSTLs.

DESCRIPTION OF SITE WORK August 26, 2016

Confirmatory soil samples were collected from the sidewalls of the excavations. Soils were sampled by bulk sample methods. Sidewall samples were collected just above groundwater, where encountered. In locations were groundwater was not encountered due to the presence of shallow bedrock, sidewall samples were collected just above bedrock. Confirmatory soil sample locations were recorded while in the field in relation to site structures/features. Sample locations are shown on Drawing Nos. 121413099-200-EE-03 to 121413099-200-EE-05 in Appendix A. Where possible, duplicate soil samples were collected at each sample location. The soil samples were visually examined in the field for impacts. The samples were placed into clean glass jars and were placed on ice in sample coolers for transportation. Samples were shipped directly to Maxxam Analytics in St. John's, NL for rush analysis of available metals parameters. Duplicate samples were shipped to Stantec's office in St. John's, NL for archive.

2.4.1 BMEWS

The excavation of metals-impacted soil began at BMEWS at BMEWS-Area 5 on August 29, 2015. The initially staked area was excavated to bedrock, which was encountered at depths ranging from 0.0 m to 0.2 m. Approximately 16 tonnes of metals impacted soil was removed from the excavation. The limits of the BMEWS-Area 5 remedial excavation are shown on Drawing No. 121413099-200-EE-03 in Appendix A. The results of the initial round of confirmatory soil sampling at BMEWS-Area 5 indicated that additional soil removal is required in the vicinity of samples 15-BMEWS-BS501, 15-BMEWS-BS503 and 15-BMEWS-BS504 to meet the SSTLs.

The excavation of metals-impacted soil continued at BMEWS at BMEWS-Area 4 on August 30, 2015. The initially staked area was excavated to bedrock, which was encountered at depths ranging from 0.0 m to 0.15 m. Approximately 20 tonnes of metals impacted soil was removed from the excavation. The limits of the BMEWS-Area 4 remedial excavation are shown on Drawing No. 121413099-200-EE-03 in Appendix A. The results of the initial round of confirmatory soil sampling at BMEWS-Area 4 indicated that additional soil removal is required in the vicinity of samples 15-BMEWS-BS401 to 15-BMEWS-BS404 to meet the SSTLs.

2.4.2 Main Base

The excavation of metals-impacted soil began at Main Base at Main Base-Area 4 on August 25, 2015. The initially staked area was excavated to bedrock, which was encountered at depths ranging from 0.0 m to 0.9 m within the excavation. Approximately 147 tonnes of metals impacted soil was removed from the excavation. The limits of the Main Base-Area 4 remedial excavation are shown on Drawing No. 121413099-200-EE-04 in Appendix A. The results of the initial round of confirmatory soil sampling at Main Base-Area 4 indicated that additional soil removal is required in the vicinity of samples 15-MB-BS201 to 15-MB-BS206 to meet the SSTLs.

2.4.3 POL Compound

The excavation of metals-impacted soil began at the POL Compound at POL-Area 3 on August 30, 2015. The initially staked area was excavated to bedrock, which was encountered at depths

DESCRIPTION OF SITE WORK August 26, 2016

ranging from 0.0 m to 0.2 m. Approximately 7 tonnes of metals impacted soil was removed from the excavation. The limits of the POL-Area 3 remedial excavation are shown on Drawing No. 121413099-200-EE-05 in Appendix A. The results of the initial round of confirmatory soil sampling at POL-Area 3 indicated that additional soil removal is required in the vicinity of samples 15-POL-BS301 to 15-POL-BS303 to meet the SSTLs.

The excavation of metals-impacted soil continued at the POL Compound at POL-Area 4 on August 30, 2015. The initially staked area was excavated to bedrock, which was encountered at depths ranging from 0.0 m to 0.2 m. Approximately 11 tonnes of metals impacted soil was removed from the excavation. The limits of the POL-Area 4 remedial excavation are shown on Drawing No. 121413099-200-EE-05 in Appendix A. The results of the initial round of confirmatory soil sampling at POL-Area 4 indicated that additional soil removal is required in the vicinity of samples 15-POL-BS401, 15-POL-BS402 and 15-POL-BS404 to meet the SSTLs.

2.5 Shipment of PCB and Metals-Impacted Soil

One (1) shipment of PCB-impacted soil and metals impacted soil was made during Year 5 of the Implementation of the RAP. The shipment was done using a ship (the Long Island) owned and operated by Ray Berkshire Ltd. of Arnold's Cove, NL. The soil bags were transported from the Laydown Area to the American Dock (approximately 1 km) using a flatbed truck and rock truck and were loaded onto the ship using a boom. The shipment was loaded between September 14 and 16, 2015 and had an estimated weight of 951 tonnes (749 tonnes of PCB-impacted soil and 202 tonnes of metals-impacted soil). Sanexen provided placards and shipment manifests in accordance with Transportation of Dangerous Goods (TDG) and International Maritime Dangerous Goods (IMDG) codes for the shipment.

The PCB-impacted soil was transported by sea to the Grande-Anse Marine Terminal in Port Saguenay, Quebec (QC) where the soil bags were transferred to B-train tractor trailers and transported approximately 30 km to the Récupère Sol (a division of Benev Capital Inc. (BCI)) thermal treatment facility in Saint-Ambroise, QC. Soil was weighed upon arrival at the facility, for a reported total of 685.1 tonnes. Récupère Sol operates a thermal oxidation treatment unit that operates in accordance with the Quebec Ministry of Sustainable Development, Environment, Wildlife and Parks "<A" Treatment Criteria (i.e., <0.05 mg/kg). The Certificate of Destruction for the PCB-impacted soil removed during Year 5 of the Implementation of the RAP is provided in Appendix F.

The metals-impacted soil was transported by sea to the Grande-Anse Marine Terminal in Port Saguenay, QC where the soil bags were transferred to Parc Environmental AES Inc., a contaminated soil treatment facility, located in Chicoutimi, QC. Soil was weighed upon arrival at the facility, for a reported total of 197.5 tonnes. The Bill of Ladings and Weigh Slips for the metals-impacted soil removed during Year 5 of the Implementation of the RAP is provided in Appendix F.

DESCRIPTION OF SITE WORK August 26, 2016

2.6 Biopile Maintenance

Biopile maintenance activities, consisting of the addition of specified nutrients and mechanical aeration, were completed on August 20, 2015 under the supervision of Stantec personnel. A total of three (3) trenches aligned in a north-south orientation were excavated in parallel succession along the length of the biopile to facilitate the application of nutrients. Each trench measured approximately 1.0 m wide by 1.5 m deep. Excavated soil was temporarily stockpiled in a windrow (i.e., a build-up of material stored along the edge of the newly excavated area) adjacent to the trench from which it was excavated. Caution was taken not to damage the underlying liner during the advancement of each trench. The following nutrients were added evenly to each trench and windrow of excavated soil:

- 29 x 25 kg bags, urea nitrogen fertilizer (46-0-0)
- 3 x 25 kg bags, triple super phosphate fertilizer (0-46-0)
- 2 x 25 kg bags, potassium sulphate fertilizer (0-0-50, plus 17% sulphur)
- 2 x 25 kg bags, ammonium phosphate fertilizer

The trenches were then backfilled with excavated material and the biopile was leveled. Approximately 2:1 slopes were formed along each face of the biopile, as per design specifications. A cover was placed over the containment cell and was secured in place using clean sand. Photos taken of the biopile during Year 5 of the Implementation of the RAP are provided in Appendix B.

2.7 Backfilling and Reinstatement Activities

The Main Base-Area 1 remedial excavation was partially backfilled and levelled following soil removal using approximately 644 tonnes of clean backfill. Backfill consisted of clean 100 mm minus sized material obtained from a local rock pit. The remainder of the remedial areas will be backfilled once remediation is completed during subsequent years of the Implementation of the RAP. Topsoil will also be replaced in selected areas of the Site during subsequent years of the Implementation of the Implementation of the RAP.

The following site closure activities were undertaken at the Site prior to departure:

- The northeast sidewall of the Main Base-Area 1 remedial excavation was sloped as a safety precaution and boulders and barricades were placed along the edge to prevent access.
- The remedial sites were tidied up by removing any debris or equipment.
- Boulders were placed at the entrance to Pit No.1 to block access.
- Public notice signs were installed at the entrance to Pit No. 1 and the Biopile.

DESCRIPTION OF SITE WORK August 26, 2016

2.8 Additional Delineation

2.8.1 Main Base

The field work for the additional delineation for PCBs in soil at Main Base-Area1 was carried out on October 30, 2015 and consisted of the collection of three bulk surface soil samples (15-MB-BS113 to 15-MB-BS116) and the placement of two test pits (15-MB-TP101 and 15-MB-TP102). The surface samples were terminated on bedrock, which was encountered at depths ranging from 0.0 m to 0.03 m. The test pits were also terminated on bedrock at depths of 1.0 m in test pit 15-MB-TP101 and 0.2 m in test pit 15-MB-TP102. See Appendix E for the test pit logs. A sample location plan showing the locations of the soil samples and test pits is provided in Drawing No. 121413099-200-EE-04 in Appendix A. The soil samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of PCBs. The results of the laboratory analysis indicated that PCBs in samples 15-MB-BS114, 15-MB-BS115 and 15-MB-TP102-BS1 exceeded the SSTLs.

2.8.2 POL Compound

The field work for the additional delineation for metals in soil at POL Compound-Area 4 was carried out on November 1, 2015 and consisted of the collection of three bulk surface soil samples (15-POL-BS405 to 15-POL-BS407). The samples were terminated on bedrock, which was encountered at depths ranging from 0.05 m to 0.2 m. A sample location plan showing the locations of the soil samples is provided in Drawing No. 121413099-200-EE-05 in Appendix A. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of available metals. The results of the laboratory analysis indicated that some metal parameters in samples 15-POL-BS405 to 15-POL-BS407 exceeded the SSTLs.

2.8.3 Mid-Canada Line

On August 19, 2015, eight (8) confirmatory soil samples (15-MCL-BS101 to 15-MCL-BS104 and 15-MCL-BS201 to 15-MCL-BS204) were initially collected from the presumed limits of the remedial excavations for Areas 1 and 2 at the Mid-Canada Line during Year 5 of the Implementation of the RAP; however, these areas were not remediated during 2015. The samples were terminated on bedrock, which was encountered at depths ranging from 0.05 m to 0.2 m. A sample location plan showing the locations of the soil samples is provided in Drawing No. 121413099-200-EE-07 in Appendix A. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of available metals. The results of the laboratory analysis indicated that some metal parameters in samples 15-MCL-BS101 to 15-MCL-BS104 and 15-MCL-BS204 exceeded the SSTLs.

DESCRIPTION OF SITE WORK August 26, 2016

2.8.4 Old Base 1

The field work for the additional delineation of PCBs in soil at Old Base-Area 1 and Old Base-Area 2 was carried out on October 30, 2015 and consisted of the collection of three bulk surface soil samples from each area (15-OB1-BS101 to 15-OB1-BS103 and 15-OB1-BS201 to 15-OB1-BS203). The samples were terminated on bedrock, which was encountered at depths ranging from 0.02 m to 0.04 m. A sample location plan showing the locations of the soil samples is provided in Drawing No. 121413099-200-EE-06 in Appendix A. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of PCBs. The results of the laboratory analysis indicated that some metal parameters in sample 15-OB1-BS101 exceeded the SSTLs.

2.8.5 Pit No. 1

The field work for the additional delineation of PCBs in soil at Pit No. 1-Area 1 and Pit No. 1-Area 2 was carried out on October 31, 2015 and consisted of the placement of seven (7) test pits (15-P1-TP101 to 15-P1-TP102 and 15-P1-TP201 to 15-P1-TP205). The test pits were terminated on boulders or bedrock at depths ranging from 1.2 m in test pit 15-P1-TP201 to 2.1 m in test pit 15-P1-TP204, except for test pit 15-P1-TP203 which was terminated at the maximum reach of the backhoe at 2.6 m. Metal debris (drums) and wood debris was noted in test pits 15-P1-TP101 and 15-P1-TP102 and wood debris was noted in test pit 15-P1-TP201. See Appendix E for the test pit logs. A sample location plan showing the locations of the soil samples is provided in Drawing No. 121413099-200-EE-08 in Appendix A. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of PCBs. The results of the laboratory analysis indicated that PCBs in samples 15-P1-TP201-BS1, 15-P1-TP202-BS2 and 15-P1-TP202-BS3 exceeded the SSTL.

2.8.6 Pit No. 3

The field work for the additional delineation of petroleum hydrocarbon impacts in soil at Pit No. 3-Area 1 was carried out on November 1, 2015 and consisted of the placement of three (3) test pits (15-P3-TP101 to 15-P3-TP103) and the collection of a sediment sample from a drainage ditch (15-P3-SED1). The test pits were terminated on boulders or bedrock at depths ranging from 0.3 m in test pits 15-P3-TP102 and 15-P3-TP103 to 0.4 m in test pit 15-P3-TP101. No debris was noted within the test pits. See Appendix E for the test pit logs. A sample location plan showing the locations of the soil samples is provided in Drawing No. 121413099-200-EE-09 in Appendix A. The samples were visually examined in the field for any evidence of impacts and were placed in clean glass jars with Teflon liners. Samples were placed on ice in sample coolers which were shipped to Maxxam Analytics in Bedford, NS for analysis of TPH/BTEX. The results of the laboratory analysis indicated that TPH in samples 15-P3-TP101-BS1, 15-P3-TP102-BS1 and 15-P3-TP103-BS1 exceeded the SSTL.

LABORATORY RESULTS August 26, 2016

3.0 LABORATORY RESULTS

3.1 Petroleum Hydrocarbons

3.1.1 Biopile

Petroleum hydrocarbon (TPH/BTEX) analysis was conducted on nine (9) composite confirmatory soil samples collected from the biopile in August 2015, including one (1) laboratory duplicate sample of 15-BP-COMP-A1 (BTEX and F1 petroleum hydrocarbons only). Results of the laboratory analysis of biopile soil samples for TPH are presented in Table C.1 in Appendix C.

TPH was detected in the eight (8) composite confirmatory soil samples collected from the biopile. The concentrations of TPH ranged from 5,100 mg/kg in sample 15-BP-COMP-D2 to 6,300 mg/kg in 15-BP-COMP-C1, which exceeded the typical landfill acceptance criteria of 1,000 mg/kg. Based on these results, the soil did not yet meet the acceptance criteria for disposal at the local landfill.

Toluene was detected in four (4) soil samples at concentrations ranging from 0.038 mg/kg in sample 15-BP-COMP-D1 to 0.046 mg/kg in sample 15-BP-COMP-A2. The detected toluene concentrations were below the applicable Tier I ESL and Tier I RBSL. Benzene, ethylbenzene and xylenes were not detected in the soil samples.

3.1.2 Main Base

Petroleum hydrocarbon (TPH/BTEX) analysis was conducted on five (5) confirmatory soil samples collected from the limits of the Main Base-Area 1 remedial excavation (15-MB-BS108 to 15-MB-BS112). Results of the laboratory analysis of Main Base soil samples for petroleum hydrocarbons are presented in Table C.2 in Appendix C.

TPH was detected in the five (5) confirmatory soil samples collected from Main Base-Area 1 in Year 5. With the exception of toluene, ethylbenzene and xylenes that were detected below the applicable Tier I ESLs and Tier I RBSLs in sample MB-BS112, BTEX parameters were not detected in the Main Base samples. The concentrations of TPH in samples 15-MB-BS108 (15,000 mg/kg), 15-MB-BS111 (7,700 mg/kg) and 15-MB-BS112 (27,000 mg/kg) exceeded the SSTL of 1,700 mg/kg. Main Base-Area 1 was not completely remediated in Year 5 of the Implementation of the RAP; however, clean boundaries along the west have been determined. The extent of TPH impacts in soil exceeding the SSTL at Main Base-Area 1 has not been fully delineated.

3.1.3 Pit No. 3

Petroleum hydrocarbon (TPH/BTEX) analysis was conducted on three (3) soil samples (15-P3-TP101-BS1, 15-P3-TP102-BS1 and 15-P3-TP103-BS1) and one sediment sample (15-P3-SED1) collected from Pit No. 3-Area 1 as part of the additional delineation conducted in

LABORATORY RESULTS August 26, 2016

October/November 2015. TPH/BTEX analysis (BTEX and PHC F1 only) was also conducted on one laboratory duplicate sample of sample 15-P3-TP102-BS1. Results of the laboratory analysis of Pit No. 3 soil samples for petroleum hydrocarbons are presented in Table C.3 in Appendix C.

TPH was detected in three (3) soil samples and the sediment sample. With the exception of toluene, ethylbenzene and xylenes that were detected below the applicable Tier I ESLs and Tier I RBSLs in sample 15-P3-TP101-BS1, BTEX parameters were not detected in the samples. The concentrations of TPH in samples 15-P3-TP101-BS1 (9,300 mg/kg), 15-P3-TP102-BS1 (3,400 mg/kg) and 15-P3-TP103-BS1 (4,000 mg/kg) exceeded the SSTL of 1,700 mg/kg. The extent of TPH impacts in soil exceeding the SSTL at Pit No. 3-Area 1 has not been fully delineated.

3.2 Available Metals

3.2.1 Biopile

Available metals analysis was conducted on five (5) composite confirmatory soil samples collected from the biopile in 2015 as part of the treatability study completed this year. Results of the laboratory analysis of biopile soil samples for available metals are presented in Table C.4 in Appendix C.

The detected concentrations of one (1) or two (2) metal parameters in five (5) soil samples (i.e., 15-BP-COMP-A1, 15-BP-COMP-B1, 15-BP-COMP-B2, 15-BP-COMP-C1 and 15-BP-COMP-D1) exceeded the applicable CCME guidelines for soil at an industrial site. The following exceedances of the CCME guidelines were detected:

- Chromium (guideline of 87 mg/kg) 15-BP-COMP-A1 (160 mg/kg), 15-BP-COMP-B1 (98 mg/kg), 15-BP-COMP-B2 (90 mg/kg), 15-BP-COMP-D1 (91 mg/kg)
- Copper (guideline of 91 mg/kg) 15-BP-COMP-A1 (92 mg/kg), 15-BP-COMP-B2 (93 mg/kg)

None of the other detected levels of available metals exceeded the applicable CCME guidelines for soil at an industrial site, where such guidelines exist.

3.2.2 BMEWS

Available metals analysis was conducted on eight (8) confirmatory soil samples (15-BMEWS-BS401 to 15-BMEWS-BS404 and 15-BMEWS-BS501 to 15-BMEWS-BS504) collected from the limits of the remedial excavation for BMEWS-Area 4 and BMEWS-Area 5 during Year 5 of the Implementation of the RAP. Results of the laboratory analysis of the confirmatory soil samples for available metals are presented in Table C.5 in Appendix C.

The detected concentrations of one (1) or more metal parameters in seven (7) soil samples (i.e., 15-BMEWS-BS401 to 15-BMEWS-BS404, 15-BMEWS-BS501, 15-BMEWS-BS503 and 15-BMEWS-BS504) exceeded the SSTLs. The following exceedances of the SSTLs for cadmium, chromium and/or lead were detected:

LABORATORY RESULTS August 26, 2016

- Cadmium (SSTL of 1.3 mg/kg) 15-BMEWS-BS401 (2.3 mg/kg), 15-BMEWS-BS402 (4.9 mg/kg), 15-BMEWS-BS403 (5.1 mg/kg), 15-BMEWS-BS404 (5.6 mg/kg), 15-BMEWS-BS504 (8.8 mg/kg)
- Chromium (SSTL of 20 mg/kg) 15-BMEWS-BS401 (33 mg/kg), 15-BMEWS-BS402 (33 mg/kg), 15-BMEWS-BS403 (33 mg/kg), 15-BMEWS-BS404 (26 mg/kg), 15-BMEWS-BS501 (35 mg/kg), 15-BMEWS-BS503 (28 mg/kg), 15-BMEWS-BS504 (29 mg/kg)
- Lead (SSTL of 75 mg/kg) 15-BMEWS-BS403 (100 mg/kg)

None of the other detected levels of available metals exceeded the applicable SSTLs for soil. The extent of metals impacts in soil exceeding the SSTLs at BMEWS-Areas 4 and 5 has not been fully delineated.

3.2.3 Main Base

Available metals analysis was conducted on six (6) confirmatory soil samples (15-MB-BS201 to 15-MB-BS206) collected from the limits of the remedial excavation of Main Base-Area 2 during Year 5 of the Implementation of the RAP. Results of the laboratory analysis of the confirmatory soil samples for available metals are presented in Table C.6 in Appendix C.

The detected concentrations of one (1) or more metal parameters in six (6) soil samples (i.e., 15-MB-BS201 to 15-MB-BS204) exceeded the SSTLs. The following exceedances of the SSTLs for antimony, cadmium, chromium and/or lead were detected:

- Antimony (SSTL of 5 mg/kg) 15-MB-BS201 (10 mg/kg), 15-MB-BS206 (97 mg/kg)
- Cadmium (SSTL of 1.3 mg/kg) 15-MB-BS201 (1.7 mg/kg); 15-MB-BS206 (5.1 mg/kg)
- Chromium (SSTL of 20 mg/kg) 15-MB-BS201 (28 mg/kg), 15-MB-BS202 (65 mg/kg), 15-MB-BS203 (26 mg/kg), 15-MB-BS204 (23 mg/kg), 15-MB-BS205 (100 mg/kg), 15-MB-BS206 (56 mg/kg)
- Lead (SSTL of 75 mg/kg) 15-MB-BS201 (200 mg/kg), 15-MB-BS206 (430 mg/kg)

None of the other detected levels of available metals exceeded the applicable SSTLs for soil. The extent of metals impacts in soil exceeding the SSTLs at Main Base-Area 2 has not been fully delineated.

3.2.4 POL Compound

Available metals analysis was conducted on seven (7) confirmatory soil samples (15-POL-BS301 to 15-POL-BS303 and 15-POL-BS401 to 15-POL-BS404) collected from the limits of the remedial excavations at POL Compound-Area 3 and POL Compound-Area 4 during Year 5 of the Implementation of the RAP. Available metals analysis was also conducted on three bulk surface soil samples (15-POL-BS405 to 15-POL-BS407) collected from Area 4 as part of the additional delineation in October/November 2015. One laboratory duplicate sample of 15-POL-BS407 was analyzed for metals as well. Results of the laboratory analysis of the confirmatory soil samples for available metals are presented in Table C.7 in Appendix C.

LABORATORY RESULTS August 26, 2016

The detected concentrations of one (1) or more metal parameters in 10 soil samples (i.e., 15-POL-BS301 to 15-POL-BS303, 15-POL-BS401 to 15-POL-BS402, 15-POL-BS404 to 15-POL-BS407 and 15-POL-BS407 Lab-Dup) exceeded the SSTLs. The following exceedances of the SSTLs for antimony, cadmium, chromium and/or lead were detected:

- Antimony (SSTL of 5 mg/kg) 15-POL–BS303 (30 mg/kg), 15-POL–BS401 (16 mg/kg), 15-POL– BS402 (6.5 mg/kg), 15-POL–BS404 (5.3 mg/kg), 15-POL–BS406 (12 mg/kg)
- Cadmium (SSTL of 1.3 mg/kg) 15-POL–BS303 (3.1 mg/kg)
- Chromium (SSTL of 20 mg/kg) 15-POL–BS301 (140 mg/kg), 15-POL–BS302 (21 mg/kg), 15-POL–BS303 (150 mg/kg), 15-POL–BS401 (63 mg/kg), 15-POL–BS402 (64 mg/kg), 15-POL–BS404 (21 mg/kg), 15-POL–BS405 (24 mg/kg), 15-POL–BS407 (24 mg/kg), 15-POL–BS407 Lab-Dup (21 mg/kg)
- Lead (SSTL of 75 mg/kg) 15-POL–BS302 (110 mg/kg), 15-POL–BS303 (530 mg/kg), 15-POL–BS401 (370 mg/kg), 15-POL–BS402 (110 mg/kg), 15-POL–BS404 (430 mg/kg), 15-POL–BS406 (1,300 mg/kg)

None of the other detected levels of available metals exceeded the applicable SSTLs for soil. The extent of metals impacts in soil exceeding the SSTLs at POL Compound-Areas 3 and 4 has not been fully delineated; however, clean boundaries along the south and east have been determined

3.2.5 Mid-Canada Line

Available metals analysis was conducted on eight (8) confirmatory soil samples (15-MCL-BS101 to 15-MCL-BS104 and 15-MCL-BS201 to 15-MCL-BS204) were initially collected from the presumed limits of the remedial excavations for Mid-Canada Line-Area 1 and Mid-Canada Line-Area 2 during Year 5 of the Implementation of the RAP. These areas were not remediated during 2015. Results of the laboratory analysis of the confirmatory soil samples for available metals are presented in Table C.8 in Appendix C.

The detected concentrations of one (1) or more metal parameters in five (5) soil samples (i.e., 15-MCL-BS101 to 15-MCL-BS104 and 15-MCL-BS204) exceeded the SSTLs. The following exceedances of the SSTLs for cadmium, chromium and/or lead were detected:

- Cadmium (SSTL of 1.3 mg/kg) 15-MCL–BS102 (1.7 mg/kg), 15-MCL–BS103 (2.4 mg/kg), 15-MCL–BS104 (1.9 mg/kg), 15-MCL–BS204 (4.0 mg/kg)
- Chromium (SSTL of 20 mg/kg) 15-MCL–BS101 (26 mg/kg), 15-MCL–BS102 (28 mg/kg), 15-MCL–BS103 (44 mg/kg), 15-MCL–BS104 (28 mg/kg), 15-MCL–BS204 (31 mg/kg)
- Lead (SSTL of 75 mg/kg) 15-MCL–BS103 (430 mg/kg), 15-MCL–BS204 (1,000 mg/kg)

None of the other detected levels of available metals exceeded the applicable SSTLs for soil.

The Mid-Canada Line Areas 1 and 2 were not remediated in Year 5 of the Implementation of the RAP; however, clean boundaries along the north and west have been determined in Mid-

LABORATORY RESULTS August 26, 2016

Canada Line-Area 2. The extent of metals impacts in soil exceeding the SSTLs at Mid-Canada Line-Area 1 has not been fully delineated.

3.3 PCBs

3.3.1 Main Base

PCB analysis was conducted on 10 confirmatory soil samples (15-MB-BS103 to 15-MB-BS112) collected from the limits of the remedial excavations at Main Base-Area 1 during Year 5 of the Implementation of the RAP. PCB analysis was also conducted on four (4) surface soil samples (15-MB-BS113 to 15-MB-BS116) and two (2) samples from excavated test pits (15-MB-TP101-BS1 and 15-MB-TP102-BS1) collected from Main Base as part of the additional delineation in October/November 2015. Results of the laboratory analysis of PCBs in soil are presented in Table C.9 in Appendix C. The corresponding analytical reports from Maxxam Analytics are presented in Appendix D.

The concentration of PCBs in the following samples exceeded the residential SSTL of 9 mg/kg:

- 15-MB-BS103 4,900 mg/kg
- 15-MB-BS104 11 mg/kg
- 15-MB-BS111 19 mg/kg
- 15-MB-BS112 15 mg/kg
- 15-MB-BS114 13 mg/kg
- 15-MB-BS115 13 mg/kg
- 15-MB-TP102-BS1 12 mg/kg

Additional soil removal is required to the north and west of the Main Base-Area 1 excavations, in areas that were not remediated as part of Year 5 of the Implementation of the RAP.

3.3.2 Old Base 1

PCB analysis was conducted on six (6) soil samples collected from Old Base 1-Area 1 (15-OB-BS101 to 15-OB-BS103) and Old Base 1-Area 2 (15-OB-BS201 to 15-OB-BS203) as part of the additional delineation conducted in October/November 2015. Results of the laboratory analysis of PCBs in soil are presented in Table C.10 in Appendix C. The corresponding analytical report from Maxxam Analytics is presented in Appendix D.

The concentration of PCBs in one (1) sample (15-OB-BS101 at 44 mg/kg) exceeded the residential SSTL of 9 mg/kg. The extent of PCB impacts in soil at Old Base 1-Areas 1 and 2 appears to be delineated.

LABORATORY RESULTS August 26, 2016

3.3.3 Pit No. 1

PCB analysis was conducted on 20 soil samples collected from test pits excavated at Pit No. 1-Area 1 (15-P1-TP101 to 15-P1-TP102) and Pit No. 1-Area 2 (15-P1-TP201 to 15-P1-TP205) as part of the additional delineation conducted in October/November 2015. PCB analysis was also conducted on one laboratory duplicate sample of sample 15-P1-TP202-BS3. Results of the laboratory analysis of PCBs in soil are presented in Table C.11 in Appendix C. The corresponding analytical report from Maxxam Analytics is presented in Appendix D.

The concentration of PCBs in four (4) samples exceeded the residential SSTL of 9 mg/kg including samples 15-P1-TP201-BS1 (9.1 mg/kg), 15-P1-TP202-BS2 (27 mg/kg), 15-P1-TP202-BS3 (17 mg/kg) and 15-P1-TP202-BS3 Lab-Dup (22 mg/kg). The extent of PCB impacts in soil at Pit No. 1-Area 1 appears to be delineated. The extent of PCB impacts in soil at Pit No. 1-Area 2 appears to be delineated to the southeast and southwest.

3.3.4 Main Access Road

PCB analysis was conducted on five (5) soil samples collected from along the main access road to BMEWS and Main Base during Year 5 of the Implementation of the RAP (15-ROAD-BS1 to 15-ROAD-BS5). Results of the laboratory analysis of PCBs in soil are presented in Table C.12 in Appendix C. The corresponding analytical report from Maxxam Analytics is presented in Appendix D.

The concentrations of PCBs in the samples collected from the roadway ranged from 0.091 mg/kg in sample 15-ROAD-BS1 to 1.7 mg/kg in sample 15-ROAD-BS4 and they did not exceed the residential SSTL of 9 mg/kg.

3.3.5 Swab Samples

PCB analysis was conducted on five (5) swab samples collected from metal unearthed at Main Base-Area 1 (15-SWAB-1 to 15-SWAB-5). Results of the laboratory analysis of the swab samples for total PCB content are presented in Table C.13 in Appendix C. The corresponding analytical report from Maxxam Analytics is presented in Appendix D. For reference, detected concentrations of PCBs were compared to the CCME Recommended Permissible Surface Contamination Criterion recommended for transformer metal components destined for recycling by smelting (10 μ g/100 cm²) (CCME, 1995).

PCBs were detected in the five (5) samples at concentrations ranging from 5.6 μ g/100 cm² in sample 15-SWAB-4 to 11 μ g/100 cm² in sample 15-SWAB-5. The concentration in sample 15-SWAB-5 11 μ g/100 cm² exceeded the CCME criterion for transformer metal components (10 μ g/100 cm²). The results of PCB swab sampling indicate that further soil removal is required from the metal and re-sampling is required. The metal debris is currently stored on liners at the Laydown Area at Pit No. 1.

LABORATORY RESULTS August 26, 2016

3.3.6 Swimming Pond

PCB analysis was conducted on three (3) sediment samples (15-POND-SED1 to 15-POND-SED3) and three (3) surface water samples (15-POND-SW1 to 15-POND-SW3) collected from the Swimming Pond during Year 5 of the Implementation of the RAP. Results of the laboratory analysis of PCBs in sediment and surface water are presented in Tables C.14 and C.15 in Appendix C. The corresponding analytical reports from Maxxam Analytics are presented in Appendix D. PCBs were not detected in the sediment samples or the surface water samples.

3.4 Inorganics

3.4.1 Biopile

Inorganics analysis was conducted on five (5) representative composite soil samples collected from the temporary biopile (15-BP-COMP-A1, 15-BP-COMP-B1, 15-BP-COMP-B2, 15-BP-COMP-C1 and 15-BP-COMP-D1). Inorganics analysis was also conducted on two (2) laboratory duplicate samples (15-BP-COMP-A1 Lab-Dup and 15-BP-COMP-D1 Lab-Dup). Results of the laboratory analysis of soil samples for inorganics are presented in Table C.16 in Appenidix C. The corresponding analytical report from Maxxam Analytics is presented in Appendix D.

Concentrations of various inorganic compounds were detected in all five (5) soil samples. Moisture content ranged from 21 to 22 %, nitrate + nitrite concentrations ranged from 4.2 mg/kg to 40 mg/kg and pH values ranged from 7.32 to 7.69. None of the detected concentrations of inorganic parameters exceeded the CCME CSQGs for a commercial site.

3.5 Microbiology

3.5.1 Biopile

Microbiology (hydrocarbanoclast bacteria) analysis was conducted on five (5) representative soil samples collected from the new temporary biopile during soil remediation (15-BP-COMP-A1, 15-BP-COMP-B1, 15-BP-COMP-B2, 15-BP-COMP-C1 and 15-BP-COMP-D1). Results of the laboratory analysis of soil samples for petroleum hydrocarbons are presented in Table C.18 in Appendix C. The corresponding analytical report from Maxxam Analytics is presented in Appendix D.

Hydrocarbanoclast bacteria were detected in the five (5) soil samples at concentrations ranging from 3,900 CFU/g in 15-BP-COMP-A1 to 1,600,000 CFU/g in 15-BP-COMP-B2. There are no applicable guidelines for hydrocarbanoclastes in soil.

EVALUATION OF BIOPILE SOIL TREATABILITY August 26, 2016

3.6 Grain-Size

3.6.1 Biopile

Grain size analysis was conducted on five (5) composite confirmatory soil samples collected from the biopile in 2015. Results of the laboratory analysis of biopile soil samples for available metals are presented in Table C.18 in Appendix C. The corresponding analytical report from Maxxam Analytics, along with particle size distribution curves, is presented in Appendix D.

Results of grain size analysis indicated that the soil samples generally consisted of gravelly sand with some silt and trace clay.

4.0 EVALUATION OF BIOPILE SOIL TREATABILITY

A number of factors affect the performance of a biopile treatment facility. The following sections discuss the anticipated performance and requirements for treatment based on baseline biopile soil sampling results from August 2015.

4.1 Soil Physical Composition

The average clay and silt content in the biopile soils is estimated at 19% based on the five (5) laboratory-analyzed baseline soil samples collected from the biopile in August 2015. This is higher than the average clay and silt content of 11% observed in November 2011; however, it is still considered relatively low. This low fine-grained material content is considered conducive to biodegradation since it provides adequate permeability to air and bioavailability of contaminants.

4.2 Nutrients

Microorganisms require additional nutrients in order to effectively biodegrade/consume petroleum hydrocarbons. These nutrients mainly include oxygen, water, nitrogen, phosphorus and potassium, but other metals such as iron and manganese are also consumed in less significant quantities. It is recommended to continue with the yearly addition of fertilizers with a carbon : nitrogen : phosphorous : potassium (C:N:P:K) ratio of 100:15:1:1 as stated in the 2014 Invitation to Tender – Years 4 to 6 (Stantec, 2014f).

In addition, moisture content should be maintained at approximately 60% of field moisture capacity to promote optimal biodegradation rates. Assuming a field moisture capacity of 20%, the target moisture content in the biopile is estimated at 12%. The baseline average measured moisture content in the biopile is considered adequate at 12.4%. In order to reach the target concentration of 1,000 mg/kg, biodegradation of total petroleum hydrocarbons will consume approximately 5,000 L of water, which will need to be added evenly and periodically to the soils

EVALUATION OF BIOPILE SOIL TREATABILITY August 26, 2016

during treatment as they are tilled/aerated such that the target moisture content is maintained. Soil moisture content should be assessed with tensiometers.

Oxygen supply will largely occur by passive permeation into biopile soils, however mechanical aeration by tilling should be implemented during biopile maintenance, and as required in order to maintain appropriate temperatures during the summer months.

4.3 Biodegradation Indicators

Hydrocarbonocalstic bacteria (HCB) populations ranging between 3,900 and 1,600,000 CFU/g in the five (5) soil samples collected from the biopile are indicative of a healthy petroleum hydrocarbon (PHC) degrading microorganism population. Typically, a minimum initial PHC degrader count of 1,000 CFU/g is considered sufficient to support biodegradation of petroleum hydrocarbons in a biopile.

4.4 Toxicity to Microorganisms

As a general rule, total heavy metal concentrations should not exceed 2,500 mg/kg per metal in soils to be treated in a biopile. With the exception of aluminum and iron, total metal concentrations in the five (5) baseline soil samples collected from the biopile were at least an order of magnitude less than the recommended maximum. In the case of aluminum and iron, the measured concentrations ranged between 7,900 and 9,400 mg/kg, and 13,000 and 19,000 mg/kg, respectively. Although these concentrations exceed the recommended maximum, the relatively high measured pH (7.32 - 7.69) reduces their release potential such that these higher concentrations of cationic metals may be tolerated by the site microorganisms. The significant TPH-degrading microorganism population measured in the soils also supports this hypothesis.

Maximum and average measured PHC concentrations in the five (5) baseline biopile soil samples, 6,300 mg/kg and 5,617 mg/kg, respectively, are well below the 50,000 mg/kg total PHC threshold for biopile treatment effectiveness.

4.5 Temperature

Aerobic biodegradation of petroleum hydrocarbons in soil is optimal at temperatures ranging from 15 to 45 degrees Celsius (°C). A maximum temperature of 30°C should be maintained by monitoring and aeration as required in order to avoid accidental sterilization of the biopile.

4.6 Treatment Time

Based on an assumed half-life for C10-C16 hydrocarbons of 170 to 230 days (based on a literature review of several biopile treatment studies), a target TPH concentration of 1,000 mg/kg and maximum current concentration of 6,300 mg/kg (based on the 2015 composite samples), soil treatment is expected to take between 18 and 24 months under ideal conditions. Due to

SUMMARY OF ADDITIONAL SOIL REQUIRING REMEDIATION August 26, 2016

the cool climate in the northern Inuit Community of Hopedale, petroleum hydrocarbon degradation is only expected to occur over the summer months.

4.7 Conclusion

The biopile treatment is anticipated to be effective given the observed baseline soil conditions, however several follow-up activities will be required to ensure successful completion, including: monitoring, addition of specified nutrients, irrigation and aeration.

5.0 SUMMARY OF ADDITIONAL SOIL REQUIRING REMEDIATION

As part of the 2010 HHERA and RAP (Stantec, 2010), certain areas with high concentrations of TPH and metals-impacted soil were selected for remediation in an attempt to achieve areaand site-wide EPCs that would be less than the applicable SSTLs. As a result, not all soil with concentrations of TPH and metals exceeding the SSTLs would necessarily be remediated. The final area- and site-wide EPCs can only be verified once the planned areas of remediation at the site have been completed and confirmatory soil sample results are available to characterize the actual concentrations of COCs remaining on site. As stated in Section 1.2, all PCB-impacted soil with concentrations exceeding the residential SSTL of 9 mg/kg is to be remediated from the site; therefore, EPCs for PCBs do not need to be verified once the planned remedial areas are complete.

To date, a number of the areas designated for remediation in the 2010 RAP have been remediated. Confirmatory soil samples have been collected along the limits of these remedial excavations in order to characterize the concentrations of COCs remaining on-site and to be used to re-evaluate area- and site-wide EPCs once the planned site remediation is complete.

The areas designated for remediation in the 2010 RAP that have not yet been remediated or that have been partially remediated are presented in Table 5.1. Revised tonnage estimates are provided for these areas based on the results of additional delineation and site observations (i.e., % soil cover and soil depths). Drawing Nos. 121413099-200-EE-03 to 12141309-200-EE-09 in Appendix A show the estimated limits of the areas of soil requiring remediation. Once these areas are remediated, area- and site-wide EPCs will need to be verified and further risk evaluation may be required.

SUMMARY OF ADDITIONAL SOIL REQUIRING REMEDIATION August 26, 2016

Table 5.1Summary of TPH, PCB and Metals-Impacted Soil Requiring Remediation
Based on SSTLs and EPCs – BMEWS, Old Base 1, Main Base, Mid-Canada
Line, Pit No. 1 and Pit No. 3

Remedial Area	Remedial Objectives	Sample Locations	Area (m²)	Depth (m)	Weight ¹ (tonnes)
BMEWS	TPH	BMEWS-AREA 1 (between BMEWS-TP2 and 14- BMEWS-BS107)		1	100
DIVIETIO	TPH	BMEWS-AREA 3 (BS20, 14-MB-BS301)	70	0.5	35
Old Base 1	PCBs	OB1-AREA 1 (22577, 22578, 22582, 22583, 22585, 22594, 22609, BS121, BS126, OB1 BS2, OB1-BS6, OB1-BS7, 22576, 22630, BS121, BS122, BS123, BS126, OB1-BS7, 15-OB1-BS101)		0.05	91
	PCBs	OB1-AREA 2 (22567)	57	0.05	3
	PCBs	MB-AREA 1 Northwest (6515, 21486, 22408, 22400, 6517, 15-MB-BS104, MB-BS113 15-MB- BS114)	270	0.05	14
	PCBs	MB-AREA 1 Centre (15-MB-BS103)	75	0.05	4
	PCBs	MB-AREA 1 Northeast (15-MB-BS103, 15-MB- BS104, 150MB-BS111 to 15-MB-BS116, 15-MB- TP102)	182	1	182
	PCBs	MB-AREA 4 (22705)	25	0.7	18
Main Base	PCBs	MB-AREA 5 (6546)		0.1	1
	PCBs	MB-AREA 6 (Septic Tank)	-	-	3
	PCBs	POLW-AREA 1 (13-POLW-BS10)	100	0.1	10
	TPH	MB-AREA 9 (MW-6, MB-TP5, 14-MB-BS902, 14-MB- BS903)	482	0.5	241
	TPH	MB-AREA 7 (14-MB-BS701, 14-MB-BS702, 14-MB- BS703, 14-MB-BS705)	400	0.4	160
Mid- Canada	Cadmium, Chromium, Lead	MCL-AREA 1 (MCL-BS10, BS135)		0.05	6
Line	Chromium	MCL-AREA 2 (BS257)	77	0.05	4
Pit No. 1	PCBs	P1-AREA 1 (TP152-BS1)	54	1.4	76
	PCBs	P1-AREA 2 (MW18-SS4, 15-P1-TP201, 15-P1-TP202)	94	1.7	160
Pit No. 3	TPH	P3-AREA 1 (BS239, BS240, BS241, P3-TP2, P3-TP4, P3-TP6, P3-TP7, P3-TP8, TP-161, TP-162, TP-164, TP- 165, TP-166, TP-169, BS271, MW27, MW28, MW29, MW30)		1.0	4,135
	TPH	P3-AREA 2 (BS237, P3-BS3, P3-BS4)	30	1	54
Old Dump Pond	PCBs	ODP-AREA 1 (TP-229)	25	0.25	11
Notes:	an actimated	noil density of 1.9 tennes (m3			
1. Bused on	un estimated s				

SUMMARY OF ADDITIONAL SOIL REQUIRING REMEDIATION August 26, 2016

5.1 Forecasted EPCs

As part of the current assessment, forecasted EPCs for TPH and metals have been generated for soil that will remain on site once the areas presented in Table 5.1 are remediated. The forecasted values have been generated using actual confirmatory soil sampling results from 2011 to 2015 and assumed confirmatory soil sampling results for the remaining areas yet to be remediated. Forecasted EPCs were generated using ProUCL (Version 5.0), a software package that uses statistical analysis to calculate the appropriate UCL given the specific distribution of the site specific analytical results data. See Appendix G for the ProUCL output. The dataset used to generate Forecasted EPCs was compiled as follows:

- 1. Compiled all soil sample results from the 2009 (Phase III ESA) investigation to represent siteand area-wide concentrations of COCs.
- 2. For duplicate samples (field/laboratory duplicates), retained only the highest of the two concentrations in order to prevent the potential for one soil sample to unduly skew the EPC.
- 3. Removed all 2009 data points that were collected from remediated areas and from areas proposed for future remediation (refer to Table 4.1). Replaced each data point with the following:
 - The average of the confirmatory soil sample results for that area (ODP-PCB area, WH-Shoreline, BMEWS-PCB area, BMEWS-AREA 2, BMEWS-AREA 4, BMEWS-AREA 5, MB-AREA 2, MB-AREA 8, POL-AREA 1, POL-AREA 3 and POL-AREA 4);
 - The average of the sample results for confirmatory soil samples collected from the presumed limits of the areas yet to be remediated (BMEWS-AREA 1, BMEWS-AREA 3, MB-AREA 9, MCL-AREA 1 and MCL-AREA 2);
 - The average of nearby sample results for areas yet to be remediated (OB1-AREA 1, P1-AREA 1, P1-AREA 2, P3-AREA 1, P3-AREA 2); or,
 - A combination of confirmatory soil samples and nearby samples for areas yet to be remediated (MB-AREA 1).

For example: removed the sample results for BS41 (POL-AREA 3 remedial area) and replaced it with the average of confirmatory sample results for POL-BS301, POL-BS302 and POL-BS303.

- 4. For remediated areas where sampling was not carried out in 2009-2010 (i.e., impacted areas historically sampled by ESG or discovered during the 2011-2015 delineation programs by Stantec), added one data point to the data set, as follows:
 - The average of the confirmatory soil sample results for that area (Stream and WH-Roadside); or,
 - The average of the sample results for confirmatory soil samples collected from the presumed limits of the area yet to be remediated (MB-AREA 4, MB-AREA 5, MB-AREA 8, POLW-AREA 1 and OB1-AREA 2).

SUMMARY OF ADDITIONAL SOIL REQUIRING REMEDIATION August 26, 2016

- 5. Generated Forecasted EPCs using ProUCL Version 5.0. Where concentrations were reported as being non-detectable, a value of ½ the RDL was used in calculations. EPCs were generated using samples collected from < 0.3 metres below the ground surface (mbgs) (ecological depth) and confirmatory soil sample result averages (regardless of depth). EPCs were generated for COCs for the following areas, as defined in the 2010 ERA (Stantec, 2010):</p>
 - Area 1: BMEWS, Valley Drainage Ponds, Reservoir
 - Area 2: Main Base, Pit No. 2, Mid-Canada Line, Old Base 1, Pallet Line
 - Area 3: Pit No. 1, Pit No. 3, Small Pond Bog, POL Compound, Old Dump Pond
 - Whole Site: Includes Areas 1, 2 and 3, above.

A summary of the EPCs presented in the 2010 HHERA (i.e., prior to site remediation) and the Forecasted EPCs once the areas described in Table 5.1 are remediated are presented in Table 5.2.

SUMMARY OF ADDITIONAL SOIL REQUIRING REMEDIATION August 26, 2016

Table 5.2Exposure Point Concentrations

605	CETI	Source of	VECs with Potential	Historical EPCs (2010 HHERA) (mg/kg dw)			Forecasted EPCs (mg/kg dw)				
	3311	SSTL SSTL (2010 HHERA) AREA 1 AREA 2 AREA 3		AREA 3	WHOLE SITE	AREA 1	AREA 2	AREA 3	WHOLE SITE		
Modified TPH	1700	ERA	Red fox (Area 1) Masked shrew (Area 1, 2, 3) Meadow vole (Area 1, 2, 3) American robin (Whole Site) Short-eared owl (Whole Site) Arctic hare (Whole Site)	106,000	18,879	8,374	19,690	3,923	1,764	841	1,245
Antimony	5	ERA	Masked shrew (Area 3) Meadow vole (Area 3) Arctic hare (Whole Site)	-	-	85	12	-	-	6.7	3.2
Cadmium	1.3	ERA	Red fox (Area 2) Masked shrew (Area 1, 2) Meadow vole (Area 2) American robin (Whole Site) Arctic hare (Whole Site)	11	12	-	3.0	1.4	1.8	-	1.4
Chromium (Total)	20	ERA	Masked shrew (Area 2, 3) Meadow vole (Area 2) American robin (Whole site)	-	155	69	109	-	21	47	23
Lead	75	ERA	Masked shrew (Area 3) Arctic robin (Whole site)	-	586	1,745	124	-	122	291	69

Bold/Italics = Basis of SSTL. Note: SSTLs were established for the most conservative VEC, but would also be considered protective of all the VECs evaluated.

Bold/Shaded = EPC exceeds SSTL

CONCLUSIONS AND RECOMMENDATIONS August 26, 2016

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

During Year 5 of the Implementation of the RAP at the Former U.S. Military Site in Hopedale, NL, Stantec supervised environmental site remediation and conducted confirmatory soil sampling at Main Base, BMEWS and the POL Compound. Site remediation was carried out in response to recommendations provided in a RAP/RMP prepared by Stantec in 2009, additional delineation program carried out by Stantec in 2010 and 2013, a remediation program in 2014 and a mutually agreeable work plan developed by the Stakeholder Committee.

The following is a summary of remedial and on-site activities carried out at the Site in Year 5.

- 1. The existing biopile was sampled following NLDEC's standard COA for soil treatment facilities. Concentrations of TPH in the composite soil samples exceeded 1,000 mg/kg; therefore, the soil required additional treatment before it could be disposed. Biopile maintenance activities, consisting of the addition of specified nutrients and mechanical aeration were carried out following the placement of TPH-impacted soil in the biopile containment cell. The treatability of the biopile was evaluated and the biopile treatment is anticipated to be effective given the observed baseline soil conditions, however several follow-up activities will be required to ensure successful completion, including: monitoring, addition of specified nutrients, irrigation, and aeration.
- 2. A total of 749 tonnes of PCB-impacted soil was removed from the north and west areas of Main Base-Area 1 and was transported to Saint-Ambroise, QC by sea for PCB destruction. Confirmatory soil sampling was carried out along the limits of the remedial excavation to determine if the soil remaining on-site contained concentrations of PCBs below the residential site specific target level (SSTL) of 9 mg/kg. To meet the SSTL, additional soil removal is required to the north, centre and west of the Main Base-Area 1 excavations in the vicinity of samples 15-MB-BS103, 15-MB-BS104, 15-MB-BS111, 15-MB-BS112, 15-MB-BS114, 15-MB-BS115 and 15-MB-TP102-BS1. PCB-soil removal is also required in the vicinity of samples 22705 (referred to as "Main Base-Area 4"), 6546 (referred to as "Main Base-Area 5") and 13-POLW-BS10 (referred to as "POL West-Area 1") that have not yet been remediated. Sludge removal is required at the septic tank along the northern of the Main Base (referred to as "Main Base-Area 6").
- 3. A total of 201.6 tonnes of metals-impacted soil was removed from impacted areas of the Site and was transported to Chicoutimi, QC for treatment. Confirmatory soil sampling was carried out along the limits of the remedial excavations to determine if soil remaining on-site contained concentrations of metals below the applicable SSTLs. Metals-impacted soil was removed from the following areas:
 - BMEWS: 16 tonnes of metals-impacted soil was removed from the area surrounding sample BS1 (referred to as "BMEWS-Area 4") and from the area surrounding sample BS7 (referred to as "BMEWS-Area 5"). To meet the SSTLs, additional soil removal is required in the areas of samples 15-BMEWS-BS401 to 15-BMEWS-BS404, 15-BMEWS-BS501, 15-BMEWS-BS503 and 15-BMEWS-BS504.

CONCLUSIONS AND RECOMMENDATIONS August 26, 2016

- Main Base: 147 tonnes of metals-impacted soil was removed from the area surrounding samples TP-10, MB-TP2 and MB-TP3 (referred to as "Main Base-Area 2"). To meet the SSTLs, additional soil removal is required in the vicinity of samples 15-MB-BS201 to 15-MB-BS206.
- POL Compound: 18 tonnes of metals-impacted soil was removed from the area surrounding sample BS41 (referred to as "POL-Area 3") and from the area surrounding sample BS39 (referred to as "POL-Area 4"). To meet the SSTLs, additional soil removal is required in the vicinity of samples 15-POL-BS301 to 15-POL-BS303, 15-POL-BS401, 15-POL-BS402 and 15-POL-BS404.
- 4. PCB analysis was conducted on three (3) sediment samples and three (3) surface water samples collected from the Swimming Pond and on five (5) soil samples collected from along the main access road to BMEWS and Main Base. PCBs were not detected in the samples collected from the Swimming Pond. Concentrations of PCBs in the soil samples collected from the road did not exceed the residential SSTL of 9 mg/kg.
- 5. Additional delineation in soil was carried out at the areas known as Main Base-Area 1, Old Base 1-Area 1, Old Base 1-Area 2, Mid-Canada Line-Area 1, Pit No. 1–Area 1, Pit No. 1–Area 2, POL Compound-Area 4 and Pit No. 3-Area 1 where historical exceedances were found and the extent of impacts were not delineated. PCBs in samples 15-MB-BS114, 15-MB-BS115 and 15-MB-TP102-BS1 from Main Base-Area 1 and samples 15-P1-TP201-BS1, 15-P1-TP202-BS2 and 15-P1-TP202-BS3 from Pit No. 2-Area 2 exceeded the SSTL. Some metal parameters in samples 15-POL-BS405 to 15-POL-BS407 at POL Compound-Area 4, samples 15-MCL-BS101 to 15-MCL-BS104 and 15-MCL-BS204 at Mid-Canada Line Areas-1 and 2 and sample 15-OB1-BS101 at Old Base 1-Area 1 exceeded the SSTLs. TPH in samples 15-P3-TP101-BS1, 15-P3-TP102-BS1 and 15-P3-TP103-BS1 at Pit No. 3-Area 1 exceeded the ecological SSTL of 1,700 mg/kg.
- 6. Metal debris removed from the PCB remedial excavation at Main Base (1.66 tonnes) was stockpiled on tarps at the Laydown Area at Pit No. 1. This metal was kept separate from the metal debris unearthed at the BMEWS site. Boulders were placed at the entrance to Pit No.1 to block public access over the winter months. PCBs were detected in the swabs collected from the five (5) pieces of metal that were randomly selected for sampling. The results indicate that PCBs are present on the metal surface or in the residual soil on the debris. The metal debris will be transported to an appropriate treatment or recycling facility at a later date (dependent on the results of additional sampling to be carried out following additional surface cleaning).
- 7. As part of the 2010 Human Health and Ecological Risk Assessment (HHERA) and RAP (Stantec, 2010), certain areas with high concentrations of TPH and metals-impacted soil were selected for remediation in an attempt to achieve area- and site-wide EPCs that would be less than the applicable SSTLs. As a result, not all soil with concentrations of TPH and metals exceeding the SSTLs would necessarily be remediated. The final area- and site-wide EPCs can only be verified once the site has been fully remediated and confirmatory soil sample results are available to characterize the actual concentrations of COCs remaining on site.
- 8. As part of the current assessment, forecasted EPCs were generated using available confirmatory soil sampling results and predicted confirmatory soil sampling results (based on concentrations of COCs observed in nearby samples) to predict EPCs once areas designated in the 2010 HHERA and RAP have been remediated. A comparison of the historical versus forecasted EPCs indicates a substantial decrease in EPCs as a result of the multi-year remediation program (1 to 2 orders of magnitude); however, some EPCs are forecasted to remain above the SSTLs for the protection of ecological health. This may

CONCLUSIONS AND RECOMMENDATIONS August 26, 2016

indicate the need for re-evaluation of the Ecological Risk Assessment with potential additional remediation. These EPCs include:

- o modified TPH Areas 1 & 2
- o antimony Area 3
- o cadmium Areas 1 & 2, Whole Site
- o chromium Areas 2 & 3, Whole Site
- o lead Areas 2 & 3

6.2 **Recommendations**

Based on the results of the Year 5 of the Implementation of the RAP program, Stantec makes the following recommendations:

- 1. Complete the removal of TPH-impacted soil exceeding the ecological SSTL of 1,700 mg/kg in areas specified for remediation at BMEWS (estimated 240 tonnes), Main Base (estimated 530 tonnes) and Pit No. 3 (estimated 7,700 tonnes) as per Table 5.1. Once clean boundaries are obtained, return the site to its original condition. This will include backfilling, levelling and/or the placement of topsoil, as necessary.
- 2. Complete the removal of PCB-impacted soil exceeding the residential SSTL of 9 mg/kg at Main Base (estimated 636 tonnes), Old Base 1 (estimated 170 tonnes) and Pit No. 1 (estimated 420 tonnes) as per Table 5.1. Once clean boundaries are obtained, return the Site to its original condition. This will include backfilling, levelling and/or the placement of topsoil, as necessary.
- 3. Complete the removal of metals-impacted soil exceeding the ecological SSTLs of 1.3 mg/kg for cadmium, 20 mg/kg for chromium and 75 mg/kg for lead at the Mid-Canada Line (estimated 17 tonnes) as per Table 5.1. Once clean boundaries are obtained, return the Site to its original condition. This will include backfilling, levelling and/or the placement of topsoil, as necessary.
- 4. Remove excess soil from the metal debris removed from Main Base and re-sample. The metal debris is currently stockpiled on liners at the Laydown Area. If metal contains PCBs, treat as PCB-impacted waste and transport to an appropriate facility for treatment and disposal; otherwise, transport off-site to a metal recycling facility.
- 5. Transport un-impacted metal debris from BMEWS off-site to a metal recycling facility. The metal debris is currently stockpiled on liners at the Laydown Area.
- 6. Monitor concentrations of TPH in the biopile and perform maintenance activities, as necessary. Collect composite soil samples for the laboratory analysis of metals leachability to confirm disposal options.
- 7. Once site remediation is complete, re-evaluate area- and site-wide EPCs for comparison to the SSTLs.
- 8. Continue remediation efforts at the Former U.S. Military Site in accordance with the RAP/RMP and the recommendations provided by the Stakeholder Scientific Advisory Working Group.

CLOSURE August 26, 2016

7.0 CLOSURE

This report documents work that was performed in accordance with generally accepted professional standards at the time and location in which the services were provided. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report, including no assurance that this work has uncovered all potential liabilities associated with the identified property.

This report provides an evaluation of selected environmental conditions associated with the identified portion of the property that was assessed at the time the work was conducted and is based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The opinions in this report can only be relied upon as they relate to the condition of the portion of the identified property that was assessed at the time the work was conducted. Activities at the property subsequent to Stantec's assessment may have significantly altered the property's condition. Stantec cannot comment on other areas of the property that were not assessed.

Conclusions made within this report consist of Stantec's professional opinion as of the time of the writing of this report, and are based solely on the scope of work described in the report, the limited data available and the results of the work. They are not a certification of the property's environmental condition. This report should not be construed as legal advice.

This report has been prepared for the exclusive use of the client identified herein and any use by any third party is prohibited. Stantec assumes no responsibility for losses, damages, liabilities or claims, howsoever arising, from third party use of this report.

The locations of any utilities, buildings and structures, and property boundaries illustrated in or described within this report, if any, including pole lines, conduits, water mains, sewers and other surface or sub-surface utilities and structures are not guaranteed. Before starting work, the exact location of all such utilities and structures should be confirmed and Stantec assumes no liability for damage to them.

The conclusions are based on the site conditions encountered by Stantec at the time the work was performed at the specific testing and/or sampling locations, and conditions may vary among sampling locations. Factors such as areas of potential concern identified in previous studies, site conditions (e.g., utilities) and cost may have constrained the sampling locations used in this assessment. In addition, analysis has been carried out for only a limited number of chemical parameters, and it should not be inferred that other chemical species are not present. Due to the nature of the investigation and the limited data available, Stantec does not warrant against undiscovered environmental liabilities nor that the sampling results are indicative of the condition of the entire site. As the purpose of this report is to identify site conditions which may

CLOSURE August 26, 2016

pose an environmental risk; the identification of non-environmental risks to structures or people on the Site is beyond the scope of this assessment.

Should additional information become available which differs significantly from our understanding of conditions presented in this report, Stantec specifically disclaims any responsibility to update the conclusions in this report.

This report was prepared by Paula Brennan, M.A.Sc., P.Eng. and Anna Roy, M.A.Sc., P.Eng. and reviewed by Jim Slade, P.Eng., P.Geo.

Respectfully submitted,

AIVEK STANTEC LIMITED PARTNERSHIP

Paula Brennan, M.A.Sc., P.Eng. Associate, Senior Environmental Engineer

Jui Male

Jim Slade, P.Eng., P.Geo. Principal, Senior Environmental Engineer

REFERENCES August 26, 2016

8.0 **REFERENCES**

- American Society for Testing and Materials (ASTM), 2000. E-2081-00 Standard Guide for Risk-Based Corrective Action. Volume 11.04.
- Agra Earth & Environmental, 1998. Phase II Reconnaissance Testing Program, Former US Military Facility, Hopedale, Labrador. Report No. TF12701, dated November 22, 1998.
- Canadian Council of Ministers of the Environment (CCME). 1995. PCB Transformer Decontamination Standards and Protocols. CCME EPC-HW-105E, December 1995.
- CCME, 1999. Canadian Environmental Quality Guidelines (CEQG). Winnipeg, MB. Available at: <u>http://ceqg-rcqe.ccme.ca/</u>
- CCME, 2006. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. CCME: Winnipeg.
- Environmental Sciences Group (ESG), 2007. Hopedale Former Military Site Soil delineation Report, Hopedale, Newfoundland & Labrador. RMC-CCE-ES-07-10. May 2007.
- Newfoundland Department of Environment and Conservation (NLDEC), 2014. Contaminated Sites Cleanup Criteria, Policy Directive PPD05-01, Version 2.0. Updated January 29, 2014.
- Stantec, 2010. Phase II/III Environmental Site Assessment, Human Health and Ecological Risk Assessments and Remedial Action / Risk Management Plan for the Former U.S. Military Site and Residential Subdivision at Hopedale, Labrador. Project No. 121410103, final report dated May 17, 2010.
- Stantec, 2011. Additional Delineation and Risk Assessment Re-evaluation, Former U.S. Military Site and Residential Subdivision, Hopedale, Labrador. Project No. 121411170, final report dated February 28, 2011.
- Stantec, 2012. Implementation of Remedial Action Plan Year 1, Former U.S. Military Site and Residential Subdivision, Hopedale, Labrador. Project No. 121413099.200, final report dated April 30, 2012.
- Stantec 2014a. Implementation of Remedial Action Plan Year 2, Former U.S. Military Site and Residential Subdivision, Hopedale, Labrador. Project No. 121411777.300, final report dated February 4, 2014.
- Stantec, 2014b. Implementation of the Remedial Action Plan Year 3, Former U.S. Military Site and Residential Subdivision, Hopedale, Labrador. Project No. 121411777.600, final report dated April 15, 2014.

REFERENCES August 26, 2016

- Stantec, 2014c. Summary Report on Loadings, Sediment Inventory, and Present and Future Outlook for PCB Impacts in Hopedale Harbour. Project No. 121411777.610, final report dated July 10, 2014.
- Stantec, 2014d. Human Health Risk Assessment for the Consumption of Country Foods in the Town of Hopedale, NL, Project No. 121413099, final report dated October 31, 2014.
- Stantec, 2014e. Additional Delineation and Updated Remedial Action Plan, Former U.S. Military Site, Hopedale, Labrador. Project No. 121411777.610, final report dated July 18, 2014.
- Stantec, 2014f. Invitation to Tender, Site Remediation Years 4 to 6, Hopedale, Labrador. June 2014.
- Stantec, 2015. Implementation of the Remedial Action Plan Year 4, Former U.S. Military Site, Hopedale, Labrador. Project No. 121413099, final report dated June 17, 2015.

