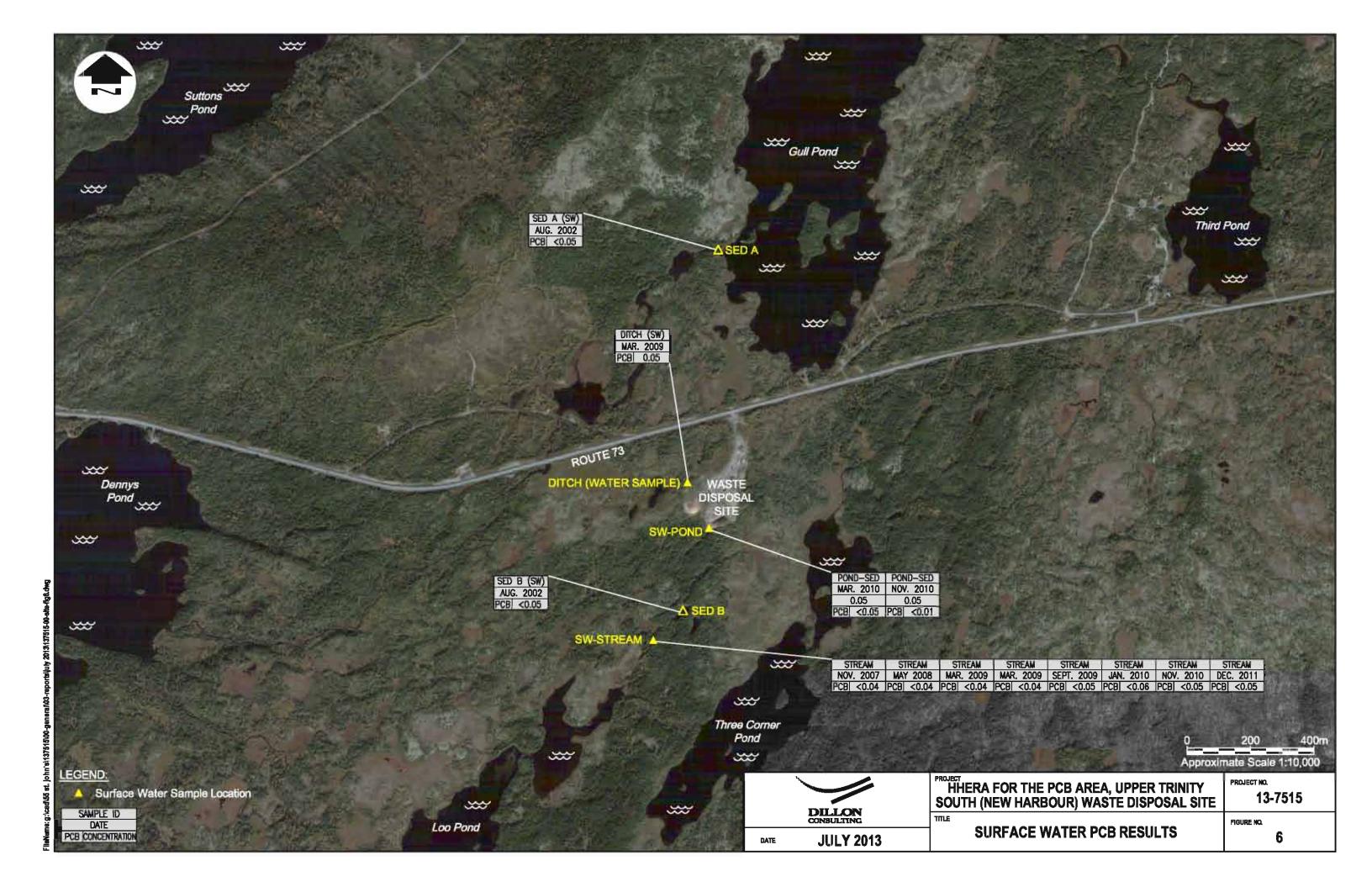
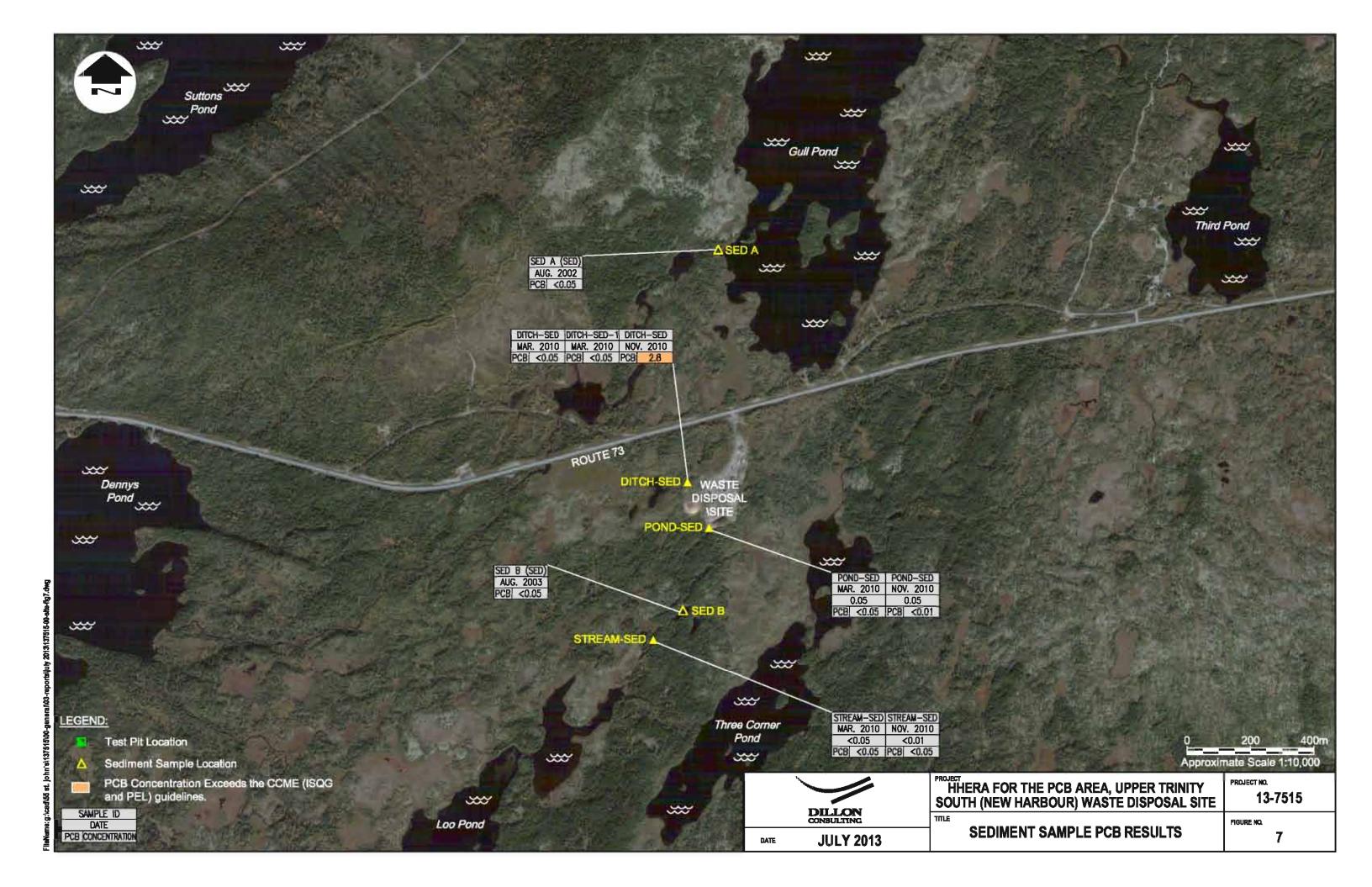
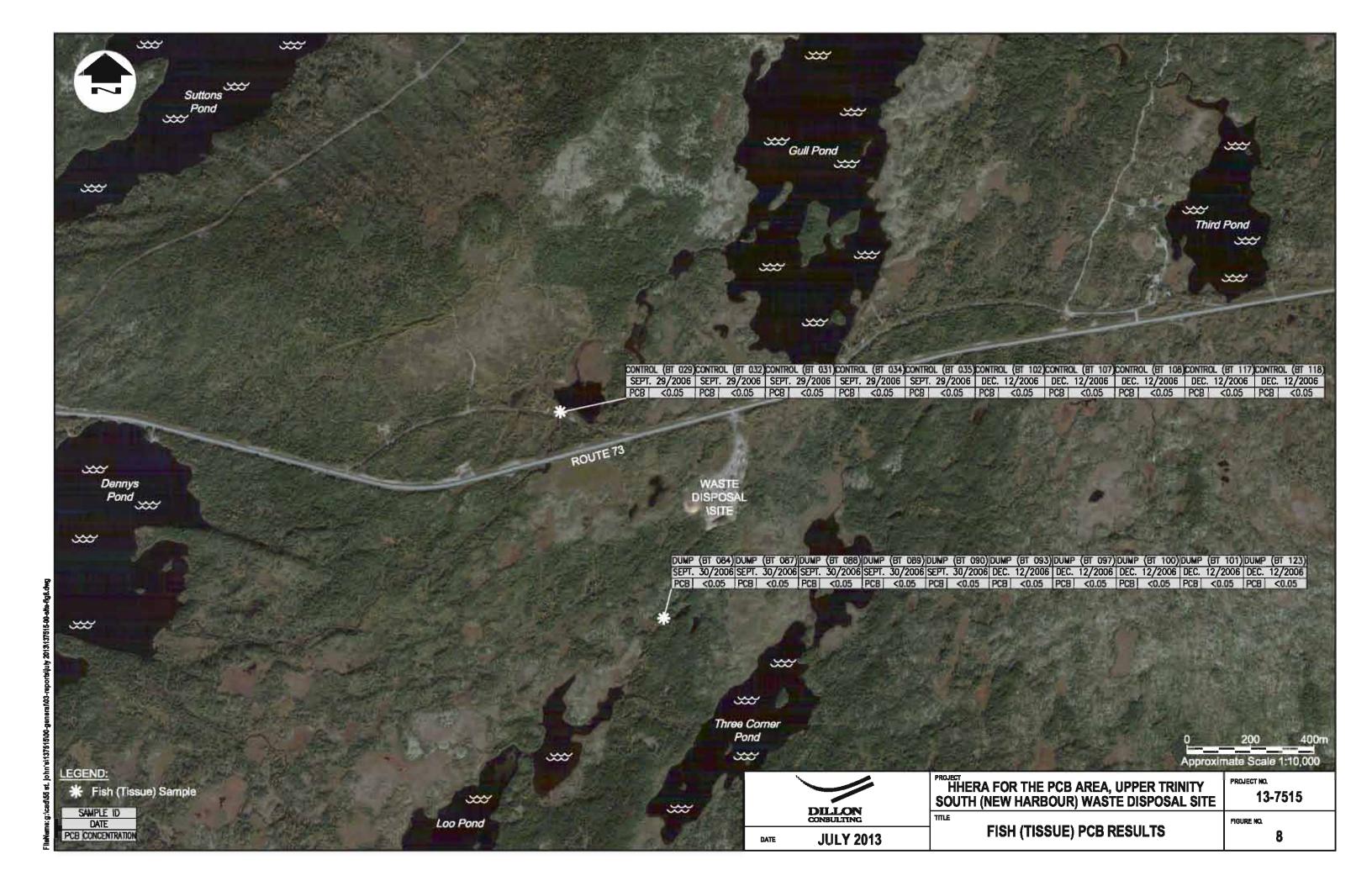

