VALENTINE GOLD PROJECT: AMENDMENT TO THE ENVIRONMENTAL IMPACT STATEMENT

August 2021

# PART 3 Appendices

VALENTINE GOLD PROJECT: AMENDMENT TO THE ENVIRONMENTAL IMPACT STATEMENT

August 2021

# APPENDIX A HUMAN HEALTH RISK ASSESSMENT



Valentine Gold Project: Human Health Risk Assessment, Technical Modelling Report

**Final Report** 

May 3, 2021

Prepared for:

Marathon Gold Corp. 36 Lombard Street Suite 600 Toronto, ON M5C 2X3

Prepared by:

Stantec Consulting Ltd. 141 Kelsey Drive St. John's, NL A1B 0L2 Tel: (709) 576-1458 Fax: (709) 576-2126

File No: 121416965

This document entitled Valentine Gold Project: Human Health Risk Assessment, Technical Modelling Report was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Marathon Gold Corporation (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

### **Table of Contents**

| ABB                             | REVIATIONS                                                                                                                                                                                                                             |                            |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <b>1.0</b><br>1.1               | INTRODUCTION<br>PROJECT DESCRIPTION                                                                                                                                                                                                    |                            |
| <b>2.0</b><br>2.1<br>2.2        | HUMAN HEALTH RISK ASSESSMENT METHODS<br>COMPONENTS OF HEALTH RISK<br>RISK ASSESSMENT APPROACH AND FRAMEWORK                                                                                                                            | 5                          |
| <b>3.0</b><br>3.1<br>3.2        | SITE CHARACTERIZATION<br>ENVIRONMENTAL SETTING<br>SPATIAL AND TEMPORAL BOUNDARIES<br>3.2.1 Spatial Boundaries                                                                                                                          | 9<br>10                    |
| 3.3<br>3.4                      | 3.2.2 Temporal Boundaries<br>RECEPTOR LOCATIONS<br>CHEMICALS OF POTENTIAL CONCERN                                                                                                                                                      | 15<br>15                   |
| <b>4.0</b><br>4.1               | PROBLEM FORMULATIONRECEPTOR CHARACTERIZATION4.1.1General Receptor Assumptions.4.1.2Specific Assumptions for Indigenous Receptors.4.1.3Specific Assumptions for Non-Indigenous Receptors4.1.4Specific Assumptions for Off-Duty Workers. | 19<br>20<br>20<br>20       |
| 4.2                             | EXPOSURE PATHWAYS.4.2.1Inhalation Exposures.4.2.2Direct Contact Exposures.4.2.3Surface Water Exposures .4.2.4Country Food Exposures.                                                                                                   | 21<br>21<br>21<br>22<br>22 |
| 4.3<br>4.4                      | BASELINE AND FUTURE CASE EXPOSURE POINT CONCENTRATIONS4.3.1Air 224.3.2Soil4.3.3Surface Water4.3.4Country FoodsCONCEPTUAL SITE MODEL                                                                                                    | 29<br>30<br>33             |
| <b>5.0</b><br>5.1               | TOXICITY ASSESSMENT<br>SELECTION OF EXPOSURE BENCHMARKS FOR 1-HOUR NO <sub>2</sub>                                                                                                                                                     |                            |
| <b>6.0</b><br>6.1<br>6.2<br>6.3 | EXPOSURE ASSESSMENT<br>EXPOSURE ASSESSMENT FOR INDIGENOUS RECEPTORS<br>EXPOSURE ASSESSMENT FOR NON-INDIGENOUS RECEPTORS<br>EXPOSURE ASSESSMENT FOR OFF-DUTY WORKERS                                                                    | 41<br>41                   |
| 7.0                             | RISK CHARACTERIZATION                                                                                                                                                                                                                  | 42                         |



| 7.1    | CHAR   | ACTERIZING RISKS FOR INDIGENOUS RECEPTORS                                                                                    | 42        |
|--------|--------|------------------------------------------------------------------------------------------------------------------------------|-----------|
| 7.2    | CHAR   | ACTERIZING RISKS FOR NON-INDIGENOUS RECEPTORS                                                                                | 43        |
| 7.3    | OFF-D  | UTY WORKERS                                                                                                                  | 43        |
| 8.0    | UNCE   | RTAINTY ANALYSIS                                                                                                             | 44        |
| 8.1    |        | RTAINTIES IN AIR QUALITY MODELLING PREDICTIONS                                                                               |           |
| 8.2    | UNCE   | RTAINTIES IN SOIL QUALITY PREDICTIONS                                                                                        | 45        |
| 8.3    | UNCE   | RTAINTIES IN SURFACE WATER QUALITY PREDICTIONS                                                                               | 45        |
| 8.4    |        | RATINTIES IN COUNTRY FOOD QUALITY PREDICTIONS                                                                                |           |
| 9.0    | CONC   | LUSIONS                                                                                                                      | 46        |
| 10.0   | REFE   | RENCES                                                                                                                       | 48        |
| LIST ( | OF TAB | LES                                                                                                                          |           |
| Table  | 3.1    | Summary of COPC in Air and Surface Water                                                                                     | 18        |
| Table  | 4.1    | Background and Predicted Future Case Ambient Air Concentrations:                                                             |           |
|        |        | Local Assessment Area                                                                                                        | 24        |
| Table  | 4.2    | Background and Predicted Future Case Ambient Air Concentrations: Off-                                                        |           |
|        |        | Duty Worker Accommodation Camps                                                                                              |           |
| Table  | -      | Summary of Baseline and Predicted Future Case Soil Concentrations                                                            | 29        |
| Table  | 4.4    | Health-Based Screening Levels for Identified Parameters of Potential                                                         | 04        |
| Table  | 1 E    | Concern in Surface Water                                                                                                     | 31        |
| Table  | 4.5    | Summary of Baseline and Predicted Average Conditions Water<br>Concentrations at the End of 100 m Mixing Zone of the Receiver | 30        |
| Table  | 4.6    | Summary of Baseline Concentrations in Country Foods                                                                          | ے22<br>22 |
| Table  | -      | Rationale for Exposure Pathway Inclusion in the HHRA                                                                         |           |
| Table  |        | Ambient Air Quality Objectives for NO <sub>2</sub>                                                                           |           |
|        |        | JJZ                                                                                                                          |           |

#### LIST OF FIGURES

| Figure 1-1 | Project Location                                                   | 2  |
|------------|--------------------------------------------------------------------|----|
| Figure 1-2 | Project Site Plan as Presented in the EIS (Marathon 2020)          |    |
| Figure 2-1 | Considerations for a Quantitative HHRA (after Health Canada 2019)  |    |
| Figure 3-1 | Local Assessment Area and Regional Assessment Area – Atmospheric   |    |
| -          | Environment                                                        | 12 |
| Figure 3-2 | Local Assessment Area and Regional Assessment Area – Surface Water | 13 |
| Figure 3-3 | Local Assessment Area and Regional Assessment Area for HHRA        | 14 |
| Figure 4-1 | Human Health Conceptual Site Model                                 | 39 |
|            |                                                                    |    |

#### LIST OF APPENDICES

| Appendix A | ProUCL Outputs - Soil |
|------------|-----------------------|
|------------|-----------------------|

- Appendix B Deposition Sample Calculations
- Appendix C Country Foods



### Abbreviations

| AAQM      | Ambient Air Quality Monitoring                                                     |
|-----------|------------------------------------------------------------------------------------|
| AAQS      | Ambient Air Quality Standards                                                      |
| ACB       | Air Contaminants Benchamrks                                                        |
| CAAQS     | Canadian Ambient Air Quality Standards                                             |
| CAC       | criteria air contaminant                                                           |
| CCME      | Canadian Council of Ministers of the Environment                                   |
| CNF       | Central Newfoundland Forest                                                        |
| СО        | Carbon Monoxide                                                                    |
| COPC      | chemical of potential concern                                                      |
| CSM       | conceptual site model                                                              |
| CWQG -FAL | Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic<br>Life |
| DPM       | diesel particulate matter                                                          |
| EA        | Environmental Assessment                                                           |
| ECCC      | Environment and Climate Change Canada                                              |
| EIS       | Environmental Impact Statement                                                     |
| EPC       | exposure point concentration                                                       |
| FCSAP     | Federal Contaminated Sites Action Plan                                             |
| FNFNES    | First Nations Food, Nutrition & Environment Study                                  |
| HCN       | hydrogen cyanide                                                                   |
| HHRA      | human health risk assessment                                                       |
| km        | kilometres                                                                         |
| LAA       | Local Assessment Area                                                              |
| m         | metre                                                                              |
| mm        | millimetre                                                                         |
| mm/yr     | millimetres per year                                                               |
| MAC       | maximum acceptable concentrations                                                  |
| MDMER     | Metal and Diamond Mining Effluent Regulations                                      |
| MECP      | Ontario of the Ministry of Environment, Conservation and Parks                     |
| NAPS      | National Air Pollutant Surveillance                                                |
| NL        | Newfoundland and Labrador                                                          |
| NLDFLR    | Newfoundland and Labrador Department of Fisheries and Land Resources               |
|           |                                                                                    |



| NO <sub>2</sub>   | nitrogen dioxide                              |
|-------------------|-----------------------------------------------|
| PA                | Project Area                                  |
| PAA               | Protected Areas Association                   |
| PAH               | polyclic aromatic hydrocarbon                 |
| PM                | particulate matter                            |
| PM <sub>2.5</sub> | particulate matter less than 2.5 um diameter  |
| RAA               | Regional Assessment Area                      |
| SO <sub>2</sub>   | sulfur dioxide                                |
| SQG               | soil quality guideline                        |
| TRV               | Toxicological Reference Value                 |
| TMF               | Tailings Management Facility                  |
| UCLM              | upper confidence limit of the mean            |
| US EPA            | United States Environmental Protection Agency |
| VC                | Valued Component                              |
| VOC               | volatile organic compound                     |
| WHO               | World Health Organization                     |
|                   |                                               |



May 2021

### 1.0 INTRODUCTION

Marathon Gold Corporation (Marathon) proposes to develop an open pit gold mine near Valentine Lake, located in the central region of the Island of Newfoundland, southwest of the Town of Millertown, Newfoundland and Labrador (NL) (Figure 1). The proposed Valentine Gold Project (the Project) will consist primarily of two open pits, waste rock piles, crushing and stockpiling areas, conventional milling and processing facilities (the mill), a tailings management facility (TMF), personnel accommodations, and supporting infrastructure including roads, on-site power lines, buildings, and water and effluent management facilities.

The Project is located in a rural region with a history of mining exploration and development activities and other land and resource uses including commercial forestry, hydroelectric developments, outfitting and recreational land use. The mine site is accessed by an existing public access road that extends south from Millertown, approximately 88 kilometres (km) to Marathon's existing exploration camp (Figure 1). Marathon will upgrade and maintain the access road from a turnoff approximately 8 km southwest of Millertown to the mine site, a distance of approximately 76 km.

A human health risk assessment (HHRA) is a scientific study that estimates the nature and magnitude of potential adverse health risks in humans following exposure to Project-related chemical emissions. This HHRA assesses interactions between measured or predicted concentrations of chemicals of potential concern (COPC) in environmental media (i.e., air, soil, water, and food items) that may occur due to Project-related emissions, and the potential for these interactions to result in adverse health risks to human receptors exposed to these media. The HHRA was completed to support the assessment of human health effects as part of the environmental assessment for the Project.

Construction, operation, and decommissioning, rehabilitation and closure of the Project have the potential to alter baseline conditions with respect to the concentrations of chemicals in the air, soil, water and biota near the Project. These changes to the environment have the potential to alter the level of exposure to human receptors. The HHRA quantifies the change to human health risk that may be attributed to the Project by characterizing the change in exposure to Project-related chemicals that human receptors may experience between existing and future conditions. If unacceptable health risks are identified, a HHRA also evaluates the potential for adverse effects to human health and provides recommendations for additional mitigation and monitoring.

The methods and guidance prescribed by Health Canada (Health Canada 2019, 2012, 2010a) were used to assess the human health risks. This approach is intended to protect the health of Indigenous and non-Indigenous people who rely on the viability of the local environment and ecological resources, and the health of off-duty workers housed in the accommodations camp and the exploration camp (Figure 2).



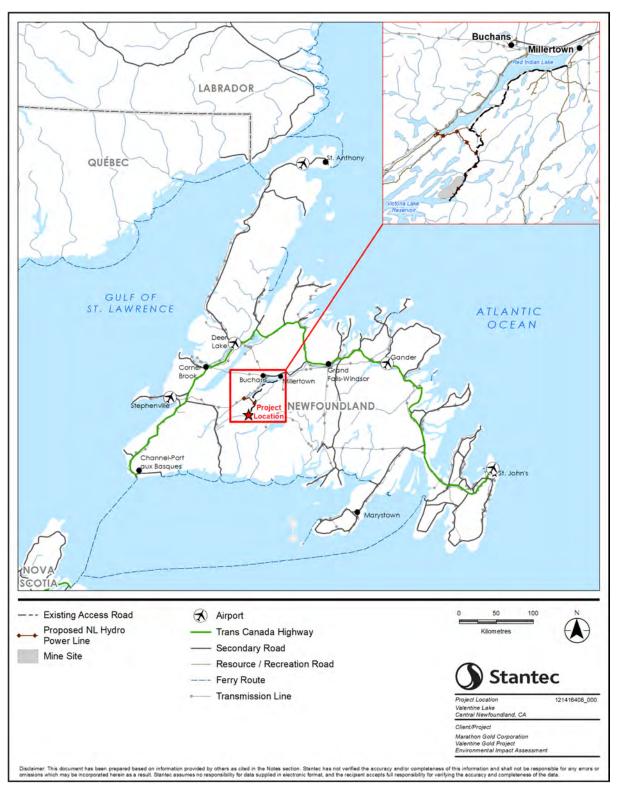



Figure 1-1 Project Location



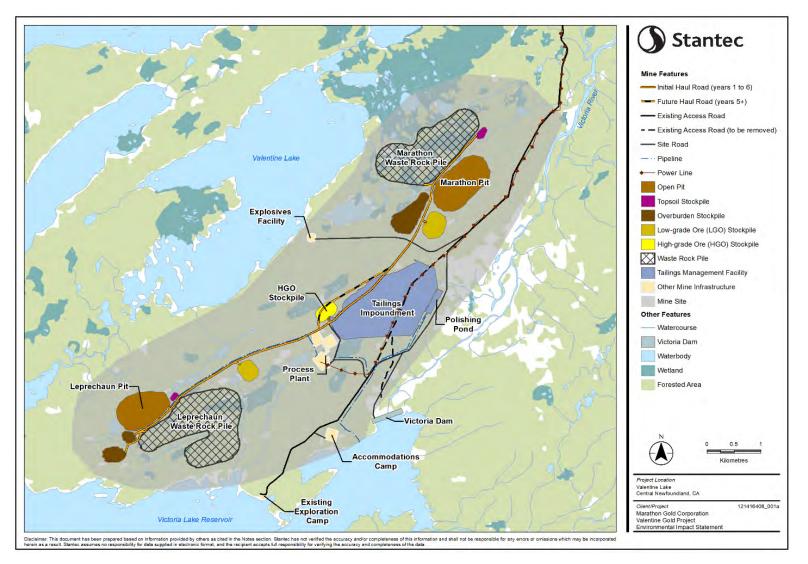



Figure 1-2 **Project Site Plan as Presented in the EIS (Marathon 2020)** 



May 2021

The information presented in this HHRA applies existing environmental quality data to establish baseline conditions for human health. Modelled future conditions are applied to characterize scenarios associated with the Project. The environmental data representing baseline and future scenarios are presented in the Valued Component (VC) sections of the Environmental Impact Statement (EIS) and associated baseline studies, technical data reports, and modelling reports for Atmospheric Environment, Surface Water, Indigenous Groups, and Community Health (Marathon 2020).

#### 1.1 PROJECT DESCRIPTION

The Project includes two open pit mining areas, the Leprechaun and Marathon deposits (Figure 2), from which ore will be mined using standard surface mining techniques. Ore material will initially be mined and processed at a nominal rate of 6,850 tonnes per day (tpd), increasing to 10,960 tpd in Year 4. Ore will be processed through the mill, where it will be crushed, milled and put through floatation and cyanidation processes to recover the gold. High-grade and low-grade ore materials will be stockpiled for mixing and for processing later in the mine life. Tailings will be treated in the process plant to remove the cyanide and subsequently deposited in an engineered tailings management facility (TMF). Effluent will be treated in a water treatment plant and monitored for compliance with the *Metal and Diamond Mining Effluent Regulations* (MDMER). Gold will be formed into doré bars, which will be shipped from site to market in secured trucks.

As described in the EIS (Marathon 2020), the construction of the Project is expected to take place over a period of approximately 16 to 20 months, followed by an estimated mine operation life of 12 years. The Project will operate 24 hours a day, 7 days a week, on a 12-hour shift basis. Work rotations will be based on 2 weeks on and 2 weeks off, and 4 weeks on and 3 weeks off cycles, depending on the work being conducted. Upon cessation of mining, the operation will be closed and the site components will be decommissioned, rehabilitated and monitored in accordance with applicable regulations at the time of closure.

Other Project components and activities associated with the primary mining, milling and processing activities include site and haul road construction and maintenance, waste rock management, electrical power supply and distribution, process and potable water supply and distribution, and site-wide stormwater and effluent management including treatment, monitoring and discharge. Other Project facilities include fuel storage and fueling stations, mine and plant workshops and services, administrative offices, personnel accommodations, lunchrooms and security. A power line connected from the nearby NL Hydro's Star Lake Generating Station to the mine site will be required to supply power to the Project. The power line will be constructed and operated by NL Hydro and will be subject to separate environmental approvals, with NL Hydro as the proponent; however, it has been considered within this assessment as a contributor to potential cumulative effects. The Project components and activities associated with construction, operation, and decommissioning, rehabilitation and closure are further described in Chapter 2 (Project Description) of the EIS (Marathon 2020).



May 2021

### 2.0 HUMAN HEALTH RISK ASSESSMENT METHODS

The HHRA evaluates and characterizes the short-term (acute) and long-term (chronic) health risk to human receptors from their exposure to chemicals in environmental media (e.g., air, soil, water and biota).

In the context of an environmental assessment for major infrastructure projects, the HHRA evaluates the potential change in human health risk that may occur between baseline environmental conditions and future conditions, during the various phases of the Project. Baseline environmental conditions may be based on historical monitoring data, measured data collected during baseline studies, or modelled data. Future conditions are based on modelled data that reflect predicted environmental conditions during the construction, operations, decommissioning, reclamation, closure, and post-closure phases of the Project.

The HHRA considers three scenarios or cases in evaluating the potential changes in human health risks. These include:

- 1. Baseline Case: evaluates the existing exposures and health risks based on the measured chemical concentrations in environmental media (air, soil, water, sediment, plants, and fish).
- 2. Future Case: evaluates the future health risks based on the predicted chemical concentrations in environmental media, as determined through detailed modelling from other VC chapters (e.g., air quality, surface water quality). These modelling results are used to predict the future chemical concentrations in exposure media to which human receptors are exposed (i.e., air, water, soil, sediment, vegetation, wild meat and fish)
- 3. Project Alone Case: evaluates health risks associated with exposure to predicted chemical concentrations in environmental media that are attributable only to Project activities (i.e., these do not consider the contribution that Baseline Case concentrations make to overall exposure). Project Alone Case concentrations are used in the HHRA to evaluate the potential incremental increase in lifetime cancer risk that would be associated with the release of carcinogenic chemicals from the Project.

The change in health risk from Baseline Case to Future Case during the various phases of the Project is the basis for determining whether the Project may result in an unacceptable risk to human health.

The following sections describe the underlying concepts and approach to conducting an HHRA that is prescribed by Health Canada, the Canadian Council of Ministers of the Environment (CCME), and the Federal Contaminated Sites Action Plan (FCSAP).

### 2.1 COMPONENTS OF HEALTH RISK

All chemicals have the potential to cause adverse health effects to biological organisms. The presence of health risk depends on three factors:

- 1. the presence of a human receptor
- 2. the presence of a COPC with inherent toxicity



May 2021

3. the exposure pathway and the degree of human exposure to a chemical

As illustrated in Figure 3, a risk may exist where all three factors of health risk interact (i.e., a receptor is exposed to a chemical hazard). The degree of adverse health risk depends on other factors, such as the exposure dose or concentration, exposure duration, and the inherent toxicity of the chemical to the human receptor.

If one or more factors(s) is absent, there would be no potential health risk. Also, if a receptor is exposed to a chemical that is inherently non-toxic, then there is no potential risk.

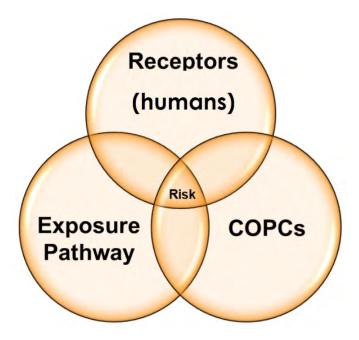



Figure 2-1 Considerations for a Quantitative HHRA (after Health Canada 2019)

#### 2.2 RISK ASSESSMENT APPROACH AND FRAMEWORK

This HHRA was conducted according to accepted risk assessment methodologies and followed guidance published and endorsed by regulatory agencies such as Health Canada, the CCME, and the FCSAP. This approach is consistent with previous projects that have been reviewed by the Impact Assessment Agency of Canada. The HHRA applied the following guidance for assessing human health for an environmental assessment:

- Guidance for Evaluating Human Health Impacts in Environmental Assessment: Human Health Risk Assessment (Health Canada 2019)
- Guidance for Evaluating Human Health Impacts in Environmental Assessment: Human Health Risk Assessment: Air Quality (Health Canada 2017a)



May 2021

- Guidance for Evaluating Human Health Impacts in Environmental Assessment: Human Health Risk Assessment: Country Foods (Health Canada 2017b)
- Guidance for Evaluating Human Health Impacts in Environmental Assessment: Human Health Risk Assessment: Drinking and Recreational Water Quality (Health Canada 2016a)

The HHRA guidance applicable to federal contaminated sites in Canada was also considered where applicable, including:

- Federal Contaminated Sites Risk Assessment in Canada, Part I: Guidance on Human Health Risk Preliminary Quantitative Risk Assessment (PQRA), Version 2.0 (Health Canada 2012)
- Federal Contaminated Sites Risk Assessment in Canada, Part V: Guidance on Complex Human Health Detailed Quantitative Risk Assessment For Chemicals (DQRA<sub>CHEM</sub>) (Health Canada 2010a)
- Federal Contaminated Sites Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors Version 2.0 (Health Canada 2010b)Federal Contaminated Site Risk Assessment in Canada: Supplemental Guidance on Human Health Risk Assessment for Country Foods (HHRA<sub>Foods</sub>) (Health Canada, 2010c)

The basic risk assessment framework includes the following fundamental stages: site characterization, problem formulation, toxicological assessment, exposure assessment, risk characterization, and uncertainty assessment. Each component is discussed below:

- The **Site Characterization** stage includes a review of existing biophysical, chemical, and land use information completed in support of the Environmental Assessment (EA) and identifies the information that is relevant to the HHRA. The identification of COPCs and the modelled predictions of chemical concentrations in biotic and abiotic environments are presented in this stage.
- The **Problem Formulation** stage is an information gathering and interpretation stage that is employed to focus the HHRA on the primary areas of concern for the Project. Problem formulation defines the nature and scope of the risk assessment, permits practical boundaries to be placed on the overall scope, and confirms that the HHRA is directed at the key areas and issues of concern related to the Project emissions. The data gathered provide information regarding the physical layout and characteristics of the assessment area (e.g., the LAA), possible exposure pathways, potential human receptors, and other specific areas or issues of concern.
- The **Toxicity Assessment** stage involves the selection of toxicity reference values (TRVs) and the identification of regulatory benchmarks for each COPC as appropriate. Toxicity is the potential for a chemical to produce permanent or temporary damage to the structure or functioning of the receptor's body. The toxicity of a chemical depends on the amount of chemical taken into the body (referred to as the "dose") and the duration of exposure (i.e., the length of time the receptor is exposed to the chemical). A specific dose and duration of exposure necessary to produce a toxic effect is defined for each COPC, with TRVs published by provincial, federal or international (e.g., United States Environmental Protection Agency [US EPA]) agencies.
- The **Exposure Assessment** stage builds on the receptor and exposure pathway identification completed in the problem formulation stage. For each COPC, exposures are estimated for each receptor, for each of the exposure pathways relevant to that receptor. The rate of exposure to chemicals may be expressed as a dose, which is the amount of chemical taken in per body weight



May 2021

per unit time (e.g., microgram (µg) of chemical per kilogram (kg) body weight per day), or as a concentration in the exposure pathway (e.g., when considering health risks to people from the inhalation of COPC, the rate of exposure would be the chemical concentration in air) or environmental media. Exposures are estimated for Baseline Case and Future Case. For carcinogenic COPC, exposures are also estimated for the Project Alone Case.

- The **Risk Characterization** stage involves assessing qualitatively and quantitatively the potential risk to receptors from exposure to COPC. The risk characterization compares the results of the exposure assessment with the TRV established in the toxicity assessment to quantify the level of health risk associated with the predicted exposures. Within an EA framework, the health risks associated with the Future Case are compared to the health risks associated with Baseline Case to provide the context for how the Project may affect health.
- The **Uncertainty Assessment** stage involves identifying the uncertainties associated with the data used in the assessment and predicting how these uncertainties may influence the final risk estimates and conclusions. Uncertainties may exist in numerous areas including the collection and analysis of samples, estimates of exposure, derivation of TRV, and the assumptions used when professional judgment is applied. Understanding how the uncertainties can influence the exposure and risk estimated for Baseline Case and Future Case conditions provides an indication of the confidence associated with the risk assessment conclusions.

Overall, the industry standard in risk assessment is to overstate, rather than understate, potential health risks, and regulatory guidance supports the use of a conservative approach (i.e., one that overestimates exposures and toxicological responses) when assessing potential health risks. This conservative approach has been employed in the assessment of potential human health risks for the Project.



May 2021

### 3.0 SITE CHARACTERIZATION

Site characterization provides the context for how the Project could affect the environment in a manner that could influence human health risk. This includes defining the spatial and temporal boundaries of the study areas for the HHRA, summarizing the environmental setting, and identifying and describing the receptor locations used to evaluate human health risks.

#### 3.1 ENVIRONMENTAL SETTING

The Project is in a rural region in central Newfoundland, with a history of exploration and mining activities. Other land and resource uses in the area include commercial forestry, multiple hydroelectric developments, mineral exploration, outfitting, cabins, harvesting (e.g., trapping, hunting and fishing), and recreational land use (e.g., hiking, boating, snowmobiling and all-terrain vehicle [ATV] use). Adjacent land uses are described in Section 16.2 of Chapter 16 (Land and Resource Use) in the EIS (Marathon 2020).

The Project is located within the Central Newfoundland Forest (CNF) Ecoregion (Newfoundland and Labrador Department of Fisheries and Land Resources [NLDFLR] 2019a). This ecoregion typically consists of rolling hills, dense forest and organic deposits occurring in valleys and basins (PAA 2008). The CNF Ecoregion has the warmest summers and coldest winters on the Island of Newfoundland, with the potential for night frost year-round (NLDFLR 2019b). Terrain (i.e., topography and landforms) varies and includes boggy areas, thin to thick glacial till layers, and bedrock outcrops. Scattered wetlands, specifically patterned fens and bogs, are common in the Project Area (planned mine site development area and access road) and surrounding areas. Elevations range from 270 to 437 m above sea level (masl) across the mine site and from 160 to 437 masl across the Project Area.

There are no historical baseline records for air quality or sound levels in the Project Area; however, given its rural nature, the existing concentrations of air contaminants are assumed to be low and close to average background concentrations for similar rural areas in NL at most locations, most of the time.

Similarly, the sound levels in a rural environment are likely to be dominated by natural phenomena or activities, such as wind, rain and wildlife. Sound pressure levels depend upon the distance from the source and the acoustic characteristics of the area in which the sound is located. In the Project Area, these are expected to be low most of the time. Local sources of sound may include forestry and exploration activities, vehicles, generators, snowmobiles and ATVs, or recreational boat engines. These activities and sources are assumed to not exceed regulatory thresholds. Baseline sound pressure levels measured in the Project Area in June 2020 were representative of a quiet rural to quiet suburban area, with limited to no existing sources of noise. The baseline noise assessment is described in greater detail in Section 5.5.3 of Chapter 5 (Atmospheric Environment) of the EIS (Marathon 2020).

The Project is situated along a boundary between the Exploits River Watershed and the Bay d'Espoir Watershed. The Victoria Lake Reservoir, to the south of the Project Area is the headwater system for the Bay d'Espoir Watershed, which includes multiple hydroelectric projects downstream of the Victoria Lake Reservoir. The head of the Victoria River to the east of the Project Area, and Valentine Lake to the northwest, feed into the Exploits River, one of the most important Atlantic salmon rivers on the Island in



May 2021

terms of numbers of salmon returning. The Exploits River Watershed is the largest watershed on the Island of Newfoundland, with a total area of 10,241 km<sup>2</sup>.

Water discharge from the Exploits River is highly regulated by dams located in Millertown, Grand Falls-Windsor, and Bishops Falls. The mouth of Red Indian Lake is controlled by a dam located in Millertown. Historically, Victoria Lake drained to Red Indian Lake via the Victoria River; however, with the construction of the Victoria Dam in 1967 (to create the Victoria Lake Reservoir), the flow from Victoria Lake was altered to flow in a generally southerly direction to Burnt Lake and Granite Lake, providing flow to the hydrogeneration station in Bay d'Espoir. In recent years, the Victoria Lake Reservoir has contributed negligible to no flow to the Victoria River because the Victoria Dam operates as an overflow spillway, and spilling occurs infrequently.

### 3.2 SPATIAL AND TEMPORAL BOUNDARIES

#### 3.2.1 Spatial Boundaries

The following spatial boundaries were used to assess Project effects, including residual environmental effects, on human health risk in areas surrounding the mine site and access road.

Project Area: The Project Area (PA) encompasses the immediate area in which Project activities and components occur and is comprised of two distinct areas: the mine site and the access road. The mine site includes the area within which Project infrastructure will be located, and the access road is the existing road to the site, plus a 20 metre (m) wide buffer on either side. The Project Area is the anticipated area of direct physical disturbance associated with the construction, operation, and decommissioning, rehabilitation and closure of the Project.

