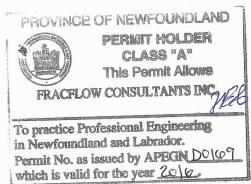
### 2015-16 Monitoring and Maintenance Program Upper Trinity South (New Harbour) Waste Disposal Site New Harbour Barrens, NL (FINAL REPORT)


(FFC File 3073N)

Prepared by:

Fracflow Consultants Inc. 154 Major's Path St. John's, NL A1A 5A1

#### Prepared for:

Government of Newfoundland and Labrador Department of Environment and Conservation 4th Floor, West Block, Confederation Building



St. John's, NL A1B 4J6



June 2016

#### **Executive Summary**

The Newfoundland and Labrador Department of Environment and Conservation (ENVC) contracted Fracflow Consultants Inc. to conduct the 2015-16 Monitoring and Maintenance Program at the Upper Trinity South (New Harbour) Waste Disposal Site located on the New Harbour Barrens, Newfoundland and Labrador (NL). The Site is located on Route 73 on the Avalon Peninsula, approximately 5 km from the junction of Route 80 and Route 73, near the community of New Harbour. The Site operated as a domestic waste disposal facility from the early 1970s until 2009. In the mid-1990s, Provincial Government undertook a polychlorinated biphenyl (PCB) remediation program at a nearby scrap yard located in the community of Makinsons, NL. During this program, low-level PCB-impacted scrap metal and transformer casings were transported to the New Harbour facility and buried on-site.

The waste disposal site was a first-generation, unlined facility with no leachate containment or collection system. Potential leachate impacts were not effectively managed until interception ditches and a leachate collection system was installed in 2006/2007. In addition, seven monitoring wells were installed around the footprint of the waste disposal site to monitor potential leachate impacts and one monitor well was installed up-gradient of the site to monitor background groundwater conditions. Monitoring of groundwater and surface water quality has been ongoing since 2007.

ENVC has been completing environmental assessment and remediation work in relation to the PCB area since 2002. The Department has also been managing closure activities at the New Harbour site since 2009. The final phase of the closure plan was completed in 2013. A final soil cover was placed over the majority of the site, filling in any depressions or holes created through the settling process with additional imported cover materials. Final capping and liner installation was completed over the PCB-impacted area. All infrastructure and site access was removed and a soil berm was installed to obstruct the view from the adjacent highway.

The scope of work for the 2015-16 Monitoring and Maintenance Program conducted by Fracflow in December 2015 included surface water and groundwater sampling, as well as the inspection of monitoring wells and the leachate control system. The findings of the work conducted by Fracflow are summarized below.

#### Surface Water

Surface water samples were submitted for analysis of general chemistry, total metals including mercury, and PCBs.

Results from the December 7, 2015 sampling event show that the background surface water (SW-Upstream) and the two samples of surface water collected downstream of the waste disposal site (SW-Pond and SW-Stream) exceeded the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the protection of

freshwater aquatic life (FAL) for aluminum. The samples from SW-Pond and SW-Stream also exceeded the respective FAL guideline values for copper and iron. The sample from SW-Pond exceeded the FAL guideline for cadmium. PCBs were not detected in any of the surface water samples that were collected.

The general chemistry data for surface water samples show obvious leachate impacts at SW-Pond with diminishing, but detectable impacts at SW-Stream when compared with background surface water quality at SW-Upstream. The concentrations of chloride have been declining at SW-Pond since monitoring began. Chloride, for example, peaked at 195 mg/L in May 2008. Since then, chloride has declined to 29 mg/L in December 2015.

#### Groundwater

Groundwater samples were submitted for analysis of dissolved metals, total mercury, and PCBs.

Results from the December 7 and 8, 2015 sampling event show that none of the dissolved metals parameters in groundwater samples exceeded the reference guidelines for groundwater quality. The guidelines that have been used by other consultants and accepted for use by ENVC are the Ontario Ministry of Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition. There were also no PCBs detected in any of the samples that were analyzed.

Groundwater elevation data indicate that the average direction of groundwater flow is from the northeast toward the southwest. Low pH and electrical conductivity values at MW-01 and MW-07, on the northeast side of the waste disposal site, were similar to those recorded at background well MW-08 and indicative of background groundwater quality. Groundwater quality at monitoring wells MW-02, MW-03, MW-04, MW-05A and MW-06 to the west and south of the waste disposal site are characterized by higher pH and conductivity and appear to be influenced by mixing with leachate.

The solubility of most trace metals decrease as pH increases. Leachate-impacted groundwater will often exhibit increased alkalinity and pH and, therefore, decreased concentrations of trace metals. That pattern is consistent with the sum totals of all trace metals (excluding the major metals of calcium, magnesium, phosphorus and sodium) that were detected in groundwater samples from monitoring wells MW-03, MW-04, MW-05A and MW-06, which appear to be located within the leachate plume.

#### Inspection of Leachate Control System and Monitoring Wells

The leachate ditch system and collection pond were visually inspected by Fracflow on December 3, 2015 and no degradation or defects in the system were noted. The rip rap around

the collection pond was found to be in good condition and there were no signs of blockages that would interfere with the proper flow of leachate to the collection pond.

There were some signs of erosion on the slopes of the landfill cover materials. Erosion has formed a number of small gullies that are approximately 0.10 m to 0.15 m deep and filled by rock fragments, and should be stable. There was some evidence of mass wasting of the west slope of the PCB remediation area, but is estimated to cover less than 1%. Some areas of the site could not be observed due to snow cover.

A site inspection of the monitoring wells was conducted in conjunction with the groundwater sampling event on December 7 and 8, 2015. All monitoring wells were found to be in generally good condition and accessible, with the following issues being documented.

- 1. There was no sampling equipment present in monitoring well MW-05A. New Waterra tubing and a foot valve were installed in that well for purging and sampling.
- 2. Well development water contained varying degrees of suspended sediment, which reflects the generally ineffective nature of the silica sand filter packs and typical well development procedures that are used in environmental monitoring.
- 3. As observed during the previous monitoring event, the top of the PVC riser pipe at MW-06 is cracked off below the steel protective casing, and there is no J-plug present.
- 4. It was noted at monitoring well MW-07 that the well screen may be broken or bent.
- 5. The cover of the steel protective casing at MW-07 was broken at the hinges and no longer attached to the casing. The cover opens, but it is vulnerable to vandalism.
- 6. There was no lock present on the well casing at MW-08, due to the protective well cap not fitting over the PVC casing stick up. This well is also vulnerable to vandalism.
- 7. The steel protective casings at MW-06 and MW-01 were found to be not cemented in or loose.

#### Recommendations

A number of recommendations have been developed by Fracflow based on the findings of the 2015-16 Monitoring and Maintenance Program at the New Harbour Waste Disposal Site. Those recommendations are presented at the end of this report for consideration by ENVC.

# **Table of Contents**

| Exe  | cutive S | Summary                                                        |
|------|----------|----------------------------------------------------------------|
| List | t of Fig | ıres                                                           |
| List | t of Pho | tos                                                            |
| List | t of Tab | lesvi                                                          |
| List | t of App | vi                                                             |
| Glo  | ssary o  | f Terms vi                                                     |
| 1.0  |          | ODUCTION                                                       |
|      |          | Site Location and Description 1-1                              |
|      |          | Historical Data                                                |
|      | 1.3      | Scope of 2015-16 Monitoring Program 1-2                        |
| • •  |          |                                                                |
| 2.0  |          | HODOLOGY                                                       |
|      |          | Surface Water Monitoring                                       |
|      | 2.2      | Groundwater Monitoring                                         |
|      |          | 2.2.1 <u>Water Level Measurements</u>                          |
|      | • • •    | 2.2.2 <u>Well Development and Field Measurements</u> 2-1       |
|      |          | Sample Collection and Handling 2-2                             |
|      | 2.4      | Laboratory Analysis                                            |
|      |          | Inspection of Leachate Control System and Monitoring Wells 2-2 |
|      | 2.6      | Data Compilation and Reporting    2-2                          |
| 3.0  | MONI     | ITORING DATA                                                   |
| 5.0  |          | Ambient Water Quality Conditions                               |
|      | 3.1      | 3.1.1 Ambient Surface Water                                    |
|      |          | 3.1.2 Ambient Groundwater                                      |
|      | 32       | On-Site Water Quality Conditions                               |
|      | 5.4      | 3.2.1 <u>On-Site Surface Water</u>                             |
|      |          | 3.2.2 On-Site Groundwater                                      |
|      |          | 5.2.2 <u>On Site Groundwater</u>                               |
| 4.0  | DISC     | USSION                                                         |
|      |          | Surface Water                                                  |
|      |          | 4.1.1 General Chemistry                                        |
|      |          | 4.1.2 Total Metals                                             |
|      |          | 4.1.3 Polychlorinated biphenyls (PCBs)                         |
|      |          | 4.1.4 Quality Control                                          |
|      | 4.2      | Groundwater                                                    |
|      |          |                                                                |

| -   |      | 3N-1-RP | Maintenance Program, New Harbour Waste Disposal Site       | Final Report<br>June 6, 2016 |
|-----|------|---------|------------------------------------------------------------|------------------------------|
|     |      |         |                                                            |                              |
|     |      | 4.2.1   | Dissolved Metals                                           | 4-2                          |
|     |      | 4.2.2   | Polychlorinated biphenyls (PCBs)                           | 4-3                          |
|     |      | 4.2.3   |                                                            |                              |
|     |      | 4.2.4   | Interpretation                                             | 4-3                          |
|     | 4.3  |         | on of Leachate Control System and Monitoring Wells         |                              |
|     |      |         | · C                                                        |                              |
| 5.0 | SUMN | MARY A  | ND RECOMMENDATIONS                                         |                              |
|     |      |         | ry                                                         |                              |
|     |      | 5.1.1   |                                                            |                              |
|     |      | 5.1.2   | Groundwater                                                |                              |
|     |      | 5.1.3   | Inspection of Leachate Control System and Monitoring Wells |                              |
|     | 5.2  | Recomm  | nendations                                                 |                              |
| 6.0 | REFE | RENCE   | <b>S</b>                                                   | 6-1                          |

# List of Figures (Appendix A)

| Figure 1 | Location of Upper Trinity South (New Harbour) Waste Disposal Site.                                         |
|----------|------------------------------------------------------------------------------------------------------------|
| Figure 2 | Upper Trinity South (New Harbour) Waste Disposal Site plan with on-site sampling locations.                |
| Figure 3 | Upper Trinity South (New Harbour) Waste Disposal Site plan with on-site and background sampling locations. |
| Figure 4 | Inferred direction of groundwater flow and approximate plume boundaries.                                   |

# List of Photos (Appendix A)

| Photo 1 | View of the leachate collection pond and discharge stream.                               |
|---------|------------------------------------------------------------------------------------------|
| Photo 2 | View of the waste disposal site slope, showing erosion of the landfill cover.            |
| Photo 3 | View of the west slope of the PCB disposal area, showing some mass wasting of the slope. |
| Photo 4 | View of MW-02 during the December 2015 sampling event.                                   |
| Photo 5 | View of MW-03 during the December 2015 sampling event.                                   |
| Photo 6 | View of MW-04 during the December 2015 sampling event.                                   |

| Photo 7  | View of MW-05A during the December 2015 sampling event.                                            |
|----------|----------------------------------------------------------------------------------------------------|
| Photo 8  | View of MW-06 during the December 2015 sampling event.                                             |
| Photo 9  | View of MW-07 during the December 2015 sampling event, showing the broken protective casing cover. |
| Photo 10 | View of background well MW-08 during the December 2015 sampling event.                             |
| Photo 11 | View of the pond up-gradient of the site, where sample SW-UPSTREAM was collected.                  |
| Photo 12 | View of the leachate collection pond, where sample SW-POND was collected.                          |
| Photo 13 | View of the stream down-gradient of the site, where sample SW-STREAM was collected.                |

# List of Tables (Appendix B)

| Table 1 | GPS coordinates of key site features.                                |
|---------|----------------------------------------------------------------------|
| Table 2 | Field measurements for surface water samples.                        |
| Table 3 | Surface water analytical results – general chemistry.                |
| Table 4 | Surface water analytical results – total metals.                     |
| Table 5 | Surface water analytical results – polychlorinated biphenyls (PCBs). |
| Table 6 | Volumes of fluid removed during well development.                    |
| Table 7 | Field measurements for groundwater samples.                          |
| Table 8 | Groundwater analytical results – dissolved metals.                   |
| Table 9 | Groundwater analytical results – polychlorinated biphenyls (PCBs).   |

### **List of Appendices**

| Tippenant Ti Tigares and Thotos | Appendix A | Figures and Photos |
|---------------------------------|------------|--------------------|
|---------------------------------|------------|--------------------|

- Appendix B Data Tables
- Appendix C Laboratory Analytical Reports
- Appendix D Historical Data

# **Glossary of Terms**

| АРНА  | American Public Health Association                                   |
|-------|----------------------------------------------------------------------|
| CCME  | Canadian Council of Ministers of the Environment                     |
| CRA   | Conestoga-Rovers & Associates                                        |
| CWQGs | Canadian Water Quality Guidelines                                    |
| ENVC  | Newfoundland and Labrador Department of Environment and Conservation |
| FAL   | CCME CWQGs for the protection of freshwater aquatic life             |
| MOE   | Ministry of Environment                                              |
| PCBs  | Polychlorinated biphenyls                                            |
| TCUs  | True colour units                                                    |
| TDS   | Total dissolved solids                                               |

## **1.0 INTRODUCTION**

The Newfoundland and Labrador Department of Environment and Conservation (ENVC) contracted Fracflow Consultants Inc. to conduct the 2015-16 Monitoring and Maintenance Program at the Upper Trinity South (New Harbour) Waste Disposal Site on the New Harbour Barrens, Newfoundland and Labrador (NL). The leachate control system inspection was conducted on December 3, 2015 and surface water and groundwater sampling, along with monitoring well inspections was completed on December 7 and 8, 2015. This report reviews the scope of work, outlines the field methods and data collected, and summarizes the conclusions and recommendations arising from this work.

Figures and photographs referenced in this report can be found in **Appendix A**. Data tables are provided in **Appendix B**. The results of the laboratory chemical analyses reported by Maxxam Analytics are presented in **Appendix C**. Analytical data from previous sampling events are presented in **Appendix D**.

## 1.1 Site Location and Description

The Upper Trinity South (New Harbour) waste disposal site is located on Route 73 in the community of New Harbour, Newfoundland and Labrador, approximately 5 km from the junction of Route 80 and Route 73 (**Figure 1**). Background information about the site and its operation history was obtained from the Request for Proposals issued by ENVC as well as from two previous monitoring reports by Conestoga-Rovers & Associates (CRA, 2014; 2015).

The New Harbour site operated as a domestic waste disposal facility from the early 1970s until November 2009, and accepted waste from the communities of Blaketown, Dildo, Green's Harbour, Hopeall, Markland, New Harbour, Old Shop, and South Dildo. The site also accepted waste from the Towns of Bay Roberts and Cupids during its early operational history. Materials disposed of at the site included domestic refuse and sawdust, as well as fat, seal pelt trim, and sludge from a local seal processing plant. One portion of the facility was dedicated to metals disposal, including cars and bulk items. The area to the northwest of the site was dedicated to disposal of scrap metal and transformer casings contaminated with low-level polychlorinated biphenyls (PCBs). The PCB-containing waste was buried between 1992 and 1995.

The waste disposal site was a first-generation, unlined facility with no leachate containment or collection system. Potential leachate impacts were not effectively managed until interception ditches and a leachate collection system was installed in 2006/2007. Eight monitoring wells were installed at the site at the locations shown in **Figure 2**. Seven of those wells (MW-01 to MW-07) were installed around the footprint of the waste disposal site, while well MW-08 was installed up-gradient of the site to monitor background groundwater conditions. A damaged monitoring well, MW-05, was replaced in 2013 by MW-05A.

The first phase of a three-year closure plan was completed at the site in 2011. Construction activities included: litter collection and control, consolidation, grading and compaction of

existing waste, placement of an interim soil cover to facilitate settling, tire collection and recycling, metal consolidation and recycling, and installation of site signage and placement of barriers to block site access. Phase 2 site closure activities were carried out in 2012 and included the transport, placement, grading and compaction of several thousand cubic metres of imported cover material. The final phase of the closure plan was completed in 2013. A final soil cover was placed over the majority of the site, filling in any depressions or holes created through the settling process with additional imported cover materials. Final capping and liner installation was completed over the PCB-impacted area. All infrastructure and site access was removed and a soil berm was installed to obstruct the view from the adjacent highway.

# **1.2 Historical Data**

Water quality data for surface water and groundwater sampling stations date back to February 2007 (CRA, 2014; 2015). These data characterize water quality during the late operational and post-closure stages of waste disposal. There were no baseline data available for review. Historically, periods between successive monitoring events have varied between four and fourteen months and individual monitoring events have been conducted at different times of the year.

## 1.3 Scope of 2015-16 Monitoring Program

The scope of work for the 2015-16 Monitoring Program at the New Harbour Waste Disposal Site consisted of the following activities.

- Sampling of ambient surface water and groundwater. Background surface water quality was established by sampling at station SW-Upstream, which is located approximately 325 m northeast of the disposal site. Background groundwater quality was established by sampling at monitoring well MW-08, which is located approximately 1,500 m northeast of the disposal site.
- Sampling of two surface water stations on the down-gradient side of the waste disposal site. One sampling station is located at the sedimentation/leachate control pond (SW-Pond) and one sampling station is located approximately 450 m south-west of the footprint of the disposal site (SW-Stream).
- Water level survey, well development and groundwater sampling from a network of seven monitoring wells located around the footprint of the disposal site. Those wells are designated MW-01, MW-02, MW-03, MW-04, MW-05A, MW-06, and MW-07.
- Inspection of leachate control system and monitoring wells.
- Preparation of this report detailing the results of the work.

## 2.0 METHODOLOGY

## 2.1 Surface Water Monitoring

Surface water samples were collected on December 7, 2015 from the three (3) monitoring stations, the locations of which are shown in **Figure 2** and **Figure 3**. GPS coordinates for each surface water station are presented in **Table 1**.

The pH, electrical conductivity, and temperature of surface waters were measured using calibrated, hand-held HACH water quality meters. Dissolved oxygen concentrations were also measured using a hand-held HACH water quality meter (**Table 2**). Site conditions were noted and recorded at that time, including weather and physical water quality (e.g., water clarity, colour, presence of sheens, odours, etc.) also shown on **Table 2**.

### 2.2 Groundwater Monitoring

Groundwater samples were collected from eight (8) monitoring wells (MW01 to MW08) between December 7 and 8, 2015. The sampling locations are shown in **Figure 2** and **Figure 3**. GPS coordinates for each groundwater station are presented in **Table 1**. One field duplicate sample was collected from MW-06. Specific activities associated with groundwater sampling are discussed in separate sections below.

#### 2.2.1 Water Level Measurements

The water level was measured in all monitoring wells at the time of the monitoring event. The height of the measuring point above ground surface (i.e., casing and riser stick up) was measured at each well prior to recording the water level. An electronic water level tape, with a stainless steel probe/sensor, was lowered into the well to measure the static water level, prior to well development. General site conditions, including weather, were recorded at that time (**Table 7**). Groundwater elevations were calculated using elevation data supplied in previous reports.

#### 2.2.2 Well Development and Field Measurements

Each well was purged and sampled using dedicated bailers, with the exception of wells MW-02 and MW-05A, where Waterra tubing had to be installed and used. The goal was to remove a minimum of three well volumes, which was calculated using the static height of the water column in each well. The ability to remove three well volumes assumed that standing water was present in all wells at the time of sampling and that sufficient permeability existed to provide a steady recharge to each well during purging.

The pH, electrical conductivity, and temperature of the development waters were measured in an open bucket that was periodically replenished. Field parameters were recorded using hand-held HACH meters as noted during the preceding section for surface water sampling (**Table 7**). The physical condition of the development waters were noted, including colour, presence of suspended material, any odours that may be detected, and length of time required to remove the necessary volumes of water (**Table 6**).

## 2.3 Sample Collection and Handling

Surface water and groundwater samples were collected using pre-labeled sample bottles supplied by Maxxam Analytics. The sampling technicians wore disposable nitrile gloves during sample collection. Surface water samples were preserved, as required by the laboratory, without filtration, in order that chemical concentrations were reported as total concentration. Groundwater samples for dissolved metals analysis were field-filtered through 0.45  $\mu$  Nalgene disposable filters. All samples were preserved in the field. After sample collection, samples were placed in chilled coolers for transport to the laboratory. Chain-of-Custody forms were completed and submitted to the laboratory, specifying the chemical analyses required.

### 2.4 Laboratory Analysis

Surface water samples were submitted for analysis of general chemistry, total metals including mercury, and PCBs. Groundwater samples were submitted for analysis of dissolved metals, total mercury, and PCBs.

## 2.5 Inspection of Leachate Control System and Monitoring Wells

A visual inspection of the leachate control system (drainage ditches and collection pond) was conducted on December 3, 2015 and a site inspection of the monitoring wells was conducted in conjunction with the groundwater sampling event on December 7 and 8, 2015. Parameters assessed during the inspections include: damage to monitoring wells and protective casings, condition of the leachate ditch system and collection pond, and condition of the slopes and riprap around the waste disposal site (**Photos 1 to 10**). It should be noted, however, that some areas were obscured from view under a cover of snow.

## 2.6 Data Compilation and Reporting

To be consistent with previous consultant's reports, all analytical data in this report were compared with guideline values adopted by previous consultants and ENVC. Tabulated analytical data is presented in **Appendix B**.

General chemistry, total metals and PCBs in surface water were assessed in relation to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the protection of Freshwater Aquatic Life (FAL).

Dissolved metals and PCBs in groundwater were assessed in relation to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

## 3.0 MONITORING DATA

Field data and laboratory analytical results for the samples taken December 7 and 8, 2015 are presented in this section of the report. Those data are compared with the applicable guideline values and results from the previous sampling events dating back to 2007. Note that all chemical data tables referenced below are presented in **Appendix B**. Copies of the laboratory analytical reports are presented in **Appendix D** contains historical data from previous monitoring events.

## 3.1 Ambient Water Quality Conditions

#### 3.1.1 Ambient Surface Water

Surface water sampling station SW-Upstream is located northeast and hydraulically up-gradient from the waste disposal site (**Photo 11**). SW-Pond and SW-Stream (**Photo 12 and 13**) are located to the southwest and hydraulically down-gradient from the waste disposal site. Field-measured values of pH, electrical conductivity, dissolved oxygen and temperature are summarized in **Table 2**.

Analytical data for general chemistry, total metals and PCBs are shown, respectively in **Table 3**, **Table 4** and **Table 5**. Any concentrations in excess of the stated guideline values are highlighted by shading in the data tables.

#### 3.1.2 Ambient Groundwater

Monitoring well MW-08 is located northeast and hydraulically up-gradient from the waste disposal site. **Table 6** and **Table 7**, respectively, present the volumes purged and the field-measured values for pH, electrical conductivity and temperature.

**Table 8** presents the dissolved metals data and **Table 9** presents PCB data for groundwater from background well MW-08. Any concentrations in excess of the stated guideline values are highlighted by shading in the data tables.

### 3.2 On-Site Water Quality Conditions

#### 3.2.1 On-Site Surface Water

Surface water sampling stations SW-Pond and SW-Stream are located southwest and hydraulically down-gradient from the waste disposal site. **Table 2** presents the field measurements for each surface water station.

**Table 3** presents the general chemistry data, **Table 4** presents the total metals data, and **Table 5** presents the PCB data for surface water samples. Any concentrations in excess of the stated guideline values are highlighted by shading in the data tables.

#### 3.2.2 On-Site Groundwater

Monitoring wells MW-01 through to MW-07 are located within the boundaries of the waste disposal site. **Table 6** and **Table 7**, respectively, present the volumes purged from each well during well development and the field measurements for each well respectively.

**Table 8** contains the results for dissolved metals analyses. **Table 9** presents the results of the PCBs analyses for groundwater samples collected from each monitoring well. Any concentrations in excess of the stated guideline values are highlighted by shading in the data tables.

### 4.0 DISCUSSION

Surface water and groundwater results for samples collected December 7 and 8, 2015 were compared to applicable guidelines and historical data since 2007. Historical data are presented in **Appendix D**.

### 4.1 Surface Water

#### 4.1.1 General Chemistry

The general chemistry data for surface water samples show distinct differences between the quality of SW-Pond and SW-Stream when compared with background surface water quality at SW-Upstream. For example, note the concentrations of chloride, total alkalinity and total dissolved solids (TDS):

- SW-Upstream: total alkalinity < 5 mg/L, chloride 7.9 mg/L and TDS 18 mg/L;
- SW-Pond: total alkalinity 160 mg/L, chloride 29 mg/L and TDS 330 mg/L; and
- SW-Stream: total alkalinity 27 mg/L, chloride 17 mg/L and TDS 70 mg/L.

Significant concentrations of nitrate plus nitrite (3.3 mg/L) and ammonia-nitrogen (3.6 mg/L) were also detected at SW-Pond. Based on the observed chemistry, especially the relatively high surface water alkalinity,  $CO_2$ -degassing may be responsible for the increased pH recorded at the laboratory.

The concentrations of chloride and other chemical parameters have been declining at SW-Pond since monitoring began. Chloride, for example, peaked at 195 mg/L in May 2008. Since then, chloride has declined to 110 mg/L in September 2009, 46 mg/L in December 2011, 24 mg/L in August 2013, and 29 mg/L in December 2015.

### 4.1.2 Total Metals

Results from the December 2015 monitoring event indicate that surface water samples downstream of the site (SW-Pond and SW-Stream) exceeded guideline values for aluminum, cadmium (SW-Pond only), copper and iron. The sample collected upstream of the site (SW-Upstream) also exceeded the guideline value for aluminum. The samples from the settling pond (SW-Pond) and downstream of the site (SW-Stream) generally had higher total metals concentrations than the background sample (SW-Upstream), with the settling pond sample having the highest concentrations.

SW-Stream and SW-Pond commonly exceeded the guidelines for aluminum, copper, and iron during previous monitoring events. SW-Pond exceeded copper guidelines for all but two sampling events since November 2007, and exceeded iron guidelines for all but four sampling

Final Report June 6, 2016

events since November 2007. SW-Stream has had fewer exceedances since November 2007, exceeding copper and iron guidelines on only three sampling occasions. In general, metals concentrations at SW-Pond and SW-Stream are decreasing with time, which is consistent with the observed decreases in the concentrations of the leachate-indicator parameters (total alkalinity, chloride and TDS) at those stations, as noted in the previous section.

### 4.1.3 Polychlorinated biphenyls (PCBs)

PCBs were not-detected in any of the surface water samples collected in December 2015. PCBs have not been detected at any surface-water station since monitoring began in 2007.

### 4.1.4 Quality Control

A comparison between field-measured and laboratory-measured values of pH and electrical conductivity is a meaningful quality control tool. In particular, field-measured pH is an essential parameter for comparison of surface water quality to guideline values. The American Public Health Association (APHA) Standard Method requires that pH be analyzed within 15 minutes of sampling and therefore, field determination is required for sampling. All laboratory-reported pH values will exceed the APHA Standard Method holding time.

The background sample from SW-Upstream had a field-measured pH of 6.33, which agreed reasonably well with the laboratory-measured pH of 6.25. Both values are below the acceptable range of 6.5 to 8.5 for FAL. The field-measured electrical conductivity was 34  $\mu$ S/cm and compared well with the laboratory-measured value of 32  $\mu$ S/cm.

Field-measured electrical conductivities at SW-Pond and SW-Stream were also reasonably close to the laboratory-measured values, but field-measured and laboratory-measured pH values at SW-Pond were significantly different. The field-measured pH value at SW-Pond was 6.47. The laboratory-measured pH value at SW-Pond was substantially higher at 7.68. The reason for that difference could be pH-probe interference from organic compounds in the water, or degassing of carbon dioxide from the samples during sample storage and transport to the laboratory.

## 4.2 Groundwater

### 4.2.1 Dissolved Metals

None of the groundwater samples collected in the December 2015 event exceeded the guideline values for dissolved metals. There have been very few exceedances of dissolved metals in groundwater since monitoring began in 2007, with the majority of the exceedances occurring during the first event in February 2007.

#### 4.2.2 <u>Polychlorinated biphenyls (PCBs)</u>

PCBs were non-detectable in all groundwater samples collected during the December 2015 sampling event. PCBs have been non-detect for all groundwater samples collected since 2007, with the exception of MW-01 in October 2009 (0.07  $\mu$ g/L).

### 4.2.3 Quality Control

A comparison between field-measured and laboratory-measured values of pH and electrical conductivity is a meaningful quality control tool as noted in the preceding section for surface water sampling (Section 4.1.4). Such a comparison is not possible for groundwater samples because general chemistry analyses are not part of the analytical program for this site.

### 4.2.4 Interpretation

Depths to groundwater and calculated groundwater elevations are presented in **Table 6**. The inferred direction of average groundwater flow is toward the southwest. Note that the elevation of MW-05A, which replaced damaged well MW-05, was not surveyed during well construction.

The quality of background groundwater was characterized by readings taken at MW-08 where the field-measured groundwater pH was 7.32 and its conductivity was 32.9  $\mu$ S/cm. Low pH and electrical conductivity values at MW-01 (6.02 and 43.6  $\mu$ S/cM) and MW-07 (5.91and 53  $\mu$ S/cm), on the northeast side of the waste disposal site, are also indicative of background groundwater quality. Groundwater quality at the other monitoring well locations are distinctly different from background and may be influenced by mixing with leachate based on the magnitude and distribution of the field-measured pH and electrical conductivity values. Groundwater quality at MW-03, MW-04, MW-05A and MW-06 appear to show the strongest influence of potential mixing with leachate. The highest conductivity value was 202  $\mu$ S/cm, which was recorded at MW-04. The approximate boundaries of the inferred leachate plume are shown in **Figure 4**.

## 4.3 Inspection of Leachate Control System and Monitoring Wells

The leachate ditch system and collection pond were visually inspected by Fracflow on December 3, 2015 and no degradation or defects in the system were noted. The rip rap around the collection pond was found to be in good condition and there were no signs of blockages that would interfere with the proper flow of leachate to the collection pond (**Photo 1**).

There were some signs of erosion on the slopes of the landfill cover materials (**Photo 2**). Erosion has formed a number of small gullies that are approximately 0.10 m to 0.15 m deep and filled by rock fragments, and should be stable. There was some evidence of mass wasting of the west

slope of the PCB remediation area, but is estimated to cover less than 1% (**Photo 3**). Standing water was observed on the access road between MW-06 and the leachate collection pond. Some areas of the site could not be observed due to snow cover.

A site inspection of the monitoring wells was conducted in conjunction with the groundwater sampling event on December 7 and 8, 2015. All monitoring wells were found to be in generally good condition and accessible (**Photos 4 to 10**), with the following issues being documented.

- There was no sampling equipment present in monitoring well MW-05A. New Waterra tubing and a foot valve were installed in that well for purging and sampling.
- Well development water contained varying degrees of suspended sediment, which reflects the generally ineffective nature of the silica sand filter packs and typical well development procedures that are used in environmental monitoring.
- As observed during the previous monitoring event, the top of the PVC riser pipe at MW-06 is cracked off below the steel protective casing, and there is no J-plug present.
- It was noted at monitoring well MW-07 that the well screen may be broken or bent.
- The cover of the steel protective casing at MW-07 was broken at the hinges and no longer attached to the casing. The cover opens, but it is vulnerable to vandalism.
- There was no lock present on the well casing at MW-08, due to the protective well cap not fitting over the PVC casing stick up. This well is also vulnerable to vandalism.
- The steel protective casings at MW-01 and MW-06 were found to be not cemented in or loose.

#### 5.0 SUMMARY AND RECOMMENDATIONS

The conclusions and recommendations arising from the work conducted by Fracflow for the 2015-16 Monitoring and Maintenance Program at the New Harbour Waste Disposal Site are summarized below.

### 5.1 Summary

#### 5.1.1 Surface Water

The general chemistry data for surface water samples show obvious leachate impacts at SW-Pond with diminishing, but detectable impacts at SW-Stream when compared with background surface water quality at SW-Upstream. Significant concentrations of nitrate plus nitrite (3.3 mg/L) and ammonia-nitrogen (3.6 mg/L) were also detected at SW-Pond and indicative of leachate impacts. The observed chemical impacts at that location, especially the relatively high surface water alkalinity, suggest that  $CO_2$ -degassing is responsible for the increased pH recorded at the laboratory. The concentrations of chloride and other chemical parameters have been declining at SW-Pond since monitoring began. Chloride, for example, peaked at 195 mg/L in May 2008. Since then, chloride has declined to 29 mg/L in December 2015.

Background surface water (SW-Upstream) and the two samples of surface water collected downstream of the waste disposal site (SW-Pond and SW-Stream) exceeded the CCME FAL guideline value for aluminum. The samples from SW-Pond and SW-Stream also exceeded the respective FAL guideline values for copper and iron. The sample from SW-Pond also exceeded the FAL guideline for cadmium. The sample collected from SW-Upstream exceeded the FAL guideline for pH.

PCBs were not detected in any of the surface water samples that were collected.

#### 5.1.2 Groundwater

Water levels and field-measured values of pH and electrical conductivity have provided some of the most meaningful insights into groundwater flow and quality at this site. Groundwater elevation data indicate that the average direction of groundwater flow is from the northeast toward the southwest. Low pH and electrical conductivity values at MW-01 and MW-07, on the northeast side of the waste disposal site, were similar to those recorded at background well MW-08 and indicative of background groundwater quality. Groundwater quality at the other monitoring well locations to the west and south of the waste disposal site are characterized by higher pH and conductivity and appear to be influenced by mixing with leachate. Samples from MW-02, MW-03, MW-04, MW-05A and MW-06 appear to show the strongest influence of mixing with leachate.

None of the dissolved metals parameters in groundwater samples exceeded the reference guidelines for groundwater quality. The guidelines that have been used by other consultants and accepted for use by ENVC are the Ontario MOE "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition. There were also no PCBs detected in any of the samples that were analyzed.

The solubility of most trace metals decrease as pH increases. Leachate-impacted groundwater will often exhibit increased alkalinity and pH and, therefore, decreased concentrations of trace metals. That pattern is consistent with the sum totals of all trace metals (excluding the major metals of calcium, magnesium, phosphorus and sodium) that were detected in groundwater samples from four monitoring wells within the leachate plume.

## 5.1.3 Inspection of Leachate Control System and Monitoring Wells

A visual inspection of the leachate control system (drainage ditches and collection pond) and monitoring wells was conducted during the 2015-16 Monitoring and Maintenance Program. Parameters assessed during the inspections include: damage to monitoring wells and protective casings, condition of the leachate ditch system and collection pond, and condition of the slopes and rip-rap around the waste disposal site. It should be noted, however, that some areas were obscured from view under a cover of snow.

There were no degradation or defects in the leachate control system noted. The rip rap around the collection pond was found to be in good condition and there were no signs of blockages that would interfere with the proper flow of leachate to the collection pond.

There were some signs of erosion on the slopes of the landfill cover materials. Erosion has formed a number of small gullies that are approximately 0.10 m to 0.15 m deep and filled by rock fragments, and should be stable. There was some evidence of mass wasting of the west slope of the PCB remediation area, but is estimated to cover less than 1%. Standing water was observed on the access road between MW-06 and the leachate collection pond.

All monitoring wells were found to be in generally good condition and accessible, with the following issues being documented.

- There was no sampling equipment present in monitoring well MW-05A. New Waterra tubing and a foot valve were installed in that well for purging and sampling.
- Well development water contained varying degrees of suspended sediment, which reflects the generally ineffective nature of the silica sand filter packs and typical well development procedures that are used in environmental monitoring.
- As observed during the previous monitoring event, the top of the PVC riser pipe at MW-06 is cracked off below the steel protective casing, and there is no J-plug present.

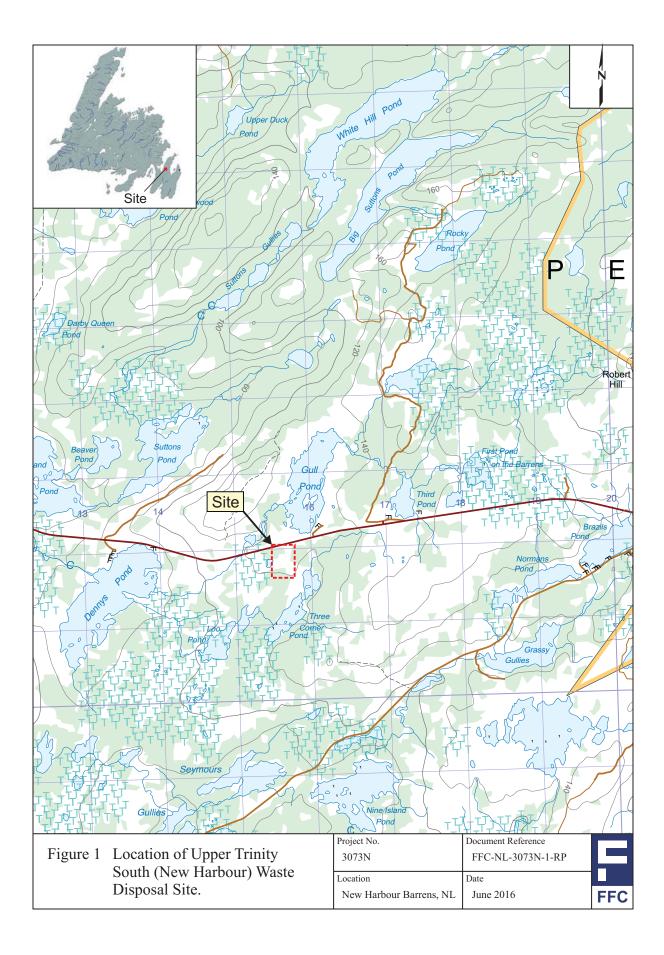
- It was noted at monitoring well MW-07 that the well screen may be broken or bent.
- The cover of the steel protective casing at MW-07 was broken at the hinges and no longer attached to the casing. The cover opens, but it is vulnerable to vandalism.
- There was no lock present on the well casing at MW-08, due to the protective well cap not fitting over the PVC casing stick up. This well is also vulnerable to vandalism.
- The steel protective casings at MW-01 and MW-06 were found to be not cemented in or loose.