APPENDIX A FIGURES







APPENDIX B PHOTOGRAPHS

1. Looking south into the WDS from the road.

3. Looking northeast at the PCB Area and former TP locations (exposed soil).

2. Looking south into the WDS from the access road.

4. Looking northwest at the PCB Area and former TP location (exposed soil).

5. Looking west at the PCB Area.

7. Looking northeast at the interception ditch near the PCB Area.

6. Looking southeast at the edge of the PCB Area.

8.Looking southeast at the leachate pond located south of the WDS.

11. View of the landscape/habitat to the southwest of the WDS.

10. View at the landscape/habitat to the south of the WDS.

12. View of the landscape/habitat (and MW-06) to the east of the WDS.

APPENDIX C CERTIFICATE OF ANALYSIS

Your C.O.C. #: b 111339

Attention: Robert Foley
Dillon Consulting Limited
66 Kenmount Rd., Suite 203
St.John's, NL
CANADA A1B 3V7

Report Date: 2013/04/05

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B349170 Received: 2013/04/04, 09:30

Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Moisture (1)	1	N/A	2013/04/04 ATL SOP 00001	MOE Handbook 1983
PCBs in soil by GC/ECD (1.2)	1	2013/04/04	2013/04/05 ATL SOP 00106	Based on EPA8082

Remarks:

Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bedford
- (2) Soils are reported on a dry weight basis unless otherwise specified.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Leonard Muise, Project Manager Email: LMuise@maxxam.ca Phone# (902) 420-0203 Ext:236

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Maxxam Job #: B349170 Report Date: 2013/04/05

RESULTS OF ANALYSES OF SOIL

	Units	SS1A(0.3-0.8)	RDL	QC Batch
COC Number		b 111339		
Sampling Date		2013/04/02		
Maxxam ID		RB1169		

Inorganics				
Moisture	%	15	1	3170660

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: B349170 Report Date: 2013/04/05

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

	Units	SS1A(0.3-0.8)	SS1A(0.3-0.8) Lab-Dup	RDL	QC Batch
COC Number		b 111339	b 111339		
Sampling Date		2013/04/02	2013/04/02		
Maxxam ID		RB1169	RB1169		

PCBs					
Total PCB	ug/g	ND	ND	0.050	3170764
Surrogate Recovery (%)					
Decachlorobiphenyl	%	87	84		3170764

ND = Not detected RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: B349170 Report Date: 2013/04/05

Dillon Consulting Limited

Package 1	8.2°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Results relate only to the items tested.

Dillon Consulting Limited Attention: Robert Foley Client Project #: P.O. #:

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: ZB349170

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
3170764 KJO	Matrix Spike					
	[RB1169-01]	Decachlorobiphenyl	2013/04/05	88	%	30 - 130
		Total PCB	2013/04/05	104	%	70 - 130
	Spiked Blank	Decachlorobiphenyl	2013/04/05	93	%	30 - 130
		Total PCB	2013/04/05	108	%	70 - 130
	Method Blank	Decachlorobiphenyl	2013/04/05	91	%	30 - 130
		Total PCB	2013/04/05	ND, RDL=0.050	ug/g	
	RPD [RB1169-01]	Total PCB	2013/04/05	NC	%	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

Validation Signature Page

Maxxam Job #: B349170

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rose Macdonald, Scientific Specialist (Organics)

Robin Smith-Armstrong, Bedford SemiVol Spvsr

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

APPENDIX D HISTORICAL ANALYTICAL DATA

TABLE 1
PCB CONCENTRATIONS IN SOIL
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Field ID	Location	Sample Depth (m)	Sampling Date (M/D/Y)	PCB Concentration (mg/kg)	
Environmental Testing (Final F	Report), SGE Acres, Februa	ry 2003			
TP-1	WDS	1.2 ¹	8/30/2002	<0.05	
TP-2	WDS	0.5 ¹	8/30/2002	<0.05	
TP-3	WDS	3.4 ¹	8/30/2002	<0.05	
TP-4	WDS	1.2 ¹	8/30/2002	<0.05	
TP-5				<0.05	
	Near PCB Area	2.4 ¹	8/30/2002		
TP-6	Near PCB Area	1.01	8/30/2002	<0.05	
Part I, Phase I, Environmental				_	
# 1 NH	PCB Disposal Area	Bedrock	21/2/2003	<1	
# 2 NH	PCB Disposal Area	Bedrock	21/2/2003	<1	
# 3 NH	PCB Disposal Area	Bedrock	21/2/2003	52	
# 4 NH	PCB Disposal Area	Bedrock	21/2/2003	<1	
# 5 NH	PCB Disposal Area	Bedrock	21/2/2003	<1	
# 6 NH	PCB Disposal Area	Bedrock	21/2/2003	<1	
Test #1	Near Transformers	-	21/2/2003	5.7 ²	
Test #2	Near Transformers	-	21/2/2003	1.4 ²	
Design of Leachate Control Sy	stem, AMEC, June 2006				
TP1-1	SGE Excavation Boundry	0.0-1.0	11/4/2005	1.42	
TP1-2	SGE Excavation Boundry	1.0-2.0	11/4/2005	3.38	
TP1-3	SGE Excavation Boundry	2.0-3.0	11/4/2005	2.53	
TP2-1	SGE Excavation Boundry	0.0-1.0	11/4/2005	21.1	
TP2-2	SGE Excavation Boundry	1.0-2.0	11/4/2005	1.80	
TP2.5	SGE Excavation Boundry	2.0-2.5	11/4/2005	0.043 (0.036)	
TP3-1	SGE Excavation Boundry	0.0-1.0	11/4/2005	8.49	
TP3-2	SGE Excavation Boundry	1.0-2.0	11/4/2005	7.99	
TP3-3	SGE Excavation Boundry	2.0-3.0	11/4/2005	5.31	
TP4-1	SGE Excavation Boundry	0.0-1.0	11/4/2005	2.16	
TP4-2	SGE Excavation Boundry	1.0-2.0	11/4/2005	2.39	
TP4-3	SGE Excavation Boundry	2.0-3.0	11/4/2005	1.63	
TP5-1	SGE Excavation Boundry	0.0-1.0	11/4/2005	2.37	
TP5-2	SGE Excavation Boundry	1.0-2.0	11/4/2005	4.79	
TP5-3	SGE Excavation Boundry	2.0-3.0	11/4/2005	1.40	
Implementation of the Leachate Control System, AMEC, March 2007					
TP-6, SA-1	Location A	0.0-0.1	11/27/2006	0.125	
TP-6, SA-2	Location A	0.1-1.0	11/27/2006	3.25	
TP-6, SA-3	Location A	1.0-2.0	11/27/2006	16.7	
TP-6, SA-4	Location A	2.0-3.0	11/27/2006	66.7	
TP-6, SA-5	Location A	3.0-4.0	11/27/2006	30.1	
TP7, SA-1	PCB Disposal Area	0.0-0.1	11/27/2006	0.052	
TP7, SA-2	PCB Disposal Area	0.1-1.0	11/27/2006	2.34	
TP7, SA-3	PCB Disposal Area	1.0-2.0	11/27/2006	0.125	
TP7, SA-4	PCB Disposal Area	2.0-3.0	11/27/2006	0.222	
TP7, SA-5	PCB Disposal Area	3.0-3.5	11/27/2006	0.264 (0.273)	
CCME Guideline					
Canadian Soil Quality Guidelir	e (Commercial)			33	
otes:					