As the future environmental conditions used to predict potential changes in human health risk are based on modelled future conditions from the Atmospheric Environment VC (Chapter 5 of the EIS [Marathon 2020]) and the Surface Water VC (Chapter 7 of the EIS), the local assessment area (LAA) for the HHRA employed the spatial boundaries from these VCs. The LAAs for these VCs were selected because the future conditions within these areas can be predicted or measured with a level of confidence that allows assessment of potential Project-related changes in human health risk. Areas of land and resource use that fall beyond the boundaries of the Atmospheric Environment and Surface Water LAAs will not be affected by Project activities and therefore will not contribute to potential exposures to Project-related emissions. Use of these lands and the harvesting of country foods from areas beyond the LAAs listed above would reduce the quantity of country foods harvested from within the LAAs and thereby reduce the potential exposures to Project-related COPC harvested within the LAA for the HHRA. Thus, land and resource areas beyond the Atmospheric Environment and Surface Water LAAs have not been included in the LAA for the HHRA.



May 2021

The LAA and regional assessment area (RAA) for the Atmospheric Environment and the HHRA consist of a 40 km by 40 km square area centred on the Project Area, plus a 500 m buffer on either side of the access road. This 40 km by 40 km area is the modelling domain used for dispersion modelling and includes receptors within and beyond the Project Area. The LAA and RAA are therefore considered together as the LAA/RAA in the remainder of the assessment (Figure 4).

The LAA for surface water resources incorporates the Project Area and watersheds that intersect with the Project Area, as shown in Figure 5. The LAA also includes portions of Victoria Lake Reservoir in the expected effluent mixing zones, which are typically considered to be up to several hundred metres from points of discharge into the lake. The LAA includes Valentine Lake and Victoria River to the point downstream where Project-affected tributaries converge with the main branch of the river and the Project access road extending from the Exploits River Crossing to the Project Area. It also includes a 500 m buffer around the access road. The RAA for surface water resources incorporates the Project Area and LAA and extends to include where potential Project interactions may be observed, as shown in Figure 3. This includes Valentine Lake, a portion of Victoria Lake Reservoir, Victoria River and Red Indian Lake, including its discharge at the head of the Exploits River. This area encompasses the potential downstream receivers of surface water that may flow from the Project Area, and was selected as the area within which accidental events were assessed. As the HHRA considers health risks associated with routine Project activities, the LAA is most relevant to this study.

Since the Atmospheric Environment LAA/RAA and Surface Water LAA overlap (LAA for Surface Water lies within the LAA/RAA for Atmospheric Environment), the LAA/RAA for Atmospheric Environment was used in the HHRA, as shown in Figure 6.



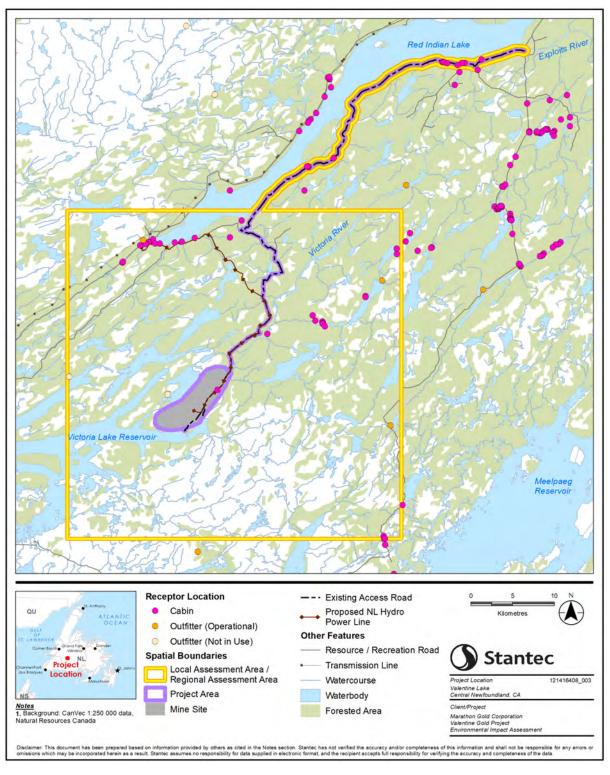



Figure 3-1 Local Assessment Area and Regional Assessment Area – Atmospheric Environment



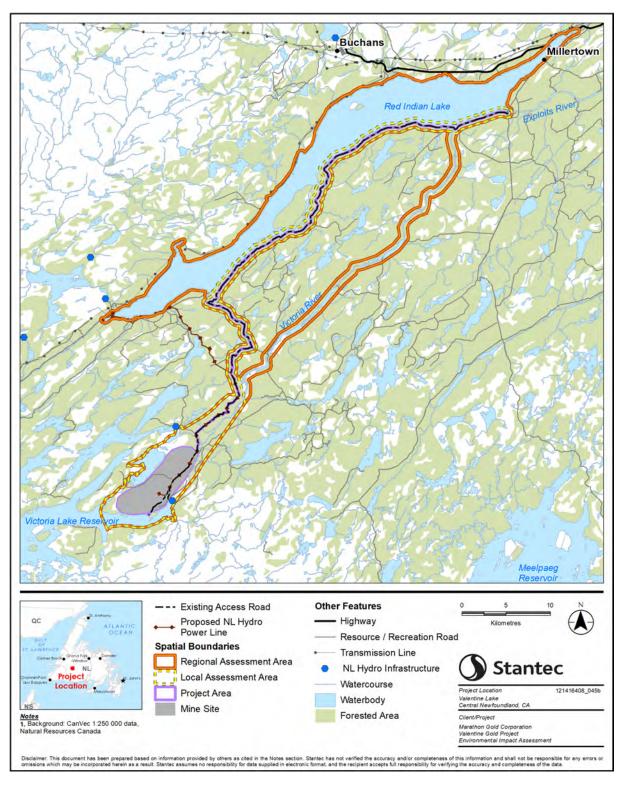



Figure 3-2 Local Assessment Area and Regional Assessment Area – Surface Water



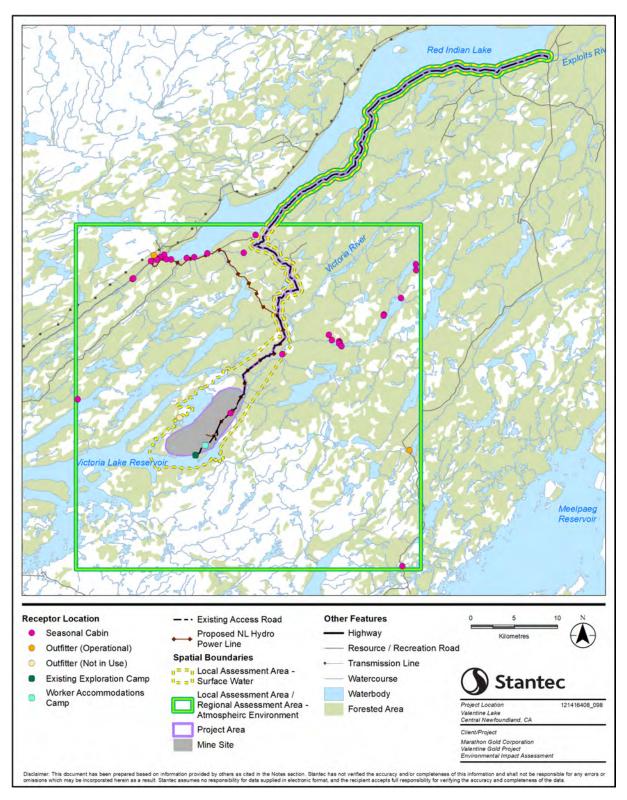



Figure 3-3 Local Assessment Area and Regional Assessment Area for HHRA



May 2021

#### 3.2.2 Temporal Boundaries

The temporal boundaries for the Project consist of the following phases.

- Construction Phase -16 to 20 months, beginning in Q4 2021, with 90% of activities occurring in 2022
- Operation Phase Estimated 12-year operation, with commissioning / start-up and mine / mill operation slated to start Q2 2023
- Decommissioning, Rehabilitation and Closure Phase Closure rehabilitation to occur once it is no longer economical to mine or resources are exhausted

This HHRA evaluates potential human health risks associated with inhalation exposures to Project-related COPC using the air quality modelling predictions provided in Chapter 5 (Atmospheric Environment) in the EIS (Marathon 2020). The air quality modelling was based on the highest production years, which provide upper-bound estimates of COPC concentrations in ambient air. The HHRA assumes these concentrations to be present in ambient air over the construction and operation phases of the Project. Post closure, air quality are expected to return to Baseline Conditions. The HHRA evaluates potential changes in soil and country food based on deposition estimates provided in the air quality assessment. These predicted changes are assumed to be permanent. The HHRA evaluates potential changes in surface water quality based on information provided in the surface water quality are also assumed to be permanent. Therefore, for soil, country food and surface water quality, the temporal boundaries of the HHRA extend well into the future.

### 3.3 RECEPTOR LOCATIONS

Receptor locations were selected to represent places where human receptors are likely to be present and could be exposed to air emissions from the Project. The selection of receptor locations was based on consideration of land use and on input from local communities. Traditional Knowledge and land and resource use information was collected through meetings and information sharing with Indigenous groups. To gain a better understanding of current use within the area of the Project, a study entitled, "The Collection of Current Land Use and Aboriginal Traditional Knowledge" (ATK Study) was conducted in 2020 by the Qalipu Mi'kmaq First Nation (Qalipu), with financial support from Marathon. Information collected through the ATK Study has been integrated into the assessment. Marathon also met in person with representatives of Miawpukek First Nation (Miawpukek) to review and update this information. Additional information on the community engagement process is provided in Chapter 14 (Community Health) and Chapter 17 (Indigenous Groups) in the EIS (Marathon 2020). The information gathered from engagement with Indigenous groups and communities was used to help identify 32 receptor locations within the LAA that are outside the Project Area. Of the 32 sensitive receptor locations, 29 are seasonal cabins, two are outfitters, and one is an unused outfitter cabin. This last receptor is located on the shore of Valentine Lake on the west side of the Project Area. These 32 receptor locations represent the nearest sensitive receptor locations to the Project (Figure 6).



May 2021

#### 3.4 CHEMICALS OF POTENTIAL CONCERN

COPCs are identified as Project-related chemicals that may be released to the receiving environment and that have potential to elicit adverse human health effects. Emissions of air contaminants during construction and operation phases of the Project may result from combustion of fossil fuels (such as diesel and gasoline) by heavy mobile equipment and vehicles, and from dust generated by land clearing and equipment movements on unpaved roads. Fugitive releases of dust during blasting, ore handling and processing, and wind erosion of stockpiles and tailings beach surfaces may occur during operation. Project-related effluents, such as discharge from sedimentation ponds and groundwater that is not captured by the contact water management infrastructure and TMF effluent, which will ultimately discharge to one of three receiving waterbodies: Victoria Lake Reservoir, Valentine Lake, and Victoria River.

An inventory of air contaminant emissions associated with construction and operations activities was completed as part of the air quality assessment (Chapter 5 [Atmospheric Environment] of the EIS [Marathon 2020]). Air contaminants that may be released from Project activities have been identified as the following:

- Particulate matter released during activities such as ore handling and processing, wind erosion, blasting, and exhaust from internal combustion engines, TSP, respirable particulate matter (PM<sub>10</sub>) with an aerodynamic diameter less than 10 μm, fine particulate matter (PM<sub>2.5</sub>) with an aerodynamic diameter less than 2.5 μm, and diesel particulate matter (DPM). Although TSP was identified as a contaminant in the Atmospheric Environment VC, it was not considered to be a COPC for human health because the larger particles of the TSP fraction (particles greater than 10 μm in aerodynamic diameter) are not part of the respirable or inhalable fractions and these larger fractions are addressed by considering PM<sub>10</sub> and PM<sub>2.5</sub>.
- Other criteria air contaminants (CACs) carbon monoxide (CO), sulphur dioxide (SO<sub>2</sub>), nitrogen oxides (NOx) from blasting and internal combustion engines.
- Ammonia (NH<sub>3</sub>) and hydrogen cyanide (HCN) from processing plant sources.
- Trace metals within the dust released during ore handling and processing, wind erosion, and blasting: arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), strontium (Sr), and zinc (Zn).
- Mercury was not detected in the geochemical testing of the ore samples. The mining processes
  planned for the Project do not require the use of mercury. Although the results of the geochemical
  water quality modelling showed that the concentrations of mercury in Victoria Lake Reservoir,
  Valentine Lake and Victoria River would not change from baseline concentrations (Chapter 7 [Surface
  Water Resources] of the EIS [Marathon 2020]), mercury was identified as a COPC due to community
  concerns regarding the potential for mercury and methylmercury to bioaccumulate in aquatic country
  foods.

The estimated quantities of air contaminants released from sources associated with the operation of the Project were based on the requirements in the EIS guidelines for assessing potential effects on the atmospheric environment. Based on the result of the emissions inventory completed as part of the air quality assessment (Section 5.1 [Atmospheric Environment] of the EIS [Marathon 2020]), the air quality



May 2021

assessment concluded that volatile organic compound (VOC) and polyclic aromatic hydrocarbon (PAH) emissions from this Project would be too low to affect ambient air quality. Therefore, these chemical species were not included in the air dispersion modelling. Although these chemicals were not included in the assessment for the Valentine Gold Project, carcinogenic and non-carcinogenic PAH and speciated VOCs have been assessed in other mining projects of similar scope and magnitude (Greenstone Gold Project - Ontario, Lynn Lake Gold Project - Manitoba, Ajax Copper-Gold Project - British Columbia). These assessments evaluated the potential human health risks for 1-hour, 24-hour, and annual average exposures for speciated VOC (including acetaldehyde, benzene, 1,3-butadiene, ethylbenzene, formaldehyde, proprionaldehyde, toluene, 2.2,4-trimethylpentane, and xylenes) and annual average exposures to non-carcinogenic and carcinogenic PAH (as Benzo[a]pyrene toxic equivalents – B[a]PTPE), and carcinogenic VOCs. The hazard quotients associated with short-term (1-hour and 24 hour) and longterm (annual average) inhalation exposures to the non-carcinogenic VOC and PAH were all less than 0.2 with most being in the  $10^{-4}$  to  $10^{-6}$  range for each of the projects listed above. These results apply to Indigenous and non-Indigenous receptors in the LAAs for these projects and for workers in the accommodations camp (Lynn Lake Gold Project). The incremental lifetime cancer risks associated with inhalation exposures to the carcinogenic VOC (acetaldehyde, benzene, 1,3-butadiene, formaldehyde, 2,2,4-trimethylpentane) and carcinogenic PAH (as B[a]PTPE) were all below the 10<sup>-5</sup> negligible cancer risk benchmark ranging between 10<sup>-6</sup> and 10<sup>-12</sup>. Based on the results for similar studies, where predicted human health risks are more than 10-fold below the corresponding health risk benchmarks, it is reasonable to conclude that predicted human health risks associated with inhalation exposures to VOC and PAH would represent negligible human health risks for Indigenous and non-Indigenous receptors in the LAA, and for off-duty workers housed in the accommodations camp or exploration camp.

Consistent with Health Canada TRVs, the potential human health risks associated with inhalation exposure to diesel exhaust (DE) (as DPM) was based on the 2-hour and annual average TRVs for non-cancer effects. Diesel exhaust from diesel engines that pre-date 2007 has been identified as a potential human carcinogen by several agencies including California EPA, World Health Organization, International Agency for Research on Cancer, and Health Canada. However, an assessment of the potential cancer risks associated with inhalation exposures to diesel exhaust (as DPM) was not included in the assessment for the following reasons:

- i. In 2015, the Health Effects Institute (HEI) released a detailed review of the available epidemiological information related to exposures to DE (<u>https://www.healtheffects.org/publication/diesel-emissions-and-lung-cancer-evaluation-recent-epidemiological-evidence-quantitative</u>). This review noted that the epidemiological evidence supports an association between occupational exposures to DE and increased incidence of lung cancer. The review also noted that notwithstanding the 1998 publication of an inhalation unit risk for DE by the California Office of Environmental Health Hazard Assessment (OEHHA), the general consensus within the scientific community is that the available epidemiological evidence is insufficient to undertake a credible quantitative assessment of DE carcinogenicity that could support the development of an inhalation unit risk value for DE (HEI 2015, Health Canada 2016d).
- ii. As cited in HEI 2015, studies completed by McDonald et al. (2015) and Hesterberg et al. (2011) reported that there was no evidence of carcinogenicity or other adverse effects in rodents



May 2021

following lifetime exposure to emissions from newer technology diesel engines (post 2007). Although adverse effects were noted at the highest exposure concentrations, these effects were attributed to NO<sub>2</sub>. Based on this, the authors concluded that there is sufficient evidence to suggest that the results from studies using pre-2007 diesel exhaust likely have little relevance in assessing potential human health risks associated with inhalation exposures to exhaust from newer technology diesel engines, such as those which will be used for this Project.

iii. The Health Canada 2016 assessment of Diesel Exhaust did not include either a quantitative or a qualitative assessment of the potential carcinogenicity of DPM.

A list of parameters of potential concern for water quality was established for Chapter 7 (Surface Water Resources) of the EIS (Marathon 2020) based on the following selection criteria:

- Parameters found to be present at concentrations higher than the Canadian Council of Ministers of the Environment (CCME) *Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life* (CWQG-FAL) in the baseline monitoring program (aluminum, arsenic, cadmium, copper, iron, lead, nitrite, and zinc).
- Parameters listed in the *Metal and Diamond Mining Effluent Regulations* (MDMER) (ammonia, arsenic, copper, cyanide, lead, and zinc).
- Parameters considered potentially present in effluent because of mining activities (ammonia, cyanide, fluoride, manganese, phosphorus, and sulphate).

A summary of the COPC considered in the HHRA is provided in Table 1.

#### Table 3.1 Summary of COPC in Air and Surface Water

| COPC                                         | Air | Surface Water |
|----------------------------------------------|-----|---------------|
| CACs – CO, SO <sub>2</sub> , NO <sub>2</sub> | х   | -             |
| DPM, , PM <sub>2.5</sub> , PM <sub>10</sub>  | х   | -             |
| NH <sub>3</sub>                              | х   | -             |
| HCN                                          | х   |               |
| Aluminum (AI)                                | -   | x             |
| Arsenic (As)                                 | х   | х             |
| Beryllium (Be                                | х   | -             |
| Barium (Ba)                                  | х   | -             |
| Cadmium (Cd)                                 | х   | х             |
| Chromium (Cr)                                | х   | -             |
| Cobalt (Co)                                  | х   | -             |
| Copper (Cu)                                  | х   | х             |
| Iron (Fe)                                    | -   | x             |
| Lead (Pb)                                    | х   | x             |
| Manganese (Mn)                               | -   | х             |
| Mercury (Hg)                                 | х   | -             |



May 2021

#### Table 3.1 Summary of COPC in Air and Surface Water

| COPC                                              | Air | Surface Water |
|---------------------------------------------------|-----|---------------|
| Nickel (Ni)                                       | х   | -             |
| Phosphorus (Ph)                                   | -   | х             |
| Strontium (Sr)                                    | х   | -             |
| Zinc (Zn)                                         | х   | х             |
| Nitrite (N)                                       | -   | х             |
| Ammonia (N)                                       | -   | х             |
| Ammonia (N) Unionized                             | -   | х             |
| Cyanide (Total)                                   | -   | х             |
| Cyanide (WAD)                                     | -   | х             |
| Sulfate                                           | -   | х             |
| Fluoride                                          | -   | х             |
| Notes:<br>X Considerd in HHRA<br>- Not Applicable |     |               |

### 4.0 PROBLEM FORMULATION

Problem formulation is the first major component of an HHRA and is intended to define key issues that will be further evaluated in a risk assessment. Problem formulation includes the identification of relevant receptors of concern and their characteristics, COPC, and exposure pathways that potentially connect the receptors to relevant environmental media.

### 4.1 RECEPTOR CHARACTERIZATION

The HHRA evaluated Indigenous and non-Indigenous receptors, both of which were assumed to be present within the LAA.

- Indigenous Receptors Includes Indigenous people who may live in or make use of the lands within the LAA for the harvesting of country foods and/or traditional plants, or who use the areas for ceremonial or spiritual purposes. Indigenous receptors are assumed to harvest and consume higher levels of country foods than non-Indigenous members of the population. Although there are no permanent dwellings within the LAA, for the purposes of the risk assessment, Indigenous receptors are conservatively assumed to spend 100% of their time within the LAA.
- **Non-Indigenous Receptors** Includes non-Indigenous people who may live in or make use of the lands within the LAA for harvesting country foods and/or recreational activities. Non-indigenous receptors are assumed to harvest and consume smaller amounts of country foods than Indigenous members of the population. Although there are no permanent dwellings within the LAA, for the



May 2021

purposes of the risk assessment non-Indigenous receptors are conservatively assumed to spend 100% of their time within the LAA.

• **Off-Duty Workers** – Includes mine workers housed at the accommodations camp and the exploration camp. Employees and contractors will be strictly prohibited from hunting or fishing while on rotation at the Project site. Workers from local communities who hunt and fish in the LAA while off rotation would be equivalent to the Indigenous and non-indigenous receptors identified above.

#### 4.1.1 General Receptor Assumptions

The following assumptions apply to both the Indigenous and non-Indigenous receptors:

- Human receptors were assumed to spend 100% of their time within the LAA and no distinction was made between time spent indoors and time spent outdoors. This means that COPC concentrations in air predicted for each of the 32 receptor locations outside the Project Area were assumed to be the same indoors and outdoors. This approach conservatively assumes that inhalation exposures for COPC happens on a 24-hour per day basis and is not limited to the time a person spends outdoors.
- Human receptors were assumed to be exposed to the exposure point concentrations (EPCs) for the appropriate exposure averaging periods (e.g., 1-hour, 24-hour, annual average) for each COPC.
- The air quality modelling provided metal deposition estimates for each of the special receptor locations outside the Project Area. The deposition estimates for each metal from each of the 32 special receptor locations were used to calculate the 95% upper confidence limit on the mean (95% UCLM) deposition rate for that metal. The 95% UCLM for each metal was used to estimate the deposition of that metal across the LAA over the operational life of the mine. This approach provides reasonable upper estimates of potential increases in metal concentrations in soil and, therefore, the potential increases in exposures to metals in soil.
- Human receptors were assumed to potentially obtain drinking water from the surface water bodies inside the LAA (Victoria Lake Reservoir, Victoria River, Valentine Lake).
- Human receptors were conservatively assumed to obtain 100% of wild meat, berries, fish and traditional plants from within the LAA.

#### 4.1.2 Specific Assumptions for Indigenous Receptors

The following specific assumption applies to Indigenous receptors.

 The country food consumption rates for the Indigenous receptor were based on 95<sup>th</sup> percentile grams of traditional food per day reported in the First Nations Food, Nutrition and Environment Study (FNFNES) – Atlantic Region Results 2014 (Chan et al. 2017).

#### 4.1.3 Specific Assumptions for Non-Indigenous Receptors

The following specific assumption applies to non-Indigenous receptors.

• The country food consumption rates for the non-Indigenous receptor were based on the daily food ingestion rates recommended by Health Canada (Health Canada 2010a).



May 2021

#### 4.1.4 Specific Assumptions for Off-Duty Workers

The following specific assumptions apply to off-duty workers housed in the accommodations camp or exploration camp.

- Work rotations will be based on the nature of the work being conducted and may vary from a 2-weeks on / 2-weeks off rotation for heavy equipment operators, to a 4-weeks on / 3 weeks off rotation for more technical staff.
- Off-duty workers are assumed to be present in the accommodations camp or exploration camp on a 24-hour per day basis.
- Off-duty workers will not be permitted to hunt or fish in the LAA during their rotation.

### 4.2 EXPOSURE PATHWAYS

Activities through all phases of the Project are anticipated to release chemicals to the environment. In the absence of mitigation, such releases could change the chemical quality of air, soil, or surface water, and of terrestrial and/or aquatic country foods. These changes could alter the human health risk for Indigenous and non-Indigenous people who spend time in and harvest country foods from the LAA. The potential ways in which Project activities could alter environmental exposures to Project-related COPC through inhalation, direct contact with soil, dermal contact and incidental ingestion of surface water, and ingestion of country foods, are discussed below.

#### 4.2.1 Inhalation Exposures

Emissions of air contaminants during construction and operation phases of the Project may result from combustion of fossil fuels (such as diesel and gasoline) by heavy mobile equipment and vehicles, and from dust generated by land clearing and equipment movements on unpaved roads. Fugitive releases of dust during blasting, ore handling and processing, and wind erosion of stockpiles and tailings beach surfaces may occur during operation. The processing plant is also a potential source of air contaminants during operation. In the absence of mitigation, potential changes in air quality could directly affect the exposures (through inhalation) of Indigenous and non-Indigenous persons in the LAA engaged in fishing, hunting, trapping, harvesting, gathering or camping.

#### 4.2.2 Direct Contact Exposures

Emissions of dust-borne contaminants during Project construction and operation may result from heavy mobile equipment and vehicles, land clearing, and equipment movement on unpaved roads. Fugitive dust emissions during blasting, ore handling and processing, and wind erosion of stockpiles and tailings beach surfaces, may occur during operations. Particulates in air could settle onto the soil in the LAA, potentially altering contaminant concentrations in soil and resulting in Project-related changes in contaminant exposures through direct contact exposures (i.e., incidental soil ingestions and dermal contact with soil).

The areas of the accommodations camp and exploration camp outside the building footprints will be covered in aggregate material. This aggregate material will remain exposed for the lifetime of the Project. Dust deposited on the aggregate material would not be expected to accumulate on the surface, rather



May 2021

would be washed from the surface into the interstitial spaces between the aggregate material by rain and snow. Aggregate is not considered to be soil and human contact with aggregate material does not result in the same types of exposures that result from human contact with soil. Aggregate material consists of stones that are too large to adhere to exposed skin surfaces; thus, it cannot contribute to direct contact exposures as with incidental soil ingestion or dermal uptake of contaminants from soil adhered to skin. Therefore, direct contact exposures have not been further assessed for off-duty workers housed at the accommodations camp or exploration camp.

#### 4.2.3 Surface Water Exposures

In the absence of mitigation, Project construction, operation and/or decommissioning activities could affect the quality of surface water through the discharge or seepage of metal-enriched water into the environment. Changes in water quality could affect the contaminant exposures of Indigenous and non-Indigenous persons through dermal contact or incidental ingestion of surface water while in the LAA. Project-related changes in stream water quality could also result in changes in fish tissue quality, resulting in indirect exposures via ingestion of fish.

#### 4.2.4 Country Food Exposures

Emissions of dust-borne contaminants during Project construction and operation may result from heavy mobile equipment and vehicles, land clearing, and equipment movement on unpaved roads. Fugitive dust emissions during blasting, ore handling and processing, and wind erosion of stockpiles and tailings beach surfaces may occur during operations. Particulates in air could settle onto the soil, potentially altering contaminant concentrations in soil and, in turn, country food quality, which could result in Project-related changes in contaminant exposures through country food consumption.

# 4.3 BASELINE AND FUTURE CASE EXPOSURE POINT CONCENTRATIONS

#### 4.3.1 Air

Existing conditions are characterized in the LAA using background concentrations of air contaminants of concern based on ambient air quality data measured near the Project. Given the rural and undeveloped nature of the mine site, existing air contaminant concentrations in the LAA are likely to be low most of the time.

Background concentrations of PM<sub>2.5</sub>, NO<sub>2</sub> and SO<sub>2</sub> are estimated using hourly ambient air quality data from 2016 and 2017, obtained from the ECCC NAPS for the Grand Falls-Windsor Ambient Air Quality Monitoring (AAQM) station (ECCC 2019). Although NO<sub>2</sub> and SO<sub>2</sub> concentrations were measured near the Project site, the background concentrations are estimated based on the NAPS data. This is because hourly data over a longer time frame (multiple years) are available from the NAPS station at Grand Falls-Windsor, whereas the samples near the Project site were collected passively over a four-day period. Use of long-term data from this NAPS station is likely conservative as compared to the Project Area, as it is located in a more developed area with local sources of emissions.



May 2021

Background concentrations of TSP, PM<sub>10</sub> and selected trace metals are estimated based on the results of the sampling conducted within the Project Area. The background concentrations are expected to include emissions from potential nearby sources and long-range transport of emissions from the northeastern United States. The background concentrations used in the assessment are provided in Table 2.

Changes to air quality from Project-related releases of air contaminants during operation were assessed using an atmospheric dispersion model in combination with ambient background air contaminant concentrations. Details of the emissions estimates and dispersion modelling for the operation phase of the Project are provided in Chapter 5, Section 5.5.1 (Atmospheric Environment) of the EIS (Marathon 2020). Although construction activities would add to existing air contaminant concentrations in the Project Area, emissions (and the resulting ground-level concentrations) would be lower in magnitude than during Project operations and would generally be confined to the area surrounding the Project Area, including the access road. Intermittent releases may also occur during decommissioning, rehabilitation and closure; however, these are expected to be lower in magnitude than during operations and therefore these phases were not assessed quantitatively in the dispersion modelling.

Air contaminant concentrations were predicted for each of the thirty-two sensitive receptor locations in the LAA outside the Project Area. From these data, the maximum predicted Future Case concentration per contaminant for each of the appropriate exposure averaging periods (e.g., 1-hour, 2-hour, 24-hour, annual average) was identified and summed with the measured or estimated background concentration to provide a maximum predicted Future Case concentration. Predicted Future Case concentrations of each contaminant for each of the 32 sensitive receptor locations in the LAA are provided in Section 5.5.1.3 of Chapter 5 (Atmospheric Environment) of the EIS (Marathon 2020). The maximum predicted Future Case concentrations were compared to the appropriate air quality standards, including Canadian Ambient Air Quality Standards (CAAQS) and NL Ambient Air Standards (NLAAS), where available. Predicted concentrations of HCN and some trace metals were compared to Ontario Air Contaminants Benchmarks (ACBs). Exposures to DPM were compared to the Health Canada Exposure Guidance Values for 2-hour and annual average exposure averaging periods. Air quality standards are not "pollute up-to" levels; they provide important benchmarks as they are meant to be protective of health.

Both short-term (1-hour, 24-hour) and annual average concentrations were assessed, as appropriate. The maximum predicted Future Case concentrations and the applicable standards are provided in Table 2. Where more than one AAQS is available for a given compound for the same exposure averaging period, the predicted Future Case concentration (including background) is compared to the lowest applicable AAQS. Predicted Future Case concentrations that exceed the lowest applicable AAQS are bolded and underlined. It is recognized that NO<sub>2</sub>, SO<sub>2</sub>, and PM<sub>2.5</sub> are considered to be non-threshold contaminants and that exposure to even very low levels of these compounds can be associated with potential human health risks. Regulatory agencies have not developed risk acceptability benchmarks for these compounds. In the absence of such benchmarks, predicted concentrations that are below the respective CAAQS for these compounds are considered to represent a negligible human health risk.