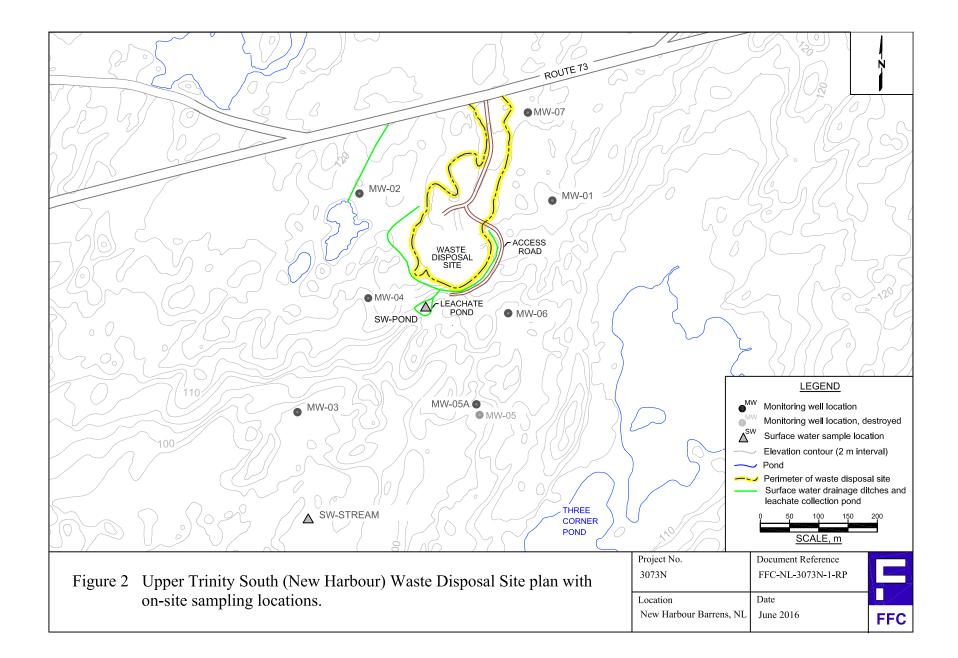
### 5.2 Recommendations

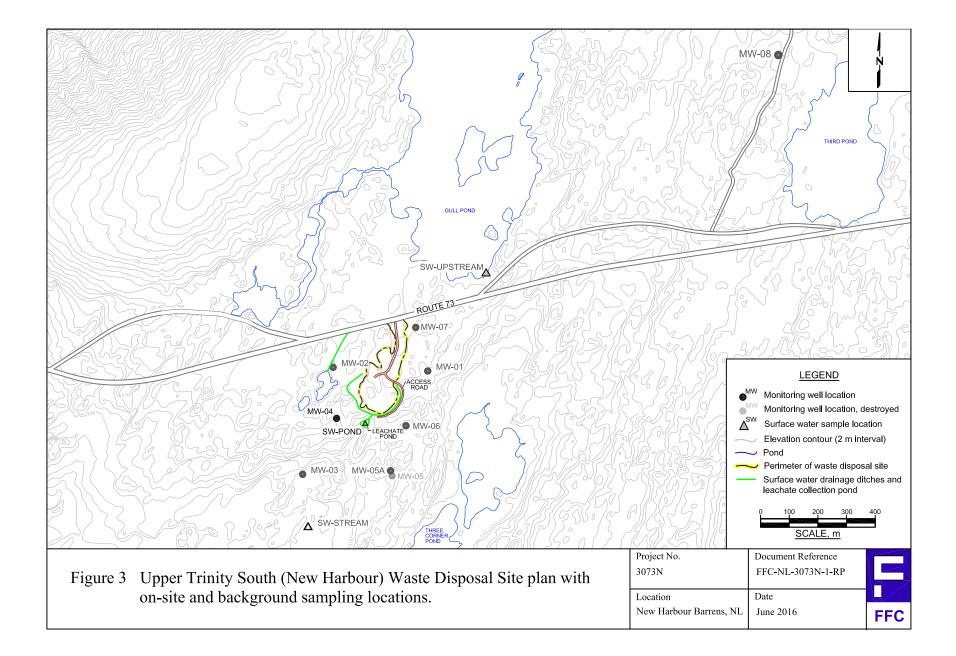
The following recommendations are presented for consideration by ENVC.

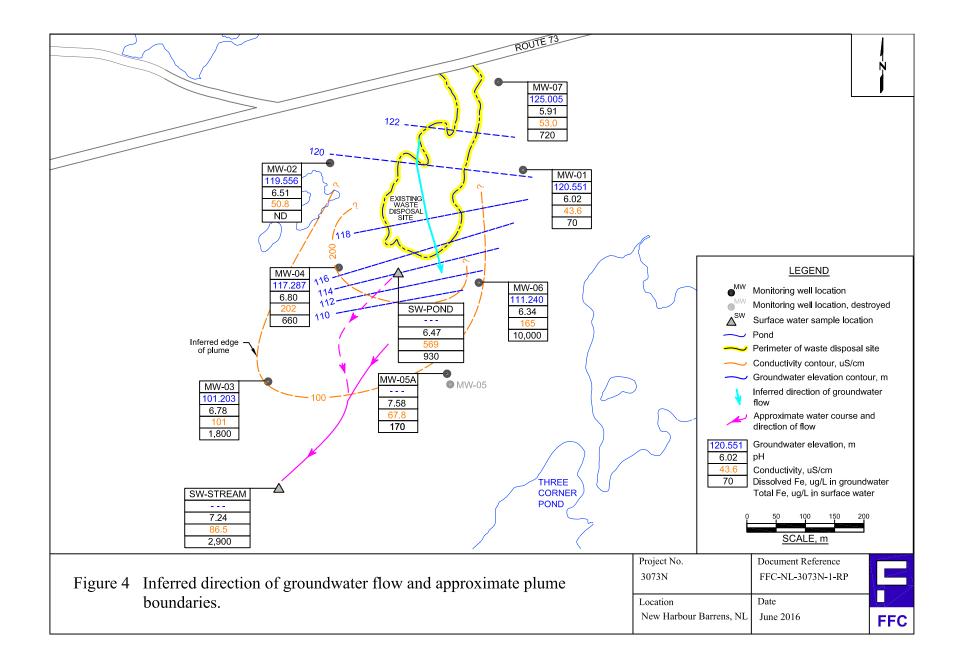
- Annual surface water and groundwater monitoring should be continued at this site. Historically, periods between successive monitoring events have varied between four and fourteen months and individual monitoring events have been conducted at different times of the year. That finding limits the ability to separate seasonal variability in water quality from trends that would otherwise reflect mixing with leachate and general evolution of the leachate plume. Therefore, monitoring should be conducted during the same month of each year in order to minimize seasonal variability and track developing water quality trends. Given the absence of any obvious leachate impacts at MW-01 and MW-07, it would be reasonable to consider limiting groundwater sampling at those sites to once every two years.
- A meaningful interpretation of metals concentrations in groundwater samples is limited by the absence of general chemistry data. In Fracflow's opinion, future monitoring events should include general chemistry analysis of all groundwater samples.
- Field-measured pH is an essential parameter for comparison of surface water and groundwater quality to guideline values. The APHA Standard Method requires that pH be analyzed within 15 minutes of sampling and, therefore, field determination is required for compliance. All laboratory-reported pH values will exceed the APHA Standard Method holding time. For that reason, laboratory-measured pH values should not be compared to guideline values.
- The elevation of MW-05A, which replaced damaged well MW-05, is unknown. That well should be surveyed to confirm groundwater flow patterns to the south of the waste disposal site.
- Several maintenance issues were identified during inspection of the monitoring wells:

- The cracked PVC casing at MW-06 should be repaired and a new j-plug installed. This will allow for improved measurements in relation to the top of casing and also for the well cover to be locked and secured.
- In order to determine if the well screen is broken or bent at MW-07, the above ground protective casing should be removed, the well screen inspected and repaired and/or replaced if possible.
- The broken protective-casing cover at MW-07 should be replaced to protect the top of the PVC casing and to allow the well cover to be locked and secured.
- The PVC casing at MW-08 should be cut lower than the protective-casing cover to allow the well cap to fit securely over the casing and be locked.
- The loose protective casings at MW-01 and MW-06 should be cemented and stabilized.
- The area between the edge of the waste disposal site and SW-Stream is heavily wooded. A walking trail should be cleared and marked for reasons of personnel safety and equipment/sample integrity while traversing to and from that location.
- Consultants should be responsible for updating the Excel spreadsheet databases during future sampling events. ENVC should provide the electronic data tables and request that consultants update the tables and develop plots to trend key parameters.
- In Fracflow's opinion, all future monitoring reports should include an illustration that shows the water table and inferred directions of groundwater flow, as well as the approximate boundaries of the leachate plume.


#### 6.0 REFERENCES


- Canadian Council of Ministers of the Environment (CCME, 1999). Canadian Environmental Quality Guidelines, Updated 2001, 2002, 2003, 2004, 2005, 2006, and 2007, Chapter 4 Canadian Water Quality Guidelines for the Protection of Aquatic Life.
- Conestoga-Rovers & Associates (CRA, 2015). 2014/2015 Monitoring and Maintenance Program, Upper Trinity South (New Harbour) Waste Disposal Site, New Harbour Barrens, Newfoundland and Labrador, Ref. No. 084308 (7).
- Conestoga-Rovers & Associates (CRA, 2014). 2013/2014 Monitoring and Maintenance Program, Upper Trinity South (New Harbour) Waste Disposal Site, New Harbour Barrens, Newfoundland and Labrador, Ref. No. 084308 (4).
- Ontario Ministry of the Environment (MOE, 2011). Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.


# APPENDIX A


Figures and Photos

Figures









**Photos** 



Photo 1 View of the leachate collection pond and discharge stream.



Photo 2 View of the waste disposal site slope, showing erosion of the landfill cover.



Photo 3 View of the west slope of the PCB disposal area, showing some mass wasting of the slope.



Photo 4 View of MW-02 during the December 2015 sampling event.



Photo 5 View of MW-03 during the December 2015 sampling event.



Photo 6 View of MW-04 during the December 2015 sampling event.



Photo 7 View of MW-05A during the December 2015 sampling event.



Photo 8 View of MW-06 during the December 2015 sampling event.



Photo 9 View of MW-07 during the December 2015 sampling event, showing the broken protective casing cover.



Photo 10 View of background well MW-08 during the December 2015 sampling event.



Photo 11 View of the pond up-gradient of the site, where sample SW-UPSTREAM was collected.



Photo 12 View of the leachate collection pond, where sample SW-POND was collected.



Photo 13 View of the stream down-gradient of the site, where sample SW-STREAM was collected.

**APPENDIX B** 

Data Tables

| ID          | Northing | Easting |
|-------------|----------|---------|
|             | m        | m       |
| MW-01       | 5271867  | 315787  |
| MW-02       | 5271887  | 315459  |
| MW-03       | 5271518  | 315342  |
| MW-04       | 5271711  | 315468  |
| MW-05A      | 5271451  | 315670  |
| MW-06       | 5271679  | 315707  |
| MW-07       | 5272020  | 315750  |
| MW-08       | 5272965  | 316998  |
| SW-UPSTREAM | 5272267  | 316026  |
| SW-POND     | 5271648  | 315544  |
| SW-STREAM   | 5271423  | 315381  |

Table 1 GPS coordinates of key site features.

GPS coordinates collected using a Topcon GRS-1 in December 2015.

All points recorded using UTM Zone 22 coordinate system.

| ID          | Location                                                                                      | Date      | Weather                                      | Sample<br>Condition           | рН       | Conductivity | Dissolved<br>Oxygen | Temperature |
|-------------|-----------------------------------------------------------------------------------------------|-----------|----------------------------------------------|-------------------------------|----------|--------------|---------------------|-------------|
|             |                                                                                               |           |                                              | Condition                     | pH units | μS/cm        | mg/L                | ٦°          |
| SW-UPSTREAM | Approximately 400 m<br>north-east of the site<br>entrance, on the south<br>side of Gull Pond. | 07-Dec-15 | Cloudy, 5° C,<br>5 cm ice cover on<br>stream | Clear, no odours<br>or sheens | 6.33     | 34.1         | 13.17               | 0.6         |
| SW-POND     | Leachate collection<br>pond immediately<br>south of the waste<br>disposal site.               | 07-Dec-15 | Cloudy, 5° C,<br>5 cm ice cover on<br>pond   | Clear, no odours<br>or sheens | 6.47     | 569          | 10.33               | 0.9         |
| SW-STREAM   | Stream approximately<br>400 m south-west of<br>the leachate collection<br>pond.               | 07-Dec-15 | Cloudy, 5° C,<br>5 cm ice cover on<br>stream | Clear, no odours<br>or sheens | 7.24     | 86.5         | 9.69                | 2.1         |

# Table 2 Field measurements for surface water samples.

| Maxxam ID                           |       |                   |       | BMR013              |       | BMR014                |       | BMR015                  |
|-------------------------------------|-------|-------------------|-------|---------------------|-------|-----------------------|-------|-------------------------|
| Sampling Date                       |       |                   |       | 07-Dec-15           |       | 07-Dec-15             |       | 07-Dec-15               |
| COC Number                          | Units | Guideline *       | RDL   | 540677-01-01        | RDL   | 540677-01-01          | RDL   | 540677-01-01            |
| Fracflow Sample ID                  |       |                   |       | 3073-NH-SW-<br>POND |       | 3073-NH-SW-<br>STREAM |       | 3073-NH-SW-<br>UPSTREAM |
| Calculated Parameters               |       |                   |       |                     |       |                       |       |                         |
| Anion Sum                           | me/L  | -                 | N/A   | 5.75                | N/A   | 1.08                  | N/A   | 0.230                   |
| Bicarb. Alkalinity (calc. as CaCO3) | mg/L  | -                 | 1.0   | 160                 | 1.0   | 27                    | 1.0   | ND                      |
| Calculated TDS                      | mg/L  | -                 | 1.0   | 330                 | 1.0   | 70                    | 1.0   | 18                      |
| Carb. Alkalinity (calc. as CaCO3)   | mg/L  | -                 | 1.0   | ND                  | 1.0   | ND                    | 1.0   | ND                      |
| Cation Sum                          | me/L  | -                 | N/A   | 5.30                | N/A   | 1.25                  | N/A   | 0.330                   |
| Hardness (CaCO3)                    | mg/L  | -                 | 1.0   | 180                 | 1.0   | 14                    | 1.0   | 4.8                     |
| Ion Balance (% Difference)          | %     | -                 | N/A   | 4.07                | N/A   | 7.30                  | N/A   | 17.9                    |
| Langelier Index (@ 20C)             | N/A   | -                 |       | 0.271               |       | -2.48                 |       | NC                      |
| Langelier Index (@ 4C)              | N/A   | -                 |       | 0.0220              |       | -2.73                 |       | NC                      |
| Nitrate (N)                         | mg/L  | -                 | 0.050 | 3.3                 | 0.050 | 0.16                  | 0.050 | 0.071                   |
| Saturation pH (@ 20C)               | N/A   | -                 |       | 7.41                |       | 9.30                  |       | NC                      |
| Saturation pH (@ 4C)                | N/A   | -                 |       | 7.66                |       | 9.55                  |       | NC                      |
| Inorganics                          |       |                   |       | -                   |       | -                     |       |                         |
| Total Alkalinity (Total as CaCO3)   | mg/L  | -                 | 25    | 160                 | 5.0   | 27                    | 5.0   | ND                      |
| Dissolved Chloride (CI)             | mg/L  | 120               | 1.0   | 29                  | 1.0   | 17                    | 1.0   | 7.9                     |
| Colour                              | TCU   | -                 | 5.0   | 14                  | 25    | 76                    | 25    | 56                      |
| Nitrate + Nitrite (N)               | mg/L  | -                 | 0.050 | 3.3                 | 0.050 | 0.16                  | 0.050 | 0.071                   |
| Nitrite (N)                         | mg/L  | 0.06              | 0.010 | 0.019               | 0.010 | ND                    | 0.010 | ND                      |
| Nitrogen (Ammonia Nitrogen)         | mg/L  | 73 <sup>(1)</sup> | 0.25  | 3.6                 | 0.050 | ND                    | 0.050 | ND                      |
| Total Organic Carbon (C)            | mg/L  | -                 | 2.5   | 8.0 (2)             | 5.0   | 8.7 (2)               | 0.50  | 7.7                     |
| Orthophosphate (P)                  | mg/L  | -                 | 0.010 | ND                  | 0.010 | ND                    | 0.010 | ND                      |
| pH-Laboratory                       | pН    | 6.5 - 9.0         | N/A   | 7.68                | N/A   | 6.82                  | N/A   | 6.25                    |
| pH-Field Measured                   | pН    | 6.5 - 9.0         |       | 6.47                |       | 7.24                  |       | 6.33                    |
| Reactive Silica (SiO2)              | mg/L  | -                 | 0.50  | 6.8                 | 0.50  | 5.5                   | 0.50  | 2.5                     |
| Dissolved Sulphate (SO4)            | mg/L  | -                 | 10    | 68                  | 2.0   | 2.5                   | 2.0   | ND                      |
| Turbidity                           | NTU   | -                 | 0.10  | 4.6                 | 0.10  | 30                    | 0.10  | 1.1                     |
| Conductivity                        | uS/cm | -                 | 1.0   | 490                 | 1.0   | 99                    | 1.0   | 32                      |

Table 3 Surface water analytical results - general chemistry.

\* Guideline refers to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the Protection of Freshwater Aquatic Life (FAL) (Updated 2007).

RDL = Reportable Detection Limit; Yellow shading indicates an abnormally high charge balance error.

ND = Not detected

N/A = Not Applicable

(1) Guideline for ammonia is pH and temperature dependant; guideline listed is for 3073-NH-SW-POND.

(2) Reporting limit was increased due to turbidity.

| Maxxam ID             |       |                           |       | BMR013              | BMR014                | BMR015                  |
|-----------------------|-------|---------------------------|-------|---------------------|-----------------------|-------------------------|
| Sampling Date         |       |                           |       | 07-Dec-15           | 07-Dec-15             | 07-Dec-15               |
| COC Number            | Units | Guideline *               | RDL   | 540677-01-01        | 540677-01-01          | 540677-01-01            |
| Fracflow Sample ID    |       |                           |       | 3073-NH-SW-<br>POND | 3073-NH-SW-<br>STREAM | 3073-NH-SW-<br>UPSTREAM |
| Metals                |       |                           |       |                     |                       |                         |
| Total Aluminum (Al)   | ug/L  | 5 / 100 <sup>(1)</sup>    | 5.0   | 210                 | 610                   | 230                     |
| Total Antimony (Sb)   | ug/L  | -                         | 1.0   | ND                  | ND                    | ND                      |
| Total Arsenic (As)    | ug/L  | 5                         | 1.0   | ND                  | ND                    | ND                      |
| Total Barium (Ba)     | ug/L  | -                         | 1.0   | 21                  | 4.8                   | 1.6                     |
| Total Beryllium (Be)  | ug/L  | -                         | 1.0   | ND                  | ND                    | ND                      |
| Total Bismuth (Bi)    | ug/L  | -                         | 2.0   | ND                  | ND                    | ND                      |
| Total Boron (B)       | ug/L  | 1500                      | 50    | 170                 | ND                    | ND                      |
| Total Cadmium (Cd)    | ug/L  | 0.04                      | 0.010 | 0.054               | 0.032                 | ND                      |
| Total Calcium (Ca)    | ug/L  | -                         | 100   | 64000               | 3900                  | 980                     |
| Total Chromium (Cr)   | ug/L  | -                         | 1.0   | 12                  | ND                    | 7.2                     |
| Total Cobalt (Co)     | ug/L  | -                         | 0.40  | 2.7                 | 1.3                   | ND                      |
| Total Copper (Cu)     | ug/L  | 3.91 / 2 <sup>(2)</sup>   | 2.0   | 4.4                 | 2.6                   | ND                      |
| Total Iron (Fe)       | ug/L  | 300                       | 50    | 930                 | 2900                  | 180                     |
| Total Lead (Pb)       | ug/L  | 6.72 / 1 <sup>(3)</sup>   | 0.50  | 0.85                | 0.89                  | ND                      |
| Total Magnesium (Mg)  | ug/L  | -                         | 100   | 5700                | 1100                  | 570                     |
| Total Manganese (Mn)  | ug/L  | -                         | 2.0   | 2400                | 230                   | 6.8                     |
| Total Molybdenum (Mo) | ug/L  | 73                        | 2.0   | ND                  | ND                    | ND                      |
| Total Nickel (Ni)     | ug/L  | 149.4 / 25 <sup>(4)</sup> | 2.0   | 2.2                 | ND                    | ND                      |
| Total Phosphorus (P)  | ug/L  | -                         | 100   | ND                  | 180                   | ND                      |
| Total Potassium (K)   | ug/L  | -                         | 100   | 6200                | 480                   | 170                     |
| Total Selenium (Se)   | ug/L  | 1                         | 1.0   | ND                  | ND                    | ND                      |
| Total Silver (Ag)     | ug/L  | 0.1                       | 0.10  | ND                  | ND                    | ND                      |
| Total Sodium (Na)     | ug/L  | -                         | 100   | 27000               | 19000                 | 5200                    |
| Total Strontium (Sr)  | ug/L  | -                         | 2.0   | 160                 | 15                    | 4.9                     |
| Total Thallium (TI)   | ug/L  | 0.8                       | 0.10  | ND                  | ND                    | ND                      |
| Total Tin (Sn)        | ug/L  | -                         | 2.0   | ND                  | ND                    | ND                      |
| Total Titanium (Ti)   | ug/L  | -                         | 2.0   | 20                  | 19                    | 2.6                     |
| Total Uranium (U)     | ug/L  | 15                        | 0.10  | ND                  | ND                    | ND                      |
| Total Vanadium (V)    | ug/L  | -                         | 2.0   | ND                  | ND                    | ND                      |
| Total Zinc (Zn)       | ug/L  | 30                        | 5.0   | 27                  | 9.7                   | ND                      |
| Total Mercury (Hg)    | ug/L  | 1                         | 0.013 | ND                  | ND                    | ND                      |

Table 4 Surface water analytics results - total metals.

\* Guideline refers to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the Protection of Freshwater Aquatic Life (FAL) (Updated 2007).

RDL = Reportable Detection Limit

ND = Not detected

(1) Aluminum guideline: 5  $\mu$ g/L if pH <6.5; 100  $\mu$ g/L if pH  $\geq$  6.5.

(2) Guideline calculated as a function of water hardness. 3.91  $\mu$ g/L applies to 3073-NH-SW-POND, 2  $\mu$ g/L applies to 3073-NH-SW-STREAM and 3073-NH-SW-UPSTREAM.

(3) Guideline calculated as a function of water hardness. 6.72  $\mu$ g/L applies to 3073-NH-SW-POND, 1  $\mu$ g/L applies to 3073-NH-SW-STREAM and 3073-NH-SW-UPSTREAM.

(4) Guideline calculated as a function of water hardness. 149.4 μg/L applies to 3073-NH-SW-POND, 25 μg/L applies to 3073-NH-SW-STREAM and 3073-NH-SW-UPSTREAM.

Table 5 Surface water analytical results - polychlorinated biphenyls (PCBs).

| Maxxam ID              |       |       |           | BMR013              | BMR014                | BMR015                  |
|------------------------|-------|-------|-----------|---------------------|-----------------------|-------------------------|
| Sampling Date          |       |       | Guideline | 07-Dec-15           | 07-Dec-15             | 07-Dec-15               |
| COC Number             | Units | RDL   | *         | 540677-01-01        | 540677-01-01          | 540677-01-01            |
| Fracflow Sample ID     |       |       |           | 3073-NH-SW-<br>POND | 3073-NH-SW-<br>STREAM | 3073-NH-SW-<br>UPSTREAM |
| PCBs                   |       |       |           |                     |                       |                         |
| Aroclor 1016           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Aroclor 1221           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Aroclor 1232           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Aroclor 1248           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Aroclor 1242           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Aroclor 1254           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Aroclor 1260           | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Calculated Total PCB   | ug/L  | 0.050 | -         | ND                  | ND                    | ND                      |
| Surrogate Recovery (%) |       |       |           |                     |                       |                         |
| Decachlorobiphenyl     | %     |       |           | 69                  | 61 <sup>(1)</sup>     | 76                      |

\* Guideline refers to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQGs) for the Protection of Freshwater Aquatic Life (FAL) (Updated 2007).

RDL = Reportable Detection Limit

ND = Not detected

(1) PCB: Unidentified (possibly halogenated) compounds detected.

| ID     | Date      | Ground Surface<br>Elevation | Depth to End of<br>Well | Static Water<br>Level | Groundwater<br>Elevation | Height of Water<br>Column | One Well<br>Volume | Volume Purged | Development Water Condition                                     |
|--------|-----------|-----------------------------|-------------------------|-----------------------|--------------------------|---------------------------|--------------------|---------------|-----------------------------------------------------------------|
|        |           | (m amsl)                    | m BGS                   | m BGS                 | (m amsl)                 | m                         | L                  | L             |                                                                 |
| MW-01  | 07-Dec-15 | 120.666                     | 0.71                    | 0.115                 | 120.551                  | 0.60                      | 1.2                | 3.6           | Brown, moderate TSS, no<br>odour/sheens.                        |
| MW-02  | 08-Dec-15 | 122.201                     | 2.86                    | 2.65                  | 119.556                  | 0.21                      | 0.4                | 1.5           | Light yellow, clear, no odour/sheens.                           |
| MW-03  | 07-Dec-15 | 101.323                     | 2.66                    | 0.12                  | 101.203                  | 2.54                      | 5.1                | 15.0          | Dark brown, moderate TSS, no odour/sheens.                      |
| MW-04  | 07-Dec-15 | 117.108                     | 2.49                    | -0.179                | 117.287                  | 2.67                      | 5.4                | 18.0          | Brownish-yellow, clear, no odour/sheens.                        |
| MW-05A |           |                             |                         |                       | Repla                    | ced in 2013               |                    |               |                                                                 |
| MW-05A | 07-Dec-15 | Not Surveyed                | 5.04                    | 0.345                 |                          | 4.70                      | 9.5                | 27.0          | Dark brown, low-mod TSS, no odour/sheens.                       |
| MW-06  | 07-Dec-15 | 111.300                     | 1.16                    | 0.06                  | 111.240                  | 1.10                      | 2.2                | 6.0           | Light yellow, clear, no odour/sheens.                           |
| MW-07  | 07-Dec-15 | 125.215                     | 2.46                    | 0.21                  | 125.005                  | 2.25                      | 4.6                | 13.5          | Brown, moderate TSS, strong bog<br>odour after 1st well volume. |
| MW-08  | 07-Dec-15 | Not Surveyed                | 4.81                    | 0.61                  |                          | 4.20                      | 8.5                | 25.5          | Light yellow, clear, no odour/sheens.                           |

Table 6 Volumes of fluid removed during well development.

BGS: Below ground surface.

(-) Negative static water levels indicate water level is above ground surface.

Table 7 Field measurements for groundwater samples.

| ID     | Date      | Weather                                                  | рН       | Conductivity | Temperature |
|--------|-----------|----------------------------------------------------------|----------|--------------|-------------|
| U      | Date      | Weather                                                  | pH units | μS/cm        | °C          |
| MW-01  | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover                           | 6.02     | 43.6         | 4.5         |
| MW-02  | 08-Dec-15 | Cloudy, 0° C, 10 cm snow cover                           | 6.51     | 50.8         | 4.6         |
| MW-03  | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover                           | 6.78     | 100.9        | 6.2         |
| MW-04  | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover,<br>marsh/bog around well | 6.80     | 202.0        | 6.8         |
| MW-05A | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover                           | 7.58     | 67.8         | 6.3         |
| MW-06  | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover                           | 6.34     | 165.2        | 3.3         |
| MW-07  | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover                           | 5.91     | 53.0         | 6.1         |
| MW-08  | 07-Dec-15 | Cloudy, 5° C, 15 cm snow cover                           | 7.32     | 32.9         | 2.7         |

| Maxxam ID                 |       |             |       | BMR016           | BMW093           | BMR017           | BMR018           | BMR019            |
|---------------------------|-------|-------------|-------|------------------|------------------|------------------|------------------|-------------------|
| Sampling Date             |       |             |       | 07-Dec-15        | 08-Dec-15        | 07-Dec-15        | 07-Dec-15        | 07-Dec-15         |
| COC Number                | Units | Guideline * | RDL   | 540677-01-01     | 540677-01-01     | 540677-01-01     | 540677-01-01     | 540677-01-01      |
| Fracflow Sample ID        |       |             |       | 3073-NH-<br>MW01 | 3073-NH-<br>MW02 | 3073-NH-<br>MW03 | 3073-NH-<br>MW04 | 3073-NH-<br>MW05A |
| Metals                    |       |             |       |                  |                  |                  |                  |                   |
| Dissolved Aluminum (Al)   | ug/L  | -           | 5.0   | 54               | 51               | 130              | 85               | 360               |
| Dissolved Antimony (Sb)   | ug/L  | 20000       | 1.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Arsenic (As)    | ug/L  | 1900        | 1.0   | ND               | ND               | 2.8              | ND               | ND                |
| Dissolved Barium (Ba)     | ug/L  | 29000       | 1.0   | 2.8              | 2.4              | 5.7              | 7.3              | 4.9               |
| Dissolved Beryllium (Be)  | ug/L  | 67          | 1.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Bismuth (Bi)    | ug/L  | -           | 2.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Boron (B)       | ug/L  | 45000       | 50    | ND               | ND               | ND               | ND               | ND                |
| Dissolved Cadmium (Cd)    | ug/L  | 2.7         | 0.010 | ND               | ND               | ND               | 0.029            | 0.013             |
| Dissolved Calcium (Ca)    | ug/L  | -           | 100   | 3000             | 2500             | 5800             | 6800             | 3900              |
| Dissolved Chromium (Cr)   | ug/L  | 810         | 1.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Cobalt (Co)     | ug/L  | 66          | 0.40  | ND               | ND               | 1.7              | 3.4              | ND                |
| Dissolved Copper (Cu)     | ug/L  | 87          | 2.0   | ND               | ND               | 2.3              | 3.4              | 4.9               |
| Dissolved Iron (Fe)       | ug/L  | -           | 50    | 70               | ND               | 1800             | 660              | 170               |
| Dissolved Lead (Pb)       | ug/L  | 25          | 0.50  | ND               | ND               | ND               | 0.84             | 0.5               |
| Dissolved Magnesium (Mg)  | ug/L  | -           | 100   | 940              | 830              | 1600             | 1600             | 1300              |
| Dissolved Manganese (Mn)  | ug/L  | -           | 2.0   | 21               | 4.6              | 720              | 130              | 7                 |
| Dissolved Molybdenum (Mo) | ug/L  | 9200        | 2.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Nickel (Ni)     | ug/L  | 490         | 2.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Phosphorus (P)  | ug/L  | -           | 100   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Potassium (K)   | ug/L  | -           | 100   | 250              | 260              | 820              | 670              | 360               |
| Dissolved Selenium (Se)   | ug/L  | 63          | 1.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Silver (Ag)     | ug/L  | 1.5         | 0.10  | ND               | ND               | ND               | ND               | ND                |
| Dissolved Sodium (Na)     | ug/L  | 2300000     | 100   | 6200             | 8800             | 19000            | 29000            | 15000             |
| Dissolved Strontium (Sr)  | ug/L  | -           | 2.0   | 11               | 9                | 19               | 23               | 13                |
| Dissolved Thallium (TI)   | ug/L  | 510         | 0.10  | ND               | ND               | ND               | ND               | ND                |
| Dissolved Tin (Sn)        | ug/L  | -           | 2.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Titanium (Ti)   | ug/L  | -           | 2.0   | ND               | 2.1              | 4.4              | 3.6              | 5                 |
| Dissolved Uranium (U)     | ug/L  | 420         | 0.10  | ND               | ND               | ND               | ND               | 0.14              |
| Dissolved Vanadium (V)    | ug/L  | 250         | 2.0   | ND               | ND               | ND               | ND               | ND                |
| Dissolved Zinc (Zn)       | ug/L  | 1100        | 5.0   | ND               | ND               | ND               | 16               | 5.4               |
| Total Mercury (Hg)        | ug/L  | 0.29        | 0.013 | 0.04             | ND               | 0.092            | ND               | 0.022             |

Table 8 Groundwater analytical results - dissolved metals (Page 1 of 2).

\* Guideline refers to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

ND = Not detected

| Maxxam ID                 |       |             |       | BMR020       | BMR024              | BMR021       | BMR023       |
|---------------------------|-------|-------------|-------|--------------|---------------------|--------------|--------------|
| Sampling Date             |       |             |       | 07-Dec-15    | 07-Dec-15           | 07-Dec-15    | 07-Dec-15    |
| COC Number                | Units | Guideline * | RDL   | 540677-01-01 | 540677-02-01        | 540677-01-01 | 540677-02-01 |
| Fracflow Sample ID        |       |             |       | 3073-NH-MW06 | 3073-NH-MW-<br>DUP1 | 3073-NH-MW07 | 3073-NH-MW08 |
| Metals                    |       |             |       |              |                     |              |              |
| Dissolved Aluminum (Al)   | ug/L  | -           | 5.0   | 120          | 120                 | 2100         | 1400         |
| Dissolved Antimony (Sb)   | ug/L  | 20000       | 1.0   | ND           | ND                  | ND           | ND           |
| Dissolved Arsenic (As)    | ug/L  | 1900        | 1.0   | 2.1          | 1.7                 | 1.4          | ND           |
| Dissolved Barium (Ba)     | ug/L  | 29000       | 1.0   | 7            | 7.2                 | 6.7          | 2.7          |
| Dissolved Beryllium (Be)  | ug/L  | 67          | 1.0   | ND           | ND                  | ND           | ND           |
| Dissolved Bismuth (Bi)    | ug/L  | -           | 2.0   | ND           | ND                  | ND           | ND           |
| Dissolved Boron (B)       | ug/L  | 45000       | 50    | ND           | ND                  | ND           | ND           |
| Dissolved Cadmium (Cd)    | ug/L  | 2.7         | 0.010 | ND           | ND                  | 0.017        | ND           |
| Dissolved Calcium (Ca)    | ug/L  | -           | 100   | 13000        | 13000               | 4700         | 1700         |
| Dissolved Chromium (Cr)   | ug/L  | 810         | 1.0   | ND           | ND                  | 2.1          | ND           |
| Dissolved Cobalt (Co)     | ug/L  | 66          | 0.40  | 0.86         | 1                   | ND           | ND           |
| Dissolved Copper (Cu)     | ug/L  | 87          | 2.0   | ND           | 2.1                 | 5.3          | 6.7          |
| Dissolved Iron (Fe)       | ug/L  | -           | 50    | 10000        | 11000               | 720          | 270          |
| Dissolved Lead (Pb)       | ug/L  | 25          | 0.50  | 0.52         | 0.61                | 1.3          | ND           |
| Dissolved Magnesium (Mg)  | ug/L  | -           | 100   | 2500         | 2500                | 1300         | 610          |
| Dissolved Manganese (Mn)  | ug/L  | -           | 2.0   | 350          | 350                 | 8.8          | 6            |
| Dissolved Molybdenum (Mo) | ug/L  | 9200        | 2.0   | ND           | ND                  | ND           | ND           |
| Dissolved Nickel (Ni)     | ug/L  | 490         | 2.0   | ND           | ND                  | ND           | ND           |
| Dissolved Phosphorus (P)  | ug/L  | -           | 100   | 120          | ND                  | 110          | ND           |
| Dissolved Potassium (K)   | ug/L  | -           | 100   | 2100         | 2100                | 300          | 230          |
| Dissolved Selenium (Se)   | ug/L  | 63          | 1.0   | ND           | ND                  | ND           | ND           |
| Dissolved Silver (Ag)     | ug/L  | 1.5         | 0.10  | ND           | ND                  | ND           | 0.11         |
| Dissolved Sodium (Na)     | ug/L  | 2300000     | 100   | 9500         | 9200                | 12000        | 5600         |
| Dissolved Strontium (Sr)  | ug/L  | -           | 2.0   | 38           | 38                  | 16           | 6.7          |
| Dissolved Thallium (TI)   | ug/L  | 510         | 0.10  | ND           | ND                  | ND           | ND           |
| Dissolved Tin (Sn)        | ug/L  | -           | 2.0   | ND           | ND                  | ND           | ND           |
| Dissolved Titanium (Ti)   | ug/L  | -           | 2.0   | 5.2          | 5.3                 | 52           | 22           |
| Dissolved Uranium (U)     | ug/L  | 420         | 0.10  | ND           | ND                  | 0.23         | ND           |
| Dissolved Vanadium (V)    | ug/L  | 250         | 2.0   | ND           | ND                  | 2.6          | ND           |
| Dissolved Zinc (Zn)       | ug/L  | 1100        | 5.0   | ND           | ND                  | 7.1          | 5.1          |
| Total Mercury (Hg)        | ug/L  | 0.29        | 0.013 | 0.053        | 0.018               | 0.17         | 0.025        |

Table 8 Groundwater analytical results - dissolved metals (Page 2 of 2).