<0.05: below the reported detection limit of 0.05 mg/kg

Brackets indicate duplicate sample (DUP=field duplicate; LD=laboratory duplicate)

Soil at this location was excavated and disposed off-site

The remaining soils are considered to be representative of current soil quality

PCB concentration exceeds the CCME soil quality guideline (SQG) for industrial sites (33 mg/kg)

Imported fill not included in risk assessment calculations

¹Depth indicates test pit depth. The report did not indicate at what depth the soil samples were taken.

²Two soil samples were taken in the immediate vicinity of the transformers to determine whether there had been any PCB soils in the transformers prior to burial (SGE, May 2003).

^{-:} unknown

TABLE 1
PCB CONCENTRATIONS IN SOIL
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Annual Report of Activities, AMEC, March 2009 - Phase	ation g)
SA-2 Location A 3.0 9/9/2008 85 SA-3 Location A 3.0 9/9/2008 59 SA-4 Location A 3.0 9/9/2008 220 SA-5 Location A 3.0 9/9/2008 55 Stockpile 1 Location B 3.0 9/9/2008 0.93 SA-6 Location B 3.0 9/9/2008 1.5 SA-7 Location B 3.0 9/9/2008 7.3 SA-8 Location B 3.0 9/9/2008 7.3 SA-9 Location B 3.0 9/9/2008 7.3 SA-10 Location B 3.0 9/9/2008 7.4 Stockpile 2 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location A 0.8 10/25/2008 9.8 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 20 DUP-2 (SA-12/13) Location A 1.8	
SA-3	
SA-4 Location A 3.0 9/9/2008 220 SA-5 Location A 3.0 9/9/2008 55 Stockpile 1 Location A - 9/9/2008 150 SA-6 Location B 3.0 9/9/2008 0.93 SA-7 Location B 3.0 9/9/2008 7.3 SA-8 Location B 3.0 9/9/2008 7.5 DUP-1 (SA-9) Location B 3.0 9/9/2008 0.4 SA-10 Location B 3.0 9/9/2008 0.4 Stockpile 2 Location B 3.0 9/9/2008 0.4 SA-11 Location A 0.8 10/25/2008 0.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 2.1 10/25/2008 20 SA-15 Location A 2.1 10/25/2008 10 SA-16 Location A 0.6	
SA-5	
Stockpile 1	
SA-6 Location B 3.0 9/9/2008 0.93 SA-7 Location B 3.0 9/9/2008 15 SA-8 Location B 3.0 9/9/2008 7.3 SA-9 Location B 3.0 9/9/2008 7.5 DUP-1 (SA-9) Location B 3.0 9/9/2008 1.4 SA-10 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location B 3.0 9/9/2008 0.83 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 20 SA-14 Location A 1.8 10/25/2008 20 SA-15 Location A 2.1 10/25/2008 2 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 1.8 10/25/2008 3 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 <td></td>	
SA-7 Location B 3.0 9/9/2008 15 SA-8 Location B 3.0 9/9/2008 7.3 SA-9 Location B 3.0 9/9/2008 7.5 DUP-1 (SA-9) Location B 3.0 9/9/2008 1.4 SA-10 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location A 0.8 10/25/2008 9.8 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 20 SA-15 Location A 2.1 10/25/2008 10 SA-16 Location A 3.0 10/25/2008 2 SA-18/19 Location A 1.8 10/25/2008 32 SA20 Location A 1.8 10/25/2008 320 OVERBURDEN-1 Location A	
SA-8 Location B 3.0 9/9/2008 7.3 SA-9 Location B 3.0 9/9/2008 7.5 DUP-1 (SA-9) Location B 3.0 9/9/2008 14 SA-10 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location B 3.0 9/9/2008 0.83 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-18/19 Location A 1.8 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A </td <td></td>	
SA-9 Location B 3.0 9/9/2008 7.5 DUP-1 (SA-9) Location B 3.0 9/9/2008 14 SA-10 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location B 3.0 9/9/2008 0.83 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-18/19 Location A 1.8 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 320 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 320 OVERBURDEN-1 Lo	
DUP-1 (SA-9) Location B 3.0 9/9/2008 14 SA-10 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location B 3.0 9/9/2008 0.83 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-18/19 Location A 1.8 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 320 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 39 OVERBURDEN-1 Location A NA 10/28/2008 10 STOCKPILE-1, SA-2	
SA-10 Location B 3.0 9/9/2008 0.64 Stockpile 2 Location B 3.0 9/9/2008 0.83 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 10 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 1.8 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 320 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 1.8 10/25/2008 320 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2	
Stockpile 2 Location B 3.0 9/9/2008 0.83 SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 10 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 320 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report	
SA-11 Location A 0.8 10/25/2008 9.8 SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II 10 1/12/2009 6.06 <	
SA-12/13 Location A 1.8 10/25/2008 28 DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 320 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-2 Location A 1.0 1/12/2009 0.96 Trench 1, SA-3 Location A 1.0	
DUP-2 (SA-12/13) Location A 1.8 10/25/2008 20 SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II 10 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 0.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06	
SA-14 Location A 0.9 10/25/2008 0.71 SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 0.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.41 Trench 1, SA-4 Location A <td< td=""><td></td></td<>	
SA-15 Location A 2.1 10/25/2008 110 SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-3 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A	
SA-16 Location A 3.0 10/25/2008 2 SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 0.41 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
SA-17 Location A 0.6 10/25/2008 58 SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 0.97 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
SA-18/19 Location A 1.8 10/25/2008 600 DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.41 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 0.97 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
DUP-3 (SA-18/19) Location A 1.8 10/25/2008 320 SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-3 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.41 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 0.97 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
SA20 Location A 3.0 10/25/2008 89 OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
OVERBURDEN-1 Location A NA 10/28/2008 10 OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.418 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
OVERBURDEN-2 Location A NA 10/28/2008 6.6 STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
STOCKPILE-1, SA-2 Location A NA 10/28/2008 110 Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.418 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Annual Report of Activities, AMEC, March 2009 - Phase II Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Trench 1, SA-1 Location A 1.0 1/12/2009 0.9 Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Trench 1, SA-2 Location A 1.0 1/12/2009 6.06 Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Trench 1, SA-3 Location A 1.0 1/12/2009 0.06 Trench 1, SA-4 Location A 2.0 1/12/2009 0.41 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Trench 1, SA-4 Location A 2.0 1/12/2009 0.413 Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Trench 1, SA-5 Location A 2.0 1/12/2009 2.44 Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
Trench 1, SA-6 Location A 2.0 1/12/2009 0.97	
SA-6 (LD) Location A 2.0 1/12/2009 1.03	
Trench 1, SA-7 Location A 3.0 1/12/2009 0.30	
Trench 1, SA-8 Location A 3.0 1/12/2009 0.87	
Trench 1, SA-9 Location A 3.0 1/12/2009 0.83	
DUP-1 (SA-9) Location A 3.0 1/12/2009 1.29	
Trench 1, SA-1 Location A 1.0 1/12/2009 47. 9	
Trench 1, SA-2 Location A 1.0 1/13/2009 5.95	
Trench 1, SA-3 Location A 1.0 1/13/2009 1.54	
CCME Guideline	
Canadian Soil Quality Guideline (Commercial) 33	

Brackets indicate duplicate sample (DUP=field duplicate; LD=laboratory duplicate)

Soil at this location was excavated and disposed off-site

PCB concentration exceeds the CCME Soil Quality Guideline for industrial sites (33 mg/kg)

Imported fill not included in risk assessment calculations

¹Two soil samples were taken in the immediate vicinity of the transformers to determine whether there had been any PCB soils in the transformers prior to burial (SGE, May 2003).