APPENDIX A

Drawings

	LEGEND				
	TEST PIT (STANTEC 2010)				
	TEST PIT (STANTEC 2009)				
	MONITOR WELL (STANTEC 2009)				
	BULK SOIL SAMPLE (STANTEC 2015)			
	BULK SOIL SAMPLE (STANTEC 2014)			
	BULK SOIL SAMPLE (STANTEC 2010)			
	BULK SOIL SAMPLE (STANTEC 2009)			
	BERRY SAMPLE (STANTEC 2009)				
	VEGETATION SAMPLE (STANTEC 20	009)			
	SMALL MAMMALS (STANTEC 2009)				
		DIRECTION			
	REMEDIAL EXCAVATION				
	CONCRETE FOUNDATION				
	ESTIMATED AREA OF TPH-IMPACTED REQUIRING REMOVAL	SOIL EXCEEDING SSTLs			
∑=⇒	NOTE: THIS DRAWING ILLUSTRATES SUPPORT SPECIFIC TO A STANTEC CONSULTING LTD. RE NOT BE USED FOR OTHER PURPOSES.	ING INFORMATION PORT AND MUST			
9	CLIENT:				
28					
	NEWFOUNDLAND AND L	ABRADOR			
	DEPARTMENT OF ENVI	RONMENT			
	AND CONSERVAT	ΓΙΟΝ			
TP-127					
	PROJECT TITLE:				
	ACTION PLAN AND ADDITIONAL DELINEATION - YEAR 5, FORMER U.S.				
	MILITARY SITE, HOPEDALE, NL				
	DRAWING HTLE.				
	REMEDIATION AREA	AS AND			
	SAMPLE LOCATION PLAN - BMEWS				
	Stantec Consulting Ltd.				
	SCALE: DATE: DATE: MAR. 23. 2016	REV. No. 0			
	DRAWN BY: EDITED BY:	CHECKED BY:			
	DRAWING No: CAD FILE: 121/113000 2000 EE 02 121/11	3099 200-FE-03 15 DWG			
	12 14 13039-200-EE-03	2009_200-LL-03_13.DWG			
40 50	🕖 Stantec				

VEG-30	LEGEND TEST PIT (STANTEC 2015)	
Chon Chan		
254 27	TEST PIT (STANTEC 2009)	
		2009)
3-32		
	BULK SOIL SAMPLE (STAN	EC 2010)
		004)
	BERRY SAMPLE (ESG 2	2009)
		NTEC 2009)
	SMALL MAMMALS (STANTE	C 2009)
	- 2 - UNKNOWN EXTENT OF I	MPACTS
		ER FLOW DIRECTION
	REMEDIAL EXCAVATION	
	REQUIRING REMOVAL	-IMPACTED SOIL EXCEEDING SSTL
	ESTIMATED AREA OF TPH REQUIRING REMOVAL	IMPACTED SOIL EXCEEDING SSTLs
	NOTE: THIS DRAWING ILLUSTRATES SPECIFIC TO A STANTEC CONSULTI	SUPPORTING INFORMATION NG LTD. REPORT AND MUST
	NOT BE USED FOR OTHER PURPOSI	ES.
	NEWFOUNDLANE DEPARTMENT O AND CONS) AND LABRADOR F ENVIRONMENT SERVATION
BS185	PROJECT TITLE:	
	IMPLEMEN	TATION OF
	REMEDIAL ACTION	PLAN - YEAR 5 AND
		MILITART SITE,
	HOPED	ALE, NL
	DRAWING TITLE:	
	REMEDIATIO	
	SAMPLE LOCATION	PLAN - MAIN DASE
BS264		
BS179 🌲		
	Stantas Ca	aculting I td
	Stantec Col	isulting Ltd.
	SCALE: DATE:	REV. No.
	1:1000 MAR. 2	23, 2016 0
5203	B.N. EDITED BY:	- P.B.
TP-180	DRAWING No: 121413099-200-EE-04	CAD FILE: 121413099_200-EE-04_15.DWG
●BS178	Stante	С

metres

1	LEGEND
P-170	-EST PIT (STANTEC 2010)
) PIT No.	TEST PIT (STANTEC 2009)
	MONITOR WELL (STANTEC 2009)
	GRAB WATER SAMPLE (STANTEC 2014)
	BULK SOIL SAMPLE (STANTEC 2015)
TP-171	BULK SOIL SAMPLE (STANTEC 2014)
	BULK SOIL SAMPLE (STANTEC 2010)
	BULK SOIL SAMPLE (STANTEC 2009)
	\Leftarrow = \exists INFERRED GROUNDWATER FLOW DIRECTION
	REMEDIAL EXCAVATION
P-173	B/R EXPOSED BEDROCK
174	
	NOTE: THIS DRAWING II I LISTRATES SUPPORTING INFORMATION
	SPECIFIC TO A STANTEC CONSULTING LTD. REPORT AND MUST NOT BE USED FOR OTHER PURPOSES.
	CLIENT:
	NEWFOUNDLAND AND LABRADOR
	DEPARTMENT OF ENVIRONMENT
	AND CONSERVATION
	PROJECT TITLE:
	IMPLEMENTATION OF REMEDIAL
\sim	DELINEATION - YEAR 5. FORMER U.S.
, ,	MILITARY SITE, HOPEDALE, NL
	DRAWING TITLE:
	REMEDIATION AREAS AND SAMPLET OCATION PLAN - POL COMPOUND
	Stantec Consulting Ltd.
	SCALE: DATE: REV. No. 0
	DRAWN BY: EDITED BY: CHECKED BY: S.N. - P.B
	CAD FILE: 121413099-200_FFE-05 121413099-200_FFE-05 121413099-200_FFE-05
<u>40 5</u> 0	12 14 13033-200-EE-03 12 14 13039_200-EE-03_13.DWG
	()) Stantec
	23MAR16 10:00AM

LEGEN	<u>ID</u>			
۲	BULK SOIL S	SAMPLE (STA	NTEC 2015)	
•	BULK SOIL S	SAMPLE (STA	NTEC 2010)	
•	BULK SOIL SAMPLE (STANTEC 2009)			
BERRY SAMPLE (STANTEC 2009)				
	VEGETATIO	N SAMPLE (S	TANTEC 2009	9)
•	SMALL MAM	IMALS (STAN	TEC 2009)	
— ? —	UNKNOWN	EXTENT OF II	MPACTS	
	CONCRETE	FOUNDATION	N	
<== ⊐	INFERRED (GROUNDWAT	ER FLOW DIF	RECTION
	ESTIMATED SSTLs REQU	AREA OF ME JIRING REMC	TALS-IMPAC VAL	TED SOIL EXCEEDING
<u>NOTE</u> : THIS		LLUSTRATES	SUPPORTIN	G INFORMATION
SPECIFIC T NOT BE US	O A STANTE ED FOR OTH	C CONSULTII	NG LTD. REP ES.	ORT AND MUST
	EWFOUI EPARTN AN	NDLAND MENT OI D CONS) AND LA = ENVIR ERVATI	ABRADOR ONMENT ON
IN DEL	MPLEME ACTION INEATI MILITAF	ENTATIC PLAN A ON - YE/ RY SITE,	ON OF R ND ADD AR 5, FC HOPED	EMEDIAL DITIONAL DRMER U.S. ALE, NL
DRAWING TITLE:				
SAMPLE LOCATION PLAN - MID-CANADA LINE				
Stantec Consulting Ltd.				
SCALE: 1:10	000	DATE: MAR. 2	3, 2016	REV. No. 0
DRAWN BY:	N.	EDITED BY:	-	CHECKED BY: P.B.
DRAWING No: 1214	13099-200	-EE-07	CAD FILE: 12141	1 3099-200-EE-07_15.dwg
		•.	I	
	Sta	nte	С	

	LEGEND
	TEST PIT (STANTEC 2015)
	TEST PIT (STANTEC 2009)
	MONITOR WELL (STANTEC 2009)
	BULK SAMPLE (STANTEC 2009)
	BULK SAMPLE (STANTEC 2013)
	ESTIMATED AREA OF PCB IMPACTED SOIL EXCEEDING SSTLs REQUIRING REMOVAL
	ASSUMED DIRECTION OF GROUNDWATER FLOW
	NOTE: THIS DRAWING ILLUSTRATES SUPPORTING INFORMATION
RECTION OF ATER FLOW	NOT BE USED FOR OTHER PURPOSES.
*	
	NEWFOUNDLAND AND LABRADOR DEPARTMENT OF ENVIRONMENT
	AND CONSERVATION
	PROJECT TITLE:
	IMPLEMENTATION OF REMEDIAL
	DELINEATION - YEAR 5, FORMER U.S.
	MILITARY SITE, HOPEDALE, NL
	DRAWING TITLE:
	SAMPLE LOCATION PLAN - PIT No. 1
	Stantec Consulting Ltd.
	SCALE: REV. No.
	1:500 MAR. 23, 2016 0 DRAWN BY: EDITED BY: CHECKED BY: S.N. - P.R.
	DRAWING No: CAD FILE: 121413099_200-EE-08 121413099_200-EE-08_15.DWG
	Stantoc
	Julie

APPENDIX B

Site Photographs

<u>Biopile</u>

Photo 1 Biopile in Year 5 prior to soil sampling, August 18, 2015.

Photo 2 Biopile in Year 5 prior to soil sampling, August 18, 2015.

Photo 3 Application of amendments to the biopile, August 20, 2015.

Photo 4 Placing the cover on the biopile, August 29, 2015.

Photo 5 Securing the cover on the biopile, August 29, 2015.

Photo 6 Securing the cover on the biopile, August 29, 2015.

<u>BMEWS</u>

Photo 7 Soil removal at BMEWS-Area 4, August 19, 2015.

Photo 8 Soil removal at BMEWS-Area 4, August 19, 2015.

Photo 9 Soil removal at BMEWS-Area 5, August 29, 2015.

Photo 10 Soil removal at BMEWS-Area 5, August 29, 2015.

Photo 11 Main Base looking southeast, August 18, 2015.

Photo 12 Main Base-Area 1 prior to soil removal in Year 5, August 18, 2015.

Photo13 Soil removal at Main Base-Area 1, looking east, August 21, 2015.

Photo 14 Soil removal at Main Base-Area 1, looking west, August 21, 2015.

Photo 15 Soil removal at Main Base-Area 1, looking west, August 24, 2015.

Photo 16 Soil removal at Main Base-Area 1, looking southeast, August 24, 2015.

Photo 17 Soil removal at Main Base-Area 1, looking south, August 24, 2015.

Photo 18 Soil removal at Main Base-Area 1, looking north, August 24, 2015.

Photo 19 Soil removal at Main Base-Area 1, looking east, August 24, 2015.

Photo 20 Soil removal at Main Base-Area 1, looking southeast, August 24, 2015.

Photo 21 Soil removal at Main Base-Area 1, looking west, August 24, 2015.

Photo 22 Soil removal at Main Base-Area 1, August 24, 2015.

Photo 23 Soil removal at Main Base-Area 2, looking east, August 25, 2015.

Photo 24 Soil removal at Main Base-Area 2, looking west, August 25, 2015.

Photo 25 Soil removal at Main Base-Area 2, looking south, August 26, 2015.

Photo 26 Bagging of removed soil at Main Base-Area 2, August 26, 2015.

Photo 27 Remedial excavation backfilled at Main Base-Area 1, September 1, 2015.

Photo 28 Remedial excavation backfilled at Main Base-Area 1 and remedial excavation boundary covered, September 1, 2015.

Photo 29 Remedial excavation backfilled at Main Base-Area 1, September 1, 2015.

Photo 30 Additional delineation at Main Base-Area 1, October 30, 2015.

Photo 31 Additional delineation at Main Base-Area 1, October 30, 2015

POL Compound

Photo 32 Soil removal at POL-Area 3, looking southeast, August 30, 2015.

Photo 33 POL Compound-Area 3 following soil removal, looking northwest, August 30, 3015.

Photo 34 Soil removal at POL-Area 4, looking southwest, August 30, 2015.

Photo 35 Soil removal at POL-Area 4, looking north, August 30, 2015.

Photo 36 POL Compound-Area 4 following soil removal, looking northwest, August 30, 2015.

Photo 37 POL Compound-Area 4 following soil removal, looking north, August 30, 2015.

Photo 38 Staking out area for remediation (MCL-Area 1) at Mid-Canada Line (note area was not remediated in Year 5), August 19, 2015.

Photo 39 Staking out area for remediation (MCL-Area 2) at Mid-Canada Line (note area was not remediated in Year 5), August 19, 2015.

Mid-Canada Line

Swimming Pond

Photo 40 Swimming Pond looking northwest, August 20, 2015.

Photo 41 Swimming Pond looking southwest, August 20, 2015.

Photo 42 Separating metal debris and filling bags with impacted soil at Pit No. 1, August 21, 2015.

Photo 43 Separating metal debris and filling bags with impacted soil at Pit No. 1, August 21, August 21, 2015.

<u> Pit No. 1</u>

Photo 44 Pit No. 1, transporting filled soil bag at Staging Area, August 21, 2015.

Photo 45 Pit No. 1, Staging Area for the storage of impacted soil bags, August 22, 2015.

Photo 46 Pit No. 1, Staging Area for the storage of impacted soil bags, August 23, 2015.

Photo 47 Pit No. 1, Staging Area for the storage of impacted soil bags, August 23, 2015.

Photo 48 Additional delineation in soil at Pit No. 1, October 31, 2015.

Photo 49 Additional delineation in soil at Pit No. 1, October 31, 2015.

Photo 50 Additional delineation in soil at Pit No. 1, October 31, 2015.

Photo 51 Additional delineation in soil at Pit No. 1, October 31, 2015.

Impacted Soil Shipment

Photo 52 Long Island at the American Dock prior to loading, September 14, 2015.

Photo 53 Loading soil bags, September 14, 2015.

Photo 54 Transport of impacted soil bags by a flat bed truck from Pit No. 1 to the dock, September 14, 2015.

Photo 55 Transfer of PCB-impacted soil bags to the ship's cargo hold, September 14, 2015.

Photo 56 Long Island at the American Dock, September 14, 2015.

Photo 57 Long Island cargo hold, September 15, 2015.

Photo 58 Pit No. 1, Staging Area for the storage of impacted soil bags, September 16, 2015.

Photo 59 Pit No. 1, transferring the impacted soil bags for transport to the dock, September 16, 2015.

Photo 60 Pit No. 1, transferring the impacted soil bags to a flat bed truck for transport to the dock, September 16, 2015.

Photo 61 Metal stored on tarps at Pit No. 1, September 16, 2015.

Photo 62 Long Island cargo hold, September 16, 2015.

IMPLEMENTATION OF THE REMEDIAL ACTION PLAN AND ADDITIONAL DELINEATION – YEAR 5, FORMER U.S. MILITARY SITE, HOPEDALE, NL

APPENDIX C

Laboratory Analytical Results Summary Tables

Table C.1 Results of Laboratory Analysis of Petroleum Hydrocarbons in Soil - Biopile

Implementation of the RAP and Additional Delineation - Year 5

Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			BT	EX Parame	eters (mg/k	g)		Total	Petroleum H	ydrocarbon	s (mg/kg)		
Sample ID	Sample	Sample Depth (mbgs)			Ethyl-	~ .	F1	F2	F	3	Reached	Modified TPH -	Resemblance
	Dale		Benzene	loluene	benzene	Xylenes	(C ₆ -C ₁₀)	(C ₁₀ -C ₁₆)	(C ₁₆ -C ₂₁)	(C ₂₁ -C ₃₂)	C32? ³	Tier I ²	
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	-
		RDL (2011)	0.03	0.03	0.03	0.05	3	10	10	15		20	-
		RDL (2012-2014)	0.025	0.025	0.025	0.05	2.5	10	10	15		15	
		RDL (2015)	0.025	0.025	0.025	0.05	2.5	50	50	75		75	
	Landf	ill acceptance criteria'	2.5	10,000	10,000	110	-	-	-	-		1,000	-
					2011 S	ampling - S	Stantec						
11-BIOPILE-BS1	6-Nov-11	grab	nd	nd	nd	nd	14	570	91	nd	Yes	670	WFO
11-BIOPILE-BS2	6-Nov-11	grab	nd	nd	nd	nd	9	1,300	210	38	Yes	1,500	FO
11-BIOPILE-BS3	6-Nov-11	grab	nd	nd	nd	nd	48	610	89	23	Yes	770	FO
11-BIOPILE-BS4	6-Nov-11	grab	nd	nd	nd	nd	64	1,400	220	41	Yes	1,700	FO
11-BIOPILE-BS5	16-Nov-11	grab	nd	nd	nd	nd	6	140	30	nd	Yes	180	FO
					2012 S	ampling - S	Stantec						
12-BP-TP1A	14-Jul-12	0.0 - 0.5	nd	nd	0.047	0.15	270	2,600	260	47	Yes	3,200	FO
12-BP-TP1B	14-Jul-12	0.5 - 1.0	nd	nd	nd	nd	260	3,400	340	58	Yes	4,000	FO
12-BP-TP2A	14-Jul-12	0.0 - 0.5	nd	nd	nd	nd	22	710	66	nd	Yes	800	FO
12-BP-TP2B	14-Jul-12	0.5 - 1.0	nd	nd	nd	nd	49	860	120	nd	Yes	1,000	FO
12-BP-TP3A	14-Jul-12	0.0 - 0.5	nd	nd	nd	nd	910	6,800	650	84	Yes	8,400	FO
12-BP-TP3B	14-Jul-12	0.5 - 1.0	nd	nd	nd	0.16	560	4,100	420	81	Yes	5,200	FO
12-BP-TP4A	14-Jul-12	0.0 - 0.5	nd	nd	nd	nd	120	2,300	240	37	Yes	2,700	FO
12-BP-TP4B	14-Jul-12	0.5 - 1.0	nd	nd	nd	nd	100	1,400	150	nd	Yes	1,700	FO
12-BP-TP5A	14-Jul-12	0.0 - 0.5	nd	nd	nd	nd	21	620	83	22	Yes	740	FO
12-BP-TP5B	14-Jul-12	0.5 - 1.0	nd	nd	nd	nd	30	600	120	nd	Yes	750	WFO
12-BP-TP6A	14-Jul-12	0.0 - 0.5	nd	nd	nd	nd	22	560	60	17	Yes	660	FO
12-BP-TP6B	14-Jul-12	0.5 - 1.0	nd	nd	nd	nd	5	82	nd	nd	Yes	87	WFO
12-BP-COMP A1	21-Oct-12	0.0 - 0.5 (composite)	nd	nd	nd	nd	63	1,500	190	51	Yes	1,800	FO
12-BP-COMP A2	21-Oct-12	0.0 - 0.5 (composite)	nd	nd	nd	nd	110	1,100	150	46	Yes	1,400	FO
12-BP-COMP B1	21-Oct-12	0.5 - 1.0 (composite)	nd	nd	0.036	0.15	230	1,800	220	45	Yes	2,300	FO
12-BP-COMP B2	21-Oct-12	0.5 - 1.0 (composite)	nd	0.058	nd	nd	73	1,200	160	42	Yes	1,400	FO
12-BP-COMP C1	21-Oct-12	1.0 - 1.5 (composite)	nd	nd	nd	0.062	120	1,400	170	30	Yes	1,700	FO
12-BP-COMP C2	21-Oct-12	1.0 - 1.5 (composite)	nd	nd	nd	nd	140	1,500	200	53	Yes	1,900	FO

Notes:

1 = Typical landfill acceptance criteria. BTEX acceptance criteria based on Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guidelines (CSQGs) for a Commercial Site (1999 and updates) with coarse grained soil and non-potable groundwater

2 = Modified TPH = Total petroleum hydrocarbons excluding total BTEX

3 = If baseline was not reached at C_{32} , sample may contain carbon fractions $>C_{32}$

"-" = No applicable guideline or does not apply

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted

Metres below ground surface

Bold / Shaded Concentration exceeds typical landfill acceptance criteria

<u>Resemblance</u>

FO = Fuel oil fraction WFO = Weathered

Table C.1 Results of Laboratory Analysis of Petroleum Hydrocarbons in Soil - Biopile Implementation of the RAP and Additional Delineation - Year 5

Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			BT	EX Parame	ters (mg/k	g)		Total	Petroleum H	ydrocarbon	s (mg/kg)		
Sample ID	Sample	Sample Depth (mbgs)			Ethyl-	~ .	F1	F2	F	3	Reached	Modified TPH -	Resemblance
	Dule		Benzene	loivene	benzene	Xylenes	(C₀-C ₁₀)	(C ₁₀ -C ₁₆)	(C ₁₆ -C ₂₁)	(C ₂₁ -C ₃₂)	C32? ³	Tier I ²	
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	-
		RDL (2011)	0.03	0.03	0.03	0.05	3	10	10	15		20	-
		RDL (2012-2014)	0.025	0.025	0.025	0.05	2.5	10	10	15		15	
	RDL (2015)	0.025	0.025	0.025	0.05	2.5	50	50	75		75		
	Landf	ill acceptance criteria'	2.5	10,000	10,000	110	-	-	-	-		1,000	-
					2013 Se	ampling - S	Stantec						
13-BP-COMP-A1	18-Aug-13	0.0 - 0.5 (composite)	<0.025	< 0.025	<0.025	< 0.05	15	420	77	26	Yes	540	WFO
13-BP-COMP-A1 Lab-Dup	18-Aug-13	0.0 - 0.5 (composite)	<0.025	<0.025	<0.025	<0.05	16	420	77	23	Yes	-	-
13-BP-COMP-A2	18-Aug-13	0.0 - 0.5 (composite)	<0.025	< 0.025	< 0.025	< 0.05	12	370	71	25	Yes	480	WFO
13-BP-COMP-B1	18-Aug-13	0.5 - 1.0 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	43	720	110	30	Yes	900	WFO
13-BP-COMP-B2	18-Aug-13	0.5 - 1.0 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	32	560	83	25	Yes	700	WFO
13-BP-COMP-C1	18-Aug-13	1.0 - 1.5 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	17	440	67	20	Yes	540	WFO
13-BP-COMP-C2	18-Aug-13	1.0 - 1.5 (composite)	<0.025	<0.025	<0.025	<0.05	20	370	57	21	Yes	460	WFO
			1		2014 Se	ampling - S	Stantec						
14-BP-COMPA1	9-Aug-14	0.0 - 0.5 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	7.2	440	71	23	Yes	540	FO
14-BP-COMPA2	9-Aug-14	0.0 - 0.5 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	5.6	320	58	23	Yes	410	FO
14-BP-COMPB1	9-Aug-14	0.5 - 1.0 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	9.1	560	85	24	Yes	680	FO
14-BP-COMPB2	9-Aug-14	0.5 - 1.0 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	11	690	110	22	Yes	840	FO
14-BP-COMPC1	9-Aug-14	1.0 - 1.5 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	8.1	500	74	nd	Yes	590	FO
14-BP-COMPC2	9-Aug-14	1.0 - 1.5 (composite)	<0.025	<0.025	<0.025	<0.05	8.9	780	120	26	Yes	930	FO
					2015 Se	ampling - S	Stantec						
15-BP-COMP-A1	19-Aug-15	0.0 - 0.5 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	25	2,000	720	3,000	Yes	5,800	WFO/LO
15-BP-COMP-A1 Lab- Dup	19-Aug-15	0.0 - 0.5 (composite)	<0.025	0.04	<0.025	<0.05	28	-	-	-	Yes	-	-
15-BP-COMP-A2	18-Aug-13	0.0 - 0.5 (composite)	< 0.025	0.046	< 0.025	< 0.05	24	2,000	730	2,500	Yes	5,300	WFO/LO
15-BP-COMP-B1	18-Aug-13	0.5 - 1.0 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	60	2,800	870	1,900	Yes	5,600	WFO/LO
15-BP-COMP-B2	18-Aug-13	0.5 - 1.0 (composite)	<0.025	< 0.025	<0.025	< 0.05	58	2,800	890	1,900	Yes	5,600	WFO/LO
15-BP-COMP-C1	18-Aug-13	1.0 - 1.5 (composite)	< 0.025	< 0.025	< 0.025	< 0.05	46	3,500	940	1,800	Yes	6,300	WFO/LO
15-BP-COMP-C2	18-Aug-13	1.0 - 1.5 (composite)	< 0.025	0.04	< 0.025	< 0.05	48	2,500	740	2,200	Yes	5,500	WFO/LO
15-BP-COMP-D1	18-Aug-13	1.5 - 2.0 (composite)	< 0.025	0.038	< 0.025	< 0.05	65	2,600	620	2,000	Yes	5,300	WFO/LO
15-BP-COMP-D2	18-Aug-13	1.5 - 2.0 (composite)	<0.025	< 0.025	<0.025	<0.05	67	2,700	660	1,600	Yes	5,100	WFO/LO

Notes:

1 = Typical landfill acceptance criteria. BTEX acceptance criteria based on Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guidelines (CSQGs) for a Commercial Site (1999 and updates) with coarse grained soil and non-potable groundwater

2 = Modified TPH = Total petroleum hydrocarbons excluding total BTEX

3 = If baseline was not reached at C_{32} , sample may contain carbon fractions > C_{32}

"-" = No applicable guideline or does not apply

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted

Metres below ground surface

Bold / Shaded Concentration exceeds typical landfill acceptance criteria

<u>Resemblance</u>

Lab-Dup = Laboratory duplicate sample

		BT	EX Parame	ters (mg/kg	3)		Total	Petroleum Hy					
Sample ID	Sample Depth (m)	Benzene	Toluene	Ethyl-	Xylenes	F1	F2	F	3	Reached Baseline at		Resemblance	Comments
				Denzene		(C ₆ -C ₁₀)	(C ₁₀ -C ₁₆)	(C ₁₆ -C ₂₁)	(C ₂₁ -C ₃₂)	C ₃₂ ? ⁴	IFN		
RDL (2	2009 sampling)	0.03	0.03	0.03	0.05	3	1	5	15	-	20	-	-
Tier I ESLs - Plant	s and Soil Inv. ¹	31	75	55	95	210	150	30	00	-	-	-	-
	Tier RBSLs ²	0.099	77	30	8.8	-	-	-	-	-	270	-	-
	SSTL ³	-	-	-	-	-	-	-	-	-	1,700	-	-
			-			2009 Sampli	ng - Stantec	:					
TP3-BS2	0.8 - 0.9	< 0.03	< 0.03	< 0.03	< 0.05	<3	33	20	290	-	600	WFO, LO	-
TP6-BS2	0.5 - 0.6	< 0.03	< 0.03	< 0.03	< 0.05	<3	3,9	00	270	-	4,200	WFO, LO	-
TP7-BS2	0.6 - 0.8	<0.3	<0.3	0.08	<u>11</u>	490	17,	000	3,800	-	22,000	FO, LO	-
TP10-BS1	0.0 - 0.2	< 0.03	< 0.03	< 0.03	< 0.05	<3	2,2	200	83	-	2,200	WFO	-
TP12-BS2	0.8 - 0.9	< 0.03	< 0.03	< 0.03	< 0.05	<3	3	1	81	-	110	FO/LO	-
TP15-BS2	0.4 - 0.5	< 0.03	< 0.03	< 0.03	< 0.05	<3	2	8	130	-	160	LO	-
TP15-BS2-Lab-Dup	0.4 - 0.5	-	-	-	-	-	2	7	150	-	-	-	-
TP16-BS1	0.1 - 0.3	< 0.03	< 0.03	< 0.03	< 0.05	<3	5	6	110	-	170	FO/LO	-
TP18-BS2	1.3 - 1.4	< 0.03	< 0.03	< 0.03	< 0.05	<3	11	70	350	-	510	FO/LO, LO	-
TP21-BS2	0.9 - 1.0	< 0.03	< 0.03	< 0.03	< 0.05	<3	2	10	310	-	520	FO/LO, LO	-
TP24-BS2	1.0 - 1.1	< 0.03	< 0.03	< 0.03	< 0.05	<3	2,4	100	290	-	2,700	FO/LO, LO	-
TP30-BS2	1.2 - 1.3	< 0.03	4.7	< 0.03	< 0.05	<3	2	9	160	-	180	LO	-
TP33-BS2	1.7 - 1.8	< 0.03	< 0.03	< 0.03	< 0.05	<3	5	0	200	-	250	LO	-
TP36-BS3	1.4 - 1.5	< 0.03	< 0.03	< 0.03	< 0.05	<3	<	15	<15	-	<20	NRG	-
TP36-BS3-Lab-Dup	1.4 - 1.5	< 0.03	< 0.03	< 0.03	< 0.05	<3		_	-	-	-	-	-
TP37-BS1	0.0 - 0.2	< 0.03	0.07	< 0.03	< 0.05	<3	3	6	360	-	400	LO	-
TP41-BS1	0.6 - 0.8	< 0.03	< 0.03	< 0.03	< 0.05	<3	4	5	380	-	420	FO, LO	-
TP42-BS2	1.3 - 1.5	< 0.03	< 0.03	< 0.03	< 0.05	<3	12	70	450	-	620	FO, LO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C $_{32}$. Samples are considered to have returned to baseline if the area from C $_{32}$ -C $_{36}$ is less than 10% of the area from C $_{10}$ -C $_{32}$.

 $5 = Modified TPH = TPH C_6 - C_{32}$ (excluding BTEX).

"-" = Not analyzed, not applicable or no applicable guideline.

RDL = Reportable Detection Limit; < # # = Not detected above RDL noted

= Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009 samples herein)

= Value exceeds Tier I RBSL for residential land use

= Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

Lab-Dup = laboratory duplicate sample

Underlined

Bold

Shaded

Resemblance:

 FO = Fuel oil fraction
 LO = Lube oil fraction
 WFO = Weathered fuel oil fraction

 FO/LO = One product in fuel oil/lube oil range
 NRG = No resemblance to gasoline or diesel

		BT	EX Parame	ters (mg/kg	3)		Total	Petroleum Hy					
Sample ID	Sample Depth (m)	Benzene	Toluene	Ethyl- benzene	Xylenes	F1 (C₄-C₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C32? ⁴	Modified TPH ⁵	Resemblance	Comments
RDI (2009samplina)	0.03	0.03	0.03	0.05	3	1	5	15	-	20	_	-
Tier ESLs - Plant	and Soil Inv ¹	31	75	55	95	210	150	30	10	_		_	
	Tier RRSIs ²	0.099	77	30	88	210	-		-		270	_	
	SSTI ³	-	-	-	-	-	-	-	-	-	1,700	-	-
	0011				2009 Sc	mpling - St	antec (cor	tinued)					
TP43-BS2	1.5 - 1.7	< 0.3	< 0.3	< 0.3	<0.5	800	22,	000	2,300	-	25,000	FO, LO	-
TP44-BS2	1.7 - 1.9	< 0.03	< 0.03	< 0.03	< 0.05	<3	<	15	<15	-	<20	NRG	-
TP52-BS1	0.1 - 0.2	< 0.03	< 0.03	< 0.03	< 0.05	<3	<	15	20	-	20	PLO	-
TP53-BS1	0.4 - 0.6	< 0.03	< 0.03	< 0.03	<0.05	<3	39	70	410	-	800	WFO, LO	-
TP54-BS2	1.2 - 1.3	< 0.03	< 0.03	< 0.03	<0.05	<3	5	0	160	-	210	FO, LO	-
TP54-BS2-Lab-Dup	1.2 - 1.3	-	-	-	-	-	4	-6	160	-	-	-	-
TP58-BS2	0.9 - 1.0	< 0.03	< 0.03	< 0.03	<0.05	<3	18	30	1,200	-	1,400	FO/LO, LO	-
TP62-BS1	0.5 - 0.6	< 0.03	< 0.03	< 0.03	< 0.05	<3	4	8	160	-	210	FO/LO, LO	-
TP65-BS1	0.0 - 0.2	< 0.03	< 0.03	< 0.03	<0.05	<3	2	0	69	-	89	PLO	-
TP68-BS2	0.7 - 0.9	< 0.03	< 0.03	< 0.03	<0.05	<3	<	15	44	-	44	NRG	-
TP69-BS2	1.3 - 1.4	< 0.03	< 0.03	< 0.03	< 0.05	<3	<	15	50	-	50	PLO	-
TP214-BS1	0.6 - 0.7	< 0.03	< 0.03	< 0.03	<0.05	<3	2	0	72	-	92	WFO, LO	-
TP214-BS1 Lab-Dup	0.6 - 0.7	< 0.03	< 0.03	< 0.03	<0.05	<3		-	-	-	-	-	-
TP220-BS2	1.4 - 1.5	< 0.03	< 0.03	< 0.03	< 0.05	<3	2	2	110	-	130	LO	-
TP221-BS2	1.5 - 1.6	< 0.03	< 0.03	< 0.03	<0.05	<3	58	30	2,000	-	2,500	LO	-
TP221-BS2-Lab-Dup	1.5 - 1.6	-	-	-	-	-	6	10	2,100	-	-	-	-
TP222-BS2	1.6 - 1.7	< 0.03	< 0.03	< 0.03	< 0.05	<3	6	0	300	-	360	LO	-
TP223-BS1	0.4 - 0.5	< 0.03	< 0.03	< 0.03	<0.05	<3	<	15	49	-	49	NRG	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C $_{32}$. Samples are considered to have returned to baseline if the area from C $_{32}$ -C $_{36}$ is less than 10% of the area from C $_{10}$ -C $_{32}$.

 $5 = Modified TPH = TPH C_6 - C_{32}$ (excluding BTEX).

"-" = Not analyzed, not applicable or no applicable guideline.

RDL = Reportable Detection Limit; < # # = Not detected above RDL noted

= Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009 samples herein)

= Value exceeds Tier I RBSL for residential land use

Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

Lab-Dup = laboratory duplicate sample

<u>Resemblance</u>

FO = Fuel oil fraction

Underlined

Bold

FO/LO = One product in fuel oil/lube oil range

LO = Lube oil fraction NRG = No resemblance to gasoline or diesel PLO = Possible lube oil fraction WFO = Weathered fuel oil fraction

		BT	EX Parame	ters (mg/kg	3)		Total	Petroleum Hy					
Sample ID	Sample Depth (m)	Benzene	Toluene	Ethyl- benzene	Xylenes	F1	F2	F	3	Reached Baseline at	Modified TPH⁵	Resemblance	Comments
						(02-010)	(010-012)	(C16°C21)	(021-032)	C ₃₂ ?			
RDL (2	2010 sampling)	0.03	0.03	0.03	0.05	3	1	5	15	-	20	-	-
Tier I ESLs - Plant	s and Soil Inv. ¹	31	75	55	95	210	150	30	00	-	-	-	-
	Tier RBSLs ²	0.099	77	30	8.8	-	-	-	-	-	270	-	-
	SSTL ³	-	-	-	-	-	-	-	-	-	1,700	-	-
					2009 Sc	ımpling - St	antec (con	itinued)					
TP224-BS1	0.0 - 0.2	< 0.03	<0.03	< 0.03	<0.05	<3	10	60	32	-	200	WFO	-
TP225-BS2	1.6 - 1.7	< 0.03	0.17	0.04	0.23	230	8,3	300	180	-	8,700	WFO	-
BS48	0.0 - 0.10	< 0.03	< 0.03	< 0.03	< 0.05	<3	6	2	490	-	550	LO, ULO	-
BS58	0.0 - 0.20	< 0.03	< 0.03	< 0.03	< 0.05	<3	<	15	<15	-	<20	NRG	-
BS81	0.0 - 0.12	< 0.03	< 0.03	< 0.03	< 0.05	9	1,9	200	260	-	2,200	WFO, PLO	-
BS97	0.0 - 0.15	< 0.03	< 0.03	< 0.03	< 0.05	<3	3	3	320	-	360	LO	-
BS104	0.0 - 0.05	0.04	0.14	< 0.03	<0.05	<3	6	0	290	-	350	FO/LO, LO	-
BS110	0.0 - 0.20	< 0.03	< 0.03	< 0.03	< 0.05	<3	67,	000	3,700	-	71,000	WFO, PLO	-
BS112	0.0 - 0.22	< 0.03	< 0.03	< 0.03	< 0.05	<3	9,9	200	2,100	-	12,000	WFO	-
BS265	Not recorded	< 0.03	< 0.03	< 0.03	< 0.05	<3	7	6	670	-	750	LO	-
MW1-SS1	0.0 - 0.3	< 0.03	< 0.03	< 0.03	< 0.05	<3	2	70	290	-	560	FO/LO LO	-
MW2-SS1	0.0 - 0.5	< 0.03	< 0.03	< 0.03	< 0.05	<3	18	30	500	-	680	FO/LO LO	-
MW3-SS1	0.0 - 0.5	< 0.03	< 0.03	< 0.03	< 0.05	<3	40	00	590	-	990	WFO, LO	-
MW4-SS1	0.0 - 0.4	< 0.03	< 0.03	< 0.03	<0.05	5	1,4	100	51	-	1,500	WFO, PLO	-
MW5-SS1	0.0 - 0.3	< 0.03	< 0.03	< 0.03	<0.05	4	4,4	100	330	-	4,700	WFO, LO	-
MW6-SS1	0.0 - 0.6	< 0.03	< 0.03	< 0.03	< 0.05	40	12,	000	460	-	12,000	WFO, LO	-
MW14-SS3	1.21 - 1.37	< 0.03	< 0.03	0.09	0.18	-		-	-	-	2,000	G/FO	-
Septic Tank	0.0 - 0.1	< 0.03	15	< 0.03	0.34	21	3,7	/00	6,700	-	10,000	FO/LO, UFO/LO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C $_{32}$. Samples are considered to have returned to baseline if the area from C $_{32}$ -C $_{36}$ is less than 10% of the area from C $_{10}$ -C $_{32}$.

5 = Modified TPH = TPH $C_6 - C_{32}$ (excluding BTEX).

"-" = Not analyzed, not applicable or no applicable guideline.

RDL = Reportable Detection Limit; < # # = Not detected above RDL noted

<u>Underlined</u>	= Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009 samples herein)
-------------------	---

Shaded

= Value exceeds Tier I RBSL for residential land use

= Value exceeds SSTL calculated for the	Former Radar Site (Stantec, 2010)
---	-----------------------------------

<u>Resemblance</u>
FO = Fuel oil fraction
FO/LO = One product in fuel oil/lube oil range

G/FO = One product in the gasoline/fuel oil range LO = Lube oil fraction NRG = Does not resemble gasoline or diesel UFO/LO = Unidentified compound(s) in fuel/lube oil range ULO = Unidentified compound(s) in lube oil range WFO = Weathered fuel oil fraction

		BT	EX Parame	ters (mg/k	g)		Total						
Sample ID	Sample Depth (m)	Benzene	Toluene	Ethyl- benzene	Xylenes	F1 (C ₆ -C ₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C ₃₂ ? ⁴	Modified TPH⁵	Resemblance	Comments
RDL (2	2010 sampling)	0.03	0.03	0.03	0.05	3	10	10	15	-	20	-	-
Tier I ESLs - Plant	s and Soil Inv. ¹	31	75	55	95	210	150	30	00	-	-	-	-
	Tier RBSLs ²	0.099	77	30	8.8	-	-	-	-	-	270	-	-
	SSTL ³	-	-	-	-	-	-	-	-	-	1,700	-	-
						2010 Sampli	ing - Stantec						
MB-TP5 BS1	0.0 - 0.3	< 0.03	< 0.03	< 0.03	< 0.05	<3	9,400	1,900	940	-	12,000	WFO	-
MB-TP6 BS1	0.0 - 0.15	< 0.03	< 0.03	< 0.03	<0.05	<3	14	12	140	-	160	WFO, LO	-
MB-TP8 BS1	0.0 - 0.15	< 0.03	< 0.03	< 0.03	<0.05	<3	<10	<10	57	-	57	NRLO	-
MB-TP9 BS1	0.0 - 0.3	< 0.03	< 0.03	< 0.03	<0.05	<3	<10	<10	65	-	65	NRLO	-
MB-BS1	0.0 - 0.15	< 0.03	< 0.03	< 0.03	<0.05	<3	93	<u>73</u>	17,000	-	17,000	NRLO	Soil removed
MB-BS5	0.0 - 0.15	< 0.03	< 0.03	< 0.03	<0.05	<3	12	<u><10</u>	<u>510</u>	-	520	NRLO, FO	Soil removed
MB-BS9	0.0 - 0.1	< 0.03	< 0.03	< 0.03	<0.05	<3	<10	<10	<15	-	<20	-	-
MB-BS10	0.0 - 0.1	< 0.03	< 0.03	< 0.03	<0.05	<3	<10	<10	200	-	200	NRLO	Soil removed
MB-BS11	0.0 - 0.2	< 0.03	< 0.03	< 0.03	<0.05	<3	<10	<10	60	-	60	NRLO	-
MB-BS13	0.0 - 0.15	< 0.03	< 0.03	< 0.03	< 0.05	<3	<10	<10	<15	-	<20	-	-
MB-BS13 Lab-Dup	0.0 - 0.15	< 0.03	< 0.03	< 0.03	< 0.05	<3	<10	<10	<15	-	-	-	_
MB-BS111	0.0 - 0.2	< 0.03	< 0.03	< 0.03	<0.05	<3	<10	<10	19	-	<20	NRLO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C $_{32}$. Samples are considered to have returned to baseline if the area from C $_{32}$ -C $_{36}$ is less than 10% of the area from C $_{10}$ -C $_{32}$.

5 = Modified TPH = TPH $C_6 - C_{32}$ (excluding BTEX).

"-" = Not analyzed, not applicable or no applicable guideline.

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted

Underlined = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009-2010 samples herein)

= Value exceeds Tier I RBSL for residential land use

Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

Lab-Dup = laboratory duplicate sample

Resemblance

FO = Fuel oil fraction

LO = Lube oil fraction

Bold

NRLO = No resemblance to petroleum products in the lube oil range

		BT	EX Parame	ters (mg/kg	g)		Total	Petroleum Hy	ydrocarbons	(mg/kg)			
Sample ID	Sample Depth (m)	Benzene	Toluene	Ethyl- benzene	Xylenes	F1 (C ₆ -C ₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C ₃₂ ? ⁴	Modified TPH ⁵	Resemblance	Comments
RDL (2	2013 sampling)	0.025	0.025	0.025	0.05	2.5	10	10	15	-	15	-	-
Tier I ESLs - Plants	s and Soil Inv. ¹	31	75	55	95	210	150	30	00	-	-	-	-
	Tier RBSLs ²	0.099	77	30	8.8	-	-	-	-	-	270	-	-
	SSTL ³	-	-	-	-	-	-	-	-	-	1,700	-	-
						2013 Sampli	ng - Stantec'	5					
13-MB-BS4B	0.25 - 0.5	< 0.025	<0.025	<0.025	<0.050	18	14,000	<u>6,900</u>	730	Yes	21,000	WFO	Soil removed
13-MB-BS6	0.2 - 0.4	< 0.025	<0.025	<0.025	<0.050	<2.5	2,500	<u>3,100</u>	<u>310</u>	Yes	5,900	WFO	Soil removed
13-MB-BS8	0.3 - 0.4	< 0.025	<0.025	<0.025	< 0.050	24	<u>26,000</u>	<u>11,000</u>	<u>880</u>	Yes	37,000	WFO	Soil removed
13-MB-BS9	0.0 - 0.3	< 0.025	< 0.025	<0.025	<0.050	<2.5	<u>1,300</u>	880	120	Yes	2,300	WFO	-
13-POLW-BS1	0.0 - 0.1	< 0.025	<0.025	<0.025	<0.050	<2.5	<10	<10	<15	Yes	<15	-	-
13-POLW-BS2	0.0 - 0.04	< 0.025	< 0.025	<0.025	<0.050	<2.5	81	480	<u>150</u>	Yes	710	FO/LO	-
13-POLW-BS3	0.0 - 0.1	< 0.025	< 0.025	<0.025	<0.050	<2.5	<u>710</u>	570	<u>110</u>	Yes	1,400	WFO	-
13-POLW-BS5	0.0 - 0.1	< 0.025	< 0.025	<0.025	< 0.050	<2.5	27	75	80	No	180	WFO, LO	-
13-POLW-BS11 (Fld- Dup of 13-POLW-BS5)	0.0 - 0.1	<0.025	<0.025	<0.025	<0.050	<2.5	20	47	93	No	160	WFO, LO	-
13-POLW-BS6	0.0 - 0.1	< 0.025	<0.025	<0.025	< 0.050	<2.5	<u>110</u>	280	66	Yes	450	WFO	_
13-POLW-BS7	0.0 - 0.1	< 0.025	<0.025	<0.025	< 0.050	<2.5	190	<u>330</u>	120	Yes	640	WFO	-
13-POLW-BS9	0.0 - 0.06	< 0.025	<0.025	<0.025	<0.050	<2.5	<10	<10	97	No	97	NRLO	-
13-POLW-BS10	0.0 - 0.1	< 0.025	< 0.025	<0.025	< 0.050	<2.5	<10	<10	78	No	78	PLO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C $_{32}$. Samples are considered to have returned to baseline if the area from C $_{32}$ -C $_{36}$ is less than 10% of the area from C $_{10}$ -C $_{32}$.

 $5 = Modified TPH = TPH C_6 - C_{32}$ (excluding BTEX).

6 = Triple silica gel clean-up performed on samples prior to analysis to remove organic interferences.

"-" = Not analyzed, not applicable or no applicable guideline.

RDL = Reportable Detection Limit; < # # = Not detected above RDL noted

<u>Underlined</u> = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates

= Value exceeds Tier I RBSL for residential land use

Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

Fld-Dup = field duplicate sample

Bold

<u>Resemblance</u>

FO/LO = One product in fuel oil/lube oil range LO = Lube oil fraction NRLO = No resemblance to petroleum products in the lube oil range PLO = Possible lube oil fraction

		BT	EX Parame	ters (mg/kg	3)		Total	Petroleum Hy					
Sample ID	Sample			Ethyl-		F1	F2	F	3	Reached	Modified	Resemblance	Comments
	Depth (m)	Benzene	loluene	benzene	Xylenes	(C ₆ -C ₁₀)	(C ₁₀ -C ₁₆)	(C ₁₆ -C ₂₁)	(C ₂₁ -C ₃₂)	Baseline af C ₃₂ ? ⁴	TPH⁵		
RDL (2	2014 sampling)	0.025	0.025	0.025	0.05	2.5	10	10	15	-	15	-	-
Tier I ESLs - Plants	s and Soil Inv. ¹	31	75	55	95	210	150	30	00	-	-	-	-
	Tier RBSLs ²	0.099	77	30	8.8	-	-	-	-	-	270	-	-
	SSTL ³	-	-	-	-	-	-	-	-	-	1,700	-	-
				1		2014 Sampli	ng - Stantec	5					
14-MB-BS701	0.0 - 0.4	<0.025	<0.025	<0.025	<0.050	<2.5	<u>5,000</u>	<u>8,000</u>	<u>1,400</u>	Yes	14,000	WFO	-
14-MB-BS702	0.0 - 0.4	<0.025	<0.025	<0.025	<0.050	<2.5	<u>17,000</u>	23,000	2,300	Yes	42,000	WFO	-
14-MB-BS703	0.0 - 0.15	<0.025	<0.025	<0.025	<0.050	<2.5	<u>2,000</u>	4,100	<u>520</u>	Yes	6,600	WFO	-
14-MB-BS704	0.0 - 0.15	<0.025	<0.025	<0.025	<0.050	<2.5	220	<u>510</u>	<u>350</u>	Yes	1,100	WFO, ULO	-
14-MB-BS705	0.0 - 0.4	< 0.025	<0.025	<0.025	<0.050	<2.5	2,000	4,100	710	Yes	6,800	WFO	-
14-MB-BS801	0.0 - 0.25	<0.025	<0.025	<0.025	<0.050	<2.5	140	410	<u>180</u>	No	730	FO/LO, LO	-
14-MB-BS802	0.0 - 0.6	< 0.025	<0.025	<0.025	<0.050	<2.5	3,500	<u>3,300</u>	<u>280</u>	Yes	7,100	WFO	Soil removed
14-MB-BS803	0.0 - 0.15	<0.025	<0.025	<0.025	<0.050	<2.5	<10	<10	25	Yes	25	ULO	-
14-MB-BS804	0.0 - 0.6	< 0.025	0.65	< 0.025	< 0.050	<2.5	<10	<10	54	Yes	54	NRLO	-
14-MB-BS805	0.0 - 0.6	<0.025	0.29	<0.025	< 0.050	<2.5	<10	<10	64	Yes	64	NRLO	-
14-MB-BS806	0.0 - 0.2	< 0.050	0.45	< 0.050	<0.10	<5	<10	<10	68	Yes	67	NRLO	-
14-MB-BS901	0.0 - 0.6	< 0.025	<0.025	<0.025	<0.050	<2.5	<u>960</u>	460	220	Yes	1,600	WFO, LO	-
14-MB-BS902	0.0.0.25	<0.025	<0.025	<0.025	<0.050	110	15,000	4,600	<u>1,200</u>	Yes	21,000	WFO, LO	-
14-MB-BS902 Lab-Dup	0.0 - 0.25	< 0.025	< 0.025	< 0.025	< 0.050	56	-	-	-	-	-	-	-
14-MB-BS903		< 0.025	< 0.025	< 0.025	< 0.050	30	8,100	<u>1,100</u>	<u>69</u>	Yes	9,200	WFO	-
14-FIELD DUP 2 (FId-Dup of 14-MB-BS903)	0.0 - 0.3	<0.025	<0.025	<0.025	<0.050	15	<u>6,400</u>	<u>1,100</u>	<u>96</u>	Yes	7,700	WFO	-
14-MB-BS904	0.0 - 0.2	<0.025	<0.025	<0.025	<0.050	13	<u>430</u>	<u>340</u>	<u>260</u>	Yes	1,000	WFO, LO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C $_{32}$. Samples are considered to have returned to baseline if the area from C $_{32}$ -C $_{36}$ is less than 10% of the area from C $_{10}$ -C $_{32}$.

 $5 = Modified TPH = TPH C_6 - C_{32}$ (excluding BTEX).

6 = Triple silica gel clean-up performed on samples prior to analysis to remove organic interferences.

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted; "-" = Not analyzed, not applicable or no applicable guideline.

<u>Underlined</u> = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates

= Value exceeds Tier I RBSL for residential land use

Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

Fld-Dup = field duplicate sample

Bold

Lab-Dup = laboratory duplicate sample

Resemblance

FO/LO = One product in fuel oil/lube oil range LO = Lube oil fraction NRLO = No resemblance to petroleum products in the lube oil range ULO = Unidentified petroleum products in the lube oil range

	Sample Depth (m)	B1	EX Parame	eters (mg/kg	g)		Total						
Sample ID		Benzene	Toluene	Ethyl- benzene	Xylenes	F1 (C₅-C ₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C ₃₂ ? ⁴	Modified TPH ⁵	Resemblance	Comments
RDL (2015 sampling		0.025	0.025	0.025	0.05	2.5	10	10	15	-	15	-	-
Tier I ESLs - Plants and Soil Inv.		31	75	55	95	210	150	30	00	-	-	-	-
Tier I RBSLs ²		0.099	77	30	8.8	-	-	-	-	-	270	-	-
SSTL		-	-	-	-	-	-	-	-	-	1,700	-	-
2015 Sampling - Stantec													
15-MB-BS108	0.0 - 0.10	< 0.025	< 0.025	< 0.025	< 0.050	12	<u>9,400</u>	<u>4,100</u>	<u>1,300</u>	Yes	15,000	WFO	-
15-MB-BS109	0.0 - 0.10	<0.025	<0.025	<0.025	<0.050	120	25	150	70	No	370	FO/LO	-
15-MB-BS110	0.0 - 0.15	< 0.025	<0.025	< 0.025	<0.050	<2.5	<10	<u><10</u>	<u>33</u>	No	33	NRLO	-
15-MB-BS111	1.3 - 1.4	<0.025	<0.025	<0.025	<0.050	<2.5	<u>4,100</u>	2,800	800	Yes	7,700	WFO	-
15-MB-BS112	1.8 - 1.9	< 0.025	0.19	0.12	0.61	160	18,000	7,400	1,700	Yes	27,000	WFO	Soil removed

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C $_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to 5 = Modified TPH = TPH C $_6$ - C $_{32}$ (excluding BTEX).

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted; "-" = Not analyzed, not applicable or no applicable guideline.

Underlined = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009-2010 samples herein)

= Value exceeds Tier I RBSL for residential land use

Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

<u>Resemblance</u>

Bold

FO/LO = One product in fuel oil/lube oil range

NRLO = No resemblance to petroleum products in the lube oil range

Project No. 121413099

		BTEX Parameters (mg/kg)					Toto						
Sample ID	Sample ID Sample Depth (m)		Toluene	Ethyl- benzene	Xylenes	F1 (C ₆ -C ₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C ₃₂ ? ⁴	Modified TPH⁵	Resemblance	Comments
RDL		0.03	0.03	0.03	0.05	3	1	5	15		20	-	-
Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg		mg/kg		mg/kg	-	-
Tier ESLs - Plants and Soil Inv. 1		31	75	55	95	210	150 300		-	-	-	-	
	Tier RBSLs ²	0.042	0.35	0.065	8.8	-	-	-	-		270	-	_
	SSTL ³	-	-	-	-	-	-	-	-		1,700	-	-
						2009 Sam	pling - Stante	c		1			
TP161-BS1	0.2 - 0.3	< 0.3	<0.3	<0.3	<0.5	1,200 (30)	37,000 (150)		81	-	39,000 (200)	FO	-
TP161-BS2 ⁴	0.3 - 1.0	< 0.03	< 0.03	< 0.03	< 0.05	-	-		-	-	1,600	FO	-
TP162-BS2	1.6 - 1.7	< 0.03	< 0.03	< 0.03	< 0.05	190	2,600		36	-	2,800	FO	-
TP164-BS1	0.2 - 0.3	< 0.03	< 0.03	< 0.03	<0.09	180	19,000 (75)		180	-	19,000 (80)	FO	-
TP165-BS2	0.7 - 0.8	< 0.03	< 0.03	< 0.03	< 0.05	81	5,2	00	210	-	5,500	FO	-
TP166-BS1	0.5 - 0.6	< 0.03	0.07	< 0.03	0.08	190	10,00	D (75)	48	-	10,000 (80)	FO	-
TP167-BS1	0.4 - 0.5	< 0.03	< 0.03	< 0.03	< 0.05	10	70	50	39	-	800	WFO	-
TP169-BS1	0.2 - 0.3	< 0.03	0.48	< 0.03	12	470	76,000	(750)	950 (75)	-	77,000 (800)	FO, ULO	-
TP169-BS2	1.4 - 1.5	< 0.03	< 0.03	< 0.03	0.36	66	28	30	<15	-	350	FO	-
TP170-BS2	1.5 - 1.6	< 0.03	< 0.03	< 0.03	< 0.05	<3	<	5	<15	-	<20	-	-
TP171-BS1	0.0 - 0.1	< 0.03	< 0.03	< 0.03	< 0.05	<3	23	30	900	-	1,100	OP F/L, Possible LO,	-
TP172-BS1	0.0 - 0.3	< 0.03	0.20	< 0.03	0.16	<3	12	20	570	-	700	FO/LO, LO, UFO/LO	-
TP172-BS1-Lab-Dup	0.0 - 0.3	< 0.03	0.15	< 0.03	0.27	<3	-		-	-	-	-	-
TP176-BS1	0.6 - 0.7	< 0.03	< 0.03	< 0.03	<0.05	<3	56		590	-	650	LO	-
TP176-BS1-Lab-Dup	0.6 - 0.7	< 0.03	< 0.03	< 0.03	< 0.05	<3	-		-	-	-	-	-
BS237	0.00 - 0.20	< 0.03	< 0.03	< 0.03	< 0.05	<3	24,00	D (75)	740	-	24,000 (80)	WFO	-
BS239	0.00 - 0.20	< 0.03	< 0.03	< 0.03	< 0.05	69	6,9	00	130	-	7,100	FO	-
BS240	0.00 - 0.25	< 0.03	< 0.03	< 0.03	0.09	110	4,6	00	85	-	4,800	FO	-
BS241	0.00 - 0.15	< 0.03	< 0.03	< 0.03	< 0.05	<3	4,3	00	140	-	4,400	FO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C₃₂. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C₃₂.

5 = Modified TPH = TPH $C_6 - C_{32}$ (excluding BTEX).

(#) = Elevated RDL shown in brackets

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted; "-" = Not analyzed, not applicable or no applicable guideline.

Lab-dup = laboratory duplicate sample

Underlined = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009 samples herein)

= Value exceeds Tier I RBSL for residential land use

Shaded

Bold

= Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

<u>Resemblance</u>

FO = Fuel oil fraction	FO/LO = One product in fuel oil/lube oil range	UFO/L
WFO = Weathered fuel oil fraction	NRPP = No resemblance to petroleum products	ULO =
LO = Lube oil fraction	NRLO = No resemblance to products in the lube oil range	

UFO/LO = Unidentified compound(s) in fuel/lube oil range ULO = Unidentified compound(s) in lube oil range

Project No. 121413099

	Sample Depth (m)	BTEX Parameters (mg/kg)					Toto						
Sample ID		Benzene	Toluene	Ethyl- benzene	Xylenes	F1 (C₅-C ₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C ₃₂ ? ⁴	Modified TPH⁵	Resemblance	Comments
RDL		0.03	0.03	0.03	0.05	3	1	5	15		20	-	-
Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg	/kg	mg/kg		mg/kg	-	-
Tier I ESLs - Plants and Soil Inv. 1		31	75	55	95	210	150	3	00	-	-	-	-
	Tier I RBSLs ²	0.042	0.35	0.065	8.8	-	-	-	-		270	-	-
	SSTL ³	-	-	-	-	-	-	-	-		1,700	-	-
2009 Sampling - Stantec (continued)													
BS267	Not recorded	< 0.03	< 0.03	< 0.03	< 0.05	<3	37	70	140	-	510	WFO	-
BS268	Not recorded	< 0.03	< 0.03	< 0.03	< 0.05	<3	72	20	190	-	920	FO, NRLO	-
BS269	Not recorded	< 0.03	< 0.03	< 0.03	<0.05	<3	3	5	130	-	170	NRPP	-
BS270	Not recorded	< 0.03	< 0.03	< 0.07	<0.09	<3	19	90	200	-	400	FO/LO, UFO/LO	-
BS271	Not recorded	< 0.03	< 0.03	< 0.03	<0.05	<3	5,0	000	230	-	5,200	WFO	-
MW25-SS2 ⁴	0.61 - 0.76	< 0.03	< 0.03	< 0.03	0.07	-		-	-	-	10,000	FO	-
MW26-SS4	2.13 - 2.74	< 0.03	< 0.03	< 0.03	<0.05	<3	1	9	<15	-	<20	WFO	-
MW27-SS1	0.00 - 0.61	< 0.03	< 0.03	< 0.03	<0.06	270	8,7	00	140	-	9,100	FO	-
MW27-SS3	1.22 - 1.83	< 0.03	< 0.03	< 0.03	<0.05	50	79	90	42	-	880	FO	-
MW28-SS1	0.00 - 0.10	< 0.03	< 0.03	< 0.03	<0.05	9	2,4	100	500	-	2,900	WFO, Possible LO	-
MW29-SS2	0.61 - 1.22	< 0.03	0.09	< 0.03	0.16	130	8,7	00	190	-	9,000	FO	-
MW30-SS2	0.61 - 1.22	< 0.03	0.05	< 0.03	0.46	230	6,7	00	87	-	7,000	WFO	-
MW30-SS2 Lab-Dup	0.61 - 1.22	< 0.03	0.04	< 0.03	0.46	200			-	-	-	-	-
SED-59 ⁶	-	< 0.03	< 0.03	< 0.03	< 0.05	<3	1,6	000	360	-	2,000	FO/LO, WFO	-
SED-60 ⁶	-	< 0.03	< 0.03	< 0.03	< 0.05	5	1,6	000	83	-	1,600	FO/LO, WFO	-
SED-64 ⁶	-	<0.1	<0.1	<0.1	<0.3	58 (10)	<	15	190	-	240	LO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for >C32. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C32.

5 = Modified TPH = TPH $C_6 - C_{32}$ (excluding BTEX).

6 = Sediment sample

(#) = Elevated RDL shown in brackets

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted; "-" = Not analyzed, not applicable or no applicable guideline.