May 2021

| COPC                    | Averaging<br>Period | Background<br>Concentrations<br>(µg/m³) | Maximum<br>Predicted<br>Concentrations<br>+ Background<br>(µg/m <sup>3</sup> ) | NL AAQS<br>(μg/m³) | 2020 CAAQS<br>(µg/m³) | 2025 CAAQS<br>(μg/m³) | Ontario ACB<br>(µg/m³) | Health Canada<br>Exposure<br>Guidance Values<br>(µg/m³) |
|-------------------------|---------------------|-----------------------------------------|--------------------------------------------------------------------------------|--------------------|-----------------------|-----------------------|------------------------|---------------------------------------------------------|
| <b>PM</b> <sub>10</sub> | 24-hour             | 13                                      | 21.9                                                                           | 50                 | -                     | -                     | -                      | -                                                       |
| PM <sub>2.5</sub>       | 24-hour             | 10.3                                    | 14.0                                                                           | 25                 | 27                    | NA                    | -                      | -                                                       |
|                         | Annual              | 3.8                                     | 4.04                                                                           | 8.8                | 8.8                   | NA                    | -                      | -                                                       |
|                         | 2-hour              | -                                       | 1.79                                                                           | -                  | -                     | -                     | -                      | 10                                                      |
| DPM                     | Annual              | -                                       | 2.76E-02                                                                       | -                  | -                     | -                     | -                      | 5                                                       |
|                         | 1-hour              | 3.8                                     | 75.3                                                                           | 400                | 112.8                 | 79                    | -                      | -                                                       |
| NO <sub>2</sub>         | 24-hour             | 1.9                                     | 27.7                                                                           | 200                | -                     | -                     | -                      | -                                                       |
|                         | Annual              | 1.4                                     | 3.83                                                                           | 100                | 32                    | 22.6                  | -                      | -                                                       |
|                         | 1-hour              | 2.6                                     | 36.2                                                                           | 900                | 183.4                 | 170                   | -                      | -                                                       |
| SO <sub>2</sub>         | 3-hour              | 2.6                                     | 22.9                                                                           | 600                | -                     | -                     | -                      | -                                                       |
| <b>3</b> 0 <sub>2</sub> | 24-hour             | neg.                                    | 8.90                                                                           | 300                | -                     | -                     | -                      | -                                                       |
|                         | Annual              | neg.                                    | 0.76                                                                           | 60                 | 13.1                  | 10.5                  | -                      | -                                                       |
| со                      | 1-hour              | 206                                     | 406                                                                            | 35,000             | -                     | -                     | -                      | -                                                       |
| 0                       | 8-hour              | 200                                     | 319                                                                            | 15,000             | -                     | -                     | -                      | -                                                       |
| NH₃                     | 24-hour             | neg.                                    | 1.03                                                                           | 100                | -                     | -                     | -                      | -                                                       |
| HCN                     | 24-hour             | neg.                                    | 0.92                                                                           | -                  | -                     | -                     | 8                      | -                                                       |
| As                      | 24-hour             | 2.10E-03                                | 3.68E-03                                                                       | 0.3                | -                     | -                     | -                      | -                                                       |
| Cd                      | 24-hour             | 4.20E-04                                | 5.39E-04                                                                       | 2                  | -                     | -                     | -                      | -                                                       |
| Cu                      | 24-hour             | 1.30E-03                                | 1.08E-02                                                                       | 50                 | -                     | -                     | -                      | -                                                       |
| Dh                      | 24-hour             | 1.30E-03                                | 3.91E-03                                                                       | 2                  | -                     | -                     | -                      | -                                                       |
| Pb                      | 30-day              | 5.00E-04                                | 1.51E-03                                                                       | 0.7                | -                     | -                     | -                      | -                                                       |

#### Table 4.1 Background and Predicted Future Case Ambient Air Concentrations: Local Assessment Area



May 2021

| COPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Averaging<br>Period | Background<br>Concentrations<br>(µg/m³) | Maximum<br>Predicted<br>Concentrations<br>+ Background<br>(μg/m³) | NL AAQS<br>(µg/m³) | 2020 CAAQS<br>(µg/m³) | 2025 CAAQS<br>(µg/m³) | Ontario ACB<br>(µg/m³) | Health Canada<br>Exposure<br>Guidance Values<br>(µg/m³) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|-------------------------------------------------------------------|--------------------|-----------------------|-----------------------|------------------------|---------------------------------------------------------|
| Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | neg.                                    | 1.11E-04                                                          | 2                  | -                     | -                     | -                      | -                                                       |
| Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-03                                | 2.80E-03                                                          | 2                  | -                     | -                     | -                      | -                                                       |
| Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-02                                | 2.61E-02                                                          | 120                | -                     | -                     | -                      | -                                                       |
| Ва                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-03                                | 7.55E-03                                                          | _                  | -                     | -                     | 10                     | -                                                       |
| Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-03                                | 6.18E-03                                                          | -                  | -                     | -                     | 120                    | -                                                       |
| Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 1.30E-03                                | 1.31E-03                                                          | -                  | -                     | -                     | 0.01                   | -                                                       |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-hour             | 1.30E-03                                | 1.83E-03                                                          | -                  | -                     | -                     | 0.1                    | -                                                       |
| Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | neg.                                    | 1.91E-03                                                          | -                  | -                     | -                     | 20                     | -                                                       |
| Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-03                                | 4.19E-03                                                          | -                  | -                     | -                     | 25                     | -                                                       |
| Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 1.30E-03                                | 4.69E-03                                                          | -                  | -                     | -                     | 10                     | -                                                       |
| Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 4.20E-03                                | 8.30E-03                                                          | -                  | -                     | -                     | 10                     | -                                                       |
| Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-03                                | 7.52E-03                                                          | -                  | -                     | -                     | 0.5                    | -                                                       |
| Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-hour             | 2.10E-03                                | 3.36E-03                                                          | -                  | -                     | -                     | 2.5                    | -                                                       |
| BI       24-nour       2.10E-03       3.36E-03       -       -       -       2.5       -         Notes:       -       Not Available       -       Not Available       -       -       2.5       -         NL AAQS       Newfoundland and Labrador Ambient Air Quality Standards       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - |                     |                                         |                                                                   |                    |                       |                       |                        |                                                         |

#### Table 4.1 Background and Predicted Future Case Ambient Air Concentrations: Local Assessment Area



May 2021

The maximum predicted Future Case concentration of each COPC for each of the appropriate exposure averaging periods in the LAA is below its corresponding AAQS. Maximum COPC concentrations outside the Project Area are predicted to occur at the unused outfitter cabin located west of the Project Area across Valentine Lake from the Project. Maximum predicted COPC concentrations at the remaining 31 sensitive receptor locations within the LAA are lower than those predicted at the unused outfitter cabin. Based on this, it is reasonable to conclude that Project-related changes in air quality outside the Project Area would represent a negligible change in human health risk for Indigenous and non-Indigenous people present in the LAA.

Air COPC concentrations were predicted for the accommodations camp and exploration camp locations. From these data, the maximum predicted Future Case concentration of each COPC for each of the appropriate exposure averaging periods (e.g.,1-hour, 2-hour, 24-hour, annual average) was identified and summed with the measured or estimated background concentration to provide a maximum predicted Future Case concentration. Predicted Future Case concentrations of each contaminant for the accommodations camp and exploration camp receptor locations are provided in Section 5.5.1.3 of Chapter 5 (Atmospheric Environment) of the EIS (Marathon 2020). The maximum predicted Future Case concentrations were compared to the appropriate air quality standards including CAAQS, and NLAAS, where available. Predicted concentrations of HCN and metals were compared to ACBs. Exposures to DPM were compared to the Health Canada Exposure Guidance Values for 2-hour and annual average exposure averaging periods. Where more than one AAQS is available for a given compound for the same exposure averaging period, the predicted Future Case concentration (including background) was compared to the lowest applicable AAQS.

The maximum predicted Future Case concentrations for the accommodations camp and exploration camp locations and the applicable standards are provided in Table 3. Predicted Future Case concentrations that exceed the lowest applicable AAQS are bolded and underlined. For Indigenous and non-Indigenous receptors, maximum predicted Future Case concentrations of NO<sub>2</sub>, SO<sub>2</sub>, and PM<sub>2.5</sub> that are below their corresponding CAAQS are considered to represent negligible human health risks for off-duty workers housed at the accommodations camp or exploration camp.

With the exception of 1-hour NO<sub>2</sub>, the maximum predicted Future Case concentration of each of the COPCs for each of the appropriate exposure averaging periods is below its corresponding AAQS. Based on these results, it is reasonable to conclude that, with the exception of 1-hour inhalation exposures to NO<sub>2</sub>, Project-related emissions would represent a negligible human health risk for off-duty workers housed at the accommodations camp or exploration camp. As the maximum predicted Future Case 1-hour NO<sub>2</sub> concentrations in ambient air at the accommodations camp and exploration camp exceed the CAAQS, it is necessary to consider potential inhalation exposures to 1-hour NO<sub>2</sub> for off-duty workers at the accommodations camp and exploration camp locations in greater detail in the HHRA.



May 2021

| COPC                    | Averaging<br>Period |         | Maximum<br>Predicted<br>Concentrations +<br>Background | NL AAQS | 2020 CAAQS | 2025 CAAQS | Ontario ACB | Health Canada<br>Exposure<br>Guidance<br>Values |  |
|-------------------------|---------------------|---------|--------------------------------------------------------|---------|------------|------------|-------------|-------------------------------------------------|--|
|                         |                     | (µg/m³) | (µg/m³)                                                | (µg/m³) | (µg/m³)    | (µg/m³)    | (µg/m³)     | (µg/m³)                                         |  |
| <b>PM</b> <sub>10</sub> | 24-hour             | 13.0    | 29.6                                                   | 50      | -          | -          | -           | -                                               |  |
|                         | 24-hour             | 10.3    | 19.3                                                   | 25      | 27.0       | NA         | -           | -                                               |  |
| PM <sub>2.5</sub>       | Annual              | 3.8     | 4.48                                                   | 8.8     | 8.8        | NA         | -           | -                                               |  |
| DDM                     | 2-hour              | -       | 3.15                                                   | -       | -          | -          | -           | 10                                              |  |
| DPM                     | Annual              | -       | 0.039                                                  | -       | -          | -          | -           | 5                                               |  |
|                         | 1-hour              | 3.8     | <u>83</u>                                              | 400     | 112.9      | 79         | -           | -                                               |  |
| NO <sub>2</sub>         | 24-hour             | 1.9     | 35.3                                                   | 200     | -          | -          | -           | -                                               |  |
|                         | Annual              | 1.4     | 4.69                                                   | 100     | 32.0       | 28.2       | -           | -                                               |  |
|                         | 1-hour              | 2.6     | 49                                                     | 900     | 183.4      | 170        | -           | -                                               |  |
|                         | 3-hour              | 2.6     | 33.3                                                   | 600     | -          | -          | -           | -                                               |  |
| SO <sub>2</sub>         | 24-hour             | neg.    | 12.0                                                   | 300     | -          | -          | -           | -                                               |  |
|                         | Annual              | neg.    | 1.06                                                   | 60      | 13.1       | 10.5       | -           | -                                               |  |
|                         | 1-hour              | 206     | 409                                                    | 35,000  | -          | -          | -           | -                                               |  |
| СО                      | 8-hour              | 200     | 308                                                    | 15,000  | -          | -          | -           | -                                               |  |
| NH <sub>3</sub>         | 24-hour             | neg.    | 2.65                                                   | 100     | -          | -          | -           | -                                               |  |
| HCN                     | 24-hour             | neg.    | 2.65                                                   | -       | -          | -          | 8           | -                                               |  |
| As                      | 24-hour             | 2.1E-03 | 3.45E-03                                               | 0.3     | -          | -          | -           | -                                               |  |
| Cd                      | 24-hour             | 4.2E-04 | 5.26E-04                                               | 2       | -          | -          | -           | -                                               |  |
| Cu                      | 24-hour             | 1.3E-03 | 0.0102                                                 | 50      | -          | -          | -           | -                                               |  |
| D                       | 24-hour             | 1.3E-03 | 3.73E-03                                               | 2       | -          | -          | -           | -                                               |  |
| Pb                      | 30-day              | 5.0E-04 | 5.02E-04                                               | 0.7     | -          | -          | -           | -                                               |  |

 
 Table 4.2
 Background and Predicted Future Case Ambient Air Concentrations: Off-Duty Worker Accommodation Camps



| Table 4.2         Background and Predicted Future Case Ambient Air Concentrations: Off-Duty Worker Accommodatio           Camps         Camps |  |  |  |  |  |  |  |  | dation |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--------|---|
|                                                                                                                                               |  |  |  |  |  |  |  |  |        | _ |

| COPC      | Averaging<br>Period                                               | Background<br>Concentrations | Maximum<br>Predicted<br>Concentrations +<br>Background | NL AAQS | 2020 CAAQS | 2025 CAAQS | Ontario ACB | Health Canada<br>Exposure<br>Guidance<br>Values |
|-----------|-------------------------------------------------------------------|------------------------------|--------------------------------------------------------|---------|------------|------------|-------------|-------------------------------------------------|
|           |                                                                   | (µg/m³)                      | (µg/m³)                                                | (µg/m³) | (µg/m³)    | (µg/m³)    | (µg/m³)     | (µg/m³)                                         |
| Hg        | 24-hour                                                           | neg.                         | 2.17E-04                                               | 2       | -          | -          | -           | -                                               |
| Ni        | 24-hour                                                           | 2.1E-03                      | 2.77E-03                                               | 2       | -          | -          | -           | -                                               |
| Zn        | 24-hour                                                           | 2.1E-02                      | 2.53E-02                                               | 120     | -          | -          | -           | -                                               |
| Ва        | 24-hour                                                           | 2.1E-03                      | 6.72E-03                                               | -       | -          | -          | 10          | -                                               |
| Sr        | 24-hour                                                           | 2.1E-03                      | 5.57E-03                                               | -       | -          | -          | 120         | -                                               |
| Ве        | 24-hour                                                           | 1.3E-03                      | 1.31E-03                                               | -       | -          | -          | 0.01        | -                                               |
| Cobalt    | 24-hour                                                           | 1.3E-03                      | 1.83E-03                                               | -       | -          | -          | 0.1         | -                                               |
| Li        | 24-hour                                                           | neg.                         | 1.78E-03                                               | -       | -          | -          | 20          | -                                               |
| Sb        | 24-hour                                                           | 2.1E-03                      | 4.44E-03                                               | -       | -          | -          | 25          | -                                               |
| Sn        | 24-hour                                                           | 1.3E-03                      | 4.70E-03                                               | -       | -          | -          | 10          | -                                               |
| Se        | 24-hour                                                           | 4.2E-03                      | 7.74E-03                                               | -       | -          | -          | 10          | -                                               |
| Cr        | 24-hour                                                           | 2.1E-03                      | 7.15E-03                                               | -       | -          | -          | 0.5         | -                                               |
| Bi        | 24-hour                                                           | 2.1E-03                      | 3.27E-03                                               | -       | -          | -          | 2.5         | -                                               |
| NL AAQS N | bt available<br>ewfoundland and Labrad<br>anadian Ambient Air Qua |                              | tandard                                                |         |            |            |             |                                                 |
|           | ntario Air Contaminants I                                         | •                            |                                                        |         |            |            |             |                                                 |



May 2021

## 4.3.2 Soil

Deposition of dust from Project-related activities could increase the concentrations in soil in the LAA only for those metals that are present in the ore. Therefore, the HHRA focused on those metals identified in the ore including arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, strontium and zinc.

Baseline metal concentrations in soil were established as part of the Country Foods sampling program (Appendix C). The data from the paired soil and vegetation sample collection program were used to establish baseline metal concentrations in soil for the HHRA. A total of twenty soil samples were collected from across the LAA. The methods used to collect these samples are described in Appendix C. These data were used to calculate the 95% upper confidence limit on the mean (95% UCLM) baseline concentration for each of the metals listed above. The ProUCL outputs for the soil data are provided in Appendix A.

Annual deposition rates for each of the metals in the ore were predicted for each of the thirty-two sensitive receptor locations within the LAA that are outside the Project Area. These data were used to calculate a 95% UCLM deposition rate for each metal across the LAA. The 95% UCLM deposition rates were then used to predict total increase in metal loading to soil across the LAA. The predicted metal loads from deposition were added to the 95% UCLM baseline soil concentrations to provide predicted Future Case metals concentrations in soil within the LAA. Sample calculations for the Project-related change in soil concentrations are presented in Appendix B.

The 95% UCLM predicted deposition rate, the 95% UCLM baseline soil concentrations, and the predicted Future Case soil concentrations are provided in Table 4. The predicted percent increase between Baseline Case and Future Case conditions is also provided for each metal. The data show that for each metal in the ore, the predicted Future Case concentration is less than 2% above Baseline Case conditions. For most of the metals listed in Table 3, the predicted increases in concentrations are less than 1%. Based on these results, it is reasonable to conclude that predicted Future Case metal concentrations in soil within the LAA represent a negligible human health risk for Indigenous and non-Indigenous receptors who may spend time in the LAA.

| COPC      | Total Deposition -<br>95 <sup>th</sup> UCLM<br>g/m²/yr | 95 <sup>th</sup> UCLM of<br>Measured Baseline<br>Soil Concentration<br>(mg/kg) | Predicted Future<br>Soil Concentration<br>(mg/kg) | % Increase Relative<br>to 95 <sup>th</sup> UCLM of<br>Baseline<br>unitless |
|-----------|--------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|
| Arsenic   | 8.4E-05                                                | 7.2                                                                            | 7.2                                               | 0.28%                                                                      |
| Barium    | 1.6E-04                                                | 118                                                                            | 118                                               | 0.17%                                                                      |
| Beryllium | 8.0E-07                                                | <2                                                                             | 2.0                                               | 0.00%                                                                      |
| Cadmium   | 7.4E-06                                                | 0.5                                                                            | 0.50                                              | 0.41%                                                                      |
| Chromium  | 4.6E-04                                                | 5.7                                                                            | 5.8                                               | 1.9%                                                                       |
| Cobalt    | 4.8E-05                                                | 3.7                                                                            | 3.7                                               | 0.38%                                                                      |

## Table 4.3 Summary of Baseline and Predicted Future Case Soil Concentrations



May 2021

| COPC      | Total Deposition -<br>95 <sup>th</sup> UCLM<br>g/m²/yr | 95 <sup>th</sup> UCLM of<br>Measured Baseline<br>Soil Concentration<br>(mg/kg) | Predicted Future<br>Soil Concentration<br>(mg/kg) | % Increase Relative<br>to 95 <sup>th</sup> UCLM of<br>Baseline<br>unitless |
|-----------|--------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|
| Copper    | 8.1E-04                                                | 9.9                                                                            | 10.0                                              | 1.5%                                                                       |
| Lead      | 1.9E-04                                                | 25.8                                                                           | 25.8                                              | 0.16%                                                                      |
| Mercury   | 1.9E-05                                                | 0.30                                                                           | 0.30                                              | 1.3%                                                                       |
| Nickel    | 6.1E-05                                                | 3.6                                                                            | 3.6                                               | 0.33%                                                                      |
| Strontium | 1.7E-04                                                | 26.9                                                                           | 26.9                                              | 0.00%                                                                      |
| Zinc      | 1.6E-04                                                | 60.9                                                                           | 60.9                                              | 0.03%                                                                      |

### Table 4.3 Summary of Baseline and Predicted Future Case Soil Concentrations

## 4.3.3 Surface Water

As described in Section 7.4.2 of Chapter 7 (Surface Water Resources) of the EIS (Marathon 2020), contact water (including discharge from sedimentation ponds and groundwater that is not captured by the contact water management infrastructure) and TMF effluent will ultimately discharge to one of three receiving waterbodies: Victoria Lake Reservoir, Valentine Lake and Victoria River. Indigenous persons could be exposed to water from these water bodies through dermal contact or incidental ingestion while in the LAA for other activities, such as fishing. It is unlikely that Indigenous persons would drink water from the receiving water bodies, and information gathered through engagement has not identified Victoria Lake Reservoir, Valentine Lake or Victoria River as potable water sources. As a result, occurrences of exposure to surface water, while possible, are expected to be infrequent.

Health Canada (2012) has not established health-based guidelines for incidental exposures (e.g., dermal contact and/or incidential ingestion of water during recreational water use) to metals in surface water. Health Canada does note that ingestion would be considered the primary exposure pathway. Therefore, human health-based drinking water quality guidelines that are based on lifetime daily exposures were used as conservative screening levels. In selecting drinking water screening guidelines, preference was given to maximum acceptable concentrations (MACs) for parameter concentrations in drinking water, established by Health Canada (2020). Where Health Canada does not list a MAC for a given chemical, values from the United States (US) and the World Health Organization (WHO) were selected. For some parameters, regulatory agencies have not established a health-based guideline for drinking water due to a lack of evidence that the parameter would be expected to cause adverse health effects in humans. The health-based screening values are provided in Table 5.



May 2021

# Table 4.4Health-Based Screening Levels for Identified Parameters of Potential<br/>Concern in Surface Water

| Parameter      | Units | Health-<br>based<br>Screening<br>Level | Source or Rationale                                                                                                                                                                                                                                                                                                                    |
|----------------|-------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aluminum       | µg/L  | Not required                           | Health Canada concluded there is no consistent, convincing evidence that aluminum in drinking water causes adverse health effects in humans (Health Canada 2020).                                                                                                                                                                      |
| Ammonia        | µg/L  | Not required                           | Health Canada (2020) indicates that a guideline value is not necessary as it is produced in the body and efficiently metabolized in healthy people and no adverse effects occur at levels found in drinking water.                                                                                                                     |
| Arsenic        | µg/L  | 10                                     | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Cadmium        | µg/L  | 7                                      | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Copper         | µg/L  | 2000                                   | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Cyanide        | µg/L  | 200                                    | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Fluoride       | µg/L  | 1500                                   | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Iron           | µg/L  | Not required                           | Health Canada indicates that no evidence exists of dietary iron toxicity in the general population (Health Canada 2020).                                                                                                                                                                                                               |
| Lead           | µg/L  | 5                                      | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Manganese      | µg/L  | 120                                    | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Nitrite (as N) | µg/L  | 1,000                                  | Health Canada MAC (Health Canada 2020)                                                                                                                                                                                                                                                                                                 |
| Phosphorus     | µg/L  | Not required                           | Phosphorus is an essential mineral that is naturally present in many foods<br>and relatively non-toxic. Health Canada (2020) does not provide a guideline<br>for phosphorus and the United States National Research Council (1980)<br>concluded that there is no basis for the regulation of phosphorus in drinking<br>water supplies. |
| Sulphate       | µg/L  | Not required                           | Health Canada (2020) does not provide a guideline for sulphate and the WHO (2004) concluded that the existing data do not identify a level of sulphate in drinking water that is likely to cause adverse human health effects.                                                                                                         |
| Zinc (Total)   | µg/L  | Not required                           | Health Canada (2020) notes that zinc is an essential element and is generally considered to be non-toxic.                                                                                                                                                                                                                              |

To assess the change in potential human health risk for Indigenous and non-Indigenous receptors related to exposures to the parameters of concern in surface water, the maximum predicted concentration of each parameter 100 m downstream of the receiving points in Victoria Lake Reservoir, Valentine Lake and the Victoria River were compared to the health-based screening values. The maximum predicted concentration of each parameter was below the health-based screening level (Table 6). These results suggest that even if surface water from the receiving bodies were to be used as a source of potable water, or if people were to contact this water during recreational activities, it would not result in a change in human health risk for Indigenous and non-Indigenous receptors. The assessment of surface water quality determined that concentrations of parameters of concern in surface water will have returned to baseline conditions within 300 m of each receiving point (Section 7.6.2 of Chapter 7 [Surface Water Resources] of the EIS [Marathon 2020]).



May 2021

| Domono dom umito            | Health-based       | 75th Percentile<br>Baseline |                  | Predicted Future Case Concentrations |               |                  |               |                |                 |                |                   |
|-----------------------------|--------------------|-----------------------------|------------------|--------------------------------------|---------------|------------------|---------------|----------------|-----------------|----------------|-------------------|
| Parameter, units            | Screening<br>Level | Valentine<br>Lake           | Victoria<br>Lake | LP- FDP-<br>01                       | LP-FDP-<br>02 | LP-FDP-<br>03/05 | LP-FDP-<br>04 | MA- FDP-<br>01 | MA- FDP-<br>01B | MA- FDP-<br>02 | MA- FDP-<br>03/04 |
| Aluminum (Total), µg/L      | Not required       | 15                          | 48               | 59                                   | 70            | 67               | 48            | 16             | 16              | 36             | 85                |
| Arsenic (Total), µg/L       | 10                 | 0.5                         | 0.5              | 0.7                                  | 1.4           | 1.2              | 0.5           | 0.6            | 0.6             | 0.9            | 1.1               |
| Cadmium (Total), μg/L       | 7                  | 0.005                       | 0.005            | 0.006                                | 0.009         | 0.008            | 0.005         | 0.006          | 0.006           | 0.012          | 0.009             |
| Copper (Total), µg/L        | 2000               | 0.75                        | 0.81             | 0.8                                  | 1.8           | 1.5              | 0.8           | 0.7            | 0.7             | 2.3            | 2.0               |
| Iron (Total), μg/L          | Not required       | 25.0                        | 70.5             | 74                                   | 93            | 88               | 71            | 28             | 28              | 37             | 175               |
| Lead (Total), µg/L          | 5                  | 0.25                        | 0.25             | 0.4                                  | 0.5           | 0.5              | 0.3           | 0.3            | 0.3             | 0.3            | 0.3               |
| Manganese (Total), µg/L     | 120                | 7                           | 12               | 26                                   | 60            | 50               | 12            | 8              | 8               | 38             | 78                |
| Phosphorus (Total), μg/L    | Not required       | 50                          | 50               | 50                                   | 50            | 50               | 50            | 50             | 50              | 50             | 50                |
| Zinc (Total), μg/L          | Not required       | 2.5                         | 2.5              | 3.0                                  | 5.0           | 4.5              | 3             | 3              | 3               | 7              | 5                 |
| Nitrite (N), µg/L           | 1000               | 12                          | 16               | 16                                   | 31            | 27               | 16            | 10             | 10              | 9              | 18                |
| Ammonia (N), total, µg/L    | Not required       | 25                          | 25               | 43                                   | 119           | 100              | 25            | 31             | 31              | 27             | 76                |
| Ammonia (N) Unionized, µg/L | Not required       | 0.95                        | 0.95             | 0.1                                  | 0.3           | 0.3              | 1.0           | 0.1            | 0.1             | 0.1            | 0.2               |
| Cyanide (Total), µg/L       | 200                | 10                          | 10               | 10                                   | 10            | 10               | 10            | 10             | 10              | 10             | 10                |
| Cyanide (WAD), µg/L         | 200                | 1.0                         | 1.0              | 1.0                                  | 1.0           | 1.0              | 1.0           | 1.0            | 1.0             | 1.0            | 1.0               |
| Sulfate, µg/L               | Not required       | 1,000                       | 1,000            | 2,092                                | 2,580         | 2,190            | 1,000         | 1,493          | 1,493           | 6,253          | 4,803             |
| Fluoride, µg/L              | 1500               | 60                          | 60               | 71                                   | 116           | 104              | 60            | 64             | 64              | 111            | 89                |

Table 4.5Summary of Baseline and Predicted Average Conditions Water Concentrations at the End of 100 m Mixing Zone of<br/>the Receiver



May 2021

## 4.3.4 Country Foods

Baseline metal concentrations in country foods were established as part of the Country Foods sampling program (Appendix C). The data from this program were used to establish baseline metal concentrations in terrestrial (plant and animal tissue) and aquatic (fish tissue) country foods. The methods used to collect these samples, as well as the analytical results and statistical analyses used to establish the exposure point concentrations for each metal in each tissue type are described in Appendix C. The baseline chemical concentrations in terrestrial and aquatic country foods identified in the Country Foods sampling program are summarized in Table 7.

Project-related changes in the concentrations of the parameters of concern in soil and surface water will govern the Project-related changes in the quality of terrestrial and aquatic country foods. Changes in country food quality could result in changes in human health risk associated with the consumption of country foods. The assessment of Project-related changes in metal concentrations in soil, resulting from deposition, determined that the maximum predicted Future Case concentrations of metals in soil would be less than 2% above Baseline Case concentrations, and for most of the metals the predicted increase from Baseline Case conditions was less than 1% (Section 4.3.2). These nominal increases in metal concentrations in soil would not be expected to alter the quality of terrestrial county food from baseline conditions. Therefore, it is reasonable to conclude that deposition over the operational life of the mine will not result in a change in human health risk associated with the consumption of terrestrial country foods for Indigenous and non-Indigenous receptors who consume plants and/or animals from within the LAA.

The assessment of surface water quality determined that within 300 m of each receiving point, the concentrations of Project-related chemicals will have returned to baseline conditions (Section 7.6.2 of Chapter 7 [Surface Water Resources] of the EIS [Marathon 2020]). The areas within 300 m of each receiving point represent a very small portion of the surface water bodies and a correspondingly small proportion of the area likely to be inhabited by fish species targeted for consumption. Mercury was not detected in the geochemical testing of the ore samples (BSA.5, Attachment 5-B of the EIS [Marathon 2020]). The Project processes do not include the use of mercury. The results of the geochemical water quality modelling showed that the concentrations of mercury in Victoria Lake Reservoir, Valentine Lake and Victoria River would not change from Baseline Case concentrations (Chapter 7 [Surface Water Resources] of the EIS [Marathon 2020]). Given that the Project is not predicted to alter mercury concentrations in the receiving water bodies, it is reasonable to conclude that methylmercury formation in fish tissue will remain unaltered from present levels and that the human health risks associated with exposure to methylmercury in fish tissue will remain unchanged from Baseline Case conditions. It is therefore reasonable to conclude that Project-related effects on surface water quality will not alter fish tissue quality and thus will not result in a change in human health risk to Indigenous and non-Indigenous receptors who consume fish from within the LAA.

As Project-related activities are not anticipated to alter the quality of terrestrial or aquatic country foods, metal concentrations in country foods Baseline Case concentrations have been used to represent Future Case conditions.