^{-:} unknown

TABLE 1
PCB CONCENTRATIONS IN SOIL
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Field ID	Location	Sample Depth (m)	Sampling Date (M/D/Y)	PCB Concentration (mg/kg)	
Annual Report of Activities, A	MEC, March 2009 - Phase I	I			
Trench 2, SA-4	Location A	2.0	1/13/2009	11.2	
Trench 2, SA-5	Location A	2.0	1/13/2009	9.22	
Trench 2, SA-6	Location A	2.0	1/13/2009	6.13	
Trench 2, SA-7	Location A	3.0	1/13/2009	18	
DUP-2 (SA-7)	Location A	3.0	1/13/2009	11.5	
Trench 2, SA-8	Location A	3.0	1/13/2009	0.553	
Trench 2, SA-9	Location A	3.0	1/13/2009	0.302	
Trench 3, SA-1	Location A	1.0	1/13/2009	3.21	
Trench 3, SA-2	Location A	1.0	1/13/2009	4.61	
Trench 3, SA-3	Location A	1.0	1/13/2009	15.4	
Trench 3, SA-4	Location A	2.0	1/13/2009	26	
Trench 3, SA-5	Location A	2.0	1/13/2009	68.2	
Trench 3, SA-5 (LD)	Location A	2.0	1/13/2009	41.2	
Trench 3, SA-6	Location A	2.0	1/13/2009	32.5	
DUP-3 (SA-6)	Location A	2.0	1/13/2009	47.9	
Trench 3, SA-7	Location A	3.0	1/13/2009	11.1	
Trench 3, SA-8	Location A	3.0	1/13/2009	14.5	
Trench 3, SA-9	Location A	3.0	1/13/2009	3.61	
Trench 3, SA-9 (LD)	Location A	3.0	1/13/2009	3.96	
Trench 4, SA-1	Location A	1.0	1/13/2009	3.66	
Trench 4, SA-2	Location A	1.0	1/13/2009	0.85	
Trench 4, SA-3	Location A	1.0	1/13/2009	0.288	
DUP-4 (SA-3)	Location A	1.0	1/13/2009	0.53	
DUP-4 (SA-3) (LD)	Location A	1.0	1/13/2009	0.513	
Trench 4, SA-4	Location A	2.0	1/13/2009	5.76	
Trench 4, SA-5	Location A	2.0	1/13/2009	3.79	
Trench 4, SA-6	Location A	2.0	1/13/2009	1.17	
Trench 5, SA-1	Location A	1.0	1/13/2009	13.8	
Trench 5, SA-2	Location A	1.0	1/13/2009	18.2	
SA-2 (LD)	Location A	1.0	1/13/2009	21	
Trench 5, SA-3	Location A	1.0	1/13/2009	1.64	
Trench 5, SA-4	Location A	2.0	1/13/2009	21.5	
Trench 5, SA-5	Location A	2.0	1/13/2009	0.47	
Trench 5, SA-6	Location A	2.0	1/13/2009	4.35	
DUP-5 (SA-6)	Location A	2.0	1/13/2009	5.58	
Annual Report of Activities, AMEC, March 2011					
FILL-1 (imported fill)	Location A	-	12/2/2010	<0.05	
2011-2012 Annual Report of A		T			
DITCH-SED	Interceptor Ditch	0.05	Nov. 2010	2.8	
CCME Guideline					
Canadian Soil Quality Guidelir	ne (Commercial)			33	
lotes:					

<0.05: below the reported detection limit of 0.05 mg/kg

Brackets indicate duplicate sample (DUP=field duplicate; LD=laboratory duplicate)

Soil at this location was excavated and disposed off-site

PCB concentration exceeds the CCME soil quality guideline for industrial sites (33 mg/kg)

Imported fill not included in risk assessment calculations

¹Two soil samples were taken in the immediate vicinity of the transformers to determine whether there had been any PCB soils in the transformers prior to burial (SGE, May 2003).

- : unknown

TABLE 1
PCB CONCENTRATIONS IN SOIL
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Field ID	Location	Sample Depth (m)	Sampling Date (M/D/Y)	PCB Concentration (mg/kg)
Test Pitting and Soil Sampling	Program, AMEC, 2013			
NH-TP-01-SS1	PCB Disposal Area	0.15	2/7/2013	0.96
NH-TP-01-SS1 (LD)	PCB Disposal Area	0.15	2/7/2013	1.3
NH-TP-01-SS2	PCB Disposal Area	2.5	2/7/2013	490
NH-TP-02-SS1	PCB Disposal Area	0.4	2/7/2013	0.17
NH-TP-02-SS2	PCB Disposal Area	2.5	2/7/2013	<0.05
NH-TP-03-SS1	PCB Disposal Area	0.5	2/7/2013	<0.05
NH-TP-03-SS2	PCB Disposal Area	3.5	2/7/2013	1.5
NH-TP-04-SS1	PCB Disposal Area	0.9	2/7/2013	<0.05
NH-TP-04-SS2	PCB Disposal Area	3.0	2/7/2013	<0.05
NH-TP-DUP1 (NH-TP-04-SS2)	PCB Disposal Area	3.0	2/7/2013	<0.05
NH-TP-05-SS1	PCB Disposal Area	0.15	2/7/2013	5
NH-TP-05-SS2	PCB Disposal Area	3.0	2/7/2013	1.4
NH-TP-06-SS1	PCB Disposal Area	0.15	2/7/2013	1.5
NH-TP-06-SS2	PCB Disposal Area	3.4	2/7/2013	0.52
NH-TP-07-SS1	PCB Disposal Area	0.15	2/7/2013	7.2
NH-TP-07-SS2	PCB Disposal Area	1.5	2/7/2013	260
NH-TP-08-SS1	PCB Disposal Area	0.15	2/7/2013	0.77
NH-TP-08-SS2	PCB Disposal Area	3.2	2/7/2013	<0.05
NH-TP-09-SS1	PCB Disposal Area	0.8	2/7/2013	0.29
NH-TP-09-SS2	PCB Disposal Area	3.5	2/7/2013	<0.05
NH-TP-10-SS1	PCB Disposal Area	0.15	2/8/2013	<0.05
NH-TP-10-SS2	PCB Disposal Area	2.5	2/8/2013	<0.05
NH-TP-11-SS2	PCB Disposal Area	2.2	2/8/2013	<0.05
NH-TP-DUP2 (NH-TP-11-SS2)	PCB Disposal Area	2.2	2/8/2013	<0.05
NH-TP-12-SS1	PCB Disposal Area	0.8	2/8/2013	0.92
NH-TP-12-SS2	PCB Disposal Area	3.1	2/8/2013	1.9
NH-TP-12-SS2 (LD)	PCB Disposal Area	0.8	2/8/2013	2.4
NH-TP-13-SS1	PCB Disposal Area	0.15	2/8/2013	0.77
NH-TP-13-SS2	PCB Disposal Area	1.5	2/8/2013	0.72
NH-TP-14-SS1	PCB Disposal Area	0.15	2/8/2013	<0.05
NH-TP-14-SS2	PCB Disposal Area	2.5	2/8/2013	0.27
NH-TP-15-SS1	PCB Disposal Area	0.15	2/8/2013	<0.05
NH-TP-15-SS2	PCB Disposal Area	3.5	2/8/2013	<0.05
NH-TP-16-SS1	PCB Disposal Area	0.8	2/8/2013	1.2
NH-TP-16-SS2	PCB Disposal Area	3.5	2/8/2013	<0.05
NH-TP-DUP3 (NH-TP-16-SS2)	PCB Disposal Area	3.5	2/8/2013	<0.05
HHERA of the PCB Area, Dillon	, 2013		·	
SS1A (0.3-0.8)	PCB Disposal Area	0.3-0.8	4/2/2013	<0.05
CCME Guideline	,	•		
Canadian Soil Quality Guidelin	e (Commercial)			33
Notes:	-			•

<0.05: below the reported detection limit of 0.05 mg/kg

Brackets indicate duplicate sample (DUP=field duplicate; LD=laboratory duplicate)

Soil at this location was excavated and disposed off-site

PCB concentration exceeds the CCME soil quality guideline for industrial sites (33 mg/kg)

Imported fill not included in risk assessment calculations

¹Two soil samples were taken in the immediate vicinity of the transformers to determine whether there had been any PCB soils in the transformers prior to burial (SGE, May 2003).