Lab-dup = laboratory duplicate sample

Underlined = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates (note: F1 and F2 ESLs were not applied to 2009 samples herein)

- **Bold** = Value exceeds Tier I RBSL for residential land use
- Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

<u>Resemblance</u>

FO = Fuel oil fraction	FO/LO = One product in fuel oil/lube oil range
WFO = Weathered fuel oil fraction	NRPP = No resemblance to petroleum products
LO = Lube oil fraction	NRLO = No resemblance to products in the lube oil range

UFO/LO = Unidentified compound(s) in fuel/lube oil range ULO = Unidentified compound(s) in lube oil range
Table C.3 Results of Laboratory Analysis of Petroleum Hydrocarbons in Soil - Pit No. 3 Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			BTEX Parame	eters (mg/kg)			Toto	al Petroleum	Hydrocarbo	ns (mg/kg)			
Sample ID	Sample Depth (m)	Benzene	Toluene	Ethyl- benzene	Xylenes	F1 (C ₆ -C ₁₀)	F2 (C ₁₀ -C ₁₆)	F (C ₁₆ -C ₂₁)	3 (C ₂₁ -C ₃₂)	Reached Baseline at C ₃₂ ? ⁴	Modified TPH⁵	Resemblance	Comments
	RDL	0.03	0.03	0.03	0.05	3	1	5	15		20	-	-
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg	/kg	mg/kg		mg/kg	-	-
Tier I ESLs - Plant	s and Soil Inv. ¹	31	75	55	95	210	150	30	00	-	-	-	-
	Tier RBSLs ²	0.042	0.35	0.065	8.8	-	-	-	-		270	-	-
	SSTL ³	-	-	-	-	-	-	-	-		1,700	-	-
						2010 Sam	pling - Stante	c		•			
P3-TP1 BS1	0.0 - 0.3	< 0.03	< 0.03	< 0.03	< 0.05	<3	<10	<10	<15	-	<20	-	-
P3-TP2 BS1	0.0 - 0.35	< 0.03	< 0.03	< 0.03	< 0.05	<u>230</u>	7,200	720	270	-	8,400	WFO	-
P3-TP4 BS1	0.0 - 0.3	< 0.03	< 0.03	< 0.03	0.3	66	<u>16,000</u>	3,900	430	-	21,000	WFO	-
P3-TP6 BS1	0.0 - 0.1	< 0.03	< 0.03	< 0.03	<0.05	210	<u>13,000</u>	2,200	200	-	16,000	WFO	-
P3-TP7 BS1	0.0 - 0.3	< 0.03	0.03	< 0.03	0.08	440	<u>14,000</u>	<u>2,900</u>	<u>240</u>	-	18,000	FO	-
P3-TP8 BS1	0.0 - 0.5	< 0.03	< 0.03	< 0.03	<0.05	<u>640</u>	<u>4,600</u>	<u>790</u>	<u>56</u>	-	6,100	WFO	-
P3-TP10 BS1	0.0 - 0.1	< 0.03	< 0.03	< 0.03	< 0.05	<3	32	79	<15	-	110	WFO	-
P3-BS2-10	0.0 - 0.25	< 0.03	< 0.03	< 0.03	< 0.05	<3	<10	<10	20	-	<20	NRLO	-
P3-BS3-10	0.0 - 0.25	< 0.03	< 0.03	< 0.03	<0.05	<3	18,000	<u>5,300</u>	<u>580</u>	-	24,000	FO	-
P3-BS4-10	0.0 - 0.25	< 0.03	< 0.03	< 0.03	<0.05	53	<u>48,000</u>	<u>7,100</u>	<u>590</u>	-	56,000	FO	-
			-	-	-	2015 Sam	pling - Stante	c		_		-	
15-P3-TP101-BS1	0.4	< 0.050	0.83	1.3	39	<u>620</u>	<u>7,600</u>	200	<u>870</u>	Yes	9,300	FO/ULO	-
15-P3-TP102-BS1	0.2 - 0.3	< 0.025	< 0.025	< 0.025	< 0.050	47	<u>2,800</u>	<u>460</u>	<u>64</u>	Yes	3,400	WFO	-
15-P3-TP102-BS1 Lab- Dup	-	<0.025	<0.025	<0.025	<0.050	39	-	-	-	Yes	-	-	-
15-P3-TP103-BS1	0.2 - 0.3	< 0.025	< 0.025	< 0.025	< 0.050	38	<u>2,900</u>	<u>970</u>	<u>120</u>	Yes	4,000	WFO	-
15-P3-SD101	0.15	<0.025	< 0.025	< 0.025	< 0.050	<2.5	220	81	45	Yes	350	WFO/ULO	-

Notes:

1 = Atlantic Partnership in RBCA (Risk-Based Corrective Action) Implementation (PIRI) Tier I Soil Ecological Screening Levels (ESLs) for the Protection of Plants and Soil Invertebrates; Direct Soil Contact (Table 1a), for a residential site with coarse grained soil (2012, Revised 2015). Screening levels apply to the top 1.5 m of the soil profile.

2= Atlantic PIRI Tier I Risk Based Screening Levels (RBSLs) for a residential site with non-potable groundwater (Table 4a), coarse grained soil and fuel oil impacts (2012, Revised 2015).

3 = Site-specific target level (SSTL) calculated for TPH at the Former Radar Site (Stantec, 2010)

4 = Atlantic Partnership in RBCA Implementation analytical method does not analyze for $>C_{32}$. Laboratory certificate indicates (Yes or No) whether chromatogram for each sample returns to baseline after C_{32} . 5 = Modified TPH = TPH $C_6 - C_{32}$ (excluding BTEX).

RDL = Reportable Detection Limit; < ## = Not detected above RDL noted; "-" = Not analyzed, not applicable or no applicable guideline.

<u>Underlined</u> = Value exceeds Tier I ESL for the Protection of Plants and Soil Invertebrates

Bold = Value exceeds Tier I RBSL for residential land use

Shaded = Value exceeds SSTL calculated for the Former Radar Site (Stantec, 2010)

<u>Resemblance</u>

FO = Fuel oil fraction

NRLO = No resemblance to products in the lube oil range WI

ULO = Unidentified compounds in the lube oil range WFO = Weathered fuel oil fraction

Table C.4 Results of Laboratory Analysis of Available Metals in Soil - Biopile Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL Project No. 101413000

Project No. 121413099

			Generic		2015	Sampling - Sto	intec	
Parameters	RDL	Units	Criteria ¹	15-BP-COMP-	15-BP-COMP-	15-BP-COMP-	15-BP-COMP-	15-BP-COMP-
			Cillena	A1	B1	B2	C1	D1
		Sample	Depth (m):	0.0 - 0.5	0.5 - 1.0	0.5 - 1.0	1.0 - 1.5	1.5 - 2.0
	-		- op ().	(composite)	(composite)	(composite)	(composite)	(composite)
Aluminum	50	mg/kg	-	9,300	9,400	9,200	9,000	7,900
Antimony	10	mg/kg	40	8.4	5.2	31	22	4.7
Arsenic	2	mg/kg	12	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	2	mg/kg	2,000	86	58	61	56	80
Beryllium	5	mg/kg	8	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	2	mg/kg	-	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	2	mg/kg	-	<50	<50	<50	<50	<50
Cadmium	50	mg/kg	22	1.1	0.72	0.82	0.91	0.97
Chromium	0.3	mg/kg	87	160	98	90	87	91
Cobalt	2	mg/kg	300	7.2	6.2	5.4	5.8	5.9
Copper	1	mg/kg	91	92	60	93	81	71
Iron	2	mg/kg	-	19,000	14,000	13,000	15,000	15,000
Lead	50	mg/kg	600	140	110	82	110	85
Lithium	0.5	mg/kg	-	7.9	7.1	6.6	6.6	6.9
Manganese	2	mg/kg	-	170	140	130	140	150
Mercury	2	mg/kg	50	0.24	0.17	0.18	0.14	0.19
Molybdenum	0.1	mg/kg	40	2.4	<2.0	<2.0	<2.0	<2.0
Nickel	2	mg/kg	89	47	31	28	30	31
Rubidium	2	mg/kg	-	5.9	5.4	5	5.4	4.8
Selenium	2	mg/kg	2.9	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	1	mg/kg	40	<0.50	<0.50	<0.50	<0.50	<0.50
Strontium	0.5	mg/kg	-	750	500	550	510	470
Sulphur	5	mg/kg	-	17	19	18	17	15
Thallium	0.1	mg/kg	1	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	2	mg/kg	300	28	11	17	15	25
Uranium	0.1	mg/kg	300	0.63	0.49	0.52	0.5	0.39
Vanadium	2	mg/kg	130	25	24	23	25	21
Zinc	5	mg/kg	360	260	270	320	350	270

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for an Industrial Site (1999 and updates)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

			Generic					2	2009 Samplin	g - Stantec				
Parameters	RDL	Units	Criteria ¹	SSTL ²	BS1	BS2	BS4	BS6	BS7	BS8	BS11	BS15	B\$19	B\$21
		•	Sample	e Depth (m)	0.0 - 0.20	0.0 - 0.24	0.0 - 0.09	0.0 - 0.22	0.0 - 0.12	0.0 - 0.30	0.0 - 0.24	0.0 - 0.20	0.0 - 0.25	0.0 - 0.13
Aluminum	10	mg/kg	-	-	7,300	9,900	7,700	7,700	11,000	6,900	7,800	6,700	8,300	5,100
Antimony	2	mg/kg	20	5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	<2	3	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	62	76	47	57	120	15	34	23	37	21
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	0.3	mg/kg	10	1.3	15	<0.3	0.3	1.9	11	<0.3	1.2	1.2	<0.3	0.4
Chromium	2	mg/kg	64	20	49	46	38	24	43	15	19	22	13	15
Cobalt	1	mg/kg	50	-	6	6	6	6	6	5	6	5	2	4
Copper	2	mg/kg	63	-	30	21	17	40	46	13	13	17	14	16
Iron	50	mg/kg	-	-	11,000	12,000	10,000	11,000	14,000	8,500	11,000	10,000	5,100	8,700
Lead	0.5	mg/kg	140	75	58	6.8	13	30	23	2.4	4.1	15	8.8	9.2
Lithium	2	mg/kg	-	-	12	14	11	8	8	5	8	8	<2	7
Manganese	2	mg/kg	-	-	160	200	140	210	220	84	170	130	55	120
Mercury	0.1	mg/kg	6.6	-	<0.2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	0.2	<0.1
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	29	19	23	18	24	12	15	16	5	11
Rubidium	2	mg/kg	-	-	23	26	18	10	19	3	4	8	2	6
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	19	45	23	33	110	12	18	12	29	10
Thallium	0.1	mg/kg	1	-	0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1
Tin	2	mg/kg	50	-	17	<2	<2	3	<2	<2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.2	0.5	0.2	0.3	0.4	0.2	0.3	0.3	2.5	0.1
Vanadium	2	mg/kg	130	-	27	26	23	31	40	19	25	21	8	15
Zinc	5	mg/kg	200	-	4,800	56	77	460	1,100	16	140	260	13	120
			(Comments:	-	Soil removed	-	-	-	-	-	-	-	-

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Fld-Dup = field duplicate sample

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria

(i.e., CCME CSQG)

			Generic					2009 Sc	ampling - Sta	ntec (con	tinued)			
Parameters	RDL	Units	Criteria ¹	SSTL ²	B\$22	B\$25	BS26	BS32	BS34	TP75-BS2	TP79-BS2	TP92-BS1	TP96-BS2	TP101-BS2
			Sampl	e Depth (m)	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15	0.0 - 0.20	0.0 - 0.20	0.6 - 0.7	1.1 - 1.2	0.6 - 0.7	1.0 - 1.1	1.4 - 1.5
Aluminum	10	mg/kg	-	-	6,500	5,800	4,900	10,000	7,100	7,100	12,000	3,500	7,800	6,200
Antimony	2	mg/kg	20	5	5	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	<2	<2	<2	>2	<2
Barium	5	mg/kg	500	-	12	7	8	47	19	25	12	36	17	13
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	0.3	mg/kg	10	1.3	1.1	<0.3	0.7	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.4
Chromium	2	mg/kg	64	20	27	17	15	17	16	22	13	11	21	16
Cobalt	1	mg/kg	50	-	7	4	5	2	2	5	2	3	7	4
Copper	2	mg/kg	63	-	57	10	10	46	19	19	23	7	18	22
Iron	50	mg/kg	-	-	8,900	7,900	7,700	14,000	3,500	9,300	4,300	7,800	10,000	8,700
Lead	0.5	mg/kg	140	75	84	2.6	6.4	12	3.6	9.3	2.5	3.2	9.3	6.4
Lithium	2	mg/kg	-	-	5	4	4	4	4	6	3	4	6	5
Manganese	2	mg/kg	-	-	120	85	110	55	31	110	49	86	130	80
Mercury	0.1	mg/kg	6.6	-	0.4	<0.1	<0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	37	16	12	11	7	13	8	8	20	11
Rubidium	2	mg/kg	-	-	3	<2	<2	<2	<2	6	<2	8	5	3
Selenium	2	mg/kg	1	-	<2	<2	<2	<5	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	17	10	8	28	14	12	8	8	13	9
Thallium	0.1	mg/kg	1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	<2	<2	7	<2	<2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.3	0.1	0.2	2.0	2.4	0.4	1.6	0.2	0.3	0.5
Vanadium	2	mg/kg	130	-	16	16	14	21	15	25	23	14	21	19
Zinc	5	mg/kg	200	-	240	64	180	350	10	210	11	19	140	560
				Comments:	-	-	-	-	-	-	-	-	-	-

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Fld-Dup = field duplicate sample

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria

(i.e., CCME CSQG)

			Generic					2009 Sa	mpling - Sta	ntec (con	linued)			
Parameters	RDL	Units	Criteria ¹	SSTL ²	TP107-BS2	TP109-BS2	TP111-BS2	TP127-BS2	TP131-BS2	MW8-SS1	MW9-SS3	MW10-SS1	MW11-SS1	MW12-SS2
			Sample	e Depth (m)	0.9 - 1.0	1.6 - 1.7	1.1 - 1.2	0.7 - 0.8	0.7 - 0.8	0.0 - 0.6	1.2 - 1.8	0.0 - 0.2	0.0-00.3	0.6 - 1.2
Aluminum	10	mg/kg	-	-	7,100	7,700	8,000	11,000	5,800	5,500	4,400	3,700	8,100	5,800
Antimony	2	mg/kg	20	5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	26	14	13	8	29	7	8	10	31	11
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	0.3	mg/kg	10	1.3	0.6	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	2	mg/kg	64	20	20	18	16	17	18	11	10	17	23	14
Cobalt	1	mg/kg	50	-	4	4	4	3	4	4	4	3	5	5
Copper	2	mg/kg	63	-	33	12	12	10	13	14	7	5	21	19
Iron	50	mg/kg	-	-	8,200	9,500	9,100	11,000	8,700	6,300	6,900	9,400	10,000	7,800
Lead	0.5	mg/kg	140	75	20	3.7	3.3	2.5	22	1.4	1.4	2	34	1.8
Lithium	2	mg/kg	-	-	6	6	4	4	7	3	4	4	7	4
Manganese	2	mg/kg	-	-	94	95	86	73	120	66	73	110	140	78
Mercury	0.1	mg/kg	6.6	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	2	<2	<2
Nickel	2	mg/kg	50	-	17	12	18	9	12	10	11	4	15	13
Rubidium	2	mg/kg	-	-	4	3	2	<2	8	<2	<2	3	6	<2
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	17	14	13	8	19	9	9	6	22	12
Thallium	0.1	mg/kg	1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.4	0.3	0.3	0.4	0.2	0.1	0.1	0.2	0.4	0.2
Vanadium	2	mg/kg	130	-	22	23	21	23	19	14	14	12	25	19
Zinc	5	mg/kg	200	-	590	27	350	13	120	9	13	250	79	17
			(Comments:	-	-	-	-	-	-	-	-	-	-

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Fld-Dup = field duplicate sample

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria

(i.e., CCME CSQG)

			Generic					2010 Samplin	ıg - Stantec				
Parameters	RDL	Units	Criteria ¹	SSTL ²	BMEWS- BS9	BMEWS- BS10	BMEWS- BS11	BMEWS-BS111 (Fld-Dup of BMEWS-BS11)	BMEWS- BS12	BMEWS- BS17	BMEWS- BS25	BMEWS-BS26	BMEWS- BS27
			Sample	e Depth (m)	0.0 - 0.1	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15	0.0 - 0.1	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15
Aluminum	10	mg/kg	-	-	7,200	7,400	7,300	6,700	7,400	6,000	7,000	6,400	9,600
Antimony	2	mg/kg	20	5	<2	<2	<2	<2	<2	<2	5	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	19	50	41	33	9	10	49	32	12
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	<5	<5	<5	6	<5	<5
Cadmium	0.3	mg/kg	10	1.3	0.5	<0.3	0.6	0.3	0.9	<0.3	0.8	3	1.1
Chromium	2	mg/kg	64	20	18	23	29	27	15	16	32	23	18
Cobalt	1	mg/kg	50	-	5	4	6	5	5	4	6	5	3
Copper	2	mg/kg	63	-	21	14	23	17	26	15	3,800	110	15
Iron	50	mg/kg	-	-	13,000	8,800	11,000	11,000	9,300	7,600	13,000	12,000	13,000
Lead	0.5	mg/kg	140	75	8.1	10	11	21	20	3.6	360	37	10
Lithium	2	mg/kg	-	-	6	7	8	8	5	4	8	8	3
Manganese	2	mg/kg	-	-	130	150	140	140	89	77	160	140	71
Mercury	0.1	mg/kg	6.6	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	11	13	18	16	14	12	20	26	16
Rubidium	2	mg/kg	-	-	4	9	11	9	2	<2	11	7	<2
Selenium	2	mg/kg	1	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5
Strontium	5	mg/kg	-	-	16	26	17	13	11	10	17	11	8
Thallium	0.1	mg/kg	1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	<2	<2	<2	<2	<2	430	6	<2
Uranium	0.1	mg/kg	23	-	0.3	0.3	0.2	0.2	0.3	0.2	0.2	0.3	0.3
Vanadium	2	mg/kg	130	-	27	27	26	24	19	17	25	22	20
Zinc	5	mg/kg	200	-	190	67	160	110	1,200	75	700	770	320
			(Comments:	-	-	-	-	-	-	-	Soil removed	-

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Fld-Dup = field duplicate sample

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria

(i.e., CCME CSQG)

			Generic					2015 Sampli	ng - Stantec			
Parameters	RDL	Units	Criteria ¹	SSTL ²	15-BMEWS- BS401	15-BMEWS- BS402	15-BMEWS- BS403	15-BMEWS- BS404	15-BMEWS- BS501	15-BMEWS- BS502	15-BMEWS- BS503	15-BMEWS- BS504
			Sample	e Depth (m)	0.0 - 0.1	0.0 - 0.1	0.0 - 0.15	0.0 - 0.03	0.0 - 0.2	0.0 - 0.2	0.0 - 0.2	0.0 - 0.2
Aluminum	10	mg/kg	-	-	8,300	9,400	8,600	8,400	8,800	7,600	8,000	8,300
Antimony	2	mg/kg	20	5	<2.0	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Arsenic	2	mg/kg	12	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Barium	5	mg/kg	500	-	80	150	150	51	120	13	51	44
Beryllium	2	mg/kg	4	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Bismuth	2	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Boron	5	mg/kg	-	-	<50	<50	<50	<50	<50	<50	<50	<50
Cadmium	0.3	mg/kg	10	1.3	2.3	4.9	5.1	5.6	0.5	<0.30	<0.30	8.8
Chromium	2	mg/kg	64	20	33	33	33	26	35	16	28	29
Cobalt	1	mg/kg	50	-	5.4	5.9	5.6	6.8	5.6	5	4.7	6.1
Copper	2	mg/kg	63	-	240	230	180	19	23	22	14	23
Iron	50	mg/kg	-	-	18,000	18,000	15,000	17,000	13,000	9,000	11,000	14,000
Lead	0.5	mg/kg	140	75	43	50	100	29	13	3	9.8	18
Lithium	2	mg/kg	-	-	9	9	8.4	9	11	4	8	11
Manganese	2	mg/kg	-	-	190	220	210	230	210	110	160	200
Mercury	0.1	mg/kg	6.6	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Molybdenum	2	mg/kg	10	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Nickel	2	mg/kg	50	-	23	25	23	20	20	15	16	23
Rubidium	2	mg/kg	-	-	12	9.9	9	9.9	15	2.4	8.9	11
Selenium	2	mg/kg	1	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	0.5	mg/kg	20	-	<0.50	0.65	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Strontium	5	mg/kg	-	-	29	25	27	41	32	20	27	22
Thallium	0.1	mg/kg	1	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tin	2	mg/kg	50	-	5.3	13	10	<2.0	<2.0	<2.0	<2.0	2.3
Uranium	0.1	mg/kg	23	-	0.37	0.24	0.3	0.3	0.25	0.1	0.31	0.21
Vanadium	2	mg/kg	130	-	30	29	28	27	30	20	27	32
Zinc	5	mg/kg	200	-	950	790	2,100	3,700	170	46	81	990
			(Comments:	-	-	-	-	_	-	-	-

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Fld-Dup = field duplicate sample

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria

(i.e., CCME CSQG)

Main Base

Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Generic						2009 Sampl	ing - Stantec				
Parameters	RDL	Units	Criteria ¹	SSTL ²	TP1-BS2	TP1-BS2 Lab-Dup	TP2-BS2	TP7-BS2	TP8-BS2	TP10-BS1	TP12-BS2	TP13-BS2	TP16-BS1	TP17-BS2
			Samp	ole Depth (m)	0.3 - 0.5	0.3 - 0.5	0.3 - 0.8	0.6 - 0.8	0.9 - 1.0	0.0 - 0.2	0.8 - 0.9	1.0 - 1.1	0.1 - 0.3	0.9 - 1.0
Aluminum	10	mg/kg	-	-	7,500	7,300	7,600	6,800	7,400	6,500	7,400	6,500	6,600	9,000
Antimony	2	mg/kg	20	5	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	40	38	29	30	15	45	33	27	43	39
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	<5	<5	<5	<5	<5	6	<5
Cadmium	0.3	mg/kg	10	1.3	<0.3	<0.3	<0.3	<0.3	0.9	<0.3	<0.3	1.0	0.3	<0.3
Chromium	2	mg/kg	64	20	62	57	32	30	14	55	29	19	20	35
Cobalt	1	mg/kg	50	-	7	6	4	6	5	9	6	6	5	8
Copper	2	mg/kg	63	-	23	25	12	21	17	26	26	18	15	31
Iron	50	mg/kg	-	-	11,000	12,000	8,600	10,000	8,900	13,000	12,000	10,000	9,200	15,000
Lead	0.5	mg/kg	140	75	9.3	9.1	7.1	26	23	15	11	70	18	11
Lithium	2	mg/kg	-	-	10	9	8	7	5	10	9	8	6	9
Manganese	2	mg/kg	-	-	160	160	84	130	110	170	130	140	150	220
Mercury	0.1/0.2 ³	mg/kg	6.6	-	0.2	0.2	<0.1	0.1	<0.1	0.1	<0.1	<0.1	0.2	0
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	34	31	19	19	14	28	16	15	16	23
Rubidium	2	mg/kg	-	-	12	10	8	8	3	15	12	8	5	11
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	37	41	9	16	8	13	9	8	15	28
Thallium	0.1	mg/kg	1	-	0.1	0.1	0.2	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.2	0.2	0.4	0.4	0.4	0.5	0.4	0.3	0.4	0.5
Vanadium	2	mg/kg	130	-	20	19	23	18	17	23	26	18	18	29
Zinc	5	mg/kg	200	-	44	39	44	45	81	140	44	170	120	120

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at the Former Radar Site (Stantec,

2010)

3 = Elevated RDL due to matrix interferences

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Main Base

Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Generic					2009 Se	ampling - Sta	antec (con	tinued)			
Parameters	RDL	Units	Criteria ¹	SSTL ²	TP18-BS2	TP21-BS2	TP23-BS2	TP30-BS2	TP37-BS2	TP41-BS1	TP42-BS2	TP43-BS2	TP44-BS2	TP49-BS2
			Samp	le Depth (m)	1.3 - 1.4	0.9 - 1.0	0.5 - 0.6	1.2 - 1.3	1.3 - 1.4	0.6 - 0.8	1.3 - 1.5	1.5 - 1.7	1.7 - 1.9	0.8 - 1.1
Aluminum	10	mg/kg	-	-	9,000	8,800	7,100	6,600	5,400	7,100	7,300	8,000	6,000	8,800
Antimony	2	mg/kg	20	5	3	4	<2	<2	3	10	<2	<2	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	68	93	25	29	26	61	43	44	14	28
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	10	13	<5	7	8	10	<5	14	<5	<5
Cadmium	0.3	mg/kg	10	1.3	0.8	1.4	0.6	1.5	<0.3	0.5	<0.3	2.9	<0.3	<0.3
Chromium	2	mg/kg	64	20	33	28	21	19	15	22	36	34	10	65
Cobalt	1	mg/kg	50	-	7	6	5	5	4	4	6	5	4	7
Copper	2	mg/kg	63	-	36	48	23	31	14	77	26	24	10	38
Iron	50	mg/kg	-	-	13,000	12,000	11,000	10,000	8,300	9,600	12,000	12,000	7,500	12,000
Lead	0.5	mg/kg	140	75	63	120	9.7	30	28	580	14	25	2.1	7.8
Lithium	2	mg/kg	-	-	11	10	9	7	6	9	10	8	5	7
Manganese	2	mg/kg	-	-	220	230	130	140	130	260	150	140	95	230
Mercury	0.1/0.2 ³	mg/kg	6.6	-	0.2	0.1	0.2	0.2	<0.1	0.1	<0.1	0.7	<0.1	0.1
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	22	19	13	14	15	13	21	21	10	34
Rubidium	2	mg/kg	-	-	13	13	8	7	5	7	14	9	4	5
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	6.0	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	38	56	14	10	16	28	16	14	7	19
Thallium	0.1	mg/kg	1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	2	<2	<2	<2	2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.5	0.5	0.5	0.4	0.3	0.6	0.3	0.5	0.5	0.7
Vanadium	2	mg/kg	130	-	27	25	21	17	27	25	22	19	12	21
Zinc	5	mg/kg	200	-	400	550	98	160	100	170	46	180	26	34

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at the Former Radar Site (Stantec,

2010)

3 = Elevated RDL due to matrix interferences

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Main Base

Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Conorio					2009 Se	ampling - Sta	antec (con	tinued)			
Parameters	RDL	Units	Criteria ¹	SSTL ²	TP57-BS1	TP58-BS2	TP62-BS1	TP65-BS1	TP69-BS2	BS47	BS47 Lab-Dup	B\$58	B\$59	BS65
			Samp	le Depth (m)	0.4 - 0.5	0.9 - 1.0	0.5 - 0.6	0.0 - 0.2	1.3 - 1.4	0.0 - 0.10	0.00.10	0.0 - 0.20	0.0 - 0.20	0.0 - 0.15
Aluminum	10	mg/kg	-	-	7,700	13,000	4,800	7,300	5,700	8,200	7,900	5,600	5,600	4,600
Antimony	2	mg/kg	20	5	<2	8	4	4	7	4	4	<2	<2	<2
Arsenic	2	mg/kg	12	-	<2	<2	76	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	42	110	2,700	230	26	140	130	17	13	24
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	15	5	26	<5	<5	35	28	<5	<5	6
Cadmium	0.3	mg/kg	10	1.3	0.7	1.3	2.7	0.4	0.6	1.1	1.0	<0.3	<0.3	1.9
Chromium	2	mg/kg	64	20	18	34	13	22	17	30	29	14	13	21
Cobalt	1	mg/kg	50	-	6	9	11	5	4	5	5	5	4	6
Copper	2	mg/kg	63	-	100	66	130	22	35	30	38	13	12	54
Iron	50	mg/kg	-	-	13,000	17,000	27,000	10,000	11,000	11,000	14,000	8,400	7,800	10,000
Lead	0.5	mg/kg	140	75	120	210	840	31	23	320	130	2.5	4.1	120
Lithium	2	mg/kg	-	-	8	16	3	7	4	12	13	7	6	7
Manganese	2	mg/kg	-	-	190	230	2,500	190	140	260	290	120	100	170
Mercury	0.1/0.2 ³	mg/kg	6.6	-	0.1	0.2	0.2	0.2	0.3	<0.1	<0.1	<0.1	<0.1	< 0.2 ²
Molybdenum	2	mg/kg	10	-	<2	<2	3	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	14	23	18	15	12	19	18	16	12	18
Rubidium	2	mg/kg	-	-	6	19	4	9	3	11	11	5	4	4
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	5.8	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	19	25	74	19	15	27	27	8	7	7
Thallium	0.1	mg/kg	1	-	<0.1	0.2	0.5	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	6	9	3	<2	13	3	2	<2	<2	13
Uranium	0.1	mg/kg	23	-	0.4	0.5	0.9	0.6	0.2	0.5	0.6	0.5	0.5	0.2
Vanadium	2	mg/kg	130	-	26	30	18	19	15	19	18	15	14	14
Zinc	5	mg/kg	200	-	150	270	310	87	350	190	200	23	21	820

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at the Former Radar Site (Stantec,

2010)

3 = Elevated RDL due to matrix interferences

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Main Base

Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Generic					2009 Samp	ling - Stanted	c (continue	ed)		
Parameters	RDL	Units	Criteria ¹	SSTL ²	B\$78	BS84	BS92	BS101	BS103	BS265	MW2-SS1	MW4-SS1	Septic Tank
			Samp	le Depth (m)	0.0 - 0.10	0.0 - 0.10	0.0 - 0.12	0.0 - 0.12	0.0 - 0.15	0.0 - 0.15	0.0 - 0.5	0.0 - 0.5	0.0 - 0.5
Aluminum	10	mg/kg	-	-	5,700	12,000	6,300	4,800	8,200	6,400	7,400	9,100	5,400
Antimony	2	mg/kg	20	5	<2	5	<2	<2	<2	<2	3	<2	25
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	36	85	10	18	16	90	240	24	37
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	7
Boron	5	mg/kg	-	-	<5	40	<5	<5	<5	6	<5	<5	6
Cadmium	0.3	mg/kg	10	1.3	<0.3	1.8	1.8	0.3	0.6	<0.3	0.4	<0.3	5
Chromium	2	mg/kg	64	20	15	40	15	24	15	22	19	24	29
Cobalt	1	mg/kg	50	-	5	8	2	3	3	5	5	7	3
Copper	2	mg/kg	63	-	18	2,200	12	11	17	41	15	20	87
Iron	50	mg/kg	-	-	12,000	15,000	9,200	9,300	6,300	8,600	13,000	14,000	6,900
Lead	0.5	mg/kg	140	75	21	82	4.4	10	5.1	50	86	11	87
Lithium	2	mg/kg	-	-	7	15	3	5	5	5	14	9	5
Manganese	2	mg/kg	-	-	160	380	45	84	71	120	190	200	80
Mercury	0.1/0.2 ³	mg/kg	6.6	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.1	<0.1	1.8
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	13	26	5	12	11	13	10	25	15
Rubidium	2	mg/kg	-	-	5	18	2	7	3	8	28	4	4
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	21
Strontium	5	mg/kg	-	-	29	33	7	11	13	40	14	15	15
Thallium	0.1	mg/kg	1	-	<0.1	0.1	<0.1	<0.1	<0.1	0.1	0.2	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	6	<2	<2	<2	<2	<2	<2	250
Uranium	0.1	mg/kg	23	-	0.4	1.3	0.4	0.7	0.6	0.4	0.2	0.2	0.6
Vanadium	2	mg/kg	130	-	17	40	24	21	17	15	25	24	11
Zinc	5	mg/kg	200	-	210	800	28	42	35	42	71	42	1,500

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at the Former Radar Site (Stantec,

2010)

3 = Elevated RDL due to matrix interferences

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Main Base

Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Conorio			2010 Sampli	ng - Stantec		2013	Sampling - Sta	intec
Parameters	RDL	Units	Criteria ¹	SSTL ²	MB-TP1 BS1	MB-TP2 BS1	MB-TP3 BS1	MB-TP4 BS1	13-POLW-BS2	13-POLW-BS4	13-POLW-BS9
			Samp	le Depth (m)	0.0 - 0.15	0.0 - 0.15	0.0 - 0.1	0.0 - 0.3	0.0 - 0.4	0.0 - 0.04	0.0 - 0.06
Aluminum	10	mg/kg	-	-	6,500	11,000	7,500	9,300	11,000	9,900	9,700
Antimony	2	mg/kg	20	5	<2	<2	<2	<2	<2.0	<2.0	<2.0
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2.0	<2.0	<2.0
Barium	5	mg/kg	500	-	24	68	46	55	53	52	79
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2.0	<2.0	<2.0
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2.0	<2.0	<2.0
Boron	5	mg/kg	-	-	<5	<5	<5	<5	<50	<50	<50
Cadmium	0.3	mg/kg	10	1.3	0.3	<0.3	<0.3	0.5	<0.30	<0.30	<0.30
Chromium	2	mg/kg	64	20	27	100	42	78	23	20	18
Cobalt	1	mg/kg	50	-	6	12	7	8	6.4	6.9	7.9
Copper	2	mg/kg	63	-	22	27	23	38	19	22	28
Iron	50	mg/kg	-	-	9,600	15,000	13,000	16,000	15,000	15,000	17,000
Lead	0.5	mg/kg	140	75	51	14	37	38	13	10	34
Lithium	2	mg/kg	-	-	8	12	11	14	11	12	14
Manganese	2	mg/kg	-	-	130	210	190	240	170	190	220
Mercury	0.1/0.2 ³	mg/kg	6.6	-	0.2	<0.1	<0.1	0.3	<0.10	<0.10	<0.10
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	<2.0	<2.0	<2.0
Nickel	2	mg/kg	50	-	22	81	30	40	16	17	17
Rubidium	2	mg/kg	-	-	7	25	16	23	19	22	28
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<1.0	<1.0	<1.0
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50
Strontium	5	mg/kg	-	-	9	14	11	12	19	19	8.7
Thallium	0.1	mg/kg	1	-	<0.1	0.2	0.1	0.2	0.15	0.17	0.24
Tin	2	mg/kg	50	-	<2	<2	<2	<2	<2.0	<2.0	<2.0
Uranium	0.1	mg/kg	23	-	0.4	0.3	0.4	0.4	0.69	0.47	0.56
Vanadium	2	mg/kg	130	-	21	32	25	31	35	29	36
Zinc	5	mg/kg	200	-	65	98	230	230	37	35	44

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at the Former Radar Site (Stantec,

2010)

3 = Elevated RDL due to matrix interferences

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Main Base

Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Generic		2015 Sampling - Stantec							
Parameters	RDL	Units	Criteria ¹	SSTL ²	15-MB-BS201	15-MB-BS202	15-MB-BS203	15-MB-BS204	15-MB-BS205	15-MB-BS206		
			Samp	ble Depth (m)	0.2 - 0.3	0.0 - 0.2	0.0 - 0.1	0.3 - 0.4	0.8 - 0.9	0.1 - 0.3		
Aluminum	10	mg/kg	-	-	9,300	10,000	9,800	7,800	10,000	9,700		
Antimony	2	mg/kg	20	5	10	2.3	<2.0	<2.0	<2.0	97		
Arsenic	2	mg/kg	12	-	<2.0	<2.0	<2.0	<2.0	<2.0	8.4		
Barium	5	mg/kg	500	-	74	44	37	30	31	140		
Beryllium	2	mg/kg	4	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		
Bismuth	2	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		
Boron	5	mg/kg	-	-	<50	<50	<50	<50	<50	170		
Cadmium	0.3	mg/kg	10	1.3	1.7	0.5	<0.30	<0.30	<0.30	5.1		
Chromium	2	mg/kg	64	20	28	65	26	23	100	56		
Cobalt	1	mg/kg	50	-	7.9	8.6	4.9	5.7	7.8	11		
Copper	2	mg/kg	63	-	43	23	26	21	19	100		
Iron	50	mg/kg	-	-	16,000	14,000	11,000	11,000	14,000	34,000		
Lead	0.5	mg/kg	140	75	200	17	16	11	3.9	430		
Lithium	2	mg/kg	-	-	11	12	7.4	8.5	9.8	9.6		
Manganese	2	mg/kg	-	-	260	200	140	160	180	780		
Mercury	0.1/0.2 ³	mg/kg	6.6	-	0.41	<0.10	<0.10	<0.10	<0.10	1.2		
Molybdenum	2	mg/kg	10	-	<2.0	<2.0	<2.0	<2.0	<2.0	4.2		
Nickel	2	mg/kg	50	-	23	46	15	20	53	47		
Rubidium	2	mg/kg	-	-	15	16	7.3	7.3	11	12		
Selenium	2	mg/kg	1	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Silver	0.5	mg/kg	20	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		
Strontium	5	mg/kg	-	-	31	21	27	20	19	35		
Thallium	0.1	mg/kg	1	-	0.13	0.13	<0.10	<0.10	0.12	0.18		
Tin	2	mg/kg	50	-	8.9	<2.0	<2.0	<2.0	<2.0	15		
Uranium	0.1	mg/kg	23	-	0.43	0.34	0.8	0.33	0.44	0.62		
Vanadium	2	mg/kg	130	-	30	29	22	20	28	37		
Zinc	5	mg/kg	200	-	450	140	170	95	27	990		

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at the Former Radar Site (Stantec,

2010)

3 = Elevated RDL due to matrix interferences

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Generic 2009 Sampling - Stantec						2010 Sampling - Stantec									
Parameters	RDL	Units	Criteria ¹	SSTL ²	BS39	B\$41	TP142-BS1	POL-BS6	POL-BS7	POL-BS8	POL-BS81 (POL- BS8 Field Dup.)	POL-BS10	POL-BS11	POL-BS12	POL-BS13
			Sampl	e Depth (m)	0.0 - 0.08	0.0 - 0.10	0.2 - 0.3	0.0 - 0.1	0.0 - 0.1	0.0 - 0.15	Not recorded	0.0 - 0.1	١	lot recorde	d
Aluminum	10	mg/kg	-	-	7,300	9,100	8,500	14,000	15,000	7,000	6,900	25,000	5,400	6,300	6,400
Antimony	2	mg/kg	20	5	67	120	2	<2	4	6	5	<2	<2	<2	<2
Arsenic	2	mg/kg	12	-	15	9	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	340	300	150	54	72	100	110	70	27	19	17
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	14	27	<5	<5	<5	<5	<5	<5	<5	<5	<5
Cadmium	0.3	mg/kg	10	1.3	5.4	5.6	0.8	<0.3	0.3	0.7	0.9	<0.3	<0.3	<0.3	<0.4
Chromium	2	mg/kg	64	20	74	350	34	26	27	21	19	650	22	14	14
Cobalt	1	mg/kg	50	-	11	17	5	8	9	8	7	25	5	5	5
Copper	2	mg/kg	63	-	320	790	40	62	69	130	150	6	27	18	14
Iron	50	mg/kg	-	-	100,000 (500)	94,000 (500)	10,000	19,000	22,000	27,000	26,000	25,000	9,200	9,500	10,000
Lead	0.5	mg/kg	140	75	2,100	1,900	51	51	130	160	120	1	46	18	8
Lithium	2	mg/kg	-	-	5	6	7	10	11	7	7	35	6	6	6
Manganese	2	mg/kg	-	-	660	470	95	200	220	220	240	320	98	110	110
Mercury	0.1	mg/kg	6.6	-	0.7	0.3 (0.2)	0.4	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2
Molybdenum	2	mg/kg	10	-	10	12	<2	<2	3	<2	<2	<2	<2	<2	<3
Nickel	2	mg/kg	50	-	63	110	17	19	23	27	22	340	19	12	12
Rubidium	2	mg/kg	-	-	8	5	4	11	14	6	6	63	5	3	4
Selenium	2	mg/kg	1	-	<2	<2	<2	<5	<5	<5	<5	<5	<5	<5	<6
Silver	0.5	mg/kg	20	-	1.3	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.6
Strontium	5	mg/kg	-	-	22	46	10	13	14	13	14	6	6	8	9
Thallium	0.1	mg/kg	1	-	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.2
Tin	2	mg/kg	50	-	230	550 (20)	18	24	30	31	41	<2	5	<2	3
Uranium	0.1	mg/kg	23	-	0.3	0.5	0.7	0.9	0.9	0.3	0.3	<0.1	0.3	0.5	0.4
Vanadium	2	mg/kg	130	-	20	28	18	30	30	17	16	55	13	20	17
Zinc	5	mg/kg	200	-	1,300	1,700	160	67	150	340	340	83	60	31	28

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Shaded = Value exceeds SSTL calculated for metals at

the Former Radar Site (Stantec, 2010)

Generic			Generic		2015 Sampling - Stantec							
Parameters	RDL	Units	Criteria ¹	SSTL ²	15-POL- B\$301	15-POL- B\$302	15-POL- B\$303	15-POL- B\$401	15-POL- B\$402	15-POL- BS403	15-POL- BS404	
			Samp	le Depth (m)	0.0 - 0.15	0.0 - 0.2	0.0 - 0.2	0.0 - 0.1	0.0 - 0.1	0.0 - 0.2	0.0 - 0.2	
Aluminum	10	mg/kg	-	-	9,500	6,300	7,500	8,100	7,000	3,000	2,800	
Antimony	2	mg/kg	20	5	<2.0	<2.0	30	16	6.5	<2.0	5.3	
Arsenic	2	mg/kg	12	-	<2.0	<2.0	8.5	<2.0	<2.0	<2.0	<2.0	
Barium	5	mg/kg	500	-	59	48	420	140	330	22	54	
Beryllium	2	mg/kg	4	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Bismuth	2	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Boron	5	mg/kg	-	-	<50	<50	<50	<50	<50	<50	<50	
Cadmium	0.3	mg/kg	10	1.3	<0.30	0.86	3.1	0.92	0.55	0.37	0.53	
Chromium	2	mg/kg	64	20	140	21	150	63	64	13	21	
Cobalt	1	mg/kg	50	-	12	4.9	11	5.5	4.4	<1.0	2	
Copper	2	mg/kg	63	-	16	37	180	150	68	66	530	
Iron	50	mg/kg	-	-	13,000	11,000	48,000	18,000	12,000	9,400	6,900	
Lead	0.5	mg/kg	140	75	21	110	530	370	110	33	430	
Lithium	2	mg/kg	-	-	14	7	6	9	6	<2.0	<2.0	
Manganese	2	mg/kg	-	-	130	130	720	180	110	33	56	
Mercury	0.1	mg/kg	6.6	-	<0.10	<0.10	0.35	1.7	0.16	0.14	<0.10	
Molybdenum	2	mg/kg	10	-	<2.0	<2.0	4.9	<2.0	<2.0	<2.0	<2.0	
Nickel	2	mg/kg	50	-	70	19	55	34	33	4.8	8.5	
Rubidium	2	mg/kg	-	-	27	3	6.5	5.3	12	<2.0	5	
Selenium	2	mg/kg	1	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
Silver	0.5	mg/kg	20	-	<0.50	<0.50	0.98	0.59	<0.50	<0.50	<0.50	
Strontium	5	mg/kg	-	-	<5.0	13	12	10	14	6.4	<5.0	
Thallium	0.1	mg/kg	1	-	0.16	<0.10	<0.10	<0.10	0.11	<0.10	<0.10	
Tin	2	mg/kg	50	-	<2.0	3.7	160	24	14	7.6	11	
Uranium	0.1	mg/kg	23	-	<0.10	0.27	0.42	0.36	0.28	0.51	0.14	
Vanadium	2	mg/kg	130	-	36	19	23	24	16	7.1	14	
Zinc	5	mg/kg	200	-	49	160	860	250	150	820	120	

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Shaded = Value exceeds SSTL calculated for metals at

the Former Radar Site (Stantec, 2010)

			Generic		2015 Sampling - Stantec (continued)					
Parameters	RDL	Units	Criteria ¹	SSTL ²	15-POL-BS405	15-POL-BS406	15-POL-BS407	15-POL-BS407 Lab Dup		
			Samp	le Depth (m)	0.0 - 0.15	0.0 - 0.2	0.0 - 0.2	0.0 - 0.1		
Aluminum	10	mg/kg	-	-	4,500	5,100	2,000	1,900		
Antimony	2	mg/kg	20	5	2.3	12	<2.0	<2.0		
Arsenic	2	mg/kg	12	-	<2.0	<2.0	<2.0	<2.0		
Barium	5	mg/kg	500	-	240	35	12	12		
Beryllium	2	mg/kg	4	-	<2.0	<2.0	<2.0	<2.0		
Bismuth	2	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0		
Boron	5	mg/kg	-	-	<50	<50	<50	<50		
Cadmium	0.3	mg/kg	10	1.3	<0.30	0.34	<0.30	<0.30		
Chromium	2	mg/kg	64	20	24	16	24	21		
Cobalt	1	mg/kg	50	-	2.2	2	1.4	1.4		
Copper	2	mg/kg	63	-	29	45	18	18		
Iron	50	mg/kg	-	-	12,000	25,000	5,500	5,000		
Lead	0.5	mg/kg	140	75	46	1,300	18	21		
Lithium	2	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0		
Manganese	2	mg/kg	-	-	52	62	26	23		
Mercury	0.1	mg/kg	6.6	-	0.12	0.11	<0.10	<0.10		
Molybdenum	2	mg/kg	10	-	<2.0	<2.0	<2.0	<2.0		
Nickel	2	mg/kg	50	-	12	7.7	6.9	6.3		
Rubidium	2	mg/kg	-	-	4.4	2.8	3.6	3.3		
Selenium	2	mg/kg	1	-	<1.0	<1.0	<1.0	<1.0		
Silver	0.5	mg/kg	20	-	7.2	<0.50	<0.50	<0.50		
Strontium	5	mg/kg	-	-	54	9.7	<5.0	<5.0		
Thallium	0.1	mg/kg	1	-	<0.10	<0.10	<0.10	<0.10		
Tin	2	mg/kg	50	-	12	430	2.3	2		
Uranium	0.1	mg/kg	23	-	0.28	0.24	0.15	0.13		
Vanadium	2	mg/kg	130	-	16	9.6	24	21		
Zinc	5	mg/kg	200	-	57	120	18	18		

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Table C.8 Results of Laboratory Analysis of Available

Metals in Soil - Mid-Canada Line

Implementation of the RAP and Additional Delineation - Year 5

Former U.S. Military Site, Hopedale, NL

Project No. 121413099

Generic 2009 Sampling - Stantec															
Parameters	RDL	Units	Criteria ¹	SSTL ²	BS135	BS139	BS140	BS142	BS144	BS145	BS257	BS258	BS259	BS260	BS261
		•	Samp	le Depth (m)	0.0 - 0.10	0.0 - 0.05	0.0 - 0.05	0.0 - 0.07	0.0 - 0.10	0.0 - 0.05	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15	0.0 - 0.15
Aluminum	10	mg/kg	-	-	7,900	4,700	2,100	6,500	3,900	3,700	10,000	2,800	10,000	7,000	6,200
Antimony	2	mg/kg	20	5	<2	<2	5	2	<2	<2	<2	<2	<2	<2	2
Arsenic	2	mg/kg	12	-	4	2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Barium	5	mg/kg	500	-	32	25	17	52	36	13	9	18	21	36	33
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	5	<5	<5	<5	<5	<5	<5	<5
Cadmium	0.3	mg/kg	10	1.3	13	4.9	<0.3	0.7	<0.3	<0.3	<0.3	<0.3	<0.3	0.5	1.9
Chromium	2	mg/kg	64	20	1,200	15	12	23	14	21	64	6	27	10	23
Cobalt	1	mg/kg	50	-	11	4	5	4	3	3	2	1	4	1	2
Copper	2	mg/kg	63	-	210	10	140	59	43	21	3	8	9	9	130
Iron	50	mg/kg	-	-	15,000	9,200	6,900	8,700	8,500	7,100	33,000	3,200	12,000	4,200	9,300
Lead	0.5	mg/kg	140	75	3,200 (5)	16	57	440	24	11	4.1	6.0	7.8	8.9	82
Lithium	2	mg/kg	-	-	10	8	3	10	7	5	3	<2	13	2	5
Manganese	2	mg/kg	-	-	270	130	78	250	85	59	25	8	83	22	67
Mercury	0.1	mg/kg	6.6	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	0.1	0.1
Molybdenum	2	mg/kg	10	-	81	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	14	14	13	14	11	14	10	4	14	4	14
Rubidium	2	mg/kg	-	-	6	4	3	13	11	6	4	2	9	2	8
Selenium	2	mg/kg	1	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	2
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	64	11	<5	31	<5	<5	<5	9	5	<5	8
Thallium	0.1	mg/kg	1	-	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	2	<2	23	4	<2	<2	<2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.6	0.2	0.1	0.7	0.2	0.2	1.4	0.5	0.6	2.5	1.3
Vanadium	2	mg/kg	130	-	19	13	8	19	12	17	39	5	27	13	17
Zinc	5	mg/kg	200	-	22,000	84	470	450	110	44	10	28	34	26	57

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Table C.8 Results of Laboratory Analysis of Available

Metals in Soil - Mid-Canada Line

Implementation of the RAP and Additional Delineation - Year 5

Former U.S. Military Site, Hopedale, NL

Project No. 121413099

			Generic		2010 Sampling - Stantec								
Parameters	RDL	Units	Criteria ¹	SSTL ²	MCL-BS1-	MCL-BS2-	MCL-BS4-	MCL-BS6-	MCL-BS8-	MCL-BS8-10	MCL-BS10-	MCL-BS12-	MCL-BS13-
			onnenta		10	10	10	10	10	Lab-Dup	10	10	10
	-		Samp	le Depth (m)	0.0 - 0.15	0.0 - 0.2	0.0 - 0.15	0.0 - 0.15	0.0 - 0.2	0.0 - 0.2	1	lot recorde	b
Aluminum	10	mg/kg	-	-	5,100	2,000	2900	4,600	4,100	3,900	3,100	4,000	3,500
Antimony	2	mg/kg	20	5	<2	<2	<2	9	<2	<2	<2	<2	2
Arsenic	2	mg/kg	12	-	<2	<2	<2	<2	<2	2	<2	<2	<2
Barium	5	mg/kg	500	-	17	10	12	88	99	100	21	16	25
Beryllium	2	mg/kg	4	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bismuth	2	mg/kg	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2
Boron	5	mg/kg	-	-	<5	<5	<5	10	<5	<5	<5	<5	<5
Cadmium	0.3	mg/kg	10	1.3	<0.3	<0.3	<0.3	5.1	4	4.7	9	0.4	2.2
Chromium	2	mg/kg	64	20	23	11	13	25	30	33	4	11	45
Cobalt	1	mg/kg	50	-	2	<1	1	3	4	5	2	2	1
Copper	2	mg/kg	63	-	7	49	4	210	320	200	31	22	33
Iron	50	mg/kg	-	-	12,000	3,300	5900	7,600	10,000	11,000	5,400	6,000	5,500
Lead	0.5	mg/kg	140	75	7.4	46	6	310	83	87	5	19	100
Lithium	2	mg/kg	-	-	4	<2	<2	7	9	8	2	3	<2
Manganese	2	mg/kg	-	-	45	14	22	68	220	280	28	40	21
Mercury	0.1	mg/kg	6.6	-	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Molybdenum	2	mg/kg	10	-	<2	<2	<2	<2	2	<2	<2	<2	<2
Nickel	2	mg/kg	50	-	10	3	4	21	8	8	2	4	3
Rubidium	2	mg/kg	-	-	14	4	7	10	5	5	7	6	3
Selenium	2	mg/kg	1	-	<5	<5	<5	<5	<5	<5	<5	<5	<5
Silver	0.5	mg/kg	20	-	<0.5	<0.5	<0.5	3.8	<0.5	<0.5	<0.5	<0.5	<0.5
Strontium	5	mg/kg	-	-	<5	<5	<5	8	<5	5	<5	10	54
Thallium	0.1	mg/kg	1	-	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Tin	2	mg/kg	50	-	<2	<2	<2	62	<2	<2	<2	<2	<2
Uranium	0.1	mg/kg	23	-	0.4	0.5	0.5	0.4	0.3	0.3	0.3	0.8	0.9
Vanadium	2	mg/kg	130	-	23	9	12	13	12	13	11	14	8
Zinc	5	mg/kg	200	-	20	29	12	260	96	110	17	31	100

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Table C.8 Results of Laboratory Analysis of Available

Metals in Soil - Mid-Canada Line

Implementation of the RAP and Additional Delineation - Year 5

Former U.S. Military Site, Hopedale, NL

Project No. 121413099

Generic							2015 Sampling - Stantec						
Parameters	RDL	Units	Criteria ¹	SSTL ²	15-MCL- B\$101	15-MCL- B\$102	15-MCL- B\$103	15-MCL- B\$104	15-MCL- B\$201	15-MCL- B\$202	15-MCL- B\$203	15-MCL- B\$204	
			Samp	le Depth (m)	0.0 - 0.2	0.0 - 0.1	0.0 - 0.05	0.0 - 0.1	0.0 - 0.2	0.0 - 0.2	0.0 - 0.1	0.0 - 0.1	
Aluminum	10	mg/kg	-	-	9,700	3,000	2,100	4,700	4,100	4,400	3,500	5,900	
Antimony	2	mg/kg	20	5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	3.3	
Arsenic	2	mg/kg	12	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	41	
Barium	5	mg/kg	500	-	21	13	44	15	32	23	23	1,400	
Beryllium	2	mg/kg	4	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Bismuth	2	mg/kg	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	
Boron	5	mg/kg	-	-	<50	<50	<50	<50	<50	<50	<50	<50	
Cadmium	0.3	mg/kg	10	1.3	0.9	1.7	2.4	1.9	0.38	<0.30	<0.30	4.0	
Chromium	2	mg/kg	64	20	26	28	44	28	17	13	13	31	
Cobalt	1	mg/kg	50	-	2.6	1.2	2.4	2.1	2.5	2.2	2	6.4	
Copper	2	mg/kg	63	-	54	9.1	250	260	26	12	12	130	
Iron	50	mg/kg	-	-	11,000	4,900	4,900	11,000	7,800	5,400	6,000	8,700	
Lead	0.5	mg/kg	140	75	51	9	430	54	74	19	17	1,000	
Lithium	2	mg/kg	-	-	3.1	<2.0	<2.0	4.2	2.7	2.6	2.9	7.1	
Manganese	2	mg/kg	-	-	51	22	57	45	80	48	42	85	
Mercury	0.1	mg/kg	6.6	-	0.13	<0.10	0.16	<0.10	0.11	0.11	0.12	0.17	
Molybdenum	2	mg/kg	10	-	<2.0	<2.0	9.7	<2.0	<2.0	4.2	<2.0	<2.0	
Nickel	2	mg/kg	50	-	11	2.7	9.9	5.2	11	7	7.3	14	
Rubidium	2	mg/kg	-	-	5.2	8.5	4.7	6.2	4.5	4.5	6.8	11	
Selenium	2	mg/kg	1	-	1.7	<1.0	<1.0	1	<1.0	<1.0	<1.0	4.8	
Silver	0.5	mg/kg	20	-	<0.50	<0.50	0.77	<0.50	<0.50	<0.50	<0.50	<0.50	
Strontium	5	mg/kg	-	-	13	<5.0	38	38	20	11	8.8	26	
Thallium	0.1	mg/kg	1	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.1	
Tin	2	mg/kg	50	-	<2.0	<2.0	<2.0	<2.0	40	<2.0	<2.0	15	
Uranium	0.1	mg/kg	23	-	1.9	0.18	0.26	0.79	0.37	0.45	0.25	0.27	
Vanadium	2	mg/kg	130	-	20	11	4.5	23	12	10	12	18	
Zinc	5	mg/kg	200	-	48	45	160	53	200	43	33	290	

Notes:

1 = CCME Canadian Soil Quality Guidelines (CSQGs) for a Residential/Parkland Site (1999 and updates)

2 = SSTL calculated for metals at Former Radar Site (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

"-" = indicates value is not available or does not apply

Lab-Dup = laboratory duplicate sample

Bold/Italics = Value exceeds applicable generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	CCME SQG ¹	1.3	-
	SSTL (Residential Area) ²	9	-
	2005 Sampling	g - ESG	
6497*	0 - 0.1	<0.05	-
6498*	0 - 0.1	<0.05	-
6499*	0 - 0.1	1.7	-
6500*	0 - 0.1	<0.05	-
6502*	0 - 0.1	1.6	-
6503*	0 - 0.1	<0.05	-
6504	0 - 0.1	0.6	-
6505*	0 - 0.1	<0.05	-
6506*	0 - 0.1	<0.05	-
6507*	0.3	<0.05	-
6508*	0 - 0.1	<0.05	-
6509*	0 - 0.1	1.8	-
6510*	0 - 0.1	<0.05	-
6512*	0 - 0.1	<0.05	-
6513*	0 - 0.1	4.2	-
6514	0 - 0.1	12,000	Soil removed
6515*	0 - 0.1	<0.05	-
6516	0 - 0.1	<0.05	-
6517*	0 - 0.1	<0.05	-
6518	0 - 0.1	3.5	Soil removed
6519*	0 - 0.1	2.2	-
6520*	0 - 0.1	<0.05	-
6522*	0 - 0.1	<0.05	-
6523*	0 - 0.1	<0.05	-
6524*	0 - 0.1	<0.05	-
6525*	0 - 0.1	<0.05	-
6526*	0 - 0.1	<0.05	-
6527*	0 - 0.1	<0.05	-
6528*	0 - 0.1	<0.05	-
6529*	0 - 0.1	<0.05	-
6530	0 - 0.1	<0.05	-
6532*	0.3	<0.05	-
6533	0 - 0.1	6.0	-
6534	0 - 0.1	4.0	Soil removed
6535*	0 - 0.1	<0.05	-
6536*	0 - 0.1	<0.05	-
6537*	0.3 - 0.4	<0.05	-
6538*	0 - 0.1	<0.05	-
6539*	0 - 0.1	<0.05	-

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	CCME SQG ¹	1.3	-
	SSTL (Residential Area) ²	9	-
	2005 Sampling - ESG	(continued)	
6540*	0.4 - 0.5	<0.05	-
6542*	0 - 0.1	<0.05	-
6543*	0 - 0.1	<0.05	-
6544	0 - 0.1	0.6	-
6545*	0 - 0.1	<0.05	-
6546	0 - 0.1	33	-
6597*	0 - 0.1	<0.05	-
6598*	0 - 0.1	<0.05	-
6599*	0 - 0.1	<0.05	-
21480	0 - 0.1	2.0	-
21482	0 - 0.1	<0.05	-
21483	0 - 0.1	2.4	-
21484	0 - 0.1	28	-
21485	0 - 0.1	2.7	-
21486	0 - 0.1	2.1	-
21558	0 - 0.1	1.0	-
21559	0 - 0.1	<0.05	-
21562	0 - 0.1	1.4	-
21563	0 - 0.1	<0.05	-
21566	0 - 0.1	<0.05	-
21567	0 - 0.1	0.6	-
	2007 Sampling	g - ESG	
22390	0 - 0.1	0.6	-
22393	0 - 0.1	0.7	-
22397	0 - 0.1	<0.05	-
22398	0 - 0.1	0.6	-
22399	0 - 0.1	<0.05	-
22400	0 - 0.1	15.7	-
22402	0 - 0.1	6.0	-
22403	0 - 0.1	2.0	-
22404	0 - 0.1	<0.05	-
22408	0 - 0.1	1.8	-
22418	0 - 0.1	<0.05	-
22420	0 - 0.1	33	-
22424	0 - 0.1	24.3	- Soll room
22433	0 - 0.1	9.2	Soll removed
22434	0 - 0.1	<0.05	Soil removed
22435	0 - 0.1	15.5	Soli removed
22439	0 - 0.1	1.5	Soil removed
22443	0 - 0.1	9.6	soii removed

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (CSQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis; < # = Not detected above RDL noted

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	CCME SQG ¹	1.3	-
	SSTL (Residential Area) ²	9	-
	2007 Sampling - ESG	(continued)	
22444	0 - 0.1	1,480	Soil removed
22448	0 - 0.1	<0.05	-
22469	0 - 0.1	13.5	-
22470	0 - 0.1	22.5	-
22471	0 - 0.1	22.4	-
22472	0 - 0.1	<0.05	-
22474	0 - 0.1	12.8	Soil removed
22475	0 - 0.1	12.7	Soil removed
22476	0 - 0.1	0.6	Soil removed
22477	0 - 0.1	<0.05	-
22478	0 - 0.1	73.1	Soil removed
22479	0 - 0.1	10.4	Soil removed
22482	0 - 0.1	152	Soil removed
22483	0 - 0.1	30.6	Soil removed
22484	0 - 0.1	56.5	Soil removed
22485	0 - 0.1	0.6	Soil removed
22488	0 - 0.1	20,200	Soil removed
22492	0 - 0.1	6,370	Soil removed
22493	0 - 0.1	44.2	Soil removed
22494	0 - 0.1	14.9	Soil removed
22495	0 - 0.1	3.4	-
22496	0 - 0.1	30.8	Soil removed
22517	0 - 0.1	8.1	-
22537	0 - 0.1	7.2	Soil removed
22538	0 - 0.1	82.5	Soil removed
22673	0 - 0.1	<0.05	-
22675	0 - 0.1	2.2	-
22677	0 - 0.1	4.6	-
22683	0 - 0.1	1	-
22693	0 - 0.1	1.3	-
22694	0 - 0.1	4.9	-
22695	0 - 0.1	<0.05	-
22700	0 - 0.1	<0.05	-
22705	0 - 0.1	1,300	-
22709	0 - 0.1	<0.05	-
22713	0 - 0.1	<0.05	-
22715	0 - 0.1	0.7	-

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (CSQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis; < # = Not detected above RDL noted

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	CCME SQG ¹	1.3	-
	SSTL (Residential Area) ²	9	-
	2009 Sampling	- Stantec	
TP7-BS2	0.6 - 0.8	<0.05	-
TP13-BS2	1.0 - 1.1	2.3	-
TP16-BS1	0.1 - 0.3	<0.05	-
TP20-BS2	0.4 - 1.3	6.2	-
TP21-BS2	0.9 - 1.0	3.2	-
TP24-BS2	1.0 - 1.1	<0.05	-
TP31-BS2	0.8 - 0.9	<0.05	-
TP37-BS1	0.0 - 0.2	<0.05	-
1P41-BS1	0.6 - 0.8	0.95	-
IP43-BS2	1.5 - 1.7	<0.05	-
IP52-BS1	0.1 - 0.2	<0.05	-
	0.5 - 0.6	0.59	-
	0.5 - 0.6	0.56	-
	0.7 - 0.8	<0.05	-
	1.3 - 1.4	0.51	
	0.6 - 0.7	<0.05	
	1.4 - 1.5	3.4	_
TP222-BS2	1.5 - 1.6	0.24	_
TP223-BS1	0.4 - 0.5	<0.05	_
TP224-B\$1	0.4 - 0.3	<0.03	-
B\$43	0.0 - 0.14	17	-
B\$44	0.0 - 0.05	2.2	_
BS46	0.0 - 0.15	0.73	_
BS53	0.0 - 0.08	1.3	-
BS57	0.0 - 0.17	0.77	-
BS61	0.0 - 0.15	<0.05	-
BS65	0.0 - 0.15	0.38	-
BS68	0.0 - 0.22	<0.05	-
BS72	0.0 - 0.15	<0.05	-
BS75	0.0 - 0.05	0.30	-
BS76	0.0 - 0.04	0.09	-
BS78	0.0 - 0.10	0.06	-
BS81	0.0 - 0.12	1.7	-
B\$84	0.0 - 0.10	0.81	-
BS91	0.0 - 0.12	1.3	_
BS95	0.0 - 0.05	2.3	_
BS95-Lab-Dup	0.0 - 0.05	1.8	_
B\$100	0.0 - 0.15	5.5	-
BS110	0.0 - 0.20	53	Soil removed

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (CSQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis; < # = Not detected above RDL noted Lab-Dup = Laboratory duplicate sample