May 2021

|                       |            | Snowsho         | e Hare | Laborada a Tara |           |             |  |
|-----------------------|------------|-----------------|--------|-----------------|-----------|-------------|--|
| Chemical<br>Parameter | Units      | Internal Organs | Tissue | Labrador Tea    | Blueberry | Brook Trout |  |
| i arameter            |            |                 |        | Baseline        |           | •           |  |
| Aluminum              | mg/kg - ww | 1.46            | 7.69   | 8.65            | 10.3      | 0.628       |  |
| Antimony              | mg/kg - ww | <0.001          | 0.0019 | 0.0271          | 0.00346   | 0.0032      |  |
| Arsenic               | mg/kg - ww | 0.068           | 0.0319 | 0.0132          | 0.0106    | 0.5         |  |
| Barium                | mg/kg - ww | 0.303           | 0.639  | 28.8            | 3.013     | 0.41        |  |
| Beryllium             | mg/kg - ww | <0.001          | <0.001 | <0.0053         | <0.0017   | <0.001      |  |
| Bismuth               | mg/kg - ww | <0.001          | <0.001 | <0.0053         | <0.0017   | <0.001      |  |
| Boron                 | mg/kg - ww | 0.28            | 0.23   | 6.58            | 1.298     | 0.21        |  |
| Cadmium               | mg/kg - ww | 1.49            | 0.0086 | <0.00265        | 0.00117   | 0.0194      |  |
| Calcium               | mg/kg - ww | 149             | 109    | 2352            | 232       | 1763        |  |
| Chromium              | mg/kg - ww | <0.01           | 0.079  | <0.053          | <0.017    | 0.0734      |  |
| Cobalt                | mg/kg - ww | 0.0837          | 0.0163 | 0.0127          | <0.0034   | 0.0163      |  |
| Copper                | mg/kg - ww | 3.86            | 2.31   | 1.61            | 0.42      | 0.381       |  |
| Iron                  | mg/kg - ww | 434             | 35.9   | 13.0            | 2.64      | 6.55        |  |
| Lead                  | mg/kg - ww | 0.0356          | 0.0477 | 0.0161          | 0.0104    | 0.0732      |  |
| Magnesium             | mg/kg - ww | 188             | 287    | 709             | 88.0      | 304         |  |
| Manganese             | mg/kg - ww | 16.4            | 14.6   | 554             | 111       | 2.59        |  |
| Mercury               | mg/kg - ww | 0.263           | 0.0027 | <0.0053         | <0.0017   | 0.128       |  |
| Molybdenum            | mg/kg - ww | 0.298           | 0.0082 | 0.0161          | 0.00815   | 0.00478     |  |
| Nickel                | mg/kg - ww | 0.036           | 0.028  | 0.229           | 0.0483    | 0.022       |  |
| Phosphorus            | mg/kg - ww | 2740            | 2570   | 473.2           | 164       | 3656        |  |
| Potassium             | mg/kg - ww | 2830            | 3680   | 2234            | 887       | 4285        |  |
| Selenium              | mg/kg - ww | 0.901           | 0.242  | 0.0289          | <0.0085   | 0.403       |  |

### Table 4.6 Summary of Baseline Concentrations in Country Foods



May 2021

|                       |            | Snowsho         | be Hare | Laboration Tea |           |             |
|-----------------------|------------|-----------------|---------|----------------|-----------|-------------|
| Chemical<br>Parameter | Units      | Internal Organs | Tissue  | Labrador Tea   | Blueberry | Brook Trout |
| i ululletei           |            |                 |         | Baseline       |           |             |
| Silver                | mg/kg - ww | 0.0496          | 0.0014  | <0.00265       | <0.00085  | 0.00418     |
| Sodium                | mg/kg - ww | 1350            | 715     | 6.37           | 4.46      | 514         |
| Strontium             | mg/kg - ww | 0.241           | 0.112   | 6.68           | 0.97      | 1.74        |
| Thallium              | mg/kg - ww | 0.0034          | 0.001   | 0.00854        | 0.000458  | 0.00888     |
| Tin                   | mg/kg - ww | <0.02           | 0.039   | <0.053         | <0.017    | 0.0261      |
| Titanium              | mg/kg - ww | 0.152           | 0.215   | 0.314          | <0.085    | 0.195       |
| Uranium               | mg/kg - ww | <0.0004         | <0.0004 | <0.00106       | <0.00034  | 0.00123     |
| Vanadium              | mg/kg - ww | <0.02           | <0.02   | <0.106         | <0.034    | 0.025       |
| Zinc                  | mg/kg - ww | 21.6            | 20.5    | 7.06           | 1.09      | 14.8        |

### Table 4.6 Summary of Baseline Concentrations in Country Foods



May 2021

## 4.4 CONCEPTUAL SITE MODEL

The exposure pathway screening and development of the conceptual site model (CSM) identify the exposure pathways through which people may be exposed to COPC. For the HHRA, the potential exposure media for human receptors and exposure pathway-specific rationale for the inclusion or exclusion of each pathway from the HHRA are provided in Table 8. Beginning with the source media (e.g., air, water, soil), the key exposure pathways through which potential dietary items may accumulate COPC, and through which human receptors can become exposures to COPC, are summarized in the human health CSM (Figure 7).

Although Indigenous and non-Indigenous receptors could be exposed to Project-related COPC in the air while in the LAA, the assessment of Baseline and Future Case air quality (Section 4.3.1) demonstrated that the maximum predicted Future Case concentrations of COPC in air were below their respective air quality standards and thus would represent a negligible human health risk for Indigenous and non-Indigenous receptors in the LAA.

Sections 4.3.2 through 4.3.4 presented the potential for Indigenous and non-Indigenous receptors to be exposed to COPC in soil and surface water while they are in the LAA, and to these COPC in country foods harvested from within the LAA. Based on the assessment of predicted Future Case concentrations, Project-related activities are not anticipated to alter soil, surface water and country food quality to the extent that a material change would result in human health risk for Indigenous and non-Indigenous receptors who spend time in the LAA.

Health Canada guidance for conducting a HHRA within an environmental assessment notes that a quantitative HHRA is required when elevated COPC concentrations are predicted in one or more environmental media for a proposed project (Health Canada 2019). Health Canada guidance further notes that where there are no predicted pathways that may result in exposure to the population, a qualitative (screening) approach may be sufficient. The assessment of Future Case COPC concentrations in air, soil, surface water and country foods determined that Project-related activities would not result in material changes in contaminant concentrations in these media such that they would be expected to contribute to exposures for Indigenous and non-Indigenous members of the population. Therefore, a qualitative assessment of potential human health risks is considered sufficient to evaluate changes in potential human health Project-related activities for Indigenous and non-Indigenous members of the population.



May 2021

### Table 4.7 Rationale for Exposure Pathway Inclusion in the HHRA

| Exposure Pathway                                                                                                                                                                                                               | Receptor Category           | Carried<br>Forward for<br>HHRA | Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                | Indigenous Receptors        | No                             | Predicted Future Case contaminant concentrations in air are below the corresponding human health-based ambient air quality standards and therefore represent a negligible human                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Inhalation of COPC from air emissions                                                                                                                                                                                          | Non-Indigenous<br>Receptors | No                             | health risk for Indigenous and non-Indigenous people in the LAA.<br>With the exception of 1-hour NO <sub>2</sub> concentrations, predicted Future Case contaminant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Short-term and Long-<br>term)                                                                                                                                                                                                 | Off-Duty Workers            | Yes                            | concentrations in air are below the corresponding human health-based ambient air quality standards and therefore represent a negligible human health risk for off-duty workers housed at the accommodations camp or exploration camp. The assessment of potential human health risks associated with short-term (1-hour) exposures to NO <sub>2</sub> for off-duty workers has been carried forward into the HHRA.                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                | Indigenous Receptors        | No                             | Predicted Future Case contaminant concentrations in soil are below the corresponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                | Non-Indigenous<br>Receptors | No                             | human health-based residential soil quality criteria and therefore represent a negligible human health risk for Indigenous and non-Indigenous people in the LAA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Incidental ingestion<br>and dermal contact<br>with soil<br>Off-Duty Workers<br>No<br>No<br>The areas of the<br>will be covered<br>covered in soil a<br>aggregate mate<br>washed from the<br>and snow. Aggr<br>material does no |                             | No                             | The areas of the accommodations camp and exploration camp outside the building footprints will be covered in pavement, or aggregate material. This aggregate material will not be covered in soil and will remain exposed for the lifetime of the Project. Dust deposited on the aggregate material would not be expected to accumulate on the surface. Rather, it would be washed from the surface into the interstitial spaces between the aggregate material by rain and snow. Aggregate is not considered to be soil, and human contact with aggregate material does not result in the same types of exposures that result from human contact with soil. |
|                                                                                                                                                                                                                                | Indigenous Receptors        | No                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Surface Water<br>Ingestion                                                                                                                                                                                                     | Non-Indigenous<br>Receptors | No                             | Predicted Future Case contaminant concentrations in surface water are below the corresponding human health-based MACs for drinking water and therefore, represent a negligible human health risk for Indigenous and non-Indigenous people in the LAA.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                | Off-Duty Workers            | No                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                | Indigenous Receptors        | No                             | Predicted Future Case contaminant concentrations in soil are not anticipated to result in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Consumption of<br>Country Foods                                                                                                                                                                                                | Non-Indigenous<br>Receptors | No                             | changes in the quality of terrestrial country foods and therefore would not result in a change<br>in human health risk for Indigenous and non-Indigenous people who harvest terrestrial<br>country foods from within the LAA.                                                                                                                                                                                                                                                                                                                                                                                                                                |



May 2021

| Exposure Pathway                                            | Receptor Category           | Carried<br>Forward for<br>HHRA | Rationale                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|-----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | Off-Duty Workers            | No                             | Off-duty workers will not be permitted to hunt or harvest country foods in the LAA during their rotation.                                                                                                                                                                           |
|                                                             | Indigenous Receptors        | No                             | The assessment of surface water quality noted that Project-related effects on surface water quality would be minor and localized to within 300 m of each of the Project receiving points. The limited extent of Project effects is not expected to alter the tissue quality of fish |
| Fish Ingestion                                              | Non-Indigenous<br>Receptors | No                             | harvested from the surface water bodies within the LAA. Therefore, the consumption of fish caught within the LAA would not change the human health risk for Indigenous and non-<br>Indigenous receptors who harvest fish in the LAA.                                                |
|                                                             | Off-Duty Workers            | No                             | Off-duty workers will not be permitted to fish in the LAA while on rotation.                                                                                                                                                                                                        |
|                                                             | Indigenous Receptors        | No                             | There are no beaches or other recreational areas in the LAA where Indigenous and non-<br>Indigenous people could reasonably be expected to swim or engage in other recreational water-use activities on a regular basis. In addition, predicted Future Case contaminant             |
| Recreational Water<br>Use                                   | Non-Indigenous<br>Receptors | No                             | concentrations in surface water are below the corresponding human health-based MACs for<br>drinking water and therefore represent a negligible human health risk for Indigenous and<br>non-Indigenous people in the LAA.                                                            |
|                                                             | Off-Duty Workers            | No                             | Predicted Future Case contaminant concentrations in surface water are below the corresponding human health-based MACs for drinking water and therefore represent a negligible human health risk for off-duty workers who may swim in Victoria Lake Reservoir or Valentine Lake.     |
|                                                             | Indigenous Receptors        | No                             | There are no beaches or other recreational areas in the LAA where Indigenous and non-<br>Indigenous people could reasonably be expected to come into contact with sediment.                                                                                                         |
| Incidental ingestion<br>and dermal contact<br>with sediment | Non-Indigenous<br>Receptors | No                             | Therefore, contact with sediment would not be expected to result in a change in human health risk between Baseline Case and Future Case conditions for Indigenous and non-<br>Indigenous receptors.                                                                                 |
|                                                             | Off-Duty Workers            | No                             | There are no beaches or other recreational areas in the Project Area where off-duty workers could reasonably be expected to come into contact with sediment. Therefore, contact with sediment would not be expected to result in a human health risk for off-duty workers.          |

### Table 4.7 Rationale for Exposure Pathway Inclusion in the HHRA



May 2021

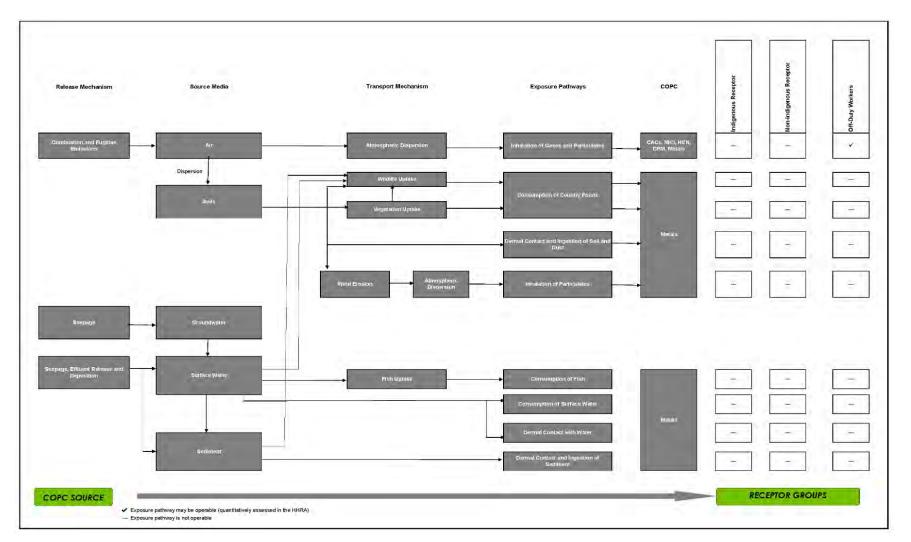



Figure 4-1 Human Health Conceptual Site Model



May 2021

# 5.0 TOXICITY ASSESSMENT

Toxicity is the potential for a chemical to produce damage (whether permanent or temporary) to the structure or functioning of the receptor's body. The toxicity of a chemical depends on the amount taken into the body (referred to as the "dose") and the duration of exposure (the length of time the receptor is exposed to the chemical). For each chemical, there is a specific dose and duration of exposure necessary to produce a toxic environmental effect in a given receptor. This is referred to as the "dose-response relationship" of a chemical. The toxic potency of a chemical is dependent on the inherent properties of the chemical itself (its ability to cause a biochemical or physiological response at the site of action within the receptor's body) as well as the ability of the chemical to reach the site of action. This dose-response principle is central to the risk assessment methodology.

The Problem Formulation stage of the HHRA determined that a qualitative assessment of potential human health risks would be sufficient to evaluate changes in potential human health risks associated with Project-related activities for Indigenous and non-Indigenous members of the population in the LAA. The Problem Formulation also determined that, with the exception of NO<sub>2</sub>, a qualitative assessment of potential human health risks would be sufficient to evaluate the potential human health risks for off-duty workers housed in the accommodations camp or exploration camp. Therefore, with the exception of NO<sub>2</sub>, a Toxicity Assessment that identifies the TRVs to be used in a quantitative risk assessment was not required and has not been included in the HHRA. The 1-hour NO<sub>2</sub> concentrations are the only concentrations predicted to exceed the human health-based ambient air quality standard at the accommodations camp and exploration camp locations. Therefore, the toxicity assessment has focused on the selection of an appropriate human health-based exposure benchmark for off-duty workers that will be used to assess the potential human health risks associated with short-term inhalation exposures to NO<sub>2</sub>.

## 5.1 SELECTION OF EXPOSURE BENCHMARKS FOR 1-HOUR NO<sub>2</sub>

Health Canada has completed a human health risk assessment for NO<sub>2</sub> in ambient air (Health Canada 2016c). The Health Canada assessment provides a detailed review of the human health effects associated with exposures to varying levels of NO<sub>2</sub> in ambient air and concludes that, "the health evidence supports the establishment of both short-term and long-term standards to protect against the full suite of health effects associated with ambient NO<sub>2</sub>." The Health Canada assessment, however, does not establish TRVs for NO<sub>2</sub>, and therefore cannot be used as the basis for assessing the potential health risks associated with inhalation exposures to NO<sub>2</sub> for workers housed at the accommodations camp or exploration camp. The CCME has established 1-hour and annual average CAAQS for NO<sub>2</sub> for the years 2020 and 2025 (CCME 2018). Given that the Project will be in operation beyond 2025, the 2025 CAAQS have been used to evaluate potential human health risks for off-duty workers housed at the accommodations camp and exploration camp and exploration camp facilities.

It is recognized that NO<sub>2</sub> is considered a non-threshold contaminant in that exposures to even very low levels of NO<sub>2</sub> can be associated with potential human health risks. Risk acceptability benchmarks for NO<sub>2</sub> have not been established by regulatory agencies. The human health-based ambient air quality standards



May 2021

for chemicals such as NO<sub>2</sub> are defined as representing concentrations in ambient air (over the specified averaging period) that represent negligible risk to human health, including sensitive members of the population. Therefore, the HHRA for off-duty workers at the accommodations camp and exploration camp will use the 1-hour and annual average NO<sub>2</sub> ambient air objectives as risk acceptability benchmarks. Exposures that are below these limits will be considered to represent a negligible human health risk. The guidelines for NO<sub>2</sub> are summarized in Table 9.

## Table 5.1 Ambient Air Quality Objectives for NO2

| Exposure Duration | Air Quality Objective<br>(µg/m³) | Health Effect       | Source     |
|-------------------|----------------------------------|---------------------|------------|
| 1-hour            | 79 <sup>a</sup>                  | Respiratory effects | CAAQS 2025 |
| Annual Average    | 23 <sup>b</sup>                  | Respiratory effects | CAAQS 2025 |
| Notoo:            |                                  |                     |            |

Notes:

<sup>a</sup> Statistical form is the 98<sup>th</sup> percentile of the daily 1-hour maximum concentrations averaged over three years.

<sup>b</sup> Statistical form is the annual average of 1-hour average concentrations over a year.

# 6.0 EXPOSURE ASSESSMENT

The main objective of the exposure assessment is to develop quantitative estimates of the potential changes in exposure for human receptors to each COPC, that could occur between Baseline Case and Future Case conditions. The HHRA considers the exposure estimates based on COPC concentrations in environmental media under Baseline Case and Future Case conditions, and the receptor characteristics identified for the Indigenous and non-Indigenous receptors.

## 6.1 EXPOSURE ASSESSMENT FOR INDIGENOUS RECEPTORS

The Problem Formulation stage of the HHRA determined that a qualitative assessment of potential human health risks would be sufficient to evaluate changes in potential human health risks associated with Project-related activities for Indigenous and non-Indigenous members of the population. Therefore, quantitative exposure estimates for Indigenous receptors for Baseline Case and Future Case conditions were not required and have not been included in the HHRA.

## 6.2 EXPOSURE ASSESSMENT FOR NON-INDIGENOUS RECEPTORS

The Problem Formulation stage of the HHRA determined that a qualitative assessment of potential human health risks would be sufficient to evaluate changes in potential human health risks associated with Project-related activities for Indigenous and non-Indigenous members of the population. Therefore, quantitative exposure estimates for non-Indigenous receptors for Baseline Case and Future Case conditions were not required and have not been included in the HHRA.



May 2021

## 6.3 EXPOSURE ASSESSMENT FOR OFF-DUTY WORKERS

For screening purposes, the maximum predicted 1-hour NO<sub>2</sub> concentrations for Future Case conditions were generated for the accommodations camp and exploration camp by calculating the 98<sup>th</sup> percentile concentrations throughout the three-year modelling period. The maximum predicted 98<sup>th</sup> percentile 1-hour NO<sub>2</sub> concentrations at the accommodations camp and exploration camp were 83  $\mu$ g/m<sup>3</sup> and 80  $\mu$ g/m<sup>3</sup>, respectively. The higher of these two values was used in the Risk Characterization (Section 7.3) to assess the potential human health risks associated with inhalation exposures to 1-hour NO<sub>2</sub> concentrations for off-duty workers housed in the accommodations camp or exploration camp.

# 7.0 RISK CHARACTERIZATION

The final step in the HHRA is risk characterization. The risk characterization compares the estimated exposures to the COPC for each of the receptors with the toxicity reference values to determine if site related exposures exceed the identified limits. Given the differences in the biological mechanisms of action between non-carcinogenic and carcinogenic chemicals, the potential hazards/risks are determined differently for these two classes of compounds. Thus, where both types of contaminants are being evaluated in the HHRA, the characterization of the hazards associated with exposures for non-carcinogenic chemicals and the risks associated with exposures to carcinogenic chemicals are typically assessed and presented separately.

Health Canada guidance for conducting a HHRA within an environmental assessment notes that a quantitative HHRA is required when elevated COPC concentrations are predicted in one or more environmental media for a proposed project (Health Canada 2019). Health Canada guidance further notes that where there are no predicted pathways that may result in exposure to the population, a qualitative (screening) approach may be sufficient.

## 7.1 CHARACTERIZING RISKS FOR INDIGENOUS RECEPTORS

The Problem Formulation stage of the HHRA determined that Project-related activities would not result in material changes in contaminant concentrations in the environmental media (air, water, soil, and terrestrial and aquatic country foods) that would be expected to contribute to exposures for Indigenous members of the population. Thus, a qualitative assessment of potential human health risks is sufficient to evaluate changes in potential human health risks associated with Project-related activities for Indigenous members of the population.

In the absence of Project-related changes in contaminant exposures, it is reasonable to conclude that the Project will not alter potential human health risks for Indigenous members of the population who consume country foods or engage in traditional and/or recreational activities in the LAA.



May 2021

## 7.2 CHARACTERIZING RISKS FOR NON-INDIGENOUS RECEPTORS

The Problem Formulation stage of the HHRA determined that Project-related activities would not result in material changes in contaminant concentrations in the environmental media (air, water, soil, and terrestrial and aquatic country foods) that would be expected to contribute to exposures for non-Indigenous members of the population. Thus, a qualitative assessment of potential human health risks is sufficient to evaluate changes in potential human health risks associated with Project-related activities for non-Indigenous members of the population.

In the absence of Project-related changes in contaminant exposures, it is reasonable to conclude that the Project will not alter potential human health risks for non-Indigenous members of the population who consume country or engage in traditional and/or recreational activities in the LAA.

## 7.3 OFF-DUTY WORKERS

With the exception of 1-hour exposures to NO<sub>2</sub>, the maximum predicted concentrations for each COPC for each of the appropriate exposure averaging periods (e.g.,1-hour, 2-hour, 24-hour, annual average) were below their respective human health-based ambient air quality standards and thus represent negligible human health risks for off-duty workers housed at the accommodations camp or exploration camp.

The 98<sup>th</sup> percentile of the 1-hour daily maximum NO<sub>2</sub> concentrations exceeded the 2025 CAAQS of 79  $\mu$ g/m3 at both the accommodations camp (83  $\mu$ g/m<sup>3</sup>) and the exploration camp (80  $\mu$ g/m<sup>3</sup>). These concentrations represent hazard quotients (HQs) of 1.05 and 1.01, respectively. The 1-hour NO<sub>2</sub> concentrations were predicted to exceed the 2025 CAAQS of 79  $\mu$ g/m<sup>3</sup> for 42 1-hour periods over the three modelling years (26,280 hours) at the accommodations camp (0.16% of the time) and for 30 1-hour periods at the exploration camp (0.11% of the time). In general, the predicted exceedances do not occur in blocks of more than three consecutive hours, and these are separated by periods where the 1-hour NO<sub>2</sub> concentrations camp and exploration camp locations), the 1-hour NO<sub>2</sub> concentration was also predicted to exceed the 2020 CAAQS (113  $\mu$ g/m<sup>3</sup>) for a single hour (at the accommodations camp location), meaning that based on the currently applicable CAAQS, 1-hour NO<sub>2</sub> concentrations would exceed the current health-based standard less than 0.004% of the time.

Exceedances of the 1-hour NO<sub>2</sub> CAAQS could result in increases in respiratory responses such as increased respiratory tract resistance in sensitive members of the workforce (asthmatics). Individual exceedances of the 1-hour NO<sub>2</sub> CAAQS that are separated by periods of time when the 1-hour NO<sub>2</sub> concentrations are below the CAAQS allow for recovery from the respiratory effects associated with the exposure. Respiratory recovery would be delayed in situations where multiple exceedances of the 1-hour NO<sub>2</sub> CAAQS occur in consecutive hours. Prolonged exposures to 1-hour NO<sub>2</sub> concentrations above the CAAQS could result in increased respiratory effects compared to shorter-term exposures. Thus, exceedances of the 1-hour NO<sub>2</sub> that occur in blocks of time may represent a greater potential human health risk than exceedances that occur on an individual (single hours) or a short-term (blocks of several hours) basis.



May 2021

Exceedances of the 1-hour NO<sub>2</sub> CAAQS that occur over more than three hours are not predicted to occur at either the accommodations camp or exploration camp over the 26,280 hours of the 3-year modelling period. During these periods, particularly sensitive members of the workforce (e.g., those with asthma) who are directly exposed to 1-hour NO<sub>2</sub> concentrations above the CAAQS may experience respiratory effects, such as shortness of breath, that would be expected to subside as NO<sub>2</sub> concentrations decline.

The predicted 1-hour NO<sub>2</sub> exceedances usually occur in winter months (February to April). These exceedances generally happen overnight, occurring sometime between 19:00 and 6:00 the following morning. Within this period, there is no fixed pattern to when individual exceedances happen. In the winter months, between 19:00 and 6:00, workers would generally be expected to spend off-duty time indoors, and thus would not be expected to experience prolonged exposures to NO<sub>2</sub> concentrations that exceed the 1-hour CAAQS.

Considering the results of the assessment of potential health risks associated with inhalation exposures to NO<sub>2</sub>, it is reasonable to conclude that inhalation exposure to NO<sub>2</sub> represents a negligible human health risk for off-duty workers housed at the accommodations camp and/or exploration camp.

# 8.0 UNCERTAINTY ANALYSIS

This HHRA was conducted according to accepted risk assessment methodologies and follows guidance published and endorsed by Health Canada. This approach is consistent with previous projects that have been reviewed by the Impact Assessment Agency of Canada. The HHRA included baseline data from multiple environmental media (i.e., air, soil, water and biota) and accepted modelling techniques were used to predict Future Case contaminant concentrations in these media, where required. Information with respect to likely human receptors and exposure pathways was collected through publicly available data, surveys, engagement and public meetings, as well as professional judgement. HHRAs have inherent uncertainties related to the assumptions applied in assessing potential human health risks associated with exposures to Project-related chemical releases to environmental media. This uncertainty often results from the use of conservative assumptions aimed at overestimating exposures and associated potential health risks. Although many factors contribute to risk estimate, the results are generally sensitive for only a few of these factors. The factors that are likely to have the greatest effect on this HHRA are described below.

## 8.1 UNCERTAINTIES IN AIR QUALITY MODELLING PREDICTIONS

The maximum predicted Future Case concentration for each of the COPC for each of the appropriate exposure averaging periods is below its corresponding AAQS. Maximum COPC concentrations outside the Project Area are predicted to occur at the unused outfitter cabin located west of the Project Area across Valentine Lake from the Project (Receptor ID 14639). Maximum predicted COPC concentrations at the remaining 31 sensitive receptor locations within the LAA are lower than those predicted at the unused outfitter cabin.



May 2021

There is a high level of confidence in the predicted COPC concentrations in air in the LAA (Section 5.7, Chapter 5 [Atmospheric Environment] of the EIS [Marathon 2020]). The overall assessment of air quality is considered to be conservative, meaning the modelling results are likely to be higher than those that would be measured when the Project is in operation. Given that COPC concentrations in ambient air in the LAA are expected to have been over-estimated, and that the predicted COPC concentrations are below their respective AAQS, there is a high degree of confidence that the uncertainties in the predictions of Project-related changes in air quality are not expected to alter the conclusions of the HHRA.

## 8.2 UNCERTAINTIES IN SOIL QUALITY PREDICTIONS

Baseline metal concentrations in soil were established as part of the Country Foods sampling program. A total of twenty soil samples were collected from across the LAA. These data were used to calculate the 95% UCLM baseline concentration for each of the metals. Additional sampling would provide a larger data set for estimating Baseline soil concentrations. However, it is unlikely that the inclusion of additional samples would alter the estimated 95% UCLM soil concentrations sufficiently to result in a material difference to Baseline conditions.

Annual deposition rates for each of the metals in the ore were predicted for each of the 32 sensitive receptor locations within the LAA that are outside the Project Area. These data were used to calculate a 95% UCLM deposition rate for each metal across the LAA. These values were used in conjunction with the Baseline concentrations to provide Future Case metal concentrations in soil. Deposition estimates were calculated as part of the air dispersion modelling conducted as part of the Atmospheric Environment assessment. The air quality assessment (Section 5.7 of Chapter 5 [Atmospheric Environment] of the EIS [Marathon 2020]) describes that, while there is some uncertainty in the estimates of fugitive dust emissions, the overall assessment is conservative and the modelling results are likely to over-estimate fugitive dust emissions and, therefore, deposition rates. Given that deposition rates are expected to have been overestimated, and that the results from these overestimations indicate that deposition will not materially alter soil quality, the uncertainties in Project effects on soil quality are not expected to alter the conclusions of the HHRA.

## 8.3 UNCERTAINTIES IN SURFACE WATER QUALITY PREDICTIONS

The assessment of surface water quality determined that the concentrations of Project-related chemicals will be below their corresponding drinking water MACs within 100 m of each receiving point. The areas within 100 m of each receiving point represent a negligible portion of the surface water bodies and a correspondingly small proportion of the area likely to be used as occasional sources of drinking water. There is a high degree of confidence in the predictions of surface water quality (Section 7.7 of Chapter 7 [Surface Water Resources] of the EIS [Marathon 2020]), and therefore a high degree of confidence in the prediction that Project-related changes in surface water quality will not alter its suitability as a drinking water source. Thus, uncertainties in the effects of the Project on surface water quality are not expected to alter the conclusions of the HHRA.



May 2021

## 8.4 UNCERTAINTIES IN COUNTRY FOOD QUALITY PREDICTIONS

Project-related changes in the concentrations of the parameters of concern in soil and surface water will govern the Project-related changes in the quality of terrestrial and aquatic country foods, whereby changes in country food quality could result in changes in human health risk associated with the consumption of country foods. The assessment of Project-related changes in metal concentrations in soil resulting from deposition determined that the maximum predicted Future Case concentrations of metals in soil would be well below the human health-based residential soil quality criteria (Section 4.3.2). The assessment of potential increases in metal concentrations in soil provided in Section 4.3.2 was based on a 95% UCLM deposition rate, which represents a reasonable upper limit of potential change in metal concentrations in soil and therefore in country foods (both animal and plant). Increases in metal concentrations in soil across the LAA would be lower than the increase noted in Section 4.3.2. Animals with the LAA would be expected to move throughout the LAA and thus experience a range of metal concentrations in soil. It is also reasonable to expect that plants would be harvested from areas across the LAA and would not be limited to harvesting solely at the point of maximum deposition. Thus, uncertainties in deposition estimates are not expected to alter the conclusions of the HHRA.

The assessment of surface water quality determined that the concentrations of Project-related chemicals will have returned to baseline conditions within 300 m of each receiving point (Section 7.6.2 of Chapter 7 [Surface Water Resources] of the EIS [Marathon 2020]). These areas represent a very small portion of the surface water bodies and a correspondingly small proportion of the area likely to be inhabited by fish species targeted for consumption. There is a high degree of confidence in the predictions of surface water quality (Section 7.7 of Chapter 7 [Surface Water Resources] of the EIS [Marathon 2020]), and therefore a high degree of confidence in the prediction that Project-related changes in surface water quality will not alter fish tissue quality. Thus, uncertainties in the effects of the Project on fish tissue quality are not expected to alter the conclusions of the HHRA.