-: unknown

TABLE 2
PCB CONCENTRATIONS IN GROUNDWATER
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Sample ID	Sample Date (M.Y)	PCB Concentration (μg/L)
MW-01	Feb. 2007	NA
MW-01	Nov. 2007	<0.04
MW-01	Mar. 2008	<0.05
MW-01	May. 2008	<0.04
MW-01	Mar. 2009	<0.04
MW-01	Oct. 2009	0.07
MW-01	Jan. 2010	<0.05
MW-01	Dec. 2010	<0.05
MW-01	Dec. 2011 ¹	<0.06
MW-02	Feb. 2007	NA
MW-02	Nov. 2007	<0.04
MW-02	May. 2008	<0.04
MW-02	Oct. 2009	<0.05
MW-02	Jan. 2010	<0.06
MW-02	Dec. 2011 ¹	<0.05
MW-03	Feb. 2007	<0.4
MW-03	Nov. 2007	<0.04
MW-03	May. 2008	<0.04
MW-03	Mar. 2009	<0.04
MW-03	Oct. 2009	<0.05
MW-03	Jan. 2010	<0.06
MW-03	Dec. 2010	<0.05
MW-03	Dec. 2011 ¹	<0.05
MW-04	Feb. 2007	NA
MW-04	Nov. 2007	<0.04
MW-04	May. 2008	<0.04
MW-04	Mar. 2009	<0.04
MW-04	Oct. 2009	<0.05
MW-04	Jan. 2010	<0.05
MW-04	Dec. 2010	<0.05
MW-04	Dec. 2011 ¹	<0.05
MW-05	Feb. 2007	<0.04
MW-05	Nov. 2007	<0.04
MW-05	May. 2008	<0.04
MW-05	Oct. 2009	<0.05
MW-05	Jan. 2010	<0.05
MW-05	Dec. 2010	<0.05
MW-05	Dec. 2011	<0.05
MW-06	Feb. 2007	NA
Ontario Ministry of E	nvironment Guidelii	ne
Groundwater Quality		0.14
Notes:		

<0.04: below the reported detection limit of 0.04 mg/kg

<0.4: elevated reported detection limit

Brackets indicate duplicate sample (Dup=field duplicate)

¹Poor QA/QC performance

2007 data: AMEC, March 2008; 2008 data: AMEC, March 2009; 2009-2011 data: SNC, 2012

AMEC: sample analyzed by AMEC; MAX: sample analyzed by Maxxam

NA: sample not analyzed for PCBs

Guideline: OMOE 2011 GW-3 value for non-potable groundwater use, coarse grained soil, shallow depth condition

TABLE 2
PCB CONCENTRATIONS IN GROUNDWATER
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Sample ID	Sample Date (M.Y)	PCB Concentration (μg/L)		
MW-06	Nov. 2007	<0.04		
MW-06	May. 2008	<0.04		
MW-06	Oct. 2009	<0.05		
MW-06	Jan. 2010	<0.05		
MW-06	Dec. 2010	<0.05		
MW-06	Dec. 2011 ¹	<0.06		
MW-07	Feb. 2007	NA		
MW-07	Nov. 2007	<0.04		
MW-07	May. 2008	<0.04		
MW-07 (AMEC)	Mar. 2009	<0.04		
DUP-2 (MW-07)	Mar. 2009	<0.05		
MW-07 (MAX)	Mar. 2009	<0.05		
MW-07	Oct. 2009	<0.05		
MW-07-D (MW-07)	Jan. 2010	<0.05		
MW-07	Dec. 2010	<0.05		
MW-07	Dec. 2011 ¹	<0.05		
MW-09 (MW-07)	Dec. 2011	<0.05		
MW-08	Jan. 2010	<0.05		
MW-08	Dec. 2010	<0.05		
MW-08	Dec. 2011 ¹	<0.05		
Ontario Ministry of E	nvironment Guidelin	ie		
Groundwater Quality	Guideline	0.14		

<0.04: below the reported detection limit of 0.04 mg/kg

< 0.4 : elevated reported detection limit

Brackets indicate duplicate sample (Dup=field duplicate)

¹Poor QA/QC performance

2007 data: AMEC, March 2008; 2008 data: AMEC, March 2009; 2009-2011 data: SNC, 2012

AMEC: sample analyzed by AMEC; MAX: sample analyzed by Maxxam

NA: sample not analyzed for PCBs

Guideline: OMOE 2011 GW-3 value for non-potable groundwater use, coarse grained soil, shallow depth condition

TABLE 3
PCB CONCENTRATIONS IN SURFACE WATER
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Sample ID	Sample Date	PCB Concentration		
CED A	(M/D/Y)	(mg/L)		
SED A	Aug. 2002	<0.05		
SED B	Aug. 2002	<0.05		
TP-1 ¹	Aug. 2002	<0.5		
TP-2 ¹	Aug. 2002	<0.05		
TP-3 ¹	Aug. 2002	<0.05		
TP-4 ¹	Aug. 2002	<0.05		
TP-5 ¹	Aug. 2002	<0.05		
TP-6 ¹	Aug. 2002	<0.05		
SW-Pond	Nov. 2007	<0.04		
SW-Pond	May. 2008	<0.04		
SW-Pond	Mar. 2009	<0.04		
SW-Pond	Sept. 2009	<0.05		
SW-Pond-D (SW-	Sept. 2009	<0.05		
POND)				
SW-Pond	Jan. 2010	<0.05		
SW-Pond	Nov. 2010	<0.05		
SW-Pond	Dec. 2011 ²	<0.05		
SW-Pond-1 (SW- POND)	Dec. 2011	<0.06		
Stream	Nov. 2007	<0.04		
Stream	May. 2008	<0.04		
Stream	Mar. 2009	<0.04		
Stream	Sept. 2009	<0.05		
Stream	Jan. 2010	<0.06		
Stream	Nov. 2010	<0.05		
Stream	Dec. 2011 ²	<0.05		
Ditch	Mar. 2009	0.05		

<0.05: below the reported detection limit of 0.05 mg/kg

<0.5: elevated reported detection limit

Brackets indicate field duplicate sample

Source of data is shown on the left

2007 data: AMEC, March 2008; 2008 data: AMEC, March 2009; 2009-2011 data: SNC, 2012

¹Water sample taken within a test pit (not true surface water or groundwater)

²Poor QA/QC performance

TABLE 4
PCB CONCENTRATIONS IN SEDIMENT
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Field ID	Sample Sample Date Depth (m) (M.Y)		PCB Concentration (mg/kg)
Environmental To	Report), SGE Acre		
SED A	-	Aug. 2002	<0.05
SED B	-	Aug. 2003	<0.05
2010-2011 Annua	al Report of A	ctivities, AMEC, N	March 2011
POND-SED	0.05	Mar. 2010	<0.05
POND-SED	0.05	Nov. 2010	<0.01
STREAM-SED	0.05	Mar. 2010	<0.05
STREAM-SED	0.05	Nov. 2010	<0.01
DITCH-SED	0.05	Mar. 2010	<0.05
DITCH-SED-1 (DITCH-SED)	0.05	Mar. 2010	<0.05
DITCH-SED	0.05	Nov. 2010	2.8 ¹
CCME Guidelines			
ISQG (Protection	of Aquatic Li	fe)	0.0341
PEL (Protection o	f Aquatic Life)	0.277

<0.05: below the reported detection limit of 0.05 mg/kg

Brackets indicate field duplicate sample

Source of data is shown on the left

<0.05: reported detection limit is greater than the ISQG

¹Considered to be more representative of a soil sample. Therefore it does not exceed the CCME sediment guidelines.

-: unknown

TABLE 5
PCB CONCENTRATIONS IN FISH
Human and Ecolgical Risk Assessment, PCB Area
Upper Trinity South (New Harbour) Waste Disposal Site, Newfoundland and Labrador

Sample ID	Location	Sample Date (M/D/Y)	PCB Concentration (mg/kg)
CONTROL (BT 029)	Gull Pond	9/29/2006	<0.005
CONTROL (BT 032)	Gull Pond	9/29/2006	<0.005
CONTROL (BT 031)	Gull Pond	9/29/2006	<0.005
CONTROL (BT 034)	Gull Pond	9/29/2006	<0.005
CONTROL (BT 035)	Gull Pond	9/29/2006	<0.005
CONTROL (BT 102)	Gull Pond	12/12/2006	<0.005
CONTROL (BT 107)	Gull Pond	12/12/2006	<0.005
CONTROL (BT 108)	Gull Pond	12/12/2006	<0.005
CONTROL (BT 117)	Gull Pond	12/12/2006	<0.005
CONTROL (BT 118)	Gull Pond	12/12/2006	<0.005
DUMP (BT 084)	Streams and Bogs South of Disposal Site	9/30/2006	<0.005
DUMP (BT 087)	Streams and Bogs South of Disposal Site	9/30/2006	<0.005
DUMP (BT 088)	Streams and Bogs South of Disposal Site	9/30/2006	<0.005
DUMP (BT 089)	Streams and Bogs South of Disposal Site	9/30/2006	<0.005
DUMP (BT 090)	Streams and Bogs South of Disposal Site	9/30/2006	<0.005
DUMP (BT 093)	Streams and Bogs South of Disposal Site	12/12/2006	<0.005
DUMP (BT 097)	Streams and Bogs South of Disposal Site	12/12/2006	<0.005
DUMP (BT 100)	Streams and Bogs South of Disposal Site	12/12/2006	<0.005
DUMP (BT 101)	Streams and Bogs South of Disposal Site	12/12/2006	<0.005
DUMP (BT 123)	Streams and Bogs South of Disposal Site	12/12/2006	<0.005

<0.005: below the reported detection limit of 0.005 mg/kg

Source: Fish Sampling Program, AMEC, March 2007

APPENDIX E WORKED EXAMPLE OF HHRE EXPOSURE AND RISK CALCULATIONS – PCBs

APPENDIX E WORKED EXAMPLE OF HHRA EXPOSURE AND RISK CALCULATIONS – PCBs

This appendix provides a worked example of HHRA exposure and risk calculations for a female toddler receptor.