\* Guideline refers to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

ND = Not detected

| Maxxam ID              |                        |       |             | BMR016            | BMW093           | BMR017            | BMR018            | BMR019            |  |  |  |
|------------------------|------------------------|-------|-------------|-------------------|------------------|-------------------|-------------------|-------------------|--|--|--|
| Sampling Date          |                        |       | Guideline * | 07-Dec-15         | 08-Dec-15        | 07-Dec-15         | 07-Dec-15         | 07-Dec-15         |  |  |  |
| COC Number             | Units                  | RDL   |             | 540677-01-01      | 540677-01-01     | 540677-01-01      | 540677-01-01      | 540677-01-01      |  |  |  |
| Fracflow Sample ID     |                        |       |             | 3073-NH-<br>MW01  | 3073-NH-<br>MW02 | 3073-NH-<br>MW03  | 3073-NH-<br>MW04  | 3073-NH-<br>MW05A |  |  |  |
| PCBs                   |                        |       |             |                   |                  |                   |                   |                   |  |  |  |
| Aroclor 1016           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Aroclor 1221           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Aroclor 1232           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Aroclor 1248           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Aroclor 1242           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Aroclor 1254           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Aroclor 1260           | ug/L                   | 0.050 | -           | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Calculated Total PCB   | ug/L                   | 0.050 | 7.8         | ND                | ND               | ND                | ND                | ND                |  |  |  |
| Surrogate Recovery (%) | Surrogate Recovery (%) |       |             |                   |                  |                   |                   |                   |  |  |  |
| Decachlorobiphenyl     | %                      |       | -           | 56 <sup>(2)</sup> | 53               | 52 <sup>(3)</sup> | 77 <sup>(1)</sup> | 46 <sup>(2)</sup> |  |  |  |

Table 9 Groundwater analytical results - polychlorinated biphenyls (PCBs)(Page 1 of 2).

\* Guideline refers to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

ND = Not detected

(1) PCB: Unidentified (possibly halogenated) compounds detected.

(2) PCB sample contained sediment.

(3) PCB sample contained sediment. PCB:Unidentified (possibly halogenated) compounds detected.

| Maxxam ID              |                        |       |                | BMR020            | BMR024            | BMR021            | BMR023       |  |  |  |  |
|------------------------|------------------------|-------|----------------|-------------------|-------------------|-------------------|--------------|--|--|--|--|
| Sampling Date          |                        | RDL   | DL Guideline * | 07-Dec-15         | 07-Dec-15         | 07-Dec-15         | 07-Dec-15    |  |  |  |  |
| COC Number             | Units                  |       |                | 540677-01-01      | 540677-02-01      | 540677-01-01      | 540677-02-01 |  |  |  |  |
| Fracflow Sample ID     |                        |       |                | 3073-NH-          | 3073-NH-MW-       | 3073-NH-          | 3073-NH-     |  |  |  |  |
|                        |                        |       |                | MW06              | DUP1              | MW07              | MW08         |  |  |  |  |
| PCBs                   |                        |       |                |                   |                   |                   |              |  |  |  |  |
| Aroclor 1016           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Aroclor 1221           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Aroclor 1232           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Aroclor 1248           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Aroclor 1242           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Aroclor 1254           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Aroclor 1260           | ug/L                   | 0.050 | -              | ND                | ND                | ND                | ND           |  |  |  |  |
| Calculated Total PCB   | ug/L                   | 0.050 | 7.8            | ND                | ND                | ND                | ND           |  |  |  |  |
| Surrogate Recovery (%) | Surrogate Recovery (%) |       |                |                   |                   |                   |              |  |  |  |  |
| Decachlorobiphenyl     | %                      |       | -              | 43 <sup>(3)</sup> | 53 <sup>(3)</sup> | 35 <sup>(3)</sup> | 40           |  |  |  |  |

Table 9 Groundwater analytical results - polychlorinated biphenyls (PCBs)(Page 2 of 2).

\* Guideline refers to the Ontario Ministry of the Environment (MOE) "Soil, Ground Water, and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition.

RDL = Reportable Detection Limit

ND = Not detected

(1) PCB: Unidentified (possibly halogenated) compounds detected.

(2) PCB sample contained sediment.

(3) PCB sample contained sediment. PCB:Unidentified (possibly halogenated) compounds detected.

# **APPENDIX C**

Laboratory Analytical Reports



Site Location: NEW HARBOUR Your C.O.C. #: 540677-01-01, 540677-02-01

### Attention:Ingrid Lawlor

Fracflow Consultants Inc 154 Major's Path St. John's, NL A1A 5A1

> Report Date: 2015/12/16 Report #: R3809012 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

### MAXXAM JOB #: B5P4044

### Received: 2015/12/09, 11:01

Sample Matrix: Water # Samples Received: 11

|                                          |          | Date       | Date       |                   |                      |
|------------------------------------------|----------|------------|------------|-------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference            |
| Carbonate, Bicarbonate and Hydroxide (1) | 3        | N/A        | 2015/12/14 | N/A               | SM 22 4500-CO2 D     |
| Alkalinity (1)                           | 3        | N/A        | 2015/12/15 | ATL SOP 00013     | EPA 310.2 R1974 m    |
| Chloride (1)                             | 3        | N/A        | 2015/12/15 | ATL SOP 00014     | SM 22 4500-Cl- E m   |
| Colour (1)                               | 3        | N/A        | 2015/12/14 | ATL SOP 00020     | SM 22 2120C m        |
| Conductance - water (1)                  | 3        | N/A        | 2015/12/11 | ATL SOP 00004     | SM 22 2510B m        |
| Hardness (calculated as CaCO3) (1)       | 2        | N/A        | 2015/12/15 | ATL SOP 00048     | SM 22 2340 B         |
| Hardness (calculated as CaCO3) (1)       | 1        | N/A        | 2015/12/16 | ATL SOP 00048     | SM 22 2340 B         |
| Mercury - Total (CVAA,LL) (1)            | 11       | 2015/12/14 | 2015/12/14 | ATL SOP 00026     | EPA 245.1 R3 m       |
| Metals Water Diss. MS (as rec'd) (1)     | 7        | N/A        | 2015/12/11 | ATL SOP 00058     | EPA 6020A R1 m       |
| Metals Water Diss. MS (as rec'd) (1)     | 1        | N/A        | 2015/12/14 | ATL SOP 00058     | EPA 6020A R1 m       |
| Metals Water Total MS (1)                | 2        | 2015/12/14 | 2015/12/14 | ATL SOP 00058     | EPA 6020A R1 m       |
| Metals Water Total MS (1)                | 1        | 2015/12/14 | 2015/12/15 | ATL SOP 00058     | EPA 6020A R1 m       |
| Ion Balance (% Difference) (1)           | 3        | N/A        | 2015/12/16 |                   | Auto Calc.           |
| Anion and Cation Sum (1)                 | 3        | N/A        | 2015/12/16 |                   | Auto Calc.           |
| Nitrogen Ammonia - water (1)             | 3        | N/A        | 2015/12/15 | ATL SOP 00015     | EPA 350.1 R2 m       |
| Nitrogen - Nitrate + Nitrite (1)         | 3        | N/A        | 2015/12/15 | ATL SOP 00016     | USGS SOPINCF0452.2 m |
| Nitrogen - Nitrite (1)                   | 3        | N/A        | 2015/12/14 | ATL SOP 00017     | SM 22 4500-NO2- B m  |
| Nitrogen - Nitrate (as N) (1)            | 3        | N/A        | 2015/12/16 | ATL SOP 00018     | ASTM D3867           |
| PCBs in water by GC/ECD (1)              | 11       | 2015/12/14 | 2015/12/15 | ATL SOP 00107     | EPA 8082A m          |
| PCB Aroclor sum (water) (1)              | 11       | N/A        | 2015/12/15 |                   | Auto Calc.           |
| рН (1, 2)                                | 3        | N/A        | 2015/12/11 | ATL SOP 00003     | SM 22 4500-H+ B m    |
| Phosphorus - ortho (1)                   | 3        | N/A        | 2015/12/16 | ATL SOP 00021     | EPA 365.2 m          |
| Sat. pH and Langelier Index (@ 20C) (1)  | 1        | N/A        | 2015/12/15 | ATL SOP 00049     | Auto Calc.           |
| Sat. pH and Langelier Index (@ 20C) (1)  | 2        | N/A        | 2015/12/16 | ATL SOP 00049     | Auto Calc.           |
| Sat. pH and Langelier Index (@ 4C) (1)   | 1        | N/A        | 2015/12/15 | ATL SOP 00049     | Auto Calc.           |
| Sat. pH and Langelier Index (@ 4C) (1)   | 2        | N/A        | 2015/12/16 | ATL SOP 00049     | Auto Calc.           |
| Reactive Silica (1)                      | 2        | N/A        | 2015/12/14 | ATL SOP 00022     | EPA 366.0 m          |
| Reactive Silica (1)                      | 1        | N/A        | 2015/12/15 | ATL SOP 00022     | EPA 366.0 m          |
| Sulphate (1)                             | 3        | N/A        | 2015/12/14 | ATL SOP 00023     | EPA 375.4 R1978 m    |
| Total Dissolved Solids (TDS calc) (1)    | 3        | N/A        | 2015/12/16 |                   | Auto Calc.           |
|                                          |          |            |            |                   |                      |



Site Location: NEW HARBOUR Your C.O.C. #: 540677-01-01, 540677-02-01

#### Attention:Ingrid Lawlor

Fracflow Consultants Inc 154 Major's Path St. John's, NL A1A 5A1

> Report Date: 2015/12/16 Report #: R3809012 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B5P4044 Received: 2015/12/09, 11:01

Received: 2013/12/09, 11:01

Sample Matrix: Water # Samples Received: 11

|                                     |          | Date        | Date       |                   |                |
|-------------------------------------|----------|-------------|------------|-------------------|----------------|
| Analyses                            | Quantity | y Extracted | Analyzed   | Laboratory Method | Reference      |
| Organic carbon - Total (TOC) (1, 3) | 3        | N/A         | 2015/12/16 | 5 ATL SOP 00037   | SM 22 5310C m  |
| Turbidity (1)                       | 3        | N/A         | 2015/12/14 | 4 ATL SOP 00011   | EPA 180.1 R2 m |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

(2) The APHA Standard Method require pH to be analyzed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the APHA Standard Method holding time.

(3) TOC / DOC present in the sample should be considered as non-purgeable TOC / DOC.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Leonard Muise, Project Manager Email: LMuise@maxxam.ca Phone# (902)420-0203 Ext:236

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



### ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

| Maxxam ID                           |       | BMR013          |       |          | BMR014            |          |          |
|-------------------------------------|-------|-----------------|-------|----------|-------------------|----------|----------|
| Sampling Date                       |       | 2015/12/07      |       |          | 2015/12/07        |          |          |
| COC Number                          |       | 540677-01-01    |       |          | 540677-01-01      |          |          |
|                                     | UNITS | 3073-NH-SW-POND | RDL   | QC Batch | 3073-NH-SW-STREAM | RDL      | QC Batch |
| Calculated Parameters               |       |                 |       |          |                   |          |          |
| Anion Sum                           | me/L  | 5.75            | N/A   | 4306837  | 1.08              | N/A      | 4306837  |
| Bicarb. Alkalinity (calc. as CaCO3) | mg/L  | 160             | 1.0   | 4306833  | 27                | 1.0      | 4306833  |
| Calculated TDS                      | mg/L  | 330             | 1.0   | 4306842  | 70                | 1.0      | 4306842  |
| Carb. Alkalinity (calc. as CaCO3)   | mg/L  | ND              | 1.0   | 4306833  | ND                | 1.0      | 4306833  |
| Cation Sum                          | me/L  | 5.30            | N/A   | 4306837  | 1.25              | N/A      | 4306837  |
| Hardness (CaCO3)                    | mg/L  | 180             | 1.0   | 4306835  | 14                | 1.0      | 4306835  |
| Ion Balance (% Difference)          | %     | 4.07            | N/A   | 4306836  | 7.30              | N/A      | 4306836  |
| Langelier Index (@ 20C)             | N/A   | 0.271           |       | 4306840  | -2.48             |          | 4306840  |
| Langelier Index (@ 4C)              | N/A   | 0.0220          |       | 4306841  | -2.73             |          | 4306841  |
| Nitrate (N)                         | mg/L  | 3.3             | 0.050 | 4306838  | 0.16              | 0.050    | 4306838  |
| Saturation pH (@ 20C)               | N/A   | 7.41            |       | 4306840  | 9.30              |          | 4306840  |
| Saturation pH (@ 4C)                | N/A   | 7.66            |       | 4306841  | 9.55              |          | 4306841  |
| Inorganics                          | 1     | I               |       | 1        |                   | 1        |          |
| Total Alkalinity (Total as CaCO3)   | mg/L  | 160             | 25    | 4309446  | 27                | 5.0      | 4309446  |
| Dissolved Chloride (Cl)             | mg/L  | 29              | 1.0   | 4309480  | 17                | 1.0      | 4309480  |
| Colour                              | TCU   | 14              | 5.0   | 4309491  | 76                | 25       | 4309491  |
| Nitrate + Nitrite (N)               | mg/L  | 3.3             | 0.050 | 4309506  | 0.16              | 0.050    | 4309506  |
| Nitrite (N)                         | mg/L  | 0.019           | 0.010 | 4309512  | ND                | 0.010    | 4309512  |
| Nitrogen (Ammonia Nitrogen)         | mg/L  | 3.6             | 0.25  | 4312184  | ND                | 0.050    | 4312184  |
| Total Organic Carbon (C)            | mg/L  | 8.0 (1)         | 2.5   | 4314078  | 8.7 (1)           | 5.0      | 4314078  |
| Orthophosphate (P)                  | mg/L  | ND              | 0.010 | 4309498  | ND                | 0.010    | 4309498  |
| рН                                  | рН    | 7.68            | N/A   | 4309265  | 6.82              | N/A      | 4309265  |
| Reactive Silica (SiO2)              | mg/L  | 6.8             | 0.50  | 4309489  | 5.5               | 0.50     | 4309489  |
| Dissolved Sulphate (SO4)            | mg/L  | 68              | 10    | 4309483  | 2.5               | 2.0      | 4309483  |
| Turbidity                           | NTU   | 4.6             | 0.10  | 4312208  | 30                | 0.10     | 4312223  |
| Conductivity                        | uS/cm | 490             | 1.0   | 4309271  | 99                | 1.0      | 4309271  |
| Metals                              |       |                 |       |          |                   |          |          |
| Total Aluminum (Al)                 | ug/L  | 210             | 5.0   | 4311572  | 610               | 5.0      | 4311572  |
| Total Antimony (Sb)                 | ug/L  | ND              | 1.0   | 4311572  | ND                | 1.0      | 4311572  |
| Total Arsenic (As)                  | ug/L  | ND              | 1.0   | 4311572  | ND                | 1.0      | 4311572  |
| Total Barium (Ba)                   | ug/L  | 21              | 1.0   | 4311572  | 4.8               | 1.0      | 4311572  |
| Total Beryllium (Be)                | ug/L  | ND              | 1.0   | 4311572  | ND                | 1.0      | 4311572  |
| Total Bismuth (Bi)                  | ug/L  | ND              | 2.0   | 4311572  | ND                | 2.0      | 4311572  |
| RDL = Reportable Detection Limit    |       |                 | -     |          |                   | <u>.</u> |          |
| QC Batch = Quality Control Batch    |       |                 |       |          |                   |          |          |
|                                     |       |                 |       |          |                   |          |          |

N/A = Not Applicable

ND = Not detected

(1) Reporting limit was increased due to turbidity.



# ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

|                                                                      |       |                 |       | -        |                   |       |         |
|----------------------------------------------------------------------|-------|-----------------|-------|----------|-------------------|-------|---------|
| Maxxam ID                                                            |       | BMR013          |       |          | BMR014            |       |         |
| Sampling Date                                                        |       | 2015/12/07      |       |          | 2015/12/07        |       |         |
| COC Number                                                           |       | 540677-01-01    |       |          | 540677-01-01      |       |         |
|                                                                      | UNITS | 3073-NH-SW-POND | RDL   | QC Batch | 3073-NH-SW-STREAM | RDL   | QC Bate |
| Total Boron (B)                                                      | ug/L  | 170             | 50    | 4311572  | ND                | 50    | 431157  |
| Total Cadmium (Cd)                                                   | ug/L  | 0.054           | 0.010 | 4311572  | 0.032             | 0.010 | 431157  |
| Total Calcium (Ca)                                                   | ug/L  | 64000           | 100   | 4311572  | 3900              | 100   | 431157  |
| Total Chromium (Cr)                                                  | ug/L  | 12              | 1.0   | 4311572  | ND                | 1.0   | 431157  |
| Total Cobalt (Co)                                                    | ug/L  | 2.7             | 0.40  | 4311572  | 1.3               | 0.40  | 431157  |
| Total Copper (Cu)                                                    | ug/L  | 4.4             | 2.0   | 4311572  | 2.6               | 2.0   | 431157  |
| Total Iron (Fe)                                                      | ug/L  | 930             | 50    | 4311572  | 2900              | 50    | 431157  |
| Total Lead (Pb)                                                      | ug/L  | 0.85            | 0.50  | 4311572  | 0.89              | 0.50  | 431157  |
| Total Magnesium (Mg)                                                 | ug/L  | 5700            | 100   | 4311572  | 1100              | 100   | 431157  |
| Total Manganese (Mn)                                                 | ug/L  | 2400            | 2.0   | 4311572  | 230               | 2.0   | 431157  |
| Total Molybdenum (Mo)                                                | ug/L  | ND              | 2.0   | 4311572  | ND                | 2.0   | 431157  |
| Total Nickel (Ni)                                                    | ug/L  | 2.2             | 2.0   | 4311572  | ND                | 2.0   | 431157  |
| Total Phosphorus (P)                                                 | ug/L  | ND              | 100   | 4311572  | 180               | 100   | 431157  |
| Total Potassium (K)                                                  | ug/L  | 6200            | 100   | 4311572  | 480               | 100   | 431157  |
| Total Selenium (Se)                                                  | ug/L  | ND              | 1.0   | 4311572  | ND                | 1.0   | 431157  |
| Total Silver (Ag)                                                    | ug/L  | ND              | 0.10  | 4311572  | ND                | 0.10  | 431157  |
| Total Sodium (Na)                                                    | ug/L  | 27000           | 100   | 4311572  | 19000             | 100   | 431157  |
| Total Strontium (Sr)                                                 | ug/L  | 160             | 2.0   | 4311572  | 15                | 2.0   | 431157  |
| Total Thallium (Tl)                                                  | ug/L  | ND              | 0.10  | 4311572  | ND                | 0.10  | 431157  |
| Total Tin (Sn)                                                       | ug/L  | ND              | 2.0   | 4311572  | ND                | 2.0   | 431157  |
| Total Titanium (Ti)                                                  | ug/L  | 20              | 2.0   | 4311572  | 19                | 2.0   | 431157  |
| Total Uranium (U)                                                    | ug/L  | ND              | 0.10  | 4311572  | ND                | 0.10  | 431157  |
| Total Vanadium (V)                                                   | ug/L  | ND              | 2.0   | 4311572  | ND                | 2.0   | 431157  |
| Total Zinc (Zn)                                                      | ug/L  | 27              | 5.0   | 4311572  | 9.7               | 5.0   | 431157  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |                 |       |          |                   |       |         |

ND = Not detected



## ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

| Maxxam ID                           | 1     | BMR015              |       |          |
|-------------------------------------|-------|---------------------|-------|----------|
| Sampling Date                       |       | 2015/12/07          |       |          |
| COC Number                          |       | 540677-01-01        |       |          |
|                                     | UNITS | 3073-NH-SW-UPSTREAM | RDL   | QC Batch |
| Calculated Parameters               |       |                     |       |          |
| Anion Sum                           | me/L  | 0.230               | N/A   | 4306837  |
| Bicarb. Alkalinity (calc. as CaCO3) | mg/L  | ND                  | 1.0   | 4306833  |
| Calculated TDS                      | mg/L  | 18                  | 1.0   | 4306842  |
| Carb. Alkalinity (calc. as CaCO3)   | mg/L  | ND                  | 1.0   | 4306833  |
| Cation Sum                          | me/L  | 0.330               | N/A   | 4306837  |
| Hardness (CaCO3)                    | mg/L  | 4.8                 | 1.0   | 4306835  |
| Ion Balance (% Difference)          | %     | 17.9                | N/A   | 4306836  |
| Langelier Index (@ 20C)             | N/A   | NC                  |       | 4306840  |
| Langelier Index (@ 4C)              | N/A   | NC                  |       | 4306841  |
| Nitrate (N)                         | mg/L  | 0.071               | 0.050 | 4306838  |
| Saturation pH (@ 20C)               | N/A   | NC                  |       | 4306840  |
| Saturation pH (@ 4C)                | N/A   | NC                  |       | 4306841  |
| Inorganics                          |       |                     |       |          |
| Total Alkalinity (Total as CaCO3)   | mg/L  | ND                  | 5.0   | 4309446  |
| Dissolved Chloride (Cl)             | mg/L  | 7.9                 | 1.0   | 4309480  |
| Colour                              | TCU   | 56                  | 25    | 4309491  |
| Nitrate + Nitrite (N)               | mg/L  | 0.071               | 0.050 | 4309506  |
| Nitrite (N)                         | mg/L  | ND                  | 0.010 | 4309512  |
| Nitrogen (Ammonia Nitrogen)         | mg/L  | ND                  | 0.050 | 4312184  |
| Total Organic Carbon (C)            | mg/L  | 7.7                 | 0.50  | 4314078  |
| Orthophosphate (P)                  | mg/L  | ND                  | 0.010 | 4309498  |
| рН                                  | рН    | 6.25                | N/A   | 4309265  |
| Reactive Silica (SiO2)              | mg/L  | 2.5                 | 0.50  | 4309489  |
| Dissolved Sulphate (SO4)            | mg/L  | ND                  | 2.0   | 4309483  |
| Turbidity                           | NTU   | 1.1                 | 0.10  | 4312208  |
| Conductivity                        | uS/cm | 32                  | 1.0   | 4309271  |
| Metals                              |       |                     |       |          |
| Total Aluminum (Al)                 | ug/L  | 230                 | 5.0   | 4311578  |
| Total Antimony (Sb)                 | ug/L  | ND                  | 1.0   | 4311578  |
| Total Arsenic (As)                  | ug/L  | ND                  | 1.0   | 4311578  |
| Total Barium (Ba)                   | ug/L  | 1.6                 | 1.0   | 4311578  |
| Total Beryllium (Be)                | ug/L  | ND                  | 1.0   | 4311578  |
| Total Bismuth (Bi)                  | ug/L  | ND                  | 2.0   | 4311578  |
| RDL = Reportable Detection Limit    |       |                     |       |          |
| QC Batch = Quality Control Batch    |       |                     |       |          |
| N/A = Not Applicable                |       |                     |       |          |
| ND = Not detected                   |       |                     |       |          |



# ATLANTIC RCAP-MS TOTAL METALS IN WATER (WATER)

| Maxxam ID                        |       | BMR015              |       |          |
|----------------------------------|-------|---------------------|-------|----------|
| Sampling Date                    |       | 2015/12/07          |       |          |
| COC Number                       |       | 540677-01-01        |       |          |
|                                  | UNITS | 3073-NH-SW-UPSTREAM | RDL   | QC Batch |
| Total Boron (B)                  | ug/L  | ND                  | 50    | 4311578  |
| Total Cadmium (Cd)               | ug/L  | ND                  | 0.010 | 4311578  |
| Total Calcium (Ca)               | ug/L  | 980                 | 100   | 4311578  |
| Total Chromium (Cr)              | ug/L  | 7.2                 | 1.0   | 4311578  |
| Total Cobalt (Co)                | ug/L  | ND                  | 0.40  | 4311578  |
| Total Copper (Cu)                | ug/L  | ND                  | 2.0   | 4311578  |
| Total Iron (Fe)                  | ug/L  | 180                 | 50    | 4311578  |
| Total Lead (Pb)                  | ug/L  | ND                  | 0.50  | 4311578  |
| Total Magnesium (Mg)             | ug/L  | 570                 | 100   | 4311578  |
| Total Manganese (Mn)             | ug/L  | 6.8                 | 2.0   | 4311578  |
| Total Molybdenum (Mo)            | ug/L  | ND                  | 2.0   | 4311578  |
| Total Nickel (Ni)                | ug/L  | ND                  | 2.0   | 4311578  |
| Total Phosphorus (P)             | ug/L  | ND                  | 100   | 4311578  |
| Total Potassium (K)              | ug/L  | 170                 | 100   | 4311578  |
| Total Selenium (Se)              | ug/L  | ND                  | 1.0   | 4311578  |
| Total Silver (Ag)                | ug/L  | ND                  | 0.10  | 4311578  |
| Total Sodium (Na)                | ug/L  | 5200                | 100   | 4311578  |
| Total Strontium (Sr)             | ug/L  | 4.9                 | 2.0   | 4311578  |
| Total Thallium (Tl)              | ug/L  | ND                  | 0.10  | 4311578  |
| Total Tin (Sn)                   | ug/L  | ND                  | 2.0   | 4311578  |
| Total Titanium (Ti)              | ug/L  | 2.6                 | 2.0   | 4311578  |
| Total Uranium (U)                | ug/L  | ND                  | 0.10  | 4311578  |
| Total Vanadium (V)               | ug/L  | ND                  | 2.0   | 4311578  |
| Total Zinc (Zn)                  | ug/L  | ND                  | 5.0   | 4311578  |
| RDL = Reportable Detection Limit | •     |                     |       |          |
| QC Batch = Quality Control Batch |       |                     |       |          |
| ND = Not detected                |       |                     |       |          |



### MERCURY BY COLD VAPOUR AA (WATER)

|                            |                        |               |               |                   |                              |                  |                                   | -     |                     |        |           |
|----------------------------|------------------------|---------------|---------------|-------------------|------------------------------|------------------|-----------------------------------|-------|---------------------|--------|-----------|
| Maxxam ID                  |                        | BMR013        |               | BMRO              | 14                           |                  | BMR015                            |       | BMR016              |        |           |
| Sampling Date              |                        | 2015/12/07    |               | 2015/12           | 2/07                         | 20               | 2015/12/07                        |       | 2015/12/07          |        |           |
| COC Number                 |                        | 540677-01-01  | -             | 540677-0          | 1-01                         | 540677-01-01     |                                   | 1     | 540677-01-01        | L      |           |
|                            | UNITS                  | 3073-NH-SW-PO | ND 30         | 73-NH-SW          | STREAM                       | 3073-NH          | -SW-UPST                          | REAM  | 3073-NH-MW0         | 1 RDL  | QC Batch  |
| Metals                     |                        |               |               |                   |                              |                  |                                   |       |                     |        |           |
| Total Mercury (Hg)         | ug/L                   | ND            |               | ND                |                              |                  | ND                                |       | 0.040               | 0.013  | 4311574   |
| RDL = Reportable Detection | on Limit               |               |               |                   |                              | •                |                                   |       |                     | •      | •         |
| QC Batch = Quality Contro  | ol Batch               |               |               |                   |                              |                  |                                   |       |                     |        |           |
| ND = Not detected          |                        |               |               |                   |                              |                  |                                   |       |                     |        |           |
| L                          |                        |               |               |                   |                              |                  |                                   |       |                     |        |           |
| Maxxam ID                  |                        | BMR017        |               | 1R018             |                              | R019             | BMR                               |       | BMR021              |        |           |
| Sampling Date              |                        | 2015/12/07    | 2015          | 5/12/07           | 2015                         | /12/07           | 2015/1                            | 2/07  | 2015/12/07          |        |           |
| COC Number                 |                        | 540677-01-01  | 5406          | 77-01-01          | 54067                        | 7-01-01          | 540677-                           | 01-01 | 540677-01-0         | 1      |           |
|                            | UNITS                  | 3073-NH-MW03  | 3073-N        | H-MW04            | 3073-NI                      | I-MW05A          | 3073-NH-                          | MW06  | 3073-NH-MW          | 07 RDL | QC Batc   |
| Metals                     |                        |               |               |                   |                              |                  |                                   |       |                     |        |           |
| Total Mercury (Hg)         | ug/L                   | 0.092         |               | ND                | 0.                           | 022              | 0.05                              | 3     | 0.17                | 0.01   | 3 4311574 |
| RDL = Reportable Detection | on Limit               |               |               |                   |                              |                  |                                   |       |                     |        |           |
| QC Batch = Quality Contro  | l Batch                |               |               |                   |                              |                  |                                   |       |                     |        |           |
| ND = Not detected          |                        |               |               |                   |                              |                  |                                   |       |                     |        |           |
|                            |                        |               |               |                   |                              |                  |                                   |       |                     |        |           |
|                            | Maxxam ID              |               |               | BMR               | 123                          | BMR              | 024                               |       |                     |        |           |
|                            | Maxxam ID              |               |               | BMR(              | -                            | BMR              | -                                 |       |                     |        |           |
|                            | Sampling D             | ate           |               | 2015/1            | 2/07                         | 2015/1           | 12/07                             |       |                     |        |           |
|                            |                        | ate           |               | 2015/1<br>540677- | 2/07<br>02-01                | 2015/1<br>540677 | 12/07<br>-02-01                   | RDI   | OC Batch            |        |           |
|                            | Sampling D<br>COC Numb | ate           | UNITS         | 2015/1<br>540677- | 2/07<br>02-01                | 2015/1           | 12/07<br>-02-01                   | RDL   | QC Batch            |        |           |
|                            | Sampling D             | ate<br>er     | UNITS<br>ug/L | 2015/1<br>540677- | 2/07<br>02-01<br><b>MW08</b> | 2015/1<br>540677 | 12/07<br>-02-01<br><b>IW-DUP1</b> |       | QC Batch<br>4311574 |        |           |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



## **ELEMENTS BY ICP/MS (WATER)**

| Maxxam ID                 |       | BMR016       | BMR017       |          | BMR018       | BMR019        |       |          |
|---------------------------|-------|--------------|--------------|----------|--------------|---------------|-------|----------|
| Sampling Date             |       | 2015/12/07   | 2015/12/07   |          | 2015/12/07   | 2015/12/07    |       |          |
| COC Number                |       | 540677-01-01 | 540677-01-01 |          | 540677-01-01 | 540677-01-01  |       |          |
|                           | UNITS | 3073-NH-MW01 | 3073-NH-MW03 | QC Batch | 3073-NH-MW04 | 3073-NH-MW05A | RDL   | QC Batch |
| Metals                    |       |              |              |          |              |               |       |          |
| Dissolved Aluminum (Al)   | ug/L  | 54           | 130          | 4308821  | 85           | 360           | 5.0   | 4308824  |
| Dissolved Antimony (Sb)   | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 1.0   | 4308824  |
| Dissolved Arsenic (As)    | ug/L  | ND           | 2.8          | 4308821  | ND           | ND            | 1.0   | 4308824  |
| Dissolved Barium (Ba)     | ug/L  | 2.8          | 5.7          | 4308821  | 7.3          | 4.9           | 1.0   | 4308824  |
| Dissolved Beryllium (Be)  | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 1.0   | 4308824  |
| Dissolved Bismuth (Bi)    | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 2.0   | 4308824  |
| Dissolved Boron (B)       | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 50    | 4308824  |
| Dissolved Cadmium (Cd)    | ug/L  | ND           | ND           | 4308821  | 0.029        | 0.013         | 0.010 | 4308824  |
| Dissolved Calcium (Ca)    | ug/L  | 3000         | 5800         | 4308821  | 6800         | 3900          | 100   | 4308824  |
| Dissolved Chromium (Cr)   | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 1.0   | 4308824  |
| Dissolved Cobalt (Co)     | ug/L  | ND           | 1.7          | 4308821  | 3.4          | ND            | 0.40  | 4308824  |
| Dissolved Copper (Cu)     | ug/L  | ND           | 2.3          | 4308821  | 3.4          | 4.9           | 2.0   | 4308824  |
| Dissolved Iron (Fe)       | ug/L  | 70           | 1800         | 4308821  | 660          | 170           | 50    | 4308824  |
| Dissolved Lead (Pb)       | ug/L  | ND           | ND           | 4308821  | 0.84         | 0.50          | 0.50  | 4308824  |
| Dissolved Magnesium (Mg)  | ug/L  | 940          | 1600         | 4308821  | 1600         | 1300          | 100   | 4308824  |
| Dissolved Manganese (Mn)  | ug/L  | 21           | 720          | 4308821  | 130          | 7.0           | 2.0   | 4308824  |
| Dissolved Molybdenum (Mo) | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 2.0   | 4308824  |
| Dissolved Nickel (Ni)     | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 2.0   | 4308824  |
| Dissolved Phosphorus (P)  | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 100   | 4308824  |
| Dissolved Potassium (K)   | ug/L  | 250          | 820          | 4308821  | 670          | 360           | 100   | 4308824  |
| Dissolved Selenium (Se)   | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 1.0   | 4308824  |
| Dissolved Silver (Ag)     | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 0.10  | 4308824  |
| Dissolved Sodium (Na)     | ug/L  | 6200         | 19000        | 4308821  | 29000        | 15000         | 100   | 4308824  |
| Dissolved Strontium (Sr)  | ug/L  | 11           | 19           | 4308821  | 23           | 13            | 2.0   | 4308824  |
| Dissolved Thallium (Tl)   | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 0.10  | 4308824  |
| Dissolved Tin (Sn)        | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 2.0   | 4308824  |
| Dissolved Titanium (Ti)   | ug/L  | ND           | 4.4          | 4308821  | 3.6          | 5.0           | 2.0   | 4308824  |
| Dissolved Uranium (U)     | ug/L  | ND           | ND           | 4308821  | ND           | 0.14          | 0.10  | 4308824  |
| Dissolved Vanadium (V)    | ug/L  | ND           | ND           | 4308821  | ND           | ND            | 2.0   | 4308824  |
| Dissolved Zinc (Zn)       | ug/L  | ND           | ND           | 4308821  | 16           | 5.4           | 5.0   | 4308824  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected



# **ELEMENTS BY ICP/MS (WATER)**

| Maxxam ID                 |       | BMR020       | BMR021       | BMR023       | BMR024          |       |          |
|---------------------------|-------|--------------|--------------|--------------|-----------------|-------|----------|
| Sampling Date             |       | 2015/12/07   | 2015/12/07   | 2015/12/07   | 2015/12/07      |       |          |
| COC Number                |       | 540677-01-01 | 540677-01-01 | 540677-02-01 | 540677-02-01    |       |          |
|                           | UNITS | 3073-NH-MW06 | 3073-NH-MW07 | 3073-NH-MW08 | 3073-NH-MW-DUP1 | RDL   | QC Batch |
| Metals                    |       |              |              |              |                 |       |          |
| Dissolved Aluminum (Al)   | ug/L  | 120          | 2100         | 1400         | 120             | 5.0   | 4308824  |
| Dissolved Antimony (Sb)   | ug/L  | ND           | ND           | ND           | ND              | 1.0   | 4308824  |
| Dissolved Arsenic (As)    | ug/L  | 2.1          | 1.4          | ND           | 1.7             | 1.0   | 4308824  |
| Dissolved Barium (Ba)     | ug/L  | 7.0          | 6.7          | 2.7          | 7.2             | 1.0   | 4308824  |
| Dissolved Beryllium (Be)  | ug/L  | ND           | ND           | ND           | ND              | 1.0   | 4308824  |
| Dissolved Bismuth (Bi)    | ug/L  | ND           | ND           | ND           | ND              | 2.0   | 4308824  |
| Dissolved Boron (B)       | ug/L  | ND           | ND           | ND           | ND              | 50    | 4308824  |
| Dissolved Cadmium (Cd)    | ug/L  | ND           | 0.017        | ND           | ND              | 0.010 | 4308824  |
| Dissolved Calcium (Ca)    | ug/L  | 13000        | 4700         | 1700         | 13000           | 100   | 4308824  |
| Dissolved Chromium (Cr)   | ug/L  | ND           | 2.1          | ND           | ND              | 1.0   | 4308824  |
| Dissolved Cobalt (Co)     | ug/L  | 0.86         | ND           | ND           | 1.0             | 0.40  | 4308824  |
| Dissolved Copper (Cu)     | ug/L  | ND           | 5.3          | 6.7          | 2.1             | 2.0   | 4308824  |
| Dissolved Iron (Fe)       | ug/L  | 10000        | 720          | 270          | 11000           | 50    | 4308824  |
| Dissolved Lead (Pb)       | ug/L  | 0.52         | 1.3          | ND           | 0.61            | 0.50  | 4308824  |
| Dissolved Magnesium (Mg)  | ug/L  | 2500         | 1300         | 610          | 2500            | 100   | 4308824  |
| Dissolved Manganese (Mn)  | ug/L  | 350          | 8.8          | 6.0          | 350             | 2.0   | 4308824  |
| Dissolved Molybdenum (Mo) | ug/L  | ND           | ND           | ND           | ND              | 2.0   | 4308824  |
| Dissolved Nickel (Ni)     | ug/L  | ND           | ND           | ND           | ND              | 2.0   | 4308824  |
| Dissolved Phosphorus (P)  | ug/L  | 120          | 110          | ND           | ND              | 100   | 4308824  |
| Dissolved Potassium (K)   | ug/L  | 2100         | 300          | 230          | 2100            | 100   | 4308824  |
| Dissolved Selenium (Se)   | ug/L  | ND           | ND           | ND           | ND              | 1.0   | 4308824  |
| Dissolved Silver (Ag)     | ug/L  | ND           | ND           | 0.11         | ND              | 0.10  | 4308824  |
| Dissolved Sodium (Na)     | ug/L  | 9500         | 12000        | 5600         | 9200            | 100   | 4308824  |
| Dissolved Strontium (Sr)  | ug/L  | 38           | 16           | 6.7          | 38              | 2.0   | 4308824  |
| Dissolved Thallium (TI)   | ug/L  | ND           | ND           | ND           | ND              | 0.10  | 4308824  |
| Dissolved Tin (Sn)        | ug/L  | ND           | ND           | ND           | ND              | 2.0   | 4308824  |
| Dissolved Titanium (Ti)   | ug/L  | 5.2          | 52           | 22           | 5.3             | 2.0   | 4308824  |
| Dissolved Uranium (U)     | ug/L  | ND           | 0.23         | ND           | ND              | 0.10  | 4308824  |
| Dissolved Vanadium (V)    | ug/L  | ND           | 2.6          | ND           | ND              | 2.0   | 4308824  |
| Dissolved Zinc (Zn)       | ug/L  | ND           | 7.1          | 5.1          | ND              | 5.0   | 4308824  |

QC Batch = Quality Control Batch

ND = Not detected



Report Date: 2015/12/16

### Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

| Maxxam ID              |                        | BMR013          | BMR014            | BMR015              | BMR016       |       |          |  |  |  |
|------------------------|------------------------|-----------------|-------------------|---------------------|--------------|-------|----------|--|--|--|
| Sampling Date          |                        | 2015/12/07      | 2015/12/07        | 2015/12/07          | 2015/12/07   |       |          |  |  |  |
| COC Number             |                        | 540677-01-01    | 540677-01-01      | 540677-01-01        | 540677-01-01 |       |          |  |  |  |
|                        | UNITS                  | 3073-NH-SW-POND | 3073-NH-SW-STREAM | 3073-NH-SW-UPSTREAM | 3073-NH-MW01 | RDL   | QC Batch |  |  |  |
| PCBs                   |                        |                 |                   |                     |              |       |          |  |  |  |
| Aroclor 1016           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Aroclor 1221           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Aroclor 1232           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Aroclor 1248           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Aroclor 1242           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Aroclor 1254           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Aroclor 1260           | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4311587  |  |  |  |
| Calculated Total PCB   | ug/L                   | ND              | ND                | ND                  | ND           | 0.050 | 4307183  |  |  |  |
| Surrogate Recovery (%) | Surrogate Recovery (%) |                 |                   |                     |              |       |          |  |  |  |
| Decachlorobiphenyl     | %                      | 69              | 61 (1)            | 76                  | 56 (2)       |       | 4311587  |  |  |  |
|                        |                        | •               |                   |                     |              |       |          |  |  |  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

ND = Not detected

(1) PCB:Unidentified (possibly halogenated) compounds detected.