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	CCME SQG ¹	1.3	-
	SSTL (Residential Area) ²	9	-
	2009 Sampling - Stante	c (continued)	
BS113	0.0 - 0.18	1.4	Soil removed
BS265	Not recorded	1.1	-
MW1-SS1	0.15 - 0.8	<0.05	-
MW14-SS3	1.2 - 1.4	<0.05	-
Septic Tank	0.0 - 0.1	72	-
	2010 Sampling ·	· Stantec	
MB-BS1	0.0 - 0.15	41,000	Soil removed
MB-BS1 Lab Dup	0.0 - 0.15	39,000	Soil removed
MB-BS3	0.0 - 0.15	650	Soil removed
MB-BS5	0.0 - 0.15	1,600	Soil removed
MB-BS7	0.0 - 0.1	3.2	-
MB-BS9	0.0 - 0.1	6.4	Soil removed
MB-BS10	0.0 - 0.1	910	Soil removed
	2013 Sampling ·	· Stantec	
13-MB-BS1	0.0 - 0.3	12	Tag No. 16
13-MB-BS2A	0.0 - 0.25	3.0	Tag No. 17
13-MB-BS2B	0.05 0.5	0.26	
13-MB-BS2B Lab-Dup	0.23 - 0.5	0.33	10g NO. 17
13-MB-BS3	0.0 - 0.02	2.8	Tag No. 18, Soil removed
13-MB-BS4A	0.15 - 0.25	<0.050	Tag No. 19
13-MB-BS4B	0.25 - 0.5	<0.050	Tag No. 19
13-MB-BS5	0.3 - 0.5	<0.050	Tag No. 20
13-MB-BS6	0.2 - 0.4	<0.050	Tag No. 21
13-MB-BS7	0.0 - 0.05	<0.050	Tag No. 22, Soil removed
13-MB-BS8	0.3 - 0.4	<0.050	Tag No. 23, Soil removed
13-MB-BS9	00.03	<0.050	
13-MB-BS9 Lab-Dup	0.0 - 0.3	<0.050	Tug No. 24
13-MB-BS10	0.0 - 0.1	0.28	Tag No. 25
13-MB-BS11	0.0 - 0.1	<0.050	Tag No. 26
13-MB-BS12		8,400	
13-MB-BS14	0.0 - 0.1		Tag No. 27
(Fld-Dup of 13-MB-BS12)		8,900	
13-MB-BS13	0.0 - 0.1	5,300	Tag No. 28, Soil removed
13-MB-BS15		0.17	T NH OO
13-MB-BS15 Lab-Dup	0.0 - 0.2	0.30	lag No. 39
13-MB-BS16	0.0 - 0.1	0.19	Tag No. 40
13-MB-BS17	0.0 - 0.1	0.16	Tag No. 41
13-POLW-BS1	0.0 - 0.1	0.15	Tag No. 33
13-POLW-BS3	0.0 - 0.1	< 0.050	Tag No. 31

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (CSQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis; < # = Not detected above RDL noted

Lab-dup = Laboratory duplicate sample

Fld-Dup = Field duplicate sample

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	CCME SQG ¹	1.3	-
	SSTL (Residential Area) ²	9	-
	2013 Sampling - Stante	c (continued)	
13-POLW-BS5		2.4	
13-POLW-BSTT	0.0 - 0.1	1.2	Tag No. 29
(FIG-DUP OF 13-POLW-BS5)			
13-POLW-BS8	0.0 - 0.05	0.46	Tag No. 36
13-POLW-BS9	0.0 - 0.06	0.36	Tag No. 3/
13-FOLW-B310	0.0 - 0.1		100.38
	2014 Sampling	- Stantec	
	0.5 1.0	0.23	-
(Fid-Dup of 14-MB-BS101)	0.5 - 1.0	0.12	-
14-MB-BS102	0.5 - 1.0	0.33	-
14-MB-BS401	0.0 - 1.2	0.78	_
14-MB-BS402	0.0 - 0.5	0.52	_
14-MB-BS403	0.0 - 0.6	0.17	_
14-MB-BS501	0.0.01	< 0.05	-
14-MB-BS501 Lab-Dup	0.0 - 0.1	0.057	_
14-MB-BS502	0.0 - 0.1	3.9	_
14-MB-BS706		< 0.05	_
14-MB-BS706 Lab-Dup	0.0 - 0.4	<0.05	_
14-POLW-BS101	0.0 - 0.1	2.1	_
14-POLW-BS102	0.0 - 0.15	1.0	_
14-POLW-BS103	0.0 - 0.2	0.67	_
	2015 Samplina -	- Stantec	
15-MB-B\$103	0.0 - 0.1	4,900	
15-MB-B\$104	0.0 - 0.05	11	_
15-MB-B\$105	0.0 - 0.1	2.8	_
15-MB-B\$106	0.0 - 0.1	1.4	_
15-MB-B\$107	0.0 - 0.05	16	_
15-MB-BS108	12-14	3.6	_
15-MB-B\$100	0.0 - 0.1	2.2	_
15 MB-B\$10	0.0 - 0.15	0.6	
15 MB-B\$111	13-14	19	
15 MR BS112	1.3 - 1.4	15	
15 MB-B\$113	0.0 - 0.02	0.99	_
15 MR RS114	0.0 - 0.02	13	-
15-MR 05115	0.0 - 0.02	13	-
	0.0 - 0.03	13	-
	0.0 - 0.02	0.4	-
	0.0 0.0	0.4	-
12-WR-14105-R21	0.0 - 0.2	12	-

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (CSQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis; < # = Not detected above RDL noted

Lab-Dup = Laboratory duplicate sample

Fld-Dup = Field duplicate sample

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	
	Units	mg/kg	
	CCME SQG ¹	1.3	
	SSTL (Residential Area) ²	9	
	2004 Samplin	ig - ESG	
6594*	0 - 0.1	4.5	-
6595	0 - 0.1	84,000	Tar removed
6596	0 - 0.1	5.6	-
	2006 Samplin	ig - ESG	
22544	0 - 0.1	2.6	-
22560	0 - 0.1	1.7	-
22567	0 - 0.1	10.7	-
22576	0 - 0.1	13.8	-
22577	0 - 0.1	37.5	-
22578	0 - 0.1	59.7	-
22582	0 - 0.1	6,540	-
22583	0 - 0.1	349	-
22585	0 - 0.1	36.2	-
22586	0 - 0.1	<0.5	-
22588	0 - 0.1	0.9	-
22594	0 - 0.1	74.9	-
22603	0 - 0.1	5.2	-
22604	0 - 0.1	0.6	-
22609	0 - 0.1	122	-
22610	0 - 0.1	0.6	-
22613	0 - 0.1	1.2	-
22615	0 - 0.1	0.5	-
22628	0 - 0.1	7.1	-
22630	0 - 0.1	15.9	-
22633	0 - 0.1	<0.5	-
22634	0 - 0.1	1	-
22638	0 - 0.1	7.7	-
22743	0 - 0.1	2.6	-
22748	0 - 0.1	<0.5	-
22755	0 - 0.1	<0.5	-
22765	0 - 0.1	<0.5	-
22768	0 - 0.1	<0.5	-

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

(#) = Elevated RDL shown in brackets Elevated RDL used due to matrix/co-extractive interference "*" = Analysis carried out with field test kit

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments	
	RDL	0.05		
	Units	mg/kg		
		1.3		
	SSTL (Residential Area) ²	9		
	2009 Sampling	- Stantec		
BS121	0.0 - 0.03	170	-	
BS122	0.0 - 0.11	16	-	
B\$123	0.0 - 0.05	13	-	
BS124	0.0 - 0.07	4.5	-	
B\$125	0.0 - 0.05	<0.05	-	
BS126	0.0 - 0.02	230	-	
BS127	0.0 - 0.02	<0.05	-	
BS129	0.0 - 0.05	1.5	-	
BS130	B\$130 0.0 - 0.03		-	
B\$130-Lab-Dup	0.0 - 0.03	2.2	-	
BS131	0.0 - 0.05	4.7	-	
B\$132	0.0 - 0.04	8.7	-	
	2010 Sampling	- Stantec		
OB1-BS2	0.0- 0.1	22	-	
OB1-BS3	0.0 - 0.1	4.3	-	
OB1-BS4	0.0 - 0.3	2.0	-	
OB1-BS6	0.0 - 0.1	210 (0.1)	-	
OB1-BS7	0.0 - 0.1	13	-	
OB1-BS8	0.0 - 0.1	1.3	-	

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

Lab-Dup = Laboratory duplicate sample

< # = Not detected above RDL noted

(#) = Elevated RDL shown in brackets Elevated RDL used due to matrix/co-extractive interference

"*" = Analysis carried out with field test kit

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments					
	RDL	0.05						
	Units	mg/kg						
		1.3						
	SSTL (Residential Area) ²	9						
	2013 Sampling - Stantec							
13-OB1-BS1	0.0 - 0.1	<0.050	Tag No. 1					
13-OB1-BS2	0.0 - 0.1	<0.050	Tag No. 2					
13-OB1-BS3	0.0 - 0.1	<0.050	Tag No. 3					
13-OB1-BS4	0.0 - 0.25	<0.050	Tag No. 4					
13-OB1-BS5	0.0 - 0.2	<0.050	Tag No. 5					
13-OB1-BS6	0.0 - 0.1	2.2	Tag No. 6					
13-OB1-BS7	0.0 - 0.25	7.3	Tag No. 7					
13-OB1-BS16 (Fld-Dup of 13-OB1-BS7)	0.0 - 0.25	1.8	Tag No. 7					
13-OB1-BS16 Lab-Dup (Fld-Dup of 13-OB1-BS7)	0.0 - 0.25	3.4	Tag No. 7					
13-OB1-BS8	0.0 - 0.25	<0.050	Tag No. 8					
13-OB1-BS9	0.0 - 0.1	0.12	Tag No. 9					
13-OB1-BS10	0.0 - 0.2	<0.050	Tag No. 10					
13-OB1-BS11	0.0 - 0.1	2.5	Tag No. 11					
13-OB1-BS12	0.0 - 0.1	1.4	Tag No. 12					
13-OB1-BS13	0.0 - 0.1	<0.050	Tag No. 13					
13-OB1-BS14	0.0 - 0.1	0.16	Tag No. 14					
13-OB1-BS15	0.0 - 0.1	<0.050	Tag No. 15					
	2015 Sampling	- Stantec						
15-OB1-B\$101	0.0 - 0.03	44	-					
15-OB1-B\$102	0.0 - 0.02	3.3	-					
15-OB1-B\$103	0.0 - 0.04	4.6	-					
15-OB1-BS201	0.0 - 0.02	4.5	-					
15-OB1-BS202	0.0 - 0.02	6.9	-					
15-OB1-BS203	0.0 - 0.02	6.1	-					

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

Fld-Dup = Field duplicate sample

< # = Not detected above RDL noted

(#) = Elevated RDL shown in brackets Elevated RDL used due to matrix/co-extractive interference

"*" = Analysis carried out with field test kit

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	Generic Criteria ¹	1.3	-
	Remedial Target ²	9	-
	2009 Samplin	g - Stantec	
TP149-BS1	0.2 - 0.3	0.69	-
TP152-BS1	0.2 - 0.3	20	-
TP153-BS1	0.7 - 0.8	1.1	-
TP157-BS2	2.1 - 2.2	nd	-
TP160-BS1	0.9 - 1.0	0.28	-
BS161	0.00 - 0.20	0.18	-
BS163	0.00 - 0.10	0.08	-
BS165	B\$165 0.00 - 0.20		-
MW18-SS4	1.83 - 2.44	11	-
	2013 Samplin	g - Stantec	
13-ML1	0.0 - 0.1	2.0	Soil removed.
13-ML2	0.0 - 0.1	1.3	Soil removed.
13-ML3	0.0 - 0.1	2.0	Soil removed.
13-ML4	0.0 - 0.1	7.3	Soil removed.
13-ML5	0.0 - 0.1	1.5	Soil removed.
13-ML6	0.0 - 0.1	1.5	Soil removed.
13-ML7	0.0 - 0.1	0.78	Soil removed.
13-ML8	0.0 - 0.1	0.63	Soil removed.
13-ML9	0.0 - 0.1	2.4	Soil removed.
13-ML10	0.0 - 0.1	0.75	Soil removed.
13-ML11	0.0 - 0.1	1.1	Soil removed.
13-ML12	0.0 - 0.1	2.2	Soil removed.

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Comments
	RDL	0.05	-
	Units	mg/kg	-
	Generic Criteria ¹	1.3	-
	Remedial Target ²	9	-
	2015 Samplin	g - Stantec	
15-P1-TP101-BS1	0.8 - 1.0	0.52	-
15-P1-TP101-BS2	1.9 - 2.0	0.77	-
15-P1-TP102-BS1	0.2 - 0.3	3.7	-
15-P1-TP102-BS2	0.9 - 1.0	2.8	-
15-P1-TP102-BS3	1.6 - 1.7	4.0	-
15-P1-TP201-BS1	0.2 - 0.3	9.1	-
15-P1-TP201-BS2	1.0 - 1.2	6.5	-
15-P1-TP202-BS1	0.2 - 0.3	5.6	-
15-P1-TP202-BS2	1.0 - 1.1	27	-
15-P1-TP202-BS3	1.4 - 1.5	17	-
15-P1-TP202-BS3 Lab-Dup	-	22	-
15-P1-TP203-BS1	0.2 - 0.3	1.9	-
15-P1-TP203-BS2	1.0 - 1.1	1.6	-
15-P1-TP203-BS3	2.0 - 2.1	1.1	-
15-P1-TP203-BS4	2.5 - 2.6	1.3	-
15-P1-TP204-BS1	0.3 - 0.4	1.5	-
15-P1-TP204-BS2	1.0 - 1.2	6.1	-
15-P1-TP204-BS3	1.9 - 2.1	1.4	-
15-P1-TP205-BS1	0.3 - 0.4	4.6	-
15-P1-TP205-BS2	1.0 - 1.2	3.4	-
15-P1-TP205-BS3	1.9 - 2.0	2.5	-

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

Lab-Dup = Laboratory duplicate sample

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sample Depth (m)	Polychlorinated Biphenyls (PCBs)	Location
	RDL	0.05	-
	Units	mg/kg	-
CCME SQG ¹		1.3	-
	SSTL (Residential Area) ²	9	-
		2015 Sampling - Stanted	2
15-ROAD-BS1	0.0 - 0.05	0.091	Near exit from wharf
15-ROAD-BS2	0.0 - 0.05	0.31	Near intersection to Old Dump Pond
15-road-bs3	15-ROAD-BS3 0.0 - 0.1		Near Main Base/BMEWS intersection
15-ROAD-BS4	0.0 - 0.1	1.7	Main Base road near Old Base 1
15-ROAD-BS5	0.0 - 0.1	0.69	BMEWs road near intersection to Aliant tower

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Residential/Parkland Site (1999 and updates)

2 = Site-Specific Target Level (SSTL) calculated for PCBs in the Residential Area (Stantec, 2010)

* = Analysis carried out with field test kit

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

Bold/Italics = Value exceeds generic criteria (i.e., CCME CSQG)

Sample ID	Sampled Media	Polychlorinated Biphenyls (PCBs)
	RDL	5
	Units	µg/100 cm ²
CCME	Recommended Permissible Surface Contamination Criterion ¹	10
	2014 Sampling - Stantec	
14-CABLE1	Cable (BMEWS)	<5
14-SWAB1	4 inch diameter steel pipe (Main Base)	17
14-SWAB2	8 inch diameter corrugated steel pipe (Main Base)	14
14-SWAB3	Steel tank (Main Base)	<5
14-SWAB4	16 x 24 inch piece of steel (Main Base)	<5
14-SWAB5	Electric pole (Main Base)	<5
	2015 Sampling - Stantec	
15-SWAB-1	4 inch diameter yellow pipe (Main Base)	5.7
15-SWAB-2	metal angle bar (Main Base)	9.1
15-SWAB-3	8 inch diameter metal pipe (Main Base)	9
15-SWAB-4	12 inch flat metal bar (Main Base)	5.6
15-SWAB-5	2 inch metal piping (Main Base)	11

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) PCB Transformer Decontamination Standards and Protocols (1995) - Recommended Permissible Surface Contamination Criterion for transformer metal components destined for recycling by smelting

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

Bold/Shaded = Value exceeds the CCME Criterion

Table C.14 Results of Laboratory Analysis of PCBs in Sediment - Swimming Pond Implementation of the RAP and Additional Delineation - Year 5 Former US Military Site and Residential Subdivision, Hopedale, NL Project No. 121410103

Sample ID	Polychlorinated Biphenyls (PCBs)		
RDL	0.05		
Units	mg/kg		
Criteria ¹	0.0341		
Criteria ²	0.277		
2015 Sam	pling - Stantec		
15-pond-sed1	<0.05		
15-POND-SED2	<0.05		
15-POND-SED3	<0.05		

Notes:

1 = CCME Interim Sediment Quality Guidelines (ISQGs) for freshwater sediment (1999 and updates)

2 = CCME Probable Effects Levels (PELs) for freshwater sediment (1999 and updates)

RDL = Reportable Detection Limit for routine analysis

< # = Not detected above RDL noted

Sample ID	Polychlorinated Biphenyls (PCBs)
RDL	0.050
Units	µg/L
Criteria ¹	-
2015 Sampli	ng - Stantec
15-POND-SW1	<0.05
15-POND-SW1 Lab-Dup	<0.05
15-POND-SW2	<0.05
15-POND-SW3	<0.05

Notes:

1 = CCME Water Quality Guidelines for the protection of freshwater aquatic life (1999 and updates)

RDL = Reportable Detection Limit for routine analysis

Lab-dup = Laboratory duplicate sample

< # = Not detected above RDL noted

Parameters	RDL	Units	Guideline ¹	15-BP-COMP- A1	15-BP-COMP- A1 Lab-Dup	15-BP-COMP-B1	15-BP-COMP-B2	15-BP-COMP- C1	15-BP-COMP- D1	15-BP-COMP- D1 Lab-Dup
Ammonia-N	5	mg/kg	-	320	270	140	200	71	84	-
Chloride (Cl)	5	mg/kg	-	79	-	57	62	38	32	34
Conductivity	1	u\$/cm	4,000	700	-	260	290	190	150	150
Moisture ²	1	%	-	22	-	22	21	22	20	-
Nitrate + Nitrite	0.25	mg/kg	-	40	-	14	16	6.7	4.2	4.5
Nitrite (N)	0.05	mg/kg	-	0.39	-	<0.050	0.057	0.05	0.05	<0.050
Orthophosphate (P)	0.05	mg/kg	-	8.8	-	2	2.2	0.94	0.64	0.65
Soluble (5:1) pH	N/A	-	6 - 8	7.69	-	7.67	7.6	7.39	7.36	7.32
Sulphate (SO ₄)	10	mg/kg	-	730	-	53	82	49	34	37

Notes:

1 = Canadian Council of Ministers of the Environment (CCME) Canadian Soil Quality Guideline (SQG) for a Commercial Site (1999 and updates)

2 = Recorded as part of Petroleum Hydrocarbon analysis

"-" = No applicable guideline or not analyzed

RDL = Reportable Detection Limit for routine analysis

<# = Not detected above standard RDL

(#) = Elevated RDL shown in brackets

Lab-Dup = Laboratory duplicate sample

Bold / Shaded = Concentration exceeds CCME CSQG for a commercial site

Parameters	Units	Guideline ¹	15-BP-COMP-A1	15-BP-COMP-B1	15-BP-COMP-B2	15-BP-COMP-C1	15-BP-COMP-D1
Hydrocarbanoclastes	CFU/g	-	3,900	44,000	1,600,000	160,000	920,000

Notes:

"-" = No applicable guideline
Table C.18 Results of Laboratory Grain Size Analysis of Soil - Biopile Implementation of the RAP and Additional Delineation - Year 5 Former U.S. Military Site, Hopedale, NL Project No. 121413099

Grain Size	RDL	Units	15-BP-COMP-A2	15-BP-COMP-A2 Lab-Dup	15-BP-COMP-B1	15-BP-COMP-B2	15-BP-COMP-C2	15-BP-COMP-D2
< -1 Phi (2 mm)	0.1	%	75 (1)	87	77	86	80	81 (1)
< 0 Phi (1 mm)	0.1	%	66	75	67	74	69	70
< +1 Phi (0.5 mm)	0.1	%	53	58	53	57	54	55
< +2 Phi (0.25 mm)	0.1	%	38	40	37	39	37	38
< +3 Phi (0.12 mm)	0.1	%	27	28	25	26	23	24
< +4 Phi (0.062 mm)	0.1	%	21	21	18	18	17	17
< +5 Phi (0.031 mm)	0.1	%	17	17	15	15	13	13
< +6 Phi (0.016 mm)	0.1	%	14	12	11	11	9	9.2
< +7 Phi (0.0078 mm)	0.1	%	10	8	7	7	6	6
< +8 Phi (0.0039 mm)	0.1	%	8.3	7.1	6.5	6.2	4.9	4.9
< +9 Phi (0.0020 mm)	0.1	%	6.4	6.5	6.2	5.5	4	3.4
Gravel	0.1	%	25	13 (2)	23	14	20	19.0
Sand	0.1	%	55	66	59	68	64	65
Silt	0.1	%	13	13	12	12	12	12
Clay	0.1	%	8.3	7.1	6.5	6.2	4.9	4.9

Notes:

RDL = Reportable Detection Limit for routine analysis

(1) = Sample observation comment: fraction contained a large rock

(2) = Poor duplicate agreement due to sample inhomogeneity.

IMPLEMENTATION OF THE REMEDIAL ACTION PLAN AND ADDITIONAL DELINEATION – YEAR 5, FORMER U.S. MILITARY SITE, HOPEDALE, NL

APPENDIX D

Laboratory Analytical Reports

Maxiam A Bureau Veritas Group Company

> Your Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION YEAR 5 Your C.O.C. #: C#5257540101

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

> Report Date: 2015/08/27 Report #: R3642337 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5G9563 Received: 2015/08/25, 10:15

Sample Matrix: Soil

Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TEH in Soil (PIRI) (1, 2)	3	2015/08/25	2015/08/26	ATL SOP 00197	Atl. RBCA v3 m
TEH in Soil (PIRI) (2)	2	2015/08/25	2015/08/27	ATL SOP 00197	Atl. RBCA v3 m
Moisture	5	N/A	2015/08/26	ATL SOP-00196	OMOE Handbook 1983 m
VPH in Soil (PIRI)	5	2015/08/25	2015/08/27	ATL SOP 00199	Atl. RBCA v3 m
ModTPH (T1) Calc. for Soil	5	N/A	2015/08/27	N/A	Atl. RBCA v3 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Reported on a dry weight basis.

(2) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Rob Whelan, Laboratory Manager Email: RWhelan@maxxam.ca Phone# (709)754-0203

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam ID		AWA362	AWA363	AWA364	AWA365	AWA366		
Sampling Date		2015/08/23	2015/08/23	2015/08/23	2015/08/24	2015/08/24		
COC Number		C#5257540101	C#5257540101	C#5257540101	C#5257540101	C#5257540101		
	UNITS	MB-BS108	MB-BS109	MB-BS110	MB-BS111	MB-BS112	RDL	QC Batch
Inorganics								
Moisture	%	28	8.0	22	30	21	1.0	4162350
Petroleum Hydrocarbons								
Benzene	mg/kg	<0.025	<0.025	<0.025	<0.025	<0.025	0.025	4162950
Toluene	mg/kg	<0.025	<0.025	<0.025	<0.025	0.19	0.025	4162950
Ethylbenzene	mg/kg	<0.025	<0.025	<0.025	<0.025	0.12	0.025	4162950
Total Xylenes	mg/kg	<0.050	<0.050	<0.050	<0.050	0.61	0.050	4162950
C6 - C10 (less BTEX)	mg/kg	12	120	<2.5	<2.5	160	2.5	4162950
>C10-C16 Hydrocarbons	mg/kg	9400	25	<10	4100	18000	10	4162716
>C16-C21 Hydrocarbons	mg/kg	4100	150	<10	2800	7400	10	4162716
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/kg	1300	70	33	800	1700	15	4162716
Modified TPH (Tier1)	mg/kg	15000	370	33	7700	27000	15	4162472
Reached Baseline at C32	mg/kg	Yes	No	No	Yes	Yes	N/A	4162716
Hydrocarbon Resemblance	mg/kg	COMMENT (1)	COMMENT (2)	COMMENT (3)	COMMENT (1)	COMMENT (1)	N/A	4162716
Surrogate Recovery (%)								
Isobutylbenzene - Extractable	%	100	101	100	99	100		4162716
n-Dotriacontane - Extractable	%	120	105	102	114	119		4162716
Isobutylbenzene - Volatile	%	102	82	111	100	95		4162950
RDL = Reportable Detection Lim	nit							
QC Batch = Quality Control Batc	:h							
N/A = Not Applicable								
(1) Weathered fuel oil fraction.								
(2) One product in fuel/lube oil	range.							
(3) No resemblance to petroleur	m produ	cts in lube oil rang	ge.					

Success Through Science®

Maxxam Job #: B5G9563 Report Date: 2015/08/27 Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

GENERAL COMMENTS

Results relate only to the items tested.

Maxxam Job #: B5G9563 Report Date: 2015/08/27

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4162716	Isobutylbenzene - Extractable	2015/08/26	99	30 - 130	102	30 - 130	103	%		
4162716	n-Dotriacontane - Extractable	2015/08/26	98	30 - 130	106	30 - 130	102	%		
4162950	Isobutylbenzene - Volatile	2015/08/27			102	60 - 130	93	%		
4162350	Moisture	2015/08/26							2.4	25
4162716	>C10-C16 Hydrocarbons	2015/08/26	94	30 - 130	93	30 - 130	<10	mg/kg	NC	50
4162716	>C16-C21 Hydrocarbons	2015/08/26	99	30 - 130	100	30 - 130	<10	mg/kg	NC	50
4162716	>C21- <c32 hydrocarbons<="" td=""><td>2015/08/26</td><td>NC</td><td>30 - 130</td><td>94</td><td>30 - 130</td><td><15</td><td>mg/kg</td><td>16</td><td>50</td></c32>	2015/08/26	NC	30 - 130	94	30 - 130	<15	mg/kg	16	50
4162950	Benzene	2015/08/27			92	60 - 140	<0.025	mg/kg		
4162950	C6 - C10 (less BTEX)	2015/08/27					<2.5	mg/kg		
4162950	Ethylbenzene	2015/08/27			81	60 - 140	<0.025	mg/kg		
4162950	Toluene	2015/08/27			83	60 - 140	<0.025	mg/kg		
4162950	Total Xylenes	2015/08/27			87	60 - 140	<0.050	mg/kg		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rothla

Rob Whelan, Laboratory Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Ma

Your Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Your C.O.C. #: N/A

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

> Report Date: 2015/09/09 Report #: R3655944 Version: 5 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5G9646

Received: 2015/08/25, 09:23

Sample Matrix: Soil # Samples Received: 44

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Chloride in Soil by Auto. Colourimetry (1)	5	N/A	2015/09/01	ATL SOP 00014	SM 22 4500-Cl- E m
Conductance - soil (1)	5	2015/08/28	2015/08/31	ATL SOP 00004	SM 22 2510B m
TEH in Soil (PIRI) (1, 3)	5	2015/08/27	2015/08/28	ATL SOP 00111	Atl. RBCA v3 m
TEH in Soil (PIRI) (1, 3)	3	2015/08/27	2015/08/29	ATL SOP 00111	Atl. RBCA v3 m
Metals Solids Acid Extr. ICPMS (1)	3	2015/08/27	2015/08/27	ATL SOP 00058	EPA 6020A R1 m
Metals Solids Acid Extr. ICPMS (1)	21	2015/08/27	2015/08/28	ATL SOP 00058	EPA 6020A R1 m
Metals Solids Acid Extr. ICPMS (1)	1	2015/08/28	2015/08/28	ATL SOP 00058	EPA 6020A R1 m
Metals Solids Acid Extr. ICPMS (1)	3	2015/08/28	2015/08/29	ATL SOP 00058	EPA 6020A R1 m
Acid Extractable Metals Analysis by ICP (2)	5	2015/09/02	2015/09/02	CAM SOP-00408	EPA 6010C m
Moisture (1)	21	N/A	2015/08/27	ATL SOP 00001	OMOE Handbook 1983 m
Nitrogen Ammonia - soil (as N) (1)	5	2015/08/27	2015/08/27	ATL SOP 00015	EPA 350.1 R2 m
Nitrogen - Nitrate + Nitrite (1)	5	2015/08/31	2015/09/01	ATL SOP 00016	USGS SOPINCF0452.2 m
Nitrogen - Nitrite by auto colourimetry (1)	5	2015/08/31	2015/08/31	ATL SOP 00017	SM 22 4500-NO2- B m
PCBs in soil by GC/ECD (1, 3)	5	2015/08/26	2015/08/27	ATL SOP 00106	EPA 8082A m
PCBs in soil by GC/ECD (1, 3)	8	2015/08/27	2015/08/28	ATL SOP 00106	EPA 8082A m
PCB Aroclor sum (soil) (1)	5	N/A	2015/08/27		Auto Calc.
PCB Aroclor sum (soil) (1)	8	N/A	2015/08/28		Auto Calc.
pH (5:1 DI Water Extract) (1)	5	2015/08/28	2015/08/28	ATL SOP 00003	SM 22 4500-H+ B m
Phosphorus - ortho by auto Colourimetry (1)	5	2015/08/31	2015/08/31	ATL SOP 00021	EPA 365.2 m
VPH in Soil (PIRI) (1)	8	2015/08/26	2015/08/28	ATL SOP 00119	Atl. RBCA v3 m
Particle size in solids (pipette&sieve) (1, 4)	5	N/A	2015/09/02	ATL SOP 00012	MSAMS 1978 m
Sulphate in Soil by Auto Colourimetry (1)	5	2015/08/31	2015/09/01	ATL SOP 00023	EPA 375.4 R1978 m
ModTPH (T1) Calc. for Soil (1)	8	N/A	2015/09/01	N/A	Atl. RBCA v3 m

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
PCBs in water by GC/ECD (1)	3	2015/08/27	2015/08/31	ATL SOP 00107	EPA 8082A m
PCB Aroclor sum (water) (1)	3	N/A	2015/08/31		Auto Calc.

Your Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Your C.O.C. #: N/A

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

> Report Date: 2015/09/09 Report #: R3655944 Version: 5 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5G9646

Received: 2015/08/25, 09:23

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) This test was performed by Maxxam Analytics Mississauga

(3) Soils are reported on a dry weight basis unless otherwise specified.

(4) Note: Graphical representation of larger fractions (PHI-4, PHI -3 and PHI -2) not applicable unless these optional parameters are specifically requested.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		1		1				
Maxxam ID		AWA926	AWA926	AWA927	AWA928			
Sampling Date		2015/08/19	2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A	N/A			
	UNITS	15-BP-COMP-A1	15-BP-COMP-A1 Lab-Dup	15-BP-COMP-A2	15-BP-COMP-B1	RDL	QC Batch	MDL
Inorganics								
Moisture	%	22		23	22	1.0	4164178	0.20
Petroleum Hydrocarbons				•		•		
Benzene	mg/kg	<0.025	<0.025	<0.025	<0.025	0.025	4168228	N/A
Toluene	mg/kg	<0.025	0.040	0.046	<0.025	0.025	4168228	N/A
Ethylbenzene	mg/kg	<0.025	<0.025	<0.025	<0.025	0.025	4168228	0.025
Total Xylenes	mg/kg	<0.050	<0.050	<0.050	<0.050	0.050	4168228	N/A
C6 - C10 (less BTEX)	mg/kg	25	28	24	60	2.5	4168228	N/A
>C10-C16 Hydrocarbons	mg/kg	2000 (1)		2000 (1)	2800 (1)	50	4166161	N/A
>C16-C21 Hydrocarbons	mg/kg	720 (1)		730 (1)	870 (1)	50	4166161	N/A
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>3000 (1)</td><td></td><td>2500 (1)</td><td>1900 (1)</td><td>75</td><td>4166161</td><td>N/A</td></c32>	mg/kg	3000 (1)		2500 (1)	1900 (1)	75	4166161	N/A
Modified TPH (Tier1)	mg/kg	5800		5300	5600	75	4162749	N/A
Reached Baseline at C32	mg/kg	No		No	No	N/A	4166161	N/A
Hydrocarbon Resemblance	mg/kg	COMMENT (2)		COMMENT (2)	COMMENT (2)	N/A	4166161	N/A
Surrogate Recovery (%)								
Isobutylbenzene - Extractable	%	104		102	113		4166161	
n-Dotriacontane - Extractable	%	65		76	72		4166161	
Isobutylbenzene - Volatile	%	69	85	86	81		4168228	
RDL = Reportable Detection Lim	it							
QC Batch = Quality Control Batc	h							
Lab-Dup = Laboratory Initiated	Duplicat	e						
N/A = Not Applicable								
Elevated TEH RDL(s) due to s	ample d	lilution.						
(2) Weathered fuel oil fraction.	Lube oi	fraction.						

Maxxam ID		AWA929		AWA930	AWA931	AWA932			
Sampling Date		2015/08/19	1	2015/08/19	2015/08/19	2015/08/19		1	
COC Number		N/A		N/A	N/A	N/A			
	UNITS	15-BP-COMP-B2	QC Batch	15-BP-COMP-C1	15-BP-COMP-C2	15-BP-COMP-D1	RDL	QC Batch	MDL
Inorganics							<u> </u>		
Moisture	%	21	4164178	22	20	20	1.0	4164346	0.20
Petroleum Hydrocarbons									
Benzene	mg/kg	<0.025	4168228	<0.025	<0.025	<0.025	0.025	4168228	N/A
Toluene	mg/kg	<0.025	4168228	<0.025	0.040	0.038	0.025	4168228	N/A
Ethylbenzene	mg/kg	<0.025	4168228	<0.025	<0.025	<0.025	0.025	4168228	0.025
Total Xylenes	mg/kg	<0.050	4168228	<0.050	<0.050	<0.050	0.050	4168228	N/A
C6 - C10 (less BTEX)	mg/kg	58	4168228	46	48	65	2.5	4168228	N/A
>C10-C16 Hydrocarbons	mg/kg	2800 (1)	4166161	3500 (1)	2500 (1)	2600 (1)	50	4166161	N/A
>C16-C21 Hydrocarbons	mg/kg	890 (1)	4166161	940 (1)	740 (1)	620 (1)	50	4166161	N/A
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>1900 (1)</td><td>4166161</td><td>1800 (1)</td><td>2200 (1)</td><td>2000 (1)</td><td>75</td><td>4166161</td><td>N/A</td></c32>	mg/kg	1900 (1)	4166161	1800 (1)	2200 (1)	2000 (1)	75	4166161	N/A
Modified TPH (Tier1)	mg/kg	5600	4162749	6300	5500	5300	75	4162749	N/A
Reached Baseline at C32	mg/kg	No	4166161	No	No	No	N/A	4166161	N/A
Hydrocarbon Resemblance	mg/kg	COMMENT (2)	4166161	COMMENT (2)	COMMENT (2)	COMMENT (2)	N/A	4166161	N/A
Surrogate Recovery (%)									
Isobutylbenzene - Extractable	%	111	4166161	127	112	111		4166161	
n-Dotriacontane - Extractable	%	68	4166161	73	68	69		4166161	
Isobutylbenzene - Volatile	%	78	4168228	84	99	76		4168228	
RDL = Reportable Detection Lim	it								
QC Batch = Quality Control Batc	h								
N/A = Not Applicable									
(1) Elevated TEH RDL(s) due to s	ample d	lilution.							
(2) Weathered fuel oil fraction.	Lube oil	fraction.							

Maxxam ID		AWA933					
Sampling Date		2015/08/19					
COC Number		N/A					
	UNITS	15-BP-COMP-D2	RDL	QC Batch	MDL		
Inorganics							
Moisture	%	21	1.0	4164346	0.20		
Petroleum Hydrocarbons							
Benzene	mg/kg	<0.025	0.025	4168228	N/A		
Toluene	mg/kg	<0.025	0.025	4168228	N/A		
Ethylbenzene	mg/kg	<0.025	0.025	4168228	0.025		
Total Xylenes	mg/kg	<0.050	0.050	4168228	N/A		
C6 - C10 (less BTEX)	mg/kg	67	2.5	4168228	N/A		
>C10-C16 Hydrocarbons	mg/kg	2700 (1)	50	4166161	N/A		
>C16-C21 Hydrocarbons	mg/kg	660 (1)	50	4166161	N/A		
>C21- <c32 hydrocarbons<="" p=""></c32>	mg/kg	1600 (1)	75	4166161	N/A		
Modified TPH (Tier1)	mg/kg	5100	75	4162749	N/A		
Reached Baseline at C32	mg/kg	No	N/A	4166161	N/A		
Hydrocarbon Resemblance	mg/kg	COMMENT (2)	N/A	4166161	N/A		
Surrogate Recovery (%)							
Isobutylbenzene - Extractable	%	82		4166161			
n-Dotriacontane - Extractable	%	73		4166161			
Isobutylbenzene - Volatile	%	74		4168228			
RDL = Reportable Detection Lim	it						
QC Batch = Quality Control Batc	h						
N/A = Not Applicable							
1) Elevated TEH RDL(s) due to sample dilution.							
(2) Weathered fuel oil fraction.	Lube oil	fraction.					

RESULTS OF ANALYSES OF SOIL

XXaIII ID		AWA8	395 AV	WA896	AWA897	AWA898	AWA899		AWA	915		
npling Date		2015/0	8/19 201	15/08/19	2015/08/19	9 2015/08/19	2015/08/19		2015/0	08/20		
C Number		N/A	4	N/A	N/A	N/A	N/A		N/	Ά		
	UNITS	MB-BS	5103 M	B-BS104	MB-BS105	MB-BS106	MB-BS107	QC Batch	15-ROA	D-BS1	RDL	QC Batch
rganics												
isture	%	19		5.6	32	37	20	4164178	9.	5	1.0	4164341
	Baten											
Maxxam ID Sampling Date			AWA91	16	AWA917	AWA918	AWA919	AWA	\920 08/19			
Maxxam ID Sampling Date			AWA91 2015/08	16 3/20 20	AWA917 015/08/19 N/A	AWA918 2015/08/19 N/A	AWA919 2015/08/19 N/A	AWA 2015/	08/19 /A			
Maxxam ID Sampling Date COC Number		UNITS	AWA91 2015/08 N/A 15-ROAD	16 20 3/20 20 D-BS2 15	AWA917 015/08/19 N/A -ROAD-BS3	AWA918 2015/08/19 N/A 15-ROAD-BS4	AWA919 2015/08/19 N/A 15-ROAD-BS	AWA 2015/ N/ 5 15-PON	A920 08/19 /A D-SED1	RDL	QC Ba	tch MDL
Maxxam ID Sampling Date COC Number		UNITS	AWA91 2015/08 N/A 15-ROAD	16 20 3/20 20 5-BS2 15	AWA917 015/08/19 N/A -ROAD-BS3	AWA918 2015/08/19 N/A 15-ROAD-BS4	AWA919 2015/08/19 N/A 15-ROAD-BS	AWA 2015/ N/ 5 15-PON	.920 08/19 /A D-SED1	RDL	QC Ba	tch MDL

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AWA921	AWA922	AWA926	AWA926	AWA927			
Sampling Date		2015/08/19	2015/08/19	2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A	N/A	N/A			
	UNITS	15-POND-SED2	15-POND-SED3	15-BP-COMP-A1	15-BP-COMP-A1 Lab-Dup	15-BP-COMP-A2	RDL	QC Batch	MDL
Inorganics		<u> </u>	<u> </u>		<u>.</u>		<u>-</u>		
Ammonia-N	mg/kg			320	270		17	4166576	N/A
Chloride (Cl)	mg/kg			79			5.0	4171136	N/A
Conductivity	uS/cm			700			1.0	4171327	N/A
Moisture	%	19	26				1.0	4164341	0.20
Nitrate + Nitrite	mg/kg			40			1.3	4171147	N/A
Nitrite (N)	mg/kg			0.39			0.050	4171151	N/A
Orthophosphate (P)	mg/kg			8.8			0.25	4171146	N/A
Soluble (5:1) pH	рН			7.69			N/A	4168701	N/A
Sulphate (SO4)	mg/kg			730			50	4171143	N/A
< -1 Phi (2 mm)	%					75 (1)	0.10	4170849	N/A
< 0 Phi (1 mm)	%					66	0.10	4170849	N/A
< +1 Phi (0.5 mm)	%					53	0.10	4170849	N/A
< +2 Phi (0.25 mm)	%					38	0.10	4170849	N/A
< +3 Phi (0.12 mm)	%					27	0.10	4170849	N/A
< +4 Phi (0.062 mm)	%					21	0.10	4170849	N/A
< +5 Phi (0.031 mm)	%					17	0.10	4170849	N/A
< +6 Phi (0.016 mm)	%					14	0.10	4170849	N/A
< +7 Phi (0.0078 mm)	%					9.5	0.10	4170849	N/A
< +8 Phi (0.0039 mm)	%					8.3	0.10	4170849	N/A
< +9 Phi (0.0020 mm)	%					6.4	0.10	4170849	N/A
Gravel	%					25	0.10	4170849	N/A
Sand	%					55	0.10	4170849	N/A
Silt	%					13	0.10	4170849	N/A
Clay	%					8.3	0.10	4170849	N/A
RDL = Reportable Detectior	ו Limit								

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Sample observation comment: fraction contained a large rock

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AWA927		AWA928		AWA929		AWA930			
Sampling Date		2015/08/19		2015/08/19		2015/08/19		2015/08/19			
COC Number		N/A		N/A		N/A		N/A			
	UNITS	15-BP-COMP-A2 Lab-Dup	RDL	15-BP-COMP-B1	RDL	15-BP-COMP-B2	RDL	15-BP-COMP-C1	RDL	QC Batch	MDL
Inorganics		- -	-	- -		-	-	- -		<u> </u>	<u> </u>
Ammonia-N	mg/kg		17	140	6.7	200	17	71	5.0	4166576	N/A
Chloride (Cl)	mg/kg		5.0	57	5.0	62	5.0	38	5.0	4171136	N/A
Conductivity	uS/cm		1.0	260	1.0	290	1.0	190	1.0	4171327	N/A
Nitrate + Nitrite	mg/kg		1.3	14	0.25	16	0.25	6.7	0.25	4171147	N/A
Nitrite (N)	mg/kg		0.050	<0.050	0.050	0.057	0.050	0.050	0.050	4171151	N/A
Orthophosphate (P)	mg/kg		0.25	2.0	0.050	2.2	0.050	0.94	0.050	4171146	N/A
Soluble (5:1) pH	рН		N/A	7.67	N/A	7.60	N/A	7.39	N/A	4168701	N/A
Sulphate (SO4)	mg/kg		50	53	10	82	10	49	10	4171143	N/A
< -1 Phi (2 mm)	%	87	0.10	77	0.10	86	0.10		0.10	4170849	N/A
< 0 Phi (1 mm)	%	75	0.10	67	0.10	74	0.10		0.10	4170849	N/A
< +1 Phi (0.5 mm)	%	58	0.10	53	0.10	57	0.10		0.10	4170849	N/A
< +2 Phi (0.25 mm)	%	40	0.10	37	0.10	39	0.10		0.10	4170849	N/A
< +3 Phi (0.12 mm)	%	28	0.10	25	0.10	26	0.10		0.10	4170849	N/A
< +4 Phi (0.062 mm)	%	21	0.10	18	0.10	18	0.10		0.10	4170849	N/A
< +5 Phi (0.031 mm)	%	17	0.10	15	0.10	15	0.10		0.10	4170849	N/A
< +6 Phi (0.016 mm)	%	12	0.10	11	0.10	11	0.10		0.10	4170849	N/A
< +7 Phi (0.0078 mm)	%	8.3	0.10	7.1	0.10	7.3	0.10		0.10	4170849	N/A
< +8 Phi (0.0039 mm)	%	7.1	0.10	6.5	0.10	6.2	0.10		0.10	4170849	N/A
< +9 Phi (0.0020 mm)	%	6.5	0.10	6.2	0.10	5.5	0.10		0.10	4170849	N/A
Gravel	%	13 (1)	0.10	23	0.10	14	0.10		0.10	4170849	N/A
Sand	%	66	0.10	59	0.10	68	0.10		0.10	4170849	N/A
Silt	%	13	0.10	12	0.10	12	0.10		0.10	4170849	N/A
Clay	%	7.1	0.10	6.5	0.10	6.2	0.10		0.10	4170849	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) PSA: Poor duplicate agreement due to sample inhomogeneity.

RESULTS OF ANALYSES OF SOIL

Maxam DMAWA931AWA931AWA932AWA932AWA933AWA933AASampling Date2015/08/192015/08/192015/08/192015/08/192015/08/192015/08/192015/08/19AACOC NumberN/AN/AN/AN/AN/AN/AN/AN/AN/AMCOC NumberN/A15-BP-COMP-D1 bab-DupDabe-CoMP-D1 bab-DupDabe-CoMP-D1 bab-DupN/AA										
Sampling Date2015/08/192015/08/192015/08/192015/08/192015/08/19II </td <td>Maxxam ID</td> <td></td> <td>AWA931</td> <td></td> <td>AWA932</td> <td>AWA932</td> <td>AWA933</td> <td></td> <td></td> <td></td>	Maxxam ID		AWA931		AWA932	AWA932	AWA933			
COC NumberN/A <td>Sampling Date</td> <td></td> <td>2015/08/19</td> <td></td> <td>2015/08/19</td> <td>2015/08/19</td> <td>2015/08/19</td> <td></td> <td></td> <td></td>	Sampling Date		2015/08/19		2015/08/19	2015/08/19	2015/08/19			
JNNS13-BP-COMPC2RN15-BP-COMPC1 LB-D13-BP-COMPC2RNQC BackMIndractaIntractaAmmonia-Nmg/g5.084NNNNNNNChoride Cl()mg/gS.08.03.23.4S.04.17113NN </td <td>COC Number</td> <td></td> <td>N/A</td> <td></td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td> <td></td> <td></td>	COC Number		N/A		N/A	N/A	N/A			
Inorganics mg/kg 5.0 84 4.9 4166576 N/A Chloride (Cl) mg/kg 5.0 32 34 5.0 4171136 N/A Conductivity us/cm 1.0 150 150 1.0 4171327 N/A Nitrate + Nitrite mg/kg 0.25 4.2 4.5 0.025 417147 N/A Nitrite (N) mg/kg 0.050 0.050 <0.050		UNITS	15-BP-COMP-C2	RDL	15-BP-COMP-D1	15-BP-COMP-D1 Lab-Dup	15-BP-COMP-D2	RDL	QC Batch	MDL
Ammonia-N mg/kg 5.0 84 4.9 4166576 N/A Chloride (Cl) mg/kg 5.0 32 34 5.0 4171136 N/A Conductivity uS/cm 1.0 150 150 1.0 4171327 N/A Nitrate + Nitrite mg/kg 0.25 4.2 4.5 0.25 4171147 N/A Orthophosphate (P) mg/kg 0.050 0.050 <0.050	Inorganics									
Chloride (Cl)mg/kg5.032345.04171136N/AConductivityuS/cm1.01501501.04171327N/ANitrate + Nitritemg/kg0.254.24.50.254171147N/ANitrite (N)mg/kg0.0500.050<0.050	Ammonia-N	mg/kg		5.0	84			4.9	4166576	N/A
Conductivity us/cm 1.0 150 150 1.0 4171327 N/A Nitrate + Nitrite mg/kg 0.25 4.2 4.5 0.25 4171147 N/A Nitrite (N) mg/kg 0.050 0.050 <0.050	Chloride (Cl)	mg/kg		5.0	32	34		5.0	4171136	N/A
Nirate + Nitritemg/kg0.254.24.50.054.17147N/ANirte (N)mg/kg0.0500.050<0.050	Conductivity	uS/cm		1.0	150	150		1.0	4171327	N/A
Nitrite (N) mg/kg 0.050 0.050 <0.050 <0.050 4171151 N/A Orthophosphate (P) mg/kg 0.050 0.64 0.65 0.050 4171161 N/A Soluble (5:1) pH pH N/A 7.36 7.32 N/A 4168701 N/A Sulphate (SO4) mg/kg 10 34 37 10 4171143 N/A <-1 Phi (2 mm)	Nitrate + Nitrite	mg/kg		0.25	4.2	4.5		0.25	4171147	N/A
Orthophosphate (P)mg/kg0.0500.0640.0650.0640.050417146N/ASoluble (5:1) PHpHN/A7.367.32N/A4168701N/ASulphate (SO4)mg/kg10343710417143N/A<-1 Ph (2 mm)	Nitrite (N)	mg/kg		0.050	0.050	<0.050		0.050	4171151	N/A
Soluble (5:1) pH pH N/A 7.36 7.32 N/A 4168701 N/A Sulphate (SO4) mg/kg 10 34 37 10 4171143 N/A < 1 Phi (2 mm)	Orthophosphate (P)	mg/kg		0.050	0.64	0.65		0.050	4171146	N/A
Sulphate (SO4) mg/kg 10 34 37 10 417143 N/A < 1 Phi (2 mm)	Soluble (5:1) pH	рН		N/A	7.36	7.32		N/A	4168701	N/A
< 1 Phi (2 mm)	Sulphate (SO4)	mg/kg		10	34	37		10	4171143	N/A
< 0 Phi (1 mm) % 69 0.10 100 70 0.10 4170849 N/A < +1 Phi (0.5 mm)	< -1 Phi (2 mm)	%	80	0.10			81 (1)	0.10	4170849	N/A
<+1 Phi (0.5 mm)	< 0 Phi (1 mm)	%	69	0.10			70	0.10	4170849	N/A
< + 2 Phi (0.25 mm)	< +1 Phi (0.5 mm)	%	54	0.10			55	0.10	4170849	N/A
< +3 Phi (0.12 mm)	< +2 Phi (0.25 mm)	%	37	0.10			38	0.10	4170849	N/A
< +4 Phi (0.062 mm)%170.10170.104170849N/A< +5 Phi (0.031 mm)	< +3 Phi (0.12 mm)	%	23	0.10			24	0.10	4170849	N/A
< +5 Phi (0.031 mm)	< +4 Phi (0.062 mm)	%	17	0.10			17	0.10	4170849	N/A
< +6 Phi (0.016 mm) % 9.0 0.10 9.2 0.10 4170849 N/A < +7 Phi (0.0078 mm)	< +5 Phi (0.031 mm)	%	13	0.10			13	0.10	4170849	N/A
< +7 Phi (0.0078 mm)	< +6 Phi (0.016 mm)	%	9.0	0.10			9.2	0.10	4170849	N/A
< +8 Phi (0.0039 mm) % 4.9 0.10 4.9 0.10 4170849 N/A < +9 Phi (0.0020 mm)	< +7 Phi (0.0078 mm)	%	5.8	0.10			5.8	0.10	4170849	N/A
< +9 Phi (0.0020 mm) % 4.0 0.10 3.4 0.10 4170849 N/A Gravel % 20 0.10 19 0.10 4170849 N/A Sand % 64 0.10 65 0.10 4170849 N/A Silt % 12 0.10 12 0.10 4170849 N/A Clay % 4.9 0.10 10 4170849 N/A	< +8 Phi (0.0039 mm)	%	4.9	0.10			4.9	0.10	4170849	N/A
Gravel % 20 0.10 19 0.10 4170849 N/A Sand % 64 0.10 65 0.10 4170849 N/A Silt % 12 0.10 12 12 0.10 4170849 N/A Clay % 4.9 0.10 12 0.10 4170849 N/A	< +9 Phi (0.0020 mm)	%	4.0	0.10			3.4	0.10	4170849	N/A
Sand % 64 0.10 65 0.10 4170849 N/A Silt % 12 0.10 10 12 0.10 4170849 N/A Clay % 4.9 0.10 10 4.9 N/A	Gravel	%	20	0.10			19	0.10	4170849	N/A
Silt % 12 0.10 12 0.10 4170849 N/A Clay % 4.9 0.10 4170849 N/A	Sand	%	64	0.10			65	0.10	4170849	N/A
Clay % 4.9 0.10 4170849 N/A	Silt	%	12	0.10			12	0.10	4170849	N/A
	Clay	%	4.9	0.10			4.9	0.10	4170849	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Sample observation comment: fraction contained a large rock

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AWA887	AWA888	AWA889	AWA890	AWA891	AWA892			
Sampling Date		2015/08/19	2015/08/19	2015/08/19	2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A	N/A	N/A	N/A			
	UNITS	MCL-BS101	MCL-BS102	MCL-BS103	MCL-BS104	MCL-BS201	MCL-BS202	RDL	QC Batch	MDL
Metals										
Acid Extractable Aluminum (Al)	mg/kg	9700	3000	2100	4700	4100	4400	10	4166246	N/A
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Barium (Ba)	mg/kg	21	13	44	15	32	23	5.0	4166246	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	<50	50	4166246	N/A
Acid Extractable Cadmium (Cd)	mg/kg	0.90	1.7	2.4	1.9	0.38	<0.30	0.30	4166246	N/A
Acid Extractable Chromium (Cr)	mg/kg	26	28	44	28	17	13	2.0	4166246	N/A
Acid Extractable Cobalt (Co)	mg/kg	2.6	1.2	2.4	2.1	2.5	2.2	1.0	4166246	N/A
Acid Extractable Copper (Cu)	mg/kg	54	9.1	250	260	26	12	2.0	4166246	N/A
Acid Extractable Iron (Fe)	mg/kg	11000	4900	4900	11000	7800	5400	50	4166246	N/A
Acid Extractable Lead (Pb)	mg/kg	51	9.0	430	54	74	19	0.50	4166246	N/A
Acid Extractable Lithium (Li)	mg/kg	3.1	<2.0	<2.0	4.2	2.7	2.6	2.0	4166246	N/A
Acid Extractable Manganese (Mn)	mg/kg	51	22	57	45	80	48	2.0	4166246	N/A
Acid Extractable Mercury (Hg)	mg/kg	0.13	<0.10	0.16	<0.10	0.11	0.11	0.10	4166246	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	9.7	<2.0	<2.0	4.2	2.0	4166246	N/A
Acid Extractable Nickel (Ni)	mg/kg	11	2.7	9.9	5.2	11	7.0	2.0	4166246	N/A
Acid Extractable Rubidium (Rb)	mg/kg	5.2	8.5	4.7	6.2	4.5	4.5	2.0	4166246	N/A
Acid Extractable Selenium (Se)	mg/kg	1.7	<1.0	<1.0	1.0	<1.0	<1.0	1.0	4166246	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	0.77	<0.50	<0.50	<0.50	0.50	4166246	N/A
Acid Extractable Strontium (Sr)	mg/kg	13	<5.0	38	38	20	11	5.0	4166246	N/A
Acid Extractable Thallium (Tl)	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	4166246	N/A
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	40	<2.0	2.0	4166246	N/A
Acid Extractable Uranium (U)	mg/kg	1.9	0.18	0.26	0.79	0.37	0.45	0.10	4166246	N/A
Acid Extractable Vanadium (V)	mg/kg	20	11	4.5	23	12	10	2.0	4166246	N/A
Acid Extractable Zinc (Zn)	mg/kg	48	45	160	53	200	43	5.0	4166246	N/A
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AWA893	AWA894	AWA900	AWA901	AWA902			
Sampling Date		2015/08/19	2015/08/19	2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A	N/A	N/A			
	UNITS	MCL-BS203	MCL-BS204	BMEWS-BS401	BMEWS-BS402	BMEWS-BS403	RDL	QC Batch	MDL
Metals									
Acid Extractable Aluminum (Al)	mg/kg	3500	5900	8300	9400	8600	10	4166246	N/A
Acid Extractable Antimony (Sb)	mg/kg	<2.0	3.3	<2.0	2.0	<2.0	2.0	4166246	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	41	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Barium (Ba)	mg/kg	23	1400	80	150	150	5.0	4166246	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	50	4166246	N/A
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	4.0	2.3	4.9	5.1	0.30	4166246	N/A
Acid Extractable Chromium (Cr)	mg/kg	13	31	33	33	33	2.0	4166246	N/A
Acid Extractable Cobalt (Co)	mg/kg	2.0	6.4	5.4	5.9	5.6	1.0	4166246	N/A
Acid Extractable Copper (Cu)	mg/kg	12	130	240	230	180	2.0	4166246	N/A
Acid Extractable Iron (Fe)	mg/kg	6000	8700	18000	18000	15000	50	4166246	N/A
Acid Extractable Lead (Pb)	mg/kg	17	1000	43	50	100	0.50	4166246	N/A
Acid Extractable Lithium (Li)	mg/kg	2.9	7.1	8.6	9.0	8.4	2.0	4166246	N/A
Acid Extractable Manganese (Mn)	mg/kg	42	85	190	220	210	2.0	4166246	N/A
Acid Extractable Mercury (Hg)	mg/kg	0.12	0.17	<0.10	<0.10	<0.10	0.10	4166246	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Nickel (Ni)	mg/kg	7.3	14	23	25	23	2.0	4166246	N/A
Acid Extractable Rubidium (Rb)	mg/kg	6.8	11	12	9.9	9.0	2.0	4166246	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	4.8	<1.0	<1.0	<1.0	1.0	4166246	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	0.65	<0.50	0.50	4166246	N/A
Acid Extractable Strontium (Sr)	mg/kg	8.8	26	29	25	27	5.0	4166246	N/A
Acid Extractable Thallium (Tl)	mg/kg	<0.10	0.10	<0.10	<0.10	<0.10	0.10	4166246	N/A
Acid Extractable Tin (Sn)	mg/kg	<2.0	15	5.3	13	10	2.0	4166246	N/A
Acid Extractable Uranium (U)	mg/kg	0.25	0.27	0.37	0.24	0.30	0.10	4166246	N/A
Acid Extractable Vanadium (V)	mg/kg	12	18	30	29	28	2.0	4166246	N/A
Acid Extractable Zinc (Zn)	mg/kg	33	290	950	790	2100	5.0	4166246	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

-									
Maxxam ID		AWA903	AWA904	AWA905		AWA906			
Sampling Date		2015/08/19	2015/08/19	2015/08/19		2015/08/19			
COC Number		N/A	N/A	N/A		N/A			
	UNITS	BMEWS-BS404	BMEWS-BS501	BMEWS-BS502	QC Batch	BMEWS-BS503	RDL	QC Batch	MDL
Metals									
Acid Extractable Aluminum (Al)	mg/kg	8400	8800	7600	4166246	8000	10	4166183	N/A
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	<2.0	4166246	<2.0	2.0	4166183	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	4166246	<2.0	2.0	4166183	N/A
Acid Extractable Barium (Ba)	mg/kg	51	120	13	4166246	51	5.0	4166183	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	4166246	<2.0	2.0	4166183	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	4166246	<2.0	2.0	4166183	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	4166246	<50	50	4166183	N/A
Acid Extractable Cadmium (Cd)	mg/kg	5.6	0.50	<0.30	4166246	<0.30	0.30	4166183	N/A
Acid Extractable Chromium (Cr)	mg/kg	26	35	16	4166246	28	2.0	4166183	N/A
Acid Extractable Cobalt (Co)	mg/kg	6.8	5.6	5.0	4166246	4.7	1.0	4166183	N/A
Acid Extractable Copper (Cu)	mg/kg	19	23	22	4166246	14	2.0	4166183	N/A
Acid Extractable Iron (Fe)	mg/kg	17000	13000	9000	4166246	11000	50	4166183	N/A
Acid Extractable Lead (Pb)	mg/kg	29	13	3.0	4166246	9.8	0.50	4166183	N/A
Acid Extractable Lithium (Li)	mg/kg	8.5	11	4.2	4166246	7.8	2.0	4166183	N/A
Acid Extractable Manganese (Mn)	mg/kg	230	210	110	4166246	160	2.0	4166183	N/A
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	<0.10	4166246	<0.10	0.10	4166183	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	4166246	<2.0	2.0	4166183	N/A
Acid Extractable Nickel (Ni)	mg/kg	20	20	15	4166246	16	2.0	4166183	N/A
Acid Extractable Rubidium (Rb)	mg/kg	9.9	15	2.4	4166246	8.9	2.0	4166183	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	4166246	<1.0	1.0	4166183	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	4166246	<0.50	0.50	4166183	N/A
Acid Extractable Strontium (Sr)	mg/kg	41	32	20	4166246	27	5.0	4166183	N/A
Acid Extractable Thallium (TI)	mg/kg	<0.10	<0.10	<0.10	4166246	<0.10	0.10	4166183	N/A
Acid Extractable Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	4166246	<2.0	2.0	4166183	N/A
Acid Extractable Uranium (U)	mg/kg	0.30	0.25	0.14	4166246	0.31	0.10	4166183	N/A
Acid Extractable Vanadium (V)	mg/kg	27	30	20	4166246	27	2.0	4166183	N/A
Acid Extractable Zinc (Zn)	mg/kg	3700	170	46	4166246	81	5.0	4166183	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AWA907	AWA908		AWA909	AWA910	AWA911			
Sampling Date		2015/08/19	2015/08/20		2015/08/20	2015/08/20	2015/08/20			
COC Number		N/A	N/A		N/A	N/A	N/A			
	UNITS	BMEWS-BS504	POL-BS301	QC Batch	POL-BS302	POL-BS303	POL-BS401	RDL	QC Batch	MDL
Metals										
Acid Extractable Aluminum (Al)	mg/kg	8300	9500	4166183	6300	7500	8100	10	4166246	N/A
Acid Extractable Antimony (Sb)	mg/kg	<2.0	<2.0	4166183	<2.0	30	16	2.0	4166246	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	4166183	<2.0	8.5	<2.0	2.0	4166246	N/A
Acid Extractable Barium (Ba)	mg/kg	44	59	4166183	48	420	140	5.0	4166246	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	4166183	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	4166183	<2.0	<2.0	<2.0	2.0	4166246	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	4166183	<50	<50	<50	50	4166246	N/A
Acid Extractable Cadmium (Cd)	mg/kg	8.8	<0.30	4166183	0.86	3.1	0.92	0.30	4166246	N/A
Acid Extractable Chromium (Cr)	mg/kg	29	140	4166183	21	150	63	2.0	4166246	N/A
Acid Extractable Cobalt (Co)	mg/kg	6.1	12	4166183	4.9	11	5.5	1.0	4166246	N/A
Acid Extractable Copper (Cu)	mg/kg	23	16	4166183	37	180	150	2.0	4166246	N/A
Acid Extractable Iron (Fe)	mg/kg	14000	13000	4166183	11000	48000	18000	50	4166246	N/A
Acid Extractable Lead (Pb)	mg/kg	18	21	4166183	110	530	370	0.50	4166246	N/A
Acid Extractable Lithium (Li)	mg/kg	11	14	4166183	7.2	6.1	9.1	2.0	4166246	N/A
Acid Extractable Manganese (Mn)	mg/kg	200	130	4166183	130	720	180	2.0	4166246	N/A
Acid Extractable Mercury (Hg)	mg/kg	<0.10	<0.10	4166183	<0.10	0.35	1.7	0.10	4166246	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	4166183	<2.0	4.9	<2.0	2.0	4166246	N/A
Acid Extractable Nickel (Ni)	mg/kg	23	70	4166183	19	55	34	2.0	4166246	N/A
Acid Extractable Rubidium (Rb)	mg/kg	11	27	4166183	3.0	6.5	5.3	2.0	4166246	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	4166183	<1.0	<1.0	<1.0	1.0	4166246	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	4166183	<0.50	0.98	0.59	0.50	4166246	N/A
Acid Extractable Strontium (Sr)	mg/kg	22	<5.0	4166183	13	12	10	5.0	4166246	N/A
Acid Extractable Thallium (Tl)	mg/kg	<0.10	0.16	4166183	<0.10	<0.10	<0.10	0.10	4166246	N/A
Acid Extractable Tin (Sn)	mg/kg	2.3	<2.0	4166183	3.7	160	24	2.0	4166246	N/A
Acid Extractable Uranium (U)	mg/kg	0.21	<0.10	4166183	0.27	0.42	0.36	0.10	4166246	N/A
Acid Extractable Vanadium (V)	mg/kg	32	36	4166183	19	23	24	2.0	4166246	N/A
Acid Extractable Zinc (Zn)	mg/kg	990	49	4166183	160	860	250	5.0	4166246	N/A
			-		-	-	-			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AWA912	AWA913		AWA914		AWA926			
Sampling Date		2015/08/20	2015/08/20		2015/08/20		2015/08/19			
COC Number		N/A	N/A		N/A		N/A			
	UNITS	POL-BS402	POL-BS403	QC Batch	POL-BS404	QC Batch	15-BP-COMP-A1	RDL	QC Batch	MDL
Metals										
Acid Extractable Sulphur (S)	ug/g					4174415	750	50	4174415	N/A
Acid Extractable Aluminum (Al)	mg/kg	7000	3000	4166246	2800	4166768	9300	10	4168220	N/A
Acid Extractable Antimony (Sb)	mg/kg	6.5	<2.0	4166246	5.3	4166768	8.4	2.0	4168220	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	4166246	<2.0	4166768	<2.0	2.0	4168220	N/A
Acid Extractable Barium (Ba)	mg/kg	330	22	4166246	54	4166768	86	5.0	4168220	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	4166246	<2.0	4166768	<2.0	2.0	4168220	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	4166246	<2.0	4166768	<2.0	2.0	4168220	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	4166246	<50	4166768	<50	50	4168220	N/A
Acid Extractable Cadmium (Cd)	mg/kg	0.55	0.37	4166246	0.53	4166768	1.1	0.30	4168220	N/A
Acid Extractable Chromium (Cr)	mg/kg	64	13	4166246	21	4166768	160	2.0	4168220	N/A
Acid Extractable Cobalt (Co)	mg/kg	4.4	<1.0	4166246	2.0	4166768	7.2	1.0	4168220	N/A
Acid Extractable Copper (Cu)	mg/kg	68	66	4166246	530	4166768	92	2.0	4168220	N/A
Acid Extractable Iron (Fe)	mg/kg	12000	9400	4166246	6900	4166768	19000	50	4168220	N/A
Acid Extractable Lead (Pb)	mg/kg	110	33	4166246	430	4166768	140	0.50	4168220	N/A
Acid Extractable Lithium (Li)	mg/kg	6.3	<2.0	4166246	<2.0	4166768	7.9	2.0	4168220	N/A
Acid Extractable Manganese (Mn)	mg/kg	110	33	4166246	56	4166768	170	2.0	4168220	N/A
Acid Extractable Mercury (Hg)	mg/kg	0.16	0.14	4166246	<0.10	4166768	0.24	0.10	4168220	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	4166246	<2.0	4166768	2.4	2.0	4168220	N/A
Acid Extractable Nickel (Ni)	mg/kg	33	4.8	4166246	8.5	4166768	47	2.0	4168220	N/A
Acid Extractable Rubidium (Rb)	mg/kg	12	<2.0	4166246	5.0	4166768	5.9	2.0	4168220	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	4166246	<1.0	4166768	<1.0	1.0	4168220	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	4166246	<0.50	4166768	<0.50	0.50	4168220	N/A
Acid Extractable Strontium (Sr)	mg/kg	14	6.4	4166246	<5.0	4166768	17	5.0	4168220	N/A
Acid Extractable Thallium (Tl)	mg/kg	0.11	<0.10	4166246	<0.10	4166768	<0.10	0.10	4168220	N/A
Acid Extractable Tin (Sn)	mg/kg	14	7.6	4166246	11	4166768	28	2.0	4168220	N/A
Acid Extractable Uranium (U)	mg/kg	0.28	0.51	4166246	0.14	4166768	0.63	0.10	4168220	N/A
Acid Extractable Vanadium (V)	mg/kg	16	7.1	4166246	14	4166768	25	2.0	4168220	N/A
Acid Extractable Zinc (Zn)	mg/kg	150	820	4166246	120	4166768	260	5.0	4168220	N/A
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable										