E-1.0 EXPOSURE POINT CONCENTRATIONS, RAFs, ADJUSTMENT FACTORS, RECEPTOR/ENVIRONMENTAL PARAMETERS AND ASSUMPTIONS

Table E-1 provides the PCBs exposure point concentration (EPC) that was used to estimate exposure and risk to the female toddler receptor in the HHRA (i.e., the EPC for surface soil (<1.5 m) residual PCB concentrations only; N = 64). Attachment E-1 to this appendix provides the ProUCL 4.1 output that was used to determine the EPCs for PCBs.

Relative absorption factors (RAFs) that were used in the HHRA are presented in Table E-2.

Human receptor and exposure parameters used in the HHRA are previously provided in the main report, and are repeated here in Table E-3.

PCBs toxicity reference values (TRVs) used in the HHRA are provided in Table E-4.

Table E-1 PCBs Exposure Point Concentration (EPC) for the HHRA

Media	Units	EPC	Comments
Soil	mg/kg	27.1	UCLM95; N=64

Table E-2 Relative Absorption Factors for PCBs

Exposure Pathways	Value ^a	Reference/Comments
Dermal contact with soil	0.14	Health Canada, 2010a; OMOE, 2011
Outdoor soil ingestion	1.0	OMOE, 2011; Assumed
Soil/dust inhalation	1.0	Assumed

Notes:

a Unitless.

 Table E-3
 Key Receptor and Environmental Parameters for the Female Toddler Receptor

Parameter	Value	Reference
Body weight (kg)	16.4	Richardson, 1997
Inhalation rate (m³/day)	8.3	Health Canada, 2010a
Duration of life stage (yrs)	4.5	Health Canada, 2010a
Years exposed to site contaminants (yrs)	35	Health Canada, 2010a
Time spent on-site	3 hours/day, 1 day/week, 48 weeks/year However, as PCBs are a known developmental toxicant (ATSDR, 2000; WHO, 2003), the exposure amortization (for EF and ED) was reduced to 1 day/week (as per Health Canada, 2010a guidance for exposure time amortization for both event driven soil contact exposure, and substances that are known to be	Assumed based on professional judgement
	developmental toxicants)	
Soil ingestion rate (g/d)	0.08	CCME, 2006; Health Canada, 2010a
Hand surface area (m ²)	0.043	Richardson, 1997; Health Canada, 2010a; CCME, 2006
Hand soil adherence factor (g/m²/d)	1	CCME, 2006; Health Canada, 2010a
Skin surface area other than hands (m²) (upper and lower arms and legs)	0.277	Richardson, 1997
Skin soil adherence factor (g/m²/d)	0.1	CCME, 2006; Health Canada, 2010a
Outdoor dust level from soil (g/m ³)	7.6 x 10 ⁻⁷ (recommended Health Canada, 2010a default value for urban dust level)	Health Canada, 2010a
Fraction of airborne dust generated from site soil	1.0	Assumed
Winter cover factor	0.67 (fraction of days <u>without</u> winter cover)	Based on EC Climate Normals Data For Heart's Content and Holyrood Generating Station meteorological stations (1971-2000). Both stations are located in similar terrain and coastal proximity as the subject site, and are the closest available stations to the subject site. Heart's Content station is roughly 33 km north of the subject site, while the Holyrood station is located roughly 33 km southeast of the subject site. (http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html)

Table E-4 Summary of TRVs Used in the HHRA

Chemical	Exposure Route	*		Principal Study(ies)	Regulatory Agency Source	
PCBs	Oral	RfD; TDI; MRL	0.02 μg/kg body weight/day	LOAEL for immunological effects, liver weight increases, and mild dermal and ocular effects in monkeys exposed to Aroclor 1254; 300-fold UF applied	Arnold et al., 1993a,b; Tryphonas et al., 1989; 1991a,b	U.S. EPA, 1996; ATSDR, 2000; WHO, 2003
	Inhalation	TCA	0.5 μg/m ³	LOAELs in various experimental animals exposed to Aroclor 1254 (details not provided by source agency); the TCA is one half of the values obtained for Aroclor 1254 to account for potential exposure to key PCB congeners of concern in other PCB mixtures	Details not provided by source agency	RIVM (Baars et al., 2001)

 $TDI = tolerable \ daily \ intake; \ UF = uncertainty \ factor; \ RfD = reference \ dose; \ MRL = minimal \ risk \ level; \ TCA = tolerable \ concentration \ in \ air; \ LOAEL = lowest \ observable \ adverse \ effect \ level.$

E-2.0 WORKED EXAMPLE OF EXPOSURE AND RISK CALCULATIONS

The following pages present the equations used in the HHRA to estimate PCBs exposure and risk, along with an illustrative worked example, for the female toddler receptor. The results of each calculation for PCBs are provided in bold below the equation boxes. There may be slight differences in some exposure and risk estimates presented herein versus those presented in the main report due to possible differences in rounding and the number of significant digits carried into the various calculations.

E-2.1 Exposure Calculations

E-2.1.1 Exposure from Direct Soil Contact Pathways (Ingestion, Dermal Contact, Inhalation)

Outdoor Soil Ingestion Exposure

```
EXP_{OSI} = [SIR \times C_S \times AF \times ET_O] / BW
Where:
                           exposure via ingestion of outdoor soil (µg/kg body weight/day)
EXP_{OI}
SIR
                           soil ingestion rate (g/day); 0.08
                     =
                           concentration of contaminant in soil (µg/g); 27.1 (UCLM95)
C_{S}
                     =
AF
                           fraction of chemical absorbed via ingestion (chemical specific, unitless); 1
ET_{O}
                           exposure time outdoors (unitless); 0.14 (based on 1 day/week)
                           body weight (kg); 16.4
BW
```

 $EXP_{OSI} = 0.019 \, \overline{\mu g/kg} \, \overline{body weight/day}$

Outdoor Dermal (Hand) Soil Exposure

```
EXP_{OD \ Hand} = [Cs \ x \ SA_{Hand} \ x \ AF \ x \ ABS \ x \ ET_O] / BW
Where:
EXP<sub>OD Hand</sub>
                             exposure via outdoor dermal (hand) contact (µg/kg body weight/day)
                             concentration of contaminant in soil (µg/g); 27.1 (UCLM95)
C_{S}
                             surface area of the hand (m<sup>2</sup>); 0.043
SA_{Hand}
                       =
                             adherence factor for soil for hands (g/m<sup>2</sup>/day); 1
AF
                       =
ABS
                             absorption fraction (unitless); 0.14
                       =
                             exposure time outdoors (unitless); 0.14 (based on 1 day/week)
ET_{O}
                             body weight (kg); 16.4
BW
```

 $EXP_{OD Hand} = 0.0014 \mu g/kg body weight/day$

Outdoor Dermal (Body – Upper and Lower Arms and Legs) Soil Exposure

```
EXP_{OD Body} = [Cs \times SA_{Body} \times AF \times ABS \times ET_O] / BW
Where:
EXP_{OD\ Body}
                             exposure via outdoor dermal (body) contact (µg/kg body weight/day)
                             concentration of contaminant in soil (µg/g); 27.1 (UCLM95)
C_{S}
SA_{Body}
                             skin surface area (m<sup>2</sup>); 0.277
                             adherence factor for soil other than hands (g/m<sup>2</sup>/day); 0.1
AF
                      =
ABS
                             absorption fraction (unitless); 0.14
                      =
                             exposure time outdoors (unitless); 0.14 (based on 1 day/week)
ET_{O}
                             body weight (kg); 16.4
BW
```

 $EXP_{OD Body} = 0.00092 \mu g/kg body weight/day$

Outdoor Soil/Dust Inhalation Exposure

```
EXP_{Inh OD} = [BR \times C_S \times DL \times ADF \times ET_O] / BW
Where:
                            exposure via inhalation of outdoor dust (µg/kg body weight/day)
EXP_{Inh\ OD}
C_S
                     =
                            concentration of contaminant in soil (µg/g); 27.1 (UCLM95)
                            breathing rate (m<sup>3</sup>/day); 8.3
BR
                     =
                            outdoor dust level (g/m^3); 7.6 x 10^{-7}
DL
ADF
                     =
                            fraction of airborne dust generated from outdoor soil (unitless); 1 (assumed)
                            exposure time outdoors (unitless); 0.14 (based on 1 day/week)
ET_{O}
BW
                     =
                            body weight (kg); 16.4
```

 $EXP_{Inh OD} = 0.0000015 \mu g/kg body weight/day$

For all direct soil/dust contact pathways (*i.e.*, ingestion, dermal contact, inhalation), a winter cover factor (*i.e.*, 0.67) was applied. The winter cover-adjusted exposure estimates for these pathways are as follows.