# 9.0 CONCLUSIONS

The HHRA evaluated potential human health risks associated with exposures to Project-related COPC under Background and Predicted Future Case conditions for Indigenous and non-Indigenous receptors present in the LAA. The results demonstrated that the predicted changes in inhalation exposures, direct contact exposures to soil and surface water and ingestion exposures from the consumption of country foods represent a negligible change in human health risk for the Indigenous and non-Indigenous receptors.

The HHRA also evaluated potential human health risks associated with inhalation exposures to Projectrelated COPC for off-duty workers housed at the accommodations camp or exploration camp. The results demonstrated that, with the exception of 1-hour exposures to NO<sub>2</sub>, the maximum predicted concentrations for each COPC for each of the appropriate exposure averaging periods (e.g.,1-hour, 2-hour, 24-hour, annual average) were below the respective human health-based ambient air quality standards and thus represent negligible human health risks for off-duty workers housed at the accommodations camp or exploration camp. The results also demonstrated that the exceedances of the 1-hour NO<sub>2</sub> CAAQS



May 2021

predicted to occur at the accommodations camp and exploration camp were limited in magnitude and frequency and thus represent a negligible human health risk for off-duty workers. The HHRA determined that Project activities would not result in adverse residual effects on human health, and therefore a cumulative effects assessment is not required.

The conclusions of the HHRA are based on the EIS which assessed potential changes in air, soil and surface water quality as described in Chapter 5 (Atmospheric Environment) and Chapter 7 (Surface Water Resources) of the EIS (Marathon 2020). The predictions provided in these sections incorporate consideration of mitigation measures to reduce the environmental effects of the Project. These mitigation measures also serve to address the human health effects mechanisms described above, and additional mitigation measures specific to the HHRA are not required.



May 2021

# **10.0 REFERENCES**

- Canadian Ambient Air Quality Standards (CAAQS).n.d. Available at: <u>http://airquality-</u> qualitedelair.ccme.ca/en/ (Accessed February 2021)
- Chan, L., O. Receveur, M. Batal, W. David, H. Schwartz, A. Ing, K. Fediuk, and C. Tikhonov. 2017. First Nations Food, Nutrition and Environment Study (FNFNES): Results from the Atlantic Region 2014. Ottawa: University of Ottawa, 2017. Print. Available at: http://www.fnfnes.ca/docs/Atlantic\_Regional\_Report\_Eng\_Jan\_25.pdf (Accessed February 2021)
- Environment and Climate Change Canada (ECCC). 2019. National Air Pollutant Surveillance (NAPS) Program. Ambient Air Quality data for Grand Falls-Windsor 2016-2017. Available online at: <u>https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html (Accessed February 2021)</u>
- Federal Contaminated Sites Action Plan (FCSAP). 2012. Ecological Risk Assessment Guidance. Available at: <u>https://www.canada.ca/content/dam/eccc/migration/fcs-scf/B15E990A-C0A8-4780-9124-07650F3A68EA/13-049-EC-ID541-Module-3-ENG.pdf</u> (Accessed February 2021)
- Health Canada. 2010a. Federal Contaminated Sites Risk Assessment in Canada, Part V: Guidance on Human Health Detailed Quantitative Risk Assessment for Chemicals. Available at: <u>http://publications.gc.ca/collections/collection\_2011/sc-hc/H128-1-11-639-eng.pdf</u> (Accessed February 2021)
- Health Canada. 2010b. Federal Contaminated Sites Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values (TRV) and Chemical-Specific Factors, Version 2.0. Available at: <u>http://publications.gc.ca/collections/collection\_2012/sc-hc/H128-1-11-638-eng.pdf</u> (Accessed February 2021)
- Health Canada. 2010c. Useful Information for Environmental Assessments. Available at: <u>http://publications.gc.ca/collections/collection\_2015/sc-hc/H128-1-10-599-eng.pdf</u> (Accessed February 2021)
- Health Canada. 2012. Federal Contaminated Sites Risk Assessment in Canada, Part I: Guidance on Human Health Risk Preliminary Quantitative Risk Assessment, Version 2.0. Available at: <u>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/contaminated-sites/federal-contaminated-site-risk-assessment-canada-part-guidance-human-health-preliminary-quantitative-risk-assessment-pqra-version-2-0.html (Accessed February 2021)</u>
- Health Canada. 2016a. Guidance for Evaluating Human Health Impacts in Environmental Assessments: Drinking and Recreational Water Quality. Available online at: <u>https://www.acee.gc.ca/050/documents/p80054/119377E.pdf</u> (Accessed February 2021)



May 2021

- Health Canada. 2016b. Guidance for Evaluating Human Health Impacts in Environmental Assessment: Air Quality. Available online at: <u>https://www.acee.gc.ca/050/documents/p80054/119376E.pdf</u> (Accessed February 2021)
- Health Canada. 2016c. Human Health Risk Assessment for Ambient Nitrogen Dioxide. Available at: <u>http://publications.gc.ca/collections/collection\_2016/sc-hc/H114-31-2016-eng.pdf</u>.
- Health Canada. 2016d. Human Health Risk Assessment for Diesel Exhaust. Available at: https://www.ccacoalition.org/sites/default/files/resources/2016\_Human-Health-Assessment-for-Diesel-Exhaust\_Canada.pdfHealth Canada. 2017a. Guidance for Evaluating Human Health Impacts in Environmental Assessments: Air Quality. Available online at: <u>https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidanceevaluating-human-health-impacts-air-quality.html</u> (Accessed February 2021)
- Health Canada. 2017b. Guidance for Evaluating Human Health Impacts in Environmental Assessments: Country Foods. Available online at: <u>https://www.canada.ca/en/health-</u> <u>canada/services/publications/healthy-living/guidance-evaluating-human-health-impacts-country-</u> <u>foods.html</u> (Accessed February 2021)
- Health Canada. 2019. Guidance for Evaluating Human Health Impacts in Environmental Assessment: Human Health Risk Assessment. Available online at: <u>https://www.canada.ca/en/health-</u> <u>canada/services/publications/healthy-living/guidance-evaluating-human-health-impacts-risk-</u> <u>assessment.html</u> (Accessed February 2021)
- Health Canada. 2020. Guidelines for Canadian Drinking Water Quality-Summary Table. Available at: <u>https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table.html</u> (Accessed February 2021)
- HEI 2015: Health Effects Institute: Diesel Emissions and Lung Cancer: An Evaluation of Recent Epidemiological Evidence for Quantitative Risk Assessment: HIE Diesel Epidemiology Panel. Available at: <u>https://www.healtheffects.org/publication/diesel-emissions-and-lung-cancerevaluation-recent-epidemiological-evidence-quantitative</u>
- Marathon Gold Corporation (Marathon). 2020. Valentine Gold Project: Environmental Impact Statement. Available online at: <u>https://iaac-aeic.gc.ca/050/evaluations/proj/80169</u>
- Newfoundland and Labrador Ambient Air Quality Standards (NL AAQS). 2016. Air Pollution Control Regulations, 2004. Newfoundland and Labrador Regulation 39/04. Schedule A-Table I: Ambient Air Quality Standards at Reference Conditions. Available online at: <u>https://www.assembly.nl.ca/legislation/sr/regulations/rc040039.htm</u> (Accessed February 2021)
- Newfoundland and Labrador Department of Fisheries and Land Resources (NLDFLR). 2019a. Ecoregions of Newfoundland and Labrador. Available at: <u>https://www.gov.nl.ca/eccm/files/natural-areas-pdf-ecoregions-nf-lab.pdf</u> (Accessed February 2021)



May 2021

- Newfoundland and Labrador Department of Fisheries and Land Resources (NLDFLR). 2019b. Protected Areas in Newfoundland and Labrador. Available at: <u>https://www.gov.nl.ca/ffa/gis/maps/centraleco/#1</u> (Accessed February 2021)
- Ontario Air Contaminant Benchmarks (ACBs). n.d. Available onine at: <u>https://www.ontario.ca/page/air-</u> <u>contaminants-benchmarks-list-standards-guidelines-and-screening-levels-assessing-point</u> (Accessed February 2021)
- Protected Areas Association of Newfoundland and Labrador (PAA). 2008. Central Newfoundland Forest Ecoregion – Red Indian Lake Subregion. Parks and Natural Area Division. Available at: <u>https://www.gov.nl.ca/eccm/files/publications-parks-ecoregions-island-2b-red-indian-lake.pdf</u> (Accessed February 2021)
- Qalipu First Nation (Qalipu). 2020. The Collection of of Current Land use and Aboriginal Traditional Knowledge (ATK Study). Final Report v.1.1. July 2020
- WHO (World Health Organization). 2004. Sulfate in Drinking-water Background document for the development of WHO Guidelines for Drinking-water Quality. Available at: <u>https://www.who.int/water\_sanitation\_health/dwq/chemicals/sulfate.pdf (Accesed February 2021)</u>



# APPENDIX A

**ProUCL Outputs - Soil** 

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:07:52 PMFrom FileSoil, Aluminum, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Aluminum, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 20    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 200                | Mean                            | 2291  |
| Maximum                      | 12500              | Median                          | 1300  |
| SD                           | 2920               | Std. Error of Mean              | 653   |
| Coefficient of Variation     | 1.275              | Skewness                        | 2.602 |
|                              |                    |                                 |       |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.689 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.237 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.192 | Data Not Normal at 5% Significance Level |

#### Data Not Normal at 5% Significance Level

| As                    | suming Norn | nal Distribution                                                |
|-----------------------|-------------|-----------------------------------------------------------------|
| 95% Normal UCL        |             | 95% UCLs (Adjusted for Skewness)                                |
| 95% Student's-t UCL   | 3420        | 95% Adjusted-CLT UCL (Chen-1995) 3771                           |
|                       |             | 95% Modified-t UCL (Johnson-1978) 3484                          |
|                       | Gamma (     | GOF Test                                                        |
| A-D Test Statistic    | 0.402       | Anderson-Darling Gamma GOF Test                                 |
| 5% A-D Critical Value | 0.77        | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.112       | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.2         | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Dis   | stributed at 5% Significance Level                              |
|                       |             |                                                                 |
|                       | Gamma       | Statistics                                                      |

| k hat (MLE)                    | 0.966 | k star (bias corrected MLE)         | 0.855 |
|--------------------------------|-------|-------------------------------------|-------|
| Theta hat (MLE)                | 2371  | Theta star (bias corrected MLE)     | 2681  |
| nu hat (MLE)                   | 38.65 | nu star (bias corrected)            | 34.18 |
| MLE Mean (bias corrected)      | 2291  | MLE Sd (bias corrected)             | 2478  |
|                                |       | Approximate Chi Square Value (0.05) | 21.81 |
| Adjusted Level of Significance | 0.038 | Adjusted Chi Square Value           | 21.03 |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 3724

95% Approximate Gamma UCL (use when n>=50) 3591

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:07:52 PM From File Soil, Aluminum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Aluminum, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.978                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.0934                | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 5.298 | Mean of logged Data | 7.137 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 9.433 | SD of logged Data   | 1.132 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 4978 | 90% Chebyshev (MVUE) UCL   | 4244 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 5137 | 97.5% Chebyshev (MVUE) UCL | 6376 |
| 99% Chebyshev (MVUE) UCL | 8810 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 3365 | 95% Jackknife UCL            | 3420 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 3314 | 95% Bootstrap-t UCL          | 4609 |
| 95% Hall's Bootstrap UCL      | 8319 | 95% Percentile Bootstrap UCL | 3423 |
| 95% BCA Bootstrap UCL         | 3883 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 4250 | 95% Chebyshev(Mean, Sd) UCL  | 5138 |
| 97.5% Chebyshev(Mean, Sd) UCL | 6369 | 99% Chebyshev(Mean, Sd) UCL  | 8788 |
|                               |      |                              |      |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 3724

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:08:34 PMFrom FileSoil, Antimony, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Antimony, mg/kg - dw

#### **General Statistics**

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Antimony, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:09:16 PM From File Soil, Arsenic, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Arsenic, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 6     |
| Number of Detects            | 5                  | Number of Non-Detects           | 15    |
| Number of Distinct Detects   | 5                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.1                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 21                 | Maximum Non-Detect              | 2     |
| Variance Detects             | 62.14              | Percent Non-Detects             | 75%   |
| Mean Detects                 | 7.16               | SD Detects                      | 7.883 |
| Median Detects               | 3.8                | CV Detects                      | 1.101 |
| Skewness Detects             | 2.041              | Kurtosis Detects                | 4.247 |
| Mean of Logged Detects       | 1.592              | SD of Logged Detects            | 0.903 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.718 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.353 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.343 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 3.29  | KM Standard Error of Mean         | 1.043 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 4.174 | 95% KM (BCA) UCL                  | 5.135 |
| 95% KM (t) UCL         | 5.094 | 95% KM (Percentile Bootstrap) UCL | 5.1   |
| 95% KM (z) UCL         | 5.006 | 95% KM Bootstrap t UCL            | 10.62 |
| 90% KM Chebyshev UCL   | 6.42  | 95% KM Chebyshev UCL              | 7.838 |
| 97.5% KM Chebyshev UCL | 9.806 | 99% KM Chebyshev UCL              | 13.67 |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.498 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.687 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.264 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.362 | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris da da terra a com |       | hadhadad 500 Otor (Campan Land)                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 0.722 | k star (bias corrected MLE)     | 1.4 | k hat (MLE)     |
|-------|---------------------------------|-----|-----------------|
| 9.915 | Theta star (bias corrected MLE) | 4.8 | Theta hat (MLE) |
| 7.221 | nu star (bias corrected)        | 14. | nu hat (MLE)    |
|       |                                 | 7.1 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:09:16 PM From File Soil, Arsenic, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Arsenic, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                        | 0.01  | Mean                                       | 1.798 |
|------------------------------------------------|-------|--------------------------------------------|-------|
| Maximum                                        | 21    | Median                                     | 0.01  |
| SD                                             | 4.814 | CV                                         | 2.678 |
| k hat (MLE)                                    | 0.202 | k star (bias corrected MLE)                | 0.205 |
| Theta hat (MLE)                                | 8.909 | Theta star (bias corrected MLE)            | 8.775 |
| nu hat (MLE)                                   | 8.071 | nu star (bias corrected)                   | 8.194 |
| Adjusted Level of Significance ( $\beta$ )     | 0.038 |                                            |       |
| Approximate Chi Square Value (8.19, $\alpha$ ) | 2.848 | Adjusted Chi Square Value (8.19, $\beta$ ) | 2.604 |
| 95% Gamma Approximate UCL (use when n>=50)     | 5.172 | 95% Gamma Adjusted UCL (use when n<50)     | 5.656 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 3.29  | SD (KM)                   | 4.174 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 17.42 | SE of Mean (KM)           | 1.043 |
| k hat (KM)                | 0.621 | k star (KM)               | 0.561 |
| nu hat (KM)               | 24.85 | nu star (KM)              | 22.46 |
| theta hat (KM)            | 5.295 | theta star (KM)           | 5.86  |
| 80% gamma percentile (KM) | 5.421 | 90% gamma percentile (KM) | 8.684 |
| 95% gamma percentile (KM) | 12.12 | 99% gamma percentile (KM) | 20.5  |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (22.46, $\alpha$ ) | 12.68 | Adjusted Chi Square Value (22.46, $\beta$ ) | 12.1  |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 5.826 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 6.105 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.905 | Shapiro Wilk GOF Test                                   |
|---------------------------------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                          | 0.762 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                               | 0.212 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value                            | 0.343 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          |                               |  |  |  |  |  |
|--------------------------------|-------------------------------|--|--|--|--|--|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:09:16 PM |  |  |  |  |  |
| From File                      | Soil, Arsenic, mg_kg - dw.xls |  |  |  |  |  |
| Full Precision                 | OFF                           |  |  |  |  |  |
| Confidence Coefficient         | 95%                           |  |  |  |  |  |
| Number of Bootstrap Operations | 2000                          |  |  |  |  |  |

#### Soil, Arsenic, mg/kg - dw

| Lognormal ROS Statistics U | Using Imputed Non-Detects |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

| Mean in Original Scale                    | 1.964 | Mean in Log Scale            | -1.361 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 4.755 | SD in Log Scale              | 2.263  |
| 95% t UCL (assumes normality of ROS data) | 3.803 | 95% Percentile Bootstrap UCL | 3.798  |
| 95% BCA Bootstrap UCL                     | 5.049 | 95% Bootstrap t UCL          | 8.56   |
| 95% H-UCL (Log ROS)                       | 39.73 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| 2.504 | KM Geo Mean                   | 0.918 | KM Mean (logged)                   |
|-------|-------------------------------|-------|------------------------------------|
| 2.08  | 95% Critical H Value (KM-Log) | 0.561 | KM SD (logged)                     |
| 3.83  | 95% H-UCL (KM -Log)           | 0.14  | KM Standard Error of Mean (logged) |
| 2.08  | 95% Critical H Value (KM-Log) | 0.561 | KM SD (logged)                     |
|       |                               | 0.14  | KM Standard Error of Mean (logged) |

#### DL/2 Statistics

| DL/2 Normal                    | DL/2 Log-Transformed |                                       |       |
|--------------------------------|----------------------|---------------------------------------|-------|
| Mean in Original Scale         | 2.54                 | Mean in Log Scale                     | 0.398 |
| SD in Original Scale           | 4.536                | SD in Log Scale                       | 0.82  |
| 95% t UCL (Assumes normality)  | 4.294                | 95% H-Stat UCL                        | 3.262 |
| DL /2 is not a recommended mat | thad provided f      | or comparisons and historical reasons |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

#### Suggested UCL to Use

a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 6.105

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:09:59 PM

 From File
 Soil, Barium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Barium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 19    |
| Number of Detects            | 19                 | Number of Non-Detects           | 1     |
| Number of Distinct Detects   | 18                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 9.25               | Minimum Non-Detect              | 5     |
| Maximum Detect               | 380                | Maximum Non-Detect              | 5     |
| Variance Detects             | 6993               | Percent Non-Detects             | 5%    |
| Mean Detects                 | 66.67              | SD Detects                      | 83.62 |
| Median Detects               | 41                 | CV Detects                      | 1.254 |
| Skewness Detects             | 3.235              | Kurtosis Detects                | 11.85 |
| Mean of Logged Detects       | 3.773              | SD of Logged Detects            | 0.887 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.603 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.901 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.278 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.197 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 63.59 | KM Standard Error of Mean         | 18.49 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 80.46 | 95% KM (BCA) UCL                  | 94.45 |
| 95% KM (t) UCL         | 95.55 | 95% KM (Percentile Bootstrap) UCL | 96.45 |
| 95% KM (z) UCL         | 93.99 | 95% KM Bootstrap t UCL            | 140.3 |
| 90% KM Chebyshev UCL   | 119   | 95% KM Chebyshev UCL              | 144.2 |
| 97.5% KM Chebyshev UCL | 179   | 99% KM Chebyshev UCL              | 247.5 |
|                        |       |                                   |       |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic     | 0.659 | Anderson-Darling GOF Test                                       |
|------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.762 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.173 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value  | 0.203 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data services |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 1.14  | k star (bias corrected MLE)     | 1.313 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 58.46 | Theta star (bias corrected MLE) | 50.79 | Theta hat (MLE) |
| 43.34 | nu star (bias corrected)        | 49.88 | nu hat (MLE)    |
|       |                                 | 66.67 | Mean (detects)  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:09:59 PM

 From File
 Soil, Barium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Barium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 63.34 | Mean                                        | 0.01  | Minimum                                         |
|-------|---------------------------------------------|-------|-------------------------------------------------|
| 39    | Median                                      | 380   | Maximum                                         |
| 1.306 | CV                                          | 82.75 | SD                                              |
| 0.673 | k star (bias corrected MLE)                 | 0.753 | k hat (MLE)                                     |
| 94.06 | Theta star (bias corrected MLE)             | 84.12 | Theta hat (MLE)                                 |
| 26.93 | nu star (bias corrected)                    | 30.12 | nu hat (MLE)                                    |
|       |                                             | 0.038 | Adjusted Level of Significance ( $\beta$ )      |
| 15.44 | Adjusted Chi Square Value (26.93, $\beta$ ) | 16.1  | Approximate Chi Square Value (26.93, $\alpha$ ) |
| 110.5 | 95% Gamma Adjusted UCL (use when n<50)      | 106   | 95% Gamma Approximate UCL (use when n>=50)      |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 63.59 | SD (KM)                   | 80.46 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 6474  | SE of Mean (KM)           | 18.49 |
| k hat (KM)                | 0.625 | k star (KM)               | 0.564 |
| nu hat (KM)               | 24.98 | nu star (KM)              | 22.57 |
| theta hat (KM)            | 101.8 | theta star (KM)           | 112.7 |
| 80% gamma percentile (KM) | 104.8 | 90% gamma percentile (KM) | 167.7 |
| 95% gamma percentile (KM) | 233.9 | 99% gamma percentile (KM) | 395.1 |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (22.57, $\alpha$ ) | 12.76 | Adjusted Chi Square Value (22.57, $\beta$ ) | 12.18 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 112.4 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 117.8 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.975 | Shapiro Wilk GOF Test                                   |
|---------------------------------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                          | 0.901 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                               | 0.102 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value                            | 0.197 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | ;                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:09:59 PM |
| From File                      | Soil, Barium, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Barium, mg/kg - dw

| Lognormal ROS                             | Statistics | Using Imputed Non-Detects    |       |
|-------------------------------------------|------------|------------------------------|-------|
| Mean in Original Scale                    | 63.58      | Mean in Log Scale            | 3.664 |
| SD in Original Scale                      | 82.56      | SD in Log Scale              | 0.992 |
| 95% t UCL (assumes normality of ROS data) | 95.5       | 95% Percentile Bootstrap UCL | 95.99 |
| 95% BCA Bootstrap UCL                     | 113.3      | 95% Bootstrap t UCL          | 141.5 |
| 95% H-UCL (Log ROS)                       | 115.8      |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 3.665 | KM Geo Mean                   | 39.04 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.964 | 95% Critical H Value (KM-Log) | 2.582 |
| KM Standard Error of Mean (logged) | 0.222 | 95% H-UCL (KM -Log)           | 110   |
| KM SD (logged)                     | 0.964 | 95% Critical H Value (KM-Log) | 2.582 |
| KM Standard Error of Mean (logged) | 0.222 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                                                                       | DL/2  | Log-Transformed   |       |
|-----------------------------------------------------------------------------------|-------|-------------------|-------|
| Mean in Original Scale                                                            | 63.46 | Mean in Log Scale | 3.63  |
| SD in Original Scale                                                              | 82.65 | SD in Log Scale   | 1.074 |
| 95% t UCL (Assumes normality)                                                     | 95.42 | 95% H-Stat UCL    | 131.9 |
| DL/Q is not a recommended method, provided for comparisons and historical records |       |                   |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM Adjusted Gamma UCL 117.8

95% GROS Adjusted Gamma UCL 110.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:10:42 PMFrom FileSoil, Beryllium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Beryllium, mg/kg - dw

#### General Statistics

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Beryllium, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:11:24 PMFrom FileSoil, Bismuth, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Bismuth, mg/kg - dw

#### General Statistics

 Total Number of Observations
 20

 Number of Detects
 0

 Number of Distinct Detects
 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Bismuth, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:12:06 PMFrom FileSoil, Boron, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

Soil, Boron, mg/kg - dw

#### General Statistics

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Boron, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:12:48 PMFrom FileSoil, Cadmium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Cadmium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 10     |
| Number of Detects            | 10                 | Number of Non-Detects           | 10     |
| Number of Distinct Detects   | 9                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.37               | Minimum Non-Detect              | 0.3    |
| Maximum Detect               | 0.71               | Maximum Non-Detect              | 0.3    |
| Variance Detects             | 0.0124             | Percent Non-Detects             | 50%    |
| Mean Detects                 | 0.493              | SD Detects                      | 0.111  |
| Median Detects               | 0.478              | CV Detects                      | 0.226  |
| Skewness Detects             | 0.676              | Kurtosis Detects                | -0.172 |
| Mean of Logged Detects       | -0.73              | SD of Logged Detects            | 0.22   |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.915 | Shapiro Wilk GOF Test                                |
|------------------------------------------------------|-------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                       | 0.842 | Detected Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                            | 0.171 | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value                         | 0.262 | Detected Data appear Normal at 5% Significance Level |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |

## Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| 0.396 | KM Standard Error of Mean         | 0.0287                                                                                                          |
|-------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 0.122 | 95% KM (BCA) UCL                  | 0.445                                                                                                           |
| 0.446 | 95% KM (Percentile Bootstrap) UCL | 0.442                                                                                                           |
| 0.443 | 95% KM Bootstrap t UCL            | 0.456                                                                                                           |
| 0.482 | 95% KM Chebyshev UCL              | 0.521                                                                                                           |
| 0.576 | 99% KM Chebyshev UCL              | 0.682                                                                                                           |
|       | 0.122<br>0.446<br>0.443<br>0.482  | 0.12295% KM (BCA) UCL0.44695% KM (Percentile Bootstrap) UCL0.44395% KM Bootstrap t UCL0.48295% KM Chebyshev UCL |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                                  | 0.362 | Anderson-Darling GOF Test                                       |  |
|---------------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value                                               | 0.725 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic                                                  | 0.182 | Kolmogorov-Smirnov GOF                                          |  |
| 5% K-S Critical Value                                               | 0.266 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data annual Operation Distributed at 50% Operational Level |       |                                                                 |  |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 15.99  | k star (bias corrected MLE)     | 22.75  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0308 | Theta star (bias corrected MLE) | 0.0216 | Theta hat (MLE) |
| 319.9  | nu star (bias corrected)        | 455.1  | nu hat (MLE)    |
|        |                                 | 0.493  | Mean (detects)  |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:12:48 PM |
| From File                      | Soil, Cadmium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Cadmium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.0507 | Mean                                                       | 0.348                                                                                                                                                                                                                                               |
|--------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.71   | Median                                                     | 0.343                                                                                                                                                                                                                                               |
| 0.177  | CV                                                         | 0.509                                                                                                                                                                                                                                               |
| 3.214  | k star (bias corrected MLE)                                | 2.766                                                                                                                                                                                                                                               |
| 0.108  | Theta star (bias corrected MLE)                            | 0.126                                                                                                                                                                                                                                               |
| 128.6  | nu star (bias corrected)                                   | 110.6                                                                                                                                                                                                                                               |
| 0.038  |                                                            |                                                                                                                                                                                                                                                     |
| 87.35  | Adjusted Chi Square Value (110.62, $\beta$ )               | 85.71                                                                                                                                                                                                                                               |
| 0.44   | 95% Gamma Adjusted UCL (use when n<50)                     | 0.449                                                                                                                                                                                                                                               |
|        | 0.71<br>0.177<br>3.214<br>0.108<br>128.6<br>0.038<br>87.35 | 0.71       Median         0.177       CV         3.214       k star (bias corrected MLE)         0.108       Theta star (bias corrected MLE)         128.6       nu star (bias corrected)         0.038       4000000000000000000000000000000000000 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.396  | SD (KM)                   | 0.122  |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0148 | SE of Mean (KM)           | 0.0287 |
| k hat (KM)                | 10.59  | k star (KM)               | 9.031  |
| nu hat (KM)               | 423.4  | nu star (KM)              | 361.3  |
| theta hat (KM)            | 0.0374 | theta star (KM)           | 0.0439 |
| 80% gamma percentile (KM) | 0.501  | 90% gamma percentile (KM) | 0.572  |
| 95% gamma percentile (KM) | 0.635  | 99% gamma percentile (KM) | 0.765  |

Adjusted Chi Square Value (361.26,  $\beta$ ) 315

0.454

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (361.26, $\alpha$ ) | 318.2 |  |
|--------------------------------------------------|-------|--|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.45  |  |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.929 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.842 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.168 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.262 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognermal at 5% Significance Lovel |       |                                                         |  |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:12:48 PM |
| From File                      | Soil, Cadmium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Cadmium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.375 | Mean in Log Scale            | -1.052 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 0.147 | SD in Log Scale              | 0.392  |
| 95% t UCL (assumes normality of ROS data) | 0.432 | 95% Percentile Bootstrap UCL | 0.429  |
| 95% BCA Bootstrap UCL                     | 0.435 | 95% Bootstrap t UCL          | 0.437  |
| 95% H-UCL (Log ROS)                       | 0.448 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -0.967 | KM Geo Mean                   | 0.38  |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.279  | 95% Critical H Value (KM-Log) | 1.836 |
| KM Standard Error of Mean (logged) | 0.0658 | 95% H-UCL (KM -Log)           | 0.445 |
| KM SD (logged)                     | 0.279  | 95% Critical H Value (KM-Log) | 1.836 |
| KM Standard Error of Mean (logged) | 0.0658 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                          |       | DL/2 Log-Transformed                       |        |
|--------------------------------------|-------|--------------------------------------------|--------|
| Mean in Original Scale               | 0.321 | Mean in Log Scale                          | -1.314 |
| SD in Original Scale                 | 0.192 | SD in Log Scale                            | 0.617  |
| 95% t UCL (Assumes normality)        | 0.395 | 95% H-Stat UCL                             | 0.44   |
| DI 10 la sub construction de dans de |       | and the second determination of the second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.446