(2) PCB sample contained sediment.

| Maxxam ID                 |         | BMR017       | BMR018       | BMR019        | BMR020       | BMR021       |       |          |
|---------------------------|---------|--------------|--------------|---------------|--------------|--------------|-------|----------|
| Sampling Date             |         | 2015/12/07   | 2015/12/07   | 2015/12/07    | 2015/12/07   | 2015/12/07   |       |          |
| COC Number                |         | 540677-01-01 | 540677-01-01 | 540677-01-01  | 540677-01-01 | 540677-01-01 |       |          |
|                           | UNITS   | 3073-NH-MW03 | 3073-NH-MW04 | 3073-NH-MW05A | 3073-NH-MW06 | 3073-NH-MW07 | RDL   | QC Batch |
| PCBs                      |         | -            | -            | -             | -            | •            |       | ·        |
| Aroclor 1016              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Aroclor 1221              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Aroclor 1232              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Aroclor 1248              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Aroclor 1242              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Aroclor 1254              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Aroclor 1260              | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4311587  |
| Calculated Total PCB      | ug/L    | ND           | ND           | ND            | ND           | ND           | 0.050 | 4307183  |
| Surrogate Recovery (%)    |         | •            | •            | •             | •            | •            | •     | •        |
| Decachlorobiphenyl        | %       | 52 (1)       | 77 (2)       | 46 (3)        | 43 (1)       | 35 (1)       |       | 4311587  |
| RDL = Reportable Detectio | n Limit | •            | •            | •             | •            | •            | •     | •        |

QC Batch = Quality Control Batch

ND = Not detected

(1) PCB sample contained sediment. PCB:Unidentified (possibly halogenated) compounds detected.

(2) PCB:Unidentified (possibly halogenated) compounds detected.

(3) PCB sample contained sediment.



# POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

| Maxxam ID                                                                                      |       | BMR023       | BMR024          |       |          |  |  |  |
|------------------------------------------------------------------------------------------------|-------|--------------|-----------------|-------|----------|--|--|--|
| Sampling Date                                                                                  |       | 2015/12/07   | 2015/12/07      |       |          |  |  |  |
| COC Number                                                                                     |       | 540677-02-01 | 540677-02-01    |       |          |  |  |  |
|                                                                                                | UNITS | 3073-NH-MW08 | 3073-NH-MW-DUP1 | RDL   | QC Batch |  |  |  |
| PCBs                                                                                           |       |              |                 |       |          |  |  |  |
| Aroclor 1016                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Aroclor 1221                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Aroclor 1232                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Aroclor 1248                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Aroclor 1242                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Aroclor 1254                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Aroclor 1260                                                                                   | ug/L  | ND           | ND              | 0.050 | 4311587  |  |  |  |
| Calculated Total PCB                                                                           | ug/L  | ND           | ND              | 0.050 | 4307183  |  |  |  |
| Surrogate Recovery (%)                                                                         |       |              |                 |       |          |  |  |  |
| Decachlorobiphenyl                                                                             | %     | 40           | 53 (1)          |       | 4311587  |  |  |  |
| RDL = Reportable Detection                                                                     | Limit |              |                 |       |          |  |  |  |
| QC Batch = Quality Control Batch                                                               |       |              |                 |       |          |  |  |  |
| ND = Not detected                                                                              |       |              |                 |       |          |  |  |  |
| (1) PCB sample contained sediment. PCB:Unidentified (possibly halogenated) compounds detected. |       |              |                 |       |          |  |  |  |



Report Date: 2015/12/16

Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### **GENERAL COMMENTS**

| Each te | mperature is the a                                                                       | average of up to | three cooler temperatures taken at receipt           |  |  |  |  |
|---------|------------------------------------------------------------------------------------------|------------------|------------------------------------------------------|--|--|--|--|
|         | Package 1                                                                                | 7.0°C            |                                                      |  |  |  |  |
| Sample  | BMR014-01 : RC/                                                                          | Ap Ion Balance a | acceptable. Anion/cation agreement within 0.2 meq/L. |  |  |  |  |
| Sample  | Sample BMR015-01 : RCAp Ion Balance acceptable. Anion/cation agreement within 0.2 meq/L. |                  |                                                      |  |  |  |  |
| Results | relate only to the                                                                       | e items tested.  |                                                      |  |  |  |  |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |              |                           | Date       |       |          |       |           |
|---------|------|--------------|---------------------------|------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value | Recovery | UNITS | QC Limits |
| 4308821 | BAN  | Matrix Spike | Dissolved Aluminum (Al)   | 2015/12/11 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Barium (Ba)     | 2015/12/11 |       | 97       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2015/12/11 |       | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Bismuth (Bi)    | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)       | 2015/12/11 |       | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)    | 2015/12/11 |       | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2015/12/11 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)       | 2015/12/11 |       | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2015/12/11 |       | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg)  | 2015/12/11 |       | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn)  | 2015/12/11 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2015/12/11 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P)  | 2015/12/11 |       | 110      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)   | 2015/12/11 |       | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2015/12/11 |       | 93       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)     | 2015/12/11 |       | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr)  | 2015/12/11 |       | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2015/12/11 |       | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2015/12/11 |       | 109      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2015/12/11 |       | 109      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2015/12/11 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2015/12/11 |       | 102      | %     | 80 - 120  |
| 4308821 | BAN  | Spiked Blank | Dissolved Aluminum (Al)   | 2015/12/11 |       | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2015/12/11 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2015/12/11 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Barium (Ba)     | 2015/12/11 |       | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2015/12/11 |       | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Bismuth (Bi)    | 2015/12/11 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)       | 2015/12/11 |       | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)    | 2015/12/11 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2015/12/11 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)       | 2015/12/11 |       | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg)  | 2015/12/11 |       | 109      | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn)  | 2015/12/11 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2015/12/11 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2015/12/11 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P)  | 2015/12/11 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)   | 2015/12/11 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2015/12/11 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2015/12/11 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Soliver (Ag)    | 2015/12/11 |       | 101      | %     | 80 - 120  |
| I       |      |              |                           | 2013/12/11 |       | 100      | 70    | 00 - 120  |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                           | Date       |                  |          |       |           |
|---------|------|--------------|---------------------------|------------|------------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value            | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Strontium (Sr)  | 2015/12/11 |                  | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (Tl)   | 2015/12/11 |                  | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2015/12/11 |                  | 106      | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2015/12/11 |                  | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2015/12/11 |                  | 109      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2015/12/11 |                  | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2015/12/11 |                  | 103      | %     | 80 - 120  |
| 4308821 | BAN  | Method Blank | Dissolved Aluminum (Al)   | 2015/12/11 | ND,<br>RDL=5.0   |          | ug/L  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2015/12/11 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2015/12/11 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Dissolved Barium (Ba)     | 2015/12/11 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2015/12/11 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Dissolved Bismuth (Bi)    | 2015/12/11 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Dissolved Boron (B)       | 2015/12/11 | ND,<br>RDL=50    |          | ug/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2015/12/11 | ND,<br>RDL=0.010 |          | ug/L  |           |
|         |      |              | Dissolved Calcium (Ca)    | 2015/12/11 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2015/12/11 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2015/12/11 | ND,<br>RDL=0.40  |          | ug/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2015/12/11 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Dissolved Iron (Fe)       | 2015/12/11 | ND,<br>RDL=50    |          | ug/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2015/12/11 | ND,<br>RDL=0.50  |          | ug/L  |           |
|         |      |              | Dissolved Magnesium (Mg)  | 2015/12/11 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Dissolved Manganese (Mn)  | 2015/12/11 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2015/12/11 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2015/12/11 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Dissolved Phosphorus (P)  | 2015/12/11 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Dissolved Potassium (K)   | 2015/12/11 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2015/12/11 | ND,<br>RDL=1.0   |          | ug/L  |           |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                                                  | Date                     |               |            |        |                      |
|---------|------|--------------|--------------------------------------------------|--------------------------|---------------|------------|--------|----------------------|
| Batch   | Init | QC Type      | Parameter                                        | Analyzed                 | Value         | Recovery   | UNITS  | QC Limits            |
|         |      |              | Dissolved Silver (Ag)                            | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  |                          | RDL=0.10      |            |        |                      |
|         |      |              | Dissolved Sodium (Na)                            | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  |                          | RDL=100       |            |        |                      |
|         |      |              | Dissolved Strontium (Sr)                         | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  |                          | RDL=2.0       |            |        |                      |
|         |      |              | Dissolved Thallium (Tl)                          | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  |                          | RDL=0.10      |            | -      |                      |
|         |      |              | Dissolved Tin (Sn)                               | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  |                          | RDL=2.0       |            |        |                      |
|         |      |              | Dissolved Titanium (Ti)                          | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  | / /                      | RDL=2.0       |            | - 0,   |                      |
|         |      |              | Dissolved Uranium (U)                            | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  | / /                      | ,<br>RDL=0.10 |            | - 0,   |                      |
|         |      |              | Dissolved Vanadium (V)                           | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  | / /                      | RDL=2.0       |            | - 0,   |                      |
|         |      |              | Dissolved Zinc (Zn)                              | 2015/12/11               | ND,           |            | ug/L   |                      |
|         |      |              |                                                  | / /                      | RDL=5.0       |            | - 0,   |                      |
| 4308821 | BAN  | RPD          | Dissolved Chromium (Cr)                          | 2015/12/11               | NC            |            | %      | 20                   |
|         |      |              | Dissolved Copper (Cu)                            | 2015/12/11               | NC            |            | %      | 20                   |
|         |      |              | Dissolved Iron (Fe)                              | 2015/12/11               | NC            |            | %      | 20                   |
|         |      |              | Dissolved Nickel (Ni)                            | 2015/12/11               | NC            |            | %      | 20                   |
|         |      |              | Dissolved Zinc (Zn)                              | 2015/12/11               | NC            |            | %      | 20                   |
| 4308824 | MLB  | Matrix Spike | Dissolved Aluminum (Al)                          | 2015/12/11               |               | 108        | %      | 80 - 120             |
|         |      | [BMR018-02]  |                                                  |                          |               |            |        |                      |
|         |      |              | Dissolved Antimony (Sb)                          | 2015/12/11               |               | 102        | %      | 80 - 120             |
|         |      |              | Dissolved Arsenic (As)                           | 2015/12/11               |               | 100        | %      | 80 - 120             |
|         |      |              | Dissolved Barium (Ba)                            | 2015/12/11               |               | 97         | %      | 80 - 120             |
|         |      |              | Dissolved Beryllium (Be)                         | 2015/12/11               |               | 99         | %      | 80 - 120             |
|         |      |              | Dissolved Bismuth (Bi)                           | 2015/12/11               |               | 101        | %      | 80 - 120             |
|         |      |              | Dissolved Boron (B)                              | 2015/12/11               |               | 99         | %      | 80 - 120             |
|         |      |              | Dissolved Cadmium (Cd)                           | 2015/12/11               |               | 104        | %      | 80 - 120             |
|         |      |              | Dissolved Calcium (Ca)                           | 2015/12/11               |               | 104        | %      | 80 - 120             |
|         |      |              | Dissolved Chromium (Cr)                          | 2015/12/11               |               | 101        | %      | 80 - 120             |
|         |      |              | Dissolved Cobalt (Co)                            | 2015/12/11               |               | 101        | %      | 80 - 120             |
|         |      |              | Dissolved Copper (Cu)                            | 2015/12/11               |               | 101        | %      | 80 - 120             |
|         |      |              | Dissolved Iron (Fe)                              | 2015/12/11               |               | NC         | %      | 80 - 120             |
|         |      |              | Dissolved Lead (Pb)                              | 2015/12/11               |               | 99         | %      | 80 - 120             |
|         |      |              | Dissolved Magnesium (Mg)                         | 2015/12/11               |               | 109        | %      | 80 - 120             |
|         |      |              | Dissolved Manganese (Mn)                         | 2015/12/11               |               | NC         | %      | 80 - 120             |
|         |      |              | Dissolved Molybdenum (Mo)                        | 2015/12/11               |               | 105        | %      | 80 - 120             |
|         |      |              | Dissolved Nickel (Ni)                            | 2015/12/11               |               | 102        | %      | 80 - 120             |
|         |      |              | Dissolved Phosphorus (P)                         | 2015/12/11               |               | 108        | %      | 80 - 120             |
|         |      |              | Dissolved Potassium (K)                          | 2015/12/11               |               | 106        | %      | 80 - 120             |
|         |      |              | Dissolved Selenium (Se)                          | 2015/12/11               |               | 102        | %      | 80 - 120             |
|         |      |              | Dissolved Silver (Ag)                            | 2015/12/11               |               | 95<br>NG   | %      | 80 - 120             |
|         |      |              | Dissolved Sodium (Na)                            | 2015/12/11               |               | NC         | %      | 80 - 120             |
|         |      |              | Dissolved Strontium (Sr)                         | 2015/12/11               |               | 100        | %      | 80 - 120             |
|         |      |              | Dissolved Thallium (TI)                          | 2015/12/11               |               | 102        | %      | 80 - 120             |
|         |      |              | Dissolved Tin (Sn)                               | 2015/12/11               |               | 105<br>105 | %<br>% | 80 - 120<br>80 - 120 |
|         |      |              | Dissolved Titanium (Ti)<br>Dissolved Uranium (U) | 2015/12/11<br>2015/12/11 |               | 105<br>110 | %<br>% | 80 - 120<br>80 - 120 |
|         |      |              |                                                  | 2013/12/11               |               | 110        | 70     | 80 - 120             |



Maxxam Job #: B5P4044 Report Date: 2015/12/16 Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |       |              |                           | Date       |                           |          |       |           |
|---------|-------|--------------|---------------------------|------------|---------------------------|----------|-------|-----------|
| Batch   | Init  | QC Type      | Parameter                 | Analyzed   | Value                     | Recovery | UNITS | QC Limits |
|         |       |              | Dissolved Vanadium (V)    | 2015/12/11 |                           | 102      | %     | 80 - 120  |
|         |       |              | Dissolved Zinc (Zn)       | 2015/12/11 |                           | 104      | %     | 80 - 120  |
| 4308824 | MLB   | Spiked Blank | Dissolved Aluminum (Al)   | 2015/12/11 |                           | 106      | %     | 80 - 120  |
|         |       |              | Dissolved Antimony (Sb)   | 2015/12/11 |                           | 100      | %     | 80 - 120  |
|         |       |              | Dissolved Arsenic (As)    | 2015/12/11 |                           | 97       | %     | 80 - 120  |
|         |       |              | Dissolved Barium (Ba)     | 2015/12/11 |                           | 97       | %     | 80 - 120  |
|         |       |              | Dissolved Beryllium (Be)  | 2015/12/11 |                           | 98       | %     | 80 - 120  |
|         |       |              | Dissolved Bismuth (Bi)    | 2015/12/11 |                           | 103      | %     | 80 - 120  |
|         |       |              | Dissolved Boron (B)       | 2015/12/11 |                           | 97       | %     | 80 - 120  |
|         |       |              | Dissolved Cadmium (Cd)    | 2015/12/11 |                           | 103      | %     | 80 - 120  |
|         |       |              | Dissolved Calcium (Ca)    | 2015/12/11 |                           | 105      | %     | 80 - 120  |
|         |       |              | Dissolved Chromium (Cr)   | 2015/12/11 |                           | 100      | %     | 80 - 120  |
|         |       |              | Dissolved Cobalt (Co)     | 2015/12/11 |                           | 102      | %     | 80 - 120  |
|         |       |              | Dissolved Copper (Cu)     | 2015/12/11 |                           | 102      | %     | 80 - 120  |
|         |       |              | Dissolved Iron (Fe)       | 2015/12/11 |                           | 107      | %     | 80 - 120  |
|         |       |              | Dissolved Lead (Pb)       | 2015/12/11 |                           | 100      | %     | 80 - 120  |
|         |       |              | Dissolved Magnesium (Mg)  | 2015/12/11 |                           | 111      | %     | 80 - 120  |
|         |       |              | Dissolved Manganese (Mn)  | 2015/12/11 |                           | 102      | %     | 80 - 120  |
|         |       |              | Dissolved Molybdenum (Mo) | 2015/12/11 |                           | 102      | %     | 80 - 120  |
|         |       |              | Dissolved Nickel (Ni)     | 2015/12/11 |                           | 103      | %     | 80 - 120  |
|         |       |              | Dissolved Phosphorus (P)  | 2015/12/11 |                           | 108      | %     | 80 - 120  |
|         |       |              | Dissolved Potassium (K)   | 2015/12/11 |                           | 106      | %     | 80 - 120  |
|         |       |              | Dissolved Selenium (N)    | 2015/12/11 |                           | 101      | %     | 80 - 120  |
|         |       |              | Dissolved Silver (Ag)     | 2015/12/11 |                           | 101      | %     | 80 - 120  |
|         |       |              | Dissolved Sodium (Na)     | 2015/12/11 |                           | 108      | %     | 80 - 120  |
|         |       |              | Dissolved Strontium (Sr)  | 2015/12/11 |                           | 100      | %     | 80 - 120  |
|         |       |              | Dissolved Thallium (TI)   | 2015/12/11 |                           | 101      | %     | 80 - 120  |
|         |       |              | Dissolved Tin (Sn)        | 2015/12/11 |                           | 105      | %     | 80 - 120  |
|         |       |              | Dissolved Titanium (Ti)   | 2015/12/11 |                           | 103      | %     | 80 - 120  |
|         |       |              | Dissolved Uranium (U)     | 2015/12/11 |                           | 104      | %     | 80 - 120  |
|         |       |              | Dissolved Vanadium (V)    | 2015/12/11 |                           | 101      | %     | 80 - 120  |
|         |       |              | Dissolved Zinc (Zn)       | 2015/12/11 |                           | 101      | %     | 80 - 120  |
| 4308824 | MLB   | Method Blank | Dissolved Aluminum (Al)   | 2015/12/11 | ND,                       | 105      | ug/L  | 80 - 120  |
| 4308824 | IVILD |              |                           |            | RDL=5.0                   |          |       |           |
|         |       |              | Dissolved Antimony (Sb)   | 2015/12/11 | ND,<br>RDL=1.0            |          | ug/L  |           |
|         |       |              | Dissolved Arsenic (As)    | 2015/12/11 | ND,<br>RDL=1.0            |          | ug/L  |           |
|         |       |              | Dissolved Barium (Ba)     | 2015/12/11 | ND,<br>RDL=1.0            |          | ug/L  |           |
|         |       |              | Dissolved Beryllium (Be)  | 2015/12/11 | ND,<br>RDL=1.0            |          | ug/L  |           |
|         |       |              | Dissolved Bismuth (Bi)    | 2015/12/11 | ND,<br>RDL=2.0            |          | ug/L  |           |
|         |       |              | Dissolved Boron (B)       | 2015/12/11 | ND,<br>RDL=50             |          | ug/L  |           |
|         |       |              | Dissolved Cadmium (Cd)    | 2015/12/11 | ND,<br>RDL=0.010          |          | ug/L  |           |
|         |       |              | Dissolved Calcium (Ca)    | 2015/12/11 | ND,<br>RDL=100            |          | ug/L  |           |
|         |       |              | Dissolved Chromium (Cr)   | 2015/12/11 | ND,<br>RDL=100<br>RDL=1.0 |          | ug/L  |           |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

# QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      | 0.07            | <b>N</b>                                      | Date                     |                 |                   |          |
|---------|------|-----------------|-----------------------------------------------|--------------------------|-----------------|-------------------|----------|
| Batch   | Init | QC Type         | Parameter                                     | Analyzed                 | Value           | Recovery UNITS QC | Limits   |
|         |      |                 | Dissolved Cobalt (Co)                         | 2015/12/11               | ND,<br>RDL=0.40 | ug/L              |          |
|         |      |                 | Dissolved Copper (Cu)                         | 2015/12/11               | NDL=0.40<br>ND, | ug/L              |          |
|         |      |                 | Dissolved copper (cd)                         | 2013/12/11               | RDL=2.0         | ug/ L             |          |
|         |      |                 | Dissolved Iron (Fe)                           | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               | 2013/12/11               | RDL=50          | 06/ <b>-</b>      |          |
|         |      |                 | Dissolved Lead (Pb)                           | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=0.50        | 0.                |          |
|         |      |                 | Dissolved Magnesium (Mg)                      | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=100         |                   |          |
|         |      |                 | Dissolved Manganese (Mn)                      | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=2.0         |                   |          |
|         |      |                 | Dissolved Molybdenum (Mo)                     | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=2.0         |                   |          |
|         |      |                 | Dissolved Nickel (Ni)                         | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               | 004 <b>-</b> /40/44      | RDL=2.0         |                   |          |
|         |      |                 | Dissolved Phosphorus (P)                      | 2015/12/11               | ND,<br>RDL=100  | ug/L              |          |
|         |      |                 | Dissolved Potassium (K)                       | 2015/12/11               | ND,             |                   |          |
|         |      |                 | Dissolved Potassiulli (K)                     | 2013/12/11               | RDL=100         | ug/L              |          |
|         |      |                 | Dissolved Selenium (Se)                       | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               | 2013/12/11               | RDL=1.0         | 06/ <b>-</b>      |          |
|         |      |                 | Dissolved Silver (Ag)                         | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               | //                       | RDL=0.10        | - 67 -            |          |
|         |      |                 | Dissolved Sodium (Na)                         | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=100         | -                 |          |
|         |      |                 | Dissolved Strontium (Sr)                      | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=2.0         |                   |          |
|         |      |                 | Dissolved Thallium (Tl)                       | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=0.10        |                   |          |
|         |      |                 | Dissolved Tin (Sn)                            | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               |                          | RDL=2.0         |                   |          |
|         |      |                 | Dissolved Titanium (Ti)                       | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 | $\mathbf{D}$                                  | 2045 /42 /44             | RDL=2.0         |                   |          |
|         |      |                 | Dissolved Uranium (U)                         | 2015/12/11               | ND,<br>RDL=0.10 | ug/L              |          |
|         |      |                 | Dissolved Vanadium (V)                        | 2015/12/11               | NDL=0.10<br>ND, | ug/L              |          |
|         |      |                 |                                               | 2013/12/11               | RDL=2.0         | ug/L              |          |
|         |      |                 | Dissolved Zinc (Zn)                           | 2015/12/11               | ND,             | ug/L              |          |
|         |      |                 |                                               | 2013/12/11               | RDL=5.0         | 08/2              |          |
| 4308824 | MLB  | RPD [BMR018-02] | Dissolved Aluminum (Al)                       | 2015/12/11               | 8.5             | %                 | 20       |
|         |      |                 | Dissolved Antimony (Sb)                       | 2015/12/11               | NC              | %                 | 20       |
|         |      |                 | Dissolved Arsenic (As)                        | 2015/12/11               | NC              | %                 | 20       |
|         |      |                 | Dissolved Barium (Ba)                         | 2015/12/11               | 1.7             | %                 | 20       |
|         |      |                 | Dissolved Beryllium (Be)                      | 2015/12/11               | NC              | %                 | 20       |
|         |      |                 | Dissolved Bismuth (Bi)                        | 2015/12/11               | NC              | %                 | 20       |
|         |      |                 | Dissolved Boron (B)<br>Dissolved Cadmium (Cd) | 2015/12/11<br>2015/12/11 | NC<br>NC        | %<br>%            | 20<br>20 |
|         |      |                 | Dissolved Calcium (Ca)                        | 2015/12/11 2015/12/11    | 0.27            | %                 | 20<br>20 |
|         |      |                 | Dissolved Chromium (Cr)                       | 2015/12/11               | NC              | %                 | 20       |
|         |      |                 | Dissolved Cobalt (Co)                         | 2015/12/11               | 2.4             | %                 | 20       |

Maxxam Analytics International Corporation o/a Maxxam Analytics 49-55 Elizabeth Ave, Suite 101A, St. John's, NL, Canada A1A 1W9 Tel: 709-754-0203 Toll Free: 888-492-7227 Fax: 709-754-8612 www.maxxamanalytics.com