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AWA928	AWA929	AWA930		AWA932			
Sampling Date		2015/08/19	2015/08/19	2015/08/19		2015/08/19			
COC Number		N/A	N/A	N/A		N/A			
	UNITS	15-BP-COMP-B1	15-BP-COMP-B2	15-BP-COMP-C1	QC Batch	15-BP-COMP-D1	RDL	QC Batch	MDL
Metals									
Acid Extractable Sulphur (S)	ug/g	500	550	510	4174415	470	50	4174415	N/A
Acid Extractable Aluminum (Al)	mg/kg	9400	9200	9000	4168313	7900	10	4166520	N/A
Acid Extractable Antimony (Sb)	mg/kg	5.2	31	22	4168313	4.7	2.0	4166520	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	4168313	<2.0	2.0	4166520	N/A
Acid Extractable Barium (Ba)	mg/kg	58	61	56	4168313	80	5.0	4166520	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	4168313	<2.0	2.0	4166520	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	4168313	<2.0	2.0	4166520	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	4168313	<50	50	4166520	N/A
Acid Extractable Cadmium (Cd)	mg/kg	0.72	0.82	0.91	4168313	0.97	0.30	4166520	N/A
Acid Extractable Chromium (Cr)	mg/kg	98	90	87	4168313	91	2.0	4166520	N/A
Acid Extractable Cobalt (Co)	mg/kg	6.2	5.4	5.8	4168313	5.9	1.0	4166520	N/A
Acid Extractable Copper (Cu)	mg/kg	60	93	81	4168313	71	2.0	4166520	N/A
Acid Extractable Iron (Fe)	mg/kg	14000	13000	15000	4168313	15000	50	4166520	N/A
Acid Extractable Lead (Pb)	mg/kg	110	82	110	4168313	85	0.50	4166520	N/A
Acid Extractable Lithium (Li)	mg/kg	7.1	6.6	6.6	4168313	6.9	2.0	4166520	N/A
Acid Extractable Manganese (Mn)	mg/kg	140	130	140	4168313	150	2.0	4166520	N/A
Acid Extractable Mercury (Hg)	mg/kg	0.17	0.18	0.14	4168313	0.19	0.10	4166520	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	4168313	<2.0	2.0	4166520	N/A
Acid Extractable Nickel (Ni)	mg/kg	31	28	30	4168313	31	2.0	4166520	N/A
Acid Extractable Rubidium (Rb)	mg/kg	5.4	5.0	5.4	4168313	4.8	2.0	4166520	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	4168313	<1.0	1.0	4166520	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	4168313	<0.50	0.50	4166520	N/A
Acid Extractable Strontium (Sr)	mg/kg	19	18	17	4168313	15	5.0	4166520	N/A
Acid Extractable Thallium (Tl)	mg/kg	<0.10	<0.10	<0.10	4168313	<0.10	0.10	4166520	N/A
Acid Extractable Tin (Sn)	mg/kg	11	17	15	4168313	25	2.0	4166520	N/A
Acid Extractable Uranium (U)	mg/kg	0.49	0.52	0.50	4168313	0.39	0.10	4166520	N/A
Acid Extractable Vanadium (V)	mg/kg	24	23	25	4168313	21	2.0	4166520	N/A
Acid Extractable Zinc (Zn)	mg/kg	270	320	350	4168313	270	5.0	4166520	N/A
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID	Τ	AWA895	AWA895	AWA896	AWA897	AWA898	AWA899			
Sampling Date		2015/08/19	2015/08/19	2015/08/19	2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A	N/A	N/A	N/A			
	UNITS	MB-BS103	MB-BS103 Lab-Dup	MB-BS104	MB-BS105	MB-BS106	MB-BS107	RDL	QC Batch	MDL
PCBs	<u>.</u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4164270	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4164270	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4164270	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4164270	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4164270	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4164270	N/A
Aroclor 1260	ug/g	4900	4000	11	2.8	1.4	1.6	0.050	4164270	N/A
Calculated Total PCB	ug/g	4900		11	2.8	1.4	1.6	0.050	4163543	N/A
Surrogate Recovery (%)										
Decachlorobiphenyl	%	126	115	99	100	97	99		4164270	
RDL = Reportable Detection	Limit									
QC Batch = Quality Control B	atch									
Lab-Dup = Laboratory Initiate	ed Duplic	cate								

Maxxam ID		AWA915	AWA916	AWA917	AWA918	AWA919			
Sampling Date		2015/08/20	2015/08/20	2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A	N/A	N/A			
	UNITS	15-ROAD-BS1	15-ROAD-BS2	15-ROAD-BS3	15-ROAD-BS4	15-ROAD-BS5	RDL	QC Batch	MDL
PCBs									
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	0.29	0.050	4166607	N/A
Aroclor 1260	ug/g	0.091	0.31	0.48	1.7	0.41	0.050	4166607	N/A
Calculated Total PCB	ug/g	0.091	0.31	0.48	1.7	0.69	0.050	4163543	N/A
Surrogate Recovery (%)					•				
Decachlorobiphenyl	%	92	92	102	93	103		4166607	
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch								
N/A = Not Applicable									

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		AWA920	AWA921	AWA922			
Sampling Date		2015/08/19	2015/08/19	2015/08/19			
COC Number		N/A	N/A	N/A			
	UNITS	15-POND-SED1	15-POND-SED2	15-POND-SED3	RDL	QC Batch	MDL
PCBs							
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Aroclor 1260	ug/g	<0.050	<0.050	<0.050	0.050	4166607	N/A
Calculated Total PCB	ug/g	<0.050	<0.050	<0.050	0.050	4163543	N/A
Surrogate Recovery (%)							
Decachlorobiphenyl	%	93	90	92		4166607	
RDL = Reportable Detection I	imit						
QC Batch = Quality Control B	atch						
N/A = Not Applicable							

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

Maxxam ID		AWA923	AWA923	AWA924	AWA925			
Sampling Date		2015/08/20	2015/08/20	2015/08/20	2015/08/20			
COC Number		N/A	N/A	N/A	N/A			
	UNITS	15-POND-SW1	15-POND-SW1 Lab-Dup	15-POND-SW2	15-POND-SW3	RDL	QC Batch	MDL
PCBs								
Aroclor 1016	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Aroclor 1221	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Aroclor 1232	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Aroclor 1248	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Aroclor 1242	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Aroclor 1254	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Aroclor 1260	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	4167039	N/A
Calculated Total PCB	ug/L	<0.050		<0.050	<0.050	0.050	4162698	N/A
Surrogate Recovery (%)	•							
Decachlorobiphenyl	%	70	70	65	67		4167039	
RDL = Reportable Detection L	imit							
QC Batch = Quality Control Ba	atch							
Lab-Dup = Laboratory Initiate	d Duplic	ate						
N/A = Not Applicable								

Maxxam Job #: B5G9646 Report Date: 2015/09/09 Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID:	AWA887 MCL-BS101					Collected:	2015/08/19
Matrix:	Soil					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	inc
<u>.</u>							
Maxxam ID:	AWA888					Collected:	2015/08/19
Sample ID:	MCL-BS102					Shipped:	2015/00/25
iviatrix:	Soli					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	inc
Maxxam ID:	AWA889					Collected:	2015/08/19
Sample ID:	MCL-BS103					Shipped:	
Matrix:	Soil					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IG	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	inc
Maxxam ID:	AWA890					Collected:	2015/08/19
Sample ID:	MCL-BS104					Shipped:	2013/00/13
Matrix:	Soil					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Metals Solids Acid Extr. IO	CPMS	Instrumentation ICP/MS	Batch 4166246	Extracted 2015/08/27	Date Analyzed 2015/08/28	Analyst Mike Lebla	anc
Test Description Metals Solids Acid Extr. IG	CPMS	Instrumentation ICP/MS	Batch 4166246	Extracted 2015/08/27	Date Analyzed 2015/08/28	Analyst Mike Lebla	inc
Test Description Metals Solids Acid Extr. IG		Instrumentation ICP/MS	Batch 4166246	Extracted 2015/08/27	Date Analyzed 2015/08/28	Analyst Mike Lebla	2015 (08/10
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID:	AWA891 MCL-BS201	Instrumentation ICP/MS	Batch 4166246	Extracted 2015/08/27	Date Analyzed	Analyst Mike Lebla Collected: Shipped:	unc 2015/08/19
Test Description Metals Solids Acid Extr. IO Maxxam ID: Sample ID: Matrix:	CPMS AWA891 MCL-BS201 Soil	Instrumentation ICP/MS	Batch 4166246	Extracted 2015/08/27	Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received:	unc 2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. IO Maxxam ID: Sample ID: Matrix:	AWA891 MCL-BS201 Soil	Instrumentation ICP/MS	Batch 4166246	Extracted 2015/08/27	Date Analyzed	Analyst Mike Lebla Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description	AWA891 MCL-BS201 Soil	Instrumentation ICP/MS Instrumentation	Batch 4166246 Batch	Extracted 2015/08/27 Extracted	Date Analyzed 2015/08/28 Date Analyzed	Analyst Mike Lebla Collected: Shipped: Received: Analyst	nnc 2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	CPMS AWA891 MCL-BS201 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	nnc 2015/08/19 2015/08/25 nnc
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AWA891 MCL-BS201 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/19 2015/08/25 anc
Test Description Metals Solids Acid Extr. IO Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IO Maxxam ID:	AWA891 MCL-BS201 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected:	anc 2015/08/19 2015/08/25 anc 2015/08/19
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix:	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Paceived:	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix:	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	2015/08/19 2015/08/25 nnc 2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. IO Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IO Maxxam ID: Sample ID: Matrix: Test Description	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation	Batch 4166246 Batch 4166246 Batch	Extracted 2015/08/27 Extracted 2015/08/27 Extracted	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed	Analyst Mike Lebla Collected: Shipped: Received: Analyst Collected: Shipped: Received: Analyst	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25 anc
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25 anc
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID:	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil CPMS	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246 4166246	Extracted 2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25 anc 2015/08/19
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID:	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil CPMS AWA893 MCL-BS203	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246 4166246	Extracted 2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped:	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25 anc 2015/08/19
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix:	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil CPMS AWA893 MCL-BS203 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246 Batch 4166246	Extracted 2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description	AWA891 MCL-BS201 Soil CPMS AWA892 MCL-BS202 Soil CPMS AWA893 MCL-BS203 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4166246 4166246 4166246 4166246	Extracted 2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25 anc 2015/08/19 2015/08/25

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Sample ID: Matrix:	AWA894 MCL-BS204 Soil					Collected: 2015/08/19 Shipped: Received: 2015/08/25	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	PMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Leblanc	
Maxxam ID: Sample ID: Matrix:	AWA895 MB-BS103 Soil					Collected: 2015/08/19 Shipped: Received: 2015/08/25	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164178	N/A	2015/08/27	Julia McGovern	
PCBs in soil by GC/ECD		GC/ECD	4164270	2015/08/26	2015/08/27	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/27	Automated Statchk	
Maxxam ID: Sample ID: Matrix: Test Description	AWA895 Dup MB-BS103 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst	
PCBs in soil by GC/ECD		GC/ECD	4164270	2015/08/26	2015/08/27	Lisa Gates	
Maxxam ID: Sample ID: Matrix:	AWA896 MB-BS104 Soil					Collected: 2015/08/19 Shipped: Received: 2015/08/25	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Moisture		Instrumentation BAL	Batch 4164178	Extracted N/A	Date Analyzed 2015/08/27	Analyst Julia McGovern	
Test Description Moisture PCBs in soil by GC/ECD		Instrumentation BAL GC/ECD	Batch 4164178 4164270	Extracted N/A 2015/08/26	Date Analyzed 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil)		Instrumentation BAL GC/ECD CALC	Batch 4164178 4164270 4163543	Extracted N/A 2015/08/26 N/A	Date Analyzed 2015/08/27 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description	AWA897 MB-BS105 Soil	Instrumentation BAL GC/ECD CALC Instrumentation	Batch 4164178 4164270 4163543 Batch	Extracted N/A 2015/08/26 N/A Extracted	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 Date Analyzed	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture	AWA897 MB-BS105 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL	Batch 4164178 4164270 4163543 Batch 4164178	Extracted N/A 2015/08/26 N/A Extracted N/A	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 Date Analyzed 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD	AWA897 MB-BS105 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL GC/ECD	Batch 4164178 4164270 4163543 Batch 4164178 4164270	Extracted N/A 2015/08/26 N/A Extracted N/A 2015/08/26	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 Date Analyzed 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern Lisa Gates	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil)	AWA897 MB-BS105 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL GC/ECD CALC	Batch 4164178 4164270 4163543 Batch 4164178 4164178 4164270 4163543	Extracted N/A 2015/08/26 N/A Extracted N/A 2015/08/26 N/A	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 Date Analyzed 2015/08/27 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern Lisa Gates Automated Statchk	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Maxxam ID: Sample ID: Maxxam ID: Sample ID: Matrix:	AWA897 MB-BS105 Soil AWA898 MB-BS106 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL GC/ECD CALC CALC	Batch 4164178 4164270 4163543 Batch 4164178 4164270 4163543	Extracted N/A 2015/08/26 N/A Extracted N/A 2015/08/26 N/A	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix:	AWA897 MB-BS105 Soil AWA898 MB-BS106 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL GC/ECD CALC CALC Instrumentation	Batch 4164178 4164270 4163543 Batch 4164178 4164270 4163543	Extracted N/A 2015/08/26 N/A Extracted N/A 2015/08/26 N/A Extracted	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst	
Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Moisture PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture Pcs Description Moisture Description	AWA897 MB-BS105 Soil AWA898 MB-BS106 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL GC/ECD CALC CALC Instrumentation BAL BAL BAL BAL	Batch 4164178 4164270 4163543 Batch 4164178 4164270 4163543 Batch 4164178 4164178	Extracted N/A 2015/08/26 N/A Extracted N/A 2015/08/26 N/A Extracted N/A	Date Analyzed 2015/08/27 2015/08/27 2015/08/27 Date Analyzed 2015/08/27 2015/08/27 2015/08/27 2015/08/27 2015/08/27	Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern Lisa Gates Automated Statchk Collected: 2015/08/19 Shipped: Received: 2015/08/25 Analyst Julia McGovern	

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	AWA899 MB-BS107 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164178	N/A	2015/08/27	Julia McG	overn
PCBs in soil by GC/ECD		GC/ECD	4164270	2015/08/26	2015/08/27	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/27	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	AWA900 BMEWS-BS401 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebl	anc
Maxxam ID: Sample ID: Matrix:	AWA901 BMEWS-BS402 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebl	anc
Maxxam ID: Sample ID: Matrix: Test Description	AWA902 BMEWS-BS403 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2015/08/19 2015/08/25
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebl	anc
Maxxam ID: Sample ID: Matrix:	AWA903 BMEWS-BS404 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebl	anc
Maxxam ID: Sample ID: Matrix:	AWA904 BMEWS-BS501 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebl	anc
Maxxam ID: Sample ID: Matrix:	AWA905 BMEWS-BS502 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebl	anc

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID: Sample ID:	AWA906 BMFWS-BS503					Collected:	2015/08/19
Matrix:	Soil					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166183	2015/08/27	2015/08/27	Mike Lebla	anc
-							
Maxxam ID:	AWA907					Collected:	2015/08/19
Sample ID: Matrix:	BMEWS-BS504 Soil					Shipped: Received:	2015/08/25
Widthx.	5011					neccircu.	2013/00/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166183	2015/08/27	2015/08/27	Mike Lebla	anc
Maxxam ID:	AWA908					Collected:	2015/08/20
Sample ID:	POL-BS301					Shipped:	2015/00/25
Matrix:	Soil					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166183	2015/08/27	2015/08/27	Mike Lebla	anc
Maxxam ID:	AWA909					Collected:	2015/08/20
Sample ID:	POL-BS302					Shipped:	
Matrix:	Soil					Received:	2015/08/25
Tast Description		Instrumontation	Batch	Extracted	Date Analyzed	Analyst	
rest Description		instrumentation	Datch			Analyse	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	anc
Metals Solids Acid Extr. 10	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	anc
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	anc 2015/08/20
Metals Solids Acid Extr. IC Maxxam ID: Sample ID:	CPMS AWA910 POL-BS303	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Lebla	anc 2015/08/20
Metals Solids Acid Extr. IO Maxxam ID: Sample ID: Matrix:	AWA910 POL-BS303 Soil	ICP/MS	4166246	2015/08/27	2015/08/28	Collected: Shipped: Received:	anc 2015/08/20 2015/08/25
Metals Solids Acid Extr. Id Maxxam ID: Sample ID: Matrix:	AWA910 POL-BS303 Soil	ICP/MS	4166246	2015/08/27	2015/08/28	Collected: Shipped: Received:	anc 2015/08/20 2015/08/25
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description	AWA910 POL-BS303 Soil	Instrumentation	Batch	2015/08/27 Extracted	2015/08/28 Date Analyzed	Collected: Shipped: Received:	anc 2015/08/20 2015/08/25
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG	AWA910 POL-BS303 Soil	ICP/MS Instrumentation ICP/MS	4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28	Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/20 2015/08/25 anc
Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AWA910 POL-BS303 Soil	ICP/MS Instrumentation ICP/MS	4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28	Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/20 2015/08/25 anc
Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID:	AWA910 POL-BS303 Soil	ICP/MS Instrumentation ICP/MS	Batch Batch 4166246	2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/20 2015/08/25 anc 2015/08/20
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix:	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil	ICP/MS Instrumentation ICP/MS	4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Mike Lebla Mike Lebla Collected: Shipped: Received:	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25
Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix:	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil	ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil	Instrumentation ICP/MS ICP/MS	Batch Batch 4166246 Batch Batch	2015/08/27 Extracted 2015/08/27 Extracted	2015/08/28 Date Analyzed 2015/08/28 Date Analyzed	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25
Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil	Instrumentation ICP/MS ICP/MS ICP/MS	Batch Batch 4166246 4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25 anc
Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch Batch 4166246 4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25 anc
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID:	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil CPMS	Instrumentation ICP/MS ICP/MS Instrumentation ICP/MS	Batch Batch 4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected:	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/20 2015/08/20
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID:	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil CPMS AWA912 POL-BS402	Instrumentation ICP/MS ICP/MS Instrumentation ICP/MS	Batch 4166246 Batch 4166246 4166246	2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped:	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25 anc 2015/08/20
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix:	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil CPMS AWA912 POL-BS402 Soil	Instrumentation ICP/MS ICP/MS ICP/MS	Batch 4166246 Batch 4166246 4166246	2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/20 2015/08/25
Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IG Maxxam ID: Sample ID: Matrix: Test Description	AWA910 POL-BS303 Soil CPMS AWA911 POL-BS401 Soil CPMS AWA912 POL-BS402 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch Batch 4166246 4166246 Batch 4166246	2015/08/27 Extracted 2015/08/27 Extracted 2015/08/27	Date Analyzed 2015/08/28 Date Analyzed 2015/08/28 Date Analyzed 2015/08/28	Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst	anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25 anc 2015/08/20 2015/08/25

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	AWA913 POL-BS403 Soil					Collected: 2015/08/20 Shipped: Received: 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166246	2015/08/27	2015/08/28	Mike Leblanc
Maxxam ID: Sample ID: Matrix:	AWA914 POL-BS404 Soil					Collected: 2015/08/20 Shipped: Received: 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4166768	2015/08/27	2015/08/28	Bryon Angevine
Maxxam ID: Sample ID: Matrix:	AWA915 15-ROAD-BS1 Soil					Collected: 2015/08/20 Shipped: Received: 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGovern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated Statchk
Maxxam ID: Sample ID: Matrix:	AWA916 15-ROAD-BS2 Soil					Collected: 2015/08/20 Shipped: Received: 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGovern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated Statchk
Maxxam ID: Sample ID: Matrix:	AWA917 15-ROAD-BS3 Soil					Collected: 2015/08/19 Shipped: Received: 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGovern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated Statchk
Maxxam ID: Sample ID: Matrix: Test Description	AWA918 15-ROAD-BS4 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: 2015/08/19 Shipped: Received: 2015/08/25
Moisture		BAI	4164341	N/A	2015/08/27	lulia McGovern
PCBs in soil by GC/FCD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated Statchk

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	AWA919 15-ROAD-BS5 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	AWA920 15-POND-SED1 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	AWA921 15-POND-SED2 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	AWA922 15-POND-SED3 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164341	N/A	2015/08/27	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4166607	2015/08/27	2015/08/28	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4163543	N/A	2015/08/28	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	AWA923 15-POND-SW1 Water					Collected: Shipped: Received:	2015/08/20 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
<u> </u>					•	•	
PCBs in water by GC/ECD		GC/ECD	4167039	2015/08/27	2015/08/31	Lisa Gates	
PCBs in water by GC/ECD PCB Aroclor sum (water)		GC/ECD CALC	4167039 4162698	2015/08/27 N/A	2015/08/31 2015/08/31	Lisa Gates Automated	l Statchk
PCBs in water by GC/ECD PCB Aroclor sum (water) Maxxam ID: Sample ID: Matrix:	AWA923 Dup 15-POND-SW1 Water	GC/ECD CALC	4167039 4162698	2015/08/27 N/A	2015/08/31 2015/08/31	Lisa Gates Automatec Collected: Shipped: Received:	1 Statchk 2015/08/20 2015/08/25
PCBs in water by GC/ECD PCB Aroclor sum (water) Maxxam ID: Sample ID: Matrix: Test Description	AWA923 Dup 15-POND-SW1 Water	GC/ECD CALC Instrumentation	4167039 4162698 Batch	2015/08/27 N/A Extracted	2015/08/31 2015/08/31 Date Analyzed	Lisa Gates Automatec Collected: Shipped: Received: Analyst	d Statchk 2015/08/20 2015/08/25

Page 24 of 38

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	AWA924 15-POND-SW2 Water					Collected: Shipped: Received:	2015/08/20 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs in water by GC/ECD	1	GC/ECD	4167039	2015/08/27	2015/08/31	Lisa Gates	
PCB Aroclor sum (water)		CALC	4162698	N/A	2015/08/31	Automated	d Statchk
Manuara ID:	A)A/A 0.25					Callastada	2015/00/20
Maxxam ID: Sample ID: Matrix:	AWA925 15-POND-SW3 Water					Shipped: Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs in water by GC/ECD		GC/ECD	4167039	2015/08/27	2015/08/31	Lisa Gates	
PCB Aroclor sum (water)		CALC	4162698	N/A	2015/08/31	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	AWA926 15-BP-COMP-A1 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride in Soil by Auto. C	Colourimetry	KONE	4171136	N/A	2015/09/01	Arlene Ros	siter
Conductance - soil		COND	4171327	2015/08/28	2015/08/31	Tammy Pe	ters
TEH in Soil (PIRI)		GC/FID	4166161	2015/08/27	2015/08/28	Bria Harve	у
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4168220	2015/08/28	2015/08/28	Mike Lebla	inc
Acid Extractable Metals A	Analysis by ICP	ICP	4174415	2015/09/02	2015/09/02	Azita Faza	eli
Moisture		BAL	4164178	N/A	2015/08/27	Julia McGo	overn
Nitrogen Ammonia - soil	(as N)	KONE	4166576	2015/08/27	2015/08/27	Nancy Rog	ers
Nitrogen - Nitrate + Nitrit	e	KONE	4171147	2015/08/31	2015/09/01	Arlene Ros	siter
Nitrogen - Nitrite by auto	colourimetry	KONE	4171151	2015/08/31	2015/08/31	Arlene Ros	siter
pH (5:1 DI Water Extract)		РН/РН	4168701	2015/08/28	2015/08/28	Tammy Pe	ters
Phosphorus - ortho by au	to Colourimetry	KONE	4171146	2015/08/31	2015/08/31	Nancy Rog	ers
VPH in Soil (PIRI)		PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lu	cas
Sulphate in Soil by Auto C	Colourimetry	KONE	4171143	2015/08/31	2015/09/01	Arlene Ros	siter
ModTPH (T1) Calc. for So	il	CALC	4162749	N/A	2015/09/01	Automated	d Statchk
Maxxam ID: Sample ID: Matrix:	AWA926 Dup 15-BP-COMP-A1 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Nitrogen Ammonia - soil	(as N)	KONE	4166576	2015/08/27	2015/08/27	Nancy Rog	ers
VPH in Soil (PIRI)		PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lu	cas
Maxxam ID: Sample ID: Matrix:	AWA927 15-BP-COMP-A2 Soil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
TEH in Soil (PIRI)		GC/FID	4166161	2015/08/27	2015/08/28	Bria Harve	у
					-		

Page 25 of 38

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID: A Sample ID: 1	WA927 5-BP-COMP-A2					Collected: Shipped:	2015/08/19
IVIALITIX: 5	UII					Received:	2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4164178	N/A	2015/08/27	Julia McGo	overn
VPH in Soil (PIRI)		PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lu	cas
Particle size in solids (pipette	e&sieve)	PSIV	4170849	N/A	2015/09/02	Samantha	Lutes
ModTPH (T1) Calc. for Soil		CALC	4162749	N/A	2015/09/01	Automate	d Statchk
Maxxam ID: A Sample ID: 1 Matrix: So	WA927 Dup 5-BP-COMP-A2 oil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Particle size in solids (pipette	e&sieve)	PSIV	4170849	N/A	2015/09/02	Samantha	Lutes
Maxxam ID: A Sample ID: 1 Matrix: So	WA928 5-BP-COMP-B1 oil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride in Soil by Auto. Colo	ourimetry	KONE	4171136	N/A	2015/09/01	Arlene Ros	siter
Conductance - soil		COND	4171327	2015/08/28	2015/08/31	Tammy Pe	ters
TEH in Soil (PIRI)		GC/FID	4166161	2015/08/27	2015/08/28	Bria Harve	у
Metals Solids Acid Extr. ICPN	1S	ICP/MS	4168313	2015/08/28	2015/08/29	Bryon Ang	evine
Acid Extractable Metals Anal	ysis by ICP	ICP	4174415	2015/09/02	2015/09/02	Azita Faza	eli
Moisture		BAL	4164178	N/A	2015/08/27	Julia McGo	overn
Nitrogen Ammonia - soil (as	N)	KONE	4166576	2015/08/27	2015/08/27	Nancy Rog	ers
Nitrogen - Nitrate + Nitrite		KONE	4171147	2015/08/31	2015/09/01	Arlene Ros	ssiter
Nitrogen - Nitrite by auto co	ourimetry	KONE	4171151	2015/08/31	2015/08/31	Arlene Ros	ssiter
pH (5:1 DI Water Extract)		РН/РН	4168701	2015/08/28	2015/08/28	Tammy Pe	ters
Phosphorus - ortho by auto (Colourimetry	KONE	4171146	2015/08/31	2015/08/31	Nancy Rog	ers
VPH in Soil (PIRI)		PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lu	cas
Particle size in solids (pipette	e&sieve)	PSIV	4170849	N/A	2015/09/02	Samantha	Lutes
Sulphate in Soil by Auto Colo	ourimetry	KONE	4171143	2015/08/31	2015/09/01	Arlene Ros	siter
ModTPH (T1) Calc. for Soil		CALC	4162749	N/A	2015/09/01	Automate	d Statchk
Maxxam ID: A Sample ID: 1. Matrix: So	WA929 5-BP-COMP-B2 oil					Collected: Shipped: Received:	2015/08/19 2015/08/25
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Chloride in Soil by Auto. Colo	ourimetry	KONE	4171136	N/A	2015/09/01	Arlene Ros	ssiter
Conductance - soil		COND	4171327	2015/08/28	2015/08/31	Tammy Pe	ters
TEH in Soil (PIRI)		GC/FID	4166161	2015/08/27	2015/08/28	Bria Harve	у
Metals Solids Acid Extr. ICPN	1S	ICP/MS	4168313	2015/08/28	2015/08/29	Bryon Ang	evine
Acid Extractable Metals Anal	ysis by ICP	ICP	4174415	2015/09/02	2015/09/02	Azita Faza	eli
Moisture		BAL	4164178	N/A	2015/08/27	Julia McGo	overn

Ma Ver Maxxam Job #: B5G9646 Report Date: 2015/09/09

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

Maxxam ID:	AWA929
Sample ID:	15-BP-COMP-B2
Matrix:	Soil

TEST SUMMA	ARY		
		Collected:	2015/08/19
		Received:	2015/08/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Nitrogen Ammonia - soil (as N)	KONE	4166576	2015/08/27	2015/08/27	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4171147	2015/08/31	2015/09/01	Arlene Rossiter
Nitrogen - Nitrite by auto colourimetry	KONE	4171151	2015/08/31	2015/08/31	Arlene Rossiter
pH (5:1 DI Water Extract)	РН/РН	4168701	2015/08/28	2015/08/28	Tammy Peters
Phosphorus - ortho by auto Colourimetry	KONE	4171146	2015/08/31	2015/08/31	Nancy Rogers
VPH in Soil (PIRI)	PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lucas
Particle size in solids (pipette&sieve)	PSIV	4170849	N/A	2015/09/02	Samantha Lutes
Sulphate in Soil by Auto Colourimetry	KONE	4171143	2015/08/31	2015/09/01	Arlene Rossiter
ModTPH (T1) Calc. for Soil	CALC	4162749	N/A	2015/09/01	Automated Statchk
Particle size in solids (pipette&sieve) Sulphate in Soil by Auto Colourimetry ModTPH (T1) Calc. for Soil	PSIV KONE CALC	4108228 4170849 4171143 4162749	N/A 2015/08/31 N/A	2015/08/28 2015/09/02 2015/09/01 2015/09/01	Samantha Lutes Arlene Rossiter Automated Statchk

Maxxam ID: AWA930 Sample ID: 15-BP-COMP-C1 Matrix: Soil

Collected: 2015/08/19 Shipped: Received: 2015/08/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride in Soil by Auto. Colourimetry	KONE	4171136	N/A	2015/09/01	Arlene Rossiter
Conductance - soil	COND	4171327	2015/08/28	2015/08/31	Tammy Peters
TEH in Soil (PIRI)	GC/FID	4166161	2015/08/27	2015/08/28	Bria Harvey
Metals Solids Acid Extr. ICPMS	ICP/MS	4168313	2015/08/28	2015/08/29	Bryon Angevine
Acid Extractable Metals Analysis by ICP	ICP	4174415	2015/09/02	2015/09/02	Azita Fazaeli
Moisture	BAL	4164346	N/A	2015/08/27	Julia McGovern
Nitrogen Ammonia - soil (as N)	KONE	4166576	2015/08/27	2015/08/27	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4171147	2015/08/31	2015/09/01	Arlene Rossiter
Nitrogen - Nitrite by auto colourimetry	KONE	4171151	2015/08/31	2015/08/31	Arlene Rossiter
pH (5:1 DI Water Extract)	РН/РН	4168701	2015/08/28	2015/08/28	Tammy Peters
Phosphorus - ortho by auto Colourimetry	KONE	4171146	2015/08/31	2015/08/31	Nancy Rogers
VPH in Soil (PIRI)	PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lucas
Sulphate in Soil by Auto Colourimetry	KONE	4171143	2015/08/31	2015/09/01	Arlene Rossiter
ModTPH (T1) Calc. for Soil	CALC	4162749	N/A	2015/09/01	Automated Statchk

Maxxam ID:	AWA931
Sample ID:	15-BP-COMP-C2
Matrix:	Soil

Collected: 2015/08/19 Shipped: Received: 2015/08/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
TEH in Soil (PIRI)	GC/FID	4166161	2015/08/27	2015/08/29	Bria Harvey
Moisture	BAL	4164346	N/A	2015/08/27	Julia McGovern
VPH in Soil (PIRI)	PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lucas
Particle size in solids (pipette&sieve)	PSIV	4170849	N/A	2015/09/02	Samantha Lutes
ModTPH (T1) Calc. for Soil	CALC	4162749	N/A	2015/09/01	Automated Statchk

Maxxam Job #: B5G9646 Report Date: 2015/09/09

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

TEST SUMMARY

Maxxam ID:	AWA932
Sample ID:	15-BP-COMP-D1
Matrix:	Soil

Collected:	2015/08/19
Received:	2015/08/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride in Soil by Auto. Colourimetry	KONE	4171136	N/A	2015/09/01	Arlene Rossiter
Conductance - soil	COND	4171327	2015/08/28	2015/08/31	Tammy Peters
TEH in Soil (PIRI)	GC/FID	4166161	2015/08/27	2015/08/29	Bria Harvey
Metals Solids Acid Extr. ICPMS	ICP/MS	4166520	2015/08/27	2015/08/28	Bryon Angevine
Acid Extractable Metals Analysis by ICP	ICP	4174415	2015/09/02	2015/09/02	Azita Fazaeli
Moisture	BAL	4164346	N/A	2015/08/27	Julia McGovern
Nitrogen Ammonia - soil (as N)	KONE	4166576	2015/08/27	2015/08/27	Nancy Rogers
Nitrogen - Nitrate + Nitrite	KONE	4171147	2015/08/31	2015/09/01	Arlene Rossiter
Nitrogen - Nitrite by auto colourimetry	KONE	4171151	2015/08/31	2015/08/31	Arlene Rossiter
pH (5:1 DI Water Extract)	РН/РН	4168701	2015/08/28	2015/08/28	Tammy Peters
Phosphorus - ortho by auto Colourimetry	KONE	4171146	2015/08/31	2015/08/31	Nancy Rogers
VPH in Soil (PIRI)	PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lucas
Sulphate in Soil by Auto Colourimetry	KONE	4171143	2015/08/31	2015/09/01	Arlene Rossiter
ModTPH (T1) Calc. for Soil	CALC	4162749	N/A	2015/09/01	Automated Statchk

Maxxam ID: AWA932 Dup Sample ID: 15-BP-COMP-D1 Matrix: Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride in Soil by Auto. Colourimetry	KONE	4171136	N/A	2015/09/01	Arlene Rossiter
Conductance - soil	COND	4171327	2015/08/31	2015/08/31	Tammy Peters
Nitrogen - Nitrate + Nitrite	KONE	4171147	2015/08/31	2015/09/01	Arlene Rossiter
Nitrogen - Nitrite by auto colourimetry	KONE	4171151	2015/08/31	2015/08/31	Arlene Rossiter
pH (5:1 DI Water Extract)	РН/РН	4168701	2015/08/28	2015/08/28	Tammy Peters
Phosphorus - ortho by auto Colourimetry	KONE	4171146	2015/08/31	2015/08/31	Nancy Rogers
Sulphate in Soil by Auto Colourimetry	KONE	4171143	2015/08/31	2015/09/01	Arlene Rossiter

Maxxam ID:	AWA933
Sample ID:	15-BP-COMP-D2
Matrix:	Soil

Collected:	2015/08/19
Shipped:	
Received:	2015/08/25

Collected: 2015/08/19

Received: 2015/08/25

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
TEH in Soil (PIRI)	GC/FID	4166161	2015/08/27	2015/08/29	Bria Harvey
Moisture	BAL	4164346	N/A	2015/08/27	Julia McGovern
VPH in Soil (PIRI)	PTGC/MS	4168228	2015/08/26	2015/08/28	Leanne Lucas
Particle size in solids (pipette&sieve)	PSIV	4170849	N/A	2015/09/02	Samantha Lutes
ModTPH (T1) Calc. for Soil	CALC	4162749	N/A	2015/09/01	Automated Statchk

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt						
	Package 1 7.0°C						
Revise	Revised report (partial) - Reissued to include results in Excel format. 2015/09/04 MHL						
Results relate only to the items tested.							

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4164270	Decachlorobiphenyl	2015/08/27	124	30 - 130	100	30 - 130	100	%				
4166161	Isobutylbenzene - Extractable	2015/08/28	85	30 - 130	95	30 - 130	90	%				
4166161	n-Dotriacontane - Extractable	2015/08/28	71	30 - 130	91	30 - 130	93	%				
4166607	Decachlorobiphenyl	2015/08/28	77	30 - 130	106	30 - 130	84	%				
4167039	Decachlorobiphenyl	2015/08/31	69	30 - 130	63	30 - 130	65	%				
4168228	Isobutylbenzene - Volatile	2015/08/28	101	60 - 130	100	60 - 130	102	%				
4164270	Aroclor 1016	2015/08/27					<0.050	ug/g	NC	50		
4164270	Aroclor 1221	2015/08/27					<0.050	ug/g	NC	50		
4164270	Aroclor 1232	2015/08/27					<0.050	ug/g	NC	50		
4164270	Aroclor 1242	2015/08/27					<0.050	ug/g	NC	50		
4164270	Aroclor 1248	2015/08/27					<0.050	ug/g	NC	50		
4164270	Aroclor 1254	2015/08/27	NC	30 - 130	106	30 - 130	<0.050	ug/g	NC	50		
4164270	Aroclor 1260	2015/08/27					<0.050	ug/g	21	50		
4166161	>C10-C16 Hydrocarbons	2015/08/28	74	30 - 130	82	30 - 130	<10	mg/kg	NC	50		
4166161	>C16-C21 Hydrocarbons	2015/08/28	81	30 - 130	91	30 - 130	<10	mg/kg	30	50		
4166161	>C21- <c32 hydrocarbons<="" td=""><td>2015/08/28</td><td>NC</td><td>30 - 130</td><td>114</td><td>30 - 130</td><td><15</td><td>mg/kg</td><td>22</td><td>50</td><td></td><td></td></c32>	2015/08/28	NC	30 - 130	114	30 - 130	<15	mg/kg	22	50		
4166183	Acid Extractable Aluminum (Al)	2015/08/27					<10	mg/kg	2.4	35		
4166183	Acid Extractable Antimony (Sb)	2015/08/27	NC	75 - 125	96	75 - 125	<2.0	mg/kg	NC	35		
4166183	Acid Extractable Arsenic (As)	2015/08/27	125	75 - 125	102	75 - 125	<2.0	mg/kg	13	35		
4166183	Acid Extractable Barium (Ba)	2015/08/27	NC	75 - 125	100	75 - 125	<5.0	mg/kg	4.7	35		
4166183	Acid Extractable Beryllium (Be)	2015/08/27	105	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35		
4166183	Acid Extractable Bismuth (Bi)	2015/08/27	97	75 - 125	97	75 - 125	<2.0	mg/kg	NC	35		
4166183	Acid Extractable Boron (B)	2015/08/27	90	75 - 125	100	75 - 125	<50	mg/kg	NC	35		
4166183	Acid Extractable Cadmium (Cd)	2015/08/27	100	75 - 125	100	75 - 125	<0.30	mg/kg	NC	35		
4166183	Acid Extractable Chromium (Cr)	2015/08/27	105	75 - 125	101	75 - 125	<2.0	mg/kg	5.4	35		
4166183	Acid Extractable Cobalt (Co)	2015/08/27	102	75 - 125	101	75 - 125	<1.0	mg/kg	5.9	35		
4166183	Acid Extractable Copper (Cu)	2015/08/27	NC	75 - 125	101	75 - 125	<2.0	mg/kg	2.9	35		
4166183	Acid Extractable Iron (Fe)	2015/08/27					<50	mg/kg	6.8	35		
4166183	Acid Extractable Lead (Pb)	2015/08/27	NC	75 - 125	100	75 - 125	<0.50	mg/kg	7.9	35		
4166183	Acid Extractable Lithium (Li)	2015/08/27	105	75 - 125	102	75 - 125	<2.0	mg/kg	6.0	35		
4166183	Acid Extractable Manganese (Mn)	2015/08/27	NC	75 - 125	101	75 - 125	<2.0	mg/kg	5.9	35		

Page 30 of 38

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4166183	Acid Extractable Mercury (Hg)	2015/08/27	95	75 - 125	100	75 - 125	<0.10	mg/kg	NC	35		
4166183	Acid Extractable Molybdenum (Mo)	2015/08/27	NC	75 - 125	101	75 - 125	<2.0	mg/kg	6.7	35		
4166183	Acid Extractable Nickel (Ni)	2015/08/27	105	75 - 125	102	75 - 125	<2.0	mg/kg	3.3	35		
4166183	Acid Extractable Rubidium (Rb)	2015/08/27	96	75 - 125	99	75 - 125	<2.0	mg/kg	NC	35		
4166183	Acid Extractable Selenium (Se)	2015/08/27	100	75 - 125	104	75 - 125	<1.0	mg/kg	8.0	35		
4166183	Acid Extractable Silver (Ag)	2015/08/27	99	75 - 125	99	75 - 125	<0.50	mg/kg	NC	35		
4166183	Acid Extractable Strontium (Sr)	2015/08/27	102	75 - 125	100	75 - 125	<5.0	mg/kg	NC	35		
4166183	Acid Extractable Thallium (TI)	2015/08/27	96	75 - 125	97	75 - 125	<0.10	mg/kg	NC	35		
4166183	Acid Extractable Tin (Sn)	2015/08/27	87	75 - 125	93	75 - 125	<2.0	mg/kg	NC	35		
4166183	Acid Extractable Uranium (U)	2015/08/27	99	75 - 125	101	75 - 125	<0.10	mg/kg	0.24	35		
4166183	Acid Extractable Vanadium (V)	2015/08/27	NC	75 - 125	104	75 - 125	<2.0	mg/kg	2.3	35		
4166183	Acid Extractable Zinc (Zn)	2015/08/27	NC	75 - 125	97	75 - 125	<5.0	mg/kg	20	35		
4166246	Acid Extractable Aluminum (Al)	2015/08/28					<10	mg/kg	3.3	35		
4166246	Acid Extractable Antimony (Sb)	2015/08/28	94	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4166246	Acid Extractable Arsenic (As)	2015/08/28	107	75 - 125	102	75 - 125	<2.0	mg/kg	3.0	35		
4166246	Acid Extractable Barium (Ba)	2015/08/28	103	75 - 125	102	75 - 125	<5.0	mg/kg	NC	35		
4166246	Acid Extractable Beryllium (Be)	2015/08/28	104	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35		
4166246	Acid Extractable Bismuth (Bi)	2015/08/28	102	75 - 125	101	75 - 125	<2.0	mg/kg	NC	35		
4166246	Acid Extractable Boron (B)	2015/08/28	97	75 - 125	118	75 - 125	<50	mg/kg	NC	35		
4166246	Acid Extractable Cadmium (Cd)	2015/08/28	103	75 - 125	102	75 - 125	<0.30	mg/kg	NC	35		
4166246	Acid Extractable Chromium (Cr)	2015/08/28	104	75 - 125	101	75 - 125	<2.0	mg/kg	1.1	35		
4166246	Acid Extractable Cobalt (Co)	2015/08/28	101	75 - 125	100	75 - 125	<1.0	mg/kg	3.3	35		
4166246	Acid Extractable Copper (Cu)	2015/08/28	NC	75 - 125	100	75 - 125	<2.0	mg/kg	5.0	35		
4166246	Acid Extractable Iron (Fe)	2015/08/28					<50	mg/kg	3.3	35		
4166246	Acid Extractable Lead (Pb)	2015/08/28	101	75 - 125	99	75 - 125	<0.50	mg/kg	4.7	35		
4166246	Acid Extractable Lithium (Li)	2015/08/28	102	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35		
4166246	Acid Extractable Manganese (Mn)	2015/08/28	NC	75 - 125	103	75 - 125	<2.0	mg/kg	5.7	35		
4166246	Acid Extractable Mercury (Hg)	2015/08/28	99	75 - 125	103	75 - 125	<0.10	mg/kg	NC	35		
4166246	Acid Extractable Molybdenum (Mo)	2015/08/28	101	75 - 125	98	75 - 125	<2.0	mg/kg	NC	35		
4166246	Acid Extractable Nickel (Ni)	2015/08/28	103	75 - 125	102	75 - 125	<2.0	mg/kg	1.6	35		Ī
4166246	Acid Extractable Rubidium (Rb)	2015/08/28	103	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35		

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4166246	Acid Extractable Selenium (Se)	2015/08/28	105	75 - 125	105	75 - 125	<1.0	mg/kg	NC	35		
4166246	Acid Extractable Silver (Ag)	2015/08/28	102	75 - 125	98	75 - 125	<0.50	mg/kg	NC	35		
4166246	Acid Extractable Strontium (Sr)	2015/08/28	110	75 - 125	100	75 - 125	<5.0	mg/kg	NC	35		
4166246	Acid Extractable Thallium (Tl)	2015/08/28	101	75 - 125	101	75 - 125	<0.10	mg/kg	NC	35		
4166246	Acid Extractable Tin (Sn)	2015/08/28	101	75 - 125	98	75 - 125	<2.0	mg/kg	NC	35		
4166246	Acid Extractable Uranium (U)	2015/08/28	102	75 - 125	100	75 - 125	<0.10	mg/kg	9.4	35		
4166246	Acid Extractable Vanadium (V)	2015/08/28	NC	75 - 125	101	75 - 125	<2.0	mg/kg	3.5	35		
4166246	Acid Extractable Zinc (Zn)	2015/08/28	NC	75 - 125	99	75 - 125	<5.0	mg/kg	1.9	35		
4166520	Acid Extractable Aluminum (Al)	2015/08/28					<10	mg/kg	3.9	35		
4166520	Acid Extractable Antimony (Sb)	2015/08/28	97	75 - 125	98	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Arsenic (As)	2015/08/28	102	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Barium (Ba)	2015/08/28	117	75 - 125	99	75 - 125	<5.0	mg/kg	NC	35		
4166520	Acid Extractable Beryllium (Be)	2015/08/28	110	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Bismuth (Bi)	2015/08/28	102	75 - 125	98	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Boron (B)	2015/08/28	100	75 - 125	101	75 - 125	<50	mg/kg	NC	35		
4166520	Acid Extractable Cadmium (Cd)	2015/08/28	101	75 - 125	99	75 - 125	<0.30	mg/kg	NC	35		
4166520	Acid Extractable Chromium (Cr)	2015/08/28	NC	75 - 125	99	75 - 125	<2.0	mg/kg	4.3	35		
4166520	Acid Extractable Cobalt (Co)	2015/08/28	101	75 - 125	100	75 - 125	<1.0	mg/kg	0.078	35		
4166520	Acid Extractable Copper (Cu)	2015/08/28	NC	75 - 125	98	75 - 125	<2.0	mg/kg	11	35		
4166520	Acid Extractable Iron (Fe)	2015/08/28					<50	mg/kg	6.0	35		
4166520	Acid Extractable Lead (Pb)	2015/08/28	NC	75 - 125	98	75 - 125	<0.50	mg/kg	0.96	35		
4166520	Acid Extractable Lithium (Li)	2015/08/28	106	75 - 125	101	75 - 125	<2.0	mg/kg	4.3	35		
4166520	Acid Extractable Manganese (Mn)	2015/08/28	NC	75 - 125	98	75 - 125	<2.0	mg/kg	10	35		
4166520	Acid Extractable Mercury (Hg)	2015/08/28	98	75 - 125	99	75 - 125	<0.10	mg/kg	NC	35		
4166520	Acid Extractable Molybdenum (Mo)	2015/08/28	106	75 - 125	105	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Nickel (Ni)	2015/08/28	NC	75 - 125	100	75 - 125	<2.0	mg/kg	0.060	35		
4166520	Acid Extractable Rubidium (Rb)	2015/08/28	99	75 - 125	98	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Selenium (Se)	2015/08/28	102	75 - 125	101	75 - 125	<1.0	mg/kg	NC	35		
4166520	Acid Extractable Silver (Ag)	2015/08/28	101	75 - 125	99	75 - 125	<0.50	mg/kg	NC	35		
4166520	Acid Extractable Strontium (Sr)	2015/08/28	95	75 - 125	96	75 - 125	<5.0	mg/kg	NC	35		1
4166520	Acid Extractable Thallium (Tl)	2015/08/28	100	75 - 125	95	75 - 125	<0.10	mg/kg	NC	35		

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4166520	Acid Extractable Tin (Sn)	2015/08/28	93	75 - 125	99	75 - 125	<2.0	mg/kg	NC	35		
4166520	Acid Extractable Uranium (U)	2015/08/28	103	75 - 125	99	75 - 125	<0.10	mg/kg	NC	35		
4166520	Acid Extractable Vanadium (V)	2015/08/28	NC	75 - 125	100	75 - 125	<2.0	mg/kg	2.5	35		
4166520	Acid Extractable Zinc (Zn)	2015/08/28	NC	75 - 125	96	75 - 125	<5.0	mg/kg	5.3	35		
4166576	Ammonia-N	2015/08/27	108	75 - 125			<0.25	mg/kg	18	30		
4166607	Aroclor 1016	2015/08/28					<0.050	ug/g	NC	50		
4166607	Aroclor 1221	2015/08/28					<0.050	ug/g	NC	50		
4166607	Aroclor 1232	2015/08/28					<0.050	ug/g	NC	50		
4166607	Aroclor 1242	2015/08/28					<0.050	ug/g	NC	50		
4166607	Aroclor 1248	2015/08/28					<0.050	ug/g	NC	50		
4166607	Aroclor 1254	2015/08/28	NC	30 - 130	115	30 - 130	<0.050	ug/g	NC	50		
4166607	Aroclor 1260	2015/08/28					<0.050	ug/g	0.86	50		
4166768	Acid Extractable Aluminum (Al)	2015/08/28					<10	mg/kg	9.3	35		
4166768	Acid Extractable Antimony (Sb)	2015/08/28	97	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Arsenic (As)	2015/08/28	104	75 - 125	101	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Barium (Ba)	2015/08/28	NC	75 - 125	103	75 - 125	<5.0	mg/kg	NC	35		
4166768	Acid Extractable Beryllium (Be)	2015/08/28	109	75 - 125	106	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Bismuth (Bi)	2015/08/28	100	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Boron (B)	2015/08/28	99	75 - 125	100	75 - 125	<50	mg/kg	NC	35		
4166768	Acid Extractable Cadmium (Cd)	2015/08/28	101	75 - 125	100	75 - 125	<0.30	mg/kg	NC	35		
4166768	Acid Extractable Chromium (Cr)	2015/08/28	93	75 - 125	100	75 - 125	<2.0	mg/kg	28	35		
4166768	Acid Extractable Cobalt (Co)	2015/08/28	100	75 - 125	100	75 - 125	<1.0	mg/kg	NC	35		
4166768	Acid Extractable Copper (Cu)	2015/08/28	93	75 - 125	99	75 - 125	<2.0	mg/kg	65 (1)	35		
4166768	Acid Extractable Iron (Fe)	2015/08/28					<50	mg/kg	13	35		
4166768	Acid Extractable Lead (Pb)	2015/08/28	102	75 - 125	101	75 - 125	<0.50	mg/kg	2.2	35		
4166768	Acid Extractable Lithium (Li)	2015/08/28	101	75 - 125	103	75 - 125	<2.0	mg/kg	13	35		
4166768	Acid Extractable Manganese (Mn)	2015/08/28	NC	75 - 125	98	75 - 125	<2.0	mg/kg	4.7	35		
4166768	Acid Extractable Mercury (Hg)	2015/08/28	96	75 - 125	100	75 - 125	<0.10	mg/kg	NC	35		
4166768	Acid Extractable Molybdenum (Mo)	2015/08/28	95	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Nickel (Ni)	2015/08/28	96	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Rubidium (Rb)	2015/08/28	97	75 - 125	99	75 - 125	<2.0	mg/kg	14	35		

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4166768	Acid Extractable Selenium (Se)	2015/08/28	102	75 - 125	102	75 - 125	<1.0	mg/kg	NC	35		
4166768	Acid Extractable Silver (Ag)	2015/08/28	100	75 - 125	98	75 - 125	<0.50	mg/kg	NC	35		
4166768	Acid Extractable Strontium (Sr)	2015/08/28	90	75 - 125	99	75 - 125	<5.0	mg/kg	NC	35		
4166768	Acid Extractable Thallium (Tl)	2015/08/28	98	75 - 125	98	75 - 125	<0.10	mg/kg	NC	35		
4166768	Acid Extractable Tin (Sn)	2015/08/28	101	75 - 125	96	75 - 125	<2.0	mg/kg	NC	35		
4166768	Acid Extractable Uranium (U)	2015/08/28	102	75 - 125	101	75 - 125	<0.10	mg/kg	NC	35		
4166768	Acid Extractable Vanadium (V)	2015/08/28	NC	75 - 125	101	75 - 125	<2.0	mg/kg	27	35		
4166768	Acid Extractable Zinc (Zn)	2015/08/28	94	75 - 125	96	75 - 125	<5.0	mg/kg	NC	35		
4167039	Aroclor 1016	2015/08/31					<0.050	ug/L	NC	40		
4167039	Aroclor 1221	2015/08/31					<0.050	ug/L	NC	40		
4167039	Aroclor 1232	2015/08/31					<0.050	ug/L	NC	40		
4167039	Aroclor 1242	2015/08/31					<0.050	ug/L	NC	40		
4167039	Aroclor 1248	2015/08/31					<0.050	ug/L	NC	40		
4167039	Aroclor 1254	2015/08/31	76	30 - 130	85	30 - 130	<0.050	ug/L	NC	40		
4167039	Aroclor 1260	2015/08/31					<0.050	ug/L	NC	40		
4168220	Acid Extractable Aluminum (Al)	2015/08/28					<10	mg/kg	2.2	35		
4168220	Acid Extractable Antimony (Sb)	2015/08/28	101	75 - 125	99	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Arsenic (As)	2015/08/28	103	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Barium (Ba)	2015/08/28	108	75 - 125	102	75 - 125	<5.0	mg/kg	NC	35		
4168220	Acid Extractable Beryllium (Be)	2015/08/28	107	75 - 125	105	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Bismuth (Bi)	2015/08/28	101	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Boron (B)	2015/08/28	99	75 - 125	106	75 - 125	<50	mg/kg	NC	35		
4168220	Acid Extractable Cadmium (Cd)	2015/08/28	102	75 - 125	101	75 - 125	<0.30	mg/kg	NC	35		
4168220	Acid Extractable Chromium (Cr)	2015/08/28	105	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Cobalt (Co)	2015/08/28	102	75 - 125	101	75 - 125	<1.0	mg/kg	NC	35		
4168220	Acid Extractable Copper (Cu)	2015/08/28	101	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Iron (Fe)	2015/08/28					<50	mg/kg	1.8	35		
4168220	Acid Extractable Lead (Pb)	2015/08/28	102	75 - 125	101	75 - 125	<0.50	mg/kg	NC	35		
4168220	Acid Extractable Lithium (Li)	2015/08/28	107	75 - 125	105	75 - 125	<2.0	mg/kg	2.1	35		
4168220	Acid Extractable Manganese (Mn)	2015/08/28	NC	75 - 125	101	75 - 125	<2.0	mg/kg	5.4	35		
4168220	Acid Extractable Mercury (Hg)	2015/08/28	98	75 - 125	101	75 - 125	<0.10	mg/kg	NC	35		

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4168220	Acid Extractable Molybdenum (Mo)	2015/08/28	101	75 - 125	104	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Nickel (Ni)	2015/08/28	104	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Rubidium (Rb)	2015/08/28	101	75 - 125	101	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Selenium (Se)	2015/08/28	102	75 - 125	101	75 - 125	<1.0	mg/kg	NC	35		
4168220	Acid Extractable Silver (Ag)	2015/08/28	104	75 - 125	99	75 - 125	<0.50	mg/kg	NC	35		
4168220	Acid Extractable Strontium (Sr)	2015/08/28	NC	75 - 125	102	75 - 125	<5.0	mg/kg	6.8	35		
4168220	Acid Extractable Thallium (Tl)	2015/08/28	101	75 - 125	97	75 - 125	<0.10	mg/kg	NC	35		
4168220	Acid Extractable Tin (Sn)	2015/08/28	96	75 - 125	104	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Uranium (U)	2015/08/28	104	75 - 125	102	75 - 125	<0.10	mg/kg	NC	35		
4168220	Acid Extractable Vanadium (V)	2015/08/28	105	75 - 125	101	75 - 125	<2.0	mg/kg	NC	35		
4168220	Acid Extractable Zinc (Zn)	2015/08/28	102	75 - 125	102	75 - 125	<5.0	mg/kg	NC	35		
4168228	Benzene	2015/08/28	77	60 - 130	96	60 - 140	<0.025	mg/kg	NC	50		
4168228	C6 - C10 (less BTEX)	2015/08/28					<2.5	mg/kg	12	50		
4168228	Ethylbenzene	2015/08/28	86	60 - 130	105	60 - 140	<0.025	mg/kg	NC	50		
4168228	Toluene	2015/08/28	89	60 - 130	96	60 - 140	<0.025	mg/kg	NC	50		
4168228	Total Xylenes	2015/08/28	101	60 - 130	104	60 - 140	<0.050	mg/kg	NC	50		
4168313	Acid Extractable Aluminum (Al)	2015/08/29					<10	mg/kg	2.4	35		
4168313	Acid Extractable Antimony (Sb)	2015/08/29	104	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Arsenic (As)	2015/08/29	99	75 - 125	99	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Barium (Ba)	2015/08/29	100	75 - 125	102	75 - 125	<5.0	mg/kg	NC	35		
4168313	Acid Extractable Beryllium (Be)	2015/08/29	103	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Bismuth (Bi)	2015/08/29	101	75 - 125	104	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Boron (B)	2015/08/29	NC	75 - 125	99	75 - 125	<50	mg/kg	NC	35		
4168313	Acid Extractable Cadmium (Cd)	2015/08/29	99	75 - 125	99	75 - 125	<0.30	mg/kg	NC	35		
4168313	Acid Extractable Chromium (Cr)	2015/08/29	98	75 - 125	98	75 - 125	<2.0	mg/kg	0.63	35		
4168313	Acid Extractable Cobalt (Co)	2015/08/29	94	75 - 125	96	75 - 125	<1.0	mg/kg	NC	35		
4168313	Acid Extractable Copper (Cu)	2015/08/29	93	75 - 125	94	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Iron (Fe)	2015/08/29					<50	mg/kg	1.3	35		
4168313	Acid Extractable Lead (Pb)	2015/08/29	100	75 - 125	102	75 - 125	<0.50	mg/kg	0.14	35		
4168313	Acid Extractable Lithium (Li)	2015/08/29	108	75 - 125	100	75 - 125	<2.0	mg/kg	2.6	35		
4168313	Acid Extractable Manganese (Mn)	2015/08/29	NC	75 - 125	102	75 - 125	<2.0	mg/kg	4.0	35		

QUALITY ASSURANCE REPORT(CONT'D)

Success Through Science®

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	Leachate	Blank
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4168313	Acid Extractable Mercury (Hg)	2015/08/29	96	75 - 125	103	75 - 125	<0.10	mg/kg				
4168313	Acid Extractable Molybdenum (Mo)	2015/08/29	101	75 - 125	97	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Nickel (Ni)	2015/08/29	94	75 - 125	96	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Rubidium (Rb)	2015/08/29	101	75 - 125	103	75 - 125	<2.0	mg/kg	0.45	35		
4168313	Acid Extractable Selenium (Se)	2015/08/29	97	75 - 125	96	75 - 125	<1.0	mg/kg	NC	35		
4168313	Acid Extractable Silver (Ag)	2015/08/29	102	75 - 125	101	75 - 125	<0.50	mg/kg	NC	35		
4168313	Acid Extractable Strontium (Sr)	2015/08/29	NC	75 - 125	103	75 - 125	<5.0	mg/kg	8.2	35		
4168313	Acid Extractable Thallium (Tl)	2015/08/29	102	75 - 125	103	75 - 125	<0.10	mg/kg	NC	35		
4168313	Acid Extractable Tin (Sn)	2015/08/29	102	75 - 125	104	75 - 125	<2.0	mg/kg	NC	35		
4168313	Acid Extractable Uranium (U)	2015/08/29	102	75 - 125	103	75 - 125	<0.10	mg/kg	23	35		
4168313	Acid Extractable Vanadium (V)	2015/08/29	99	75 - 125	98	75 - 125	<2.0	mg/kg	0.85	35		
4168313	Acid Extractable Zinc (Zn)	2015/08/29	94	75 - 125	94	75 - 125	<5.0	mg/kg	NC	35		
4168701	Soluble (5:1) pH	2015/08/28							0.54	N/A		
4170849	Clay	2015/09/02							15	35		
4170849	Gravel	2015/09/02							60 (2)	35		
4170849	Sand	2015/09/02							19	35		
4170849	Silt	2015/09/02							7.1	35		
4171136	Chloride (Cl)	2015/09/01	100	80 - 120			<5.0	mg/kg	6.0	35		
4171143	Sulphate (SO4)	2015/09/01	149 (3)	80 - 120			<10	mg/kg	NC	25		
4171146	Orthophosphate (P)	2015/08/31	NC	80 - 120			<0.050	mg/kg	1.2	25		
4171147	Nitrate + Nitrite	2015/09/01	104	80 - 120			<0.25	mg/kg	8.5	35		
4171151	Nitrite (N)	2015/08/31	77	70 - 130			<0.050	mg/kg	NC	35		
4171327	Conductivity	2015/08/31			100	N/A	<1.0	uS/cm	0.67	35	1.4, RDL=1.0	uS/cm

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION

Sampler Initials: AR

			Matrix	Matrix Spike		SPIKED BLANK		Blank	RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
4174415	Acid Extractable Sulphur (S)	2015/09/02	NC	75 - 125	97	80 - 120	<50	ug/g				
N/A = Not A	pplicable											
Matrix Spike	Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.											
Leachate Bla	ank: A blank matrix containing all reagents used i	n the leaching p	rocedure. Use	ed to detern	nine any proce	ess contamin	ation.					
Spiked Blanl	Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.											
Method Blai	nk: A blank matrix containing all reagents used in	the analytical p	orocedure. Us	ed to identif	y laboratory o	ontaminatio	n.					