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:13:30 PMFrom FileSoil, Chromium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Chromium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 6     |
| Number of Detects            | 5                  | Number of Non-Detects           | 15    |
| Number of Distinct Detects   | 5                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.15               | Minimum Non-Detect              | 2     |
| Maximum Detect               | 11.5               | Maximum Non-Detect              | 2     |
| Variance Detects             | 17.08              | Percent Non-Detects             | 75%   |
| Mean Detects                 | 5.67               | SD Detects                      | 4.133 |
| Median Detects               | 3.7                | CV Detects                      | 0.729 |
| Skewness Detects             | 0.813              | Kurtosis Detects                | -1.62 |
| Mean of Logged Detects       | 1.515              | SD of Logged Detects            | 0.744 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.859 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.762 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.283 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.343 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.918 | KM Standard Error of Mean         | 0.609 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 2.437 | 95% KM (BCA) UCL                  | 3.925 |
| 95% KM (t) UCL         | 3.971 | 95% KM (Percentile Bootstrap) UCL | 3.9   |
| 95% KM (z) UCL         | 3.92  | 95% KM Bootstrap t UCL            | 6.195 |
| 90% KM Chebyshev UCL   | 4.746 | 95% KM Chebyshev UCL              | 5.574 |
| 97.5% KM Chebyshev UCL | 6.723 | 99% KM Chebyshev UCL              | 8.981 |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.404 | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.684 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.254 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.36  | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| 1.101 | k star (bias corrected MLE)     | 2.419 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 5.15  | Theta star (bias corrected MLE) | 2.344 | Theta hat (MLE) |
| 11.01 | nu star (bias corrected)        | 24.19 | nu hat (MLE)    |
|       |                                 | 5.67  | Mean (detects)  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:13:30 PM  |
| From File                      | Soil, Chromium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Chromium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                        | 0.01  | Mean                                       | 1.425 |
|------------------------------------------------|-------|--------------------------------------------|-------|
| Maximum                                        | 11.5  | Median                                     | 0.01  |
| SD                                             | 3.149 | CV                                         | 2.21  |
| k hat (MLE)                                    | 0.213 | k star (bias corrected MLE)                | 0.214 |
| Theta hat (MLE)                                | 6.704 | Theta star (bias corrected MLE)            | 6.659 |
| nu hat (MLE)                                   | 8.502 | nu star (bias corrected)                   | 8.56  |
| Adjusted Level of Significance ( $\beta$ )     | 0.038 |                                            |       |
| Approximate Chi Square Value (8.56, $\alpha$ ) | 3.063 | Adjusted Chi Square Value (8.56, $\beta$ ) | 2.809 |
| 95% Gamma Approximate UCL (use when n>=50)     | 3.982 | 95% Gamma Adjusted UCL (use when n<50)     | 4.343 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.918 | SD (KM)                   | 2.437 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 5.941 | SE of Mean (KM)           | 0.609 |
| k hat (KM)                | 1.433 | k star (KM)               | 1.251 |
| nu hat (KM)               | 57.31 | nu star (KM)              | 50.04 |
| theta hat (KM)            | 2.036 | theta star (KM)           | 2.332 |
| 80% gamma percentile (KM) | 4.601 | 90% gamma percentile (KM) | 6.356 |
| 95% gamma percentile (KM) | 8.083 | 99% gamma percentile (KM) | 12.03 |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (50.04, $\alpha$ ) | 34.8  | Adjusted Chi Square Value (50.04, $\beta$ ) | 33.8 |
|-------------------------------------------------|-------|---------------------------------------------|------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 4.195 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 4.32 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.898 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.209 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.343 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Date on               |       | armal at EV/ Significance Loval                         |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:13:30 PM  |
| From File                      | Soil, Chromium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Chromium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 1.675 | Mean in Log Scale            | -0.893 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 3.048 | SD in Log Scale              | 1.845  |
| 95% t UCL (assumes normality of ROS data) | 2.853 | 95% Percentile Bootstrap UCL | 2.903  |
| 95% BCA Bootstrap UCL                     | 3.351 | 95% Bootstrap t UCL          | 4.788  |
| 95% H-UCL (Log ROS)                       | 12.36 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.898 | KM Geo Mean                   | 2.456 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.487 | 95% Critical H Value (KM-Log) | 2.007 |
| KM Standard Error of Mean (logged) | 0.122 | 95% H-UCL (KM -Log)           | 3.46  |
| KM SD (logged)                     | 0.487 | 95% Critical H Value (KM-Log) | 2.007 |
| KM Standard Error of Mean (logged) | 0.122 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                               |       | DL/2 Log-Transformed                       |       |
|-------------------------------------------|-------|--------------------------------------------|-------|
| Mean in Original Scale                    | 2.168 | Mean in Log Scale                          | 0.379 |
| SD in Original Scale                      | 2.811 | SD in Log Scale                            | 0.754 |
| 95% t UCL (Assumes normality)             | 3.254 | 95% H-Stat UCL                             | 2.891 |
| DL /O I I I I I I I I I I I I I I I I I I |       | and the second design of the second second |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 3.971

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:14:13 PM From File Soil, Cobalt, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Cobalt, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 9     |
| Number of Detects            | 8                  | Number of Non-Detects           | 12    |
| Number of Distinct Detects   | 8                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 1.3                | Minimum Non-Detect              | 1     |
| Maximum Detect               | 10.75              | Maximum Non-Detect              | 1     |
| Variance Detects             | 9.824              | Percent Non-Detects             | 60%   |
| Mean Detects                 | 3.656              | SD Detects                      | 3.134 |
| Median Detects               | 2.55               | CV Detects                      | 0.857 |
| Skewness Detects             | 2.001              | Kurtosis Detects                | 4.367 |
| Mean of Logged Detects       | 1.048              | SD of Logged Detects            | 0.717 |
|                              |                    |                                 |       |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                                      | 0.764 | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                                   | 0.818 | Detected Data Not Normal at 5% Significance Level    |  |  |
| Lilliefors Test Statistic                                        | 0.233 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                                     | 0.283 | Detected Data appear Normal at 5% Significance Level |  |  |
| Detected Data appear Approximate Normal at 5% Significance Level |       |                                                      |  |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.063 | KM Standard Error of Mean         | 0.542 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 2.265 | 95% KM (BCA) UCL                  | 3.018 |
| 95% KM (t) UCL         | 2.999 | 95% KM (Percentile Bootstrap) UCL | 2.983 |
| 95% KM (z) UCL         | 2.953 | 95% KM Bootstrap t UCL            | 4.005 |
| 90% KM Chebyshev UCL   | 3.687 | 95% KM Chebyshev UCL              | 4.423 |
| 97.5% KM Chebyshev UCL | 5.444 | 99% KM Chebyshev UCL              | 7.451 |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.403 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.724 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.195 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.297 | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris da da terra a com |       | hadhadad 500 Otor (Campan Land)                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| 1.435 | k star (bias corrected MLE)     | 2.162 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 2.548 | Theta star (bias corrected MLE) | 1.691 | Theta hat (MLE) |
| 22.95 | nu star (bias corrected)        | 34.59 | nu hat (MLE)    |
|       |                                 | 3.656 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:14:13 PM From File Soil, Cobalt, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Cobalt, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.01  | Mean                                                        | 1.469                                                                                                                                                             |
|-------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.75 | Median                                                      | 0.01                                                                                                                                                              |
| 2.642 | CV                                                          | 1.799                                                                                                                                                             |
| 0.259 | k star (bias corrected MLE)                                 | 0.253                                                                                                                                                             |
| 5.672 | Theta star (bias corrected MLE)                             | 5.796                                                                                                                                                             |
| 10.36 | nu star (bias corrected)                                    | 10.14                                                                                                                                                             |
| 0.038 |                                                             |                                                                                                                                                                   |
| 4.027 | Adjusted Chi Square Value (10.14, $\beta$ )                 | 3.726                                                                                                                                                             |
| 3.696 | 95% Gamma Adjusted UCL (use when n<50)                      | 3.994                                                                                                                                                             |
|       | 10.75<br>2.642<br>0.259<br>5.672<br>10.36<br>0.038<br>4.027 | 10.75Median2.642CV0.259k star (bias corrected MLE)5.672Theta star (bias corrected MLE)10.36nu star (bias corrected)0.0384.027Adjusted Chi Square Value (10.14, β) |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.063 | SD (KM)                   | 2.265 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 5.132 | SE of Mean (KM)           | 0.542 |
| k hat (KM)                | 0.829 | k star (KM)               | 0.738 |
| nu hat (KM)               | 33.16 | nu star (KM)              | 29.52 |
| theta hat (KM)            | 2.488 | theta star (KM)           | 2.795 |
| 80% gamma percentile (KM) | 3.384 | 90% gamma percentile (KM) | 5.113 |
| 95% gamma percentile (KM) | 6.888 | 99% gamma percentile (KM) | 11.11 |

17.41

3.497

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (29.52, $\alpha$ ) | 18.11 | Adjusted Chi Square Value (29.52, $\beta$ ) |
|-------------------------------------------------|-------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 3.361 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.933 | Shapiro Wilk GOF Test                                   |  |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                          | 0.818 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                               | 0.165 | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value                            | 0.283 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |  |

| User Selected Options          | ;                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:14:13 PM |
| From File                      | Soil, Cobalt, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Cobalt, mg/kg - dw

| Lognormal ROS Statistics Using Impu | uted Non-Detects |
|-------------------------------------|------------------|
|-------------------------------------|------------------|

| Mean in Original Scale                    | 1.672 | Mean in Log Scale            | -0.393 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 2.533 | SD in Log Scale              | 1.448  |
| 95% t UCL (assumes normality of ROS data) | 2.652 | 95% Percentile Bootstrap UCL | 2.675  |
| 95% BCA Bootstrap UCL                     | 3.019 | 95% Bootstrap t UCL          | 3.504  |
| 95% H-UCL (Log ROS)                       | 5.846 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.419 | KM Geo Mean                   | 1.521 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.666 | 95% Critical H Value (KM-Log) | 2.196 |
| KM Standard Error of Mean (logged) | 0.159 | 95% H-UCL (KM -Log)           | 2.654 |
| KM SD (logged)                     | 0.666 | 95% Critical H Value (KM-Log) | 2.196 |
| KM Standard Error of Mean (logged) | 0.159 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                               |       | DL/2 Log-Transformed                |        |
|-------------------------------------------|-------|-------------------------------------|--------|
| Mean in Original Scale                    | 1.763 | Mean in Log Scale                   | 0.0032 |
| SD in Original Scale                      | 2.477 | SD in Log Scale                     | 0.977  |
| 95% t UCL (Assumes normality)             | 2.72  | 95% H-Stat UCL                      | 2.897  |
| DL /O I I I I I I I I I I I I I I I I I I |       | and the second design of the second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 2.999

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:14:56 PM From File Soil, Copper, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Copper, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 17    |
| Number of Detects            | 18                 | Number of Non-Detects           | 2     |
| Number of Distinct Detects   | 16                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 3.1                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 28                 | Maximum Non-Detect              | 2     |
| Variance Detects             | 31.79              | Percent Non-Detects             | 10%   |
| Mean Detects                 | 6.489              | SD Detects                      | 5.639 |
| Median Detects               | 4.7                | CV Detects                      | 0.869 |
| Skewness Detects             | 3.612              | Kurtosis Detects                | 14.19 |
| Mean of Logged Detects       | 1.698              | SD of Logged Detects            | 0.517 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.525 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.897 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.298 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.202 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 6.04  | KM Standard Error of Mean         | 1.236 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 5.37  | 95% KM (BCA) UCL                  | 8.345 |
| 95% KM (t) UCL         | 8.177 | 95% KM (Percentile Bootstrap) UCL | 8.315 |
| 95% KM (z) UCL         | 8.072 | 95% KM Bootstrap t UCL            | 11.2  |
| 90% KM Chebyshev UCL   | 9.747 | 95% KM Chebyshev UCL              | 11.43 |
| 97.5% KM Chebyshev UCL | 13.76 | 99% KM Chebyshev UCL              | 18.33 |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic            | 1.488                                                                          | Anderson-Darling GOF Test                                       |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| 5% A-D Critical Value         | 0.746                                                                          | Detected Data Not Gamma Distributed at 5% Significance Level    |  |  |  |
| K-S Test Statistic            | 0.185                                                                          | Kolmogorov-Smirnov GOF                                          |  |  |  |
| 5% K-S Critical Value         | 0.205                                                                          | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Barris and data follows Assoc | Detected data follow Arms, Original Distribution of DV, Original Science Level |                                                                 |  |  |  |

Detected data follow Appr. Gamma Distribution at 5% Significance Level

| 2.582 | k star (bias corrected MLE)     | 3.055 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 2.513 | Theta star (bias corrected MLE) | 2.124 | Theta hat (MLE) |
| 92.97 | nu star (bias corrected)        | 110   | nu hat (MLE)    |
|       |                                 | 6.489 | Mean (detects)  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:14:56 PM

 From File
 Soil, Copper, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Copper, mg/kg - dw

95%

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 5.841 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 28    | Median                                      | 4.4   |
| SD                                              | 5.694 | CV                                          | 0.975 |
| k hat (MLE)                                     | 0.845 | k star (bias corrected MLE)                 | 0.751 |
| Theta hat (MLE)                                 | 6.915 | Theta star (bias corrected MLE)             | 7.774 |
| nu hat (MLE)                                    | 33.79 | nu star (bias corrected)                    | 30.05 |
| Adjusted Level of Significance (β)              | 0.038 |                                             |       |
| Approximate Chi Square Value (30.05, $\alpha$ ) | 18.54 | Adjusted Chi Square Value (30.05, $\beta$ ) | 17.82 |
| 95% Gamma Approximate UCL (use when n>=50)      | 9.471 | 95% Gamma Adjusted UCL (use when n<50)      | 9.85  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 6.04  | SD (KM)                   | 5.37  |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 28.84 | SE of Mean (KM)           | 1.236 |
| k hat (KM)                | 1.265 | k star (KM)               | 1.109 |
| nu hat (KM)               | 50.6  | nu star (KM)              | 44.35 |
| theta hat (KM)            | 4.774 | theta star (KM)           | 5.448 |
| 80% gamma percentile (KM) | 9.635 | 90% gamma percentile (KM) | 13.56 |
| 95% gamma percentile (KM) | 17.45 | 99% gamma percentile (KM) | 26.42 |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (44.35, $\alpha$ ) | 30.07 | Adjusted Chi Square Value (44.35, $\beta$ ) | 29.14 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Gamma Approximate KM-UCL (use when n>=50)       | 8.907 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 9.191 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                                         | 0.822 | Shapiro Wilk GOF Test                                   |  |  |
|---------------------------------------------------------------------|-------|---------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                                      | 0.897 | Detected Data Not Lognormal at 5% Significance Level    |  |  |
| Lilliefors Test Statistic                                           | 0.149 | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value                                        | 0.202 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data appear Approximate Lognormal at 5% Significance Level |       |                                                         |  |  |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:14:56 PM |
| From File                      | Soil, Copper, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Copper, mg/kg - dw

| Lognormal ROS Sta | itistics Using I | mputed Non-Detects |
|-------------------|------------------|--------------------|
|-------------------|------------------|--------------------|

| Mean in Original Scale                    | 6.017 | Mean in Log Scale            | 1.584 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 5.528 | SD in Log Scale              | 0.602 |
| 95% t UCL (assumes normality of ROS data) | 8.154 | 95% Percentile Bootstrap UCL | 8.282 |
| 95% BCA Bootstrap UCL                     | 9.285 | 95% Bootstrap t UCL          | 11.1  |
| 95% H-UCL (Log ROS)                       | 7.835 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 1.597 | KM Geo Mean                   | 4.939 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.564 | 95% Critical H Value (KM-Log) | 2.084 |
| KM Standard Error of Mean (logged) | 0.13  | 95% H-UCL (KM -Log)           | 7.584 |
| KM SD (logged)                     | 0.564 | 95% Critical H Value (KM-Log) | 2.084 |
| KM Standard Error of Mean (logged) | 0.13  |                               |       |

#### DL/2 Statistics

| DL/2 Normal                    |                 | DL/2 Log-Transformed                 |       |
|--------------------------------|-----------------|--------------------------------------|-------|
| Mean in Original Scale         | 5.94            | Mean in Log Scale                    | 1.528 |
| SD in Original Scale           | 5.595           | SD in Log Scale                      | 0.716 |
| 95% t UCL (Assumes normality)  | 8.103           | 95% H-Stat UCL                       | 8.623 |
| DL /2 is not a recommended met | had provided fo | r comparisons and historical reasons |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

#### Suggested UCL to Use

| 95% KM Ac | iusted ( | Gamma | UCI | 9.191 |
|-----------|----------|-------|-----|-------|
|           |          |       |     |       |

95% GROS Adjusted Gamma UCL

9.85

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:15:38 PM From File Soil, Iron, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Iron, mg/kg - dw

| General Statistics |                                 |                                                                                                             |
|--------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations | 19                                                                                                          |
|                    | Number of Missing Observations  | 0                                                                                                           |
| 230                | Mean                            | 4459                                                                                                        |
| 22000              | Median                          | 1750                                                                                                        |
| 5903               | Std. Error of Mean              | 1320                                                                                                        |
| 1.324              | Skewness                        | 1.846                                                                                                       |
|                    | 20<br>230<br>22000<br>5903      | 20Number of Distinct Observations<br>Number of Missing Observations230Mean22000Median5903Std. Error of Mean |

#### Normal GOF Test

# Shapiro Wilk Test Statistic0.739Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.905Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.274Lilliefors GOF Test5% Lilliefors Critical Value0.192Data Not Normal at 5% Significance Level

#### Data Not Normal at 5% Significance Level

| As                    | suming Norm | al Distribution                                                 |
|-----------------------|-------------|-----------------------------------------------------------------|
| 95% Normal UCL        |             | 95% UCLs (Adjusted for Skewness)                                |
| 95% Student's-t UCL   | 6742        | 95% Adjusted-CLT UCL (Chen-1995) 7213                           |
|                       |             | 95% Modified-t UCL (Johnson-1978) 6832                          |
|                       | Gamma G     | OF Test                                                         |
| A-D Test Statistic    | 0.64        | Anderson-Darling Gamma GOF Test                                 |
| 5% A-D Critical Value | 0.784       | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.169       | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.202       | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Dis   | tributed at 5% Significance Level                               |
|                       |             |                                                                 |
|                       | Gamma S     | itatistics                                                      |

#### k hat (MLE) 0.7 k star (bias corrected MLE) 0.629 Theta hat (MLE) 6367 Theta star (bias corrected MLE) 7094 nu hat (MLE) nu star (bias corrected) 28.01 25.14 MLE Mean (bias corrected) 4459 MLE Sd (bias corrected) 5624 Approximate Chi Square Value (0.05) 14.72 Adjusted Level of Significance 0.038 Adjusted Chi Square Value 14.09

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 7956

95% Approximate Gamma UCL (use when n>=50) 7616

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:15:38 PM From File Soil, Iron, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Soil, Iron, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.949                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.126                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 5.438 | Mean of logged Data | 7.54 |
|------------------------|-------|---------------------|------|
| Maximum of Logged Data | 9.999 | SD of logged Data   | 1.41 |

#### Assuming Lognormal Distribution

| 95% H-UCL 14677                |  |
|--------------------------------|--|
| 95% Chebyshev (MVUE) UCL 12237 |  |
| 99% Chebyshev (MVUE) UCL 21960 |  |

90% Chebyshev (MVUE) UCL 9874 97.5% Chebyshev (MVUE) UCL 15517

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 6630  | 95% Jackknife UCL            | 6742  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 6606  | 95% Bootstrap-t UCL          | 8091  |
| 95% Hall's Bootstrap UCL      | 7468  | 95% Percentile Bootstrap UCL | 6723  |
| 95% BCA Bootstrap UCL         | 7190  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 8419  | 95% Chebyshev(Mean, Sd) UCL  | 10213 |
| 97.5% Chebyshev(Mean, Sd) UCL | 12703 | 99% Chebyshev(Mean, Sd) UCL  | 17593 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 7956

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:16:20 PMFrom FileSoil, Lead, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Lead, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 17    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 5.8                | Mean                            | 21.14 |
| Maximum                      | 53                 | Median                          | 19    |
| SD                           | 11.96              | Std. Error of Mean              | 2.674 |
| Coefficient of Variation     | 0.566              | Skewness                        | 1.419 |
|                              |                    |                                 |       |

## Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.876 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.162 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.192 | Data appear Normal at 5% Significance Level |

Data appear Approximate Normal at 5% Significance Level

|                      | Ass     | suming Norn | nal Distribution                                         |         |
|----------------------|---------|-------------|----------------------------------------------------------|---------|
| 95% Normal UCL       |         |             | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-       | t UCL   | 25.76       | 95% Adjusted-CLT UCL (Chen-1995)                         | 26.44   |
|                      |         |             | 95% Modified-t UCL (Johnson-1978)                        | 25.9    |
|                      |         | Gamma C     | GOF Test                                                 |         |
| A-D Test St          | atistic | 0.223       | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical      | Value   | 0.746       | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test St          | atistic | 0.103       | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical      | Value   | 0.195       | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data        | appear  | Gamma Dis   | tributed at 5% Significance Level                        |         |
|                      |         | Gamma S     | Statistics                                               |         |
| k hat                | (MLE)   | 3.758       | k star (bias corrected MLE)                              | 3.227   |
| Theta hat            | (MLE)   | 5.626       | Theta star (bias corrected MLE)                          | 6.55    |
| nu hat               | (MLE)   | 150.3       | nu star (bias corrected)                                 | 129.1   |
| MLE Mean (bias corre | ected)  | 21.14       | MLE Sd (bias corrected)                                  | 11.77   |
|                      |         |             |                                                          |         |
|                      |         |             | Approximate Chi Square Value (0.05)                      | 103.9   |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 26.74

95% Approximate Gamma UCL (use when n>=50)) 26.28

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:16:20 PM From File Soil, Lead, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Lead, mg/kg - dw

|                                                | Lognormal GOF Test |                                                |  |  |  |
|------------------------------------------------|--------------------|------------------------------------------------|--|--|--|
| Shapiro Wilk Test Statistic                    | 0.987              | Shapiro Wilk Lognormal GOF Test                |  |  |  |
| 5% Shapiro Wilk Critical Value                 | 0.905              | Data appear Lognormal at 5% Significance Level |  |  |  |
| Lilliefors Test Statistic                      | 0.0902             | Lilliefors Lognormal GOF Test                  |  |  |  |
| 5% Lilliefors Critical Value                   | 0.192              | Data appear Lognormal at 5% Significance Level |  |  |  |
| Data appear Lognormal at 5% Significance Level |                    |                                                |  |  |  |

#### Lognormal Statistics

| Minimum of Logged Data | 1.758 | Mean of logged Data | 2.912 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 3.97  | SD of logged Data   | 0.544 |
|                        |       |                     |       |
| Assun                  |       |                     |       |

| 95% H-UCL                | 27.58 | 90% Chebyshev (MVUE) UCL   | 29.2 |
|--------------------------|-------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 32.84 | 97.5% Chebyshev (MVUE) UCL | 37.9 |
| 99% Chebyshev (MVUE) UCL | 47.83 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 25.54 | 95% Jackknife UCL            | 25.76 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 25.37 | 95% Bootstrap-t UCL          | 27.58 |
| 95% Hall's Bootstrap UCL      | 30.52 | 95% Percentile Bootstrap UCL | 25.72 |
| 95% BCA Bootstrap UCL         | 26.25 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 29.16 | 95% Chebyshev(Mean, Sd) UCL  | 32.79 |
| 97.5% Chebyshev(Mean, Sd) UCL | 37.84 | 99% Chebyshev(Mean, Sd) UCL  | 47.74 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 25.76

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:17:02 PM From File Soil, Lithium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Lithium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 4     |
| Number of Detects            | 3                  | Number of Non-Detects           | 17    |
| Number of Distinct Detects   | 3                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.6                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 4.5                | Maximum Non-Detect              | 2     |
| Variance Detects             | 0.916              | Percent Non-Detects             | 85%   |
| Mean Detects                 | 3.483              | SD Detects                      | 0.957 |
| Median Detects               | 3.35               | CV Detects                      | 0.275 |
| Skewness Detects             | 0.615              | Kurtosis Detects                | N/A   |
| Mean of Logged Detects       | 1.223              | SD of Logged Detects            | 0.275 |

## Warning: Data set has only 3 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.985 | Shapiro Wilk GOF Test                                |  |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.767 | Detected Data appear Normal at 5% Significance Level |  |  |  |
| Lilliefors Test Statistic                            | 0.222 | Lilliefors GOF Test                                  |  |  |  |
| 5% Lilliefors Critical Value                         | 0.425 | Detected Data appear Normal at 5% Significance Level |  |  |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |  |  |

## Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.223 | KM Standard Error of Mean         | 0.167 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 0.61  | 95% KM (BCA) UCL                  | N/A   |
| 95% KM (t) UCL         | 2.511 | 95% KM (Percentile Bootstrap) UCL | N/A   |
| 95% KM (z) UCL         | 2.497 | 95% KM Bootstrap t UCL            | N/A   |
| 90% KM Chebyshev UCL   | 2.724 | 95% KM Chebyshev UCL              | 2.951 |
| 97.5% KM Chebyshev UCL | 3.266 | 99% KM Chebyshev UCL              | 3.885 |

#### Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

| N/A | k star (bias corrected MLE)     | 20.05 | k hat (MLE)     |
|-----|---------------------------------|-------|-----------------|
| N/A | Theta star (bias corrected MLE) | 0.174 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | 120.3 | nu hat (MLE)    |
|     |                                 | 3.483 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:17:02 PM From File Soil, Lithium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Lithium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 0.687 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 4.5   | Median                                      | 0.01  |
| SD                                              | 1.302 | CV                                          | 1.894 |
| k hat (MLE)                                     | 0.276 | k star (bias corrected MLE)                 | 0.268 |
| Theta hat (MLE)                                 | 2.494 | Theta star (bias corrected MLE)             | 2.568 |
| nu hat (MLE)                                    | 11.03 | nu star (bias corrected)                    | 10.71 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (10.71, $\alpha$ ) | 4.388 | Adjusted Chi Square Value (10.71, $\beta$ ) | 4.073 |
| 95% Gamma Approximate UCL (use when n>=50)      | 1.677 | 95% Gamma Adjusted UCL (use when n<50)      | N/A   |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.223 | SD (KM)                   | 0.61  |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 0.372 | SE of Mean (KM)           | 0.167 |
| k hat (KM)                | 13.27 | k star (KM)               | 11.32 |
| nu hat (KM)               | 531   | nu star (KM)              | 452.6 |
| theta hat (KM)            | 0.167 | theta star (KM)           | 0.196 |
| 80% gamma percentile (KM) | 2.751 | 90% gamma percentile (KM) | 3.1   |
| 95% gamma percentile (KM) | 3.409 | 99% gamma percentile (KM) | 4.04  |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (452.65, $\alpha$ ) | 404.3 | Adjusted Chi Square Value (452.65, $\beta$ ) | 400.7 |
|--------------------------------------------------|-------|----------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 2.488 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 2.511 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.998 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.767 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.187 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.425 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:17:02 PM |
| From File                      | Soil, Lithium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Lithium, mg/kg - dw

| -0.185 | Mean in Log Scale            | 1.2   | Mean in Original Scale                    |
|--------|------------------------------|-------|-------------------------------------------|
| 0.884  | SD in Log Scale              | 1.129 | SD in Original Scale                      |
| 1.638  | 95% Percentile Bootstrap UCL | 1.636 | 95% t UCL (assumes normality of ROS data) |
| 1.852  | 95% Bootstrap t UCL          | 1.703 | 95% BCA Bootstrap UCL                     |
|        |                              | 2.027 | 95% H-UCL (Log ROS)                       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.773 | KM Geo Mean                   | 2.165 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.208 | 95% Critical H Value (KM-Log) | 1.791 |
| KM Standard Error of Mean (logged) | 0.057 | 95% H-UCL (KM -Log)           | 2.41  |
| KM SD (logged)                     | 0.208 | 95% Critical H Value (KM-Log) | 1.791 |
| KM Standard Error of Mean (logged) | 0.057 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                                                                        |       | DL/2 Log-Transformed |       |
|------------------------------------------------------------------------------------|-------|----------------------|-------|
| Mean in Original Scale                                                             | 1.373 | Mean in Log Scale    | 0.183 |
| SD in Original Scale                                                               | 0.961 | SD in Log Scale      | 0.457 |
| 95% t UCL (Assumes normality)                                                      | 1.744 | 95% H-Stat UCL       | 1.641 |
| DI /0 is not a recommended worked, provided for comparisons and historical records |       |                      |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 2.511

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:17:45 PMFrom FileSoil, Manganese, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Manganese, mg/kg - dw

| servations | 19                               |
|------------|----------------------------------|
| servations | 0                                |
| Mean       | 272.3                            |
| Median     | 215                              |
| or of Mean | 54.03                            |
| Skewness   | 1.416                            |
|            | Mean<br>Mean<br>Median<br>Median |

## Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.869 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.151 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.192 | Data appear Normal at 5% Significance Level |

Data appear Approximate Normal at 5% Significance Level

| Ass                       | suming No | rmal Distribution                                           |       |
|---------------------------|-----------|-------------------------------------------------------------|-------|
| 95% Normal UCL            |           | 95% UCLs (Adjusted for Skewness)                            |       |
| 95% Student's-t UCL       | 365.7     | 95% Adjusted-CLT UCL (Chen-1995) 3                          | 79.4  |
|                           |           | 95% Modified-t UCL (Johnson-1978) 3                         | 68.5  |
|                           | Gamma     | a GOF Test                                                  |       |
| A-D Test Statistic        | 0.159     | Anderson-Darling Gamma GOF Test                             |       |
| 5% A-D Critical Value     | 0.761     | Detected data appear Gamma Distributed at 5% Significance L | evel  |
| K-S Test Statistic        | 0.0815    | Kolmogorov-Smirnov Gamma GOF Test                           |       |
| 5% K-S Critical Value     | 0.198     | Detected data appear Gamma Distributed at 5% Significance L | evel  |
| Detected data appear      | Gamma D   | Distributed at 5% Significance Level                        |       |
|                           | •         |                                                             |       |
|                           | Gamma     | a Statistics                                                |       |
| k hat (MLE)               | 1.319     | k star (bias corrected MLE)                                 | 1.155 |
| Theta hat (MLE)           | 206.4     | Theta star (bias corrected MLE) 2                           | 35.8  |
| nu hat (MLE)              | 52.76     | nu star (bias corrected)                                    | 46.18 |
| MLE Mean (bias corrected) | 272.3     | MLE Sd (bias corrected) 2                                   | 53.4  |
|                           |           | Approximate Chi Square Value (0.05)                         | 31.59 |
|                           |           |                                                             |       |

Adjusted Level of Significance 0.038

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 410.4

Adjusted Chi Square Value 30.64

95% Approximate Gamma UCL (use when n>=50)) 398

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:17:45 PM From File Soil, Manganese, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Manganese, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.971                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.12                   | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 3.135 | Mean of logged Data | 5.182 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 6.872 | SD of logged Data   | 1.027 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 566.6 | 90% Chebyshev (MVUE) UCL   | 515.5 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 617.4 | 97.5% Chebyshev (MVUE) UCL | 758.9 |
| 99% Chebyshev (MVUE) UCL | 1037  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| nife UCL 365.7 | 95% Jackknife UCL            | 361.1 | 95% CLT UCL                   |
|----------------|------------------------------|-------|-------------------------------|
| p-t UCL 395.8  | 95% Bootstrap-t UCL          | 357.8 | 95% Standard Bootstrap UCL    |
| rap UCL 356.9  | 95% Percentile Bootstrap UCL | 409.5 | 95% Hall's Bootstrap UCL      |
|                |                              | 375.5 | 95% BCA Bootstrap UCL         |
| Sd) UCL 507.8  | 95% Chebyshev(Mean, Sd) UCL  | 434.3 | 90% Chebyshev(Mean, Sd) UCL   |
| Sd) UCL 809.8  | 99% Chebyshev(Mean, Sd) UCL  | 609.7 | 97.5% Chebyshev(Mean, Sd) UCL |
|                |                              |       |                               |