Winter Cover-Adjusted Direct Soil Contact Exposure Estimates

```
\begin{split} EXP_{OSI} &= 0.013~\mu g/kg~body~weight/day\\ EXP_{OD~Hand} &= 0.00094~\mu g/kg~body~weight/day\\ EXP_{OD~Body} &= 0.00062~\mu g/kg~body~weight/day\\ EXP_{Inh~OD} &= 0.0000010~\mu g/kg~body~weight/day \end{split}
```

E-2.1.2 Estimation of Total Site-Related Exposures via Inhalation, Dermal and Oral Exposure Pathways

Total Exposure through all Inhalation Pathways

```
Total EXP_{Inh} = EXP_{Inh OD}

Where:

Total EXP_{Inh} = total inhalation exposure (\mu g/kg body weight/day)

EXP_{Inh OD} = exposure via inhalation of outdoor dust^a (\mu g/kg body weight/day); 0.0000010
```

Total EXP_{Inh} = $0.0000010 \mu g/kg$ body weight/day

a Winter cover-factor adjusted exposure.

Total Exposure through all Oral and Dermal Pathways

```
\label{eq:Total_EXP_Oral+Dermal} \begin{split} & \text{Total EXP}_{\text{Oral+Dermal}} = \text{EXP}_{\text{OSI}} + \text{EXP}_{\text{OD Hand}} + \text{EXP}_{\text{OD Body}} \\ & \text{Where:} \\ & \text{Total EXP}_{\text{Oral+Dermal}} = & \text{total oral and dermal exposure } (\mu g/kg \text{ body weight/day}) \\ & \text{EXP}_{\text{OSI}} = & \text{exposure via ingestion of outdoor soil}^a (\mu g/kg \text{ body weight/day}); 0.013 \\ & \text{EXP}_{\text{OD Hand}} = & \text{exposure via outdoor dermal (hand) contact with soil}^a (\mu g/kg \text{ body weight/day}); \\ & \text{EXP}_{\text{OD Body}} = & \text{exposure via outdoor dermal (body) contact with soil}^a (\mu g/kg \text{ body weight/day}); \\ & \text{EXP}_{\text{OD Body}} = & \text{exposure via outdoor dermal (body) contact with soil}^a (\mu g/kg \text{ body weight/day}); \\ & \text{O.00062} \end{split}
```

Total $EXP_{Oral+Dermal} = 0.015 \mu g/kg body weight/day$

a Winter cover-factor adjusted exposures.

Total Exposure through all Pathways (Inhalation, Oral, Dermal)

```
Total EXP = EXP_{Inh} + EXP_{OSI} + EXP_{OD Hand} + EXP_{OD Body}
Where:
Total EXP
                             total inhalation, oral and dermal exposure (µg/kg body weight/day)
                             exposure via inhalation of outdoor dust (ug/kg body weight/day): 0.0000010
EXP<sub>Inh OD</sub>
                      =
                             exposure via ingestion of outdoor soil<sup>a</sup> (µg/kg body weight/day); 0.013
EXPOSI
                      =
EXP<sub>OD Hand</sub>
                             exposure via outdoor dermal (hand) contact with soil<sup>a</sup> (µg/kg body eight/day);
                      =
                             0.00094
EXP<sub>OD Body</sub>
                             exposure via outdoor dermal (body) contact with soil<sup>a</sup> (µg/kg body eight/day);
                             0.00062
```

Total EXP_{Oral+Dermal} = $0.015 \mu g/kg$ body weight/day

a Winter cover-factor adjusted exposures.

E-3.0 RISK CHARACTERIZATION CALCULATIONS

For COPCs with non-carcinogenic effects, the risk characterization stage of a human health risk assessment consists of a comparison between estimated exposures and the acceptable or "safe" intake level (*i.e.*, the toxicity reference value (TRV)). The numerical value associated with this comparison is called the hazard quotient (HQ) and is calculated as follows:

Hazard Quotient (HQ) = <u>Estimated Exposure (μg/kg body weight/day)</u> TRV (μg/kg body weight/day)

For COPCs with carcinogenic effects (which was not considered to be the case for PCBs in the current HHRA; See Sections 4.3.2 and 4.4.2 of the main report), incremental lifetime cancer risk (ILCR) levels are typically used to communicate the estimated cancer risks associated with exposure estimates as follows:

ILCR = Estimated Lifetime Exposure ($\mu g/kg$ body weight/day) x Cancer Slope Factor ($[\mu g/kg$ body weight/day]⁻¹)

The following equations illustrate the calculation of risk estimates in the HHRA.

Human Health Risks Associated with Inhalation Exposure (Non-carcinogenic effects)

 $HQ_{lnhal} = \frac{TotalEXP_{lnhal}}{TRV_{lnhal}}$

Where:

 HQ_{Inhal} = hazard quotient (unitless)

Total EXP_{Inhal} = total inhalation exposure (μg/kg body weight/day); 0.0000010

 TRV_{Inhal} = inhalation TRV (μ g/kg body weight/day); 0.253

 $\mathbf{HQ}_{\mathbf{Inhal}} = \mathbf{0.0000040}$

Human Health Risks Associated with Oral and Dermal Exposure (Non-carcinogenic effects)

 $HQ_{Oral + Dermal} = \frac{Total \, EXP_{Oral + Dermal}}{TRV_{Oral}}$

Where:

HQ_{Oral+Dermal} = hazard quotient (unitless)

Total EXP_{Oral+Dermal} = total oral and dermal exposure (μg/kg body weight/day); 0.015

 TRV_{oral} = oral TRV (μ g/kg body weight/day); 0.02

 $HQ_{Oral+Dermal} = 0.75$

Human Health Risks Associated with Carcinogenic Effects

Since the PCB TRVs used in the HHRA are not based on carcinogenic effects, the following text describes how human health risks are estimated for carcinogens, when a cancer-based TRV (expressed as a slope factor or unit risk value) is available from the relevant regulatory agency.

Calculation of the ILCR involves first combining the total predicted exposures for each exposure route, and for each life stage, and then amortizing to account for the fraction of time that the life stage of interest represents out of a receptors total lifetime (e.g., 80 years as per Health Canada, 2010a), or, amortizing to account for the total amount of time the receptor is assumed to spend on the site, relative to the length of a given life stage. The ILCR is then calculated by multiplying this amortized exposure estimate by the inhalation and/or oral slope factors. Typically, ILCRs are calculated for specific pathways and/or media that are known or believed to be impacted by former or current site activities.

An example equation for calculation of ILCR is presented below. This equation is for all life stages to illustrate how exposure estimates for the different life stages are amortized in the calculation of an ILCR. If an ILCR is calculated, the 'exposure' term can be pathway, media, site, or facility-specific.

ILCR Calculation

```
ILCR = SF * | (EXP_{lnfant} * \frac{0.5}{80}) + (EXP_{Toddler} * \frac{4.5}{80}) + (EXP_{Child} * \frac{7}{80}) + (EXP_{Teen} * \frac{8}{80}) + (EXP_{Adult} * \frac{60}{80}) |
Where:
ILCR
                              incremental lifetime cancer risk level (unitless)
SF
                   =
                              slope factor (µg/kg body weight/day)<sup>-1</sup>
                              exposure for the infant (µg/kg body weight/day)
EXP<sub>Infant</sub>
                              exposure for the toddler (µg/kg body weight/day)
EXP_{Toddler}
                   =
EXP_{Child}
                   =
                              exposure for the child (µg/kg body weight/day)
EXP_{Teen}
                              exposure for the teen (µg/kg body weight/day)
                              exposure for the adult (µg/kg body weight/day)
EXP<sub>Adult</sub>
                   =
```