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Poor RPD due to sample inhomogeneity. Result confirmed by repeat digestion and analysis.

(2) PSA: Poor duplicate agreement due to sample inhomogeneity.

(3) Elevated spike recovery due to sample matrix. Recovery confirmed with repeat extraction and analysis.

Stantec Consulting Ltd Client Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION Sampler Initials: AR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Eric Dearman, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Mike Mac Sull

Mike MacGillivray, Scientific Specialist (Inorganics)

Kosimarie MacDonald

Rose MacDonald, Scientific Specialist (Organics)

Approved

Maxxam ID: AWA927-15-BP-COMP-A2 :D1

Maxxam ID: AWA928-01

15-BP-COMP-B1

Maxxam ID: AWA929-01

15-BP-COMP-B2

Maxxam ID: AWA931-01 15-BP-COMP-C2

Maxxam Percent Coarser than 50 µm Percent Coarser than 75 µm Wentworth (PHI = 3.737)(PHI = 4.322)_ Gravel = 19.6 % _ 84.7 % 81.7 % Sand = 63.9 % 100 Silt = 11.7 % 90 Clay = 4.9%80 70 % 60 Finer Krumbein & Monk Permeability 50 2.84 darcies 40 dx —» x% finer U. 30 d90 ~ 2.8 mm 20 d50 ~ 0.43 mm 10 d10 ~ 0.019 mm ri (-0 +7 +8 +9 +2 +3 +4 +5 +6 -3 -2 -1 +1 0 -4 PHI Units

Maxxam ID: AWA933-01 15-BP-COMP-D2

Tuch G Approved

Your Project #: B5G9646 Your C.O.C. #: N/A

Attention:MICHELLE HILL

Maxxam Analytics 200 Bluewater road Bedford, NS CANADA B4B 1G9

> Report Date: 2015/09/04 Report #: R2045373 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B550293 Received: 2015/08/27, 12:00

Sample Matrix: SOIL # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Primary Reference
Hydrocarbonoclastes (MPN)***	5	N/A	2015/08/28	QUE SOP-00309	

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

*** This analysis is not subject to MDDELCC accreditation.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alain Lemieux, Project Manager Email: ALemieux@maxxam.ca Phone# (514)448-9001 Ext:6451

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics International Corporation o/a Maxxam Analytique 2690, Avenue Dalton, Sainte-Foy, Québec G1P 3S4 Tél.: (418) 658-5784 Télécopieur: (418) 658-6594

Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite du laboratoire. This certificate may not be reproduced, except in its entirety, without the written approval of the laboratory.

Page 1 of 4

Report Date: 2015/09/04

Maxxam Analytics Client Project #: B5G9646

MICROBIOLOGY (SOIL)

Maxxam ID		BH1025	BH1026		BH1027		BH1028		
Sampling Date		2015/08/19	2015/08/19		2015/08/19		2015/08/19		
	Units	15-BP-COMP-A 1 (AWA926)	15-BP-COMP-B 1 (AWA928)	RDL	15-BP-COMP-B 2 (AWA929)	RDL	15-BP-COMP-C1 (AWA930)	RDL	QC Batch
MICROBIOLGICAL TESTS									
Hydrocarbonoclast bacteria	/g	3900	44000	200	1600000	2000	160000	200	1500160
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch								

Maxxam ID		BH1029		
Sampling Date		2015/08/19		
	Units	15-BP-COMP-D 1 (AWA932)	RDL	QC Batch
MICROBIOLGICAL TESTS				
Hydrocarbonoclast bacteria	/g	920000	2000	1500160
RDL = Reportable Detection L	imit			
OC Patch - Quality Control Pa	atch			

Success Through Science®

2015/09/04 16:37

Maxxam Analytics Client Project #: B5G9646

GENERAL COMMENTS

All results are calculated on a dry weight basis except where not applicable.

Condition of sample(s) upon receipt:

Hydrocarbonoclastes (MPN): Holding time already past.: BH1025, BH1026, BH1027, BH1028, BH1029 Hydrocarbon source: diesel. Results are expressed in MPN / g (wet weight).

Results relate only to the items tested.

Maxxam Analytics International Corporation o/a Maxxam Analytique 2690, Avenue Dalton, Sainte-Foy, Québec G1P 3S4 Tél.: (418) 658-5784 Télécopieur: (418) 658-6594

Ce certificat ne doit pas être reproduit, sinon en entier, sans l'autorisation écrite du laboratoire. This certificate may not be reproduced, except in its entirety, without the written approval of the laboratory.

Page 3 of 4

Success Through Science®

Maxxam Analytics Client Project #: B5G9646

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Justine Jage

Frédéric Gagné, B. Sc., Microbiologist

Your Project #: 121413099.600 Site Location: HOPEDALE REMEDIATION YEAR 5 Your C.O.C. #: 525754-01-01

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

> Report Date: 2015/08/28 Report #: R3643568 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5H1854 Received: 2015/08/27, 09:41

Sample Matrix: Soil # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Moisture (1)	5	N/A	2015/08/28	ATL SOP 00001	OMOE Handbook 1983 m
PCBs in soil by GC/ECD (1, 2)	5	2015/08/27	2015/08/28	ATL SOP 00106	EPA 8082A m
PCB Aroclor sum (soil) (1)	5	N/A	2015/08/28		Auto Calc.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

RESULTS OF ANALYSES OF SOIL

Maxxam ID		AWL071	AWL072	AWL073	AWL074	AWL075		
Sampling Date		2015/08/23	2015/08/23	2015/08/23	2015/08/24	2015/08/24		
COC Number		525754-01-01	525754-01-01	525754-01-01	525754-01-01	525754-01-01		
	UNITS	MB-BS108	MB-BS109	MB-BS110	MB-BS111	MB-BS112	RDL	QC Batch
Inorganics								
Moisture	%	31	11	17	42	19	1.0	4166223
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch							

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		AWL071	AWL071	AWL072	AWL073	AWL074	AWL075			
Sampling Date		2015/08/23	2015/08/23	2015/08/23	2015/08/23	2015/08/24	2015/08/24			
COC Number		525754-01-01	525754-01-01	525754-01-01	525754-01-01	525754-01-01	525754-01-01			
	UNITS	MB-BS108	MB-BS108 Lab-Dup	MB-BS109	MB-BS110	MB-BS111	MB-BS112	RDL	QC Batch	
PCBs										
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4166607	
Aroclor 1260	ug/g	3.6	3.7	2.2	0.60	19	15	0.050	4166607	
Calculated Total PCB	ug/g	3.6		2.2	0.60	19	15	0.050	4166408	
Surrogate Recovery (%)										
Decachlorobiphenyl	%	87	75	83	90	90	75		4166607	
RDL = Reportable Detection Limit										
QC Batch = Quality Control Ba	atch									
Lab-Dup = Laboratory Initiated Duplicate										

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.4°C

Results relate only to the items tested.

Maxxam Job #: B5H1854 Report Date: 2015/08/28

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121413099.600

Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

			Matrix Spike		SPIKED	SPIKED BLANK N		Method Blank)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4166607	Decachlorobiphenyl	2015/08/28	77	30 - 130	106	30 - 130	84	%		
4166607	Aroclor 1016	2015/08/28					<0.050	ug/g	NC	50
4166607	Aroclor 1221	2015/08/28					<0.050	ug/g	NC	50
4166607	Aroclor 1232	2015/08/28					<0.050	ug/g	NC	50
4166607	Aroclor 1242	2015/08/28					<0.050	ug/g	NC	50
4166607	Aroclor 1248	2015/08/28					<0.050	ug/g	NC	50
4166607	Aroclor 1254	2015/08/28	NC	30 - 130	115	30 - 130	<0.050	ug/g	NC	50
4166607	Aroclor 1260	2015/08/28					<0.050	ug/g	0.86	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Philippe Deven

Phil Deveau

Kostmarie MoeDonald

Rose MacDonald, Scientific Specialist (Organics)

Your Project #: 121413099 Site Location: HOPEDALE REMEDIATION YEAR 5 Your C.O.C. #: 526971-01-01

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

> Report Date: 2015/09/08 Report #: R3654025 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5H5383

Received: 2015/09/01, 09:52

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Metals Solids Acid Extr. ICPMS (1)	6	2015/09/03	2015/09/04	ATL SOP 00058	EPA 6020A R1 m

Sample Matrix: Swab # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
PCBs on swabs by GC/ECD (1, 2)	5	2015/09/01	2015/09/02	ATL SOP 00109	EPA 8082A m
PCB Aroclor sum (swabs) (1)	5	N/A	2015/09/02		Auto Calc.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) Non accredited test method. Best laboratory practices and all routine QC procedures were employed.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		AXD647	AXD648	AXD649	AXD650	AXD651	AXD652			
Sampling Date		2015/08/25	2015/08/25	2015/08/25	2015/08/25	2015/08/25	2015/08/25			
	UNITS	MB-BS 201	MB-BS 202	MB-BS 203	MB-BS 204	MB-BS 205	MB-BS 206	RDL	QC Batch	MDL
Metals										
Acid Extractable Aluminum (Al)	mg/kg	9300	10000	9800	7800	10000	9700	10	4176257	N/A
Acid Extractable Antimony (Sb)	mg/kg	10	2.3	<2.0	<2.0	<2.0	97	2.0	4176257	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	8.4	2.0	4176257	N/A
Acid Extractable Barium (Ba)	mg/kg	74	44	37	30	31	140	5.0	4176257	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4176257	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4176257	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	<50	170	50	4176257	N/A
Acid Extractable Cadmium (Cd)	mg/kg	1.7	0.50	<0.30	<0.30	<0.30	5.1	0.30	4176257	N/A
Acid Extractable Chromium (Cr)	mg/kg	28	65	26	23	100	56	2.0	4176257	N/A
Acid Extractable Cobalt (Co)	mg/kg	7.9	8.6	4.9	5.7	7.8	11	1.0	4176257	N/A
Acid Extractable Copper (Cu)	mg/kg	43	23	26	21	19	100	2.0	4176257	N/A
Acid Extractable Iron (Fe)	mg/kg	16000	14000	11000	11000	14000	34000	50	4176257	N/A
Acid Extractable Lead (Pb)	mg/kg	200	17	16	11	3.9	430	0.50	4176257	N/A
Acid Extractable Lithium (Li)	mg/kg	11	12	7.4	8.5	9.8	9.6	2.0	4176257	N/A
Acid Extractable Manganese (Mn)	mg/kg	260	200	140	160	180	780	2.0	4176257	N/A
Acid Extractable Mercury (Hg)	mg/kg	0.41	<0.10	<0.10	<0.10	<0.10	1.2	0.10	4176257	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	4.2	2.0	4176257	N/A
Acid Extractable Nickel (Ni)	mg/kg	23	46	15	20	53	47	2.0	4176257	N/A
Acid Extractable Rubidium (Rb)	mg/kg	15	16	7.3	7.3	11	12	2.0	4176257	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	4176257	N/A
Acid Extractable Silver (Ag)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	4176257	N/A
Acid Extractable Strontium (Sr)	mg/kg	31	21	27	20	19	35	5.0	4176257	N/A
Acid Extractable Thallium (Tl)	mg/kg	0.13	0.13	<0.10	<0.10	0.12	0.18	0.10	4176257	N/A
Acid Extractable Tin (Sn)	mg/kg	8.9	<2.0	<2.0	<2.0	<2.0	15	2.0	4176257	N/A
Acid Extractable Uranium (U)	mg/kg	0.43	0.34	0.80	0.33	0.44	0.62	0.10	4176257	N/A
Acid Extractable Vanadium (V)	mg/kg	30	29	22	20	28	37	2.0	4176257	N/A
Acid Extractable Zinc (Zn)	mg/kg	450	140	170	95	27	990	5.0	4176257	N/A
RDL = Reportable Detection Limit		•	•	•	•	•	•			

QC Batch = Quality Control Batch

N/A = Not Applicable

POLYCHLORINATED BIPHENYLS BY GC-ECD (SWAB)

Maxxam ID		AXD653	AXD654	AXD655	AXD656	AXD665			
Sampling Date		2015/08/27	2015/08/27	2015/08/27	2015/08/27	2015/08/27			
COC Number						526971-01-01			
	UNITS	15-SWAB-1	15-SWAB-2	15-SWAB-3	15-SWAB-4	15-SWAB-5	RDL	QC Batch	MDL
PCBs									
Aroclor 1016	ug	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	4172837	N/A
Aroclor 1221	ug	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	4172837	N/A
Aroclor 1232	ug	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	4172837	N/A
Aroclor 1248	ug	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	4172837	N/A
Aroclor 1242	ug	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	4172837	N/A
Aroclor 1254	ug	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	4172837	N/A
Aroclor 1260	ug	5.7	9.1	9.0	5.6	11	5.0	4172837	N/A
Calculated Total PCB	ug	5.7	9.1	9.0	5.6	11	5.0	4172827	N/A
Surrogate Recovery (%)									
Decachlorobiphenyl	%	82	77	82	78	84		4172837	
RDL = Reportable Detection Limit QC Batch = Quality Control Batch N/A = Not Applicable									

Maxxam Job #: B5H5383 Report Date: 2015/09/08 Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

TEST SUMMARY

Maxxam ID: Sample ID:	AXD647 MB-BS 201					Collected: Shipped:	2015/08/25
Matrix:	Soil					Received:	2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4176257	2015/09/03	2015/09/04	Mike Lebla	inc
Maxxam ID:	AXD648					Collected:	2015/08/25
Sample ID:	MB-BS 202					Shipped:	2015/00/01
Matrix:	2011					Received:	2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4176257	2015/09/03	2015/09/04	Mike Lebla	inc
Maxxam ID:	AXD649					Collected:	2015/08/25
Sample ID:	MB-BS 203					Shipped:	
Matrix:	Soil					Received:	2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. IC	CPMS	ICP/MS	4176257	2015/09/03	2015/09/04	Mike Lebla	inc
Maxxam ID:	AXD650					Collected:	2015/08/25
Sample ID:	MB-BS 204					Shipped:	
Matrix:	Soil					Received:	2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Test Description Metals Solids Acid Extr. IC	CPMS	Instrumentation ICP/MS	Batch 4176257	Extracted 2015/09/03	Date Analyzed 2015/09/04	Analyst Mike Lebla	inc
Test Description Metals Solids Acid Extr. IC	CPMS	Instrumentation ICP/MS	Batch 4176257	Extracted 2015/09/03	Date Analyzed 2015/09/04	Analyst Mike Lebla	inc
Test Description Metals Solids Acid Extr. IC Maxxam ID:	CPMS AXD651	Instrumentation ICP/MS	Batch 4176257	Extracted 2015/09/03	Date Analyzed 2015/09/04	Analyst Mike Lebla Collected:	nnc 2015/08/25
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID:	AXD651 MB-BS 205	Instrumentation ICP/MS	Batch 4176257	Extracted 2015/09/03	Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped:	nc 2015/08/25
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix:	AXD651 MB-BS 205 Soil	Instrumentation ICP/MS	Batch 4176257	Extracted 2015/09/03	Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received:	nc 2015/08/25 2015/09/01
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description	AXD651 MB-BS 205 Soil	Instrumentation ICP/MS Instrumentation	Batch 4176257 Batch	Extracted 2015/09/03 Extracted	Date Analyzed 2015/09/04 Date Analyzed	Analyst Mike Lebla Collected: Shipped: Received: Analyst	nnc 2015/08/25 2015/09/01
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AXD651 MB-BS 205 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	nc 2015/08/25 2015/09/01 Inc
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AXD651 MB-BS 205 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	inc 2015/08/25 2015/09/01 inc
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID:	AXD651 MB-BS 205 Soil CPMS AXD652	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected:	nnc 2015/08/25 2015/09/01 nnc 2015/08/25
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID:	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped:	nnc 2015/08/25 2015/09/01 nnc 2015/08/25
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix:	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation	Batch 4176257 Batch 4176257 Batch	Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst	INC 2015/08/25 2015/09/01 INC 2015/08/25 2015/09/01
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID:	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil CPMS	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01 Inc 2015/08/27
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Maxxam ID: Sample ID:	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil CPMS AXD653 15-SWAB-1	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped:	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01 Inc 2015/08/27
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix:	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil CPMS AXD653 15-SWAB-1 Swab	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received:	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01 Inc 2015/08/27 2015/09/01
Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. 10 Maxxam ID: Sample ID: Matrix: Test Description	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil CPMS AXD653 15-SWAB-1 Swab	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Collected: Shipped: Received:	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01 Inc 2015/08/27 2015/09/01
Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description Metals Solids Acid Extr. IC Maxxam ID: Sample ID: Matrix: Test Description PCBs on swabs by GC/ECI	AXD651 MB-BS 205 Soil CPMS AXD652 MB-BS 206 Soil CPMS AXD653 15-SWAB-1 Swab	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 4176257 Batch 4176257 Batch 4176257	Extracted 2015/09/03 Extracted 2015/09/03 Extracted 2015/09/03	Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04 Date Analyzed 2015/09/04	Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Analyst Mike Lebla Collected: Shipped: Received: Shipped: Received: Lisa Gates	Inc 2015/08/25 2015/09/01 Inc 2015/08/25 2015/09/01 Inc 2015/08/27 2015/09/01

Report Date: 2015/09/08

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

TEST SUMMARY

Maxxam ID: Sample ID:	AXD654 15-SW/4B-2					Collected:	2015/08/27
Matrix:	Swab					Received:	2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs on swabs by GC/ECD)	GC/ECD	4172837	2015/09/01	2015/09/02	Lisa Gates	
PCB Aroclor sum (swabs)		CALC	4172827	N/A	2015/09/02	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	AXD655 15-SWAB-3 Swab					Collected: Shipped: Received:	2015/08/27 2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs on swabs by GC/ECD)	GC/ECD	4172837	2015/09/01	2015/09/02	Lisa Gates	
PCB Aroclor sum (swabs)		CALC	4172827	N/A	2015/09/02	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	AXD656 15-SWAB-4 Swab					Collected: Shipped: Received:	2015/08/27 2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs on swabs by GC/ECD)	GC/ECD	4172837	2015/09/01	2015/09/02	Lisa Gates	
PCB Aroclor sum (swabs)		CALC	4172827	N/A	2015/09/02	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	AXD665 15-SWAB-5 Swab					Collected: Shipped: Received:	2015/08/27 2015/09/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs on swabs by GC/ECD)	GC/ECD	4172837	2015/09/01	2015/09/02	Lisa Gates	
PCB Aroclor sum (swabs)		CALC	4172827	N/A	2015/09/02	Automate	d Statchk

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 3.3°C

Results relate only to the items tested.

Maxxam Job #: B5H5383 Report Date: 2015/09/08

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121413099

Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4172837	Decachlorobiphenyl	2015/09/02			87	30 - 130	86	%		
4172837	Aroclor 1016	2015/09/02					<5.0	ug		
4172837	Aroclor 1221	2015/09/02					<5.0	ug		
4172837	Aroclor 1232	2015/09/02					<5.0	ug		
4172837	Aroclor 1242	2015/09/02					<5.0	ug		
4172837	Aroclor 1248	2015/09/02					<5.0	ug		
4172837	Aroclor 1254	2015/09/02					<5.0	ug		
4172837	Aroclor 1260	2015/09/02			121	30 - 130	<5.0	ug		
4176257	Acid Extractable Aluminum (Al)	2015/09/04					<10	mg/kg	4.3	35
4176257	Acid Extractable Antimony (Sb)	2015/09/04	91	75 - 125	99	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Arsenic (As)	2015/09/04	98	75 - 125	97	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Barium (Ba)	2015/09/04	NC	75 - 125	97	75 - 125	<5.0	mg/kg	3.9	35
4176257	Acid Extractable Beryllium (Be)	2015/09/04	98	75 - 125	95	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Bismuth (Bi)	2015/09/04	99	75 - 125	97	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Boron (B)	2015/09/04	87	75 - 125	92	75 - 125	<50	mg/kg	NC	35
4176257	Acid Extractable Cadmium (Cd)	2015/09/04	98	75 - 125	100	75 - 125	<0.30	mg/kg	NC	35
4176257	Acid Extractable Chromium (Cr)	2015/09/04	NC	75 - 125	96	75 - 125	<2.0	mg/kg	3.3	35
4176257	Acid Extractable Cobalt (Co)	2015/09/04	101	75 - 125	98	75 - 125	<1.0	mg/kg	5.5	35
4176257	Acid Extractable Copper (Cu)	2015/09/04	99	75 - 125	97	75 - 125	<2.0	mg/kg	12	35
4176257	Acid Extractable Iron (Fe)	2015/09/04					<50	mg/kg	6.9	35
4176257	Acid Extractable Lead (Pb)	2015/09/04	97	75 - 125	96	75 - 125	<0.50	mg/kg	20	35
4176257	Acid Extractable Lithium (Li)	2015/09/04	100	75 - 125	101	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Manganese (Mn)	2015/09/04	NC	75 - 125	97	75 - 125	<2.0	mg/kg	3.8	35
4176257	Acid Extractable Mercury (Hg)	2015/09/04	94	75 - 125	97	75 - 125	<0.10	mg/kg	NC	35
4176257	Acid Extractable Molybdenum (Mo)	2015/09/04	101	75 - 125	95	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Nickel (Ni)	2015/09/04	99	75 - 125	98	75 - 125	<2.0	mg/kg	0.24	35
4176257	Acid Extractable Rubidium (Rb)	2015/09/04	97	75 - 125	96	75 - 125	<2.0	mg/kg	7.0	35
4176257	Acid Extractable Selenium (Se)	2015/09/04	98	75 - 125	99	75 - 125	<1.0	mg/kg	NC	35
4176257	Acid Extractable Silver (Ag)	2015/09/04	98	75 - 125	100	75 - 125	<0.50	mg/kg	NC	35
4176257	Acid Extractable Strontium (Sr)	2015/09/04	103	75 - 125	101	75 - 125	<5.0	mg/kg	NC	35
4176257	Acid Extractable Thallium (TI)	2015/09/04	98	75 - 125	98	75 - 125	<0.10	mg/kg	NC	35

Maxxam Job #: B5H5383 Report Date: 2015/09/08

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 121413099

Site Location: HOPEDALE REMEDIATION YEAR 5 Sampler Initials: SF

			Matrix Spike		SPIKED	SPIKED BLANK		Method Blank)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4176257	Acid Extractable Tin (Sn)	2015/09/04	101	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35
4176257	Acid Extractable Uranium (U)	2015/09/04	101	75 - 125	99	75 - 125	<0.10	mg/kg	9.5	35
4176257	Acid Extractable Vanadium (V)	2015/09/04	NC	75 - 125	96	75 - 125	<2.0	mg/kg	9.7	35
4176257	Acid Extractable Zinc (Zn)	2015/09/04	NC	75 - 125	99	75 - 125	<5.0	mg/kg	5.2	35

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE REMEDIATION YEAR 5

Sampler Initials: SF

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike The Gille

Mike MacGillivray, Scientific Specialist (Inorganics)

Kosmanne MoeDonald

Rose MacDonald, Scientific Specialist (Organics)

Your Project #: 121413099 Site Location: HOPEDALE YR 5 Your C.O.C. #: B144792

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

> Report Date: 2015/11/10 Report #: R3758685 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5M4800

Received: 2015/11/03, 13:45

Sample Matrix: Soil # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
TEH in Soil (PIRI) (1, 3)	2	2015/11/06	2015/11/07	ATL SOP 00111	Atl. RBCA v3 m
TEH in Soil (PIRI) (1, 3)	2	2015/11/06	2015/11/10	ATL SOP 00111	Atl. RBCA v3 m
Moisture	4	N/A	2015/11/05	ATL SOP-00196	OMOE Handbook 1983 m
VPH in Soil (PIRI) (2)	4	2015/11/09	2015/11/10	ATL SOP 00199	Atl. RBCA v3 m
ModTPH (T1) Calc. for Soil	4	N/A	2015/11/10	N/A	Atl. RBCA v3 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) Reported on a dry weight basis.

(3) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Rob Whelan, Laboratory Manager Email: RWhelan@maxxam.ca Phone# (709)754-0203

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: AR

RBCA HYDROCARBONS IN SOIL (SOIL)

Maxxam ID		BGW594	BGW594		BGW595	BGW595			
Sampling Date		2015/11/01	2015/11/01		2015/11/01	2015/11/01			
COC Number		B144792	B144792		B144792	B144792			
	UNITS	15-P3-TP101-BS1	15-P3-TP101-BS1 Lab-Dup	RDL	15-P3-TP102-BS1	15-P3-TP102-BS1 Lab-Dup	RDL	QC Batch	MDL
Inorganics	<u> </u>			<u> </u>			<u> </u>	<u> </u>	
Moisture	%	84	84	1.0	16		1.0	4257760	0.20
Petroleum Hydrocarbons	<u> </u>								
Benzene	mg/kg	<0.050		0.050	<0.025	<0.025	0.025	4264617	N/A
Toluene	mg/kg	0.83		0.050	<0.025	<0.025	0.025	4264617	N/A
Ethylbenzene	mg/kg	1.3		0.050	<0.025	<0.025	0.025	4264617	0.025
Total Xylenes	mg/kg	39		0.10	<0.050	<0.050	0.050	4264617	N/A
C6 - C10 (less BTEX)	mg/kg	620		5.0	47	39	2.5	4264617	N/A
>C10-C16 Hydrocarbons	mg/kg	7600		10	2800		10	4262036	N/A
>C16-C21 Hydrocarbons	mg/kg	200		10	460		10	4262036	N/A
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>870</td><td></td><td>15</td><td>64</td><td></td><td>15</td><td>4262036</td><td>N/A</td></c32>	mg/kg	870		15	64		15	4262036	N/A
Modified TPH (Tier1)	mg/kg	9300		15	3400		15	4256657	N/A
Reached Baseline at C32	mg/kg	Yes		N/A	Yes		N/A	4262036	N/A
Hydrocarbon Resemblance	mg/kg	COMMENT (1)		N/A	COMMENT (2)		N/A	4262036	N/A
Surrogate Recovery (%)									
Isobutylbenzene - Extractable	%	117		Γ	100			4262036	
n-Dotriacontane - Extractable	%	115 (3)			101			4262036	
Isobutylbenzene - Volatile	%	162 (4)			111	117		4264617	
RDL = Reportable Detection Lim	nit								
QC Batch = Quality Control Batc	ch								
Lab-Dup = Laboratory Initiated	Duplicat	e							
N/A = Not Applicable									
(1) Fuel oil fraction. Unidentifie	ed compo	ound(s) in lube oil r	ange.						

(2) Weathered fuel oil fraction.

(3) TEH Analysis: Silica gel clean-up performed prior to analysis as per client request.

(4) Elevated VPH RDL(s) due to sample dilution. Surrogate recovery not within acceptance limits; moisture exceeds 50%.

RBCA HYDROCARBONS IN SOIL (SOIL)

Maxxam ID		BGW596	BGW597							
Sampling Date		2015/11/01	2015/11/01							
COC Number		B144792	B144792							
	UNITS	15-P3-TP103-BS1	15-P3-SD101	RDL	QC Batch	MDL				
Inorganics										
Moisture	%	22	37	1.0	4257760	0.20				
Petroleum Hydrocarbons										
Benzene	mg/kg	<0.025	<0.025	0.025	4264617	N/A				
Toluene	mg/kg	<0.025	<0.025	0.025	4264617	N/A				
Ethylbenzene	mg/kg	<0.025	<0.025	0.025	4264617	0.025				
Total Xylenes	mg/kg	<0.050	<0.050	0.050	4264617	N/A				
C6 - C10 (less BTEX)	mg/kg	38	<2.5	2.5	4264617	N/A				
>C10-C16 Hydrocarbons	mg/kg	2900	220	10	4262036	N/A				
>C16-C21 Hydrocarbons	mg/kg	970	81	10	4262036	N/A				
>C21- <c32 hydrocarbons<="" td=""><td>mg/kg</td><td>120</td><td>45</td><td>15</td><td>4262036</td><td>N/A</td></c32>	mg/kg	120	45	15	4262036	N/A				
Modified TPH (Tier1)	mg/kg	4000	350	15	4256657	N/A				
Reached Baseline at C32	mg/kg	Yes	Yes	N/A	4262036	N/A				
Hydrocarbon Resemblance	mg/kg	COMMENT (1)	COMMENT (2)	N/A	4262036	N/A				
Surrogate Recovery (%)										
Isobutylbenzene - Extractable	%	97	128		4262036					
n-Dotriacontane - Extractable	%	99	128 (3)		4262036					
Isobutylbenzene - Volatile	%	118	128		4264617					
RDL = Reportable Detection Lim	it									
QC Batch = Quality Control Batc	h									
N/A = Not Applicable	N/A = Not Applicable									
(1) Weathered fuel oil fraction.										
(2) Weathered fuel oil fraction.	Unident	ified compound(s)	in lube oil range.							
(3) TEH Analysis: Silica gel clean-	up perf	ormed prior to anal	ysis as per client r	equest	•					

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: AR

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BGW594 15-P3-TP101-BS1 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
TEH in Soil (PIRI)		GC/FID	4262036	2015/11/06	2015/11/10	Crystal Ma	atthews
Moisture		BAL	4257760	N/A	2015/11/05	Annette C	larke
VPH in Soil (PIRI)		PTGC/MS	4264617	2015/11/09	2015/11/10	Matthew (Cloutier
ModTPH (T1) Calc. for So	il	CALC	4256657	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BGW594 Dup 15-P3-TP101-BS1 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4257760	N/A	2015/11/05	Annette C	larke
Maxxam ID: Sample ID: Matrix: Test Description	BGW595 15-P3-TP102-BS1 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2015/11/01 2015/11/03
TEH in Soil (PIRI)		GC/FID	4262036	2015/11/06	2015/11/07	Crystal Ma	atthews
Moisture		BAL	4257760	N/A	2015/11/05	, Annette C	larke
VPH in Soil (PIRI)		PTGC/MS	4264617	2015/11/09	2015/11/10	Matthew (Cloutier
ModTPH (T1) Calc. for So	il	CALC	4256657	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix: Test Description	BGW595 Dup 15-P3-TP102-BS1 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2015/11/01 2015/11/03
VPH in Soil (PIRI)		PTGC/MS	4264617	2015/11/09	2015/11/10	Matthew (Cloutier
Maxxam ID: Sample ID: Matrix:	BGW596 15-P3-TP103-BS1 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
TEH in Soil (PIRI)		GC/FID	4262036	2015/11/06	2015/11/07	Crystal Ma	atthews
Moisture		BAL	4257760	N/A	2015/11/05	Annette C	larke
VPH in Soil (PIRI)		PTGC/MS	4264617	2015/11/09	2015/11/10	Matthew (Cloutier
ModTPH (T1) Calc. for So	il	CALC	4256657	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BGW597 15-P3-SD101 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
TEH in Soil (PIRI)		GC/FID	4262036	2015/11/06	2015/11/10	Crystal Ma	atthews

Page 4 of 8

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: AR

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BGW597 15-P3-SD101 Soil					Collected: 2015/ Shipped: Received: 2015/	11/01 11/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4257760	N/A	2015/11/05	Annette Clarke	
VPH in Soil (PIRI)		PTGC/MS	4264617	2015/11/09	2015/11/10	Matthew Cloutier	
ModTPH (T1) Calc. for So	il	CALC	4256657	N/A	2015/11/10	Automated Statchk	

Maxxam Job #: B5M4800 Report Date: 2015/11/10 Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: AR

GENERAL COMMENTS

Results relate only to the items tested.

Maxxam Job #: B5M4800 Report Date: 2015/11/10

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121413099

Site Location: HOPEDALE YR 5 Sampler Initials: AR

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPI)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4262036	Isobutylbenzene - Extractable	2015/11/06	89	30 - 130	97	30 - 130	95	%		
4262036	n-Dotriacontane - Extractable	2015/11/06	96	30 - 130	100	30 - 130	103	%		
4264617	Isobutylbenzene - Volatile	2015/11/10			94	60 - 130	104	%		
4257760	Moisture	2015/11/05							0.36	25
4262036	>C10-C16 Hydrocarbons	2015/11/06	76	30 - 130	85	30 - 130	<10	mg/kg	NC	50
4262036	>C16-C21 Hydrocarbons	2015/11/06	93	30 - 130	101	30 - 130	<10	mg/kg	NC	50
4262036	>C21- <c32 hydrocarbons<="" td=""><td>2015/11/06</td><td>105</td><td>30 - 130</td><td>116</td><td>30 - 130</td><td><15</td><td>mg/kg</td><td>NC</td><td>50</td></c32>	2015/11/06	105	30 - 130	116	30 - 130	<15	mg/kg	NC	50
4264617	Benzene	2015/11/10			98	60 - 140	<0.025	mg/kg	NC	50
4264617	C6 - C10 (less BTEX)	2015/11/10					<2.5	mg/kg	18	50
4264617	Ethylbenzene	2015/11/10			95	60 - 140	<0.025	mg/kg	NC	50
4264617	Toluene	2015/11/10			95	60 - 140	<0.025	mg/kg	NC	50
4264617	Total Xylenes	2015/11/10			94	60 - 140	<0.050	mg/kg	NC	50

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Kosmarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Rathla

Rob Whelan, Laboratory Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: 121413099 Site Location: HOPEDALE YR 5

Attention:Anna Roy

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL A1B 0L2

Your C.O.C. #: B 144810, B 144816, B 144793, B 144792

Report Date: 2015/11/12 Report #: R3763297 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5M5795 Received: 2015/11/04, 10:39

Sample Matrix: Soil # Samples Received: 35

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Metals Solids Acid Extr. ICPMS (1)	3	2015/11/10	2015/11/10	ATL SOP 00058	EPA 6020A R1 m
Moisture (1)	32	N/A	2015/11/09	ATL SOP 00001	OMOE Handbook 1983 m
PCBs in soil by GC/ECD (1, 2)	31	2015/11/06	2015/11/10	ATL SOP 00106	EPA 8082A m
PCBs in soil by GC/ECD (1, 2)	1	2015/11/06	2015/11/12	ATL SOP 00106	EPA 8082A m
PCB Aroclor sum (soil) (1)	31	N/A	2015/11/10		Auto Calc.
PCB Aroclor sum (soil) (1)	1	N/A	2015/11/12		Auto Calc.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Michelle Hill, Project Manager Email: MHill@maxxam.ca Phone# (902)420-0203 Ext:289

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

Maxxam ID		Bł	HB864	BHB865	BHB866	BHB867		BHB868				
Sampling Date		201	5/10/30	2015/10/30	2015/10/30	2015/10/30) 20	015/10/30				
COC Number		B 1	L44810	B 144810	B 144810	B 144810	E	B 144810				
		UNITS 15-O	B1-BS201	15-OB1-BS20	2 15-OB1-BS203	15-OB1-BS10	01 15-	OB1-BS102	RDL	QC Ba	tch MDL	
Inorganics												ĺ
Moisture		%	18	33	13	12		13	1.0	42613	87 0.20	1
RDL = Reportable Det	ection Li	mit			1							1
QC Batch = Quality Co	ontrol Ba	tch										
		1		1								1
Maxxam ID		BH	B869	BHB870	BHB871	BHB872	B	BHB873				
Sampling Date		2015	5/10/30	2015/10/30	2015/10/30	2015/10/30	203	15/10/30				
COC Number		B 14	44810	B 144810	B 144810	B 144810	В	144810				
		UNITS 15-OB	1-BS103	15-MB-BS113	15-MB-BS114 1	L5-MB-BS115	15-ME	3-TP101-BS1	RDL	QC Ba	atch MDI	-
Inorganics												Ţ
Moisture		%	17	20	41	12		25	1.0	4261	387 0.20	ŗ
RDL = Reportable Dete	ection Lir	nit									ľ	1
QC Batch = Quality Co	ntrol Bat	ch										
				1		1						
xxam ID		BHB90	06	BHB907	BHB908	BHB909		BHB910)			
npling Date		2015/10	0/30	2015/10/30	2015/10/31	2015/10/3	2015/10/31 2015/10/		31			L
C Number		B 1448	316	B 144816	B 144816	B 144816	5	B 14481	6			
	UNIT	S 15-MB-TP1	02-BS1	15-MB-BS116	15-P1-TP101-BS2	15-P1-TP102	-BS1	15-P1-TP102	2-BS2	RDL	QC Batch	Μ
rganics												
isture	%	22		12	28	49		27		1.0	4261387	0.
L = Reportable Detectior	Limit		•			•						
Batch = Quality Control	Batch											
xam ID		BHB911		BHB912	BHB913	BHB94	6	BHB94	7			Т
oling Date		2015/10/2	31	2015/10/31	2015/10/31	2015/10	/31	2015/10	/31			╈
Number		B 14481	6	B 144816	B 144816	B 1447	, <u>, , , ,</u>	B 1447	93			+
	UNITS	15-P1-TP102	-BS3 15	-P1-TP201-BS1	15-P1-TP201-BS	2 15-P1-TP20	2-BS1	15-P1-TP20)2-BS2	RDL	OC Batc	$\frac{1}{1}$
anics	•										40	<u> </u>
	0/	ЭГ		22	26	24		46		1.0	426129	Ξ.
- Departable Detection	70	55		33	50	54		40		1.0	4201567	
- 800000100010000100000												
atch - Quality Control P	Limit											
atch = Quality Control B	atch											
atch = Quality Control B	atch	BHB948		BHB949	BHB950	BHB95	1	BHB95	2			T
atch = Quality Control B kam ID pling Date		BHB948 2015/10/2	31	BHB949 2015/10/31	BHB950 2015/10/31	BHB95 2015/10	1 /31	BHB95 2015/10	2 /31			+
atch = Quality Control B xam ID pling Date Number		BHB948 2015/10/3 B 144793	31 31	BHB949 2015/10/31 B 144793	BHB950 2015/10/31 B 144793	BHB95 2015/10 B 1447	1 /31 93	BHB95 2015/10 B 1447	62 /31 93			
atch = Quality Control B xam ID pling Date Number		BHB948 2015/10/2 B 144792 15-P1-TP202	31 31 3 2-BS3 15	BHB949 2015/10/31 B 144793 -P1-TP203-BS1	BHB950 2015/10/31 B 144793 15-P1-TP203-BS	BHB95 2015/10 B 14479 2 15-P1-TP20	1 /31 93 3-BS3	BHB95 2015/10 B 1447 15-P1-TP20	52 /31 93)3-BS4	RDL	QC Batcl	
artch = Quality Control B xam ID pling Date Number		BHB948 2015/10/ B 14479 15-P1-TP202	31 31 3 2-BS3 15	BHB949 2015/10/31 B 144793 -P1-TP203-BS1	BHB950 2015/10/31 B 144793 15-P1-TP203-BS	BHB95 2015/10 B 14479 2 15-P1-TP20	1 /31 93 3-BS3	BHB95 2015/10 B 1447 15-P1-TP2C	2 /31 93)3-BS4	RDL	QC Batcl	1
artch = Quality Control B xam ID pling Date Number ;anics	UNITS	BHB948 2015/10/3 B 144793 15-P1-TP202	31 3 2-BS3 15	BHB949 2015/10/31 B 144793 -P1-TP203-BS1	BHB950 2015/10/31 B 144793 15-P1-TP203-BS	BHB95 2015/10 B 14479 2 15-P1-TP20	1 /31 93 3-BS3	BHB95 2015/10 B 1447 15-P1-TP20	2 /31 93)3-BS4	RDL	QC Batcl	

RESULTS OF ANALYSES OF SOIL

Maxxam ID		BHB953	BHE	3954	BHE	955	BHC	:039	E	3HC040			
Sampling Date		2015/10/31	2015/	/10/31	2015/	10/31	2015/	10/31	20	15/10/31			
COC Number		B 144793	B 14	4793	B 14	4793	B 14	4792	В	144792			
	UNITS	15-P1-TP204-BS1	15-P1-T	P204-BS2	15-P1-TF	204-BS3	15-P1-T	205-B	51 15-P1	-TP205-BS2	RDL	QC Batch	MDL
Inorganics													
Moisture	%	34	4	13	2	9	2	6		21	1.0	4261387	0.20
RDL = Reportable Detection	Limit												
QC Batch = Quality Control B	atch												
	Maxxam	1 ID		BHC	2041	BHC	045						
	Samplin	g Date		2015/	/10/31	2015/10/31							
	COC Nui	mber		B 14	4792	B 14	44792						
			UNITS	15-P1-TI	P205-BS3	15-P1-T	P101-BS1	RDL	QC Batch	MDL			
	Inorgani	ics		·									
	Moistur	e	%	2	22	2	6	1.0	4261387	0.20			
	RDL = Re	eportable Detection	Limit										

QC Batch = Quality Control Batch

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		BHC042	BHC043	BHC044	BHC044			
Sampling Date		2015/11/01	2015/11/01	2015/11/01	2015/11/01			
COC Number		B 144792	B 144792	B 144792	B 144792			
	UNITS	15-POL-BS405	15-POL-BS406	15-POL-BS407	15-POL-BS407 Lab-Dup	RDL	QC Batch	MDL
Metals								
Acid Extractable Aluminum (Al)	mg/kg	4500	5100	2000	1900	10	4265467	N/A
Acid Extractable Antimony (Sb)	mg/kg	2.3	12	<2.0	<2.0	2.0	4265467	N/A
Acid Extractable Arsenic (As)	mg/kg	<2.0	<2.0	<2.0	<2.0	2.0	4265467	N/A
Acid Extractable Barium (Ba)	mg/kg	240	35	12	12	5.0	4265467	N/A
Acid Extractable Beryllium (Be)	mg/kg	<2.0	<2.0	<2.0	<2.0	2.0	4265467	N/A
Acid Extractable Bismuth (Bi)	mg/kg	<2.0	<2.0	<2.0	<2.0	2.0	4265467	N/A
Acid Extractable Boron (B)	mg/kg	<50	<50	<50	<50	50	4265467	N/A
Acid Extractable Cadmium (Cd)	mg/kg	<0.30	0.34	<0.30	<0.30	0.30	4265467	N/A
Acid Extractable Chromium (Cr)	mg/kg	24	16	24	21	2.0	4265467	N/A
Acid Extractable Cobalt (Co)	mg/kg	2.2	2.0	1.4	1.4	1.0	4265467	N/A
Acid Extractable Copper (Cu)	mg/kg	29	45	18	18	2.0	4265467	N/A
Acid Extractable Iron (Fe)	mg/kg	12000	25000	5500	5000	50	4265467	N/A
Acid Extractable Lead (Pb)	mg/kg	46	1300	18	21	0.50	4265467	N/A
Acid Extractable Lithium (Li)	mg/kg	<2.0	<2.0	<2.0	<2.0	2.0	4265467	N/A
Acid Extractable Manganese (Mn)	mg/kg	52	62	26	23	2.0	4265467	N/A
Acid Extractable Mercury (Hg)	mg/kg	0.12	0.11	<0.10	<0.10	0.10	4265467	N/A
Acid Extractable Molybdenum (Mo)	mg/kg	<2.0	<2.0	<2.0	<2.0	2.0	4265467	N/A
Acid Extractable Nickel (Ni)	mg/kg	12	7.7	6.9	6.3	2.0	4265467	N/A
Acid Extractable Rubidium (Rb)	mg/kg	4.4	2.8	3.6	3.3	2.0	4265467	N/A
Acid Extractable Selenium (Se)	mg/kg	<1.0	<1.0	<1.0	<1.0	1.0	4265467	N/A
Acid Extractable Silver (Ag)	mg/kg	7.2	<0.50	<0.50	<0.50	0.50	4265467	N/A
Acid Extractable Strontium (Sr)	mg/kg	54	9.7	<5.0	<5.0	5.0	4265467	N/A
Acid Extractable Thallium (Tl)	mg/kg	<0.10	<0.10	<0.10	<0.10	0.10	4265467	N/A
Acid Extractable Tin (Sn)	mg/kg	12	430	2.3	2.0	2.0	4265467	N/A
Acid Extractable Uranium (U)	mg/kg	0.28	0.24	0.15	0.13	0.10	4265467	N/A
Acid Extractable Vanadium (V)	mg/kg	16	9.6	24	21	2.0	4265467	N/A
Acid Extractable Zinc (Zn)	mg/kg	57	120	18	18	5.0	4265467	N/A
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiated Duplie	cate							

N/A = Not Applicable

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		BHB864	BHB864	BHB865	BHB866	BHB867			
Sampling Date		2015/10/30	2015/10/30	2015/10/30	2015/10/30	2015/10/30			
COC Number		B 144810	B 144810	B 144810	B 144810	B 144810			
	UNITS	15-OB1-BS201	15-OB1-BS201 Lab-Dup	15-OB1-BS202	15-OB1-BS203	15-OB1-BS101	RDL	QC Batch	MDL
PCBs		·	·	·	·	·		·	
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1260	ug/g	4.5	5.5	6.9	6.1	44	0.050	4262162	N/A
Calculated Total PCB	ug/g	4.5		6.9	6.1	44	0.050	4259616	N/A
Surrogate Recovery (%)									
Decachlorobiphenyl	%	84	82	98	85	100		4262162	
RDL = Reportable Detection	Limit								
Lab Dup = Laboratory Initiat	od Dupli	sato							
Lan-Dup – Lanoratory Milliat	eu Dupii	Laie							

N/A = Not Applicable

	1								
Maxxam ID		BHB868	BHB869	BHB870	BHB871	BHB872			
Sampling Date		2015/10/30	2015/10/30	2015/10/30	2015/10/30	2015/10/30			
COC Number		B 144810	B 144810	B 144810	B 144810	B 144810			
	UNITS	15-OB1-BS102	15-OB1-BS103	15-MB-BS113	15-MB-BS114	15-MB-BS115	RDL	QC Batch	MDL
PCBs									
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4262162	N/A
Aroclor 1260	ug/g	3.3	4.6	0.99	13	13	0.050	4262162	N/A
Calculated Total PCB	ug/g	3.3	4.6	0.99	13	13	0.050	4259616	N/A
Surrogate Recovery (%)									
Decachlorobiphenyl	%	100	106	105	101	105		4262162	
RDL = Reportable Detection L	.imit								
QC Batch = Quality Control Ba	atch								
N/A = Not Applicable									

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		BH	IB873	В	HB906	BH	B907	BHB	908	BHB	909			
Sampling Date		2015	5/10/30	201	.5/10/30	2015	/10/30	2015/2	LO/31	2015/1	.0/31			
COC Number		B 1	44810	B	144816	B 14	44816	B 144	816	B 144	816			
	UNITS	15-MB-	TP101-BS1	15-MB	-TP102-BS1	15-M	B-BS116	15-P1-TP	101-BS2	15-P1-TP	102-BS1	RDL	QC Batch	MDL
PCBs														
Aroclor 1016	ug/g	<().050	<	0.050	<0	.050	<0.0	50	<0.0	50	0.050	4262162	N/A
Aroclor 1221	ug/g	<().050	<	0.050	<0	.050	<0.0	50	<0.0	50	0.050	4262162	N/A
Aroclor 1232	ug/g	<().050	<	0.050	<0	0.050	<0.0	50	<0.0	50	0.050	4262162	N/A
Aroclor 1248	ug/g	<(0.050	<	:0.050	<0	0.050	<0.0	50	<0.0	50	0.050	4262162	N/A
Aroclor 1242	ug/g	<(0.050	<	0.050	<0	0.050	<0.0	50	<0.0	50	0.050	4262162	N/A
Aroclor 1254	ug/g	<(0.050	<	0.050	<0	.050	<0.0	50	<0.0	50	0.050	4262162	N/A
Aroclor 1260	ug/g	(0.40		12	:	8.4	0.7	7	3.7	7	0.050	4262162	N/A
Calculated Total PCB	ug/g	(0.40		12	:	8.4	0.7	'7	3.7	7	0.050	4259616	N/A
Surrogate Recovery (%)	1	•				I		1						
Decachlorobiphenyl	%		104		112		92	11	2	10	4		4262162	
N/A = Not Applicable Maxxam ID			BHB9	10	BHB91	.1	BH	B912	BH	B913				
Sampling Date			2015/10)/31	2015/10	/31	2015	/10/31	2015	/10/31				
COC Number			B 1448	816	B 1448:	16	B 14	44816	B 14	14816				
		UNITS	15-P1-TP1	02-BS2	15-P1-TP10)2-BS3	15-P1-T	P201-BS1	15-P1-T	P201-BS2	RDL	QC Batc	ו MDL	
PCBs														
Aroclor 1016		ug/g	<0.05	50	<0.050	0	<0	.050	<0	.050	0.050	4262162	2 N/A	
Aroclor 1221		ug/g	<0.05	50	<0.050	0	<0	.050	<0	.050	0.050	4262162	2 N/A	
Aroclor 1232		ug/g	<0.05	50	<0.050	0	<0	.050	<0	.050	0.050	4262162	2 N/A	
Aroclor 1248		ug/g	<0.05	50	<0.050	0	<0	.050	<0	.050	0.050	4262162	2 N/A	
Aroclor 1242		ug/g	<0.05	50	<0.050	0	<0	.050	<0	.050	0.050	4262162	N/A	
Aroclor 1254		ug/g	<0.05	50	<0.050	0	<0	.050	<0	.050	0.050	4262162	N/A	
Aroclor 1260		ug/g	2.8		4.0		9	9.1	(ô.5	0.050	4262162	2 N/A	
Calculated Total PCB	}	ug/g	2.8		4.0		9	9.1	(6.5	0.050	4259616	5 N/A	
Surrogate Recovery	(%)		[
Decachlorobiphenyl		%	110		106		1	L07	1	.10		4262162	!	
RDL = Reportable De QC Batch = Quality C N/A = Not Applicable	etection Control E e	Limit Batch												

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		BHB946	BHB947		BHB948	BHB948			
Sampling Date		2015/10/31	2015/10/31		2015/10/31	2015/10/31			-
COC Number		B 144793	B 144793		B 144793	B 144793			
	UNITS	15-P1-TP202-BS1	15-P1-TP202-BS2	QC Batch	15-P1-TP202-BS3	15-P1-TP202-BS3 Lab-Dup	RDL	QC Batch	MDL
PCBs		<u>.</u>	-	<u> </u>	-	-		<u> </u>	
Aroclor 1016	ug/g	<0.050	<0.050	4262162	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1221	ug/g	<0.050	<0.050	4262162	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1232	ug/g	<0.050	<0.050	4262162	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1248	ug/g	<0.050	<0.050	4262162	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1242	ug/g	<0.050	<0.050	4262162	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1254	ug/g	<0.050	<0.050	4262162	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1260	ug/g	5.6	27	4262162	17	22	0.050	4262178	N/A
Calculated Total PCB	ug/g	5.6	27	4259616	17		0.050	4259616	N/A
Surrogate Recovery (%)			•	•	•	•		•	
Decachlorobiphenyl	%	104	93	4262162	93	96		4262178	
RDL = Reportable Detectio	n Limit						-		
QC Batch = Quality Control	l Batch								

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Maxxam ID	1	BHB949	BHB950	BHB951	BHB952			1
Sampling Date		2015/10/31	2015/10/31	2015/10/31	2015/10/31			
COC Number		B 144793	B 144793	B 144793	B 144793			
	UNITS	15-P1-TP203-BS1	15-P1-TP203-BS2	15-P1-TP203-BS3	15-P1-TP203-BS4	RDL	QC Batch	MDL
PCBs								
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1260	ug/g	1.9	1.6	1.1	1.3	0.050	4262178	N/A
Calculated Total PCB	ug/g	1.9	1.6	1.1	1.3	0.050	4259616	N/A
Surrogate Recovery (%)								
Decachlorobiphenyl	%	98	99	101	102		4262178	
RDL = Reportable Detectior	n Limit							
QC Batch = Quality Control	Batch							
N/A = Not Applicable								

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

Maxxam ID		BHB953	BHB954	BHB955	BHC039			
Sampling Date		2015/10/31	2015/10/31	2015/10/31	2015/10/31			
COC Number		B 144793	B 144793	B 144793	B 144792			
	UNITS	15-P1-TP204-BS1	15-P1-TP204-BS2	15-P1-TP204-BS3	15-P1-TP205-BS1	RDL	QC Batch	MDL
PCBs								
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1260	ug/g	1.5	6.1	1.4	4.6	0.050	4262178	N/A
Calculated Total PCB	ug/g	1.5	6.1	1.4	4.6	0.050	4259616	N/A
Surrogate Recovery (%)								
Decachlorobiphenyl	%	103	97	103	103		4262178	
RDL = Reportable Detectio OC Batch = Quality Control	n Limit I Batch						<u>.</u>	

N/A = Not Applicable

						-	
Maxxam ID		BHC040	BHC041	BHC045			
Sampling Date		2015/10/31	2015/10/31	2015/10/31			
COC Number		B 144792	B 144792	B 144792			
	UNITS	15-P1-TP205-BS2	15-P1-TP205-BS3	15-P1-TP101-BS1	RDL	QC Batch	MDL
PCBs							
Aroclor 1016	ug/g	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1221	ug/g	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1232	ug/g	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1248	ug/g	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1242	ug/g	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1254	ug/g	<0.050	<0.050	<0.050	0.050	4262178	N/A
Aroclor 1260	ug/g	3.4	2.5	0.52	0.050	4262178	N/A
Calculated Total PCB	ug/g	3.4	2.5	0.52	0.050	4259616	N/A
Surrogate Recovery (%)							
Decachlorobiphenyl	%	103	96	105		4262178	
RDL = Reportable Detection	Limit						
QC Batch = Quality Control	Batch						
N/A = Not Applicable							

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHB864 15-OB1-BS201 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB864 Dup 15-OB1-BS201 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
Maxxam ID: Sample ID: Matrix:	BHB865 15-OB1-BS202 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB866 15-OB1-BS203 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB867 15-OB1-BS101 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/12	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/12	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB868 15-OB1-BS102 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHB868 15-OB1-BS102 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB869 15-OB1-BS103 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB870 15-MB-BS113 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB871 15-MB-BS114 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	1.0
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
_							
Maxxam ID: Sample ID: Matrix: Test Description	BHB872 15-MB-BS115 Soil	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2015/10/30 2015/11/04
Maxxam ID: Sample ID: Matrix: Test Description Moisture	BHB872 15-MB-BS115 Soil	Instrumentation BAL	Batch 4261387	Extracted	Date Analyzed 2015/11/09	Collected: Shipped: Received: Analyst	2015/10/30 2015/11/04
Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD	BHB872 15-MB-BS115 Soil	Instrumentation BAL GC/ECD	Batch 4261387 4262162	Extracted N/A 2015/11/06	Date Analyzed 2015/11/09 2015/11/10	Collected: Shipped: Received: Analyst Julia McGo	2015/10/30 2015/11/04 overn
Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil)	BHB872 15-MB-BS115 Soil	Instrumentation BAL GC/ECD CALC	Batch 4261387 4262162 4259616	Extracted N/A 2015/11/06 N/A	Date Analyzed 2015/11/09 2015/11/10 2015/11/10	Collected: Shipped: Received: Analyst Julia McGo Lisa Gates Automate	2015/10/30 2015/11/04 overn d Statchk
Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix:	BHB872 15-MB-BS115 Soil BHB873 15-MB-TP101-BS1 Soil	Instrumentation BAL GC/ECD CALC	Batch 4261387 4262162 4259616	Extracted N/A 2015/11/06 N/A	Date Analyzed 2015/11/09 2015/11/10 2015/11/10	Collected: Shipped: Received: Julia McGo Lisa Gates Automater Collected: Shipped: Received:	2015/10/30 2015/11/04 overn d Statchk 2015/10/30 2015/11/04
Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description	BHB872 15-MB-BS115 Soil BHB873 15-MB-TP101-BS1 Soil	Instrumentation BAL GC/ECD CALC	Batch 4261387 4262162 4259616 Batch	Extracted N/A 2015/11/06 N/A Extracted	Date Analyzed 2015/11/09 2015/11/10 2015/11/10 Date Analyzed	Collected: Shipped: Received: Julia McGo Lisa Gates Automated Collected: Shipped: Received: Analyst	2015/10/30 2015/11/04 overn d Statchk 2015/10/30 2015/11/04
Maxxam ID: Sample ID: Matrix: Test Description Moisture PCBs in soil by GC/ECD PCB Aroclor sum (soil) Maxxam ID: Sample ID: Matrix: Test Description Moisture	BHB872 15-MB-BS115 Soil BHB873 15-MB-TP101-BS1 Soil	Instrumentation BAL GC/ECD CALC Instrumentation BAL	Batch 4261387 4262162 4259616 Batch 4261387	Extracted N/A 2015/11/06 N/A Extracted N/A	Date Analyzed 2015/11/09 2015/11/10 2015/11/10 Date Analyzed 2015/11/09	Collected: Shipped: Received: Julia McGo Lisa Gates Automater Collected: Shipped: Received: Analyst Julia McGo	2015/10/30 2015/11/04 overn d Statchk 2015/10/30 2015/11/04

Page 10 of 20

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHB873 15-MB-TP101-BS1 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB906 15-MB-TP102-BS1 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB907 15-MB-BS116 Soil					Collected: Shipped: Received:	2015/10/30 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB908 15-P1-TP101-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB909 15-P1-TP102-BS1 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	1.0
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB910 15-P1-TP102-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHB910 15-P1-TP102-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB911 15-P1-TP102-BS3 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB912 15-P1-TP201-BS1 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB913 15-P1-TP201-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB946 15-P1-TP202-BS1 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHB947 15-P1-TP202-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	overn
PCBs in soil by GC/ECD		GC/ECD	4262162	2015/11/06	2015/11/10	Lisa Gates	

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHB947 15-P1-TP202-BS2 Soil					Collected: 2015/ Shipped: Received: 2015/	/10/31 /11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated Statch	k
Maxxam ID: Sample ID: Matrix:	BHB948 15-P1-TP202-BS3 Soil					Collected: 2015/ Shipped: Received: 2015/	/10/31 /11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGovern	
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated Statch	k
Maxxam ID: Sample ID: Matrix:	BHB948 Dup 15-P1-TP202-BS3 Soil					Collected: 2015/ Shipped: Received: 2015/	/10/31 /11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
Maxxam ID: Sample ID: Matrix:	BHB949 15-P1-TP203-BS1 Soil					Collected: 2015/ Shipped: Received: 2015/	/10/31 /11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGovern	
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated Statch	k
Maxxam ID: Sample ID: Matrix:	BHB950 15-P1-TP203-BS2 Soil					Collected: 2015/ Shipped: Received: 2015/	/10/31 /11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGovern	
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated Statch	k
Maxxam ID: Sample ID: Matrix:	BHB951 15-P1-TP203-BS3 Soil					Collected: 2015/ Shipped: Received: 2015/	/10/31 /11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGovern	
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHB952 15-P1-TP203-BS4 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	BHB953 15-P1-TP204-BS1 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	BHB954 15-P1-TP204-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated	l Statchk
Maxxam ID: Sample ID: Matrix:	BHB955 15-P1-TP204-BS3 Soil	1	Detek	5 doubted	Data Arabard	Collected: Shipped: Received:	2015/10/31 2015/11/04
Maisture		DAL	4261297	Extracted			1/072
			4201387	N/A	2015/11/09	Julia McGo	veni
PCBs III soli by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gales	l Statable
PCB AIOCIOI SUIII (SOII)		CALC	4259010	N/A	2013/11/10	Automater	ISIdICIIK
Maxxam ID: Sample ID: Matrix:	BHC039 15-P1-TP205-BS1 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGo	vern
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
		/ -		,,	/ / -		

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHC040 15-P1-TP205-BS2 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McG	overn
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHCO41 15-P1-TP205-BS3 Soil					Collected: Shipped: Received:	2015/10/31 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	4261387	N/A	2015/11/09	Julia McG	overn
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates	
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automate	d Statchk
Maxxam ID: Sample ID: Matrix:	BHC042 15-POL-BS405 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4265467	2015/11/10	2015/11/10	Bryon Ang	gevine
Maxxam ID: Sample ID: Matrix:	BHC043 15-POL-BS406 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4265467	2015/11/10	2015/11/10	Bryon Ang	gevine
Maxxam ID: Sample ID: Matrix:	BHC044 15-POL-BS407 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4265467	2015/11/10	2015/11/10	Bryon Ang	gevine
Maxxam ID: Sample ID: Matrix:	BHC044 Dup 15-POL-BS407 Soil					Collected: Shipped: Received:	2015/11/01 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals Solids Acid Extr. I	CPMS	ICP/MS	4265467	2015/11/10	2015/11/10	Bryon Ang	gevine

Stantec Consulting Ltd Client Project #: 121413099 Site Location: HOPEDALE YR 5 Sampler Initials: JG

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	BHC045 15-P1-TP101-BS1 Soil					Collected: 2015/10/31 Shipped: Received: 2015/11/04
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture		BAL	4261387	N/A	2015/11/09	Julia McGovern
PCBs in soil by GC/ECD		GC/ECD	4262178	2015/11/06	2015/11/10	Lisa Gates
PCB Aroclor sum (soil)		CALC	4259616	N/A	2015/11/10	Automated Statchk

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

1	Package 1	3.0°C		
	Package 2	6.3°C		
	Package 3	10.0°C		

Results relate only to the items tested.