#### Suggested UCL to Use

95% Student's-t UCL 365.7

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:18:27 PM

 From File
 Soil, Mercury, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Mercury, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 17     |
| Number of Detects            | 17                 | Number of Non-Detects           | 3      |
| Number of Distinct Detects   | 16                 | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.13               | Minimum Non-Detect              | 0.1    |
| Maximum Detect               | 0.46               | Maximum Non-Detect              | 0.1    |
| Variance Detects             | 0.00839            | Percent Non-Detects             | 15%    |
| Mean Detects                 | 0.284              | SD Detects                      | 0.0916 |
| Median Detects               | 0.28               | CV Detects                      | 0.323  |
| Skewness Detects             | 0.26               | Kurtosis Detects                | -0.583 |
| Mean of Logged Detects       | -1.312             | SD of Logged Detects            | 0.341  |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.972 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.892 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.115 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.207 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.256 | KM Standard Error of Mean         | 0.0242 |
|------------------------|-------|-----------------------------------|--------|
| KM SD                  | 0.105 | 95% KM (BCA) UCL                  | 0.296  |
| 95% KM (t) UCL         | 0.298 | 95% KM (Percentile Bootstrap) UCL | 0.295  |
| 95% KM (z) UCL         | 0.296 | 95% KM Bootstrap t UCL            | 0.3    |
| 90% KM Chebyshev UCL   | 0.329 | 95% KM Chebyshev UCL              | 0.362  |
| 97.5% KM Chebyshev UCL | 0.407 | 99% KM Chebyshev UCL              | 0.497  |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.222 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.739 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.121 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.209 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data services ( |       | strikuted at E% Oispifeenee Level                               |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)     | 9.74   | k star (bias corrected MLE)     | 8.061  |
|-----------------|--------|---------------------------------|--------|
| Theta hat (MLE) | 0.0291 | Theta star (bias corrected MLE) | 0.0352 |
| nu hat (MLE)    | 331.2  | nu star (bias corrected)        | 274.1  |
| Mean (detects)  | 0.284  |                                 |        |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:18:27 PM From File Soil, Mercury, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Mercury, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0804 | Mean                                         | 0.257  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| Maximum                                          | 0.46   | Median                                       | 0.253  |
| SD                                               | 0.107  | CV                                           | 0.416  |
| k hat (MLE)                                      | 5.301  | k star (bias corrected MLE)                  | 4.539  |
| Theta hat (MLE)                                  | 0.0485 | Theta star (bias corrected MLE)              | 0.0566 |
| nu hat (MLE)                                     | 212.1  | nu star (bias corrected)                     | 181.6  |
| Adjusted Level of Significance ( $\beta$ )       | 0.038  |                                              |        |
| Approximate Chi Square Value (181.58, $\alpha$ ) | 151.4  | Adjusted Chi Square Value (181.58, $\beta$ ) | 149.2  |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.308  | 95% Gamma Adjusted UCL (use when n<50)       | 0.313  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.256 | SD (KM)                   | 0.105  |
|---------------------------|-------|---------------------------|--------|
| Variance (KM)             | 0.011 | SE of Mean (KM)           | 0.0242 |
| k hat (KM)                | 5.957 | k star (KM)               | 5.097  |
| nu hat (KM)               | 238.3 | nu star (KM)              | 203.9  |
| theta hat (KM)            | 0.043 | theta star (KM)           | 0.0503 |
| 80% gamma percentile (KM) | 0.344 | 90% gamma percentile (KM) | 0.408  |
| 95% gamma percentile (KM) | 0.467 | 99% gamma percentile (KM) | 0.591  |

Adjusted Chi Square Value (203.89,  $\beta$ ) 169.5

0.308

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (203.89, $\alpha$ ) | 171.8 |
|--------------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.304 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.969 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.892 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.131 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.207 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data and              |       | armal at E% Significance Level                          |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:18:27 PM |
| From File                      | Soil, Mercury, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Mercury, mg/kg - dw

| Lognormal ROS Statistics U | Using Imputed Non-Detects |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

| Mean in Original Scale                    | 0.26  | Mean in Log Scale            | -1.43 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 0.103 | SD in Log Scale              | 0.428 |
| 95% t UCL (assumes normality of ROS data) | 0.299 | 95% Percentile Bootstrap UCL | 0.297 |
| 95% BCA Bootstrap UCL                     | 0.297 | 95% Bootstrap t UCL          | 0.301 |
| 95% H-UCL (Log ROS)                       | 0.318 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -1.46 | KM Geo Mean                   | 0.232 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.467 | 95% Critical H Value (KM-Log) | 1.988 |
| KM Standard Error of Mean (logged) | 0.108 | 95% H-UCL (KM -Log)           | 0.32  |
| KM SD (logged)                     | 0.467 | 95% Critical H Value (KM-Log) | 1.988 |
| KM Standard Error of Mean (logged) | 0.108 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-Ti                                                                                                       | ransformed        |        |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| Mean in Original Scale        | 0.249                                                                                                             | Mean in Log Scale | -1.564 |
| SD in Original Scale          | 0.12                                                                                                              | SD in Log Scale   | 0.692  |
| 95% t UCL (Assumes normality) | 0.295                                                                                                             | 95% H-Stat UCL    | 0.378  |
|                               | a second |                   |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.298

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:19:10 PM From File Soil, Molybdenum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Molybdenum, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 20 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 20 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Molybdenum, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:19:53 PM

 From File
 Soil, Nickel, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Nickel, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 11    |
| Number of Detects            | 14                 | Number of Non-Detects           | 6     |
| Number of Distinct Detects   | 10                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.1                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 9.3                | Maximum Non-Detect              | 2     |
| Variance Detects             | 3.695              | Percent Non-Detects             | 30%   |
| Mean Detects                 | 3.261              | SD Detects                      | 1.922 |
| Median Detects               | 2.55               | CV Detects                      | 0.589 |
| Skewness Detects             | 2.776              | Kurtosis Detects                | 8.254 |
| Mean of Logged Detects       | 1.082              | SD of Logged Detects            | 0.412 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.607 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.874 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.329 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.226 | Detected Data Not Normal at 5% Significance Level |
| Determined Date                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.883 | KM Standard Error of Mean         | 0.384 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 1.654 | 95% KM (BCA) UCL                  | 3.628 |
| 95% KM (t) UCL         | 3.546 | 95% KM (Percentile Bootstrap) UCL | 3.565 |
| 95% KM (z) UCL         | 3.514 | 95% KM Bootstrap t UCL            | 4.674 |
| 90% KM Chebyshev UCL   | 4.034 | 95% KM Chebyshev UCL              | 4.555 |
| 97.5% KM Chebyshev UCL | 5.279 | 99% KM Chebyshev UCL              | 6.701 |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 1.637 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.738 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.29  | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.229 | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

| 4.124 | k star (bias corrected MLE)     | 5.189 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 0.791 | Theta star (bias corrected MLE) | 0.628 | Theta hat (MLE) |
| 115.5 | nu star (bias corrected)        | 145.3 | nu hat (MLE)    |
|       |                                 | 3.261 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:19:53 PM From File Soil, Nickel, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Nickel, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 2.352 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 9.3   | Median                                      | 2.35  |
| SD                                              | 2.14  | CV                                          | 0.91  |
| k hat (MLE)                                     | 0.659 | k star (bias corrected MLE)                 | 0.593 |
| Theta hat (MLE)                                 | 3.572 | Theta star (bias corrected MLE)             | 3.966 |
| nu hat (MLE)                                    | 26.34 | nu star (bias corrected)                    | 23.72 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (23.72, $\alpha$ ) | 13.64 | Adjusted Chi Square Value (23.72, $\beta$ ) | 13.03 |
| 95% Gamma Approximate UCL (use when n>=50)      | 4.092 | 95% Gamma Adjusted UCL (use when n<50)      | 4.281 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.883 | SD (KM)                   | 1.654 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 2.735 | SE of Mean (KM)           | 0.384 |
| k hat (KM)                | 3.038 | k star (KM)               | 2.615 |
| nu hat (KM)               | 121.5 | nu star (KM)              | 104.6 |
| theta hat (KM)            | 0.949 | theta star (KM)           | 1.102 |
| 80% gamma percentile (KM) | 4.18  | 90% gamma percentile (KM) | 5.271 |
| 95% gamma percentile (KM) | 6.297 | 99% gamma percentile (KM) | 8.537 |

80.43 3.749

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (104.61, $\alpha$ ) | 82.01 | Adjusted Chi Square Value (104.61, $\beta$ ) |
|--------------------------------------------------|-------|----------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 3.677 | 95% Gamma Adjusted KM-UCL (use when n<50)    |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                          | 0.752 | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.874 | Detected Data Not Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                            | 0.265 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                         | 0.226 | Detected Data Not Lognormal at 5% Significance Level |  |  |
| Detected Data Not Lognormal at 5% Significance Level |       |                                                      |  |  |

| User Selected Options          | ;                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:19:53 PM |
| From File                      | Soil, Nickel, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Nickel, mg/kg - dw

| Lognormal ROS Statistics Using Imputed Non-Detects |       |                              |       |
|----------------------------------------------------|-------|------------------------------|-------|
| Mean in Original Scale                             | 2.634 | Mean in Log Scale            | 0.799 |
| SD in Original Scale                               | 1.874 | SD in Log Scale              | 0.574 |
| 95% t UCL (assumes normality of ROS data)          | 3.359 | 95% Percentile Bootstrap UCL | 3.388 |
| 95% BCA Bootstrap UCL                              | 3.67  | 95% Bootstrap t UCL          | 4.036 |
| 95% H-UCL (Log ROS)                                | 3.451 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.966  | KM Geo Mean                   | 2.627 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.377  | 95% Critical H Value (KM-Log) | 1.91  |
| KM Standard Error of Mean (logged) | 0.0875 | 95% H-UCL (KM -Log)           | 3.327 |
| KM SD (logged)                     | 0.377  | 95% Critical H Value (KM-Log) | 1.91  |
| KM Standard Error of Mean (logged) | 0.0875 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   |       | DL/2 Log-Transformed |       |
|-------------------------------|-------|----------------------|-------|
| Mean in Original Scale        | 2.583 | Mean in Log Scale    | 0.758 |
| SD in Original Scale          | 1.913 | SD in Log Scale      | 0.613 |
| 95% t UCL (Assumes normality) | 3.322 | 95% H-Stat UCL       | 3.475 |
|                               |       |                      |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

| 95% KM (t) UCL   | 3.546 | KM H-UCL | 3.327 |
|------------------|-------|----------|-------|
| 95% KM (BCA) UCL | 3.628 |          |       |

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:20:35 PMFrom FileSoil, Rubidium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Rubidium, mg/kg - dw

| General Statistics |                                                           |                                                                                                                                                                                                        |
|--------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations                           | 7                                                                                                                                                                                                      |
| 7                  | Number of Non-Detects                                     | 13                                                                                                                                                                                                     |
| 7                  | Number of Distinct Non-Detects                            | 1                                                                                                                                                                                                      |
| 2                  | Minimum Non-Detect                                        | 2                                                                                                                                                                                                      |
| 3.2                | Maximum Non-Detect                                        | 2                                                                                                                                                                                                      |
| 0.18               | Percent Non-Detects                                       | 65%                                                                                                                                                                                                    |
| 2.393              | SD Detects                                                | 0.425                                                                                                                                                                                                  |
| 2.2                | CV Detects                                                | 0.177                                                                                                                                                                                                  |
| 1.363              | Kurtosis Detects                                          | 1.334                                                                                                                                                                                                  |
| 0.86               | SD of Logged Detects                                      | 0.166                                                                                                                                                                                                  |
|                    | 20<br>7<br>7<br>2<br>3.2<br>0.18<br>2.393<br>2.2<br>1.363 | 20Number of Distinct Observations7Number of Non-Detects7Number of Distinct Non-Detects2Minimum Non-Detect3.2Maximum Non-Detect0.18Percent Non-Detects2.393SD Detects2.2CV Detects1.363Kurtosis Detects |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.86  | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.803 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.247 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.304 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

## Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| • | · / ·                  | -     | •                                 |        |
|---|------------------------|-------|-----------------------------------|--------|
|   | KM Mean                | 2.138 | KM Standard Error of Mean         | 0.0721 |
|   | KM SD                  | 0.299 | 95% KM (BCA) UCL                  | 2.255  |
|   | 95% KM (t) UCL         | 2.262 | 95% KM (Percentile Bootstrap) UCL | 2.255  |
|   | 95% KM (z) UCL         | 2.256 | 95% KM Bootstrap t UCL            | 2.418  |
|   | 90% KM Chebyshev UCL   | 2.354 | 95% KM Chebyshev UCL              | 2.452  |
|   | 97.5% KM Chebyshev UCL | 2.588 | 99% KM Chebyshev UCL              | 2.855  |
|   |                        |       |                                   |        |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                                | 0.458 | Anderson-Darling GOF Test                                       |  |
|-------------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value                                             | 0.707 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic                                                | 0.254 | Kolmogorov-Smirnov GOF                                          |  |
| 5% K-S Critical Value                                             | 0.311 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data annual Operation Distributed at EV. Operational and |       |                                                                 |  |

Detected data appear Gamma Distributed at 5% Significance Level

| 23.3  | k star (bias corrected MLE)     | 40.61  | k hat (MLE)     |
|-------|---------------------------------|--------|-----------------|
| 0.103 | Theta star (bias corrected MLE) | 0.0589 | Theta hat (MLE) |
| 326.2 | nu star (bias corrected)        | 568.6  | nu hat (MLE)    |
|       |                                 | 2.393  | Mean (detects)  |

| User Selected Options          | ;                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:20:35 PM  |
| From File                      | Soil, Rubidium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Rubidium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.109 | Mean                                                    | 1.497                                                                                                                     |
|-------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 3.2   | Median                                                  | 1.429                                                                                                                     |
| 0.811 | CV                                                      | 0.542                                                                                                                     |
| 2.52  | k star (bias corrected MLE)                             | 2.175                                                                                                                     |
| 0.594 | Theta star (bias corrected MLE)                         | 0.688                                                                                                                     |
| 100.8 | nu star (bias corrected)                                | 87                                                                                                                        |
| 0.038 |                                                         |                                                                                                                           |
| 66.5  | Adjusted Chi Square Value (87.00, $\beta$ )             | 65.08                                                                                                                     |
| 1.959 | 95% Gamma Adjusted UCL (use when n<50)                  | 2.002                                                                                                                     |
|       | 3.2<br>0.811<br>2.52<br>0.594<br>100.8<br>0.038<br>66.5 | 3.2Median0.811CV2.52k star (bias corrected MLE)0.594Theta star (bias corrected MLE)100.8nu star (bias corrected)0.03866.5 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.138  | SD (KM)                   | 0.299  |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0892 | SE of Mean (KM)           | 0.0721 |
| k hat (KM)                | 51.21  | k star (KM)               | 43.56  |
| nu hat (KM)               | 2048   | nu star (KM)              | 1742   |
| theta hat (KM)            | 0.0417 | theta star (KM)           | 0.0491 |
| 80% gamma percentile (KM) | 2.404  | 90% gamma percentile (KM) | 2.562  |
| 95% gamma percentile (KM) | 2.697  | 99% gamma percentile (KM) | 2.962  |

Adjusted Chi Square Value (N/A,  $\beta$ ) 1639

2.272

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (N/A, $\alpha$ ) | 1647  | Adjusted Chi Square Value (N/A, $\beta$ ) |
|-----------------------------------------------|-------|-------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50) | 2.262 | 95% Gamma Adjusted KM-UCL (use when n<50) |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.892                                                   | Shapiro Wilk GOF Test                                   |  |  |
|--------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value | 0.803                                                   | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic      | 0.238                                                   | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value   | 0.304                                                   | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data app              | Detected Date appear Lognormal at 5% Significance Loval |                                                         |  |  |

| User Selected Options          | ;                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:20:35 PM  |
| From File                      | Soil, Rubidium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Rubidium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 1.704 | Mean in Log Scale            | 0.473 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 0.615 | SD in Log Scale              | 0.356 |
| 95% t UCL (assumes normality of ROS data) | 1.942 | 95% Percentile Bootstrap UCL | 1.928 |
| 95% BCA Bootstrap UCL                     | 1.955 | 95% Bootstrap t UCL          | 1.981 |
| 95% H-UCL (Log ROS)                       | 1.995 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.752  | KM Geo Mean                   | 2.12  |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.121  | 95% Critical H Value (KM-Log) | 1.743 |
| KM Standard Error of Mean (logged) | 0.0292 | 95% H-UCL (KM -Log)           | 2.242 |
| KM SD (logged)                     | 0.121  | 95% Critical H Value (KM-Log) | 1.743 |
| KM Standard Error of Mean (logged) | 0.0292 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                                                                       |       | DL/2 Log-Transformed |       |
|-----------------------------------------------------------------------------------|-------|----------------------|-------|
| Mean in Original Scale                                                            | 1.488 | Mean in Log Scale    | 0.301 |
| SD in Original Scale                                                              | 0.722 | SD in Log Scale      | 0.431 |
| 95% t UCL (Assumes normality)                                                     | 1.767 | 95% H-Stat UCL       | 1.799 |
| DL/Q is not a recommended method, provided for comparisons and historical records |       |                      |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 2.262

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:21:18 PMFrom FileSoil, Selenium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Selenium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 9     |
| Number of Detects            | 8                  | Number of Non-Detects           | 12    |
| Number of Distinct Detects   | 8                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 0.52               | Minimum Non-Detect              | 0.5   |
| Maximum Detect               | 0.84               | Maximum Non-Detect              | 0.5   |
| Variance Detects             | 0.0112             | Percent Non-Detects             | 60%   |
| Mean Detects                 | 0.635              | SD Detects                      | 0.106 |
| Median Detects               | 0.605              | CV Detects                      | 0.166 |
| Skewness Detects             | 1.08               | Kurtosis Detects                | 0.798 |
| Mean of Logged Detects       | -0.465             | SD of Logged Detects            | 0.159 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.916 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.818 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.199 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.283 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| 0.0218 | KM Standard Error of Mean         | 0.554 | KM Mean                |  |
|--------|-----------------------------------|-------|------------------------|--|
| 0.587  | 95% KM (BCA) UCL                  | 0.091 | KM SD                  |  |
| 0.589  | 95% KM (Percentile Bootstrap) UCL | 0.592 | 95% KM (t) UCL         |  |
| 0.606  | 95% KM Bootstrap t UCL            | 0.59  | 95% KM (z) UCL         |  |
| 0.649  | 95% KM Chebyshev UCL              | 0.619 | 90% KM Chebyshev UCL   |  |
| 0.77   | 99% KM Chebyshev UCL              | 0.69  | 97.5% KM Chebyshev UCL |  |
|        |                                   |       |                        |  |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic     | 0.293                                                              | Anderson-Darling GOF Test                                       |  |  |  |
|------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| 5% A-D Critical Value  | 0.715                                                              | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| K-S Test Statistic     | 0.206                                                              | Kolmogorov-Smirnov GOF                                          |  |  |  |
| 5% K-S Critical Value  | 0.293                                                              | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Detected data surround | Detected data annual Oceania Distributed at E% Oceanificance Level |                                                                 |  |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

| 27.68  | k star (bias corrected MLE)     | 44.15  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0229 | Theta star (bias corrected MLE) | 0.0144 | Theta hat (MLE) |
| 442.9  | nu star (bias corrected)        | 706.4  | nu hat (MLE)    |
|        |                                 | 0.635  | Mean (detects)  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:21:18 PM  |
| From File                      | Soil, Selenium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Selenium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.107  | Mean                                         | 0.441 |
|--------------------------------------------------|--------|----------------------------------------------|-------|
| Maximum                                          | 0.84   | Median                                       | 0.423 |
| SD                                               | 0.194  | CV                                           | 0.44  |
| k hat (MLE)                                      | 4.65   | k star (bias corrected MLE)                  | 3.986 |
| Theta hat (MLE)                                  | 0.0947 | Theta star (bias corrected MLE)              | 0.111 |
| nu hat (MLE)                                     | 186    | nu star (bias corrected)                     | 159.4 |
| Adjusted Level of Significance ( $\beta$ )       | 0.038  |                                              |       |
| Approximate Chi Square Value (159.44, $\alpha$ ) | 131.2  | Adjusted Chi Square Value (159.44, $\beta$ ) | 129.2 |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.535  | 95% Gamma Adjusted UCL (use when n<50)       | 0.544 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.554   | SD (KM)                   | 0.091  |
|---------------------------|---------|---------------------------|--------|
| Variance (KM)             | 0.00828 | SE of Mean (KM)           | 0.0218 |
| k hat (KM)                | 37.05   | k star (KM)               | 31.53  |
| nu hat (KM)               | 1482    | nu star (KM)              | 1261   |
| theta hat (KM)            | 0.015   | theta star (KM)           | 0.0176 |
| 80% gamma percentile (KM) | 0.635   | 90% gamma percentile (KM) | 0.684  |
| 95% gamma percentile (KM) | 0.726   | 99% gamma percentile (KM) | 0.809  |

Adjusted Chi Square Value (N/A,  $\beta$ ) 1173

0.595

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (N/A, $\alpha$ ) | 1180 |  |
|-----------------------------------------------|------|--|
|                                               |      |  |

95% Gamma Approximate KM-UCL (use when n>=50) 0.592

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.945 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.818 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.191 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.283 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data annear Lognormal at 5% Significance Level |       |                                                         |  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:21:18 PM  |
| From File                      | Soil, Selenium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Selenium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.479 | Mean in Log Scale            | -0.785 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 0.155 | SD in Log Scale              | 0.322  |
| 95% t UCL (assumes normality of ROS data) | 0.539 | 95% Percentile Bootstrap UCL | 0.534  |
| 95% BCA Bootstrap UCL                     | 0.539 | 95% Bootstrap t UCL          | 0.545  |
| 95% H-UCL (Log ROS)                       | 0.551 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -0.602 | KM Geo Mean                   | 0.548 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.146  | 95% Critical H Value (KM-Log) | 1.756 |
| KM Standard Error of Mean (logged) | 0.0349 | 95% H-UCL (KM -Log)           | 0.587 |
| KM SD (logged)                     | 0.146  | 95% Critical H Value (KM-Log) | 1.756 |
| KM Standard Error of Mean (logged) | 0.0349 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                                 |       | DL/2 Log-Transformed                |        |
|---------------------------------------------|-------|-------------------------------------|--------|
| Mean in Original Scale                      | 0.404 | Mean in Log Scale                   | -1.018 |
| SD in Original Scale                        | 0.204 | SD in Log Scale                     | 0.473  |
| 95% t UCL (Assumes normality)               | 0.483 | 95% H-Stat UCL                      | 0.502  |
| DL /O I · · · · · · · · · · · · · · · · · · |       | and the second design of the second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.592

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:22:01 PM From File Soil, Silver, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Silver, mg/kg - dw

| General Statistics |                                                                  |                                                                                                                                                                                                               |
|--------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations                                  | 8                                                                                                                                                                                                             |
| 7                  | Number of Non-Detects                                            | 13                                                                                                                                                                                                            |
| 7                  | Number of Distinct Non-Detects                                   | 1                                                                                                                                                                                                             |
| 0.56               | Minimum Non-Detect                                               | 0.5                                                                                                                                                                                                           |
| 1.3                | Maximum Non-Detect                                               | 0.5                                                                                                                                                                                                           |
| 0.0842             | Percent Non-Detects                                              | 65%                                                                                                                                                                                                           |
| 0.919              | SD Detects                                                       | 0.29                                                                                                                                                                                                          |
| 0.925              | CV Detects                                                       | 0.316                                                                                                                                                                                                         |
| 0.073              | Kurtosis Detects                                                 | -1.968                                                                                                                                                                                                        |
| -0.129             | SD of Logged Detects                                             | 0.328                                                                                                                                                                                                         |
|                    | 20<br>7<br>7<br>0.56<br>1.3<br>0.0842<br>0.919<br>0.925<br>0.073 | 20Number of Distinct Observations7Number of Non-Detects7Number of Distinct Non-Detects0.56Minimum Non-Detect1.3Maximum Non-Detect0.0842Percent Non-Detects0.919SD Detects0.925CV Detects0.073Kurtosis Detects |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.918 | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.803 | Detected Data appear Normal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                            | 0.224 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                         | 0.304 | Detected Data appear Normal at 5% Significance Level |  |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.647 | KM Standard Error of Mean         | 0.0617 |
|------------------------|-------|-----------------------------------|--------|
| KM SD                  | 0.255 | 95% KM (BCA) UCL                  | 0.748  |
| 95% KM (t) UCL         | 0.753 | 95% KM (Percentile Bootstrap) UCL | 0.75   |
| 95% KM (z) UCL         | 0.748 | 95% KM Bootstrap t UCL            | 0.762  |
| 90% KM Chebyshev UCL   | 0.832 | 95% KM Chebyshev UCL              | 0.916  |
| 97.5% KM Chebyshev UCL | 1.032 | 99% KM Chebyshev UCL              | 1.261  |

## Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.37  | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.708 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.234 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.312 | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| 6.542 | k star (bias corrected MLE)     | 11.28  | k hat (MLE)     |
|-------|---------------------------------|--------|-----------------|
| 0.141 | Theta star (bias corrected MLE) | 0.0815 | Theta hat (MLE) |
| 91.59 | nu star (bias corrected)        | 157.9  | nu hat (MLE)    |
|       |                                 | 0.919  | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:22:01 PM From File Soil, Silver, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Silver, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.42  | Mean                                        | 0.01  | Minimum                                         |
|-------|---------------------------------------------|-------|-------------------------------------------------|
| 0.3   | Median                                      | 1.3   | Maximum                                         |
| 1.025 | CV                                          | 0.43  | SD                                              |
| 0.544 | k star (bias corrected MLE)                 | 0.601 | k hat (MLE)                                     |
| 0.772 | Theta star (bias corrected MLE)             | 0.699 | Theta hat (MLE)                                 |
| 21.76 | nu star (bias corrected)                    | 24.03 | nu hat (MLE)                                    |
|       |                                             | 0.038 | Adjusted Level of Significance ( $\beta$ )      |
| 11.59 | Adjusted Chi Square Value (21.76, $\beta$ ) | 12.16 | Approximate Chi Square Value (21.76, $\alpha$ ) |
| 0.788 | 95% Gamma Adjusted UCL (use when n<50)      | 0.751 | 95% Gamma Approximate UCL (use when n>=50)      |

#### Estimates of Gamma Parameters using KM Estimates

| (M) 0.255  | SD (KM)                   | 0.647  | Mean (KM)                 |
|------------|---------------------------|--------|---------------------------|
| (M) 0.0617 | SE of Mean (KM)           | 0.0652 | Variance (KM)             |
| (M) 5.483  | k star (KM)               | 6.411  | k hat (KM)                |
| (M) 219.3  | nu star (KM)              | 256.5  | nu hat (KM)               |
| (M) 0.118  | theta star (KM)           | 0.101  | theta hat (KM)            |
| (M) 1.016  | 90% gamma percentile (KM) | 0.861  | 80% gamma percentile (KM) |
| (M) 1.455  | 99% gamma percentile (KM) | 1.158  | 95% gamma percentile (KM) |

Adjusted Chi Square Value (219.32,  $\beta$ ) 183.6

0.772

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (219.32, $\alpha$ ) | 186   |
|--------------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.762 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.916 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.803 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.211 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.304 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data app              |       | armal at 5% Significance Loval                          |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:22:01 PM |
| From File                      | Soil, Silver, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Silver, mg/kg - dw

| Lognormal ROS Statistics U | Using Imputed Non-Detects |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

| Mean in Original Scale                    | 0.521 | Mean in Log Scale            | -0.866 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 0.354 | SD in Log Scale              | 0.679  |
| 95% t UCL (assumes normality of ROS data) | 0.658 | 95% Percentile Bootstrap UCL | 0.655  |
| 95% BCA Bootstrap UCL                     | 0.674 | 95% Bootstrap t UCL          | 0.688  |
| 95% H-UCL (Log ROS)                       | 0.747 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -0.496 | KM Geo Mean                   | 0.609 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.324  | 95% Critical H Value (KM-Log) | 1.868 |
| KM Standard Error of Mean (logged) | 0.0781 | 95% H-UCL (KM -Log)           | 0.737 |
| KM SD (logged)                     | 0.324  | 95% Critical H Value (KM-Log) | 1.868 |
| KM Standard Error of Mean (logged) | 0.0781 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   |                                                                                                                | DL/2 Log-Transformed             |        |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|--------|
| Mean in Original Scale        | 0.484                                                                                                          | Mean in Log Scale                | -0.946 |
| SD in Original Scale          | 0.366                                                                                                          | SD in Log Scale                  | 0.642  |
| 95% t UCL (Assumes normality) | 0.626                                                                                                          | 95% H-Stat UCL                   | 0.657  |
| DL /0 is not a second address | and an and shared s | conversions and blatestal second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.753

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:22:44 PMFrom FileSoil, Strontium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Strontium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 16    |
| Number of Detects            | 18                 | Number of Non-Detects           | 2     |
| Number of Distinct Detects   | 15                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 10.1               | Minimum Non-Detect              | 5     |
| Maximum Detect               | 61                 | Maximum Non-Detect              | 5     |
| Variance Detects             | 158                | Percent Non-Detects             | 10%   |
| Mean Detects                 | 21.64              | SD Detects                      | 12.57 |
| Median Detects               | 15.5               | CV Detects                      | 0.581 |
| Skewness Detects             | 1.954              | Kurtosis Detects                | 4.782 |
| Mean of Logged Detects       | 2.952              | SD of Logged Detects            | 0.485 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.778 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.897 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.229 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.202 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                                | 19.98          | KM Standard Error of Mean                      | 2.903          |
|----------------------------------------|----------------|------------------------------------------------|----------------|
| KM SD                                  | 12.62          | 95% KM (BCA) UCL                               | 25.38          |
| 95% KM (t) UCL                         | 25             | 95% KM (Percentile Bootstrap) UCL              | 24.98          |
| 95% KM (z) UCL                         | 24.76          | 95% KM Bootstrap t UCL                         | 26.63          |
| 90% KM Chebyshev UCL                   | 28.69          | 95% KM Chebyshev UCL                           | 32.64          |
| 97.5% KM Chebyshev UCL                 | 38.11          | 99% KM Chebyshev UCL                           | 48.87          |
| 95% KM (z) UCL<br>90% KM Chebyshev UCL | 24.76<br>28.69 | 95% KM Bootstrap t UCL<br>95% KM Chebyshev UCL | 26.63<br>32.64 |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.842 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.743 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.22  | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.204 | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 3.557 | k star (bias corrected MLE)     | 4.224 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 6.085 | Theta star (bias corrected MLE) | 5.124 | Theta hat (MLE) |
| 128.1 | nu star (bias corrected)        | 152.1 | nu hat (MLE)    |
|       |                                 | 21.64 | Mean (detects)  |

| User Selected Options          |                                 |  |  |
|--------------------------------|---------------------------------|--|--|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:22:44 PM   |  |  |
| From File                      | Soil, Strontium, mg_kg - dw.xls |  |  |
| Full Precision                 | OFF                             |  |  |
| Confidence Coefficient         | 95%                             |  |  |
| Number of Bootstrap Operations | 2000                            |  |  |