E-4.0 REFERENCES

- Arnold, D.L., F. Bryce, R. Stapley et al. 1993a. Toxicological consequences of Aroclor 1254 ingestion by female Rhesus (Macaca mulatta) monkeys, Part 1A: Prebreeding phase clinical health findings. Food Chem Toxicol. 31:799-810.
- Arnold, D.L., F. Bryce, K. Karpinski et al. 1993b. Toxicological consequences of Aroclor 1254 ingestion by female Rhesus (Macaca mulatta) monkeys, Part 1B: Prebreeding phase -clinical and analytical laboratory findings. Food Chem Toxicol. 31:811-824.
- ATSDR. 2000. Toxicological Profile for Polychlorinated Biphenyls (PCBs). Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Atlanta, GA. http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=142&tid=26.
- Baars, A.J. et al. 2001. Re-evaluation of human-toxicological maximum permissible risk levels. RIVM report no. 711701025. National Institute of Public Health and the Environment, Bilthoven, The Netherlands, March 2001. Available at: http://www.rivm.nl/bibliotheek/rapporten/711701025.pdf.
- CCME. 2006. A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. Canadian Council of Ministers of the Environment. PN 1332. ISBN 10-896997-45-7.
- Health Canada. 2010a. Federal Contaminated Site Risk Assessment in Canada Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Version 2.0. September, 2010 (Revised 2012). Prepared by: Contaminated Sites Division, Safe Environments Directorate. Cat.: H128-1/11-632E-PDF.
- OMOE. 2011. Rationale for the Development of Soil and Groundwater Standards for Use at Contaminated Sites in Ontario. April, 2011. Prepared by: Standards Development Branch. Ontario Ministry of the Environment. PIBS 7386e01.
- Richardson, M. 1997. Compendium of Canadian Human Exposure Factors for Risk Assessment. 1155-2720 Queensview Dr., Ottawa, Ontario.
- Tryphonas, H., S. Hayward, L. O'Grady et al. 1989. Immunotoxicity studies of PCB (Aroclor 1254) in the adult rhesus (Macaca mulatta) monkey -- preliminary report. Int J Immunopharmacol. 11:199-206. Cited in: U.S. EPA, 1996.
- Tryphonas, H., M.I. Luster, G. Schiffman et al. 1991a. Effect of chronic exposure of PCB (Aroclor 1254) on specific and nonspecific immune parameters in the rhesus (Macaca mulatta) monkey. Fund Appl Toxicol. 16(4):773-786. Cited in: U.S. EPA, 1996.
- Tryphonas, H., M.I. Luster, K.L. White et al. 1991b. Effects of PCB (Aroclor 1254) on non-specific immune parameters in Rhesus (Macaca mulatta) monkeys. Int J Immunopharmacol. 13:639-648. Cited in: U.S. EPA, 1996.
- U.S. EPA. 1996. Aroclor 1254 (CASRN 11097-69-1). Integrated Risk Information System. United States Environmental Protection Agency. URL: http://www.epa.gov/iris/subst/0389.htm.
- WHO. 2003. Concise International Chemical Assessment Document 55. Polychlorinated Biphenyls: Human Health Aspects. <a href="http://www.inchem.org/documents/cicads/

APPENDIX F PROUCL 4.1 OUTPUT SHEETS – EXPOSURE POINT CONCENTRATION (EPC) CALCULATIONS FOR PCBs

UCLM 95 for Combined Surface and Subsurface PCB Soil Concentrations

	General U	CL Statistic	310114111					
User Selected Options								
From File	WorkShee	t.wst						
Full Precision	ON							
Confidence Coefficient	95%							
Number of Bootstrap Operation	2000							
C0								
General Statistics								
			407		f D: -1:1	01		
Number of Valid Observations	5		127	Number	DISTINCT	Observation	ons	98
Raw Statistics				Log-trans	formed St	atistics		
Minimum			0.043	Minimum	of Log Da	ta		-3.14656
Maximum			600	Maximum	of Log Da	ata		6.39693
Mean			21.75084	Mean of I	og Data			0.575256
Geometric Mean			1.777586	SD of log	Data			2.362771
Median			1.54					
SD			75.63747					
Std. Error of Mean			6.71174					
Coefficient of Variation			3.477451					
Skewness			5.939491					
Relevant UCL Statistics								
Normal Distribution Test				Lognorma	l Distribu	tion Test		
Lilliefors Test Statistic			0.387057	Lilliefors				0.105739
Lilliefors Critical Value				Lilliefors				0.07862
Data not Normal at 5% Signific	ance Level		0107002				ificance Level	0,0,002
Data not Norman at 370 Signinic	directever			Data not t	ognomia	at 370 Sign	meance Level	
Assuming Normal Distribution	,			Accumina	Lognorm	al Distribut	ion	
95% Student's-t UCL			22 97244	95% H-U	_	ai Distribut	1011	63.15768
95% UCLs (Adjusted for Skew	moss)		52.07244			MVUE) UCL		69.43966
			26 57041			•		
95% Adjusted-CLT UCL (Chen						MVUE) UCL		87.89616
95% Modified-t UCL (Johnson	1-19/8)		33,402	99% Cne	bysnev (i	MVUE) UCL		124.1504
Gamma Distribution Test				Data Distr				
k star (bias corrected)					ot follow	a Discernat	le Distribution (0.05)	
Theta Star			78.42726					
MLE of Mean			21.75084					
MLE of Standard Deviation			41.30204					
nu star			70.44377					
Approximate Chi Square Value				Nonparan		tistics		
Adjusted Level of Significance			0.04811	95% CLT	UCL			32.79066
Adjusted Chi Square Value			51.94116	95% Jack	knife UCI	-		32.87244
				95% Star	ndard Boo	tstrap UCL		32.69034
Anderson-Darling Test Statisti	С		7.173289	95% Boo	tstrap-t U	CL		43.10707
Anderson-Darling 5% Critical \	/alue		0.877591	95% Hal	l's Bootstr	ap UCL		72.54545
Kolmogorov-Smirnov Test Sta	tistic		0.179436	95% Per	centile Bo	otstrap UC	L	33.64587
Kolmogorov-Smirnov 5% Critic	cal Value		0.089924	95% BCA	Bootstra	p UCL		37.16761
Data not Gamma Distributed a	t 5% Signific	cance Leve	1	95% Cheb	yshev(Me	an, Sd) UCI	L	51.00663
				97.5% Che	ebyshev(N	леап, Sd) U	CL	63.66564
Assuming Gamma Distribution	1					ean, Sd) UCI		88.5318
95% Approximate Gamma UG		n n >= 40\	29.39703			, ., .,		
95% Adjusted Gamma UCL (U			29.49898					
Garage		,	223030					
Potential UCL to Use				Hco 95% (hehycho	v (Mean, Sd	I) IICI	51.00663
				332 3370	coysiic	. (carry ou	,	52.5000

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

UCLM 95 for Surface Soil (<1.5 m) PCB Concentrations

User Selected Ontions	General U	5.0.13110	2 . Or . WII L	200 000				
User Selected Options	1 =1							
From File	WorkShee	t.wst						
Full Precision	ON							
Confidence Coefficient	95%							
Number of Bootstrap Operatio	2000							
C0								
General Statistics								
Number of Valid Observations			64	Number	of Distinct	Observatio	ns	50
Raw Statistics				Log-trans	formed St	atistics		
Minimum			0.05	Minimun	of Log Da	ta		-2.99573
Maximum			260	Maximur	n of Log Da	ita		5.560682
Mean			8.879234	Mean of	log Data			0.260889
Geometric Mean			1.298083	SD of log	Data			2.035218
Median			1.46					
SD			33.38697					
Std. Error of Mean			4.173371					
Coefficient of Variation			3.760118					
Skewness			7.042264					
Relevant UCL Statistics								
Normal Distribution Test				Lognorm	al Distribut	tion Test		
Lilliefors Test Statistic			0.395716	Lilliefors	Test Statis	tic		0.133436
Lilliefors Critical Value			0.11075	Lilliefors	Critical Va	lue		0.11075
Data not Normal at 5% Significa	ance Level			Data not	Lognormal	at 5% Signi	ficance Level	
						_		
Assuming Normal Distribution				Assumin	Lognorma	al Distribut	ion	
95% Student's-t UCL			15.84627	95% H-I	JCL			22.73478
95% UCLs (Adjusted for Skew	ness)			95% Ch	ebyshev (N	//VUE) UCL		25.2031
95% Adjusted-CLT UCL (Chen-			19.66927			MVUE) UCL		32.04271
95% Modified-t UCL (Johnson	-					/VUE) UCL		45.47779
	,					,		
Gamma Distribution Test				Data Dist	ribution			
k star (bias corrected)			0.343775			a Discernah	le Distribution (0.05)
Theta Star			25.82862	Duta do I		a Discernad	ic bistribution (olds	'
MLE of Mean			8.879234					
MLE of Standard Deviation			15.14392					
nu star			44.0032					
Approximate Chi Square Value	/ 05)			Nonnara	netric Stat	ictics		
Adjusted Level of Significance	(.03)			95% CL1		.131103		15.74382
Adjusted Chi Square Value					kknife UCL			15.84627
Adjusted Cili Square value			25.3200					
Anderson Darling Test Statistic			2 170221			tstrap UCL		15.70773
Anderson-Darling Test Statistic					otstrap-t U			37.02699
Anderson-Darling 5% Critical V					I's Bootstr			37.55415
Kolmogorov-Smirnov Test Stat						otstrap UCI	-	16.75683
Kolmogorov-Smirnov 5% Critic					A Bootstra			22.74939
Data not Gamma Distributed at	t 5% Signific	ance Leve	91		-	an, Sd) UCI		27.07054
						/lean, Sd) U		34.94193
Assuming Gamma Distribution				99% Chel	yshev(Me	an, Sd) UCI		50.4037
95% Approximate Gamma UC	-		13.11556					
95% Adjusted Gamma UCL (U	se when n <	(40)	13.23532					
Potential UCL to Use				LICO DEO/	Clara la condita de la constanta de la constan	/ (Mean, Sd	LUCI	27.07054

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL
These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002)
and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.