Maxxam Job #: B5M5795 Report Date: 2015/11/12

QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121413099

Site Location: HOPEDALE YR 5 Sampler Initials: JG

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
4262162	Decachlorobiphenyl	2015/11/10	86	30 - 130	103	30 - 130	104	%			
4262178	Decachlorobiphenyl	2015/11/10	97	30 - 130	101	30 - 130	102	%			
4262162	Aroclor 1016	2015/11/10					<0.050	ug/g	NC	50	
4262162	Aroclor 1221	2015/11/10					<0.050	ug/g	NC	50	
4262162	Aroclor 1232	2015/11/10					<0.050	ug/g	NC	50	
4262162	Aroclor 1242	2015/11/10					<0.050	ug/g	NC	50	
4262162	Aroclor 1248	2015/11/10					<0.050	ug/g	NC	50	
4262162	Aroclor 1254	2015/11/10	NC	30 - 130	109	30 - 130	<0.050	ug/g	NC	50	
4262162	Aroclor 1260	2015/11/10					<0.050	ug/g	20	50	
4262178	Aroclor 1016	2015/11/10					<0.050	ug/g	NC	50	
4262178	Aroclor 1221	2015/11/10					<0.050	ug/g	NC	50	
4262178	Aroclor 1232	2015/11/10					<0.050	ug/g	NC	50	
4262178	Aroclor 1242	2015/11/10					<0.050	ug/g	NC	50	
4262178	Aroclor 1248	2015/11/10					<0.050	ug/g	NC	50	
4262178	Aroclor 1254	2015/11/10	NC	30 - 130	106	30 - 130	<0.050	ug/g	NC	50	
4262178	Aroclor 1260	2015/11/10					<0.050	ug/g	22	50	
4265467	Acid Extractable Aluminum (Al)	2015/11/10					<10	mg/kg	8.7	35	
4265467	Acid Extractable Antimony (Sb)	2015/11/10	91	75 - 125	101	75 - 125	<2.0	mg/kg	NC	35	
4265467	Acid Extractable Arsenic (As)	2015/11/10	100	75 - 125	104	75 - 125	<2.0	mg/kg	NC	35	
4265467	Acid Extractable Barium (Ba)	2015/11/10	100	75 - 125	102	75 - 125	<5.0	mg/kg	NC	35	
4265467	Acid Extractable Beryllium (Be)	2015/11/10	103	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35	
4265467	Acid Extractable Bismuth (Bi)	2015/11/10	102	75 - 125	98	75 - 125	<2.0	mg/kg	NC	35	
4265467	Acid Extractable Boron (B)	2015/11/10	101	75 - 125	115	75 - 125	<50	mg/kg	NC	35	
4265467	Acid Extractable Cadmium (Cd)	2015/11/10	101	75 - 125	101	75 - 125	<0.30	mg/kg	NC	35	
4265467	Acid Extractable Chromium (Cr)	2015/11/10	101	75 - 125	104	75 - 125	<2.0	mg/kg	11	35	
4265467	Acid Extractable Cobalt (Co)	2015/11/10	102	75 - 125	103	75 - 125	<1.0	mg/kg	NC	35	
4265467	Acid Extractable Copper (Cu)	2015/11/10	101	75 - 125	103	75 - 125	<2.0	mg/kg	0.62	35	
4265467	Acid Extractable Iron (Fe)	2015/11/10					<50	mg/kg	10	35	
4265467	Acid Extractable Lead (Pb)	2015/11/10	96	75 - 125	99	75 - 125	<0.50	mg/kg	12	35	
4265467	Acid Extractable Lithium (Li)	2015/11/10	102	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35	
4265467	Acid Extractable Manganese (Mn)	2015/11/10	NC	75 - 125	104	75 - 125	<2.0	mg/kg	14	35	

Maxxam Job #: B5M5795 Report Date: 2015/11/12

QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 121413099

Site Location: HOPEDALE YR 5 Sampler Initials: JG

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPI	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
4265467	Acid Extractable Mercury (Hg)	2015/11/10	96	75 - 125	102	75 - 125	<0.10	mg/kg	NC	35
4265467	Acid Extractable Molybdenum (Mo)	2015/11/10	98	75 - 125	102	75 - 125	<2.0	mg/kg	NC	35
4265467	Acid Extractable Nickel (Ni)	2015/11/10	104	75 - 125	105	75 - 125	<2.0	mg/kg	NC	35
4265467	Acid Extractable Rubidium (Rb)	2015/11/10	103	75 - 125	103	75 - 125	<2.0	mg/kg	NC	35
4265467	Acid Extractable Selenium (Se)	2015/11/10	103	75 - 125	105	75 - 125	<1.0	mg/kg	NC	35
4265467	Acid Extractable Silver (Ag)	2015/11/10	103	75 - 125	102	75 - 125	<0.50	mg/kg	NC	35
4265467	Acid Extractable Strontium (Sr)	2015/11/10	105	75 - 125	103	75 - 125	<5.0	mg/kg	NC	35
4265467	Acid Extractable Thallium (TI)	2015/11/10	102	75 - 125	100	75 - 125	<0.10	mg/kg	NC	35
4265467	Acid Extractable Tin (Sn)	2015/11/10	88	75 - 125	100	75 - 125	<2.0	mg/kg	NC	35
4265467	Acid Extractable Uranium (U)	2015/11/10	102	75 - 125	102	75 - 125	<0.10	mg/kg	NC	35
4265467	Acid Extractable Vanadium (V)	2015/11/10	97	75 - 125	105	75 - 125	<2.0	mg/kg	13	35
4265467	Acid Extractable Zinc (Zn)	2015/11/10	99	75 - 125	104	75 - 125	<5.0	mg/kg	NC	35

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Herrin B. Mac Donald

Kevin MacDonald, Inorganics Supervisor

Kosmarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

IMPLEMENTATION OF THE REMEDIAL ACTION PLAN AND ADDITIONAL DELINEATION – YEAR 5, FORMER U.S. MILITARY SITE, HOPEDALE, NL

APPENDIX E

Symbols and Terms, Test Pit Logs

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Rootmat	 vegetation, roots and moss with organic matter and topsoil typically forming a mattress at the ground surface
Topsoil	- mixture of soil and humus capable of supporting vegetative growth
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	- unstratified glacial deposit which may range from clay to boulders
Fill	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	- having cracks, and hence a blocky structure
Varved	- composed of regular alternating layers of silt and clay
Stratified	- composed of alternating successions of different soil types, e.g. silt and sand
Layer	- > 75 mm in thickness
Seam	- 2 mm to 75 mm in thickness
Parting	- < 2 mm in thickness

Terminology describing soil types:

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488) which excludes particles larger than 75 mm. For particles larger than 75 mm, and for defining percent clay fraction in hydrometer results, definitions proposed by Canadian Foundation Engineering Manual, 4th Edition are used. The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 75 mm, visible organic matter, and construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%		
Some	10-20%		
Frequent	> 20%		

Terminology describing compactness of cohesionless soils:

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test (SPT) N-Value - also known as N-Index. The SPT N-Value is described further on page 3. A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests. Consistency may be crudely estimated from SPT N-Value based on the correlation shown in the following table (Terzaghi and Peck, 1967). The correlation to SPT N-Value is used with caution as it is only very approximate.

Consistency	Undrained Sh	Approximate	
Consistency	kips/sq.ft.	kPa	SPT N-Value
Very Soft	<0.25	<12.5	<2
Soft	0.25 - 0.5	12.5 - 25	2-4
Firm	0.5 - 1.0	25 - 50	4-8
Stiff	1.0 - 2.0	50 – 100	8-15
Very Stiff	2.0 - 4.0	100 - 200	15-30
Hard	>4.0	>200	>30

Stantec

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS - JULY 2014

Page 1 of 3

ROCK DESCRIPTION

Except where specified below, terminology for describing rock is as defined by the International Society for Rock Mechanics (ISRM) 2007 publication "The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006"

Terminology describing rock quality:

RQD	Rock Mass Quality		Alternate (Colloquio	al) Rock Mass Quality
0-25	Very Poor Quality		Very Severely Fractured	Crushed
25-50	Poor Quality		Severely Fractured	Shattered or Very Blocky
50-75	Fair Quality		Fractured	Blocky
75-90	Good Quality		Moderately Jointed	Sound
90-100	Excellent Quality		Intact	Very Sound

RQD (Rock Quality Designation) denotes the percentage of intact and sound rock retrieved from a borehole of any orientation. All pieces of intact and sound rock core equal to or greater than 100 mm (4 in.) long are summed and divided by the total length of the core run. RQD is determined in accordance with ASTM D6032.

SCR (Solid Core Recovery) denotes the percentage of solid core (cylindrical) retrieved from a borehole of any orientation. All pieces of solid (cylindrical) core are summed and divided by the total length of the core run (It excludes all portions of core pieces that are not fully cylindrical as well as crushed or rubble zones).

Fracture Index (FI) is defined as the number of naturally occurring fractures within a given length of core. The Fracture Index is reported as a simple count of natural occurring fractures.

Terminology describing rock with respect to discontinuity and bedding spacing:

Spacing (mm) Discontinuities		Bedding		
>6000	Extremely Wide	-		
2000-6000	Very Wide	Very Thick		
600-2000	Wide	Thick		
200-600 Moderate		Medium		
60-200	Close	Thin		
20-60 Very Close		Very Thin		
<20 Extremely Close		Laminated		
<6 -		Thinly Laminated		

Terminology describing rock strength:

Strength Classification	Grade	Unconfined Compressive Strength (MPa)
Extremely Weak	RO	<1
Very Weak	R1	1 – 5
Weak	R2	5 – 25
Medium Strong	R3	25 – 50
Strong	R4	50 – 100
Very Strong	R5	100 – 250
Extremely Strong	R6	>250

Terminology describing rock weathering:

Term	Symbol	Description
Fresh	W1	No visible signs of rock weathering. Slight discoloration along major discontinuities
Slightly	W2	Discoloration indicates weathering of rock on discontinuity surfaces. All the rock material may be discolored.
Moderately	W3	Less than half the rock is decomposed and/or disintegrated into soil.
Highly	W4	More than half the rock is decomposed and/or disintegrated into soil.
Completely	W5	All the rock material is decomposed and/or disintegrated into soil. The original mass structure is still largely intact.
Residual Soil	W6	All the rock converted to soil. Structure and fabric destroyed.

RECOVERY

HQ, NQ, BQ, etc.

For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

Rock core samples obtained with the use

of standard size diamond coring bits.

N-VALUE

Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (63.5 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (300 mm) into the soil. In accordance with ASTM D1586, the N-Value equals the sum of the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (610 mm) sampler is used, the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (300 to 610 mm) may be reported if this value is lower. For split spoon samples where insufficient penetration was achieved and N-Values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50/75). Some design methods make use of N-values corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to 'A' size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (300 mm) into the soil. The DCPT is used as a probe to assess soil variability.

OTHER TESTS

S	Sieve analysis
Н	Hydrometer analysis
k	Laboratory permeability
Y	Unit weight
Gs	Specific gravity of soil particles
CD	Consolidated drained triaxial
CU	Consolidated undrained triaxial with pore
<u> </u>	pressure measurements
UU	Unconsolidated undrained triaxial
DS	Direct Shear
С	Consolidation
Qu	Unconfined compression
	Point Load Index (Ip on Borehole Record equals
Ιp	I_p (50) in which the index is corrected to a
	reference diameter of 50 mm)

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
Å	Falling head permeability test using casing
Ţ	Falling head permeability test using well point or piezometer

inferred

\langle	Stantec TEST PIT RECORD																	
C Pl	LIENT ROJECT _	NLDEC Implementation of the Remedial Action	Plan and	Addi	tior	al De	linea	tion -	Year	r 5	TES	T PIT No	o. <u>1</u> :	5-MB-T	<u>P101</u>			
L D	LOCATION Former U.S. Military Site, Hopedale, NL DATES (mm-dd-yy): DUG 10-30-15 WATER LEVEL N/A											$\frac{1214130}{1214130}$						
	٦ ب		SAMPLES 2										CHEMICAL ANALYSIS (ppm)					
DEPTH (m)	ELEVATION (1	DESCRIPTION		STRATA PLO	WATER LEVE	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READING (ppm)	Н	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES			
- 0 - - - - - - - -		Brown sandy SILT with gravel; frequent cobbles and trace organics: FILL	nt															
- 1 -						BS	1	0	-	-	-	-	-	-				
2		End of Test Pit Terminated on bedrock at 1.0 mbgs. Groundwater seepage not observed.																
-															-			
 - - -															-			
- 4 -															-			
-																		
- 5 -				1			1	1	1			I	<u> </u>	<u> </u>				

	Stantec TEST PIT RECORD CLIENT NLDEC															
PF LC	ROJECT _	Implementation of the Remedial Action Plan and Former U.S. Military Site, Hopedale, NL	Add	itior	nal De	linea	tion -	Year	: 5	PRO	JECT N	6. <u> </u>	121413	099		
D.	DOCINION										DATUMN/A					
<u> </u>	Ē	E SAMPLES 8										CHEMICAL ANALYSIS (ppm)				
DEPTH (m	ELEVATION	DESCRIPTION	STRATA PL	WATER LEV	түре	NUMBER		OTHER TESTS	PID READIN (ppm)	НДТ	BENZENE	TOLUENE	ETHYLBENZEN	XYLENES		
- 0 -		Brown silty SAND with gravel; trace organics; _occasional metal debris: FILL			BS	1	0	-	-	-	-	-	-			
-		End of Test Pit												-		
		Terminated on bedrock at 0.2 mbgs.												-		
		Groundwater seepage not ouserved.														
- 1 -														-		
-														-		
														-		
-														-		
-														-		
- 2 -														-		
-														-		
														-		
-														-		
-														-		
- 3 -														-		
-														-		
-														- -		
-														-		
- 4 -																
-														- -		
														-		
-														- -		
-														- -		
- 5 -				1		1	1	1			I		I			

C: PI	St Lient ROJECT _	antec NLDEC Implementation of the Remedial Ac	TEST PIT	RE	ECOI	RD	tion -	Year	· 5	TEST	Г PIT No). <u>1</u>	<u>5-P1-T</u> 121413	<u>P101</u>	
L D	LOCATION Former U.S. Military Site, Hopedale, NL DATES (mm-dd-yy): DUG 10-31-15 WATER LEVEL N/A											_ PROJECT No _ DATUMN/A			
	Ê		SAMPLES 9										SIS (ppm)		
DEPTH (m)	ELEVATION (1	DESCRIPTION	STRATA PLO	WATER LEVE	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READING (ppm)	ТРН	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	
		Brown silty SAND and gravel; Free organics, wood and cobbles; occasi (crushed drums): FILL End of Test Pit Terminated on bedrock at 2.0 mbgs Groundwater seepage not observed.	quent onal debris		BS	1	0 0		-						
- 5 -	EC ENVIRON	MENTAL TEST PIT 3/31/16 2-39-42 PM													

C	Stantec TEST PIT RECORD CLIENT NLDEC PROJECT Implementation of the Remedial Action Plan and Additional Delineation - Year 5														
	Former U.S. Military Site, Hopedale, NL DOCATION										PROJECT No. <u>121413099</u>				
D	SAMPLES (AMPLES (AMPLE										CHEMICAL ANALYSIS (ppm)				
DEPTH (m)	ELEVATION (m	DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READINGS (ppm)	НЧТ	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	
- 0 -		Brown silty SAND with gravel and organics:		<u>}</u>											
-		Frequent cobbles; occasional debris (crushed drums, yellow-painted steel pipe): FILL			BS	1	0	-	-	-	-	-	-		
														-	
- 1 -					BS	2	0	-	-	-	-	-	-		
					BS	3	0	-	-	-	-	-	-		
- 2 -	-	End of Test Pit		×										-	
		Terminated on boulders at 2.0 mbgs.												-	
		Groundwater seepage not observed.												-	
- 3 -	-														
	-													-	
- 4 -														-	
 - - - -														-	
- 5 -	ECENN/DON	MENITAL TEST DIT 2/21/16 2-20-44 DM													

	Stantec TEST PIT RECORD CLIENT NLDEC														
P L	ROJECT _ OCATION	Implementation of the Remedial Action Plan Former U.S. Military Site, Hopedale, NL	n and A	\ddi	tior	al Del	linea	tion -	Yea	r 5	_ TES _ PRC	JECT N). <u> </u>	121413	099
D	DATES (mm-dd-yy): DUG WATER LEVEL N/A										DATUM <u>N/A</u>				
ب	Ê.			-OT	VEL		SAMP	LES Z		NGS		CHEMICA	L ANALY	'SIS (ppm) 빌	
DEPTH (r	ELEVATION	DESCRIPTION		STRATA PI	WATER LE	TYPE	NUMBER	HYDROCARBC ODOUR	OTHER TESTS	PID READIN (ppm)	НЧТ	BENZENE	TOLUENE	ETHYLBENZEN	XYLENES
- 0 -		Brown silty SAND with organics: Frequent													
	-	cobbles, occasional wood: FILL				BS	1	0	-	-	-	-	_	-	-
	-														-
	-														-
	-														_
- 1 -	-					BS	2	0	-	-	-	-	-	-	
	-	End of Test Pit		~~~											
		Terminated on boulders at 1.2 mbgs.													
	-	Groundwater seepage not observed.													-
- 2 -	-														_
															-
	-														-
	-														-
	-														-
- 3 -															
															_
															_
															F
- 4 -															-
															Ļ
															-
- 5 ·							I	1	1		I	1		1	
(TA)															

	Stantec TEST PIT RECORD CLIENT NLDEC PROJECT Implementation of the Remedial Action Plan and Additional Delineation - Year 5																	
L	OCATION	Former U.S. Military Site, Hopedale, NL dd yw): DUG 10-31-15	WATI	ER L	EVE	71	N/A	1			PRO	JECT N	lo N/A	121413	099			
		SAMPLES (mm-dd-yy): DOG WATER LEVEL SAMPLES										- DATUM CHEMICAL ANALYSIS (ppm)						
DEPTH (m)	ELEVATION (m	DESCRIPTION		STRATA PLOT	WATER LEVEL	түре	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READINGS (ppm)	НЧТ	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES			
- 0 -	-	Brown silty SAND with gravel and organic Frequent cobbles; occasional wood: FILL	s;			BS	1	0	_	-	_		_	_				
- 1 -	-				-	BS	2	0	-	-	-	-	-	-				
- 2 - - 3 - - 4 - - 5 -		End of Test Pit Terminated on boulders at 1.5 mbgs. Groundwater seepage not observed.				BS	3	0										
STAND	FEC ENVIRON	MENTAL TECT DIT 2/21/14 2-20-47 DM																
C Pl	St LIENT ROJECT	Antec TEST F NLDEC Implementation of the Remedial Action Plan and Example 1.5 Military Site Hencedole NL	PIT Add	RE	ECO nal De	RD linea	tion -	Yea	r 5	TES	T PIT N	o. <u>1</u>	<u>5-P1-T</u> 121413	<u>P203</u> 099				
-----------------	-----------------------	---	-------------------	------------	---------------	-------------	----------------------	----------------	----------------------	-------	---------	-------------	-------------------------	--------------------				
L D	OCATION ATES (mm		TER L	EVI	EL —	N/A	ł			_ DA1	FUM –	N/A						
	(L					SAMF	LES		٥ ۵		CHEMICA	AL ANALY	SIS (ppm)	1				
DEPTH (m)	ELEVATION (r	DESCRIPTION	STRATA PLO	WATER LEVE	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READING (ppm)	НЧТ	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES				
- 0 -		Brown silty SAND with gravel and organics:		2														
		Frequent cobbles; Occasional wood and debris (crushed drums): FILL			BS	1	0	-	-	-	-	-	-					
		Minor clay observed at 2.6 mbgs.																
- 1 -				****	BS	2	0	-	-	-	-	-	-					
- 2 -					BS	3	0	-	-	-	-	-	-					
		End of Test Pit			BS	4	0	-	-	-	-	-	-	-				
- 3 -		Terminated at maximum reach of backhoe at 2.6 mbgs.																
		Groundwater stepage not observed.																
 - - -																		
- 4 -																		
														-				
- 5 -																		

	St LIENT	antec TEST NLDEC Implementation of the Remedial Action Plan and	PIT 1 Add	RE	ECO nal De	RD	tion -	Year	r 5	TES	T PIT N	o. <u>1</u>	5-P1-T	<u>P204</u>
L D	OCATION ATES (mm	Former U.S. Military Site, Hopedale, NL dd-yy): DUG 10-31-15 WA	TER I	.EVI	EL —	N/A	•			PRO DA1	DJECT N	lo N/A	121413	099
	Ĵ.					SAMF	LES		õ		CHEMIC/	AL ANALY	'SIS (ppm)	
DEPTH (m)	ELEVATION (r	DESCRIPTION	STRATA PLO	WATER LEVE	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READING (ppm)	Н	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
- 0 - - - - - - - - - - - - - - - - - -		Brown silty SAND with gravel and organics; Frequent cobbles; occasional debris (crushed drums, steel, mat): FILL Minor clay observed above boulders at 2.1 mbgs.			BS BS BS	2	0	-	-	-	-	-	- -	
- 3		Terminated on boulders at 2.1 mbgs. Groundwater seepage not observed.												

	St LIENT	antecTEST PNLDECImplementation of the Remedial Action Plan and	P IT Add	RE	ECO	RD	tion -	Year	r 5	TES	T PIT N	o. <u>1</u>	5-P1-T	<u>P205</u>
	OCATION ATES (mm	Former U.S. Military Site, Hopedale, NL -dd-vv): DUG 10-31-15 WAT	ER L	EVI	EL	N/A	•			PRC	DJECT N	lo N/A	121413	099
	Ê		L			SAMF	LES		s		CHEMICA	AL ANALY	'SIS (ppm)	
DEPTH (m)	ELEVATION (n	DESCRIPTION	STRATA PLO	WATER LEVE	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READING (ppm)	Н	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
- 0 -		Blast rock (boulders) and silty SAND with gravel and organics; Occasional debris (glass):												
		FILL Minor clay observed above boulders or bedrock		* * *	BS	1	0	-	-	-	-	-	-	
-		at 2.0 mbgs.												-
- 1 -					BS	2	0	-	-	-	-	-	-	
 														-
- 2 -		End of Tost Dit			BS	3	0	-	-	-	-	-	-	
-		Terminated on boulders or bedrock at 2.0 mbgs.												
 		Groundwater seepage not observed.												
-														
- 3 -														-
-														
- 4 -														
-														
 . .														
- 5 -														-

	St	antecTESNLDECImplementation of the Remedial Action Plan	T PI	T I	RE	ECO	RD linea	tion -	Yea	r 5	TES	T PIT N	o. <u>1</u>	<u>.5-P3-T</u>	<u>P101</u>
	OCATION	Former U.S. Military Site, Hopedale, NL	WATE	DI	EVE	21	N/A	•			PRO	DJECT N	Jo N∕A	121413	099
	ATES (IIIII		WAI	CKL		SL —	SAMF	LES						SIS (ppm)
DEPTH (m)	ELEVATION (m)	DESCRIPTION		STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READINGS (ppm)	HdT	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
- 0 -		Brown organic PFAT													
			-	$\int_{-\infty}^{\infty}$											-
		End of Hand-Dug Test Pit		ر (//		BS	1	0	-	-	9300	nd	0.83	1.30	39.00
															-
-		Groundwater seepage observed at 0.3 mbgs.													-
- 1 -															
· ·															-
															-
															-
·															
- 2 -															-
·															-
															-
·															-
- 3 -															_
															-
															_
-															
															-
- 4 -															-
															-
·															
- 5 -						<u> </u>									
STANT	EC ENVIRON	MENTAL TEST PIT 3/31/16 2:39:51 PM													

	St LIENT ROJECT	Antec TES NLDEC Implementation of the Remedial Action Pla	ST PI	T F	RE	CO	RD	tion -	Year	r 5	TES	T PIT N	o. <u>1</u>	<u> 5-P3-T</u> 121413	<u>P102</u>
	OCATION	Former U.S. Military Site, Hopedale, NL	WATE	RI	FVF	a.	N/A	\			PRO	JECT N	№ N/A	121413	077
						<u> </u>	SAMP	LES					AL ANALY	SIS (ppm)	
DEPTH (m)	ELEVATION (m)	DESCRIPTION		STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READINGS (ppm)	HAT	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
- 0 -		Brown silty SAND: FILL		***											
-				*		BS	1	1		_	3400	nd	nd	nd	nd
-		End of Hand-Dug Test Pit	ř	~~~		0.0	1	1	-	-	3400	nu	na		
		Groundwater seepage not observed.													
- 1 - - 1 -															
- 2 -															-
-															
- 3 - - 3 -															
- 1 -															-
															-
 - - -															
- 5 -															
STANT	EC ENVIRON	MENTAL TEST PIT 3/31/16 2:30-51 PM													

	St	antec TE	ST PII	r R	RE	CO	RD							15 D2 T	D103
P	ROJECT	Implementation of the Remedial Action Pla	in and Ad	ldit	ion	al Del	lineat	tion -	Year	r 5	TES	T PIT N	0. <u> </u>	121413	099
	OCATION	<u>Former U.S. Mintary Site, Hopedale, NL</u> -dd-vv): DUG 11-1-15	WATER		VE	I.	N/A	•			_ РКО 	JECI F TIM	N/A		
							SAMP	LES				CHEMIC	AL ANALY	SIS (ppm)	
DEPTH (m)	ELEVATION (m)	DESCRIPTION		SIKAIAPLU	WATER LEVEL	ТҮРЕ	NUMBER	HYDROCARBON ODOUR	OTHER TESTS	PID READINGS (ppm)	НАТ	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
	-	Brown silty SAND: FILL			_	BS	1	0	_	-	4000	nd	nd	nd	nd
	-	End of Hand-Dug Test Pit													
	-	Groundwater seepage not observed.													
	-														
	-														
- 2 -	-														-
	-														
- 3 -	-														
	-														
· · ·	-														
- 4 -	-														
 - - -															
- 5 -		MENTAL TEST DIT 20104 - 22042 DM													

APPENDIX F

PCB Destruction Certificate

Metal-Impacted Soil Bill of Ladings/Weigh Slips

Certificate of Destruction

Saint-Ambroise October 26, 2015

<u>Generator :</u>	<u>Advisor :</u>
Government of NL	Sanexen Services Environnementaux In
P.O. Box 8700	9935, Avenue Catania, Entrée 1 - Bureau 2
St. JonhNL A1B 6J6	Brossard (Québec J4Z 3V4
Contact : Christa Curnew	Contact : Mario Leathead
We confirm treatment of your soils at Saint-Ambroise. The soils were man	our plant located in the industrial park of aged and treated in compliance with our Certificate

Saint-Ambroise. The soils were managed and treated in the industrial park of of Authorization delivered by the Quebec Ministry of Sustainable Development, Environment and the Fight against Climate Change :

 Permit :
 Thermal treatment of PCB and other organochloride impacted soils, issued on October 27, 1997

 Permit Ref. No. :
 7610-02-01-0603816 1142129

Treatment service : Therm Soils impacted with : PCB Treatment criteria : <a in<br="">S th	nal n reference to the standards set by the Ministry of the ustainable Development, Environment and Parks of ne Province of Quebec, Canada (<0.05 mg/kg)
Récupère Sol File No. :	120595.3
Destruction Certificate No	120595 3-d1

Volume of Soil Treated (kg): 685100

Yours truly,

M

Éloi Côté, Eng Process Engineer

> 80 des Mélèzes St., St. Ambroise, Quebec, Canada, G7P 2N4 Tel.: (418) 695-3302 Fax : (418) 695-3303

Bilan des arrivages

23-sept.-15

# Dossier	Heure d'entrée	Générateur	Contaminant	No. Billet pesée RSI	No. Manifeste	Transporteur	# imm.	Camionneur	Poid net (kg)
21-sept15	5								10750
120595.3	15:25	HopeDade (sanexen)	BPC	33700	PC55433-9	Transport F. Gilbert	RB3071P	Luc Turcotte	40750
120595.3	15:37	HopeDale (Sanexen)	BPC	33701	PC55434-7	Transport F. Gilbert	RB3073P	Benoit Girard	41540 82290
22-sept15	5								27520
120595.3	08:15	HopeDale (Sanexen)	BPC	33702	PC55435-4	Transport F. Gilbert	L354671	Real Jean	37530
120595.3	10:17	HopeDale (Sanexen)	BPC	33703	PC55440-4	Transport F. Gilbert	L631251	Luc Turcotte	34880
120595.3	10:40	HopeDale (Sanexen)	BPC	33704	PC55443-8	Transport Jules Savard	L513230	Jean-Francois Lavoie	40610
120595.3	10:48	HopeDale (Sanexen)	BPC	33705	PC55442-0	Transport Jules Savard	L568832	Simon-Pierre Tremblay	39740
120595.3	11:03	HopeDale (Sanexen)	BPC	33706	PC55441-2	Transport Jules Savard	L400135	Jonathan Beaudoin	41260
120595.3	11:48	HopeDale (Sanexen)	BPC	33707	PC55445-3	Transport Jules Savard	L517589	Julie Tremblay	40790
120595.3	12:14	HopeDale (Sanexen)	BPC	33708	PC55444-6	Transport Jules Savard	L400103	Gérome Jameaux	40790
120595.3	13:30	HopeDale (Sanexen)	BPC	33709	PC55436-2	Transport F. Gilbert	L631251	Luc Turcotte	35640
120595.3	14:07	HopeDale (Sanexen)	BPC	33710	PC55446-1	Transport Jules Savard	L513230	Jean-Francois Lavoie	39740
120595.3	14:26	HopeDale (Sanexen)	BPC	33711	PC55447-9	Transport Jules Savard	L568832	Simon-Pierre Tremblay	40240
120595.3	15:18	HopeDale (Sanexen)	BPC	33712	PC55448-7	Transport Jules Savard	L400135	Jonathan Beaudoin	39740
	1001112								430960
23-sept1	5								
120595.3	09:14	HopeDale (Sanexen)	BPC	33713	PC55438-8	Transport F. Gilbert	L513266	Luc Turcotte	40570
120595.3	09:58	HopeDale (Sanexen)	BPC	33714	PC55427-1	Transport Jules Savard	L513230	Jean-Francois Lavoie	40530
120595.3	10:35	HopeDale (Sanexen)	BPC	33715	PC55426-3	Transport Jules Savard	L640223	Steve Forgues	38840
120595.3	12:40	HopeDale (Sanexen)	BPC	33716	PC55439-6	Transport F. Gilbert	L513266	Luc Turcotte	11520
120595.3	12:46	HopeDale (Sanexen)	BPC	33717	PC55437-0	Transport F. Gilbert	L591839	Guillaume Gagné	40390
									171850
								Total général:	685100

Rapport de transactions par provenance Période du 2015/09/01 au 2015/09/28

Billet	Réf.	Date	Camion	Client	Contrat	Matière	Brut	Tare	Net
Terre-N	leuve						121122		
3696	A-9661	2015/09/22 15	21 LMREXC	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	49720	19430	30.29
3697	A-9660	2015/09/22 15:	22 LMREXC	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	40000	16730	23.27
3698	A-9659	2015/09/22 15:	22 LMREXC	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	48810	19520	29.29
3699	A-9658	2015/09/22 15:	23 LMREXC	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	41070	16800	24.27
3708	A-9662	2015/09/22 07:	00 FGILBERT	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	33600	15370	18.23
3709	A-9663	2015/09/22 07	:01 LMREXC	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	40370	16660	23.71
3710	A-9664	2015/09/22 07	:01 LMREXC	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	45960	19370	26.59
3711	A-9665	2015/09/22 07:	02 FGILBERT	1035 - Sanexen Services Environne	Sanexen - # PE-15-18	Sols contaminés	38980	17130	21.85
Total T	erre-Neuve: 8 billets)	3. 1. 1-				11111	338510 141	010	197.50

_			
T	-	-	
			х.

141010 197.50

338510

CONNAISSEMENT / BILL OF LADING

CONN	AISSEN	MENT / BILL OF LA	DING		F	éférence eference				3E-00	05		- S
Générateur Generator	/ Expéditeur Shipper	Nº d'Immatriculation - id., provincial Registration No. / Provincial ID No.	Transporteur / Carrier	N ^e d'Immatriculation - id. provincial Registration No. / Provincial ID No.		Destin Recei	nataire / ver	N ^e d'Ammatricu Registration No	elation - id, provincial o, / Provincial ID No.		SERVI		
NewFoundia Nom de l'entr P.O. Box 87 Adresse post US Former Adresse de lik Hopedale, I Ville / Oty 709-729-26 Téléphone / T christacume Oaume / Fon Christa Cum Responsable	nd and Labrador [eprise / Company 00, St-John's, NL ale / Mailing addre Military Base au de l'expédition . NL 48 elephone No. w@gov.nl.ca mail new / Person in charge	Department of Environment and convservation name , A1B 4J6 ss / Shipping site adress A0P 1G0 Code postal / Postal Code	Transport F, Gilbert Lté Nom de l'entreprise / Cor 150 route des Routiers Adresse postale / Mailing Chicoutimi (Quebec) Ville / City 418-698-4848 Téléphone / Telephone Nk gilles.tremblay@group/ Cournel / E-mail Gilles Tremblay Responsable / Person in co Véhicule/Vehicle	e npany name address G7ł Cod o, egilbert.com	H 5B1 e postal / Postal Coc	AES (Matre Nom de l'enti 1555 route Adresse pos Larouche (f ville / Qty 418 549-80 Téléphone / Raynald.pe Courriel / E-r Raynald Pe Responsable	ec) treprise / Con Dorval tale / Mailing Quebec) 074 Telephone No erron@matre mail erron a / Person in c	npany name address o, c,ca tharge	GOW 1Z0 Code poste	al / Postal Cocie	9935 Entre Bross 9935 Entra Bross Tel .: Fax	 avenue de Ca avenue de Ca ard (Québec) Catania Avenue nce 1, Suite 200 ard (Quebec) J4 450-466-1 450-466-1 	tania) J4Z 3V4 Z 3V4 2123 2240
, coperiodese	i la sur in a la ge	in a white and	1 ⁴ remwagon Trailer-Pail car No.	1 Persination	nixe. Pro	x Traile	a-Pail car No. 2		Nº dimmetriculation Registration No.	Prox	NIF	R : R5360	70-7-
UN	Appellatio	n réglementaire / Shipping name	Classe/ Class	Description	G.E./ P.G.	Masse Totale/ Total weight	Unités/ Units Kg œ/erL	Nº∕ No,	Contenant/ Pack. type	Coc	le prov. v. code	État Phys./ Phys. State	MDR / HW
N/R	Soil Co	ontaminated with Metals	N/R	Soil	N/R	18/50	kg		Quatrex Bag		I/R	S	no
Manuten EN CAS D	tion spécial d'URGENCE /	e / Special handling Ci- IN CASE OF EMERGENCY (24 HE	joint / Attached EURES / HOURS) A	Ci-contre / As fi PPELER / CALL : CA	ollows NUTEC 1 613	Placard: 996-6666 /							

Référence

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Réglement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur / Expéditeur - Generator / Shipper	Transporteur / Carrier	Destinataire / Receiver
Signature 2007 Date 15/09/22	Signature Races Seon Date	Signature Date
Nom complet / Full name DENOIT NANTE	Nom complet / Full name	Nom complet / Full name

Parc Environnemental AES inc.

CLIENT

- 15-18

Nom: <u>AMEXEN</u> Adresse: <u>7735 AV. DE CATANIA</u> <u>PROSPARD</u> <u>P.O.</u> Tél.: <u>5M-609 · 1543</u> Contact : <u>MARIO LEATHEAD</u> N de projet :

TPS: 143267300RT0001

TVO: 1022949591TQ0001

QUANTITÉ

14:43:15 14:43:15 10 : 9662 Poids : 33600 ke

14:51:50 22-09-2015 10 : 9662 Gross 33600 ks Tare 15370 ks Net 18230 ks

GÉNÉRATEUR

Nom: MID	CANAD	A L	INE
Adresse: BAS	De LA	SALES	AMERICAINE
TERRE - NI	=UVR	Tél.:	
Contact :			
Provenance :	LABAADO	R	
N de projet :			

TRANSPORT

Transporteur : ETER FRAMAND SILBER
Immatriculation ou n d'unité : <u>54_67/</u>
Chauffeur :
Signature * :
IO roues Semi-remorque Bi-train
I2 roues Conteneur #:
Autre :

LIEU D'ENFOUISSEMENT DE SOLS CONTAMINÉS

- SITE : 1555, Route Dorval Larouche (Québec) G0W IZ0
- ADM.: 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél.: 418 549-8074 • Téléc.: 418 549-7973

TÉMOIN DE CHARGEMENT

Compagnie :

Signature * : _____

Date et heure :

Endroit du chargement :

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles % (max. 25%)

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	_
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		22/2/20/5
Localisation :		ecllule/
Responsable :	Daniel	havinal.

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

I - Blanche: DOSSIER

2 - Jaune: CLIENT 3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

A-09662

				Page 1	L	Reference		92		_ 000		p	
Generateu Generator	r / Expediteur / Shipper	Nº d'immatriculation - id, provincial Registration No. / Provincial ID No.	Transporteur / Carrier	N ⁴ d'Immatriculation - M. provincial Registration No. / Provincial ID No.		Destin Receiv	iataire / ver	N ^e d'immatricula Registration No.	ation - id. provincial / Provincial ID No.		SERVICE		
NewFound	and and Labrador D	epartment of Environment and convservation	Transport F. Gilbert Lte	ée		AES (Matre	HC)				9935,	avenue de Ca	tania
Norn de l'en P.O. Box 8	treprise / Company	A18 4 16	Nom de l'entreprise / Cor 150 route des Routiers	npany name		Nom de l'ent	reprise / Con	npany name			Entrée	1, bureau 200)
Adresse pos	tale / Mailing addres	\$\$	Adresse postale / Mailing	address		Adresse post	ale / Mailind	address			Brossa	rd (Québec) ٫	J4Z 3V4
US Forme	r Military Base		Chicoutimi (Quebec)	G7H	§ 5B1	Larouche (C	Quebec)		GOW 1Z0				
Adresse de l	lieu de l'expédition /	Shipping site adress	Ville / City	Cod	e postal / Postal Co	de Ville/City			Code postal / Po	ostal Code	9935 (Catania Avenue	
Hopedale,	NL	ADP 1G0	418-698-4848			418 549-80)74 Teleshese Nie				Entranc	e 1, Suite 200	
709-729-26	548		ailles.tremblav@aroup	eailbert.com		Ravnald pe	rron@matre	n. Konca			Brossar	d (Quebec) J4	2374
Téléphone /	Telephone No.		Courriel / E-mail			Courriel / E-n	nail	0.00					
christacum	ew@gov.nl.ca		Gilles Tremblay			Raynald Pe	πon				Tel.:	450-466-2	2123
Courriel / E-I	mail		Responsable / Person in	charge		Responsable	/ Person in c	harge			Fav.	450 466	01/0
Besponsable	mew / Person in charge		Véhicule/Vehicle								I an.	430-400-	2240
i iesporisable	er reisonn chaige		1** rem-wacon	Nº d'immatric	ulation	2	rem-wacoo		Nº d'immetrici lation	1	AUD	DECO	
			Traller-Pail car No.	1 Pagistration	Nb. H	X. Traile	r-Pail car Nb. 2	_	Pegistration No.	Prov.	NIH	: H5360	10-1-
					- ki		_		_				
UN	Appellatio	n réglementaire / Shipping name	Classe/ Class	Description	G.E./ P.G.	Masse Totale/ Total weight	Unites/ Units Kg os/or L	Nº/ No.	Contenant/ Pack. type	Code Prov.	prov. code	État Phys./ Phys. State	MDR / H
N/R	Soil Co	ntaminated with Metals	N/R	Soil	N/R	22320	kg	17	Quatrex Bags	N/I	R	S	по
							-						
											_		
					1								
					1 1								1

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Règlement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur//Exréditeur /Generator / Shipper	Transporteur / Carrier	/ / Destinataire / Receiver
Signature Date 15/09/22	Signature LLN Date 7	09/2015 Signature Date
Nom complet / Full name BENOIT IVANTE]	Nom complet / Full name	Nom complet / Full name

- SITE : 1555, Route Dorval Larouche (Québec) G0W 1Z0
 - ADM. : 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél. : 418 549-8074 • Téléc. : 418 549-7973

Parc Environnemental AES inc.

TPS : 143267300RT0001 TVQ : 1022949591TQ0001

CLIENT

Nom:	MEX	EN		
Adresse:	735	AUE.	DE	CATRINIA
BROSSIAR!	D	F.Q.	Tél.:	514-001-7549
Contact : _	MARI	o her	THE	9 D
N de projet				

QUANTITÉ

(9150150 09150150 10 1 9665 Folde 1 38985 bs

10:08:39 23-09-2015 ID : 9665 Eress 32980 ks Tare 17130 ks Nat 21850 ks

GÉNÉRATEUR

Nom: MIT	CANADA	LINE
Adresse: BASE	De L'Année	AMERICAINE
TERRE. NE	00 <u>E</u> Tél.:	
Contact :		
Provenance :	ABRADOR	
N de projet : _		

TRANSPORT

Transporteur	TRASPORT ES	ILBERT_
Immatriculatio	on ou n d'unité : <u><u>RE</u></u>	127
Chauffeur :	SCHILLAUME	AGNE
Signature * : _	lu Maure 6	Apri _
0 roues	Semi-remorque	Bi-train
12 roues	Conteneur #:	
Autre :		

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature * : _____

Date et heure :

Endroit du chargement : _____

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles

_____% (max. 25%)

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

	En dehors des heures d'opération :
	Décontamination :
	Aide au déchargement :
	Échantil. / analyse :
	Autres :
Sig	nature du transporteur * :

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		22/9/2015
Localisation :		cellul 1
Responsable :	Deniel (howing

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

2 - Jaune: CLIENT

I - Blanche: DOSSIER

3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

CONN	AISSEN	IENT / BILL OF LA	DING		Ré Re	érence ference				BE-0	000 Ž				
Générateur Generator /	/ Expéditeur / Shipper	M d'immatriculation - iti, provincial Registration No. / Provincial ID No.	Transporteur / Carrier	N ^e d'Immatricutation - Id, provincial Registration No. / Provincial ID No.		Destina Receive	ataire / er	Nº d'immatricula Registration No.	ttion - id. provincial / Provincial 1D No.						
NewFoundla Nom de l'ent P.O. Box 87	nd and Labrador D reprise / Company 700, St-John's, NL	Pepartment of Environment and convservation name ., A1B 4J6	Transport F. Gilbert Lto Nom de l'entreprise / Con 150 route des Routiers	e npany name	-	AES (Matrec Nom de l'entre 1555 route D	:) eprise / Com)orval	pany name			– 9935 Entré Bross	, avenue de Ca e 1, bureau 20 sard (Québec)	tania 0 J4Z 3V4		
Adresse post US Former Adresse de li Hopedale,	ale / Mailing addre Military Base eu de l'expédition / NL	/ Shipping site adress AOP 1G0 Code postal / Postal Code	Adresse postale / Mailing Chicoutimi (Quebec) Ville / City 418-698-4848 Téléphone / Telephone N	address G7H 5B1 Code posta	ií / Postal Code	Adresse posta Larouche (Qu Ville / City 418 549-807 Téléphone / Te	uebec) 74 alephone No.	address	GOW 1ZC Code pos) stal / Postal Co	xde 9935 Entrar Bross	9935 Catania Avenue Entrance 1, Suite 200 Brossard (Jushen) 147 31/4			
Ville / Gty Code postal / Hostal Code 709-729-2648 Téléphone / Telephone No. christacumew@gov.nl.ca Courriel / E-mail Christa Curnew			Gilles tremblay@groupegilbert.com Courriel / E-mail Gilles Tremblay Responsable / Person in charge				Raynald,perron@matrec.ca Courriel / E-mail Raynald Perron Responsable / Person in charge				– Tel.: Fax	Tel.: 450-466-2123 Fax: 450-466-2240			
Hespoi isabie	7 Person in Gharge		1 ⁴⁰ rem -wagor Tirailer-Pail car No	1 RC 1992	NQ	2° m Thaier	emwagon -Reil car No. 2		Nº d'immetriculation Registration No.	Pr	× NH	R5360	70-7-		
UN	Appellatio	on réglementaire / Shipping name	Classe/ Class	Description	G.E./ P.G.	Masse Totale/ Total weight	Unities/ Units Kg eu/or L	Nº∕ No.	Contenant/ Pack. type		Code prov. Prov. code	État Phys./ Phys. State	MDR / H		
N/R	Soil Co	ontaminated with Metals	N/R	Soil	N/R	24480	kg	20	Quatrex Ba	ags	N/R	S	no		
			1 1												

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Règlement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on there, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur / Expéditeur - Generator / Shipper	Transporteur / Carrier	Destinataire / Receiver
Signature Date 15 [9] 22	Signature 27/09/15	Signature Date
Nom complet / Full name Brann NANTCI	Nom complet / Full name Steeve Ses Seville	Nom complet / Full name

- SITE : 1555, Route Dorval Larouche (Québec) G0W 1Z0
- ADM. : 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél. : 418 549-8074 • Téléc. : 418 549-7973

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature * :_____

Date et heure : _____

Endroit du chargement :____

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles % (max. 25%)

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		22/9/2015
Localisation :		allule 1
Responsable :	Danela	minal.

CLIENT Nom: <u>SAMEXEN</u> Adresse: <u>9,935 AV. DE CATAWIA</u> BROSSARD P. O. Tél.: <u>514-608-9540</u> Contact : <u>MARIO LEATHEAD</u> N de projet : _____

Parc

ES inc.

TPS: 143267300RT0001 TVQ: 1022949591TQ0001

Environnemental

QUANTITÉ

09144132 09144132 10 1 9658 Paide 1 41070 km

-15-18

10:01:49 22-09-2015 10 : 9658 Gross 41070 ka Tare 16800 ka Net 24270 ka

GÉNÉRATEUR

Nom: _/	MID.	- CA	NALA	LINE
Adresse:	BASE	De	DARNEE	AMERICAINE
TERRE - A	FOVE		Tél.:	
Contact :		2.2		

Provenance : _____AAKA DO A

N de projet : ____

TRANSPORT

Transporteur :	LMR
Immatriculation	n ou n d'unité :
Chauffeur :	STEEVE SASULALE
Signature * :	
I0 roues	Semi-remorque Bi-train
I2 roues	Conteneur #:
Autre :	

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

I - Blanche: DOSSIER

2 - Jaune: CLIENT 3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

CONNAISSEMENT / BILL OF LADING

							Ref	erence						7		
Générateu Generator	[•] / Expédiiteur / Shipper	NP d'immatriculation - id, provincial Registration No. (Provincial ID No.	Transporter Carrier	r / Nº d'imm Registrati	atriculation - kl, provincial an No. / Provincial ID No.			Destin Receiv	ataire / /er	N ^e d'immatrice Registration N	utation - id. provincial a. / Provincial ID Mo.		SERVI			
NewFoundla	nd and Labrador i	Department of Environment and convservation	Transport F. Gilbe	t Ltée				AES (Matre	c)				9935	5, avenue de Ca	tania	
Nom de l'entreprise / Company name P.O. Box 8700, St. John's, NI, A1B / J6			Nom de l'entreprise.	Company na	ne			Nom de l'ent	eprise / Cor	npany name			Entre	ée 1. bureau 20	0	
Adresse post	ou, st-Junnis, Ni	_, A18 4J0	Adresse rostale / Mailing address			1555 route	Dorval				Bros	sard (Québec)	J47 3V4			
US Former	Military Base	25	Adresse postale / Mailing address Ad			Adresse post	ale / Mailing	g address	0014470							
Adresse de li	eu de l'expédition	/ Shipping site adress	Ville / City	.,	Code p	octol / Doctol	Codo		(uebec)		GUW 120	1 (De stal Oe ale	9935	5 Catania Avenue		
Hopedale,	NL	AOP 1G0	418-698-4848		code p	Ustai / Fustai	Code	418 549-80	74		Code post	al / Postal Code	Entra	nce 1 Suite 200		
Ville / City		Code postal / Postal Code	Téléphone / Telephor	e No.				Téléphone / 1	elephone N	o.			Brook	ard (Quebee)	17 21/4	
709-729-26	48		gilles.tremblay@gi	oupegilbert.c	mox			Raynald.pe	Ton@matre	ec.ca			DIUS	alu (QUEDEC) Ja	f2 3V4	
Téléphone / 7	elephone No.		Courriel / E-mail					Courriel / E-n	nail				a			
christacume	ew@gov.nl.ca		Gilles Tremblay					Raynald Pe	TON				Tel.	: 450-466-	2123	
Courriel / E-n	nail		Responsable / Perso	in charge				Responsable	/ Person in (charge			Eax: 450 466 0040			
Consta Cun	(Person in charge		Véhicule/Vehicle										Ian	. 430-400-	2240	
responsable	/ Herson in charge		100 rome to		NE efferentia de	- I	-	-			10.4					
			Trailer-Pail ca	No. 1	Pegistration N	stration No. Prov.		Trailer-Fail car		2 Registration No.		Ptov.	NIF	R5360	70-7-	
]			
UN	Appellatio	on réglementaire / Shipping name	Classe/ Class	Des	cription	G.E./ P.G.	M	lasse Totale/ lotal weight	Unities/ Units Kg os/or L	Nº/	Contenant/ Pack. type	Co	de prov. ov. code	État Phys./ Phys. State	MDR / HW	
N/R	Soil Co	ontaminated with Metals	N/R	;	Soil	N/R	2	6900	kg	24	Quatrex Ba	gs I	N/R	S	no	
Manuten EN CAS D	tion spécial VURGENCE /	e / Special handling Ci- IN CASE OF EMERGENCY (24 HE	joint / Attached EURES / HOURS	APPELE	i-contre / As folk R / CALL : CANU	ows JTEC 1 6	Pla 13 99	acard: 6-6666 /_			·					

Référence

DE-0002 I

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Règlement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur// Expéditeur -/Generator / Shipper	Transporteur / Carrier	Destinataire / Receiver
Signature Dete 15/09/22	Signature Singe Un Or Rate	Signature Date
Nom complet / Full name BEDDIT WANTEL	Nom complet / Full manne	Nom complet / Full name

- SITE : 1555, Route Dorval Larouche (Québec) G0W 1Z0
- ADM. : 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél. : 418 549-8074 • Téléc. : 418 549-7973

CLIENT Nom: <u>AMEXEN</u> Adresse: <u>PRE AVE. DE CATARIA</u> BARGARD P.Q. Tél.: <u>514-609-1549</u> Contact : <u>MARIO LEATIMEND</u> N de projet : _____

Parc

AES inc.

TPS : 143267300RT0001 TVQ : 1022949591TQ0001

Environnemental

QUANTITÉ

E-15-

15:36:39 15:36:39 10:1 9664 Puids:1 45960 kg

15145101 22-09-2015 ID 1 9664 Bross 45960 ka Tare 19370 ka Net 26590 ka

GÉNÉRATEUR

Nom: 111D CAMADA	LNE
Adresse: BASE De L'ARA	NE AMERICAINE
TERRE- NEUVE	Tél.:
Contact :	

Provenance : ABAADOR

N de projet : __

TRANSPORT

Transporteur :A
Immatriculation ou n d'unité : <u>L 568 899</u>
Chauffeur : SERSE DUFOUR
Signature * : Signature & Johner
10 roues Semi-remorque Bi-train
I2 roues Conteneur #:
Autre :

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature * : _____

Date et heure : _____

Endroit du chargement :_____

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		22/9/2015
Localisation :		Cellule 1
Responsable :	Daniel Or	and.

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

2 - Jaune: CLIENT

I - Blanche: DOSSIER

3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

A- 09664

CONNAISSEMENT / BILL OF LADING

						Re	terence					ue.		
Générateur Generator	r / Expéditeur / Shipper	N ^o d'immatriculation - id. provincial Registration No. / Provincial ID No.	Transporteur Carrier	/ M ⁴ d'Immatric Registration N	dation - Id. provincial a. / Provincial ID No.		Destin Receiv	ataire / /er	N ^o d'immatricula Registration No. 1	ttion - id. provincial / Provincial ID No.				
NewFoundland and Labrador Department of Environment and convservation Nom de l'entreprise / Company name P.O. Box 8700, St-John's, NL, A1B 4J6 Actesso postele (Mailing address			Transport F. Gilbert Ltée Nom de l'entreprise / Company name 150 route des Routiers			AES (Matrec) Nom de l'entreprise / Company name 1555 route Dorvat				99 En Bro	9935, avenue de Catania Entrée 1, bureau 200 Brossard (Québec) J4Z 3V4			
US Former Military Base Adresse de lieu de l'expédition / Shipping site adress Hopedale, NL AOP 1G0			Chicoutimi (Quebec) G7H 5B1 Ville / City 418-698-4848 418-5900 - 2000 potal / Postal Code			Valuesse posial / Mailing address Larouche (Quebec) G0W 1Z0 Ville / City Code postal / Postal Code 418 549-8074 Code postal / Postal Code				99 Ent	9935 Catania Avenue Entrance 1, Suite 200			
709-729-26 Téléphone / 1 christacume	48 Telephone No. ew@gov.nl.ca	Code postal / Postal Code	Téléphone / Telephone No. gilles.tremblay@groupegilbert.com Courriel / E-mail Gilles Tremblay				Téléphone / Telephone No. Raynald.perron@matrec.ca Courriel / E-mail Raynald Perron				Brossard (Quebec) J4Z 3V4			
Courriel / E-n Christa Cun Responsable	neil new / Person in charge	3	Responsable / Person in charge Véhicule/Vehicle			Responsable	Responsable / Person in charge				Fax: 450-466-2240			
		1 ⁴⁴ rem-wagon Nº dimmetriculation Prox. Trailer-Pail car No. 1 Photostration No.		Z ^a remwagon NP d'immethia Tripiler-Pail car No. 2 Pegistration		Registration No.	Proc.	N	NIR: R536070-7-					
UN	Appellatio	on réglementaire / Shipping name	Classe/ Class	Descri	ption G.E./ P.G.		lasse Totale/ Total weight	Unites/ Units Kg eo/er1	N°∕ No.	Contenant/ Pack. type	C	ode prov. rov. code	État Phys./ Phys. State	MDR / HV
N/R	Soil Co	ontaminated with Metals	N/R	Sc	oil N/R	2	1800	kg	20	Quatrex Ba	gs	N/R	S	no
Manuten EN CAS E	tion spécial D'URGENCE /	e / Special handling Ci- / IN CASE OF EMERGENCY (24 HI	joint / Attached EURES / HOURS)	Ci-(contre / As follows / CALL : CANUTEC 1	Pl 613 99	acard:)6-6666 / _							

Référence

BE-0000

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Règlement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur/Expéditeur - Generator / Shipper	Transporteur / Carrier	Destinataire / Receiver
Signature Date 15/09/22	Signature 20109[15	Signature Date
Nom complet / Full name BEDOIT WANTEL	Nom complet / Full name Steeve SGSS eville	Nom complet / Full name

- SITE : 1555, Route Dorval Larouche (Québec) G0W 1Z0
- ADM. : 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél. : 418 549-8074 • Téléc. : 418 549-7973

CLIENT Nom: <u>ANEKEN</u> Adresse: <u>1925</u> <u>An</u> De <u>CATARITA</u> <u>Anoscar B</u> <u>P.O.</u> Tél.: <u>SIM-607-7549</u> Contact : <u>MARIO LEPTHEAD</u> N de projet : _____

AES inc.

TPS: I43267300RT0001 TVO: I022949591T00001

Parc

Environnemental

QUANTITÉ

F-15-10

15:35:30 15:35:38 10: 9663 Paids: 40370 ka

1514):26 22-09-2015 ID t 9663 Gross 40370 ks Tare 16660 ks Net 23710 ks

GÉNÉRATEUR

Nom: MID CANADA 1	INTE
Adresse: Base De L'ARMER	AMERICANNE
TERRE- Navure Tél.	
Contact :	
Provenance : LABRA DER	
N de projet :	

TRANSPORT

Transporteur :
Immatriculation ou n d'unité : 1. 35.3. 297
Chauffeur :
Signature * :
I lo roues Semi-remorque Bi-train
I2 roues Conteneur #:
Autre :

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature * : _____

Date et heure : _____

Endroit du chargement : _____

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		a)alaors
Localisation :		colluto /
Responsable :	Danill	animal.

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

I - Blanche: DOSSIER

2 - Jaune: CLIENT 3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

A-09663

	AISSEI	VIEN I / BILL OF LA	DING		Ret	erence			BE-00	02		
Générateur Generator /	/ Expéditeur / Shipper	Nº d'Immatriculation - id. provincial Registration No. / Provincial ID No.	Transporteur / Carrier	N ⁴ d'immatriculation - id. provincial Registration No. / Provincial ID No.		Destinataire / Receiver	N ^e d'immatricula Registration No. /	ation - id, provincial / Provincial ID No,		S/		
NewFoundland and Labrador Department of Environment and convservation Nom de l'entreprise / Company name P.O. Box 8700, St-John's, NL, A1B 4J6 Adresse postale / Mailing address			Transport F. Gilbert Ltée // Nom de l'entreprise / Company name // 150 route des Routiers // Adresse postale / Mailing address //			AES (Matrec) Nom de l'entreprise / Company name 1555 route Dorval Adresse postale / Mailing address				9935, avenue de Catania Entrée 1, bureau 200 Brossard (Québec) J4Z 3V4		
US Former Military Base Adresse de lieu de l'expédition / Shipping site adress Hopedale, NL AOP 1G0 Ville / Gty Code postal / Postal Code Too Too co			Chicoutimi (Quebec) G7H 5B1 L Ville / City Code postal / Postal Code V 418-698-4848 T E Téléphone / Telephone No.			Larouche (Quebec) GOW 1Z0 Ville / City Code postal / Postal Code 418 549-8074 Téléphone / Telephone No.				9935 Catania Avenue Entrance 1, Suite 200 Brossard (Quebec) J4Z 3V4 Tel.: 450-466-2123 Fax: 450-466-2240 NIR: R536070-7-		
Téléphone / Telephone No. christacumew@gov.nl.ca Courriel / E-mail Christa Curnew Responsable / Parson in charge			Gurriel / E-mail Gilles Tremblay Responsable / Person in charge Véhicule/Vehicle 1 ^{fer} remwagon Trailer-Pail car No. 1 Nº dimmatriculation Feditation No. Responsable / Person in charge			Courriel / E-mail Raynald Perron Responsable / Person in charge 2º rem-wappn Trailer-Rail or No. 2 Registration No.						
UN	Appellatio	on réglementaire / Shipping name	Classe/ Class	Description	G.E./	Asse Totale/ Units/ Total weight Kg ev/or	Nº/	Contenant/ Pack. type	Coo	le prov. v. code	État Phys./ Phys. State	MDR / H
N/R	Soil Co	ontaminated with Metals	N/R	Soil	N/R 2	42.05 kg	22	Quatrex Ba	gs N	I/R	S	no
				-								
			2									
Manuten EN CAS D	tion spécial D'URGENCE /	e / Special handling Ci- / IN CASE OF EMERGENCY (24 Hi	-joint / Attached [EURES / HOURS) A	Ci-contre / As foll PPELER / CALL : CAN	ows Pl UTEC 1 613 9	acard: 96-6666 /						

The state of the second

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Réglement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur / Expéditeur - Generator / Shipper	Transporteur / Carrier	Destinataire / Receiver
Signature 13/04/22	Sgrature Sunge Juppingente	Signature Date
Nom complet / Full name	Nom complet / Full name	Nom complet / Full name

- SITE : 1555, Route Dorval Larouche (Québec) GOW 1Z0
- ADM.: 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél.: 418 549-8074 • Téléc.: 418 549-7973

Parc Environnemental AES inc.