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC    |       |               |                                   | Date       |                 |          |         |           |
|----------|-------|---------------|-----------------------------------|------------|-----------------|----------|---------|-----------|
| Batch    | Init  | QC Type       | Parameter                         | Analyzed   | Value           | Recovery | UNITS   | QC Limits |
|          |       |               | Dissolved Copper (Cu)             | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Iron (Fe)               | 2015/12/11 | 0.61            |          | %       | 20        |
|          |       |               | Dissolved Lead (Pb)               | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Magnesium (Mg)          | 2015/12/11 | 0.40            |          | %       | 20        |
|          |       |               | Dissolved Manganese (Mn)          | 2015/12/11 | 1.7             |          | %       | 20        |
|          |       |               | Dissolved Molybdenum (Mo)         | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Nickel (Ni)             | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Phosphorus (P)          | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Potassium (K)           | 2015/12/11 | 2.4             |          | %       | 20        |
|          |       |               | Dissolved Selenium (Se)           | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Silver (Ag)             | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Sodium (Na)             | 2015/12/11 | 0.68            |          | %       | 20        |
|          |       |               | Dissolved Strontium (Sr)          | 2015/12/11 | 1.5             |          | %       | 20        |
|          |       |               | Dissolved Thallium (TI)           | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Tin (Sn)                | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Titanium (Ti)           | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Uranium (U)             | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Vanadium (V)            | 2015/12/11 | NC              |          | %       | 20        |
|          |       |               | Dissolved Zinc (Zn)               | 2015/12/11 | NC              |          | %       | 20        |
| 4309265  | тмо   | QC Standard   | рН                                | 2015/12/11 |                 | 100      | %       | 97 - 103  |
| 4309265  | тмо   | RPD           | pH                                | 2015/12/11 | 1.1             |          | %       | N/A       |
| 4309271  | тмо   | Spiked Blank  | Conductivity                      | 2015/12/11 |                 | 98       | %       | 80 - 120  |
| 4309271  | тмо   | Method Blank  | Conductivity                      | 2015/12/11 | 1.2,            |          | uS/cm   |           |
|          |       |               |                                   |            | RDL=1.0         |          |         |           |
| 4309271  | тмо   | RPD           | Conductivity                      | 2015/12/11 | 1.6             |          | %       | 25        |
| 4309446  | ARS   | Matrix Spike  | Total Alkalinity (Total as CaCO3) | 2015/12/15 |                 | 84       | %       | 80 - 120  |
| 4309446  | ARS   | Spiked Blank  | Total Alkalinity (Total as CaCO3) | 2015/12/15 |                 | 114      | %       | 80 - 120  |
| 4309446  | ARS   | Method Blank  | Total Alkalinity (Total as CaCO3) | 2015/12/15 | ND,             |          | mg/L    |           |
|          | -     |               |                                   | / / -      | ,<br>RDL=5.0    |          | 0,      |           |
| 4309446  | ARS   | RPD           | Total Alkalinity (Total as CaCO3) | 2015/12/15 | NC              |          | %       | 25        |
| 4309480  | ARS   | Matrix Spike  | Dissolved Chloride (Cl)           | 2015/12/15 | Ne              | 100      | %       | 80 - 120  |
| 4309480  | ARS   | QC Standard   | Dissolved Chloride (Cl)           | 2015/12/15 |                 | 109      | %       | 80 - 120  |
| 4309480  | ARS   | Spiked Blank  | Dissolved Chloride (Cl)           | 2015/12/15 |                 | 100      | %       | 80 - 120  |
| 4309480  | ARS   | Method Blank  | Dissolved Chloride (Cl)           | 2015/12/15 | ND,             | 100      | mg/L    | 00 120    |
| 1303 100 | 7110  |               |                                   | 2013/12/13 | RDL=1.0         |          |         |           |
| 4309480  | ARS   | RPD           | Dissolved Chloride (Cl)           | 2015/12/15 | NC              |          | %       | 25        |
| 4309483  |       | Matrix Spike  | Dissolved Sulphate (SO4)          | 2015/12/14 | Ne              | NC       | %       | 80 - 120  |
| 4309483  |       | Spiked Blank  | Dissolved Sulphate (SO4)          | 2015/12/14 |                 | 100      | %       | 80 - 120  |
| 4309483  |       | Method Blank  | Dissolved Sulphate (SO4)          | 2015/12/14 | ND,             | 100      | mg/L    | 00 120    |
| +303+03  | WICIN | WICTION DIANK |                                   | 2013/12/14 | RDL=2.0         |          | iiig/ L |           |
| 4200402  | MACH  |               | Disselved Sulphote (SOA)          | 2015/12/14 |                 |          | 0/      | 25        |
| 4309483  | MCN   |               | Dissolved Sulphate (SO4)          | 2015/12/14 | 0.087           | NC       | %       | 25        |
| 4309489  | ARS   | Matrix Spike  | Reactive Silica (SiO2)            | 2015/12/14 |                 | NC       | %       | 80 - 120  |
| 4309489  | ARS   | Spiked Blank  | Reactive Silica (SiO2)            | 2015/12/14 | ND              | 98       | %       | 80 - 120  |
| 4309489  | ARS   | Method Blank  | Reactive Silica (SiO2)            | 2015/12/14 | ND,<br>RDL=0.50 |          | mg/L    |           |
| 4309489  | ARS   | RPD           | Reactive Silica (SiO2)            | 2015/12/14 | 5.1             |          | %       | 25        |
| 4309491  | MCN   | Spiked Blank  | Colour                            | 2015/12/14 |                 | 97       | %       | 80 - 120  |
| 4309491  | MCN   | Method Blank  | Colour                            | 2015/12/14 | ND,             |          | TCU     | -         |
|          |       |               |                                   |            | RDL=5.0         |          |         |           |
| 4309491  | MCN   | RPD           | Colour                            | 2015/12/14 | NC              |          | %       | 20        |
| 4309498  | ARS   | Matrix Spike  | Orthophosphate (P)                | 2015/12/16 |                 | NC       | %       | 80 - 120  |
| 4309498  | ARS   | Spiked Blank  | Orthophosphate (P)                | 2015/12/16 |                 | 97       | %       | 80 - 120  |
| 100700   | / 113 |               |                                   | 2013/12/10 |                 | 51       | 70      | 00 120    |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                                           | Date                     |                |           |        |                      |
|---------|------|--------------|-------------------------------------------|--------------------------|----------------|-----------|--------|----------------------|
| Batch   | Init | QC Type      | Parameter                                 | Analyzed                 | Value          | Recovery  | UNITS  | QC Limits            |
| 4309498 | ARS  | Method Blank | Orthophosphate (P)                        | 2015/12/16               | ND,            |           | mg/L   |                      |
|         |      |              |                                           | / / -                    | ,<br>RDL=0.010 |           | 0,     |                      |
| 4309498 | ARS  | RPD          | Orthophosphate (P)                        | 2015/12/16               | 2.4            |           | %      | 25                   |
| 4309506 | MCN  | Matrix Spike | Nitrate + Nitrite (N)                     | 2015/12/15               |                | 101       | %      | 80 - 120             |
| 4309506 | MCN  | Spiked Blank | Nitrate + Nitrite (N)                     | 2015/12/15               |                | 98        | %      | 80 - 120             |
| 4309506 |      | Method Blank | Nitrate + Nitrite (N)                     | 2015/12/15               | ND,            |           | mg/L   |                      |
|         |      |              |                                           |                          | RDL=0.050      |           | 0,     |                      |
| 4309506 | MCN  | RPD          | Nitrate + Nitrite (N)                     | 2015/12/15               | NC             |           | %      | 25                   |
| 4309512 | NRG  | Matrix Spike | Nitrite (N)                               | 2015/12/14               |                | 99        | %      | 80 - 120             |
| 4309512 | NRG  | Spiked Blank | Nitrite (N)                               | 2015/12/14               |                | 100       | %      | 80 - 120             |
| 4309512 | NRG  | Method Blank | Nitrite (N)                               | 2015/12/14               | ND,            |           | mg/L   |                      |
|         |      |              |                                           |                          | RDL=0.010      |           | 0,     |                      |
| 4309512 | NRG  | RPD          | Nitrite (N)                               | 2015/12/14               | NC             |           | %      | 25                   |
| 4311572 | BAN  | Matrix Spike | Total Aluminum (Al)                       | 2015/12/14               |                | NC        | %      | 80 - 120             |
|         |      |              | Total Antimony (Sb)                       | 2015/12/14               |                | 101       | %      | 80 - 120             |
|         |      |              | Total Arsenic (As)                        | 2015/12/14               |                | 99        | %      | 80 - 120             |
|         |      |              | Total Barium (Ba)                         | 2015/12/14               |                | 98        | %      | 80 - 120             |
|         |      |              | Total Beryllium (Be)                      | 2015/12/14               |                | 98        | %      | 80 - 120             |
|         |      |              | Total Bismuth (Bi)                        | 2015/12/14               |                | 104       | %      | 80 - 120             |
|         |      |              | Total Boron (B)                           | 2015/12/14               |                | 100       | %      | 80 - 120             |
|         |      |              | Total Cadmium (Cd)                        | 2015/12/14               |                | 102       | %      | 80 - 120             |
|         |      |              | Total Calcium (Ca)                        | 2015/12/14               |                | 105       | %      | 80 - 120             |
|         |      |              | Total Chromium (Cr)                       | 2015/12/14               |                | 101       | %      | 80 - 120             |
|         |      |              | Total Cobalt (Co)                         | 2015/12/14               |                | 102       | %      | 80 - 120             |
|         |      |              | Total Copper (Cu)                         | 2015/12/14               |                | 101       | %      | 80 - 120             |
|         |      |              | Total Iron (Fe)                           | 2015/12/14               |                | 109       | %      | 80 - 120             |
|         |      |              | Total Lead (Pb)                           | 2015/12/14               |                | 101       | %      | 80 - 120             |
|         |      |              | Total Magnesium (Mg)                      | 2015/12/14               |                | 111       | %      | 80 - 120             |
|         |      |              | Total Manganese (Mn)                      | 2015/12/14               |                | NC        | %      | 80 - 120             |
|         |      |              | Total Molybdenum (Mo)                     | 2015/12/14               |                | 106       | %      | 80 - 120             |
|         |      |              | Total Nickel (Ni)                         | 2015/12/14               |                | 102       | %      | 80 - 120             |
|         |      |              | Total Phosphorus (P)                      | 2015/12/14               |                | 111       | %      | 80 - 120             |
|         |      |              | Total Potassium (K)                       | 2015/12/14               |                | 111       | %      | 80 - 120             |
|         |      |              | Total Selenium (Se)                       | 2015/12/14               |                | 102       | %      | 80 - 120             |
|         |      |              | Total Silver (Ag)                         | 2015/12/14               |                | 103       | %      | 80 - 120             |
|         |      |              | Total Sodium (Na)                         | 2015/12/14               |                | 108       | %      | 80 - 120             |
|         |      |              | Total Strontium (Sr)                      | 2015/12/14               |                | 101       | %      | 80 - 120             |
|         |      |              | Total Thallium (TI)                       | 2015/12/14               |                | 104       | %      | 80 - 120             |
|         |      |              | Total Tin (Sn)                            | 2015/12/14               |                | 103       | %      | 80 - 120             |
|         |      |              | Total Titanium (Ti)                       | 2015/12/14               |                | 104       | %      | 80 - 120             |
|         |      |              | Total Uranium (U)                         | 2015/12/14               |                | 112       | %      | 80 - 120             |
|         |      |              | Total Vanadium (V)                        | 2015/12/14               |                | 101       | %      | 80 - 120             |
| 4244572 |      |              | Total Zinc (Zn)                           | 2015/12/14               |                | 103       | %      | 80 - 120             |
| 4311572 | BAN  | Spiked Blank | Total Aluminum (Al)                       | 2015/12/14               |                | 103       | %      | 80 - 120             |
|         |      |              | Total Antimony (Sb)                       | 2015/12/14               |                | 97<br>04  | %      | 80 - 120             |
|         |      |              | Total Arsenic (As)<br>Total Barium (Ba)   | 2015/12/14<br>2015/12/14 |                | 94<br>95  | %<br>% | 80 - 120<br>80 - 120 |
|         |      |              | Total Barlum (Ba)<br>Total Beryllium (Be) | 2015/12/14 2015/12/14    |                | 95<br>94  | %      | 80 - 120<br>80 - 120 |
|         |      |              | Total Bismuth (Bi)                        | 2015/12/14 2015/12/14    |                | 94<br>101 | %      | 80 - 120<br>80 - 120 |
|         |      |              | Total Boron (B)                           | 2015/12/14 2015/12/14    |                | 97        | %      | 80 - 120<br>80 - 120 |
|         |      |              | Total Cadmium (Cd)                        | 2015/12/14 2015/12/14    |                | 97<br>100 | %      | 80 - 120<br>80 - 120 |
|         |      |              | Total Calcium (Ca)                        | 2015/12/14               |                | 100       | %      | 80 - 120<br>80 - 120 |
|         |      |              | Total Chromium (Cr)                       | 2015/12/14               |                | 96        | %      | 80 - 120<br>80 - 120 |
|         |      |              |                                           | 2013/12/14               |                | 30        | /0     | 00 - 120             |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                       | Date       |                  |          |       |           |
|---------|------|--------------|-----------------------|------------|------------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter             | Analyzed   | Value            | Recovery | UNITS | QC Limits |
|         |      |              | Total Cobalt (Co)     | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Copper (Cu)     | 2015/12/14 |                  | 98       | %     | 80 - 120  |
|         |      |              | Total Iron (Fe)       | 2015/12/14 |                  | 104      | %     | 80 - 120  |
|         |      |              | Total Lead (Pb)       | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Magnesium (Mg)  | 2015/12/14 |                  | 106      | %     | 80 - 120  |
|         |      |              | Total Manganese (Mn)  | 2015/12/14 |                  | 98       | %     | 80 - 120  |
|         |      |              | Total Molybdenum (Mo) | 2015/12/14 |                  | 99       | %     | 80 - 120  |
|         |      |              | Total Nickel (Ni)     | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Phosphorus (P)  | 2015/12/14 |                  | 105      | %     | 80 - 120  |
|         |      |              | Total Potassium (K)   | 2015/12/14 |                  | 101      | %     | 80 - 120  |
|         |      |              | Total Selenium (Se)   | 2015/12/14 |                  | 98       | %     | 80 - 120  |
|         |      |              | Total Silver (Ag)     | 2015/12/14 |                  | 98       | %     | 80 - 120  |
|         |      |              | Total Sodium (Na)     | 2015/12/14 |                  | 104      | %     | 80 - 120  |
|         |      |              | Total Strontium (Sr)  | 2015/12/14 |                  | 96       | %     | 80 - 120  |
|         |      |              | Total Thallium (Tl)   | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Tin (Sn)        | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Titanium (Ti)   | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Uranium (U)     | 2015/12/14 |                  | 108      | %     | 80 - 120  |
|         |      |              | Total Vanadium (V)    | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Zinc (Zn)       | 2015/12/14 |                  | 99       | %     | 80 - 120  |
| 4311572 | BAN  | Method Blank | Total Aluminum (Al)   | 2015/12/14 | ND,<br>RDL=5.0   |          | ug/L  |           |
|         |      |              | Total Antimony (Sb)   | 2015/12/14 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Total Arsenic (As)    | 2015/12/14 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Total Barium (Ba)     | 2015/12/14 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Total Beryllium (Be)  | 2015/12/14 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Total Bismuth (Bi)    | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Boron (B)       | 2015/12/14 | ND,<br>RDL=50    |          | ug/L  |           |
|         |      |              | Total Cadmium (Cd)    | 2015/12/14 | ND,<br>RDL=0.010 |          | ug/L  |           |
|         |      |              | Total Calcium (Ca)    | 2015/12/14 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Total Chromium (Cr)   | 2015/12/14 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Total Cobalt (Co)     | 2015/12/14 | ND,<br>RDL=0.40  |          | ug/L  |           |
|         |      |              | Total Copper (Cu)     | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Iron (Fe)       | 2015/12/14 | ND,<br>RDL=50    |          | ug/L  |           |
|         |      |              | Total Lead (Pb)       | 2015/12/14 | ND,<br>RDL=0.50  |          | ug/L  |           |
|         |      |              | Total Magnesium (Mg)  | 2015/12/14 | ND,<br>RDL=100   |          | ug/L  |           |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                       | Date       |                  |          |       |           |
|---------|------|--------------|-----------------------|------------|------------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter             | Analyzed   | Value            | Recovery | UNITS | QC Limits |
|         |      |              | Total Manganese (Mn)  | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Molybdenum (Mo) | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Nickel (Ni)     | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Phosphorus (P)  | 2015/12/14 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Total Potassium (K)   | 2015/12/14 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Total Selenium (Se)   | 2015/12/14 | ND,<br>RDL=1.0   |          | ug/L  |           |
|         |      |              | Total Silver (Ag)     | 2015/12/14 | ND,<br>RDL=0.10  |          | ug/L  |           |
|         |      |              | Total Sodium (Na)     | 2015/12/14 | ND,<br>RDL=100   |          | ug/L  |           |
|         |      |              | Total Strontium (Sr)  | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Thallium (Tl)   | 2015/12/14 | ND,<br>RDL=0.10  |          | ug/L  |           |
|         |      |              | Total Tin (Sn)        | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Titanium (Ti)   | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Uranium (U)     | 2015/12/14 | ND,<br>RDL=0.10  |          | ug/L  |           |
|         |      |              | Total Vanadium (V)    | 2015/12/14 | ND,<br>RDL=2.0   |          | ug/L  |           |
|         |      |              | Total Zinc (Zn)       | 2015/12/14 | 7.3,<br>RDL=5.0  |          | ug/L  |           |
| 4311572 | BAN  | RPD          | Total Aluminum (Al)   | 2015/12/14 | 0.22             |          | %     | 20        |
|         |      |              | Total Iron (Fe)       | 2015/12/14 | NC               |          | %     | 20        |
|         |      |              | Total Manganese (Mn)  | 2015/12/14 | 0.18             |          | %     | 20        |
| 4311574 | VWA  | Matrix Spike | Total Mercury (Hg)    | 2015/12/14 |                  | 100      | %     | 80 - 120  |
| 4311574 |      | Spiked Blank | Total Mercury (Hg)    | 2015/12/14 |                  | 102      | %     | 80 - 120  |
| 4311574 |      | Method Blank | Total Mercury (Hg)    | 2015/12/14 | ND,<br>RDL=0.013 |          | ug/L  |           |
| 4311574 | VWA  | RPD          | Total Mercury (Hg)    | 2015/12/14 | NC               |          | %     | 20        |
| 4311578 | MLB  | Matrix Spike | Total Aluminum (Al)   | 2015/12/14 |                  | 106      | %     | 80 - 120  |
|         |      |              | Total Antimony (Sb)   | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Arsenic (As)    | 2015/12/14 |                  | 95       | %     | 80 - 120  |
|         |      |              | Total Barium (Ba)     | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Beryllium (Be)  | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Bismuth (Bi)    | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Boron (B)       | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Cadmium (Cd)    | 2015/12/14 |                  | 100      | %     | 80 - 120  |
|         |      |              | Total Calcium (Ca)    | 2015/12/14 |                  | 102      | %     | 80 - 120  |
|         |      |              | Total Chromium (Cr)   | 2015/12/14 |                  | 97       | %     | 80 - 120  |
|         |      |              | Total Cobalt (Co)     | 2015/12/14 |                  | 98       | %     | 80 - 120  |
|         |      |              | Total Copper (Cu)     | 2015/12/14 |                  | 95       | %     | 80 - 120  |
|         |      |              | Total Iron (Fe)       | 2015/12/14 |                  | 101      | %     | 80 - 120  |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                       | Date       |                |          |       |           |
|---------|------|--------------|-----------------------|------------|----------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter             | Analyzed   | Value          | Recovery | UNITS | QC Limits |
|         |      |              | Total Lead (Pb)       | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Magnesium (Mg)  | 2015/12/14 |                | 105      | %     | 80 - 120  |
|         |      |              | Total Manganese (Mn)  | 2015/12/14 |                | 99       | %     | 80 - 120  |
|         |      |              | Total Molybdenum (Mo) | 2015/12/14 |                | 101      | %     | 80 - 120  |
|         |      |              | Total Nickel (Ni)     | 2015/12/14 |                | 97       | %     | 80 - 120  |
|         |      |              | Total Phosphorus (P)  | 2015/12/14 |                | 107      | %     | 80 - 120  |
|         |      |              | Total Potassium (K)   | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Selenium (Se)   | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Silver (Ag)     | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Sodium (Na)     | 2015/12/14 |                | NC       | %     | 80 - 120  |
|         |      |              | Total Strontium (Sr)  | 2015/12/14 |                | 97       | %     | 80 - 120  |
|         |      |              | Total Thallium (Tl)   | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Tin (Sn)        | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Titanium (Ti)   | 2015/12/14 |                | 102      | %     | 80 - 120  |
|         |      |              | Total Uranium (U)     | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Vanadium (V)    | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Zinc (Zn)       | 2015/12/14 |                | 94       | %     | 80 - 120  |
| 4311578 | MLB  | Spiked Blank | Total Aluminum (Al)   | 2015/12/14 |                | 106      | %     | 80 - 120  |
|         |      |              | Total Antimony (Sb)   | 2015/12/14 |                | 97       | %     | 80 - 120  |
|         |      |              | Total Arsenic (As)    | 2015/12/14 |                | 94       | %     | 80 - 120  |
|         |      |              | Total Barium (Ba)     | 2015/12/14 |                | 97       | %     | 80 - 120  |
|         |      |              | Total Beryllium (Be)  | 2015/12/14 |                | 97       | %     | 80 - 120  |
|         |      |              | Total Bismuth (Bi)    | 2015/12/14 |                | 99       | %     | 80 - 120  |
|         |      |              | Total Boron (B)       | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Cadmium (Cd)    | 2015/12/14 |                | 99       | %     | 80 - 120  |
|         |      |              | Total Calcium (Ca)    | 2015/12/14 |                | 102      | %     | 80 - 120  |
|         |      |              | Total Chromium (Cr)   | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Cobalt (Co)     | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Copper (Cu)     | 2015/12/14 |                | 96       | %     | 80 - 120  |
|         |      |              | Total Iron (Fe)       | 2015/12/14 |                | 101      | %     | 80 - 120  |
|         |      |              | Total Lead (Pb)       | 2015/12/14 |                | 99       | %     | 80 - 120  |
|         |      |              | Total Magnesium (Mg)  | 2015/12/14 |                | 103      | %     | 80 - 120  |
|         |      |              | Total Manganese (Mn)  | 2015/12/14 |                | 99       | %     | 80 - 120  |
|         |      |              | Total Molybdenum (Mo) | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Nickel (Ni)     | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Phosphorus (P)  | 2015/12/14 |                | 105      | %     | 80 - 120  |
|         |      |              | Total Potassium (K)   | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Selenium (Se)   | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Silver (Ag)     | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Sodium (Na)     | 2015/12/14 |                | 105      | %     | 80 - 120  |
|         |      |              | Total Strontium (Sr)  | 2015/12/14 |                | 98       | %     | 80 - 120  |
|         |      |              | Total Thallium (TI)   | 2015/12/14 |                | 99       | %     | 80 - 120  |
|         |      |              | Total Tin (Sn)        | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Titanium (Ti)   | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Uranium (U)     | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Vanadium (V)    | 2015/12/14 |                | 100      | %     | 80 - 120  |
|         |      |              | Total Zinc (Zn)       | 2015/12/14 |                | 96       | %     | 80 - 120  |
| 4311578 | MLB  | Method Blank | Total Aluminum (Al)   | 2015/12/14 | ND,<br>RDL=5.0 |          | ug/L  |           |
|         |      |              | Total Antimony (Sb)   | 2015/12/14 | ND,<br>RDL=1.0 |          | ug/L  |           |
|         |      |              | Total Arsenic (As)    | 2015/12/14 | ND,<br>RDL=1.0 |          | ug/L  |           |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC              |                       | Date                   |                  |                          |
|--------------------|-----------------------|------------------------|------------------|--------------------------|
| Batch Init QC Type | Parameter             | Analyzed<br>2015/12/14 | Value            | Recovery UNITS QC Limits |
|                    | Total Barium (Ba)     | 2015/12/14             | ND,<br>RDL=1.0   | ug/L                     |
|                    | Total Beryllium (Be)  | 2015/12/14             | ND,<br>RDL=1.0   | ug/L                     |
|                    | Total Bismuth (Bi)    | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Boron (B)       | 2015/12/14             | ND,<br>RDL=50    | ug/L                     |
|                    | Total Cadmium (Cd)    | 2015/12/14             | ND,<br>RDL=0.010 | ug/L                     |
|                    | Total Calcium (Ca)    | 2015/12/14             | ND,<br>RDL=100   | ug/L                     |
|                    | Total Chromium (Cr)   | 2015/12/14             | ND,<br>RDL=1.0   | ug/L                     |
|                    | Total Cobalt (Co)     | 2015/12/14             | ND,<br>RDL=0.40  | ug/L                     |
|                    | Total Copper (Cu)     | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Iron (Fe)       | 2015/12/14             | ND,<br>RDL=50    | ug/L                     |
|                    | Total Lead (Pb)       | 2015/12/14             | ND,<br>RDL=0.50  | ug/L                     |
|                    | Total Magnesium (Mg)  | 2015/12/14             | ND,<br>RDL=100   | ug/L                     |
|                    | Total Manganese (Mn)  | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Molybdenum (Mo) | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Nickel (Ni)     | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Phosphorus (P)  | 2015/12/14             | ND,<br>RDL=100   | ug/L                     |
|                    | Total Potassium (K)   | 2015/12/14             | ND,<br>RDL=100   | ug/L                     |
|                    | Total Selenium (Se)   | 2015/12/14             | ND,<br>RDL=1.0   | ug/L                     |
|                    | Total Silver (Ag)     | 2015/12/14             | ND,<br>RDL=0.10  | ug/L                     |
|                    | Total Sodium (Na)     | 2015/12/14             | ND,<br>RDL=100   | ug/L                     |
|                    | Total Strontium (Sr)  | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Thallium (Tl)   | 2015/12/14             | ND,<br>RDL=0.10  | ug/L                     |
|                    | Total Tin (Sn)        | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Titanium (Ti)   | 2015/12/14             | ND,<br>RDL=2.0   | ug/L                     |
|                    | Total Uranium (U)     | 2015/12/14             | ND,<br>RDL=0.10  | ug/L                     |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |                 |                             | Date       |                     |          |      |           |
|---------|------|-----------------|-----------------------------|------------|---------------------|----------|------|-----------|
| Batch   | Init | QC Type         | Parameter                   | Analyzed   | Value               | Recovery |      | QC Limits |
|         |      |                 | Total Vanadium (V)          | 2015/12/14 | ND,<br>RDL=2.0      |          | ug/L |           |
|         |      |                 | Total Zinc (Zn)             | 2015/12/14 | ND,<br>RDL=5.0      |          | ug/L |           |
| 4311578 | MLB  | RPD             | Total Aluminum (Al)         | 2015/12/14 | NC                  |          | %    | 20        |
| 4311578 | LGE  | Matrix Spike    | Decachlorobiphenyl          | 2015/12/14 | NC                  | 68       | %    | 30 - 130  |
|         |      | [BMR014-01]     |                             |            |                     |          |      |           |
|         |      |                 | Aroclor 1254                | 2015/12/15 |                     | 83       | %    | 30 - 130  |
| 4311587 | LGE  | Spiked Blank    | Decachlorobiphenyl          | 2015/12/15 |                     | 86       | %    | 30 - 130  |
|         |      |                 | Aroclor 1254                | 2015/12/15 |                     | 86       | %    | 30 - 130  |
| 4311587 | LGE  | Method Blank    | Decachlorobiphenyl          | 2015/12/15 |                     | 75       | %    | 30 - 130  |
|         |      |                 | Aroclor 1016                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
|         |      |                 | Aroclor 1221                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
|         |      |                 | Aroclor 1232                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
|         |      |                 | Aroclor 1248                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
|         |      |                 | Aroclor 1242                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
|         |      |                 | Aroclor 1254                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
|         |      |                 | Aroclor 1260                | 2015/12/15 | ND,<br>RDL=0.050    |          | ug/L |           |
| 4311587 | LGE  | RPD [BMR013-01] | Aroclor 1016                | 2015/12/15 | NC                  |          | %    | 40        |
| 4511507 | LOL  |                 | Aroclor 1221                | 2015/12/15 | NC                  |          | %    | 40        |
|         |      |                 | Aroclor 1232                | 2015/12/15 | NC                  |          | %    | 40        |
|         |      |                 | Aroclor 1248                | 2015/12/15 | NC                  |          | %    | 40        |
|         |      |                 | Aroclor 1242                | 2015/12/15 | NC                  |          | %    | 40        |
|         |      |                 | Aroclor 1254                | 2015/12/15 | NC                  |          | %    | 40        |
|         |      |                 | Aroclor 1260                | 2015/12/15 | NC                  |          | %    | 40        |
| 4312184 | ARS  | Matrix Spike    | Nitrogen (Ammonia Nitrogen) | 2015/12/15 |                     | 96       | %    | 80 - 120  |
| 4312184 | ARS  | Spiked Blank    | Nitrogen (Ammonia Nitrogen) | 2015/12/15 |                     | 104      | %    | 80 - 120  |
| 4312184 | ARS  | Method Blank    | Nitrogen (Ammonia Nitrogen) | 2015/12/15 | 0.055,<br>RDL=0.050 |          | mg/L |           |
| 4312184 | ARS  | RPD             | Nitrogen (Ammonia Nitrogen) | 2015/12/15 | NC                  |          | %    | 20        |
| 4312208 |      | QC Standard     | Turbidity                   | 2015/12/14 | Ne                  | 103      | %    | 80 - 120  |
| 4312208 | тмо  | Method Blank    | Turbidity                   | 2015/12/14 | ND,                 | 105      | NTU  | 00 120    |
|         |      |                 |                             |            | RDL=0.10            |          |      |           |
| 4312208 | тмо  |                 | Turbidity                   | 2015/12/14 | NC                  |          | %    | 20        |
| 4312223 | тмо  |                 | Turbidity                   | 2015/12/14 |                     | 102      | %    | 80 - 120  |
| 4312223 | тмо  | Method Blank    | Turbidity                   | 2015/12/14 | ND,<br>RDL=0.10     |          | NTU  |           |
| 4312223 | тмо  | RPD             | Turbidity                   | 2015/12/14 | 7.6                 |          | %    | 20        |
| 4314078 | SMT  | Matrix Spike    | Total Organic Carbon (C)    | 2015/12/16 | -                   | 106      | %    | 80 - 120  |
| 4314078 | SMT  |                 | Total Organic Carbon (C)    | 2015/12/16 |                     | 107      | %    | 80 - 120  |
| 4314078 | SMT  |                 | Total Organic Carbon (C)    | 2015/12/16 | ND,                 |          | mg/L |           |
|         |      |                 |                             |            | RDL=0.50            |          | 0.   |           |



Maxxam Job #: B5P4044 Report Date: 2015/12/16 Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### **QUALITY ASSURANCE REPORT(CONT'D)**

| QA/QC   |      |         |                          | Date       |       |              |              |
|---------|------|---------|--------------------------|------------|-------|--------------|--------------|
| Batch   | Init | QC Type | Parameter                | Analyzed   | Value | Recovery UNI | TS QC Limits |
| 4314078 | SMT  | RPD     | Total Organic Carbon (C) | 2015/12/16 | NC    | %            | 20           |
|         |      |         |                          |            |       |              |              |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



### FUNDAMENTAL LABORATORY ACCEPTANCE GUIDELINE

|                          |            |         |       | Maxxam Job #:          | B5P4044         |
|--------------------------|------------|---------|-------|------------------------|-----------------|
| Invoice To:              |            |         |       | Date Received:         | 2015/12/09      |
| Fracflow Consultants Inc |            |         |       | Your C.O.C. #:         | 540677-01-01    |
| ATTN: Karen Andrews      |            |         |       | Maxxam Project Manager | : Leonard Muise |
| 154 Major's Path         |            |         |       | Quote #:               | B57514          |
| St. John's, NL           |            |         |       |                        |                 |
| A1A 5A1                  |            |         |       |                        |                 |
| Client Contact:          |            |         |       |                        |                 |
| Ingrid Lawlor            |            |         |       |                        |                 |
| No discrepancies noted.  |            |         |       |                        |                 |
| Report Comments          |            |         |       |                        |                 |
|                          |            |         |       |                        |                 |
| Received Date:           | 2015/12/09 | _ Time: | 11:01 | Ву:                    |                 |
| Inspected Date:          |            | Time:   |       | By:                    |                 |

By:

Time:

Maxxam Analytics International Corporation o/a Maxxam Analytics 49-55 Elizabeth Ave, Suite 101A, St. John's, NL, Canada A1A 1W9 Tel: 709-754-0203 Toll Free: 888-492-7227 Fax: 709-754-8612 www.maxxamanalytics.com



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike Mac Gilli

Mike MacGillivray, Scientific Specialist (Inorganics)

Kosmarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| va>                                    | Kam                                | Maxxam Analytics International Co<br>49-55 Elizabeth Ave, St. John's, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                |                                                                                                                 | 0203 Toll-Free   | :(888)                             | 492-7227 F   | ax:(709) 75     | 54 8612 wv      | w.maxxar           | n.ca        |              |                                                                                                                 |           |          | Cha                                                        | in Of Custody Record                                                                                                                                                                                                                       | Page 1 of 2                   |
|----------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|--------------|-----------------|-----------------|--------------------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|-----------|----------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                                        |                                    | INVOICE TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                |                                                                                                                 | Report Info      | matio                              | n            |                 |                 |                    |             |              | Project Int                                                                                                     | formation |          | T                                                          | Laboratory                                                                                                                                                                                                                                 |                               |
| mpany Name                             |                                    | ow Consultants Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Anno an and      | Company Na     | me                                                                                                              | and along        |                                    |              | 12              |                 | Que                | otation #   |              | B57514                                                                                                          |           | 11       |                                                            | Maxxam Job #                                                                                                                                                                                                                               | Bottle Order #:               |
| ontact Name                            | Karen Andrews                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | Contact Name   | Ingrid Lawl                                                                                                     | or/ Glenn B      | ursey                              |              |                 | And your a      | P.0                | ). #        | 12           |                                                                                                                 |           |          | 10 8.<br>10                                                | B5P4044                                                                                                                                                                                                                                    |                               |
| drass                                  | 154 Major's Par<br>St. John's NL A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u></u>            | Address        | _                                                                                                               | <u> .</u>        |                                    |              | 1.              |                 | Proj               | ject #      |              | New Harb                                                                                                        | our       |          | -                                                          |                                                                                                                                                                                                                                            | 540677                        |
|                                        | (709) 739-7270                     | the second | -5101              |                | (709) 739-7                                                                                                     | 2270             |                                    | 0000         |                 |                 | 10.00              | ject Name   |              | لي المقد                                                                                                        | <u></u>   | R. R.    |                                                            | Chain Of Custody Record                                                                                                                                                                                                                    | Project Manager               |
| none<br>mail                           |                                    | I.net, ffc_nf@nfld.net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5101               | Phone<br>Email | the second se | nfid.net, gle    | nn fi                              | Fax:         | antzinc.c       | a               | Site               | npled By    |              | GB/J                                                                                                            | 0 111     |          | <u>a</u> 8                                                 | C#540677-01-01                                                                                                                                                                                                                             | Leonard Muise                 |
| Regulatory Cr                          | iteria                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                | al Instructions                                                                                                 | 1                | T                                  | T            |                 |                 | 0an                | Analysis F  |              | the second se |           | 1        | T                                                          | Turnaround Time (TAT                                                                                                                                                                                                                       | ) Required                    |
| (togalator) e                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                | the second                                                                                                      | (                | 2                                  | tals         |                 |                 |                    |             |              |                                                                                                                 |           |          |                                                            | Please provide advance notice                                                                                                                                                                                                              |                               |
|                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>              | *              |                                                                                                                 |                  | Regulated Drinking Water ? (Y (N)) | Tot          | water by GC/ECD | Total (CVAA,LL) | er Diss. MS (as    |             |              |                                                                                                                 |           |          | (will be a<br>Standard<br>Please r<br>days - c<br>Job Spec | (Standard) TAT<br>pplied if Rush TAT is not specified)<br>I TAT = 5-7 Working days for most tests.<br>toics: Standard TAT for certain tests such<br>ontact your Project Manager for details.<br>ifte Rush TAT (If applies to entire submis | as BOD and Dioxins/Furans are |
|                                        | Note: For regulated                | l drinking water samples - please use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the Drinking Wa    | ater Chain of  | Custody Form                                                                                                    |                  | d Dri                              | RC/          | i wat           | <u>6</u>        | Water              |             |              | 1 1                                                                                                             |           |          | Date Req<br>Rush Con                                       | uired:'                                                                                                                                                                                                                                    | Time Required:                |
|                                        | Samples n                          | nust be kept cool ( < 10°C ) from time o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f sampling until d | elivery to max |                                                                                                                 |                  | Regulated D                        | antic        | PCBs in         | Mercury         | Metals \<br>rec'd) |             |              |                                                                                                                 |           |          |                                                            |                                                                                                                                                                                                                                            | (call lab for #)              |
| Sample                                 | Barcode Label                      | Sample (Location) Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date               | Sampled        | Time Sampled                                                                                                    |                  | Reg                                | Atla         | ЪС              | Me              | Me                 |             |              |                                                                                                                 |           |          | # of Bottle                                                | s Com                                                                                                                                                                                                                                      | ments                         |
|                                        | ID#307196                          | 3073-NH-SW-POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dec                | 7/15           |                                                                                                                 | surface<br>harde | NN                                 | X            | ×               | x               |                    |             |              |                                                                                                                 |           |          | 6                                                          |                                                                                                                                                                                                                                            |                               |
|                                        | ID#307197                          | 3073-NH-SW-STREAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Dec              | 7115           |                                                                                                                 | Surface<br>NATER | N                                  | J X          | x               | х               |                    |             |              | a name                                                                                                          |           |          | 6                                                          |                                                                                                                                                                                                                                            |                               |
| s                                      | ID#307198                          | 3073-NH-SW-UPSTREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M Dec              | 7/15           |                                                                                                                 | Surface<br>NATER | NN                                 | JX           | x               | x               |                    |             |              |                                                                                                                 |           |          | 6                                                          |                                                                                                                                                                                                                                            |                               |
|                                        | ID#307199                          | 3073-NH-MW01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dec                | 7/15           |                                                                                                                 | ground           | N                                  | Y            | x               | x               | х                  |             |              |                                                                                                                 |           |          | 4                                                          |                                                                                                                                                                                                                                            |                               |
| s                                      | ID#307200                          | 3073-NH-MW02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                |                                                                                                                 |                  |                                    |              | ×               | -x              | ×                  |             |              |                                                                                                                 |           |          | -                                                          |                                                                                                                                                                                                                                            |                               |
| i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | 1D#307201                          | 3073-NH-MW03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dec                | Flis           |                                                                                                                 | Ground Nates     | N                                  | Y            | x               | x               | x                  |             |              |                                                                                                                 |           |          | 4                                                          |                                                                                                                                                                                                                                            |                               |
| S                                      | 1D#307202                          | 3073-NH-MW04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dec                | 7115           |                                                                                                                 | ALTOWN &         | N                                  | 7            | x               | x               | х                  |             |              |                                                                                                                 |           |          | 4                                                          |                                                                                                                                                                                                                                            | 2015 DEC 9 11                 |
| S S S S S S S S S S S S S S S S S S S  | ID#307203                          | 3073-NH-MW05A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Der                | 7115           |                                                                                                                 | Ground WATER     | NY                                 | 1            | x               | х               | x                  |             |              |                                                                                                                 |           |          | 2                                                          |                                                                                                                                                                                                                                            |                               |
| s in s                                 | ID#307204                          | 3073-NH-MW06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Der                | 711s           |                                                                                                                 | ground.<br>WATER | N                                  | 1            | x               | x               | x                  |             |              |                                                                                                                 |           |          | 24                                                         |                                                                                                                                                                                                                                            |                               |
| o                                      | ID#307205                          | 3073-NH-MW07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dec                | 7115           |                                                                                                                 | HATER            | N                                  | 1            | х               | x               | х                  |             |              |                                                                                                                 |           | 1        | 4                                                          |                                                                                                                                                                                                                                            |                               |
| • • REL                                | NQUISHED BY: (Sign                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date: (YY/MM/DD)   | ) Time         |                                                                                                                 | RECEIVE          | D BY:                              | (Signature/P | rint)           |                 | Da                 | ite: (YY/MM | (DD)         | Time                                                                                                            | # jars us | alter al |                                                            | Lab Use Only                                                                                                                                                                                                                               | - (°                          |
| Imonal 2                               | hostnf60                           | Yein Bunsey 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dec 7/15           | 18:00          | > Incla                                                                                                         |                  | nne<br>uk                          | Raym         | end             |                 | 100                | 5/12/       | S (          | 8:00<br>8:35a                                                                                                   | _         |          | Time Sensitive                                             | Temperature (°C) on Receipt                                                                                                                                                                                                                | Custody Seal Intact on Co     |
| IT IS THE RE                           | SPONSIBILITY OF TH                 | HE RELINQUISHER TO ENSURE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ACCURACY OF        | THE CHAIN C    |                                                                                                                 |                  |                                    | E CHAIN OF   | CUSTOD          | Y MAY RE        |                    |             |              | 0                                                                                                               | T         |          |                                                            | 10.1,1.1,0.1                                                                                                                                                                                                                               | White: Maxicam Yellow: Client |
|                                        |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                |                                                                                                                 | PICA CI          | AFE                                |              |                 |                 |                    |             | 1. 1. 10-10. |                                                                                                                 |           |          |                                                            |                                                                                                                                                                                                                                            |                               |

| ress Karen<br>T54 Ma<br>St. Joh<br>(709) 7 | INVOICE TO:<br>4 Fracflow Consultants Inc<br>Andrews | 8 102 <u>1</u> 10    |                        | Ren                                     | ort Inform                  | a a fi a a                                             |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           |                                                |
|--------------------------------------------|------------------------------------------------------|----------------------|------------------------|-----------------------------------------|-----------------------------|--------------------------------------------------------|---------------------------|----------|-------------------------------|--------------------------|--------|------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| ress Karen<br>T54 Ma<br>St. Joh<br>(709) 7 |                                                      |                      | Januar                 |                                         | JIL MIOIT                   | nation                                                 | -                         | -        |                               |                          |        | t Information          |                                 | Laboratory                                                                                                                                                                                                                                                                                                |                                                |
| ress 154 Ma<br>St. Joh<br>(709) 7          | Andrews                                              |                      | Company Name           |                                         |                             |                                                        |                           |          |                               | Quotation #              | B5751  | 4                      |                                 | Maxxam Job #                                                                                                                                                                                                                                                                                              | Bottle Order#                                  |
| St. Joh<br>(709) 7                         | ninda Dath                                           |                      | Contact Name           | Ingrid Lawlor/ Gle                      | enn Bu                      | rsey                                                   | - 100                     | <u>.</u> | -                             | P.O. #                   |        |                        | <u> </u>                        | - BEPHOYY                                                                                                                                                                                                                                                                                                 |                                                |
| ne (709) 7                                 | ajors Path<br>nn's NL A1A 5A1                        |                      | Address                | 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |                             |                                                        | 100 C 100                 | SI       |                               | Project #                | New F  | larbour                |                                 |                                                                                                                                                                                                                                                                                                           | 540677                                         |
|                                            |                                                      | 2 5101               |                        | (700) 720 7070                          |                             | 11                                                     | 11 11                     | 11       |                               | Project Name             |        |                        |                                 | Chain Of Custody Record                                                                                                                                                                                                                                                                                   | Project Manage                                 |
|                                            | ffc@nfld.net, ffc_nf@nfld.net                        | 5-5101               | Phone .                | (709) 739-7270<br>ingrid_ffc@nfld.n     | at also                     | Fax:                                                   | - Il An la                |          | _                             | Site #                   | A 44   |                        | and a                           |                                                                                                                                                                                                                                                                                                           | Leonard Muise                                  |
|                                            | incomanet, nc_momanet                                |                      | Email                  | structions                              | et, gier                    | In_inc@ns                                              | .allanizii                | ic.ca    | 1                             | Sampled By<br>Analysis R |        | JR/12                  |                                 | C#540677-02-01<br>Turnaround Time (TAT                                                                                                                                                                                                                                                                    |                                                |
| Regulatory Criteria                        | r regulated drinking water samples - please us       |                      | n 10<br>11             |                                         | Drinking (Motor 5 / V / M ) | field Filtered ? ( Y / N )<br>fic RCAp-MS Total Metals | ier<br>in water bv GC/ECD |          | Water Diss. MS (as            |                          |        |                        | (wi<br>Sta<br>Pie<br>daj<br>Job | Please provide advance notice<br>gular (Standard) TAT<br>I be applied if Rush TAT is not specified)<br>inderi TAT = 5-7 Working days for most tests.<br>ase note: Standard TAT for certain tests such<br>rs - contact your Project Manager for details.<br>Specific Rush TAT (If applies to entire submis | for rush projects<br>as BOD and Dioxins/Furans |
| a and also been also as a second           |                                                      |                      |                        | nody Form                               | the L                       | C R Field                                              |                           |          |                               |                          |        |                        | Rus                             | h Confirmation Number                                                                                                                                                                                                                                                                                     | an tritter                                     |
|                                            | Services must be kere fool ( < 10%) from time.       | nfi pamptinni untiti | delyniani lan canyr ar |                                         |                             |                                                        | Ë ŭ "                     |          | dis                           | <u>('   '</u>            | 1 1    |                        |                                 |                                                                                                                                                                                                                                                                                                           | (call lab for #)                               |
| Sample Barcode Labe                        | Sample (Location) Identification                     | Date Sar             | mpled Time S           | ampled Matrix                           | Regul                       | Metal                                                  | PCB                       | Merc     | Meta<br>rec'd <sub>is</sub> v |                          |        |                        | # of Bott                       | les Comment                                                                                                                                                                                                                                                                                               | 9                                              |
| SID#307206                                 | 3073-NH-MW08                                         | Dec 7                | 115                    | ground                                  | N                           | у                                                      | x                         | ×        | х                             |                          |        |                        | 티                               |                                                                                                                                                                                                                                                                                                           |                                                |
| SID#307207                                 | 3073-NH-MW-DUP1                                      | Dec 7                | /15                    | aroun<br>Water                          | N                           | У                                                      | x                         | x        | х                             |                          |        |                        | 4                               | 199 17 ROOMON RECORDERATION 18 1                                                                                                                                                                                                                                                                          | 001001000000000 2005 20 10                     |
|                                            |                                                      |                      |                        |                                         |                             |                                                        |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           |                                                |
|                                            |                                                      |                      |                        |                                         |                             |                                                        |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           | 10                                             |
|                                            |                                                      |                      |                        |                                         |                             |                                                        |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           |                                                |
|                                            |                                                      |                      |                        |                                         |                             | 2000 <sup>000</sup> <sup>200</sup> 220- 88             |                           |          |                               |                          |        |                        |                                 | × 100 II II                                                                                                                                                                                                                                                                                               |                                                |
|                                            |                                                      |                      |                        |                                         | 5                           | 20                                                     |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           | 2015 DEC 9 11                                  |
|                                            |                                                      |                      |                        |                                         |                             |                                                        |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           |                                                |
|                                            |                                                      |                      |                        |                                         |                             |                                                        |                           |          |                               |                          |        |                        |                                 |                                                                                                                                                                                                                                                                                                           |                                                |
| • RELINQUISHED BY                          | (Signature/Print)                                    | : (YY/MM/DD)         | Time                   | RECE                                    | VED BY                      | : (Signature/F                                         | Print                     | I        |                               | te: (YY/MM/DD)           | Time   | # jars used and        |                                 | Lab Use Only                                                                                                                                                                                                                                                                                              |                                                |
| id Darstn,                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              | .7(15                |                        | amilte (                                |                             |                                                        |                           |          |                               | 15/12/18                 | 3:35 W | not submitted          | Time Sensitive                  | Temperature (°C) on Receipt                                                                                                                                                                                                                                                                               | Custody Seal Intact on Cod                     |
|                                            | OF THE RELINQUISHER TO ENSURE THE AC                 |                      | X                      |                                         |                             | HAFE                                                   |                           |          |                               |                          | 22     | Landie Hall Date Trans |                                 | 6.7,7.9,6.4                                                                                                                                                                                                                                                                                               | Yes N                                          |