CLIENT

Nom:	SANEXEN
Adresse:	7,935 AU. DE CATANIA
BRASSA	AD P. Q
Contact :	MARIO LEATHEAD
N de pro	iet :

TPS: 143267300RT0001 TVQ: 1022949591TQ0001

QUANTITÉ

09:47:48 09:47:48 18007:38 24589-2015 Raids : 40810 kg Crois 40810 kg Tare 19520 kg

GÉNÉRATEUR

Nom: MID CANADA LINE
Adresse: Base De L ARMée AMERICAINE
TERRE - NEUVE Tél.:
Contact :
Provenance :AAAB DOA
N de projet :

TRANSPORT

Transporteur :R	
Immatriculation ou n d'unité :	568 899
Chauffeur :EAG &	JEODR
Signature *: Signature	Lufour
10 roues Semi-remor	que 🏹 📃 Bi-train
I 2 roues Conteneur ;	#:
Autre :	وغيا المحكمة الكمي

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature *:

Date et heure :

Endroit du chargement :_____

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles

_____% (max. 25%)

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		22/1/2015
Localisation :		cellulo 1
Responsable :	David C	manuel

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

I - Blanche: DOSSIER 2 - Jaune: CLIENT

3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

A-09659

CONNAISSEMENT / BILL OF LADING				1	Référence Reference				BE-0	004	/		
Générateur Generator /	/ Expéditeur Shipper	N° d'immatriculation - id, provincial Registration No. / Provincial (D No.	Transporteur / Carrier	M [®] d'Immatriculation - Id. provincial Registration No. / Provincial ID No.		Destin Receiv	ataire / /er	N ⁴ d'immatricu Registration No	lation - id, provincial). / Provincial ID No.				
NewFoundlar	nd and Labrador D	epartment of Environment and convservation	Transport F. Gilbert Lte	e		AES (Matre	c)				0035	avanua da Ca	topio
Nom de l'entr	eprise / Company	name	Nom de l'entreprise / Cor	Nom de l'entreprise / Company name			Nom de l'entreprise / Company name					, avenue ue ca	0
P.O. Box 8700, St-John's, NL, A1B 4J6		150 route des Routiers			1555 route	1555 route Dorval					e 1, bureau 20	U	
Adresse posta	ale / Mailing addre	SS	Adresse postale / Mailing	address		Adresse post	ale / Mailing	address			- Bross	sard (Quebec)	J4Z 3V4
US Former	Military Base		Chicoutimi (Quebec)	G7H 8	5B1	Larouche (C	Quebec)		GOW 1Z0		-		
Adresse de lie	eu de l'expédition /	Shipping site adress	Ville / City	Code p	oostal / Postal Co	de Ville / City			Code pos	tal / Postal Code	9935	Catania Avenue	
Hopedale, N		AOP 1G0	418-698-4848			418 549-80	74				Entrar	nce 1, Suite 200	1
Ville / Qty		Code postal / Postal Code	Téléphone / Telephone Na).		Téléphone / 1	Telephone No).			Bross	ard (Quebec) .14	17.31/4
709-729-264	18		gilles.tremblay@group	egilbert.com		Raynald.per	rron@matre	c.ca			Brood	and (ddobboo) o	
christacumo	elephone No.		Courriel / E-mail			Courriel / E-n	nail						
Counciel / E	w@gov.ni.ca		Gilles Tremblay			Raynald Pe	rron				_ Tel.:	450-466-	2123
Christa Cum			Hesponsable / Person in d	charge		Responsable	/ Person in c	harge			Eav	450 466	0040
Responsable /	Person in charge		Véhicule/Vehicle								Tax	400-400-	2240
· ooporiodoice /	in a sorrar charge		venicule/venicae										
			Trailer-Pail car No.	RLYLT	SA A	× Trais	r-Reil car No. 2		Registration No.	Prov.	NIF	R: R5360	70-7-
UN	Appellatio	n réglementaire / Shipping name	Classe/ Class	Description	G.E./ P.G.	Masse Totale/ Total weight	Unités/ Units Kg ow/or L	Nº/ No.	Contenant/ Pack. type		ode prov.	État Phys./ Phys. State	MDR / H
N/R	Soil Co	ontaminated with Metals	N/R	Soil	N/R	30480	kg	24	Quatrex Ba	igs	N/R	S	no
Manutent EN CAS D	tion spéciale VURGENCE /	e / Special handling Ci- IN CASE OF EMERGENCY (24 H	joint / Attached [EURES / HOURS) A	Ci-contre / As fol PPELER / CALL : CAN	lows UTEC 1 613	Placard: 996-6666 / .							

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'il est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Règlement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur / Kapéditeur / Génerator / Shipper	Transporteur / Carrier	Destinataire / Receiver	
Signature 7/24 1 Dage D/04/22	Signature Singe Julour Date	Signature Date	
Nom complet/Full name DEUDI / VANTEI	Nom complet 7 Full me	Nom complet / Full name	V Incom

- SITE : 1555, Route Dorval Larouche (Québec) G0W 1Z0
- ADM.: 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél.: 418 549-8074 • Téléc.: 418 549-7973

Parc

TPS : I43267300RT0001 TVQ : I022949591TQ0001

Environnemental

QUANTITÉ

13:11:17 22-09-2015 ID : 9661

Poids : 49720 ks

13:02:18 13:02:18

8ross 49720 ks Tare 19430 ki Net 30290 ks

GÉNÉRATEUR

Nom: M.D. CANA	DA LIA	115
Adresse: Base De	['ARNEE	AMERICAINE
JERRE- NEUVE	Tél.:	
Contact :		
Provenance :AP	RODOR	/
N de projet :		

TRANSPORT

Transporteur :	MR
Immatriculation ou n	d'unité : <u>L 568 877</u>
Chauffeur :	ge Dufour"
Signature * :	mye Informa
	emi-remorque 🔡 Bi-train
I2 roues	Conteneur #:
Autre :	a stander i stander ander ander

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature * : _____

Date et heure :

Endroit du chargement :_____

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles ______% (max. 25%)

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		22/9/2015
Localisation :		cellulo 1
Responsable :	Daniel de	our rail

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

2 - Jaune: CLIENT

4 - Or: COMPTABILITÉ

A-09661

ICLT-73945

CONNAISSEMENT / BILL OF LADING

					Ret	erence		_		- 000	1		
Générateur Generator /	/ Expéditeur Shipper	N ^o d'Immatriculation - id. provincial Registration No. / Provincial ID No.	Transporteur / Carrier	N ^e d'Immatriculation - id. provincial Registration No. / Provincial ID No.		Destinat Receiver	aire /	N ^e d'immatricula Registration No.	ation - id. provincial / Provincial ID No,		SERVIC		
NewFoundland and Labrador Department of Environment and convservation Nom de l'entreprise / Company name P.O. Box 8700, St-John's, NL, A1B 4J6 Adresse postale / Mailing address US Former Military Base			Transport F. Gilbert Ltée Nom de l'entreprise / Company name 150 route des Routiers Adresse postale / Mailing address Chicoutimi (Quebec) G7H 5B1			AES (Matrec) Nom de l'entreprise / Company name 1555 route Dorval Adresse postale / Mailing address					9935, avenue de Catania Entrée 1, bureau 200 Brossard (Québec) J4Z 3V4		ania) 14Z 3V4
Adresse de lieu de l'expédition / Shipping site adress Hopedale, NL AOP 1G0 Ville / City Code postal / Postal Code 709-729-2648 Téléphone / Télephone No.			Ville / City Code postal / Postal Code 418-698-4848 Téléphone / Telephone No. gilles.tremblay@groupeglibert.com Courriel / E-mail			Ville / City Code postal / Postal Code 418 549-8074 Téléphone / Telephone No. Raynald, perron@matrec.ca				ostal Code	 9935 Catania Avenue Entrance 1, Suite 200 Brossard (Quebec) J4Z 3V4 Tel.: 450-466-2123 Fax: 450-466-2240 		
christacumew@gov.nl.ca Courriel / E-mail Christa Cumew Responsable / Person in charge			Gilles Tremblay Responsable / Person in charge Véhicule/Vehicle			Raynald Perron Responsable / Person in charge				Prox			
UN	Appellatio	n réglementaire / Shipping name	Classe/ Class	RC 7777 Description	G.E/	lasse Totale/	Unities/	Nº/	Contenant/	Code	e prov.	État Phys/	MDR/HW
N/R	Soil Co	ontaminated with Metals	N/R	Soil	N/R Z	4500	kg	18	Quatrex Bags	N/	/R	S	no
Manutori	ion orácial												
EN CAS D	URGENCE /	IN CASE OF EMERGENCY (24 H	EURES / HOURS) A	CI-contre / As follow PPELER / CALL : CANUT	vs Pl EC 1 613 99	acard: 96-6666 /							

Référence

DE-0001

Je déclare que le contenu de ce chargement est décrit ci-dessus de façon complète et exacte par l'appellation réglementaire adéquate et qu'îl est convenablement classifié, emballé et muni d'indications de danger - marchandises dangereuses et à tous égards bien conditionné pour être transporté conformément au Règlement sur le transport des marchandises dangereuses.

I hereby declare that the contents of this possignment are fully and accurately described above by the proper shipping name, are properly classified and packaged, have dangerous goods safety marks properly affixed or displayed on them, and are in all respects in proper condition for transport according to the Transportation of Dangerous Goods Regulations.

Générateur / Expediteur - Generator / Shipper	Transporteur / Carrier	Destinataire / Receiver
Signature Date 15/04/22	Signature Date 22 09/14	Signature Date
Nom complet / Full name	Nom complet / Full name Steeve Sasseville	Nom complet / Full name

- SITE : 1555, Route Dorval Larouche (Québec) G0W 1Z0
- ADM.: 3199, boul. Talbot Chicoutimi (Québec) G7H 5B1 Tél.: 418 549-8074 • Téléc.: 418 549-7973

Parc

AES inc.

TPS: 143267300RT0001 TVQ: 1022949591TQ0001

Environnemental

QUANTITÉ

. 15.

13:00:21 13:00:21 10 1 9660 Paids 1 40000 ks

13:07:49 22-09-2015 10: 9660 Grass 40000 ka Tare 16730 ka Net 23270 ka

GÉNÉRATEUR

Nom: _///T	"ANADA L	INE
Adresse: BASE	DE L'ARMENT	AMERICAINE
TERR NEU	Tél.:	
Contact :		
Provenance :	ARRADOR	
N de projet :		

TRANSPORT

Transporteur : _	LMR
Immatriculation of	ou n d'unité :
Chauffeur :	Teeve Sanville
Signature * :	ga-
0 roues	🔏 Semi-remorque 📃 Bi-train
12 roues	Conteneur #:
Autre :	

TÉMOIN DE CHARGEMENT

Compagnie : _____

Signature * : _____

Date et heure : _____

Endroit du chargement :

N de projet : _____

TYPE D'ARRIVAGE

SOL : Évaluer le % de matières résiduelles

DÉCHET SPÉCIAL : Joindre une copie du certificat d'autorisation

AUTRES SERVICES

En dehors des heures d'opération :	
Décontamination :	
Aide au déchargement :	
Échantil. / analyse :	
Autres :	
Signature du transporteur * :	

ACCEPTATION AU SITE

	Entreposage	Enfouissement
Date et heure :		salalaors
Localisation :		cellulo 1
Responsable :	Daniel ?	au nel

FQ 4.3.3. * Je, soussigné, reconnais avoir pris connaissance des présentes, ainsi que des conditions apparaissant au verso des présentes, et je m'engage à les respecter.

2 - Jaune: CLIENT 3 - Rose: TRANSPORTEUR

4 - Or: COMPTABILITÉ

A-09660

IMPLEMENTATION OF THE REMEDIAL ACTION PLAN AND ADDITIONAL DELINEATION – YEAR 5, FORMER U.S. MILITARY SITE, HOPEDALE, NL

APPENDIX G

ProUCL Output

ProUCL Output

Forecasted EPCs – Area 1

UCL Statistics for Data Sets with Non-Detects

User Selected Options	5
Date/Time of Computation	3/31/2016 10:19:48 AM
From File	input_area1.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Cadmium

	General Statistics		
Total Number of Observations	17	Number of Distinct Observations	8
Number of Detects	10	Number of Non-Detects	7
Number of Distinct Detects	8	Number of Distinct Non-Detects	1
Minimum Detect	0.3	Minimum Non-Detect	0.3
Maximum Detect	4.475	Maximum Non-Detect	0.3
Variance Detects	1.643	Percent Non-Detects	41.18%
Mean Detects	1.398	SD Detects	1.282
Median Detects	1.15	CV Detects	0.917
Skewness Detects	1.732	Kurtosis Detects	3.336
Mean of Logged Detects	-0.0205	SD of Logged Detects	0.904

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.816	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.261	Lilliefors GOF Test
5% Lilliefors Critical Value	0.28	Detected Data appear Normal at 5% Significance Level
Detected Data appear Approximate Normal at 5% Significance Level		

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	0.946	Standard Error of Mean	0.276
SD	1.078	95% KM (BCA) UCL	1.401
95% KM (t) UCL	1.427	95% KM (Percentile Bootstrap) UCL	1.415
95% KM (z) UCL	1.399	95% KM Bootstrap t UCL	1.794
90% KM Chebyshev UCL	1.772	95% KM Chebyshev UCL	2.147
97.5% KM Chebyshev UCL	2.666	99% KM Chebyshev UCL	3.687

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.292	Anderson-Darling GOF Test
5% A-D Critical Value	0.739	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.165	Kolmogrov-Smirnoff GOF
5% K-S Critical Value	0.271	Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear G	iamma Dis	tributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.553	k star (bias corrected MLE)	1.154
Theta hat (MLE)	0.9	Theta star (bias corrected MLE)	1.211

nu hat (MLE)	31.07	nu star (bias corrected)	23.08
MLE Mean (bias corrected)	1.398	MLE Sd (bias corrected)	1.301
Gamma	Kanlan-Meie	r (KM) Statistics	
k hat (KM)	0.77	nu bat (KM)	26 17
Approximate Chi Square Value (26.17 g)	15 51	Adjusted Chi Square Value (26.17. ß)	14 66
95% Gamma Approximate KM-UCL (use when n>=50)	1 595	95% Gamma Adjusted KM-UCL (use when n<50)	1 689
	1.000		1.000
Gamma ROS S	itatistics using	g Imputed Non-Detects	
GROS may not be used when data set	has > 50% N	IDs with many tied observations at multiple DLs	
GROS may not be used w	hen kstar of d	letected data is small such as < 0.1	
For such situations, GROS me	thod tends to	yield inflated values of UCLs and BTVs	
For gamma distributed detected data, BTVs an	d UCLs may l	be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	0.826
Maximum	4.475	Median	0.3
SD	1.191	CV	1.442
k hat (MLE)	0.385	k star (bias corrected MLE)	0.357
Theta hat (MLE)	2.143	Theta star (bias corrected MLE)	2.316
nu hat (MLE)	13.11	nu star (bias corrected)	12.13
MLE Mean (bias corrected)	0.826	MLE Sd (bias corrected)	1.383
		Adjusted Level of Significance (β)	0.0346
Approximate Chi Square Value (12.13, α)	5.31	Adjusted Chi Square Value (12.13, β)	4.845
95% Gamma Approximate UCL (use when n>=50)	1.887	95% Gamma Adjusted UCL (use when n<50)	2.068
Lognormal GOF	Test on Dete	ected Observations Only	
Shapiro Wilk Test Statistic	0.946	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance L	evel
Lilliefors Test Statistic	0.151	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.28	Detected Data appear Lognormal at 5% Significance L	evel
Detected Data app	ear Lognorma	al at 5% Significance Level	
Lognormal ROS	Statistics Usi	ng Imputed Non-Detects	
Mean in Original Scale	0.864	Mean in Log Scale	-1.029
SD in Original Scale	1.165	SD in Log Scale	1.484
95% t UCL (assumes normality of ROS data)	1.358	95% Percentile Bootstrap UCL	1.351
95% BCA Bootstrap UCL	1.51	95% Bootstrap t UCL	1.732
95% H-UCL (Log ROS)	3.874		
UCLs using Lognormal Distribution and K	M Estimates	when Detected data are Lognormally Distributed	
KM Mean (logged)	-0.508	95% H-UCL (KM -Log)	1.527
KM SD (logged)	0.879	95% Critical H Value (KM-Log)	2.482
KM Standard Error of Mean (logged)	0.225	·	
	DL/2 Stat	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.884	Mean in Log Scale	-0.793
SD in Original Scale	1,151	SD in Log Scale	1.169
95% t UCL (Assumes normality)	1 371	95% H_Stat LICI	2 109
	1.071		2.100

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.427

95% KM (Percentile Bootstrap) UCL 1.415

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

TPH

General Statistics

Total Number of Observations	11	Number of Distinct Observations	10
Number of Detects	10	Number of Non-Detects	1
Number of Distinct Detects	9	Number of Distinct Non-Detects	1
Minimum Detect	72	Minimum Non-Detect	20
Maximum Detect	5800	Maximum Non-Detect	20
Variance Detects	3098352	Percent Non-Detects	9.091%
Mean Detects	802.7	SD Detects	1760
Median Detects	261.1	CV Detects	2.193
Skewness Detects	3.133	Kurtosis Detects	9.865
Mean of Logged Detects	5.701	SD of Logged Detects	1.181

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.431	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.47	Lilliefors GOF Test
5% Lilliefors Critical Value	0.28	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

511.1	Standard Error of Mean	731.5	Mean
1746	95% KM (BCA) UCL	1608	SD
1735	95% KM (Percentile Bootstrap) UCL	1658	95% KM (t) UCL
9282	95% KM Bootstrap t UCL	1572	95% KM (z) UCL
2959	95% KM Chebyshev UCL	2265	90% KM Chebyshev UCL
5816	99% KM Chebyshev UCL	3923	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.632	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.767	5% A-D Critical Value
Kolmogrov-Smirnoff GOF	0.369	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.278	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma	Statistics o	n Detected Data Only	
k hat (MLE)	0.622	k star (bias corrected MLE)	0.502
Theta hat (MLE)	1289	Theta star (bias corrected MLE)	1598
nu hat (MLE)	12.45	nu star (bias corrected)	10.05
MLE Mean (bias corrected)	802.7	MLE Sd (bias corrected)	1132
Gamma	a Kaplan-N	leier (KM) Statistics	
k hat (KM)	0.207	nu hat (KM)	4.553
Approximate Chi Square Value (4.55, α)	0.951	Adjusted Chi Square Value (4.55, β)	0.716
95% Gamma Approximate KM-UCL (use when n>=50)	3500	95% Gamma Adjusted KM-UCL (use when n<50)	4650
Gamma ROS S	Statistics u	sing Imputed Non-Detects	
GROS may not be used when data se	t has > 509	% NDs with many tied observations at multiple DLs	
GROS may not be used w	hen kstar	of detected data is small such as < 0.1	
For such situations, GROS me	ethod tends	s to yield inflated values of UCLs and BTVs	
For gamma distributed detected data, BTVs ar	nd UCLs m	ay be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	729.7
Maximum	5800	Median	250
SD	1687	CV	2.312
k hat (MLE)	0.365	k star (bias corrected MLE)	0.326
Theta hat (MLE)	1998	Theta star (bias corrected MLE)	2237
nu hat (MLE)	8.033	nu star (bias corrected)	7.176
MLE Mean (bias corrected)	729.7	MLE Sd (bias corrected)	1278
		Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (7.18, α)	2.268	Adjusted Chi Square Value (7.18, β)	1.845
95% Gamma Approximate UCL (use when n>=50)	2309	95% Gamma Adjusted UCL (use when n<50)	2838

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.821	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.238	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.28	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Approximate Lognormal at 5% Significance Level				

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	731.6	Mean in Log Scale	5.461
SD in Original Scale	1686	SD in Log Scale	1.373
95% t UCL (assumes normality of ROS data)	1653	95% Percentile Bootstrap UCL	1719
95% BCA Bootstrap UCL	2266	95% Bootstrap t UCL	9396
95% H-UCL (Log ROS)	3089		

UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed

KM Mean (logged)	5.455	95% H-UCL (KM -Log)	2570
KM SD (logged)	1.321	95% Critical H Value (KM-Log)	3.648
KM Standard Error of Mean (logged)	0.42		

DL/2 Statistics

DL/2 Normal

DL/2 Log-Transformed

Mean in Original Scale 730.6

SD in Original Scale 1687

95% t UCL (Assumes normality) 1652

Mean in Log Scale 5.392 SD in Log Scale 1.518

95% H-Stat UCL 4909

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 3923

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL Output

Forecasted EPCs – Area 2

UCL Statistics for Data Sets with Non-Detects

User Selected Options	6
Date/Time of Computation	3/31/2016 9:57:05 AM
From File	input_area2.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Cadmium

	General Statistics		
Total Number of Observations	40	Number of Distinct Observations	13
Number of Detects	16	Number of Non-Detects	24
Number of Distinct Detects	13	Number of Distinct Non-Detects	1
Minimum Detect	0.3	Minimum Non-Detect	0.3
Maximum Detect	11	Maximum Non-Detect	0.3
Variance Detects	9.91	Percent Non-Detects	60%
Mean Detects	2.493	SD Detects	3.148
Median Detects	1.508	CV Detects	1.263
Skewness Detects	2.086	Kurtosis Detects	3.557
Mean of Logged Detects	0.351	SD of Logged Detects	1.058

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.664	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.887	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.387	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.222	Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.177	Standard Error of Mean	0.36
SD	2.207	95% KM (BCA) UCL	1.795
95% KM (t) UCL	1.784	95% KM (Percentile Bootstrap) UCL	1.842
95% KM (z) UCL	1.77	95% KM Bootstrap t UCL	2.596
90% KM Chebyshev UCL	2.258	95% KM Chebyshev UCL	2.748
97.5% KM Chebyshev UCL	3.428	99% KM Chebyshev UCL	4.763

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.878	Anderson-Darling GOF Test
5% A-D Critical Value	0.763	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.282	Kolmogrov-Smirnoff GOF
5% K-S Critical Value	0.221	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	1.023	k star (bias corrected MLE)	0.873
Theta hat (MLE)	2.437	Theta star (bias corrected MLE)	2.856

nu hat (MLE)	32.73	nu star (bias corrected)	27.93
MLE Mean (bias corrected)	2.493	MLE Sd (bias corrected)	2.668
Gamma	Kaplan-Meie	er (KM) Statistics	
k hat (KM)	0.285	nu hat (KM)	22.76
Approximate Chi Square Value (22.76, α)	12.91	Adjusted Chi Square Value (22.76, β)	12.63
95% Gamma Approximate KM-UCL (use when n>=50)	2.075	95% Gamma Adjusted KM-UCL (use when n<50)	2.121
Gamma ROS S	tatistics usin	a Imputed Non-Detects	
GROS may not be used when data set	has > 50% N	 NDs with many tied observations at multiple DLs 	
GROS may not be used w	hen kstar of o	detected data is small such as < 0.1	
For such situations, GROS me	thod tends to	vield inflated values of UCLs and BTVs	
For gamma distributed detected data, BTVs and	d UCLs may	be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	1.003
Maximum	11	Median	0.01
SD	2.308	CV	2.301
k hat (MLE)	0.268	k star (bias corrected MLE)	0.264
Theta hat (MLE)	3.75	Theta star (bias corrected MLE)	3.798
nu hat (MLE)	21.4	nu star (bias corrected)	21 13
MI F Mean (bias corrected)	1 003	MI F Sd (bias corrected)	1 952
		Adjusted Level of Significance (B)	0 044
Approximate Chi Square Value (21,13, α)	11.69	Adjusted Chi Square Value (21.13. ß)	11.43
95% Gamma Approximate UCL (use when n>=50)	1.813	95% Gamma Adjusted UCL (use when n<50)	1.855
Lognormal GOF	Test on Det	ected Observations Only	
Shapiro Wilk Test Statistic	0.935	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.887	Detected Data appear Lognormal at 5% Significance L	evel
Lilliefors Test Statistic	0.204	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.222	Detected Data appear Lognormal at 5% Significance L	evel
Detected Data app	ear Lognorm	al at 5% Significance Level	
Lognormal ROS	Statistics Us	ing Imputed Non-Detects	
Mean in Original Scale	1.054	Mean in Log Scale	-1.616
SD in Original Scale	2.287	SD in Log Scale	1.999
95% t UCL (assumes normality of ROS data)	1.663	95% Percentile Bootstrap UCL	1.682
95% BCA Bootstrap UCL	1.904	95% Bootstrap t UCL	2.528
95% H-UCL (Log ROS)	4.909		
UCLs using Lognormal Distribution and K	M Estimates	when Detected data are Lognormally Distributed	
KM Mean (logged)	-0.582	95% H-UCL (KM -Log)	1.354
KM SD (logged)	1	95% Critical H Value (KM-Log)	2.408
KM Standard Error of Mean (logged)	0.163		
	DL/2 Stat	tistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.087	Mean in Log Scale	-0.998
SD in Original Scale	2.272	SD in Log Scale	1.294
95% t UCL (Assumes normality)	1.692	95% H-Stat UCL	1.512
DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (BCA) UCL 1.795

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium

	General Statistics		
Total Number of Observations	40	Number of Distinct Observations	25
		Number of Missing Observations	0
Minimum	5	Mean	18.34
Maximum	49.67	Median	15.5
SD	8.818	Std. Error of Mean	1.394
Coefficient of Variation	0.481	Skewness	1.468

Normal GOF Test

Shapiro Wilk Test Statistic	0.9	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.94	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors GOF Test
5% Lilliefors Critical Value	0.14	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assu	ming Norm	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	20.69	95% Adjusted-CLT UCL (Chen-1995)	20.98
		95% Modified-t UCL (Johnson-1978)	20.74
	Gamma G	GOF Test	
A-D Test Statistic	0.307	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.752	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.11	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.14	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear G	amma Dis	tributed at 5% Significance Level	

	Statistics	Gamma	
4.587	k star (bias corrected MLE)	4.941	k hat (MLE)
3.999	Theta star (bias corrected MLE)	3.712	Theta hat (MLE)
367	nu star (bias corrected)	395.3	nu hat (MLE)
8.564	MLE Sd (bias corrected)	18.34	MLE Mean (bias corrected)

Assu	ming Gam	na Distribution	
95% Approximate Gamma UCL (use when n>=50)	20.8	95% Adjusted Gamma UCL (use when n<50)	20.9
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.984	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.94	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0871	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.14	Data appear Lognormal at 5% Significance Level	
Data appear L	ognormal a	t 5% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	1.609	Mean of logged Data	2.805
Maximum of Logged Data	3.905	SD of logged Data	0.469
Assum	ning Logno	mal Distribution	
95% H-UCL	21.27	90% Chebyshev (MVUE) UCL	22.65
95% Chebyshev (MVUE) UCL	24.58	97.5% Chebyshev (MVUE) UCL	27.26
99% Chebyshev (MVUE) UCL	32.53		
Nonparametr	ic Distribut	on Free UCL Statistics	

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

20.69	95% Jackknife UCL	20.64	95% CLT UCL
21.07	95% Bootstrap-t UCL	20.55	95% Standard Bootstrap UCL
20.67	95% Percentile Bootstrap UCL	21.35	95% Hall's Bootstrap UCL
		21	95% BCA Bootstrap UCL
24.42	95% Chebyshev(Mean, Sd) UCL	22.52	90% Chebyshev(Mean, Sd) UCL
32.21	99% Chebyshev(Mean, Sd) UCL	27.05	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 20.9

Adjusted Level of Significance

0.044

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Lead

General Statistics

Total Number of Observations

Number of Distinct Observations34Number of Missing Observations0

Approximate Chi Square Value (0.05) 323.6

Adjusted Chi Square Value 322

Minimum 1.

1.5

40

Mean 57.14

Maximum	440	Median	19.5
SD	93.71	Std. Error of Mean	14.82
Coefficient of Variation	1.64	Skewness	2.735
	Normal GC	NE Tost	
Shapiro Wilk Test Statistic	0.622	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.94	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.285	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.14	Data Not Normal at 5% Significance Level	
Data Not I	Normal at 5%	Significance Level	
Ass	uming Norma	I Distribution	
95% Normal UCL	·	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	82.11	95% Adjusted-CLT UCL (Chen-1995)	88.36
		95% Modified-t UCL (Johnson-1978)	83.18
	Gamma GC	DF Test	
A-D Test Statistic	1.237	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.805	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.162	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.147	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gamm	a Distributed	at 5% Significance Level	
	Gamma St	atistics	
k hat (MLE)	0.58	k star (bias corrected MLE)	0.553
Theta hat (MLE)	98.6	Theta star (bias corrected MLE)	103.4
nu hat (MLE)	46.36	nu star (bias corrected)	44.22
MLE Mean (bias corrected)	57.14	MLE Sd (bias corrected)	76.86
		Approximate Chi Square Value (0.05)	29.97
Adjusted Level of Significance	0.044	Adjusted Chi Square Value	29.53
Ass	uming Gamma	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	84.32	95% Adjusted Gamma UCL (use when n<50)	85.57
	Lognormal G	OF Test	
Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.94	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.1	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.14	Data appear Lognormal at 5% Significance Level	
Data appear I	_ognormal at	5% Significance Level	
	Lognormal S	Statistics	
Minimum of Logged Data	0.405	Mean of logged Data	2.974
Maximum of Logged Data	6.087	SD of logged Data	1.532
Assu	ning Lognorm	nal Distribution	
95% H-UCL	135.1	90% Chebyshev (MVUE) UCL	116.4
95% Chebyshev (MVUE) UCL	142.1	97.5% Chebyshev (MVUE) UCL	177.8

99% Chebyshev (MVUE) UCL 247.8

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

82.11	95% Jackknife UCL	81.	95% CLT UCL
98.98	95% Bootstrap-t UCL	81.	95% Standard Bootstrap UCL
82.72	95% Percentile Bootstrap UCL	95.	95% Hall's Bootstrap UCL
		91.	95% BCA Bootstrap UCL
121.7	95% Chebyshev(Mean, Sd) UCL	101.	90% Chebyshev(Mean, Sd) UCL
204.6	99% Chebyshev(Mean, Sd) UCL	149.	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 121.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

TPH

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	39
Number of Detects	42	Number of Non-Detects	6
Number of Distinct Detects	39	Number of Distinct Non-Detects	2
Minimum Detect	20	Minimum Non-Detect	20
Maximum Detect	5134	Maximum Non-Detect	200
Variance Detects	2088212	Percent Non-Detects	12.5%
Mean Detects	1012	SD Detects	1445
Median Detects	485	CV Detects	1.429
Skewness Detects	2.145	Kurtosis Detects	3.711
Mean of Logged Detects	5.956	SD of Logged Detects	1.568

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.636	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.262	Lilliefors GOF Test
5% Lilliefors Critical Value	0.137	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	888.4	Standard Error of Mean	200.8
SD	1375	95% KM (BCA) UCL	1238
95% KM (t) UCL	1225	95% KM (Percentile Bootstrap) UCL	1227
95% KM (z) UCL	1219	95% KM Bootstrap t UCL	1324
90% KM Chebyshev UCL	1491	95% KM Chebyshev UCL	1764

Gamma GOF	Tests on De	tected Observations Only	
A-D Test Statistic	0.651	Anderson-Darling GOF Test	
5% A-D Critical Value	0.8	Detected data appear Gamma Distributed at 5% Significar	nce Level
K-S Test Statistic	0.11	Kolmogrov-Smirnoff GOF	
5% K-S Critical Value	0.143	Detected data appear Gamma Distributed at 5% Significar	nce Level
Detected data appear	Gamma Dis	tributed at 5% Significance Level	
Gamma	Statistics on	Detected Data Only	
k hat (MLE)	0.636	k star (bias corrected MLE)	0.607
Theta hat (MLE)	1590	Theta star (bias corrected MLE)	1668
nu hat (MLE)	53.44	nu star (bias corrected)	50.95
MLE Mean (bias corrected)	1012	MLE Sd (bias corrected)	1299
Gamma	a Kaplan-Me	eier (KM) Statistics	
k hat (KM)	0.418	nu hat (KM)	40.09
Approximate Chi Square Value (40.09, α)	26.58	Adjusted Chi Square Value (40.09, β)	26.24
95% Gamma Approximate KM-UCL (use when n>=50)	1340	95% Gamma Adjusted KM-UCL (use when n<50)	1357
Gamma ROS S	Statistics usi	ing Imputed Non-Detects	
GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used v	when kstar o	f detected data is small such as < 0.1	
For such situations, GROS me	ethod tends	to yield inflated values of UCLs and BTVs	
For gamma distributed detected data, BTVs ar	nd UCLs mag	y be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	885.1
Maximum	5134	Median	355
SD	1391	CV	1.572
k hat (MLE)	0.318	k star (bias corrected MLE)	0.312
Theta hat (MLE)	2785	Theta star (bias corrected MLE)	2839
nu hat (MLE)	30.51	nu star (bias corrected)	29.93
MLE Mean (bias corrected)	885.1	MLE Sd (bias corrected)	1585
		Adjusted Level of Significance (β)	0.045
Approximate Chi Square Value (29.93, α)	18.44	Adjusted Chi Square Value (29.93, β)	18.16
95% Gamma Approximate UCL (use when n>=50)	1437	95% Gamma Adjusted UCL (use when n<50)	1459
Lognormal GOI	- Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.909	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Lognormal at 5% Significance Le	vel
Lilliefors Test Statistic	0.0949	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.137	Detected Data appear Lognormal at 5% Significance I	_evel
Detected Data appear Ar	proximate L	ognormal at 5% Significance Level	-
		· · · · · · · · · · · · · · · · · · ·	

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	887.3	Mean in Log Scale	5.54
SD in Original Scale	1390	SD in Log Scale	1.857
95% t UCL (assumes normality of ROS data)	1224	95% Percentile Bootstrap UCL	1222
95% BCA Bootstrap UCL	1299	95% Bootstrap t UCL	1365

95% H-UCL (Log ROS) 3593

UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed

KM Mean (logged)	5.601	95% H-UCL (KM -Log)	2757
KM SD (logged)	1.734	95% Critical H Value (KM-Log)	3.236
KM Standard Error of Mean (logged)	0.254		

DL/2 Statistics

DL/2 Normal	I	DL/2 Log-Transformed	
Mean in Original Scale	888.2	Mean in Log Scale	5.547
SD in Original Scale	1389	SD in Log Scale	1.853
95% t UCL (Assumes normality)	1225	95% H-Stat UCL	3573

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1764 95% Adjusted Gamma KM-UCL 1357 95% GROS Adjusted Gamma UCL 1459

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL Output

Forecasted EPCs – Area3

UCL Statistics for Data Sets with Non-Detects

User Selected Options	5
Date/Time of Computation	3/31/2016 11:38:28 AM
From File	input_area3.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Antimony

	General Statistics		
Total Number of Observations	12	Number of Distinct Observations	4
Number of Detects	3	Number of Non-Detects	9
Number of Distinct Detects	3	Number of Distinct Non-Detects	1
Minimum Detect	7.2	Minimum Non-Detect	2
Maximum Detect	14	Maximum Non-Detect	2
Variance Detects	11.56	Percent Non-Detects	75%
Mean Detects	10.62	SD Detects	3.4
Median Detects	10.67	CV Detects	0.32
Skewness Detects	-0.0588	Kurtosis Detects	N/A
Mean of Logged Detects	2.327	SD of Logged Detects	0.334

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	1	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.176	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.512	Detected Data appear Normal at 5% Significance Level	
Detected Data appear Normal at 5% Significance Level			

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	4.156	Standard Error of Mean	1.408
SD	3.983	95% KM (BCA) UCL	N/A
95% KM (t) UCL	6.685	95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	6.472	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	8.38	95% KM Chebyshev UCL	10.29
97.5% KM Chebyshev UCL	12.95	99% KM Chebyshev UCL	18.17

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	13.98	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.76	Theta star (bias corrected MLE)	N/A

	02 07		
	03.07		IN/A
MLE Mean (blas corrected)	N/A	MLE Sd (blas corrected)	N/A
Gamma	Kaplan-Me	eier (KM) Statistics	
k hat (KM)	1.088	nu hat (KM)	26.12
		Adjusted Level of Significance (β)	0.029
Approximate Chi Square Value (26.12, α)	15.47	Adjusted Chi Square Value (26.12, β)	14.23
95% Gamma Approximate KM-UCL (use when n>=50)	7.015	95% Gamma Adjusted KM-UCL (use when n<50)	7.626
Lognormal GOF	Test on De	etected Observations Only	
Shapiro Wilk Test Statistic	0.989	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance L	evel
Lilliefors Test Statistic	0.215	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.512	Detected Data appear Lognormal at 5% Significance L	evel
Detected Data app	ear Lognor	mal at 5% Significance Level	
Lognormal ROS	Statistics L	Jsing Imputed Non-Detects	
Mean in Original Scale	4.511	Mean in Log Scale	1.143
SD in Original Scale	4.133	SD in Log Scale	0.901
95% t UCL (assumes normality of ROS data)	6.653	95% Percentile Bootstrap UCL	6.493
95% BCA Bootstrap UCL	6.815	95% Bootstrap t UCL	8.248
95% H-UCL (Log ROS)	9.91		
UCLs using Lognormal Distribution and K	M Estimate	es when Detected data are Lognormally Distributed	
KM Mean (logged)	1.102	95% H-UCL (KM -Log)	6.633
KM SD (logged)	0.72	95% Critical H Value (KM-Log)	2.445
KM Standard Error of Mean (logged)	0.255		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	3.406	Mean in Log Scale	0.582
SD in Original Scale	4.587	SD in Log Scale	1.062
95% t UCL (Assumes normality)	5.784	95% H-Stat UCL	8.291
DL/2 is not a recommended met	hod, provid	ed for comparisons and historical reasons	
Nonparameti	ric Distribut	ion Free UCL Statistics	
Detected Data appear	Normal Dis	tributed at 5% Significance Level	
S	Suggested	UCL to Use	
95% KM (t) UCL	6.685	95% KM (Percentile Bootstrap) UCL	N/A
Warning: One or me	ore Recom	mended UCL(s) not available!	
Note: Suggestions regarding the selection of a 95% I	UCL are pro	ovided to help the user to select the most appropriate 95% UC	CL.
Recommendations are base	d upon dat	a size, data distribution, and skewness.	

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium

	General	Statistics	
Total Number of Observations	12	Number of Distinct Observations	11
		Number of Missing Observations	0
Minimum	5	Mean	27.74
Maximum	103.7	Median	23
SD	26.49	Std. Error of Mean	7.646
Coefficient of Variation	0.955	Skewness	2.422
	Normal C	GOF Test	
Shapiro Wilk Test Statistic	0.721	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.276	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.256	Data Not Normal at 5% Significance Level	
Data Not N	Normal at 5	% Significance Level	
Ass	uming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	41.48	95% Adjusted-CLT UCL (Chen-1995)	46.03
		95% Modified-t UCL (Johnson-1978)	42.37
	Gamma	GOF Test	
A-D Test Statistic	0.388	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.743	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.183	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.249	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear (Gamma Dis	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.761	k star (bias corrected MLE)	1.376
Theta hat (MLE)	15.76	Theta star (bias corrected MLE)	20.16
nu hat (MLE)	42.26	nu star (bias corrected)	33.02
MLE Mean (bias corrected)	27.74	MLE Sd (bias corrected)	23.65
		Approximate Chi Square Value (0.05)	20.89
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	19.42
Assu	uming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50)	43.87	95% Adjusted Gamma UCL (use when n<50)	47.17
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.976	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.144	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.256	Data appear Lognormal at 5% Significance Level	
Data appear l	.ognormal	at 5% Significance Level	

Lognormal Statistics

Minimum of Logged Data	1.609	Mean of logged Data	3.013
Maximum of Logged Data	4.641	SD of logged Data	0.804

Assuming Lognormal Distribution

95% H-UCL	52.49	90% Chebyshev (MVUE) UCL	47.1
95% Chebyshev (MVUE) UCL	56.11	97.5% Chebyshev (MVUE) UCL	68.63
99% Chebyshev (MVUE) UCL	93.22		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

41.48	95% Jackknife UCL	40.32	95% CLT UCL
56.1	95% Bootstrap-t UCL	39.79	95% Standard Bootstrap UCL
42.08	95% Percentile Bootstrap UCL	91.69	95% Hall's Bootstrap UCL
		46.85	95% BCA Bootstrap UCL
61.07	95% Chebyshev(Mean, Sd) UCL	50.68	90% Chebyshev(Mean, Sd) UCL
103.8	99% Chebyshev(Mean, Sd) UCL	75.49	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 47.17

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Lead

	General Statistics		
Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	0
Minimum	0.9	Mean	46.37
Maximum	235.8	Median	9.85
SD	85.18	Std. Error of Mean	24.59
Coefficient of Variation	1.837	Skewness	2.034

Normal GOF Test

Shapiro Wilk Test Statistic	0.543	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.446	Lilliefors GOF Test
5% Lilliefors Critical Value	0.256	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% UCLs (Adjusted for Skewness)

95% Normal UCL

95% Student's-t UCL 90.53

95% Adjusted-CLT UCL (Chen-1995) 102.2

		95% Modified-t UCL (Johnson-1978)	92.94
	Gamma GO	DF Test	
A-D Test Statistic	1.17	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.787	Data Not Gamma Distributed at 5% Significance Lev	/el
K-S Test Statistic	0.32	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.259	Data Not Gamma Distributed at 5% Significance Lev	/el
Data Not Gamm	a Distributed	at 5% Significance Level	
	Gamma St	atistics	
k hat (MLE)	0.49	k star (bias corrected MLE)	0.423
Theta hat (MLE)	94.71	Theta star (bias corrected MLE)	109.7
nu hat (MLE)	11.75	nu star (bias corrected)	10.15
MLE Mean (bias corrected)	46.37	MLE Sd (bias corrected)	71.32
		Approximate Chi Square Value (0.05)	4.034
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	3.466
Ass	uming Gamm	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	116.7	95% Adjusted Gamma UCL (use when n<50)	135.8
	Lognormal G	iOF Test	
Shapiro Wilk Test Statistic	0.927	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.2	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.256	Data appear Lognormal at 5% Significance Level	
Data appear l	_ognormal at	5% Significance Level	
	Lognormal S	Statistics	
Minimum of Logged Data	-0.105	Mean of logged Data	2.535
Maximum of Logged Data	5.463	SD of logged Data	1.633
Assu	ning Lognorn	nal Distribution	
95% H-UCL	373.1	90% Chebyshev (MVUE) UCL	99.25
95% Chebyshev (MVUE) UCL	126.6	97.5% Chebyshev (MVUE) UCL	164.5

Nonparametric Distribution Free UCL Statistics

99% Chebyshev (MVUE) UCL 239

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

90.53	95% Jackknife UCL	86.82	95% CLT UCL
486	95% Bootstrap-t UCL	85.24	95% Standard Bootstrap UCL
85.24	95% Percentile Bootstrap UCL	394.4	95% Hall's Bootstrap UCL
		101.3	95% BCA Bootstrap UCL
153.6	95% Chebyshev(Mean, Sd) UCL	120.1	90% Chebyshev(Mean, Sd) UCL
291	99% Chebyshev(Mean, Sd) UCL	199.9	97.5% Chebyshev(Mean, Sd) UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

TPH

Tatal Number of Observations	General Statistic	CS	20
I otal number of Observations	39	Number of Distinct Observations	20
N 41	20	Number of Missing Observations	
winimum	39	inean	557.4
Maximum	2000	Median	552.5
	406.2	Std. Error of Mean	65.05
Coefficient of Variation	0.729	Skewness	1.884
	Normal GOF Te	st	
Shapiro Wilk Test Statistic	0.801	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.939	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.292	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.142	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	667.1	95% Adjusted-CLT UCL (Chen-1995)	685.4
		95% Modified-t UCL (Johnson-1978)	670.4
	Gamma GOF Te	ast	
A-D Test Statistic	1.421	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.759	Data Not Gamma Distributed at 5% Significance Lev	/el
K-S Test Statistic	0.2	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.143	Data Not Gamma Distributed at 5% Significance Lev	/el
Data Not Gamm	a Distributed at 5%	6 Significance Level	
	Gamma Statistic	cs	
k hat (MLE)	2.092	k star (bias corrected MLE)	1.948
Theta hat (MLE)	266.4	Theta star (bias corrected MLE)	286.1
nu hat (MLE)	163.2	nu star (bias corrected)	152
MLE Mean (bias corrected)	557.4	MLE Sd (bias corrected)	399.4
		Approximate Chi Square Value (0.05)	124.5

Adjusted Chi Square Value 123.5

Adjusted Level of Significance 0.0437

Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 686

	Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.892	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.939	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.212	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.142	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.664	Mean of logged Data	6.066
Maximum of Logged Data	7.601	SD of logged Data	0.8

Assuming Lognormal Distribution

95% H-UCL	788.4	90% Chebyshev (MVUE) UCL	838.5
95% Chebyshev (MVUE) UCL	952.4	97.5% Chebyshev (MVUE) UCL	1110
99% Chebyshev (MVUE) UCL	1421		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

667.1	95% Jackknife UCL	. 66	95% CLT UCL
708.4	95% Bootstrap-t UCL	- 66	95% Standard Bootstrap UCL
671.5	95% Percentile Bootstrap UCL	. 70	95% Hall's Bootstrap UCL
		- 69	95% BCA Bootstrap UCL
841	95% Chebyshev(Mean, Sd) UCL	. 75	90% Chebyshev(Mean, Sd) UCL
1205	99% Chebyshev(Mean, Sd) UCL	- 96	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 841

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician. ProUCL Output

Forecasted EPCs – Whole Site

UCL Statistics for Data Sets with Non-Detects

User Selected Options	6
Date/Time of Computation	3/31/2016 11:45:12 AM
From File	input_wholesite.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Antimony

	General Statistics		
Total Number of Observations	69	Number of Distinct Observations	11
Number of Detects	17	Number of Non-Detects	52
Number of Distinct Detects	11	Number of Distinct Non-Detects	1
Minimum Detect	1.25	Minimum Non-Detect	2
Maximum Detect	18.72	Maximum Non-Detect	2
Variance Detects	22.41	Percent Non-Detects	75.36%
Mean Detects	5.612	SD Detects	4.734
Median Detects	4	CV Detects	0.843
Skewness Detects	1.782	Kurtosis Detects	2.913
Mean of Logged Detects	1.451	SD of Logged Detects	0.747
wear or Logged Detects	1.401	SD of Logged Delects	0.747

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.791	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.892	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.257	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.215	Detected Data Not Normal at 5% Significance Level		
Detected Data Not Normal at 5% Significance Level				

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.373	Standard Error of Mean	2.447	Mean
3.34	95% KM (BCA) UCL	2.914	SD
3.209	95% KM (Percentile Bootstrap) UCL	3.069	95% KM (t) UCL
3.38	95% KM Bootstrap t UCL	3.061	95% KM (z) UCL
4.072	95% KM Chebyshev UCL	3.566	90% KM Chebyshev UCL
6.157	99% KM Chebyshev UCL	4.776	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	0.458	Anderson-Darling GOF Test			
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.173	Kolmogrov-Smirnoff GOF			
5% K-S Critical Value	0.212	Detected data appear Gamma Distributed at 5% Significance Level			
Detected data appear Gamma Distributed at 5% Significance Level					

Gamma Statistics on Detected Data Only

k hat (MLE)	1.974	k star (bias corrected MLE)	1.664
Theta hat (MLE)	2.844	Theta star (bias corrected MLE)	3.372

nu hat (MLE)	67.1	nu star (bias corrected)	56.59
MLE Mean (bias corrected)	5.612	MLE Sd (bias corrected)	4.35
Gamma	Kaplan-Mele	er (KM) Statistics	07.04
k hat (KM)	0.705	nu hat (KM)	97.34
Approximate Chi Square Value (97.34, α)	/5.58	Adjusted Chi Square Value (97.34, β)	/5.1/
95% Gamma Approximate KM-UCL (use when n>=50)	3.152	95% Gamma Adjusted KM-UCL (use when n<50)	3.169
Gamma ROS S	tatistics using	g Imputed Non-Detects	
GROS may not be used when data set	has > 50% N	NDs with many tied observations at multiple DLs	
GROS may not be used w	hen kstar of o	detected data is small such as < 0.1	
For such situations, GROS met	thod tends to	yield inflated values of UCLs and BTVs	
For gamma distributed detected data, BTVs and	d UCLs may	be computed using gamma distribution on KM estimates	
Minimum	0.01	Mean	1.6
Maximum	18.72	Median	0.01
SD	3.304	CV	2.065
k hat (MLE)	0.252	k star (bias corrected MLE)	0.251
Theta hat (MLE)	6.34	Theta star (bias corrected MLE)	6.373
nu hat (MLE)	34.83	nu star (bias corrected)	34.65
MLE Mean (bias corrected)	1.6	MLE Sd (bias corrected)	3.193
		Adjusted Level of Significance (β)	0.0465
Approximate Chi Square Value (34.65, α)	22.18	Adjusted Chi Square Value (34.65, β)	21.97
95% Gamma Approximate UCL (use when n>=50)	2.499	95% Gamma Adjusted UCL (use when n<50)	2.524
Lognormal GOF	Test on Dete	ected Observations Only	
Shapiro Wilk Test Statistic	0.972	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.892	Detected Data appear Lognormal at 5% Significance L	evel
Lilliefors Test Statistic	0.122	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.215	Detected Data appear Lognormal at 5% Significance	evel
Detected Data app	ear Lognorm	al at 5% Significance Level	
1500	o		
	Statistics Us	Ing Imputed Non-Detects	0.000
	2.251	Mean in Log Scale	0.289
SD in Original Scale	3.068	SD in Log Scale	0.995
95% t UCL (assumes normality of ROS data)	2.867	95% Percentile Bootstrap UCL	2.932
95% BCA Bootstrap UCL	3.022	95% Bootstrap t UCL	3.157
95% H-UCL (Log ROS)	2.874		
UCLs using Lognormal Distribution and K	M Estimates	when Detected data are Lognormally Distributed	
KM Mean (logged)	0.613	95% H-UCL (KM -Log)	2.561
KM SD (logged)	0.608	95% Critical H Value (KM-Log)	1.945
KM Standard Error of Mean (logged)	0.0993		
	DL/2 Stat	istics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	2.136	Mean in Log Scale	0.357
SD in Original Scale	3.046	SD in Log Scale	0.727
95% t UCL (Assumes normality)	2.748	95% H-Stat UCL	2.228

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use

3.069

2.499 95% GROS Approximate Gamma UCL

95% Approximate Gamma KM-UCL 3.152

95% KM (t) UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Cadmium

General Statistics

Total Number of Observations	69	Number of Distinct Observations	18
Number of Detects	28	Number of Non-Detects	41
Number of Distinct Detects	18	Number of Distinct Non-Detects	1
Minimum Detect	0.3	Minimum Non-Detect	0.3
Maximum Detect	11	Maximum Non-Detect	0.3
Variance Detects	6.42	Percent Non-Detects	59.42%
Mean Detects	1.994	SD Detects	2.534
Median Detects	1.2	CV Detects	1.271
Skewness Detects	2.633	Kurtosis Detects	6.919
Mean of Logged Detects	0.186	SD of Logged Detects	0.972

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.632	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.336	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

0.219	Standard Error of Mean	0.987	Mean
1.41	95% KM (BCA) UCL	1.79	SD
1.379	95% KM (Percentile Bootstrap) UCL	1.353	95% KM (t) UCL
1.659	95% KM Bootstrap t UCL	1.348	95% KM (z) UCL
1.944	95% KM Chebyshev UCL	1.646	90% KM Chebyshev UCL
3.171	99% KM Chebyshev UCL	2.358	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	1.149	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.771	5% A-D Critical Value
Kolmogrov-Smirnoff GOF	0.216	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Leve	0.17	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

1.032	k star (bias corrected MLE)	1.129	k hat (MLE)
1.933	Theta star (bias corrected MLE)	1.766	Theta hat (MLE)
57.77	nu star (bias corrected)	63.21	nu hat (MLE)
1.963	MLE Sd (bias corrected)	1.994	MLE Mean (bias corrected)

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	0.304	nu hat (KM)	41.99
Approximate Chi Square Value (41.99, α)	28.13	Adjusted Chi Square Value (41.99, β)	27.89
95% Gamma Approximate KM-UCL (use when n>=50)	1.473	95% Gamma Adjusted KM-UCL (use when n<50)	1.486

Gamma ROS Statistics using Imputed Non-Detects

GROS may	v not be used wher	data set has > 50	% NDs with many t	tied observations at	multiple DLs
anoo mu	y not be used when		o nebo what multiple	licu obsci valions al	

GROS may not be used when kstar of detected data is small such as < 0.1

For such situations, GROS method tends to yield inflated values of UCLs and BTVs

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum 0.01	Mean	0.815
Maximum 11	Median	0.01
SD 1.874	CV	2.299
k hat (MLE) 0.283	k star (bias corrected MLE)	0.281
Theta hat (MLE) 2.876	Theta star (bias corrected MLE)	2.904
nu hat (MLE) 39.1	nu star (bias corrected)	38.73
MLE Mean (bias corrected) 0.815	MLE Sd (bias corrected)	1.538
	Adjusted Level of Significance (β)	0.0465
proximate Chi Square Value (38.73, α) 25.48	Adjusted Chi Square Value (38.73, β)	25.25
a Approximate UCL (use when n>=50) 1.239	95% Gamma Adjusted UCL (use when n<50)	1.25

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.924	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors GOF Test
5% Lilliefors Critical Value	0.167	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-1.549	Mean in Log Scale	0.871	Mean in Original Scale
1.792	SD in Log Scale	1.851	SD in Original Scale
1.258	95% Percentile Bootstrap UCL	1.243	95% t UCL (assumes normality of ROS data)
1.542	95% Bootstrap t UCL	1.385	95% BCA Bootstrap UCL
		1.889	95% H-UCL (Log ROS)

UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed	

KM Mean (logged)	-0.64	95% H-UCL (KM -Log)	1.022
KM SD (logged)	0.914	95% Critical H Value (KM-Log)	2.205
KM Standard Error of Mean (logged)	0.112		

	DEL OLAGORO		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.898	Mean in Log Scale	-1.052
SD in Original Scale	1.839	SD in Log Scale	1.199
95% t UCL (Assumes normality)	1.267	95% H-Stat UCL	0.98
DL/2 is not a recommended meth	od, provided for comparis	sons and historical reasons	
Nonparametri	c Distribution Free UCL S	Statistics	
Detected Data appear Lo	gnormal Distributed at 5%	Significance Level	
s	uggested UCL to Use		
95% KM (t) UCL	1.353	95% KM (% Bootstrap) UCL	1.379
ggestions regarding the selection of a 95% L	ICL are provided to help t	he user to select the most appropriate 95% UC	XL.

Note: Sug Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chromium

	General	Statistics	
Total Number of Observations	69	Number of Distinct Observations	32
		Number of Missing Observations	0
Minimum	5	Mean	20.49
Maximum	103.7	Median	17
SD	13.5	Std. Error of Mean	1.625
Coefficient of Variation	0.659	Skewness	3.742
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.711	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.195	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.107	Data Not Normal at 5% Significance Level	
Data Not N	Normal at {	5% Significance Level	
Ass	uming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	23.2	95% Adjusted-CLT UCL (Chen-1995)	23.95
		95% Modified-t UCL (Johnson-1978)	23.32
	Gamma	GOF Test	
A-D Test Statistic	0.977	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.756	Data Not Gamma Distributed at 5% Significance Leve	əl
K-S Test Statistic	0.111	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.108	Data Not Gamma Distributed at 5% Significance Leve	əl

Data Not Gamma Distributed at 5% Significance Level

DL/2 Statistics

	Gamma S	itatistics	
k hat (MLE)	3.73	k star (bias corrected MLE)	3.578
Theta hat (MLE)	5.493	Theta star (bias corrected MLE)	5.728
nu hat (MLE)	514.7	nu star (bias corrected)	493.7
MLE Mean (bias corrected)	20.49	MLE Sd (bias corrected)	10.83
		Approximate Chi Square Value (0.05)	443.2
Adjusted Level of Significance	0.0465	Adjusted Chi Square Value	442.2
Ass	uming Gamr	na Distribution	
95% Approximate Gamma UCL (use when n>=50))	22.83	95% Adjusted Gamma UCL (use when n<50)	22.88
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.976	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk P Value	0.48	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0791	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.107	Data appear Lognormal at 5% Significance Level	
Data appear l	.ognormal a	t 5% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	1.609	Mean of logged Data	2.88
Maximum of Logged Data	4.641	SD of logged Data	0.515
Assur	ning Lognor	mal Distribution	
95% H-UCL	22.87	90% Chebyshev (MVUE) UCL	24.27
95% Chebyshev (MVUE) UCL	26.08	97.5% Chebyshev (MVUE) UCL	28.58
99% Chebyshev (MVUE) UCL	33.5		
Nonparamet	ric Distributi	on Free UCL Statistics	
Data appear to follow a D	iscernible D	stribution at 5% Significance Level	
Nonpara	ametric Distr	ibution Free UCLs	
95% CLT UCL	23.16	95% Jackknife UCL	23.2
95% Standard Bootstrap UCL	23.15	95% Bootstrap-t UCL	24.6
	~~ ~~		~~ ~~

95% Standard Bootstrap UCL	23.15	95% Bootstrap-t UCL	24.6
95% Hall's Bootstrap UCL	27.55	95% Percentile Bootstrap UCL	23.36
95% BCA Bootstrap UCL	24.08		
90% Chebyshev(Mean, Sd) UCL	25.37	95% Chebyshev(Mean, Sd) UCL	27.57
97.5% Chebyshev(Mean, Sd) UCL	30.64	99% Chebyshev(Mean, Sd) UCL	36.66

Suggested UCL to Use

95% H-UCL 22.87

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Lead

General Statistics

Total Number of Observations	69	Number of Distinct Observations	60
		Number of Missing Observations	0
Minimum	0.9	Mean	45.47
Maximum	440	Median	11
SD	81.28	Std. Error of Mean	9.785
Coefficient of Variation	1.788	Skewness	3.004

Normal GOF Test

Shapiro Wilk Test Statistic	0.582	Shapiro Wilk GOF Test
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.31	Lilliefors GOF Test
5% Lilliefors Critical Value	0.107	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	61.78	95% Adjusted-CLT UCL (Chen-1995)	65.34
		95% Modified-t UCL (Johnson-1978)	62.37

Gamma GOF Test

A-D Test Statistic	2.863	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.811	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.174	Kolmogrov-Smirnoff Gamma GOF Test
5% K-S Critical Value	0.113	Data Not Gamma Distributed at 5% Significance Level
Data Mat Commo	Distributed at E0/	Olemificance Level

Data Not Gamma Distributed at 5% Significance Level

		Gamma Statistics	
0.547	k star (bias corrected MLE)	0.562	k hat (MLE)
83.14	Theta star (bias corrected MLE)	80.95	Theta hat (MLE)
75.47	nu star (bias corrected)	77.5	nu hat (MLE)
61.48	MLE Sd (bias corrected)	45.47	MLE Mean (bias corrected)
56.46	Approximate Chi Square Value (0.05)		
56.11	Adjusted Chi Square Value	0.0465	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))	60.77

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.961	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0.0843	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0891	Lilliefors Lognormal GOF Test

95% Adjusted Gamma UCL (use when n<50) 61.15

5% Lilliefors Critical Value 0.107

Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.105	Mean of logged Data	2.706
Maximum of Logged Data	6.087	SD of logged Data	1.491

Assuming Lognormal Distribution

95% H-UCL	69.17	90% Chebyshev (MVUE) UCL	76.13
95% Chebyshev (MVUE) UCL	90.68	97.5% Chebyshev (MVUE) UCL	110.9
99% Chebyshev (MVUE) UCL	150.5		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

61.78	95% Jackknife UCL	61.56	95% CLT UCL
70.46	95% Bootstrap-t UCL	61.4	95% Standard Bootstrap UCL
62.93	95% Percentile Bootstrap UCL	67.09	95% Hall's Bootstrap UCL
		65.38	95% BCA Bootstrap UCL
88.12	95% Chebyshev(Mean, Sd) UCL	74.82	90% Chebyshev(Mean, Sd) UCL
142.8	99% Chebyshev(Mean, Sd) UCL	106.6	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% H-UCL 69.17

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

TPH

General Statistics

Total Number of Observations	98
Number of Detects	91
Number of Distinct Detects	59
Minimum Detect	20
Maximum Detect	5800
Variance Detects	1377145
Mean Detects	794
Median Detects	510
Skewness Detects	3.04

Number of Distinct Observations	59
Number of Non-Detects	7
Number of Distinct Non-Detects	2
Minimum Non-Detect	20
Maximum Non-Detect	200
Percent Non-Detects	7.143%
SD Detects	1174
CV Detects	1.478
Kurtosis Detects	9.112

Norma	al GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.575	Normal GOF Test on Detected Observations Only	
5% Shapiro Wilk P Value	0	Detected Data Not Normal at 5% Significance Leve	əl
Lilliefors Test Statistic	0.301	301 Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0929	Detected Data Not Normal at 5% Significance Level	əl
Detected Data	Not Normal	at 5% Significance Level	
Kaplan-Meier (KM) Statistics using	g Normal Cr	itical Values and other Nonparametric UCLs	
Mean	739.2	Standard Error of Mean	116
SD	1142	95% KM (BCA) UCL	951.2
95% KM (t) UCL	931.8	95% KM (Percentile Bootstrap) UCL	941.8
95% KM (z) UCL	930	95% KM Bootstrap t UCL	998.3
90% KM Chebyshev UCL	1087	95% KM Chebyshev UCL	1245
97.5% KM Chebyshev UCL	1464	99% KM Chebyshev UCL	1893
Gamma GOE	Tests on De	tected Observations Only	
	2 505	Anderson-Darling GOF Test	
5% A-D Critical Value	0.79	Detected Data Not Gamma Distributed at 5% Significance	e l evel
K-S Test Statistic	0.185	Kolmogrov-Smirnoff GOE	C LOVOI
5% K-S Critical Value	0.0971	Detected Data Not Gamma Distributed at 5% Significance	e l evel
	amma Distr	ibuted at 5% Significance Level	C LOVOI
Gamma S	Statistics on	Detected Data Only	
k hat (MLE)	0.84	k star (bias corrected MLE)	0.82
Theta hat (MLE)	945.1	Theta star (bias corrected MLE)	968.6
nu hat (MLE)	152.9	nu star (bias corrected)	149.2
MLE Mean (bias corrected)	794	MLE Sd (bias corrected)	877
Gamma	a Kaplan-Me	eier (KM) Statistics	
k hat (KM)	0.419	nu hat (KM)	82.15
Approximate Chi Square Value (82.15, α)	62.26	Adjusted Chi Square Value (82.15, 6)	62.01
95% Gamma Approximate KM-UCL (use when n>=50)	975.3	95% Gamma Adjusted KM-UCL (use when n<50)	979.4
Gamma ROS S	Statistics us	ing Imputed Non-Detects	
GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used w	/hen kstar o	f detected data is small such as < 0.1	
For such situations, GROS me	ethod tends	to yield inflated values of UCLs and BTVs	
For gamma distributed detected data, BTVs an	Id UCLs ma	y be computed using gamma distribution on KM estimates	707 0
Minimum	0.01	Mean	/3/.3
Maximum	5800	Median	400
SD	1149	CV	1.558
k hat (MLE)	0.464	k star (bias corrected MLE)	0.457
Theta hat (MLE)	1588	Theta star (bias corrected MLE)	1613

- nu hat (MLE) 91.02 nu star (bias corrected) 89.57
- MLE Mean (bias corrected) 737.3

Adjusted Level of Significance (β) 0.0476

MLE Sd (bias corrected) 1091

Approximate Chi Square Value (89.57, α)	68.75	Adjusted Chi Square Value (89.57, β)	68.48
95% Gamma Approximate UCL (use when n>=50)	960.5	95% Gamma Adjusted UCL (use when n<50)	964.3
Lognormal GOP	Test on D	etected Observations Only	
Lilliefors Test Statistic	0.106	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.0929	Detected Data Not Lognormal at 5% Significance Le	vel
Detected Data N	ot Lognorm	al at 5% Significance Level	
Lognormal ROS	Statistics l	Jsing Imputed Non-Detects	
Mean in Original Scale	739.4	Mean in Log Scale	5.782
SD in Original Scale	1148	SD in Log Scale	1.392
95% t UCL (assumes normality of ROS data)	932	95% Percentile Bootstrap UCL	944
95% BCA Bootstrap UCL	980.4	95% Bootstrap t UCL	992.1
95% H-UCL (Log ROS)	1247		
	DL/2 S	tatistics	

DL/2 Normal		DL/2 Log-Transformed			
	Mean in Original Scale	738.9	Mean in Log Scale	5.736	
	SD in Original Scale	1148	SD in Log Scale	1.492	
	95% t UCL (Assumes normality)	931.5	95% H-Stat UCL	1439	
	DL/2 is not a recommended met	hod, provided for comparisons and	historical reasons		

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (Chebyshev) UCL 1245

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.