Site Location: NEW HARBOUR Your C.O.C. #: 540677-01-01

#### **Attention: Glenn Bursey**

Fracflow Consultants Inc 154 Major's Path St. John's, NL A1A 5A1

> Report Date: 2015/12/17 Report #: R3810202 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B5P5078 Received: 2015/12/10, 10:31

Sample Matrix: Water # Samples Received: 1

|                                      |          | Date       | Date       |                   |                |
|--------------------------------------|----------|------------|------------|-------------------|----------------|
| Analyses                             | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference      |
| Mercury - Total (CVAA,LL) (1)        | 1        | 2015/12/14 | 2015/12/15 | ATL SOP 00026     | EPA 245.1 R3 m |
| Metals Water Diss. MS (as rec'd) (1) | 1        | N/A        | 2015/12/15 | ATL SOP 00058     | EPA 6020A R1 m |
| PCBs in water by GC/ECD (1)          | 1        | 2015/12/14 | 2015/12/15 | ATL SOP 00107     | EPA 8082A m    |
| PCB Aroclor sum (water) (1)          | 1        | N/A        | 2015/12/15 |                   | Auto Calc.     |

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Bedford

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Leonard Muise, Project Manager Email: LMuise@maxxam.ca Phone# (902)420-0203 Ext:236

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



## MERCURY BY COLD VAPOUR AA (WATER)

|                                  | BMW093       |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
|----------------------------------|--------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                  | 2015/12/08   |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
|                                  | 540677-01-01 |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
| UNITS                            | 3073-NH-MW02 | RDL                                                                 | QC Batch                                                                                                                                            |  |  |  |  |  |  |
| Metals                           |              |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
| ug/L                             | ND           | 0.013                                                               | 4311923                                                                                                                                             |  |  |  |  |  |  |
| imit                             |              |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
| QC Batch = Quality Control Batch |              |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
|                                  |              |                                                                     |                                                                                                                                                     |  |  |  |  |  |  |
|                                  | ug/L<br>imit | 2015/12/08<br>540677-01-01<br>UNITS 3073-NH-MW02<br>ug/L ND<br>imit | 2015/12/08           2015/12/08           540677-01-01           UNITS         3073-NH-MW02           RDL           ug/L         ND           0.013 |  |  |  |  |  |  |

Page 2 of 11



## **ELEMENTS BY ICP/MS (WATER)**

| Maxyam ID                      | 1      | DN4\\4/002   | i     |          |
|--------------------------------|--------|--------------|-------|----------|
| Maxxam ID                      |        | BMW093       |       |          |
| Sampling Date                  |        | 2015/12/08   |       |          |
| COC Number                     | LINUTC | 540677-01-01 |       | 00 0-1-1 |
|                                | UNITS  | 3073-NH-MW02 | RDL   | QC Batch |
| Metals                         | -      |              | -     |          |
| Dissolved Aluminum (Al)        | ug/L   | 51           | 5.0   | 4313329  |
| Dissolved Antimony (Sb)        | ug/L   | ND           | 1.0   | 4313329  |
| Dissolved Arsenic (As)         | ug/L   | ND           | 1.0   | 4313329  |
| Dissolved Barium (Ba)          | ug/L   | 2.4          | 1.0   | 4313329  |
| Dissolved Beryllium (Be)       | ug/L   | ND           | 1.0   | 4313329  |
| Dissolved Bismuth (Bi)         | ug/L   | ND           | 2.0   | 4313329  |
| Dissolved Boron (B)            | ug/L   | ND           | 50    | 4313329  |
| Dissolved Cadmium (Cd)         | ug/L   | ND           | 0.010 | 4313329  |
| Dissolved Calcium (Ca)         | ug/L   | 2500         | 100   | 4313329  |
| Dissolved Chromium (Cr)        | ug/L   | ND           | 1.0   | 4313329  |
| Dissolved Cobalt (Co)          | ug/L   | ND           | 0.40  | 4313329  |
| Dissolved Copper (Cu)          | ug/L   | ND           | 2.0   | 4313329  |
| Dissolved Iron (Fe)            | ug/L   | ND           | 50    | 4313329  |
| Dissolved Lead (Pb)            | ug/L   | ND           | 0.50  | 4313329  |
| Dissolved Magnesium (Mg)       | ug/L   | 830          | 100   | 4313329  |
| Dissolved Manganese (Mn)       | ug/L   | 4.6          | 2.0   | 4313329  |
| Dissolved Molybdenum (Mo)      | ug/L   | ND           | 2.0   | 4313329  |
| Dissolved Nickel (Ni)          | ug/L   | ND           | 2.0   | 4313329  |
| Dissolved Phosphorus (P)       | ug/L   | ND           | 100   | 4313329  |
| Dissolved Potassium (K)        | ug/L   | 260          | 100   | 4313329  |
| Dissolved Selenium (Se)        | ug/L   | ND           | 1.0   | 4313329  |
| Dissolved Silver (Ag)          | ug/L   | ND           | 0.10  | 4313329  |
| Dissolved Sodium (Na)          | ug/L   | 8800         | 100   | 4313329  |
| Dissolved Strontium (Sr)       | ug/L   | 9.0          | 2.0   | 4313329  |
| Dissolved Thallium (Tl)        | ug/L   | ND           | 0.10  | 4313329  |
| Dissolved Tin (Sn)             | ug/L   | ND           | 2.0   | 4313329  |
| Dissolved Titanium (Ti)        | ug/L   | 2.1          | 2.0   | 4313329  |
| Dissolved Uranium (U)          | ug/L   | ND           | 0.10  | 4313329  |
| Dissolved Vanadium (V)         | ug/L   | ND           | 2.0   | 4313329  |
| Dissolved Zinc (Zn)            | ug/L   | ND           | 5.0   | 4313329  |
| RDL = Reportable Detection Li  |        |              | •     |          |
| QC Batch = Quality Control Bat | tch    |              |       |          |
| ND = Not detected              |        |              |       |          |
| l                              |        |              |       |          |



# POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

| Maxxam ID                        |       | BMW093       |       |          |  |  |  |  |  |
|----------------------------------|-------|--------------|-------|----------|--|--|--|--|--|
| Sampling Date                    |       | 2015/12/08   |       |          |  |  |  |  |  |
| COC Number                       |       | 540677-01-01 |       |          |  |  |  |  |  |
|                                  | UNITS | 3073-NH-MW02 | RDL   | QC Batch |  |  |  |  |  |
| PCBs                             |       |              |       |          |  |  |  |  |  |
| Aroclor 1016                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Aroclor 1221                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Aroclor 1232                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Aroclor 1248                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Aroclor 1242                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Aroclor 1254                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Aroclor 1260                     | ug/L  | ND           | 0.050 | 4311587  |  |  |  |  |  |
| Calculated Total PCB             | ug/L  | ND           | 0.050 | 4310977  |  |  |  |  |  |
| Surrogate Recovery (%)           |       |              |       |          |  |  |  |  |  |
| Decachlorobiphenyl               | %     | 53           |       | 4311587  |  |  |  |  |  |
| RDL = Reportable Detection Limit |       |              |       |          |  |  |  |  |  |
| QC Batch = Quality Control Batch |       |              |       |          |  |  |  |  |  |
| ND = Not detected                |       |              |       |          |  |  |  |  |  |
|                                  |       |              |       |          |  |  |  |  |  |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### **GENERAL COMMENTS**

| Each te | emperature is the av | verage of up to t | hree cooler temperatures taken at receipt |
|---------|----------------------|-------------------|-------------------------------------------|
|         | Package 1            | 4.4°C             |                                           |
|         |                      |                   | _                                         |
| Result  | s relate only to the | items tested.     |                                           |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### **QUALITY ASSURANCE REPORT**

| QA/QC   |      |              |                                                 | Date                     |                  |            |              |                      |
|---------|------|--------------|-------------------------------------------------|--------------------------|------------------|------------|--------------|----------------------|
| Batch   | Init | QC Type      | Parameter                                       | Analyzed                 | Value            | Recovery   | UNITS        | QC Limits            |
| 4311587 | LGE  | Matrix Spike | Decachlorobiphenyl                              | 2015/12/15               | 10.00            | 68         | %            | 30 - 130             |
| .011007 |      | ind in opine | Aroclor 1254                                    | 2015/12/15               |                  | 83         | %            | 30 - 130             |
| 4311587 | LGE  | Spiked Blank | Decachlorobiphenyl                              | 2015/12/15               |                  | 86         | %            | 30 - 130             |
|         |      |              | Aroclor 1254                                    | 2015/12/15               |                  | 86         | %            | 30 - 130             |
| 4311587 | LGE  | Method Blank | Decachlorobiphenyl                              | 2015/12/15               |                  | 75         | %            | 30 - 130             |
|         |      |              | Aroclor 1016                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 | //                       | RDL=0.050        |            | 8/ -         |                      |
|         |      |              | Aroclor 1221                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 | //                       | RDL=0.050        |            | 8/ -         |                      |
|         |      |              | Aroclor 1232                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 |                          | RDL=0.050        |            | 0,           |                      |
|         |      |              | Aroclor 1248                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 | 2010/12/10               | RDL=0.050        |            | ∽8/ <b>=</b> |                      |
|         |      |              | Aroclor 1242                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 | 2010/12/10               | RDL=0.050        |            | 46/ E        |                      |
|         |      |              | Aroclor 1254                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 | 2010/12/10               | RDL=0.050        |            | 46/ E        |                      |
|         |      |              | Aroclor 1260                                    | 2015/12/15               | ND,              |            | ug/L         |                      |
|         |      |              |                                                 | 2013/12/13               | RDL=0.050        |            | ug/ L        |                      |
| 4311587 | LGE  | RPD          | Aroclor 1016                                    | 2015/12/15               | NC               |            | %            | 40                   |
| 4511507 | LOL  |              | Aroclor 1221                                    | 2015/12/15               | NC               |            | %            | 40                   |
|         |      |              | Aroclor 1232                                    | 2015/12/15               | NC               |            | %            | 40                   |
|         |      |              | Aroclor 1248                                    | 2015/12/15               | NC               |            | %            | 40                   |
|         |      |              | Aroclor 1242                                    | 2015/12/15               | NC               |            | %            | 40                   |
|         |      |              |                                                 |                          |                  |            |              |                      |
|         |      |              | Aroclor 1254                                    | 2015/12/15               | NC               |            | %            | 40                   |
| 1211022 |      |              | Aroclor 1260                                    | 2015/12/15               | NC               | 07         | %            | 40                   |
| 4311923 |      | Matrix Spike | Total Mercury (Hg)                              | 2015/12/15               |                  | 87         | %            | 80 - 120             |
| 4311923 |      | Spiked Blank | Total Mercury (Hg)                              | 2015/12/15               |                  | 101        | %            | 80 - 120             |
| 4311923 | VWA  | Method Blank | Total Mercury (Hg)                              | 2015/12/15               | ND,<br>RDL=0.013 |            | ug/L         |                      |
| 4311923 | VWA  | חחם          | Total Marcury (Hg)                              | 2015/12/15               | 0                |            | %            | 20                   |
| 4311923 |      |              | Total Mercury (Hg)                              |                          | 0                | 102        |              |                      |
| 4313329 | BAN  | Matrix Spike | Dissolved Aluminum (Al)                         | 2015/12/15               |                  | 103<br>100 | %<br>%       | 80 - 120             |
|         |      |              | Dissolved Antimony (Sb)                         | 2015/12/15               |                  |            |              | 80 - 120             |
|         |      |              | Dissolved Arsenic (As)<br>Dissolved Barium (Ba) | 2015/12/15<br>2015/12/15 |                  | 100<br>99  | %<br>%       | 80 - 120<br>80 - 120 |
|         |      |              |                                                 |                          |                  | 99<br>99   | %            | 80 - 120<br>80 - 120 |
|         |      |              | Dissolved Beryllium (Be)                        | 2015/12/15               |                  | 99<br>99   | %<br>%       | 80 - 120<br>80 - 120 |
|         |      |              | Dissolved Bismuth (Bi)                          | 2015/12/15               |                  |            |              |                      |
|         |      |              | Dissolved Boron (B)                             | 2015/12/15               |                  | 100        | %            | 80 - 120             |
|         |      |              | Dissolved Cadmium (Cd)                          | 2015/12/15               |                  | 103        | %            | 80 - 120             |
|         |      |              | Dissolved Calcium (Ca)                          | 2015/12/15               |                  | NC         | %            | 80 - 120             |
|         |      |              | Dissolved Chromium (Cr)                         | 2015/12/15               |                  | 100        | %            | 80 - 120             |
|         |      |              | Dissolved Cobalt (Co)                           | 2015/12/15               |                  | 101        | %            | 80 - 120             |
|         |      |              | Dissolved Copper (Cu)                           | 2015/12/15               |                  | 99         | %            | 80 - 120             |
|         |      |              | Dissolved Iron (Fe)                             | 2015/12/15               |                  | 103        | %            | 80 - 120             |
|         |      |              | Dissolved Lead (Pb)                             | 2015/12/15               |                  | 99<br>100  | %            | 80 - 120             |
|         |      |              | Dissolved Magnesium (Mg)                        | 2015/12/15               |                  | 106        | %            | 80 - 120             |
|         |      |              | Dissolved Manganese (Mn)                        | 2015/12/15               |                  | 103        | %            | 80 - 120             |
|         |      |              | Dissolved Molybdenum (Mo)                       | 2015/12/15               |                  | 103        | %            | 80 - 120             |
|         |      |              | Dissolved Nickel (Ni)                           | 2015/12/15               |                  | 101        | %            | 80 - 120             |
|         |      |              | Dissolved Phosphorus (P)                        | 2015/12/15               |                  | 108        | %            | 80 - 120             |
|         |      |              | Dissolved Potassium (K)                         | 2015/12/15               |                  | 100        | %            | 80 - 120             |
|         |      |              | Dissolved Selenium (Se)                         | 2015/12/15               |                  | 105        | %            | 80 - 120             |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC   |      |              |                           | Date       |                |          |       |           |
|---------|------|--------------|---------------------------|------------|----------------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value          | Recovery | UNITS | QC Limits |
|         |      |              | Dissolved Silver (Ag)     | 2015/12/15 |                | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)     | 2015/12/15 |                | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr)  | 2015/12/15 |                | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (Tl)   | 2015/12/15 |                | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2015/12/15 |                | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2015/12/15 |                | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2015/12/15 |                | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2015/12/15 |                | 98       | %     | 80 - 120  |
| 4313329 | BAN  | Spiked Blank | Dissolved Aluminum (Al)   | 2015/12/15 |                | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Antimony (Sb)   | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2015/12/15 |                | 98       | %     | 80 - 120  |
|         |      |              | Dissolved Barium (Ba)     | 2015/12/15 |                | 96       | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Bismuth (Bi)    | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)       | 2015/12/15 |                | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Calcium (Ca)    | 2015/12/15 |                | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2015/12/15 |                | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Iron (Fe)       | 2015/12/15 |                | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Magnesium (Mg)  | 2015/12/15 |                | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Manganese (Mn)  | 2015/12/15 |                | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2015/12/15 |                | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2015/12/15 |                | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Phosphorus (P)  | 2015/12/15 |                | 106      | %     | 80 - 120  |
|         |      |              | Dissolved Potassium (K)   | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2015/12/15 |                | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)     | 2015/12/15 |                | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Strontium (Sr)  | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2015/12/15 |                | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Tin (Sn)        | 2015/12/15 |                | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Titanium (Ti)   | 2015/12/15 |                | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2015/12/15 |                | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2015/12/15 |                | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2015/12/15 |                | 98       | %     | 80 - 120  |
| 4313329 | BAN  | Method Blank | Dissolved Aluminum (Al)   | 2015/12/15 | ND,            |          | ug/L  |           |
|         |      |              |                           |            | RDL=5.0        |          | 8/ -  |           |
|         |      |              | Dissolved Antimony (Sb)   | 2015/12/15 | ND,            |          | ug/L  |           |
|         |      |              |                           |            | RDL=1.0        |          |       |           |
|         |      |              | Dissolved Arsenic (As)    | 2015/12/15 | ND,<br>RDL=1.0 |          | ug/L  |           |
|         |      |              | Dissolved Barium (Ba)     | 2015/12/15 | ND,<br>RDL=1.0 |          | ug/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2015/12/15 | ND,<br>RDL=1.0 |          | ug/L  |           |
|         |      |              | Dissolved Bismuth (Bi)    | 2015/12/15 | ND,<br>RDL=2.0 |          | ug/L  |           |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

| QA/QC<br>Batch Init QC Type | Parameter                 | Date<br>Analyzed | Value                      | Recovery UNITS QC Limits |
|-----------------------------|---------------------------|------------------|----------------------------|--------------------------|
| Sater int de type           | Dissolved Boron (B)       | 2015/12/15       | ND,                        | ug/L                     |
|                             | Dissolved Cadmium (Cd)    | 2015/12/15       | RDL=50<br>ND,<br>RDL=0.010 | ug/L                     |
|                             | Dissolved Calcium (Ca)    | 2015/12/15       | ND,<br>RDL=100             | ug/L                     |
|                             | Dissolved Chromium (Cr)   | 2015/12/15       | ND,<br>RDL=1.0             | ug/L                     |
|                             | Dissolved Cobalt (Co)     | 2015/12/15       | ND,<br>RDL=0.40            | ug/L                     |
|                             | Dissolved Copper (Cu)     | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Iron (Fe)       | 2015/12/15       | ND,<br>RDL=50              | ug/L                     |
|                             | Dissolved Lead (Pb)       | 2015/12/15       | ND,<br>RDL=0.50            | ug/L                     |
|                             | Dissolved Magnesium (Mg)  | 2015/12/15       | ND,<br>RDL=100             | ug/L                     |
|                             | Dissolved Manganese (Mn)  | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Molybdenum (Mo) | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Nickel (Ni)     | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Phosphorus (P)  | 2015/12/15       | ND,<br>RDL=100             | ug/L                     |
|                             | Dissolved Potassium (K)   | 2015/12/15       | ND,<br>RDL=100             | ug/L                     |
|                             | Dissolved Selenium (Se)   | 2015/12/15       | ND,<br>RDL=1.0             | ug/L                     |
|                             | Dissolved Silver (Ag)     | 2015/12/15       | ND,<br>RDL=0.10            | ug/L                     |
|                             | Dissolved Sodium (Na)     | 2015/12/15       | ND,<br>RDL=100             | ug/L                     |
|                             | Dissolved Strontium (Sr)  | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Thallium (TI)   | 2015/12/15       | ND,<br>RDL=0.10            | ug/L                     |
|                             | Dissolved Tin (Sn)        | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Titanium (Ti)   | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Uranium (U)     | 2015/12/15       | ND,<br>RDL=0.10            | ug/L                     |
|                             | Dissolved Vanadium (V)    | 2015/12/15       | ND,<br>RDL=2.0             | ug/L                     |
|                             | Dissolved Zinc (Zn)       | 2015/12/15       | ND,<br>RDL=5.0             | ug/L                     |
| 4313329 BAN RPD             | Dissolved Aluminum (Al)   | 2015/12/15       | NC                         | % 20                     |
|                             | Dissolved Antimony (Sb)   | 2015/12/15       | NC                         | % 20                     |



Fracflow Consultants Inc Site Location: NEW HARBOUR Sampler Initials: GB

### QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC |      |         |                           | Date       |       |          |       |           |
|-------|------|---------|---------------------------|------------|-------|----------|-------|-----------|
| Batch | Init | QC Type | Parameter                 | Analyzed   | Value | Recovery | UNITS | QC Limits |
|       |      |         | Dissolved Arsenic (As)    | 2015/12/15 | 0.91  |          | %     | 20        |
|       |      |         | Dissolved Barium (Ba)     | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Beryllium (Be)  | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Bismuth (Bi)    | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Boron (B)       | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Cadmium (Cd)    | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Calcium (Ca)    | 2015/12/15 | 0.64  |          | %     | 20        |
|       |      |         | Dissolved Chromium (Cr)   | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Cobalt (Co)     | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Copper (Cu)     | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Iron (Fe)       | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Lead (Pb)       | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Magnesium (Mg)  | 2015/12/15 | 0.63  |          | %     | 20        |
|       |      |         | Dissolved Manganese (Mn)  | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Molybdenum (Mo) | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Nickel (Ni)     | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Phosphorus (P)  | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Potassium (K)   | 2015/12/15 | 0.88  |          | %     | 20        |
|       |      |         | Dissolved Selenium (Se)   | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Silver (Ag)     | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Sodium (Na)     | 2015/12/15 | 0.97  |          | %     | 20        |
|       |      |         | Dissolved Strontium (Sr)  | 2015/12/15 | 0.65  |          | %     | 20        |
|       |      |         | Dissolved Thallium (TI)   | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Tin (Sn)        | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Titanium (Ti)   | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Uranium (U)     | 2015/12/15 | 0.80  |          | %     | 20        |
|       |      |         | Dissolved Vanadium (V)    | 2015/12/15 | NC    |          | %     | 20        |
|       |      |         | Dissolved Zinc (Zn)       | 2015/12/15 | NC    |          | %     | 20        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



### FUNDAMENTAL LABORATORY ACCEPTANCE GUIDELINE

|                          |            |       |       | Maxxam Job #:         | B5P5078          |
|--------------------------|------------|-------|-------|-----------------------|------------------|
| Invoice To:              |            |       |       | Date Received:        | 2015/12/10       |
| Fracflow Consultants Inc |            |       |       | Your C.O.C. #:        | 540677-01-01     |
| ATTN: Karen Andrews      |            |       |       | Maxxam Project Manage | r: Leonard Muise |
| 154 Major's Path         |            |       |       | Quote #:              | B57514           |
| St. John's, NL           |            |       |       |                       |                  |
| A1A 5A1                  |            |       |       |                       |                  |
| Client Contact:          |            |       |       |                       |                  |
| Glenn Bursey             |            |       |       |                       |                  |
| No discrepancies noted.  |            |       |       |                       |                  |
| Report Comments          |            |       |       |                       |                  |
| Received Date:           | 2015/12/10 | Time: | 10:31 | Ву:                   |                  |
| Neceiveu Dale.           | 2013/12/10 | -     | 10.31 | Uy                    |                  |
| Inspected Date:          |            | Time: |       | By:                   |                  |

By:

Time:

FLAG Created Date:



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Herrin 1. Mac Donald

Kevin MacDonald, Inorganics Supervisor

Rosmarie MacDonald

Rosemarie MacDonald, Scientific Specialist (Organics)

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

|                | INN                                    | OICE TO:                            |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report In    | formatio               | on                 |               |              |                   |                    | 10            | Pro   | ject info     | ormation              |        |                   |                                                             |                                                                                           | Laborator                                | rv Use O                               | nly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------------|-------------------------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|--------------------|---------------|--------------|-------------------|--------------------|---------------|-------|---------------|-----------------------|--------|-------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | #11664 Fracflow                        |                                     |                     | Company Nar      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 10 1001<br>            | 1                  | 10122         | 10           |                   | -                  | ation #       | B57   | 514           |                       |        |                   |                                                             | Maxx                                                                                      | am Job #                                 |                                        | Bottle Orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Company Name   | Karen Andrews                          |                                     |                     | Contact Name     | In a dal 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wlor/ Glenn  | Bursey                 | y                  |               | titili       |                   | P.O.               |               | -     |               |                       |        |                   |                                                             |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ddress         | 154 Major's Path                       |                                     |                     | Address          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | 191.)<br>     | a di Kara    |                   | Proje              |               | New   | / Harbo       | our                   |        |                   |                                                             | <b>B</b> 5P <sup>5</sup>                                                                  | 5078                                     |                                        | 540677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | St. John's NL A1A                      |                                     |                     | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    |               |              |                   |                    | ct Name       |       |               |                       |        |                   |                                                             | Chain Of C                                                                                | ustody Record                            |                                        | Project Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| hone           | (709) 739-7270                         | Fax: (709) 7                        | 53-5101             | Phone            | (709) 739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                        | Fax:               |               | _            |                   | Site a             | *             | -77   |               | -                     |        |                   |                                                             |                                                                                           |                                          |                                        | Leonard Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Email          | karen_ffc@nfld.ne                      | et, ffc_nf@nfld.net                 |                     | Email            | And the second s | @nfld.net, g | lenn_t                 | ffc@n              | s.aliantzi    | nc.ca        | _                 |                    | led By        |       | BI            | IC_                   |        | - <u>-</u> -      |                                                             |                                                                                           | 677-01-01                                | - k                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Regulatory Cri | iteria                                 |                                     |                     | Specia           | I Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                        | - 9                | 2             | - 1          | T                 | 1                  | Analysis Requ | ested | T             | - 1                   | - T    |                   |                                                             |                                                                                           | around Time (T)                          |                                        | and the second s |
|                |                                        |                                     |                     |                  | •28 10 ×14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>(14    | Drinking Water ? (Y/N) | Itered ? ( Y / N ) | in Water      |              | - Total (CVAA,LL) | er Diss. MS (as    | ×             |       |               |                       |        | (i<br>S<br>F<br>a | will be appli<br>Standard TA<br>Nease note:<br>Iays - conta | undard) TAT<br>ed if Rush TAT i<br>T ≈ 5-7 Working<br>Standard TAT i<br>cl your Project M | is not specified)<br>g days for most te: | ists.<br>uch as BOD<br>ls.<br>mission) | and Dioxins/Furan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | Note: For regulated dr                 | inking water samples - please       | use the Drinking    | Water Chain of ( | Custody Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Dir                    | E P                |               | Man          | Ĕ.                | Water              |               |       |               |                       |        | 1.00              | ate Required                                                |                                                                                           |                                          | Time Rec                               | uired;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Samples mus                            | it be kept cool ( < 10°G ) from lin | e of sampling until | delivery to man  | am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Regulated              | s Field            | ater          | E S          | Mercury -         | V sis V            |               |       |               |                       |        | R                 | uan contirma                                                | avit Number                                                                               | 1                                        | (ca                                    | ll lab for #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                        | Sample (Location) Identificat       |                     |                  | Time Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matrix       | lugal                  | Metal              | M N N         | 3            | Merc              | Metals '<br>rec'd) |               |       |               |                       |        |                   | of Bottles                                                  |                                                                                           | 0                                        | omments                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Barcode Label                          |                                     |                     | e Sampieu        | ime sampied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maurix       | E I                    | =                  |               |              | -                 | 26                 |               |       |               |                       |        |                   | or Bothes                                                   |                                                                                           |                                          | and the second                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | D#307196                               | 3073-NH-SW-PON                      |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | ×             | (            | ×                 |                    |               |       |               |                       |        |                   |                                                             |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                        | 1                                   |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        | -                  |               |              |                   |                    |               |       |               |                       |        |                   |                                                             |                                                                                           |                                          |                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | 10#307197                              | 3073-NH-SW-STRE                     | <b>∧</b> M          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | x             | (            | x                 |                    |               |       |               |                       |        |                   |                                                             |                                                                                           | -                                        | 5                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 11111111111111111111111111111111111111 |                                     | EAM                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | x             | <            | x                 |                    |               |       |               |                       |        | _                 | _                                                           |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                        |                                     |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | >             | (            | x                 | x                  |               |       |               |                       |        |                   |                                                             |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                        | 3073-NH-MW02                        | N                   | DUC              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.000       |                        |                    | ,             | 7            | x                 | x                  |               | 1.6   |               |                       |        |                   | 4                                                           |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SID#307200                             | 307 3-INH-IWW02                     | Per                 | 28/15            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NATER        | N                      | Y                  |               | `            | ^                 | ^                  |               |       |               |                       |        |                   | 4                                                           |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 S            | SID#307201                             | 3073-NH-MW03                        |                     | - 10             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -                      |                    |               | <u> </u>     | ×                 | x                  |               | 6     |               |                       |        |                   | -                                                           |                                                                                           |                                          |                                        | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | SiD#307202                             | 3073 NH-MW04                        | and an an           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -                      |                    |               | 4            | x                 | x                  |               | _     | _             |                       | _      |                   | ~                                                           |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SID#307203                             | 3073-NH-MW05/                       |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    |               | ¢            | x                 | _X                 | F1            | 0     | _             |                       | _      | _                 |                                                             |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                |                                        | 3073-NH-MW06                        |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | $\Rightarrow$ | $\leftarrow$ | ×                 | ×                  |               |       | _             |                       |        |                   | _                                                           |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8              | SID#307204                             |                                     |                     |                  | 100 10-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                        | -                  |               |              |                   |                    |               |       |               |                       |        |                   |                                                             |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SID#307205                             | 3073-NH-MW07                        |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |                    | >             | <            | x                 | х                  |               |       | $\rightarrow$ |                       |        |                   | -                                                           |                                                                                           |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * REL          | INQUISHED BY: (Signat                  | ure/Print)                          | Date: (YY/MM/E      |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RECE         | VED BY                 | : (Sign            | ature/Print)  |              | -                 |                    | e: (YY/MM/DE  |       | Time          | # jars us<br>not subr | ed and |                   |                                                             |                                                                                           | Lab Use Only                             | 20                                     | 15 DEC 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.6te          | Burses                                 | -                                   | 15/12/09            | 9:2              | S A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lun          | 1                      |                    | AFE           |              |                   | 15                 | 11210         | 99.   | :25           | -                     |        | Time Se           | Comment of the                                              |                                                                                           | (°C) on Receipt                          |                                        | ody Seal Intact o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

-

# APPENDIX D

Historical Data (from CRA Report 2014/2015 Monitoring and Maintenance Program, Upper Trinity South (New Harbour) Waste Disposal Site, New Harbour Barrens, Newfoundland and Labrador, Appendix C)

#### HISTORICAL GROUNDWATER ANALYTICAL DATA - PCBs (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Sample          |          |          |          |                       |                       | Sampl    | e Date   |          |          |          |          |          | Criteria* |
|-----------------|----------|----------|----------|-----------------------|-----------------------|----------|----------|----------|----------|----------|----------|----------|-----------|
| Location        | Feb 2007 | Nov 2007 | May 2008 | Mar 2009 <sup>1</sup> | Mar 2009 <sup>2</sup> | Oct 2009 | Jan 2010 | Dec 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 | Cinteria  |
| MW-01           | -        | <        | <        | <                     | <                     | 0.07     | <        | <        | < (0.06) | <        | <        | <        |           |
| MW-02           | -        | <        | <        | -                     | -                     | <        | < (0.06) | -        | <        | -        | <        | <        |           |
| MW-03           | < (0.4)  | <        | <        | <                     | -                     | <        | < (0.06) | <        | <        | <        | <        | <        |           |
| MW-04           | -        | <        | <        | <                     | -                     | <        | <        | <        | <        | <        | <        | <        |           |
| MW-05           | <        | <        | <        | <                     | -                     | <        | <        | <        | <        | -        | <        | -        |           |
| MW-05A          | -        | -        | -        | -                     | -                     | -        | -        | -        | -        | -        | -        | <        |           |
| MW-06           | -        | <        | <        | -                     | -                     | <        | <        | <        | < (0.06) | < (0.06) | <        | <        | 7.8       |
| MW-06 DUP<br>02 | -        | -        | -        | -                     | -                     | -        | -        | -        | -        | -        | -        | <        |           |
| MW-07           | -        | <        | <        | <                     | <                     | <        | <        | <        | <        | <        | <        | <        |           |
| MW-DUP          | -        | -        | -        | -                     | -                     | -        | <        | -        | -        | -        | <        | -        |           |
| MW-08           | -        | -        | -        | -                     | -                     | -        | -        | <        | <        | <        | <        | <        |           |
| MW-08<br>DUP-01 | -        | -        | -        | -                     | -                     | -        | -        | -        | -        | <        | -        | -        |           |
| RDL             | 0.04     | 0.04     | 0.04     | 0.04                  | 0.05                  | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     |           |

Analysis completed for all samples from 2007 to 2012 except March 2009<sup>2</sup> were completed by AMEC.

Analysis completed for samples from March 2009<sup>2</sup>, 2013, and 2014 were completed by Maxxam Analytics Inc. in Bedford, NS.

Data from February 2007 to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC and dated March 29, 2013.

\* Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

MW = Monitor Well< = Parameter below detection limit</th>0.0= above criteriaMW-DUP = Field Duplicate of MW-07.< (0.00) = Parameter below elevated detection limit</td>MW-08 DUP-01 = Field Duplicate of MW-08.- = No sample collectedRDL = Reportable Detection Limit

## HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Parameter       | RDL <sup>1</sup> | Criteria <sup>2</sup> |          |          |          |          |          | MW-01    |          |          |          |          |          |          |          |          | MW-02    |          |          |          |
|-----------------|------------------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                 |                  |                       | Feb 2007 | Nov 2007 | May 2008 | Jan 2009 | Oct 2009 | Jan 2010 | Dec 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 | Feb 2007 | Nov 2007 | May 2008 | Oct 2009 | Jan 2010 | Dec 2011 | Nov 2014 |
| Aluminum (Al)   | 5.0              | -                     | 558,000  | 3,530    | 75       | 72.5     | 176      | 109      | 250      | 234      | 130      | 72.4     | 59       | 3,540    | 70       | 34       | 56.9     | 45.6     | 432      | 77       |
| Antimony (Sb)   | 1.0              | 20,000                | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        | <        | <        | <        | < (2)    | < (2)    | <        | <        |
| Arsenic (As)    | 1.0              | 1,900                 | 77       | <        | 4        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        | <        | <        | <        | < (2)    | < (2)    | <        | <        |
| Barium (Ba)     | 1.0              | 29,000                | 870      | 15.1     | 2.1      | < (5)    | < (5)    | < (5)    | 2        | 1.7      | 3.2      | 2.2      | 1.7      | 17.6     | 2.7      | 3.0      | < (5)    | < (5)    | 4.7      | 2.5      |
| Beryllium (Be)  | 1.0              | 67                    | 36.9     | 0.2      | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        | 0.5      | <        | <        | < (2)    | < (2)    | <        | <        |
| Bismuth (Bi)    | 2.0              | -                     | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        |
| Boron (B)       | 5.0              | 45,000                | -        | -        | -        | -        | 5.6      | <        | <        | < (50)   | < (50)   | <        | <        | -        | -        | -        | <        | <        | < (50)   | <        |
| Cadmium (Cd)    | 0.017            | 2.7                   | 1.792    | 0.380    | 0.058    | 0.021    | 0.020    | 0.026    | 0.020    | <        | <        | 0.017    | 0.046    | 0.158    | 1.010    | 0.057    | 0.039    | <        | 0.056    | 0.026    |
| Calcium (Ca)    | 100              | -                     | 81,600   | 2,070    | 2,400    | -        | 5,200    | 2,000    | 2,200    | 2,040    | 2,530    | 2,530    | 2,600    | 2,670    | 1,350    | 1,330    | 1,700    | 1,300    | 1,910    | 1,900    |
| Chromium (Cr)   | 1.0              | 810                   | 82       | 2        | <        | <        | <        | <        | <        | <        | <        | <        | <        | 10.8     | <        | <        | <        | <        | <        | 3.7      |
| Cobalt (Co)     | 0.4              | 66                    | 79.85    | 2        | < (1)    | <        | < (4)    | <        | <        | 0.4      | 0.95     | 0.65     | <        | 7        | < (1)    | < (1)    | 0.86     | 1.04     | 0.53     | 0.59     |
| Copper (Cu)     | 2.0              | 87                    | 1,250    | 12       | 2        | 5        | 18.5     | 3.1      | 3        | <        | <        | <        | <        | 29       | 1        | 4        | 8.3      | <        | 7.1      | 4.2      |
| Iron (Fe)       | 50               | -                     | 75,000   | 2,180    | 246      | 140      | 107      | <        | 290      | 167      | 968      | 100      | <        | 4,170    | 64       | 59       | <        | <        | 245      | 220      |
| Lead (Pb)       | 0.5              | 25                    | 192.7    | 4        | < (1)    | <        | <        | <b>v</b> | <        | <        | <        | <        | <        | 6        | < (1)    | < (1)    | <        | <        | 0.62     | <        |
| Magnesium (Mg)  | 100              | -                     | 15,500   | 642      | 745      | -        | 1,400    | 600      | 500      | 611      | 602      | 721      | 730      | 1,150    | 449      | 479      | 600      | 500      | 258      | 620      |
| Manganese (Mn)  | 2.0              | -                     | 2,120    | 58       | 31       | 34       | 20.5     | 9.7      | 17       | 15.9     | 83.3     | 52.7     | 13       | 150      | 13       | 19       | 8.3      | 33.4     | 4.5      | 24.0     |
| Mercury (Hg)    | 0.013            | 0.29 <sup>3</sup>     | < (0.02) | < (0.02) | 0.13     | 0.08     | 0.030    | 0.11     | -        | -        | -        | 0.033    | 0.017    | < (0.01) | < (0.02) | 0.03     | -        | 0.015    | -        | <        |
| Molybdenum (Mo) | 2.0              | 9,200                 | 16       | < (5)    | < (5)    | <        | <        | <b>v</b> | <        | <        | <        | <        | <        | < (5)    | < (5)    | < (5)    | <        | <        | <        | <        |
| Nickel (Ni)     | 2.0              | 490                   | 43       | < (5)    | < (5)    | <        | <        | <b>v</b> | <        | <        | <        | <        | <        | 5        | < (5)    | < (5)    | <        | <        | <        | <        |
| Phosphorus (P)  | 100              | -                     | 32,200   | 127      | <        | -        | <        | 200      | 140      | -        | <        | <        | 130      | 336      | <        | <        | <        | 200      | -        | 110      |
| Potassium (K)   | 100              | -                     | 9,180    | 595      | 212      | -        | 2,100    | 200      | 150      | 166      | 275      | 266      | 180      | 546      | 239      | 148      | 400      | 200      | 238      | 250      |
| Selenium (Se)   | 1.0              | 63                    | 1        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        |
| Silver (Ag)     | 0.1              | 1.5                   | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        |
| Sodium (Na)     | 100              | 2,300,000             | 11,800   | 4,090    | 4,750    | -        | 12,000   | 3,700    | 4,300    | 4,140    | 5,810    | 4,390    | 4,900    | 12,100   | 4,510    | 5,210    | 5,100    | 5,200    | 5,020    | 5,400    |
| Strontium (Sr)  | 2.0              | -                     | -        | -        | -        | -        | 13.4     | 6.9      | 7        | 6.9      | 12.3     | 10.2     | 9        | -        | -        | -        | 6        | 6        | 5        | 9.7      |
| Thallium (Tl)   | 0.1              | 510                   | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | <        | -        | -        | -        | <        | <        | <        | <        |
| Tin (Sn)        | 2.0              | -                     | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | 3.2      | -        | -        | -        | <        | <        | <        | <        |
| Titanium (Ti)   | 2.0              | -                     | -        | -        | -        | -        | 6.4      | 4.8      | 6        | 6.8      | 3.0      | 2.5      | <        | -        | -        | -        | <        | <        | 24       | <        |
| Uranium (U)     | 0.1              | 420                   | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | <        | -        | -        | -        | <        | <        | <        | <        |
| Vanadium (V)    | 2.0              | 250                   | 108      | < (5)    | < (5)    | <        | <        | <        | <        | <        | <        | <        | <        | 3        | < (5)    | < (5)    | <        | <        | <        | <        |
| Zinc (Zn)       | 5.0              | 1,100                 | 825      | 12       | 5        | 6        | 37.3     | 8.4      | 6        | 5.5      | 5.2      | 9.4      | 6.3      | 22       | 4        | 6        | 21.1     | <        | 19.5     | 7.2      |
| pH              | -                | 6.5 - 9.0             | 6.04     | 7.3      | 5.96     | 6.23     | 6.15     | 6.05     | 6.25     | 5.88     | 6.81     | -        | -        | 5.62     | 6.05     | 5.94     | 6.1      | 5.59     | 7.15     | -        |
| Hardness        | 1,000            | -                     | 268,000  | 7,880    | 9,080    | 8,370    | 19,000   | 7,000    | 8,000    | -        | 8,800    | -        | -        | 11,500   | 5,220    | 5,220    | 7,000    | 5,000    | -        | -        |

Notes:

Analysis completed by AMEC for all samples from 2007 to 2012 . Analysis of samples from 2013 and 2014 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

< = Parameter below detection limit < (0.0) = Parameter below elevated detection limit **0.0** = above criteria

RDL = Reportable Detection Limit

MW = Monitor Well - = Not analysed/No criteria

1. Typical Reportable Detection Limit referenced based on Maxxam laboratory analysis, but RDL may be lower than shown for original data.

2. Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

## HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Parameter       | RDL <sup>1</sup> | Criteria <sup>2</sup> |          |          |          |          |                       | MV       | V-03     |          |          |          |          |          |          |          |          |          |          | MW-04    |          |          |          |          |          |
|-----------------|------------------|-----------------------|----------|----------|----------|----------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                 |                  |                       | Feb 2007 | Nov 2007 | Nov 2007 | May 2008 | Mar 2009 <sup>1</sup> | Oct 2009 | Jan 2010 | Dec 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 | Feb 2007 | Nov 2007 | Jul 2008 | Jan 2009 | Oct 2009 | Jan 2010 | Dec 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 |
| Aluminum (Al)   | 5.0              | -                     | 5,450    | 129      | 145      | 45       | 146                   | 120      | 87.9     | 190      | 163      | 78.4     | 167      | 140      | 275,000  | 1,580    | 41       | 105      | 197      | 131      | 60       | 84.1     | 1,610    | 53.8     | 53       |
| Antimony (Sb)   | 1.0              | 20,000                | <        | <        | <        | <        | < (2)                 | < (2)    | < (2)    | <        | <        | <        | <        | <        | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        |
| Arsenic (As)    | 1.0              | 1,900                 | 3        | 1        | 1        | <        | 6                     | < (2)    | 7.8      | 4        | 7.4      | 6.6      | 9.9      | 1        | 15       | 2        | 13       | 8        | 11.1     | 3.1      | 2        | 2        | 3.2      | 2.3      | <        |
| Barium (Ba)     | 1.0              | 29,000                | 64.8     | 25.5     | 25.0     | 7.7      | 12                    | 29.3     | 13.4     | 6        | 9.8      | 10.2     | 12.1     | 4.9      | 356.0    | 14.7     | 34.8     | 92       | 20.4     | 25.8     | 12       | 14.9     | 51.1     | 11.7     | 6.1      |
| Beryllium (Be)  | 1.0              | 67                    | 1.6      | <        | 0.2      | 0.3      | < (2)                 | < (2)    | < (2)    | <        | <        | <        | <        | <        | 40.5     | 0.3      | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        |
| Bismuth (Bi)    | 2.0              | -                     | <        | <        | <        | <        | <                     | <        | <        | <        | <        | <        | <        | <        | <        | <        | 0.8      | <        | <        | <        | <        | <        | <        | <        | <        |
| Boron (B)       | 5.0              | 45,000                | -        | -        | -        | -        | -                     | 29.2     | 22.9     | 11       | < (50)   | < (50)   | <        | <        | -        | -        | -        | -        | 22.4     | 37.1     | 22       | < (50)   | < (50)   | <        | <        |
| Cadmium (Cd)    | 0.017            | 2.7                   | 0.109    | 0.067    | 0.221    | 0.102    | <                     | 0.049    | 0.018    | < (0.02) | 0.063    | <        | 0.03     | <        | 1.013    | 0.059    | 0.166    | <        | <        | <        | < (0.02) | <        | 0.101    | <        | 0.052    |
| Calcium (Ca)    | 100              | -                     | 15,800   | 11,300   | 10,500   | 5,060    | -                     | 15,000   | 13,000   | 7,000    | 8,780    | 10,800   | 11,900   | 7,300    | 34,600   | 17,500   | 32,500   | -        | 19,000   | 9,400    | 6,700    | 8,710    | 15,700   | 8,970    | 5,900    |
| Chromium (Cr)   | 1.0              | 810                   | 7.0      | <        | <        | <        | <                     | 1.7      | <        | <        | <        | <        | <        | <        | 37.0     | 1        | 1        | <        | 1.1      | <        | <        | <        | 2.9      | <        | <        |
| Cobalt (Co)     | 0.4              | 66                    | 12       | 5        | 5        | 9        | 6                     | 1.98     | 5.49     | 4.6      | 4.75     | 3.63     | 6.18     | 2.6      | 100      | 4        | 14       | 8.38     | 7.21     | 2.87     | 1.9      | 2.42     | 11.1     | 4.11     | 2.9      |
| Copper (Cu)     | 2.0              | 87                    | 3        | 4        | 4        | 4        | <                     | 5.0      | <        | <        | 3.5      | <        | 2.1      | <        | 137      | 6        | <        | 2        | 2.6      | <        | <        | <        | 5.3      | <        | 4.1      |
| Iron (Fe)       | 50               | -                     | 6,680    | 2,410    | 2230     | 312      | 1,400                 | 4,390    | 1,590    | 1,500    | 1,030    | 9,570    | 3,220    | 6,800    | 64,100   | 1,170    | 2,430    | 7,600    | 2,030    | 2,020    | 1,100    | 1,950    | 6,530    | 1,680    | 590      |
| Lead (Pb)       | 0.5              | 25                    | 19       | 4        | 4        | < (1)    | <                     | 1.11     | <        | <        | <        | <        | 0.97     | <        | 63       | 2        | 3        | 0.8      | <        | 1.14     | 0.6      | 0.68     | 2.44     | <        | <        |
| Magnesium (Mg)  | 100              | -                     | 4,000    | 2,470    | 2,410    | 1,140    | -                     | 3,200    | 3,600    | 1,600    | 2,160    | 1,610    | 2,910    | 690      | 7,680    | 5,380    | 10,100   | -        | 5,000    | 1,900    | 1,200    | 1,740    | 3,160    | 1,860    | 1,200    |
| Manganese (Mn)  | 2.0              | -                     | 2,040    | 1,010    | 964      | 171      | 3,800                 | 721      | 3,930    | 1,900    | 2,090    | 1,570    | 3020     | 550      | 8,950    | 2,370    | 6,740    | 2,500    | 4,510    | 925      | 370      | 549      | 1,300    | 465      | 190      |
| Mercury (Hg)    | 0.013            | 0.29 <sup>3</sup>     | 0.02     | < (0.02) | < (0.02) | 0.04     | 0.68                  | 0.037    | 0.46     | -        | -        | -        | 0.26     | 0.025    | < (0.01) | < (0.02) | < (0.02) | 0.01     | 0.18     | 0.083    | -        | -        | -        | 0.022    | 0.037    |
| Molybdenum (Mo) | 2.0              | 9,200                 | < (5)    | < (5)    | < (5)    | < (5)    | <                     | <        | <        | <        | <        | <        | <        | <        | 8        | < (5)    | < (5)    | <        | 2.4      | <        | <        | <        | <        | <        | <        |
| Nickel (Ni)     | 2.0              | 490                   | 5        | < (5)    | < (5)    | < (5)    | <                     | <        | <        | <        | 6        | <        | 2.8      | <        | 22       | < (5)    | < (5)    | 3        | <        | <        | <        | <        | 3.3      | <        | <        |
| Phosphorus (P)  | 100              | -                     | 1,090    | 312      | 199      | 20       | -                     | 200      | <        | 110      | -        | <        | <        | 130      | 11,100   | 93       | 28       | -        | <        | 100      | 130      | -        | 335      | 104      | 110      |
| Potassium (K)   | 100              | -                     | 6,560    | 3,630    | 3,540    | 633      | -                     | 4,800    | 2,400    | 1,100    | 1,350    | 1,730    | 1760     | 280      | 4,810    | 3,150    | 4,440    | -        | 3,600    | 2,900    | 1,500    | 2,130    | 2,900    | 1200     | 660      |
| Selenium (Se)   | 1.0              | 63                    | <        | <        | <        | <        | <                     | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        |
| Silver (Ag)     | 0.1              | 1.5                   | <        | <        | <        | <        | <                     | <        | <        | <        | <        | <        | <        | <        | 0.1      | <        | 0.7      | <        | <        | <        | <        | <        | <        | <        | <        |
| Sodium (Na)     | 100              | 2,300,000             | 189,000  | 102,000  | 103,000  | 24,500   | -                     | 96,000   | 73,000   | 32,000   | 32,300   | 37,000   | 36,200   | 7,200    | 60,700   | 91,200   | 149,000  | -        | 88,000   | 77,000   | 40,000   | 41,900   | 43,500   | 32,800   | 23,000   |
| Strontium (Sr)  | 2.0              | -                     | -        | -        | -        | -        | -                     | 56.2     | 38.0     | 21       | 22.9     | 50.5     | 38.2     | 27       | -        | -        | -        | -        | 51.9     | 34       | 24       | 29       | 89.7     | 29.1     | 21       |
| Thallium (Tl)   | 0.1              | 510                   | -        | -        | -        | -        | -                     | <        | <        | <        | <        | <        | <        | <        | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | <        |
| Tin (Sn)        | 2.0              | -                     | -        | -        | -        | -        | -                     | <        | <        | <        | <        | <        | <        | 5.3      | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | 8.6      |
| Titanium (Ti)   | 2.0              | -                     | -        | -        | -        | -        | -                     | 11.9     | 2.9      | 4        | 7.4      | 2.5      | 8.6      | 2.6      | -        | -        | -        | -        | 10.2     | 30.6     | 6        | 8.6      | 56.0     | 3.5      | <        |
| Uranium (U)     | 0.1              | 420                   | -        | -        | -        | -        | -                     | <        | 0.11     | <        | <        | <        | 0.13     | <        | -        | -        | -        | -        | <        | <        | <        | <        | 0.19     | <        | <        |
| Vanadium (V)    | 2.0              | 250                   | 9        | < (5)    | < (5)    | < (5)    | <                     | 2.4      | <        | <        | <        | <        | <        | <        | 43       | < (5)    | 5        | 4        | <        | 3        | <        | <        | 3.6      | <        | <        |
| Zinc (Zn)       | 5.0              | 1,100                 | 41       | 6        | 5        | 30       | <                     | 58.2     | 7.4      | 9        | 18.3     | <        | 9.1      | <        | 212      | 4        | 8        | 6        | 16.2     | <        | 7        | 7.7      | 19.3     | 7        | 23       |
| pH              | -                | 6.5 - 9.0             | 6.66     | 6.6      | 6.61     | 5.96     | 6.95                  | 6.94     | 6.57     | 7.27     | 6.93     | 7.11     | -        | -        | 6.01     | 6.53     | 6.69     | 6.84     | 6.8      | 6.75     | 7.45     | 6.68     | 7.08     | -        | -        |
| Hardness        | 1,000            | -                     | 56,000   | 38,400   | 38,401   | 17,400   | 70,700                | 51,000   | 48,000   | 24,000   | -        | 3,400    | -        | -        | 118      | 65,900   | 50,700   | 37,700   | 69,000   | 31,000   | 22,000   | -        | 52,000   | -        | -        |

#### Notes:

RDL = Reportable Detection Limit MW = Monitor Well - = Not analysed/No criteria

Analysis completed by AMEC for all samples from 2007 to 2012 . Analysis of samples from 2013 and 2014 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

< = Parameter below detection limit

< (0.0) = Parameter below elevated detection lim **0.0** = above criteria

1. Typical Reportable Detection Limit referenced based on Maxxam laboratory analysis, but RDL may be lower than shown for original data.

2. Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

## HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Parameter       | RDL <sup>1</sup> | Criteria <sup>2</sup> |          |          |          |          | MW-05    |          |          |          |          | MW-05A   |          |          |          |          |          | MV       | V-06     |          |          |          |          |          | MW-<br>DUP02 |
|-----------------|------------------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|
|                 |                  |                       | Feb 2007 | Nov 2007 | May 2008 | Jan 2009 | Oct 2009 | Jan 2010 | Dec 2010 | Dec 2011 | Aug 2013 | Nov 2014 | Feb 2007 | Nov 2007 | May 2008 | Jan 2009 | Oct 2009 | Jan 2010 | Dec 2010 | Dec 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 | Nov 2014     |
| Aluminum (Al)   | 5.0              | -                     | 57,100   | 7,880    | 288      | 209      | 168      | 95.7     | 200      | 133      | 191      | 91       | 8,540    | 485      | 179      | 44.1     | 112      | < (50)   | 160      | 180      | 176      | 247      | 1,910    | 180      | 160          |
| Antimony (Sb)   | 1.0              | 20,000                | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | <        | <        | <            |
| Arsenic (As)    | 1.0              | 1,900                 | 17       | 1        | <        | < (2)    | < (2)    | < (2)    | <        | <        | 1.6      | <        | 3        | <        | <        | < (2)    | < (2)    | < (20)   | 2        | 2        | 1.7      | 2.9      | 2.3      | 1.8      | 1.8          |
| Barium (Ba)     | 1.0              | 29,000                | 114.0    | 23.4     | 1.4      | < (5)    | < (5)    | < (5)    | 2        | 4        | 22.4     | 3.6      | 55.9     | 9.6      | 6.9      | 16       | 26.4     | < (50)   | 8        | 8        | 4.6      | 7.4      | 3.4      | 2.4      | 1.8          |
| Beryllium (Be)  | 1.0              | 67                    | 20.8     | 0.2      | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <        | 0.7      | <        | <        | < (2)    | < (2)    | < (20)   | <        | <        | <        | <        | <        | <        | <            |
| Bismuth (Bi)    | 2.0              | -                     | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | < (20)   | <        | <        | <        | <        | <        | <        | <            |
| Boron (B)       | 5.0              | 45,000                | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | -        | -        | -        | -        | 468      | 693      | 170      | 180      | 142      | 96       | <        | <        | <            |
| Cadmium (Cd)    | 0.017            | 2.7                   | 0.627    | 0.192    | 0.059    | 0.020    | 0.067    | <        | < (0.02) | 0.061    | 0.032    | 0.041    | 0.364    | 0.122    | 0.082    | 0.051    | 0.038    | <        | < (0.02) | < (0.02) | <        | <        | 0.2      | 0.014    | <            |
| Calcium (Ca)    | 100              | -                     | 14,300   | 2,330    | 1,310    | -        | 3,700    | 2,300    | 2,800    | 3,740    | 19,800   | 2,700    | 52,000   | 30,900   | 26,600   | -        | 79,000   | 150,000  | 28,000   | 28,000   | 22,400   | 14,800   | 1,170    | 13,000   | 14,000       |
| Chromium (Cr)   | 1.0              | 810                   | 15.0     | 5.0      | <        | <        | <        | <        | <        | <        | <        | 1.3      | 14.6     | <        | <        | <        | <        | < (10)   | <        | <        | <        | <        | 1.7      | <        | <            |
| Cobalt (Co)     | 0.4              | 66                    | 27       | 4        | < (1)    | 1.06     | 0.63     | <        | <        | 0.48     | 0.66     | 2.2      | 12       | 6        | 4        | 3.68     | 6.35     | < (4)    | 4.2      | 4        | 2.93     | 2.58     | 0.83     | 2.20     | 2.1          |
| Copper (Cu)     | 2.0              | 87                    | 237      | 39       | 7        | 7        | 16.0     | 2.8      | 3        | 9.2      | 4.1      | 9.7      | 42       | 5        | 7        | 7        | 5.5      | < (20)   | 2        | 2        | 2.7      | <        | 3.1      | 2.2      | <            |
| Iron (Fe)       | 50               | -                     | 12,390   | 2,940    | 124      | 120      | 105      | < (50)   | 79       | 65       | 3,640    | 890      | 10,276   | 513      | 178      | < (50)   | 637      | < (500)  | 3,100    | 3,200    | 2,870    | 8,380    | 3,330    | 8,000    | 8,600        |
| Lead (Pb)       | 0.5              | 25                    | 57       | 11       | < (1)    | 0.5      | <        | <        | <        | <        | 1.36     | 0.92     | 26       | < (1)    | < (1)    | <        | <        | < (5)    | <        | <        | <        | 1.19     | 1.82     | 1.80     | <            |
| Magnesium (Mg)  | 100              | -                     | 3,490    | 616      | 502      | -        | 1,300    | 800      | 790      | 825      | 1,090    | 860      | 11,400   | 5,840    | 5,210    | -        | 15,000   | 30,000   | 4,600    | 4,800    | 3,920    | 2,400    | 644      | 2,300    | 2,400        |
| Manganese (Mn)  | 2.0              | -                     | 487      | 77       | 15       | 35       | 26.3     | 11.8     | 20       | 10.7     | 283      | 580      | 1,830    | 905      | 520      | 890      | 1,060    | 889      | 380      | 400      | 355      | 480      | 32.4     | 400      | 410          |
| Mercury (Hg)    | 0.013            | 0.29 <sup>3</sup>     | < (0.01) | 0.06     | 1.44     | 0.85     | 0.013    | 0.078    | -        | -        | 0.17     | 0.042    | < (0.01) | < (0.02) | 0.04     | < (0.01) | 0.11     | 0.047    | -        | -        | -        | -        | 0.072    | 0.017    | 0.013        |
| Molybdenum (Mo) | 2.0              | 9,200                 | 3        | < (5)    | < (5)    | <        | 13.6     | <        | <        | <        | 8.2      | <        | < (5)    | < (5)    | < (5)    | <        | <        | < (20)   | <        | <        | <        | <        | <        | <        | <            |
| Nickel (Ni)     | 2.0              | 490                   | 20       | < (5)    | < (5)    | <        | <        | <        | <        | <        | 2.3      | 7.5      | 6        | < (5)    | < (5)    | <        | 2.3      | < (20)   | <        | <        | <        | 2.5      | <        | <        | <            |
| Phosphorus (P)  | 100              | -                     | 3,550    | 373      | 6        | -        | <        | 100      | <        | -        | <        | 150      | 1,340    | 60       | 30       | -        | 100      | <        | <        | 180      | -        | 182      | 123      | 450      | 410          |
| Potassium (K)   | 100              | -                     | 1,530    | 405      | 446      | -        | 900      | 100      | 210      | 524      | <        | 1900     | 20,100   | 9,220    | 10,200   | -        | 22,000   | 33,000   | 9,000    | 9,000    | 5,180    | 3,540    | 159      | 2,600    | 2500         |
| Selenium (Se)   | 1.0              | 63                    | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | < (10)   | <        | <        | <        | <        | <        | <        | <            |
| Silver (Ag)     | 0.1              | 1.5                   | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | <        | < (1)    | <        | <        | <        | <        | <        | <        | <            |
| Sodium (Na)     | 100              | 2,300,000             | 6,800    | 10,200   | 4,030    | -        | 8,200    | 4,900    | 5,400    | 5,200    | 9,050    | 14,000   | 53,400   | 27,600   | 21,800   | -        | 56,000   | 72,000   | 20,000   | 20,000   | 11,800   | 10,000   | 6,220    | 6,200    | 6,000        |
| Strontium (Sr)  | 2.0              | -                     | -        | -        | -        | -        | 10.2     | 7.8      | 8        | 8.1      | 136      | 12       | -        | -        | -        | -        | 228      | 392      | 70       | 71       | 56       | 51.9     | 8.7      | 34.0     | 35           |
| Thallium (Tl)   | 0.1              | 510                   | -        | -        | -        | -        | <        | <        | <        | <        | <        | <        | -        | -        | -        | -        | <        | < (1)    | <        | <        | <        | <        | <        | <        | <            |
| Tin (Sn)        | 2.0              | -                     | -        | -        | -        | -        | <        | <        | <        | <        | <        | 2.4      | -        | -        | -        | -        | <        | < (20)   | <        | <        | <        | <        | 3.7      | 2.5      | 2.5          |
| Titanium (Ti)   | 2.0              | -                     | -        | -        | -        | -        | 3.3      | <        | 4        | 2        | 5.8      | 5.3      | -        | -        | -        | -        | 7.0      | < (20)   | 6        | 6        | 5.6      | 7.8      | 46.9     | 7.3      | 5.7          |
| Uranium (U)     | 0.1              | 420                   | -        | -        | -        | -        | <        | <        | <        | <        | 0.52     | <        | -        | -        | -        | -        | <        | < (1)    | <        | <        | <        | <        | 0.22     | <        | <            |
| Vanadium (V)    | 2.0              | 250                   | 19       | 6        | < (5)    | <        | <        | <        | <        | <        | <        | <        | 10       | < (5)    | < (5)    | <        | <        | < (20)   | <        | <        | <        | <        | 2.6      | <        | <            |
| Zinc (Zn)       | 5.0              | 1,100                 | 163      | 25       | 6        | 10       | 20.2     | 5.2      | 12       | 28       | 19.6     | 49       | 52       | 10       | 14       | 8        | 46.5     | < (50)   | 15       | 14       | 8.9      | 6.1      | 17.3     | 9.1      | <            |
| pН              | -                | 6.5 - 9.0             | 6.09     | 6.1      | 6.3      | 6.09     | 6.18     | 5.92     | 6.7      | 6.34     | -        | -        | 6.13     | 6.11     | 6.31     | 6.42     | 6.36     | 6.82     | 7.1      | 7.02     | 6.98     | 6.96     | -        | -        | -            |
| Hardness        | 1,000            | -                     | 50,100   | 8,350    | 5,330    | 6,840    | 14,000   | 9,000    | 10,000   | -        | -        | -        | 177,000  | 101,000  | 87,900   | 94,450   | 260,000  | 510,000  | 88,000   | 91,000   | -        | 47,000   | -        | -        | -            |

#### Notes:

RDL = Reportable Detection Limit MW = Monitor Well - = Not analysed/No criteria

Analysis completed by AMEC for all samples from 2007 to 2012 . Analysis of samples from 2013 and 2014 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

< = Parameter below detection limit

< (0.0) = Parameter below elevated detection lim **0.0** = above criteria

1. Typical Reportable Detection Limit referenced based on Maxxam laboratory analysis, but RDL may be lower than shown for original data.

2. Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

## HISTORICAL GROUNDWATER ANALYTICAL DATA - METALS (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

|                 |                  |                       |          |          |          |          |          |           |          | MW-07    |           |          |          |          |                   |                    |          |          |          |          | MW-08    |          |                   |          |
|-----------------|------------------|-----------------------|----------|----------|----------|----------|----------|-----------|----------|----------|-----------|----------|----------|----------|-------------------|--------------------|----------|----------|----------|----------|----------|----------|-------------------|----------|
| Parameter       | RDL <sup>1</sup> | Criteria <sup>2</sup> | Feb 2007 | Nov 2007 | May 2008 | May 2008 | Ian 2009 | Ian 2009  | Oct 2009 | Jan 2010 | Dec 2010  | Dec 2011 | Dec 2011 | Nov 2012 | Aug 2013          | MW-DUP<br>Aug 2013 | Nov 2014 | Mar 2010 | Dec 2010 | Dec 2011 | Nov 2012 | Nov 2012 | Aug 2013          | Nov 2014 |
| Aluminum (Al)   | 5.0              |                       | 4,527    | 1,740    | 982      | 1,170    | 830      | 822       | 2,460    | 1,100    | 2,900     | 1.760    | 1,860    | 4,320    | Aug 2013<br>1,910 | Aug 2013           | 2,300    | 626      | 640      | 1,210    | 1,160    | 1,190    | Aug 2013<br>1,410 | 1,100    |
| Antimony (Sb)   | 5.0              | - 20,000              | 4,527    | 1,740    | 982      | 1,170    | < (2)    | < (2)     | < (2)    | < (2)    | 2,900     | 1,760    | 1,860    | 4,320    | 1,910             | 1,950              | 2,300    | < (2)    | 640      | 1,210    | 1,160    | 1,190    | 1,410             | < 1,100  |
|                 |                  | .,                    |          |          | 2        | 1        |          | · · · · · |          | ( )      | 1         |          | -        |          | -                 | -                  | -        |          |          |          |          |          |                   | -        |
| Arsenic (As)    | 1.0              | 1,900                 | 2        | <        | _        | 1        | < (2)    | < (2)     | < (2)    | < (2)    | 1         | <        | <        | 2.5      | 2.3               | 1.9                | 2.3      | < (2)    | <        | < 7.0    | 1.1      | 1.1      | 3.3               | <        |
| Barium (Ba)     | 1.0              | 29,000                | 18.7     | 4.8      | 2.4      | 2.8      | < (5)    | < (5)     | < (5)    | < (5)    | 5         | 3.5      | 3.4      | 9.1      | 3.4               | 4.1                | 13       | < (5)    | 6        | 7.2      | 7.0      | 7.1      | 5.1               | 5.7      |
| Beryllium (Be)  | 1.0              | 67                    | 0.4      | 0.1      | <        | <        | < (2)    | < (2)     | < (2)    | < (2)    | <         | <        | <        | <        | <                 | <                  | <        | < (2)    | <        | <        | <        | <        | <                 | <        |
| Bismuth (Bi)    | 2.0              | -                     | <        | <        | <        | <        | <        | <         | <        | <        | <         | <        | <        | <        | <                 | <                  | <        | <        | <        | <        | <        | <        | <                 | <        |
| Boron (B)       | 5.0              | 45,000                | -        | -        | -        | -        | -        | -         | < (10)   | <        | <         | < (50)   | < (50)   | < (50)   | <                 | <                  | <        | 6        | <        | < (50)   | < (50)   | < (50)   | <                 | <        |
| Cadmium (Cd)    | 0.017            | 2.7                   | 0.122    | 0.024    | 0.118    | 0.103    | 0.020    | 0.019     | 0.032    | <        | 0.03      | <        | <        | 0.068    | 0.2               | 0.023              | 0.17     | 0.018    | 0.02     | 0.022    | 0.043    | 0.040    | 0.036             | 0.0274   |
| Calcium (Ca)    | 100              | -                     | 3,690    | 1,040    | 791      | 758      | -        | -         | 1,200    | 500      | 2,000     | 1,130    | 1,080    | 2,040    | 1,170             | 1,170              | 6,000    | 800      | 810      | 840      | 729      | 711      | 593               | 1,400    |
| Chromium (Cr)   | 1.0              | 810                   | 4.0      | 1        | <        | 1        | <        | <         | 2.4      | <        | 2         | 1.4      | 1.3      | 4.5      | 1.7               | 1.7                | 6.1      | <        | <        | <        | <        | <        | <                 | 1.3      |
| Cobalt (Co)     | 0.4              | 66                    | 4        | 2        | < (1)    | 1        | 0.93     | 0.93      | 0.87     | 0.48     | 0.7       | 0.64     | 0.60     | 1.28     | 0.83              | 0.9                | 1.6      | 0.58     | 1.1      | 0.61     | 0.57     | 0.63     | 0.4               | <        |
| Copper (Cu)     | 2.0              | 87                    | 14       | 5        | 3        | 3        | <        | 3         | 4.0      | <        | 2         | 2.9      | 2.7      | 7.1      | 3.1               | 3.2                | 44       | 8.8      | 7        | 15.4     | 13.1     | 12.9     | 11.7              | 7.3      |
| Iron (Fe)       | 50               | -                     | 2,910    | 1,130    | 2,120    | 2,490    | 1,200    | 1,200     | 1,820    | 1,280    | 2,300     | 1,990    | 1,980    | 4,680    | 3,330             | 3,310              | 4,500    | 411      | 590      | 513      | 399      | 415      | 791               | 290      |
| Lead (Pb)       | 0.5              | 25                    | 3        | 1        | < (1)    | 1        | <        | <         | 2.26     | 0.63     | 1.9       | 1.64     | 1.66     | 5.02     | 1.82              | 1.78               | 4.9      | 1.2      | <        | 0.6      | <        | 0.52     | <                 | <        |
| Magnesium (Mg)  | 100              | -                     | 962      | 837      | 490      | 354      | -        | -         | 700      | 500      | 450       | 312      | 323      | 430      | 644               | 656                | 740      | 34.7     | 560      | 546      | 484      | 518      | 403               | 530      |
| Manganese (Mn)  | 2.0              | -                     | 67       | 19       | 38       | 45       | 23       | 22        | 28.9     | 18.7     | 36        | 30.3     | 29.2     | 78.2     | 32.4              | 33.4               | 110      | 200      | 41       | 30.9     | 24.8     | 27.7     | 12.7              | 18       |
| Mercury (Hg)    | 0.013            | 0.29 <sup>3</sup>     | < (0.01) | < (0.02) | 0.13     | 0.09     | 0.07     | 0.08      | 0.13     | 0.043    | -         | -        | -        | -        | 0.072             | 0.072              | 0.097    | <        | -        | -        | -        | -        | 0.048             | 0.013    |
| Molybdenum (Mo) | 2.0              | 9,200                 | < (5)    | < (5)    | < (5)    | < (5)    | <        | <         | <        | <        | <         | <        | <        | <        | <                 | <                  | <        | <        | <        | <        | <        | <        | <                 | <        |
| Nickel (Ni)     | 2.0              | 490                   | 7        | < (5)    | < (5)    | < (5)    | <        | <         | <        | <        | <         | <        | <        | 3.5      | <                 | 6.1                | 9.3      | 2.7      | 6        | 5        | 5.3      | 5.5      | 2.9               | <        |
| Phosphorus (P)  | 100              | -                     | 383      | 104      | 55       | 66       | -        | -         | 100      | 100      | < (1,000) | -        | -        | 146      | 123               | 143                | 420      | <        | <        | -        | <        | <        | <                 | 130      |
| Potassium (K)   | 100              | -                     | 463      | 221      | 170      | 290      | -        | -         | 300      | <        | < (1,000) | 180      | 190      | 320      | 159               | 251                | 5500     | 500      | 310      | 334      | 242      | 281      | 202               | 260      |
| Selenium (Se)   | 1.0              | 63                    | <        | <        | <        | <        | <        | <         | <        | <        | <         | <        | <        | <        | <                 | <                  | <        | <        | <        | <        | <        | <        | <                 | <        |
| Silver (Ag)     | 0.1              | 1.5                   | <        | <        | <        | <        | <        | <         | <        | <        | <         | <        | <        | <        | <                 | <                  | 0.13     | <        | <        | 0.2      | <        | <        | 0.13              | <        |
| Sodium (Na)     | 100              | 2,300,000             | 4,220    | 4,680    | 3,830    | 3,950    | -        | -         | 9,200    | 5,800    | 9, 300    | 8,270    | 8,090    | 21,700   | 6,220             | 6,210              | 27,000   | 5,400    | 4,400    | 4,340    | 5,000    | 5,210    | 3,700             | 4,900    |
| Strontium (Sr)  | 2.0              | -                     | -        | -        | -        | -        | -        | -         | 9.1      | < (5)    | 13        | 7.6      | 7.8      | 12.5     | 8.7               | 8.5                | 22       | < (5)    | 8        | 7.1      | 7.9      | 8.4      | 6.5               | 8.4      |
| Thallium (Tl)   | 0.1              | 510                   | -        | -        | -        | -        | -        | -         | <        | <        | <         | <        | <        | <        | <                 | <                  | <        | <        | <        | <        | <        | <        | <                 | <        |
| Tin (Sn)        | 2.0              | -                     | -        | -        | -        | -        | -        | -         | <        | <        | <         | <        | <        | <        | 3.7               | 3.3                | 4.4      | <        | <        | <        | <        | <        | <                 | <        |
| Titanium (Ti)   | 2.0              | -                     | -        | -        | -        | -        | -        | -         | 54.8     | 19.1     | 49        | 40.4     | 40.6     | 120      | 46.9              | 45                 | 89       | 7.8      | 8        | 18.2     | 18.2     | 15.9     | 21.9              | 15       |
| Uranium (U)     | 0.1              | 420                   | -        | -        | -        | -        | -        | -         | 0.14     | <        | 0.2       | 0.17     | 0.18     | 0.82     | 0.22              | 0.21               | 0.59     | 0.1      | <        | 0.1      | <        | <        | <                 | <        |
| Vanadium (V)    | 2.0              | 250                   | 6        | < (5)    | < (5)    | < (5)    | <        | <         | 2.6      | <        | <         | <        | <        | 6.9      | 2.6               | 2.3                | 5.5      | <        | <        | <        | <        | <        | <                 | <        |
| Zinc (Zn)       | 5.0              | 1,100                 | 15       | 9        | 8        | 19       | 11       | 15        | 24       | 8.6      | 17        | 8.3      | 10.8     | 26.6     | 17.3              | 14.8               | 140      | 16.5     | 30       | 20.2     | 28.2     | 28.6     | 19.2              | 19       |
| pH              | -                | 6.5 - 9.0             | 4.92     | 5.01     | 5.2      | 5.45     | 4.65     | 4.47      | 4.71     | 4.86     | 6.05      | 5.59     | 5.59     | 5.74     | -                 | -                  | -        | 5.21     | 5.21     | 5.74     | 5.15     | 5.16     | -                 | -        |
| Hardness        | 1,000            | -                     | 13,200   | 5,890    | 3,990    | 3,870    | 5,740    | 5,500     | 6,000    | 3,000    | 7,000     | -        | -        | 6,900    | -                 | -                  | -        | 4,000    | 4,000    | -        | 3,800    | 3,900    | -                 | -        |

#### Notes:

RDL = Reportable Detection Limit MW = Monitor Well - = Not analysed/No criteria

Analysis completed by AMEC for all samples from 2007 to 2012 . Analysis of samples from 2013 and 2014 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

< = Parameter below detection limit

1. Typical Reportable Detection Limit referenced based on Maxxam laboratory analysis, but RDL may be lower than shown for original data. 2. Ontario Ministry of the Environment (MOE) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", April 15, 2011, Table 3: Full Depth Generic Site

Condition Standards in a Non-Potable Ground Water Condition

< (0.0) = Parameter below elevated detection lim

**0.0** = above criteria

#### HISTORICAL SURFACE WATER ANALYTICAL DATA - PCBs (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Sample          |          |          |          |          |          | Sample Date |          |          |          |          |          | Criteria* |
|-----------------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|-----------|
| Location        | Feb 2007 | Nov 2007 | May 2008 | Mar 2009 | Sep 2009 | Jan 2010    | Nov 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 |           |
| SW-POND         | -        | <        | <        | <        | <        | <           | <        | < (0.06) | <        | <        | <        |           |
| SW-POND-1       | -        | -        | -        | -        | <        | -           | -        | < (0.06) | -        | -        | -        |           |
| SW-<br>UPSTREAM | -        | -        | -        | -        | -        | -           | -        | -        | -        | -        | <        | na        |
| SW-STREAM       | -        | <        | <        | <        | <        | < (0.06)    | <        | <        | <        | <        | <        |           |
| RDL             | 0.04     | 0.04     | 0.04     | 0.04     | 0.05     | 0.05        | 0.05     | 0.05     | 0.05     | 0.05     | 0.05     |           |

Analysis completed by AMEC for all samples from 2007 to 2012.

Analysis for 2013 samples were completed by Maxxam Analytics Inc. in Bedford, NS.

Data from February 2007 to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC and dated March 29, 2013.

\* Criteria does not exist

SW = Surface Water SW-POND-1 = Field Duplicate of SW-POND. < = Parameter below detection limit < (0.00) = Parameter below elevated detection limit - = No sample collected RDL = Reportable Detection Limit

#### HISTORICAL SURFACE WATER ANALYTICAL DATA - METALS (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Aluminum (A)         5.0 $100^{10^{10}}$ 190         76         45.9         180         635         75.6         74.7         202         262         49.7           Antimony (B)         1.0         -         <         <         <(2)         <(2)         <         <         <         < </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>OND</th> <th>SW-P</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |          |          |           |          | OND      | SW-P     |          |          |          |          |          |                      |       |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------------------|-------|-----------------|
| Aluminum (A)         5.0         100"         190         76         45.9         180         635         75.6         74.7         202         262         49.7           Antimony (5b)         1.0         -         <         <         <(2)         <(2)         <         <         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |          |          | SW-POND-1 |          | SW-DUP1  |          |          |          |          |          |          | Criteria**           | RDL * | Parameter       |
| Antimor (Sb)1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .3 Nov 2014 | Aug 2013 | Nov 2012 | Dec 2011  | Dec 2011 | Nov 2010 | Nov 2010 | Jan 2010 | Sep 2009 | Jan 2009 | May 2008 | Nov 2007 |                      |       |                 |
| Arsenic (As)1.05.0<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< <td>96</td> <td>21.3</td> <td>49.7</td> <td>262</td> <td>202</td> <td>74.7</td> <td>75.6</td> <td>635</td> <td>180</td> <td>45.9</td> <td>76</td> <td>190</td> <td>100(1)</td> <td>5.0</td> <td>Aluminum (Al)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96          | 21.3     | 49.7     | 262       | 202      | 74.7     | 75.6     | 635      | 180      | 45.9     | 76       | 190      | 100(1)               | 5.0   | Aluminum (Al)   |
| Barium (B)1.0-24.87.9312632.02525.229.130.123.8Beryllim (Be)1.0-<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <           | <        | <        | <         | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | -                    | 1.0   | Antimony (Sb)   |
| Beryllium (Be)1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <           | <        | <        | <         | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | 5.0                  | 1.0   | Arsenic (As)    |
| Bismuth (B)         2.0         .         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <           | 14       | 23.8     | 30.1      | 29.1     | 25.2     | 25       | 32.0     | 26       | 31       | 7.9      | 24.8     | -                    | 1.0   | Barium (Ba)     |
| Born (B)         5.0         -         -         -         230         369         332         329         356         362         263           Cadmium (Cd)         0.017         0.009 <sup>(r)</sup> 0.064         0.067         0.035         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <           | <        | <        | <         | <        | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | -                    | 1.0   | Beryllium (Be)  |
| Cadmium (Cd)         0.017         0.009 <sup>(2)</sup> 0.064         0.067         0.035          0.022         0.019         0.063         0.025         0.022         0.019         0.063         0.026         0.020         0.019         0.063         0.026         0.020         0.019         0.063         0.026         0.020         0.019         0.063         0.026         0.019         0.063         0.026         0.019         0.063         0.026         0.019         0.063         0.026         0.019         0.063         0.026         0.019         0.063         0.026         0.019         0.063         0.026         0.020         0.017         0.010         0.050         0.026         0.021         0.017         77.400         99,000         97,500         96,000         6           Cobel (Co)         0.4         -         6         2         6.21         4         4.83         2.2         2.13         2.89         3.50         2.18           Copper (Cu)         2.0         2.0         30.0         377         318         150         480         1.170         211         24         252         652         405           Lead (Pb)         0.050         1.970                                                                                                                                                                                                                    | <           | <        | <        | <         | <        | <        | <        | <        | <        | <        | <        | <        | -                    | 2.0   | Bismuth (Bi)    |
| Calcium (Ca)         100         -         51,500         30,600         -         55,000         77,100         77,100         97,000         97,500         96,000         6           Chromium (Cr)         1.0         8.9 <sup>10</sup> <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100         | 232      | 263      | 362       | 356      | 329      | 332      | 369      | 230      | -        | -        | -        |                      | 5.0   | Boron (B)       |
| Chromium (Cr)       1.0 $8.9^{(9)}$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.016       | <        | 0.028    | 0.065     | 0.063    | 0.019    | 0.022    | 0.053    | <        | 0.035    | 0.067    | 0.064    | 0.009 <sup>(2)</sup> | 0.017 | Cadmium (Cd)    |
| Cobalt (Co)         0.4         -         6         2         6.21         4         4.83         2.2         2.13         2.98         3.50         2.18           Copper (Cu)         2.0         2 <sup>19</sup> 10         3         6         6         8.9         7.9         5.1         6.4         6.7         2.4           Iron (Fe)         50         300         377         318         150         480         1,170         241         244         523         662         405           Lead (Pb)         0.50         1 <sup>191</sup> 2         1         <         0.6         2.56         <         <         0.89         1.18         <         1           Magnesium (Mg)         100         -         6.970         5.520         -         6.100         7,800         6.200         6.190         9,100         1.850         1.330         2.400         1,200         1,760         1,170         1,670         1,750         1310           Margnesium (Mg)         0.013         0.026         <(0.02)         <(0.01)         -         <<         <         <         <         <            <         <                                                                                                                                                                                                                                                                                                   | 39,000      | 67,200   | 96,000   | 97,500    | 99,000   | 77,400   | 77,100   | 70,000   | 55,000   | -        | 30,600   | 51,500   | -                    | 100   | Calcium (Ca)    |
| Copper (Cu)         2.0         2 <sup>(4)</sup> 10         3         6         6         8.9         7.9         5.1         6.4         6.7         2.4           Iron (Fe)         50         300         377         318         150         480         1,170         241         244         523         682         405         1           Lead (Pb)         0.50         1 <sup>191</sup> 2         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <           | <        | <        | <         | <        | <        | <        | 1.7      | <        | <        | <        | <        | 8.9 <sup>(3)</sup>   | 1.0   | Chromium (Cr)   |
| Irror (Eq.)         Dia         Dia <thdia< th="">         Dia         <thdia< th=""> <thdi< td=""><td>0.54</td><td>&lt;</td><td>2.18</td><td>3.50</td><td>2.98</td><td>2.13</td><td>2.2</td><td>4.83</td><td>4</td><td>6.21</td><td>2</td><td>6</td><td></td><td>0.4</td><td>Cobalt (Co)</td></thdi<></thdia<></thdia<> | 0.54        | <        | 2.18     | 3.50      | 2.98     | 2.13     | 2.2      | 4.83     | 4        | 6.21     | 2        | 6        |                      | 0.4   | Cobalt (Co)     |
| Lead (Pb)       0.50       1 <sup>19</sup> 2       1       <       0.6       2.56       <       <       0.89       1.18       <          Magnesium (Mg)       100       -       6.970       5,520       -       6.100       7,800       6,200       6.190       9,100       8,890       8,220       5         Magnese (Mn)       2.0       -       1,850       1,350       2,400       1,200       1,760       1,170       1,670       1,750       1310       0.026       <(0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6         | <        | 2.4      | 6.7       | 6.4      | 5.1      | 7.9      | 8.9      | 6        | 6        | 3        | 10       | 2 <sup>(4)</sup>     | 2.0   | Copper (Cu)     |
| Magnesium (Mg)       100       -       6.970       5.520       -       6.100       7.800       6.200       6.100       9.100       8.890       8.220       5         Magnesium (Mg)       2.0       -       1.850       1.350       2.400       1.200       1.760       1.170       1.170       1.670       1.750       1.310         Mercury (Hg)       0.013       0.026       <(0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 320         | 116      | 405      | 682       | 523      | 244      | 241      | 1,170    | 480      | 150      | 318      | 377      |                      | 50    | Iron (Fe)       |
| Marganese (Mn)         2.0         -         1,850         1,350         2,400         1,200         1,760         1,170         1,670         1,750         1310           Mercury (Hg)         0.013         0.026         <(0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <           | <        | <        | 1.18      | 0.89     | <        | <        | 2.56     | 0.6      | <        | 1        | 2        | 1 <sup>(5)</sup>     | 0.50  | Lead (Pb)       |
| Mercury (Hg)         0.013         0.026         < (0.02)         < (0.01)         -         <         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                               | 3,100       | 5,750    | 8,220    | 8,890     | 9,100    | 6,190    | 6,200    | 7,800    | 6,100    | -        | 5,520    | 6,970    | -                    | 100   | Magnesium (Mg)  |
| Molybdenum (Mo)       2.0       73.00       < (5)       < (5)       <                                                                                                                             <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 450         | 135      | 1310     | 1,750     | 1,670    | 1,170    | 1,170    | 1,760    | 1,200    | 2,400    | 1,350    | 1,850    | -                    | 2.0   | Manganese (Mn)  |
| Nickel (Ni)       2.0       25 <sup>(b)</sup> < (5) <th< th=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <           | <        | -        | -         | -        | -        | -        | <        | -        | < (0.01) | < (0.02) | < (0.02) | 0.026                | 0.013 | Mercury (Hg)    |
| Phosphorus (P)       100       -       51       24       -       -       <       <       120        20            Phosphorus (P)       100       -       51       24       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <           | <        | <        | <         | <        | <        | <        | <        | <        | <        | < (5)    | < (5)    |                      | 2.0   | Molybdenum (Mo) |
| Potassium (K)       100       -       16,900       12,900       -       1,200       15,000       13,600       14,000       12,900       12,700       10,600       7         Selenium (Se)       1.0       1.0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2           | <        | <        | 23        | 2.2      | <        | 2        | 3.5      | <        | 3        | < (5)    | < (5)    | 25 <sup>(6)</sup>    | 2.0   | Nickel (Ni)     |
| Selenium (Se)         1.0         1.0         <         <         <         <         <         < <th<< td=""><td>110</td><td>&lt;</td><td>&lt;</td><td>&lt;</td><td>&lt;</td><td>120</td><td>&lt;</td><td>&lt;</td><td>-</td><td>-</td><td>24</td><td>51</td><td>-</td><td>100</td><td>Phosphorus (P)</td></th<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110         | <        | <        | <         | <        | 120      | <        | <        | -        | -        | 24       | 51       | -                    | 100   | Phosphorus (P)  |
| Silver (Ag)       0.1       0.1       <       <       <       <       <       <       <       <       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,700       | 7,600    | 10,600   | 12,700    | 12,900   | 14,000   | 13,600   | 15,000   | 1,200    | -        | 12,900   | 16,900   | -                    | 100   | Potassium (K)   |
| Sodium (Na)         100         -         145,000         129,000         -         78,000         98,000         63,600         65,300         48,700         47,800         44,500         3           Strontium (Sr)         2.0         -         -         -         180         198         187         193         261         256         243         243           Thallium (TI)         0.1         0.8         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <           | <        | <        | <         | <        | <        | 1.2      | <        | <        | <        | <        | <        | 1.0                  | 1.0   | Selenium (Se)   |
| Strontium (Sr)         2.0         -         -         180         198         187         193         261         256         243           Thallium (TI)         0.1         0.8         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <           | <        | <        | <         | <        | <        | <        | <        | <        | <        | <        | <        | 0.1                  | 0.1   | Silver (Ag)     |
| Thallium (TI)       0.1       0.8       -       -       <       <       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16,000      | 35,300   | 44,500   | 47,800    | 48,700   | 65,300   | 63,600   | 98,000   | 78,000   | -        | 129,000  | 145,000  | -                    | 100   | Sodium (Na)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94          | 180      | 243      | 256       | 261      | 193      | 187      | 198      | 180      | -        | -        | -        | -                    | 2.0   | Strontium (Sr)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <           | <        | <        | <         | <        | <        | <        | <        | <        | -        | -        | -        | 0.8                  |       | Thallium (Tl)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <           | <        | <        | <         | <        | <        | <        | <        | <        | -        | -        | -        | -                    | 2.0   | Tin (Sn)        |
| Titanium (Ti)       2.0       -       -       16       31.7       10.4       10.1       26.3       33.8       7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.4         | <        | 7.9      | 33.8      | 26.3     | 10.1     | 10.4     | 31.7     | 16       | -        | -        | -        | -                    | 2.0   | Titanium (Ti)   |
| Uranium (U) 0.10 < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <           | <        | <        | <         | <        | <        | <        | <        | <        | -        | -        | -        | -                    | 0.10  | Uranium (U)     |
| Vanadium (V)         2.0         -         < (5)         <         <         <         <         <         <         < <th< th=""> <t< td=""><td>&lt;</td><td>&lt;</td><td></td><td></td><td>&lt;</td><td>&lt;</td><td>&lt;</td><td>&lt;</td><td>&lt;</td><td>&lt;</td><td>&lt; (5)</td><td>&lt; (5)</td><td></td><td></td><td>· · ·</td></t<></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <           | <        |          |           | <        | <        | <        | <        | <        | <        | < (5)    | < (5)    |                      |       | · · ·           |
| Zinc (Zn)       5.0       30       12       9       17       18       24.3       11.8       11.4       21.4       23.1       12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2         | <        | 12.2     | 23.1      | 21.4     | 11.4     | 11.8     | 24.3     | 18       | 17       | 9        | 12       | 30                   | 5.0   | Zinc (Zn)       |
| pH - 6.5 - 9.0 7.38 6.92 7.45 7.13 7.13 7.79 7.87 7.66 7.65 7.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.53        | 7.31     | 7.87     | 7.65      | 7.66     | 7.87     | 7.79     | 7.13     | 7.13     | 7.45     | 6.92     | 7.38     | 6.5 - 9.0            | -     | pH              |
| Hardness       1,000       -       157,000       99,100       190,000       160,000       210,000       220,000       220,000       280,000       280,000       270,000       220,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) 110       | 230,000  | 270,000  | 280,000   | 280,000  | 220,000  | 220,000  | 210,000  | 160,000  | 190,000  | 99,100   | 157,000  | -                    | 1,000 | Hardness        |

#### Notes:

RDL = Reportable Detection Limit

SW = Surface Water

- = Not analysed/No criteria

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit

< (0.0) = Parameter below elevated detection limit 0.0 = above criteria

(1) Aluminum guideline = 5 ug/L at pH < 6.5 = 100 ug/L at pH  $\ge$  6.5

(2) Cadmium guideline =  $10^{\{0.83[\log(hardness)]-2.46\}}$ 

(3) Criteria for Chromium (III) = 8.9 ug/L

Analysis completed by AMEC for all samples from 2007 to 2012 .

Analysis of samples from 2013 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

\* Typical Reportable Detection Limit reference based on Maxxam laboratory analysis, but RDL may be lower than shown for original data. \*\* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

(4) Copper guideline = 2 ug/L at [CaCO<sub>3</sub>] = 0-120 mg/L = 3 ug/L at [CaCO<sub>3</sub>] = 120-180 mg/L
= 4 ug/L at [CaCO<sub>3</sub>] >180 mg/L
(5) Lead guideline = 1 ug/L at [CaCO<sub>3</sub>] = 0-60 mg/L
= 2 ug/L at [CaCO<sub>3</sub>] = 60-120 mg/L
= 4 ug/L at [CaCO<sub>3</sub>] = 120-180 mg/L
= 7 ug/L at [CaCO<sub>3</sub>] >180 mg/L (6) Nickel guideline = 25 ug/L at [CaCO<sub>3</sub>] = 0-60 mg/L = 65 ug/L at [CaCO<sub>3</sub>] = 60-120 mg/L = 110 ug/L at [CaCO<sub>3</sub>] = 120-180 mg/L

= 150 ug/L at [CaCO<sub>3</sub>] >180 mg/L

#### HISTORICAL SURFACE WATER ANALYTICAL DATA - METALS (ug/L) 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Parameter       | RDL * | Criteria**           |          |          |          |          | SW-ST    | REAM     |          |          |              |              | SW-<br>UPSTREAM |
|-----------------|-------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------|-----------------|
|                 |       |                      | Nov 2007 | May 2008 | Jan 2009 | Sep 2009 | Jan 2010 | Nov 2010 | Dec 2011 | Nov 2012 | Aug 29, 2013 | Nov 27, 2014 | Nov 2014        |
| Aluminum (Al)   | 5.0   | 100(1)               | 89       | 132      | 60.7     | 83       | 88.3     | 125      | 155      | 51.7     | 26.7         | 790          | 240             |
| Antimony (Sb)   | 1.0   | -                    | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <            | <            | <               |
| Arsenic (As)    | 1.0   | 5.0                  | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <            | <            | <               |
| Barium (Ba)     | 1.0   | -                    | 12.7     | 21.2     | 15       | 6        | 17.6     | 15.8     | 10.8     | 5.6      | 4.1          | 4.9          | 1.9             |
| Beryllium (Be)  | 1.0   | -                    | <        | <        | < (2)    | < (2)    | < (2)    | <        | <        | <        | <            | <            | <               |
| Bismuth (Bi)    | 2.0   | -                    | <        | <        | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Boron (B)       | 5.0   | -                    | -        | -        | -        | 140      | 224      | 171      | 203      | 151      | 171          | <            | <               |
| Cadmium (Cd)    | 0.017 | 0.009 <sup>(2)</sup> | <        | 0.099    | 0.018    | <        | <        | 0.020    | <        | <        | <            | 0.035        | <               |
| Calcium (Ca)    | 100   | -                    | 31,100   | 46,700   | -        | 20,000   | 45,000   | 41,200   | 43,200   | 36,200   | 36,500       | 5,000        | 1,000           |
| Chromium (Cr)   | 1.0   | 8.9 <sup>(3)</sup>   | <        | <        | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Cobalt (Co)     | 0.4   | -                    | 3        | 3        | 1.77     | 1        | 2.55     | 2.48     | 1.10     | 0.52     | 0.75         | 0.56         | <               |
| Copper (Cu)     | 2.0   | 2 <sup>(4)</sup>     | 2        | 6        | 3        | <        | 3.4      | 2.5      | 2.3      | <        | <            | <            | <               |
| Iron (Fe)       | 50    | 300                  | 167      | 411      | 100      | 190      | 180      | 235      | 265      | 98       | 63           | 860          | 220             |
| Lead (Pb)       | 0.50  | 1(5)                 | 1        | 1        | <        | <        | 0.51     | <        | <        | <        | <            | 1.6          | <               |
| Magnesium (Mg)  | 100   | -                    | 5,590    | 6,620    | -        | 3,100    | 6,900    | 5,020    | 5,720    | 4,800    | 4,530        | 1,300        | 550             |
| Manganese (Mn)  | 2.0   | -                    | 2,560    | 1,180    | 850      | 530      | 1,170    | 1,590    | 331      | 142      | 145          | 230          | 12              |
| Mercury (Hg)    | 0.013 | 0.026                | < (0.02) | < (0.02) | 0.01     | -        | 0.018    | -        | -        | -        | <            | 0.022        | <               |
| Molybdenum (Mo) | 2.0   | 73.00                | < (5)    | < (5)    | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Nickel (Ni)     | 2.0   | 25 <sup>(6)</sup>    | < (5)    | < (5)    | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Phosphorus (P)  | 100   | -                    | 23       | 42       | -        | -        | <        | <        | <        | <        | <            | 220          | <               |
| Potassium (K)   | 100   | -                    | 13,900   | 12,900   | -        | 8,100    | 14,000   | 11,800   | 9,530    | 7,520    | 7,970        | 1,100        | 220             |
| Selenium (Se)   | 1.0   | 1.0                  | <        | <        | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Silver (Ag)     | 0.1   | 0.1                  | <        | <        | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Sodium (Na)     | 100   | -                    | 152,000  | 94,000   | -        | 61,000   | 96,000   | 71,200   | 42,600   | 34,500   | 40,100       | 11,000       | 4,900           |
| Strontium (Sr)  | 2.0   | -                    | -        | -        | -        | 62       | 122      | 102      | 116      | 94.1     | 103          | 19           | 5.3             |
| Thallium (Tl)   | 0.1   | 0.8                  | -        | -        | -        | <        | <        | <        | <        | <        | <            | <            | <               |
| Tin (Sn)        | 2.0   | -                    | -        | -        | -        | <        | <        | <        | <        | <        | <            | <            | <               |
| Titanium (Ti)   | 2.0   | -                    | -        | -        | -        | 5        | 11.0     | 10.9     | 16.2     | 4.7      | <            | 45           | 5               |
| Uranium (U)     | 0.10  | -                    | -        | -        | -        | <        | <        | <        | <        | <        | <            | <            | <               |
| Vanadium (V)    | 2.0   | -                    | < (5)    | < (5)    | <        | <        | <        | <        | <        | <        | <            | <            | <               |
| Zinc (Zn)       | 5.0   | 30                   | 4        | 25       | 6        | 14       | 8.7      | 8        | 6.2      | <        | <            | 9            | <               |
| рН              | -     | 6.5 - 9.0            | 6.92     | 7.43     | 7.16     | 6.93     | 6.32     | 7.12     | 7.21     | 7.55     | 7.13         | 5.89         | 6.16            |
| Hardness        | 1,000 | -                    | 101,000  | 144,000  | 155,000  | 64,000   | 140,000  | 120,000  | 130,000  | 110,000  | 110,000      | 18           | 4.8             |

Notes:

RDL = Reportable Detection Limit

SW = Surface Water

- = Not analysed/No criteria

RDL = Reportable Detection Limit

- = Not analysed/No criteria

< = Parameter below detection limit

< (0.0) = Parameter below elevated detection limit 0.0 = above criteria (1) Aluminum guideline = 5 ug/L at pH < 6.5

= 100 ug/L at pH  $\ge$  6.5

(2) Cadmium guideline =  $10^{\{0.83\{\log(hardness)\}-2.46\}}$ 

(3) Criteria for Chromium (III) = 8.9 ug/L

Analysis completed by AMEC for all samples from 2007 to 2012.

Analysis of samples from 2013 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

\* Typical Reportable Detection Limit reference based on Maxxam laboratory analysis, but RDL may be lower than shown for original data. \*\* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

(4) Copper guideline = 2 ug/L at  $[CaCO_3] = 0.120 \text{ mg/L}$ = 3 ug/L at [CaCO<sub>3</sub>] = 120-180 mg/L = 4 ug/L at [CaCO<sub>3</sub>] >180 mg/L (5) Lead guideline = 1 ug/L at  $[CaCO_3] = 0.60 \text{ mg/L}$  $= 2 \text{ ug/L} \text{ at } [CaCO_3] = 60-120 \text{ mg/L}$ 

= 4 ug/L at [CaCO<sub>3</sub>] = 120-180 mg/L

= 7 ug/L at [CaCO<sub>3</sub>] >180 mg/L

(6) Nickel guideline = 25 ug/L at  $[CaCO_3] = 0.60 \text{ mg/L}$  $= 65 \text{ ug/L} \text{ at } [CaCO_3] = 60-120 \text{ mg/L}$ 

= 110 ug/L at [CaCO<sub>3</sub>] = 120-180 mg/L

= 150 ug/L at [CaCO<sub>3</sub>] >180 mg/L

### HISTORICAL SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

|                                     |        |       |            |          |          |          |          |          |           | SW-POND  | 1        |          |           |          |          |          |
|-------------------------------------|--------|-------|------------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|-----------|----------|----------|----------|
| Parameter                           | RDL *  | Units | Criteria** |          |          |          |          |          |           |          | SW-DUP1  |          | SW-POND-1 |          |          |          |
|                                     |        |       |            | Feb 2007 | Nov 2007 | May 2008 | Mar 2009 | Sep 2009 | Jan 2010  | Nov 2010 | Nov 2010 | Dec 2011 | Dec 2011  | Nov 2012 | Aug 2013 | Nov 2014 |
| Anion Sum                           | N/A    | me/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 5.75     | 3.11     |
| Bicarb. Alkalinity (calc. as CaCO3) | 1,000  | µg/L  | -          | -        | -        | -        | -        | -        | _         | -        | -        | -        | -         | -        | 160,000  | 95,000   |
| Calculated TDS                      | 1,000  | µg/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 380,000  | 180,000  |
| Carb. Alkalinity (calc. as CaCO3)   | 1,000  | µg/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | <        | <        |
| Cation Sum                          | N/A    | me/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 7.29     | 3.07     |
| Colour                              | 5      | TCU   | -          | -        | 98       | 77       | 34       | 110      | 75        | 68       | 76       | 72       | 64        | 22       | 13       | 38       |
| Conductivity                        | 1      | μS/cm | -          | -        | 1,190    | 927      | 1,010    | 1,100    | 1,100     | 720      | 720      | 850      | 850       | 770      | 560      | 290      |
| Dissolved Chloride (Cl)             | 1,000  | µg/L  | -          | -        | 165,000  | 195,000  | 104,000  | 110,000  | 110,000   | 63,000   | 63,000   | 46,000   | 46,000    | -        | 24,000   | 18,000   |
| DOC                                 | 500    | µg/L  |            | -        | 22,900   | 19,600   | 12,500   | -        | _         | -        | -        | -        | -         | -        | -        | -        |
| Dissolved Sulphate (SO4)            | 2,000  | µg/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 73,000   | 27,000   |
| Hardness (CaCO3)                    | 1,000  | µg/L  | -          | -        | 157,000  | 99,100   | 190,000  | 160,000  | 210,000   | 220,000  | 220,000  | 280,000  | 280,000   | 270,000  | 230,000  | 110,000  |
| Ion Balance (% Difference)          | N/A    | %     | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 11.8     | 0.065    |
| Langelier Index (@ 20C)             | N/A    | N/A   | -          | -        | -        | -        | -        | -        | _         | -        | -        | -        | -         | -        | -0.018   | -0.284   |
| Langelier Index (@ 4C)              | N/A    | N/A   | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | -0.266   | -0.534   |
| Nitrate as N                        | 50     | µg/L  | 13,000     | -        | 8,650    | 8,480    | 8,360    | 5,200    | 7,700     | 6,900    | 6,900    | 4,600    | 4,700     | 3,600    | -        | 1,700    |
| Nitrite as N                        | 15     | µg/L  | 60         | -        | 84       | 369      | 69       | 220      | 120       | 190      | 190      | 100      | 90        | 68       | -        | 31       |
| Nitrate + Nitrite                   | 50     | µg/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 4,100    | 1,700    |
| Nitrogen (Ammonia Nitrogen)         | 50     | µg/L  | -          | -        | 33,000   | 641      | 30,000   | 13,000   | 24,000    | 12,000   | 13,000   | 9,000    | 11,000    | -        | 4,000    | 1,300    |
| Orthophosphate (P)                  | 10     | µg/L  | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | <        | <        |
| pH                                  | N/A    | pН    | 6.5 - 9    | -        | 7.38     | 6.92     | 7.45     | 7.13     | 7.35      | 7.79     | 7.87     | 7.66     | 7.65      | 7.87     | 7.31     | 7.53     |
| Reactive Silica (SiO2)              | 0.5    | µg/L  | -          | -        | -        | -        | -        | 6,100    | 6,600     | 6,800    | 6,900    | 6,200    | 6,300     | 7,700    | 5,700    | 5,000    |
| Saturation pH (@ 20C)               | N/A    | N/A   | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 7.33     | 7.81     |
| Saturation pH (@ 4C)                | N/A    | N/A   | -          | -        | -        | -        | -        | -        | -         | -        | -        | -        | -         | -        | 7.58     | 8.06     |
| Sulphate                            | 10,000 | µg/L  |            | -        | 85,300   | 68,100   | 121,000  | 97,000   | 160,000   | 160,000  | 160,000  | 190,000  | 190,000   | -        | -        | -        |
| Total Alkalinity (Total as CaCO3)   | 30,000 | µg/L  | -          | -        | 214,000  | 76,600   | 167,000  | 150,000  | 190,000   | 130,000  | 130,000  | 130,000  | 140,000   | 180,000  | 160,000  | 95,000   |
| Total Dissolved Solids              | 10,000 | µg/L  |            | -        | 771,000  | 549,000  | 658,000  | 493,000  | 638,000   | 518,000  | 520,000  | 529,000  | 532,000   | -        | -        | -        |
| Total Organic Carbon (C)            | 500    | µg/L  | -          | -        | 26,500   | 19,200   | 12,900   | 11,000   | 16000 (1) | 12,000   | 12,000   | 10,000   | 10,000    | 9,300    | 14,000   | 6,900    |
| Total Supended Solids               | 2,000  | µg/L  |            | -        | 6,000    | 2,000    | 3,000    | -        | -         | -        | -        | -        | -         | -        | -        | -        |
| Turbidity                           | 0.1    | NTU   | -          | -        | 5.7      | 1.4      | 2.0      | 4.20     | 9.40      | 2.1      | 1.7      | 7.0      | 6.1       | 1.4      | 180      | 2        |

### Notes:

RDL = Reportable Detection Limit SW = Surface Water

0.0

- = Not analysed/No criteria

< = Parameter below detection limit

= above criteria

(1)- Elevated reporting limit due to sample matrix

Analysis completed by AMEC for all samples from 2007 to 2012.

Analysis of samples from 2013 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

\* Typical Reportable Detection Limit reference based on Maxxam laboratory analysis, but RDL may be lower than shown for original data. \*\* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).

### HISTORICAL SURFACE WATER ANALYTICAL DATA - GENERAL CHEMISTRY 2013/14 MONITORING AND MAINTENANCE PROGRAM UPPER TRINITY SOUTH (NEW HARBOUR) WASTE DISPOSAL SITE NEW HARBOUR BARRENS, NL

| Parameter                           | RDL *  | Units | Criteria** | SW-STREAM |          |          |          |          |          |          |          |          |          |          | SW-<br>UPSTREAM |
|-------------------------------------|--------|-------|------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|
|                                     |        |       |            | Feb 2007  | Nov 2007 | May 2008 | Mar 2009 | Sep 2009 | Jan 2010 | Nov 2010 | Dec 2011 | Nov 2012 | Aug 2013 | Nov 2014 | Nov 2014        |
| Anion Sum                           | N/A    | me/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 3.84     | 0.71     | 0.2             |
| Bicarb. Alkalinity (calc. as CaCO3) | 1,000  | µg/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 76,000   | 5,000    | <               |
| Calculated TDS                      | 1,000  | µg/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 250,000  | 46,000   | 17,000          |
| Carb. Alkalinity (calc. as CaCO3)   | 1,000  | µg/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | <        | <        | <               |
| Cation Sum                          | N/A    | me/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 4.04     | 0.89     | 0.32            |
| Colour                              | 5      | TCU   | -          | -         | 96       | 72       | 49       | 100      | 58       | 57       | 42       | 39       | 28       | 190      | 71              |
| Conductivity                        | 1      | µS/cm | -          | -         | 1,070    | 936      | 1190     | 470      | 810      | 540      | 530      | 400      | 390      | 82       | 35              |
| Dissolved Chloride (Cl)             | 1,000  | μg/L  | -          | -         | 213,000  | 134,000  | 206,000  | 84,000   | 110,000  | 77,000   | 45,000   | -        | 31,000   | 22,000   | 7,100           |
| DOC                                 | 500    | μg/L  |            | -         | 21,700   | 17,800   | 17,900   | -        | -        | -        | -        | -        | -        | -        | -               |
| Dissolved Sulphate (SO4)            | 2,000  | µg/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 49,000   | <        | <               |
| Hardness (CaCO3)                    | 1,000  | μg/L  | -          | -         | 101,000  | 144,000  | 155,000  | 64,000   | 140,000  | 120,000  | 130,000  | 110,000  | 110,000  | 18,000   | 4,800           |
| Ion Balance (% Difference)          | N/A    | %     | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 2.5      | 11.3     | 23.1            |
| Langelier Index (@ 20C)             | N/A    | N/A   | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | -0.827   | -4.01    | NC              |
| Langelier Index (@ 4C)              | N/A    | N/A   | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | -1.08    | -4.27    | NC              |
| Nitrate as N                        | 50     | μg/L  | 13,000     | -         | 7,710    | 7,400    | 12,500   | 1,200    | 13,000   | 8,000    | 8,000    | 4,600    | -        | <        | 55              |
| Nitrite as N                        | 15     | μg/L  | 60         | -         | 35       | 492      | 31       | <        | 110      | 100      | 50       | 13       | -        | <        | <               |
| Nitrate + Nitrite                   | 50     | µg/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 5,800    | <        | 55              |
| Nitrogen (Ammonia Nitrogen)         | 50     | μg/L  | -          | -         | 10,800   | 24,100   | 26,500   | <        | 8,200    | 780      | 1.6      | -        | 1,400    | <        | <               |
| Orthophosphate (P)                  | 10     | μg/L  | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | <        | <        | <               |
| pH                                  | N/A    | pН    | 6.5 - 9    | -         | 6.92     | 7.43     | 7.16     | 6.93     | 6.32     | 7.12     | 7.21     | 7.55     | 7.13     | 5.89     | 6.16            |
| Reactive Silica (SiO2)              | 0.5    | µg/L  | -          | -         | -        | -        | -        | 4,700    | 5,500    | 5,200    | 5,500    | 5,300    | 6,300    | 2,400.0  | 2.5             |
| Saturation pH (@ 20C)               | N/A    | N/A   | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 7.96     | 9.9      | NC              |
| Saturation pH (@ 4C)                | N/A    | N/A   | -          | -         | -        | -        | -        | -        | -        | -        | -        | -        | 8.21     | 10.2     | NC              |
| Sulphate                            | 10,000 | µg/L  |            | -         | 59,000   | 90,100   | 107,000  | 57,000   | 110,000  | 96,000   | 100,000  | -        | -        | -        | -               |
| Total Alkalinity (Total as CaCO3)   | 30,000 | μg/L  | -          | -         | 90,900   | 143,000  | 129,000  | 50,000   | 65,000   | 41,000   | 44,000   | 52,000   | 76,000   | 5,000    | <               |
| Total Dissolved Solids              | 10,000 | μg/L  |            | -         | 698,000  | 496,000  | 775,000  | 274,000  | 493,000  | 371,000  | 321,000  | -        | -        | -        | -               |
| Total Organic Carbon (C)            | 500    | μg/L  | -          | -         | 23,600   | 17,700   | 18,100   | 14,000   | 19,000   | 13,000   | 8,000    | 9,100    | 8,200    | 12,000   | 7,300           |
| Total Supended Solids               | 2,000  | μg/L  |            | -         | <        | 5,000    | 2,000    | -        | -        | -        | -        | -        | -        | -        | -               |
| Turbidity                           | 0.1    | NTU   | -          | -         | 1.6      | 3.8      | 1.8      | 1.30     | 13       | 1.8      | 1.8      | 1.2      | 32       | 31       | 1.2             |

#### Notes:

RDL = Reportable Detection Limit SW = Surface Water

- = Not analysed/No criteria

< = Parameter below detection limit

**0.0** = above criteria

(1)- Elevated reporting limit due to sample matrix

Analysis completed by AMEC for all samples from 2007 to 2012.

Analysis of samples from 2013 was completed by Maxxam Analytics Inc. in Bedford, NS.

Data to November 2012 transcribed from the 2012-2013 Annual Report of Activities for the Upper Trinity South (New Harbour) Waste Disposal Site completed by AMEC, dated March 29, 2013.

\* Typical Reportable Detection Limit reference based on Maxxam laboratory analysis, but RDL may be lower than shown for original data.

\*\* Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (2007 - Update 7.1).