#### Soil, Strontium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 19.58 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 61    | Median                                      | 15    |
| SD                                              | 13.48 | CV                                          | 0.689 |
| k hat (MLE)                                     | 1.11  | k star (bias corrected MLE)                 | 0.977 |
| Theta hat (MLE)                                 | 17.63 | Theta star (bias corrected MLE)             | 20.04 |
| nu hat (MLE)                                    | 44.42 | nu star (bias corrected)                    | 39.09 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (39.09, $\alpha$ ) | 25.77 | Adjusted Chi Square Value (39.09, $\beta$ ) | 24.91 |
| 95% Gamma Approximate UCL (use when n>=50)      | 29.7  | 95% Gamma Adjusted UCL (use when n<50)      | 30.72 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 19.98 | SD (KM)                   | 12.62 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 159.2 | SE of Mean (KM)           | 2.903 |
| k hat (KM)                | 2.507 | k star (KM)               | 2.165 |
| nu hat (KM)               | 100.3 | nu star (KM)              | 86.58 |
| theta hat (KM)            | 7.969 | theta star (KM)           | 9.23  |
| 80% gamma percentile (KM) | 29.63 | 90% gamma percentile (KM) | 38.15 |
| 95% gamma percentile (KM) | 46.23 | 99% gamma percentile (KM) | 64.08 |

64.72

26.73

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (86.58, $\alpha$ ) | 66.13 | Adjusted Chi Square Value (86.58, $\beta$ ) |
|-------------------------------------------------|-------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 26.16 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.912 | Shapiro Wilk GOF Test                                   |
|---------------------------------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                          | 0.897 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                               | 0.2   | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value                            | 0.202 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          |                                 |  |  |
|--------------------------------|---------------------------------|--|--|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:22:44 PM   |  |  |
| From File                      | Soil, Strontium, mg_kg - dw.xls |  |  |
| Full Precision                 | OFF                             |  |  |
| Confidence Coefficient         | 95%                             |  |  |
| Number of Bootstrap Operations | 2000                            |  |  |

#### Soil, Strontium, mg/kg - dw

| Lognormal ROS Statistics | Using Imputed Non-Detects |
|--------------------------|---------------------------|
|--------------------------|---------------------------|

| Mean in Original Scale                    | 20.1  | Mean in Log Scale            | 2.839 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 12.8  | SD in Log Scale              | 0.577 |
| 95% t UCL (assumes normality of ROS data) | 25.05 | 95% Percentile Bootstrap UCL | 24.85 |
| 95% BCA Bootstrap UCL                     | 26.53 | 95% Bootstrap t UCL          | 26.84 |
| 95% H-UCL (Log ROS)                       | 26.65 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 2.818 | KM Geo Mean                   | 16.73 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.602 | 95% Critical H Value (KM-Log) | 2.125 |
| KM Standard Error of Mean (logged) | 0.139 | 95% H-UCL (KM -Log)           | 26.9  |
| KM SD (logged)                     | 0.602 | 95% Critical H Value (KM-Log) | 2.125 |
| KM Standard Error of Mean (logged) | 0.139 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-Trar | sformed           |       |
|-------------------------------|---------------|-------------------|-------|
| Mean in Original Scale        | 19.73         | Mean in Log Scale | 2.748 |
| SD in Original Scale          | 13.27         | SD in Log Scale   | 0.777 |
| 95% t UCL (Assumes normality) | 24.86         | 95% H-Stat UCL    | 31.98 |
|                               |               |                   |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

| KM Student's t | 22.59 |
|----------------|-------|
|----------------|-------|

KM H-UCL 26.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:23:26 PMFrom FileSoil, Thallium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Thallium, mg/kg - dw

#### General Statistics

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Thallium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:24:08 PM From File Soil, Tin, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Tin, mg/kg - dw

| General Statistics |                                                                 |                                                                                                                                                                                                              |
|--------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations                                 | 5                                                                                                                                                                                                            |
| 6                  | Number of Non-Detects                                           | 14                                                                                                                                                                                                           |
| 4                  | Number of Distinct Non-Detects                                  | 1                                                                                                                                                                                                            |
| 1.1                | Minimum Non-Detect                                              | 1                                                                                                                                                                                                            |
| 1.4                | Maximum Non-Detect                                              | 1                                                                                                                                                                                                            |
| 0.0147             | Percent Non-Detects                                             | 70%                                                                                                                                                                                                          |
| 1.233              | SD Detects                                                      | 0.121                                                                                                                                                                                                        |
| 1.25               | CV Detects                                                      | 0.0982                                                                                                                                                                                                       |
| 0.0751             | Kurtosis Detects                                                | -1.55                                                                                                                                                                                                        |
| 0.206              | SD of Logged Detects                                            | 0.0984                                                                                                                                                                                                       |
|                    | 20<br>6<br>4<br>1.1<br>1.4<br>0.0147<br>1.233<br>1.25<br>0.0751 | 20Number of Distinct Observations6Number of Non-Detects4Number of Distinct Non-Detects1.1Minimum Non-Detect1.4Maximum Non-Detect0.0147Percent Non-Detects1.233SD Detects1.25CV Detects0.0751Kurtosis Detects |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.906 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.788 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.209 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.325 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

## Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| <br>                   |       |                                   |        |
|------------------------|-------|-----------------------------------|--------|
| KM Mean                | 1.07  | KM Standard Error of Mean         | 0.0301 |
| KM SD                  | 0.123 | 95% KM (BCA) UCL                  | N/A    |
| 95% KM (t) UCL         | 1.122 | 95% KM (Percentile Bootstrap) UCL | N/A    |
| 95% KM (z) UCL         | 1.12  | 95% KM Bootstrap t UCL            | N/A    |
| 90% KM Chebyshev UCL   | 1.16  | 95% KM Chebyshev UCL              | 1.201  |
| 97.5% KM Chebyshev UCL | 1.258 | 99% KM Chebyshev UCL              | 1.369  |
|                        |       |                                   |        |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.384 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.696 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.233 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.332 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data services ( |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 62.23  | k star (bias corrected MLE)     | 124.2   | k hat (MLE)     |
|--------|---------------------------------|---------|-----------------|
| 0.0198 | Theta star (bias corrected MLE) | 0.00993 | Theta hat (MLE) |
| 746.7  | nu star (bias corrected)        | 1491    | nu hat (MLE)    |
|        |                                 | 1.233   | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:24:08 PM From File Soil, Tin, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Tin, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.479  | Mean                                         | 0.927  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| Maximum                                          | 1.4    | Median                                       | 0.911  |
| SD                                               | 0.255  | CV                                           | 0.275  |
| k hat (MLE)                                      | 13.35  | k star (bias corrected MLE)                  | 11.38  |
| Theta hat (MLE)                                  | 0.0694 | Theta star (bias corrected MLE)              | 0.0814 |
| nu hat (MLE)                                     | 533.8  | nu star (bias corrected)                     | 455.1  |
| Adjusted Level of Significance (β)               | 0.038  |                                              |        |
| Approximate Chi Square Value (455.09, $\alpha$ ) | 406.6  | Adjusted Chi Square Value (455.09, $\beta$ ) | 403    |
| 95% Gamma Approximate UCL (use when n>=50)       | 1.037  | 95% Gamma Adjusted UCL (use when n<50)       | 1.046  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 1.07   | SD (KM)                   | 0.123  |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0151 | SE of Mean (KM)           | 0.0301 |
| k hat (KM)                | 75.82  | k star (KM)               | 64.48  |
| nu hat (KM)               | 3033   | nu star (KM)              | 2579   |
| theta hat (KM)            | 0.0141 | theta star (KM)           | 0.0166 |
| 80% gamma percentile (KM) | 1.18   | 90% gamma percentile (KM) | 1.244  |
| 95% gamma percentile (KM) | 1.298  | 99% gamma percentile (KM) | 1.404  |

Adjusted Chi Square Value (N/A,  $\beta$ ) 2453

1.125

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A,  $\alpha$ ) 2462

95% Gamma Approximate KM-UCL (use when n>=50) 1.121

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.901 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.788 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.218 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.325 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Deta appear Lognormal at 5% Significance Lovel |       |                                                         |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:24:08 PM |
| From File                      | Soil, Tin, mg_kg - dw.xls     |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Tin, mg/kg - dw

| Lognormal ROS Statistics Using Imputed Non-De | ects |
|-----------------------------------------------|------|
|-----------------------------------------------|------|

| Mean in Original Scale                    | 0.967 | Mean in Log Scale            | -0.0562 |
|-------------------------------------------|-------|------------------------------|---------|
| SD in Original Scale                      | 0.215 | SD in Log Scale              | 0.22    |
| 95% t UCL (assumes normality of ROS data) | 1.05  | 95% Percentile Bootstrap UCL | 1.047   |
| 95% BCA Bootstrap UCL                     | 1.051 | 95% Bootstrap t UCL          | 1.055   |
| 95% H-UCL (Log ROS)                       | 1.061 |                              |         |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.0617 | KM Geo Mean                   | 1.064 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.106  | 95% Critical H Value (KM-Log) | 1.736 |
| KM Standard Error of Mean (logged) | 0.026  | 95% H-UCL (KM -Log)           | 1.116 |
| KM SD (logged)                     | 0.106  | 95% Critical H Value (KM-Log) | 1.736 |
| KM Standard Error of Mean (logged) | 0.026  |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   |                                    | DL/2 Log-Transformed        |        |
|-------------------------------|------------------------------------|-----------------------------|--------|
| Mean in Original Scale        | 0.72                               | Mean in Log Scale           | -0.423 |
| SD in Original Scale          | 0.35                               | SD in Log Scale             | 0.426  |
| 95% t UCL (Assumes normality) | 0.855                              | 95% H-Stat UCL              | 0.867  |
| DL/O is not a second address  | had an and the state of the second | wands and blatestaal second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 1.122

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:24:51 PMFrom FileSoil, Uranium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Uranium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 7      |
| Number of Detects            | 6                  | Number of Non-Detects           | 14     |
| Number of Distinct Detects   | 6                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.11               | Minimum Non-Detect              | 0.1    |
| Maximum Detect               | 0.33               | Maximum Non-Detect              | 0.1    |
| Variance Detects             | 0.00695            | Percent Non-Detects             | 70%    |
| Mean Detects                 | 0.197              | SD Detects                      | 0.0833 |
| Median Detects               | 0.185              | CV Detects                      | 0.424  |
| Skewness Detects             | 0.726              | Kurtosis Detects                | -0.221 |
| Mean of Logged Detects       | -1.701             | SD of Logged Detects            | 0.423  |
|                              |                    |                                 |        |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.939 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.788 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.155 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.325 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

## Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| • |                        | -      | •                                 |        |
|---|------------------------|--------|-----------------------------------|--------|
|   | KM Mean                | 0.129  | KM Standard Error of Mean         | 0.0149 |
|   | KM SD                  | 0.0608 | 95% KM (BCA) UCL                  | 0.154  |
|   | 95% KM (t) UCL         | 0.155  | 95% KM (Percentile Bootstrap) UCL | 0.154  |
|   | 95% KM (z) UCL         | 0.154  | 95% KM Bootstrap t UCL            | 0.162  |
|   | 90% KM Chebyshev UCL   | 0.174  | 95% KM Chebyshev UCL              | 0.194  |
|   | 97.5% KM Chebyshev UCL | 0.222  | 99% KM Chebyshev UCL              | 0.277  |
|   |                        |        |                                   |        |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.219 | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.698 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.19  | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.333 | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| k hat (MLE)     | 6.883  | k star (bias corrected MLE)     | 3.552  |
|-----------------|--------|---------------------------------|--------|
| Theta hat (MLE) | 0.0286 | Theta star (bias corrected MLE) | 0.0554 |
| nu hat (MLE)    | 82.59  | nu star (bias corrected)        | 42.63  |
| Mean (detects)  | 0.197  |                                 |        |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:24:51 PM From File Soil, Uranium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Uranium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01   | Mean                                        | 0.0701 |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.33   | Median                                      | 0.01   |
| SD                                              | 0.0959 | CV                                          | 1.368  |
| k hat (MLE)                                     | 0.677  | k star (bias corrected MLE)                 | 0.609  |
| Theta hat (MLE)                                 | 0.104  | Theta star (bias corrected MLE)             | 0.115  |
| nu hat (MLE)                                    | 27.09  | nu star (bias corrected)                    | 24.36  |
| Adjusted Level of Significance ( $\beta$ )      | 0.038  |                                             |        |
| Approximate Chi Square Value (24.36, $\alpha$ ) | 14.12  | Adjusted Chi Square Value (24.36, $\beta$ ) | 13.51  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.121  | 95% Gamma Adjusted UCL (use when n<50)      | 0.126  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.129  | SD (KM)                   | 0.0608 |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0037 | SE of Mean (KM)           | 0.0149 |
| k hat (KM)                | 4.499  | k star (KM)               | 3.857  |
| nu hat (KM)               | 180    | nu star (KM)              | 154.3  |
| theta hat (KM)            | 0.0287 | theta star (KM)           | 0.0334 |
| 80% gamma percentile (KM) | 0.179  | 90% gamma percentile (KM) | 0.217  |
| 95% gamma percentile (KM) | 0.252  | 99% gamma percentile (KM) | 0.328  |

Adjusted Chi Square Value (154.29,  $\beta$ ) 124.6

0.16

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (154.29, $\alpha$ ) | 126.6 |  |
|--------------------------------------------------|-------|--|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.157 |  |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.959 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.788 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.173 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.325 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data app              |       | armal at 5% Significance Loval                          |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          |                               |  |  |  |  |  |
|--------------------------------|-------------------------------|--|--|--|--|--|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:24:51 PM |  |  |  |  |  |
| From File                      | Soil, Uranium, mg_kg - dw.xls |  |  |  |  |  |
| Full Precision                 | OFF                           |  |  |  |  |  |
| Confidence Coefficient         | 95%                           |  |  |  |  |  |
| Number of Bootstrap Operations | 2000                          |  |  |  |  |  |

#### Soil, Uranium, mg/kg - dw

| Lognormal ROS Statistics Us | sing Imputed Non-Detects |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

| Mean in Original Scale                    | 0.0881 | Mean in Log Scale            | -2.862 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0868 | SD in Log Scale              | 0.975  |
| 95% t UCL (assumes normality of ROS data) | 0.122  | 95% Percentile Bootstrap UCL | 0.122  |
| 95% BCA Bootstrap UCL                     | 0.128  | 95% Bootstrap t UCL          | 0.141  |
| 95% H-UCL (Log ROS)                       | 0.164  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -2.122 | KM Geo Mean                   | 0.12  |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.348  | 95% Critical H Value (KM-Log) | 1.887 |
| KM Standard Error of Mean (logged) | 0.0852 | 95% H-UCL (KM -Log)           | 0.148 |
| KM SD (logged)                     | 0.348  | 95% Critical H Value (KM-Log) | 1.887 |
| KM Standard Error of Mean (logged) | 0.0852 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-Transformed                             |                   |        |
|-------------------------------|--------------------------------------------------|-------------------|--------|
| Mean in Original Scale        | 0.094                                            | Mean in Log Scale | -2.607 |
| SD in Original Scale          | 0.0811                                           | SD in Log Scale   | 0.646  |
| 95% t UCL (Assumes normality) | 0.125                                            | 95% H-Stat UCL    | 0.125  |
| DL/O is not a recommended may | and an and the data and the second second second | d blataslast same |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.155

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:25:34 PMFrom FileSoil, Vanadium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Vanadium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 12    |
| Number of Detects            | 13                 | Number of Non-Detects           | 7     |
| Number of Distinct Detects   | 12                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2                  | Minimum Non-Detect              | 2     |
| Maximum Detect               | 44                 | Maximum Non-Detect              | 2     |
| Variance Detects             | 130.3              | Percent Non-Detects             | 35%   |
| Mean Detects                 | 9.427              | SD Detects                      | 11.41 |
| Median Detects               | 5.7                | CV Detects                      | 1.211 |
| Skewness Detects             | 2.677              | Kurtosis Detects                | 7.847 |
| Mean of Logged Detects       | 1.802              | SD of Logged Detects            | 0.916 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.651 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.866 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.326 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.234 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 6.828 | KM Standard Error of Mean         | 2.217 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 9.524 | 95% KM (BCA) UCL                  | 10.85 |
| 95% KM (t) UCL         | 10.66 | 95% KM (Percentile Bootstrap) UCL | 10.8  |
| 95% KM (z) UCL         | 10.47 | 95% KM Bootstrap t UCL            | 16.99 |
| 90% KM Chebyshev UCL   | 13.48 | 95% KM Chebyshev UCL              | 16.49 |
| 97.5% KM Chebyshev UCL | 20.67 | 99% KM Chebyshev UCL              | 28.88 |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.585 | Anderson-Darling GOF Test                                       |  |  |
|--------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value    | 0.754 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic       | 0.204 | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value    | 0.242 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Barris da da terra a com |       | Distributed at 5% Obselfs and a local                           |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 1.032 | k star (bias corrected MLE)     | 1.274 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 9.138 | Theta star (bias corrected MLE) | 7.397 | Theta hat (MLE) |
| 26.82 | nu star (bias corrected)        | 33.14 | nu hat (MLE)    |
|       |                                 | 9.427 | Mean (detects)  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:25:34 PM  |
| From File                      | Soil, Vanadium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Vanadium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 6.131 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 44    | Median                                      | 2.55  |
| SD                                              | 10.17 | CV                                          | 1.659 |
| k hat (MLE)                                     | 0.305 | k star (bias corrected MLE)                 | 0.293 |
| Theta hat (MLE)                                 | 20.09 | Theta star (bias corrected MLE)             | 20.95 |
| nu hat (MLE)                                    | 12.21 | nu star (bias corrected)                    | 11.71 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (11.71, $\alpha$ ) | 5.035 | Adjusted Chi Square Value (11.71, $\beta$ ) | 4.693 |
| 95% Gamma Approximate UCL (use when n>=50)      | 14.26 | 95% Gamma Adjusted UCL (use when n<50)      | 15.3  |

#### Estimates of Gamma Parameters using KM Estimates

| SD (K                   | 6.828 | Mean (KM)                 |
|-------------------------|-------|---------------------------|
| SE of Mean (K           | 90.71 | Variance (KM)             |
| k star (K               | 0.514 | k hat (KM)                |
| nu star (K              | 20.56 | nu hat (KM)               |
| theta star (K           | 13.29 | theta hat (KM)            |
| 90% gamma percentile (K | 11.18 | 80% gamma percentile (KM) |
| 99% gamma percentile (K | 26.81 | 95% gamma percentile (KM) |

9.469

13.56

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (18.81, $\alpha$ ) | 9.975 | Adjusted Chi Square Value (18.81, $\beta$ ) |
|-------------------------------------------------|-------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 12.87 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.939 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.866 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.139 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.234 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data ann              |       | armal at 5% Significance Level                          |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | ;                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:25:34 PM  |
| From File                      | Soil, Vanadium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Vanadium, mg/kg - dw

| Lognormal ROS Statistics Us | sing Imputed Non-Detects |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

| Mean in Original Scale                    | 6.362 | Mean in Log Scale            | 0.975 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 10.03 | SD in Log Scale              | 1.415 |
| 95% t UCL (assumes normality of ROS data) | 10.24 | 95% Percentile Bootstrap UCL | 10.32 |
| 95% BCA Bootstrap UCL                     | 12.29 | 95% Bootstrap t UCL          | 15.45 |
| 95% H-UCL (Log ROS)                       | 20.94 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 1.414 | KM Geo Mean                   | 4.113 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.885 | 95% Critical H Value (KM-Log) | 2.472 |
| KM Standard Error of Mean (logged) | 0.206 | 95% H-UCL (KM -Log)           | 10.06 |
| KM SD (logged)                     | 0.885 | 95% Critical H Value (KM-Log) | 2.472 |
| KM Standard Error of Mean (logged) | 0.206 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   |       | DL/2 Log-Transformed |       |
|-------------------------------|-------|----------------------|-------|
| Mean in Original Scale        | 6.478 | Mean in Log Scale    | 1.172 |
| SD in Original Scale          | 9.964 | SD in Log Scale      | 1.144 |
| 95% t UCL (Assumes normality) | 10.33 | 95% H-Stat UCL       | 13.11 |
|                               |       |                      |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

rected Data appear Gamma Distributed at 5% Organicance Le

#### Suggested UCL to Use

95% KM Adjusted Gamma UCL 13.56

95% GROS Adjusted Gamma UCL 15.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:26:16 PMFrom FileSoil, Zinc, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Zinc, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 20    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 16                 | Mean                            | 46.33 |
| Maximum                      | 112                | Median                          | 33.5  |
| SD                           | 30.18              | Std. Error of Mean              | 6.749 |
| Coefficient of Variation     | 0.651              | Skewness                        | 1.108 |
|                              |                    |                                 |       |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.856 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.209 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.192 | Data Not Normal at 5% Significance Level |

Data Not Normal at 5% Significance Level

| Ass                            | suming Norr | nal Distribution                                          |         |
|--------------------------------|-------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 57.99       | 95% Adjusted-CLT UCL (Chen-1995)                          | 59.21   |
|                                |             | 95% Modified-t UCL (Johnson-1978)                         | 58.27   |
|                                | Gamma (     | GOF Test                                                  |         |
| A-D Test Statistic             | 0.482       | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.748       | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.164       | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.195       | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma Dis   | stributed at 5% Significance Level                        |         |
|                                | Gamma       | Statistics                                                |         |
| k hat (MLE)                    | 2.825       | k star (bias corrected MLE)                               | 2.435   |
| Theta hat (MLE)                | 16.4        | Theta star (bias corrected MLE)                           | 19.02   |
| nu hat (MLE)                   | 113         | nu star (bias corrected)                                  | 97.4    |
| MLE Mean (bias corrected)      | 46.33       | MLE Sd (bias corrected)                                   | 29.69   |
|                                |             | Approximate Chi Square Value (0.05)                       | 75.63   |
| Adjusted Level of Significance | 0.038       | Adjusted Chi Square Value                                 | 74.12   |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 60.88

95% Approximate Gamma UCL (use when n>=50) 59.66

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:26:16 PM

 From File
 Soil, Zinc, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Zinc, mg/kg - dw

|                                                | Lognormal GOF Test |                                                |
|------------------------------------------------|--------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic                    | 0.945              | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value                 | 0.905              | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.128              | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.192              | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |                    |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | 2.773                       | Mean of logged Data | 3.648 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 4.718                       | SD of logged Data   | 0.622 |
| Assur                  | ning Lognormal Distribution |                     |       |

| 95% H-UCL                | 63.34 | 90% Chebyshev (MVUE) UCL   | 66.39 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 75.58 | 97.5% Chebyshev (MVUE) UCL | 88.33 |
| 99% Chebyshev (MVUE) UCL | 113.4 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 57.43 | 95% Jackknife UCL            | 57.99 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 56.93 | 95% Bootstrap-t UCL          | 61.39 |
| 95% Hall's Bootstrap UCL      | 58.54 | 95% Percentile Bootstrap UCL | 57.73 |
| 95% BCA Bootstrap UCL         | 59.1  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 66.57 | 95% Chebyshev(Mean, Sd) UCL  | 75.74 |
| 97.5% Chebyshev(Mean, Sd) UCL | 88.47 | 99% Chebyshev(Mean, Sd) UCL  | 113.5 |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 60.88

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. VALENTINE GOLD PROJECT: HUMAN HEALTH RISK ASSESSMENT, TECHNICAL MODELLING REPORT

# **APPENDIX B**

**Deposition Sample Calculations** 

## APPENDIX B SAMPLE CALCULATIONS

### **Soil Concentration**

The soil concentration (Cs) sample calculation for Project-related change in soil from arsenic deposition during the life of the project, based on Drivas et al. (2011), is provided below.

$$Cs = \frac{Q \cdot T}{\rho \cdot Z_d} \times 10^6 \div 10^4$$

Where

- Cs = Predicted change in soil concentration, mg/kg
- Q = Surface atmospheric deposition rate, g<sub>COPC</sub>/m<sup>2</sup>/yr

=  $8.39E-05 g_{COPC}/m^2/yr$  (see Table B-2)

- T = Time of deposition, yr
  - = 12 yr (based on expected life of the project)
- $\rho$  = Bulk density of soil, g/cm<sup>3</sup>
  - 1 g<sub>soil</sub>/cm<sup>3</sup> (conservative, based on typical ranges of 1.0 to 1.8 g<sub>soil</sub>/cm<sup>3</sup>)

$$Z_d$$
 = Mixing depth, cm

- = 5 cm (Health Canada, 2010a)
- 10<sup>6</sup> = Conversion factor (g<sub>COPC</sub>/g<sub>soil</sub> to mg<sub>COPC</sub>/kg<sub>soil</sub>)
- $10^4$  = Conversion factor (m<sup>2</sup> to cm<sup>2</sup>)

$$Cs = \frac{(8.39E^{-05}) \cdot (12)}{(1) \cdot (5)} \times 10^6 \div 10^4 = 0.0201$$

VALENTINE GOLD PROJECT: HUMAN HEALTH RISK ASSESSMENT, TECHNICAL MODELLING REPORT

# **APPENDIX C**

**Country Foods Sampling Program** 



Valentine Gold Project: Country Foods Sampling Program

Report

May 3, 2021

Prepared for:

Marathon Gold Corp. 36 Lombard Street Suite 600 Toronto, ON M5C 2X3

Prepared by:

Stantec Consulting Ltd. 141 Kelsey Drive St. John's, NL A1B 0L2 Tel: (709) 576-1458 Fax: (709) 576-2126

File No: 121416288

This document entitled Valentine Gold Project: Country Foods Sampling Program was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Marathon Gold Corporation (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

## **Table of Contents**

| ABBR | EVIATIONSI                                          | 11 |
|------|-----------------------------------------------------|----|
| 1.0  | INTRODUCTION                                        | 1  |
| 1.1  | PROJECT LOCATION                                    | 1  |
| 1.2  | STUDY OBJECTIVES                                    | 3  |
| 2.0  | METHODS                                             | 3  |
| 2.1  | SAMPLING PROGRAM                                    |    |
|      | 2.1.1 Description of Terrestrial Sampling Locations |    |
|      | 2.1.2 Description of Aquatic Sampling Locations     |    |
| 2.2  | SAMPLE PREPARATION1                                 |    |
| 2.3  | LABORATORY METHODS AND INSTRUMENTATION1             |    |
| 2.4  | DATA ANALYSIS1                                      |    |
| 2.5  | QUALITY ASSURANCE/QUALITY CONTROL                   | 2  |
| 3.0  | QUALITY ASSURANCE/QUALITY CONTROL RESULTS1          |    |
| 3.1  | METHOD BLANKS1                                      | 4  |
| 3.2  | SPIKED BLANKS1                                      | 4  |
| 3.3  | MATRIX SPIKES1                                      |    |
| 3.4  | LABORATORY DUPLICATES1                              | 4  |
| 3.5  | FIELD DUPLICATES1                                   | 5  |
| 4.0  | SAMPLING RESULTS1                                   | 6  |
| 4.1  | TERRESTRIAL SAMPLES1                                | -  |
|      | 4.1.1 Metal Concentrations in Snowshoe Hare1        |    |
|      | 4.1.2 Metal Concentrations in Blueberries1          | -  |
|      | 4.1.3 Metal Concentrations in Labrador Tea1         |    |
|      | 4.1.4 Metal Concentrations in Soil                  |    |
| 4.2  | AQUATIC SAMPLES                                     |    |
|      | 4.2.1 Metal Concentrations in Brook Trout2          | 2  |
| 5.0  | SUMMARY2                                            | 4  |
| 6.0  | REFERENCES2                                         | 6  |



## LIST OF TABLES

| Table 2.1 | Summary of 2020 Sample Locations and UTM Coordinates                 | 4  |
|-----------|----------------------------------------------------------------------|----|
| Table 2.2 | Summary of Sampling Locations and Total Samples Sent for Metal       |    |
|           | Analysis                                                             | 7  |
| Table 2.3 | Sample Preparation for Laboratory Analysis                           | 10 |
| Table 2.4 | QA/QC Description                                                    |    |
| Table 3.1 | Summary of QA/QC Laboratory Duplicates Results                       | 15 |
| Table 3.2 | Summary of QA/QC Field Duplicates Results                            | 15 |
| Table 4.1 | Recommended Baseline Concentrations for Metals in Snowshoe Hare      |    |
|           | Tissue (mg/kg – wet weight)                                          | 16 |
| Table 4.2 | Recommended Baseline Concentrations for Metals in Snowshoe Hare      |    |
|           | Internal Organs (mg/kg – wet weight)                                 | 17 |
| Table 4.3 | Recommended Baseline Concentrations for Metals in Blueberries (mg/kg |    |
|           | – dry weight)                                                        | 18 |
| Table 4.4 | Recommended Baseline Concentrations for Metals in Labrador Tea       |    |
|           | (mg/kg – dry weight)                                                 | 20 |
| Table 4.5 | Recommended Baseline Concentrations for Metals in Soil (mg/kg – dry  |    |
|           | weight)                                                              | 21 |
| Table 4.6 | Recommended Baseline Concentrations for Metals in Brook Trout        |    |
|           | (mg/kg – wet weight)                                                 | 22 |
| Table 5.1 | Recommended Baseline Concentrations for Metals                       | 24 |
|           |                                                                      |    |

## LIST OF FIGURES

| Fiaure 1-1 | Project Location   | 2 |
|------------|--------------------|---|
| <b>Q</b>   | Sampling Locations |   |

## LIST OF PHOTOS

| Photo 1 | Blueberries in the Vicinity of the Project                    | 8 |
|---------|---------------------------------------------------------------|---|
| Photo 2 | Typical Labrador Tea Bog (left) and Shoreline (right) Habitat | 9 |
| Photo 3 | Brook Trout Sampling Location1                                | 0 |

## LIST OF ATTACHMENTS

| Attachment A | Laboratory Analytical Data                      |
|--------------|-------------------------------------------------|
| Attachment B | ProUCL Outputs: Snowshoe Hare – Tissue          |
| Attachment C | ProUCL Outputs: Snowshoe Hare – Internal Organs |
| Attachment D | ProUCL Outputs: Blueberry                       |
| Attachment E | ProUCL Outputs: Labrador Tea                    |

- Attachment F ProUCL Outputs: Soil
- Attachment G ProUCL Outputs: Brook Trout



## Abbreviations

| BB        | blueberries                                    |  |
|-----------|------------------------------------------------|--|
| BT        | brook trout                                    |  |
| CRC       | collision reaction cell                        |  |
| CVAF      | cold vapor atomic fluorescence                 |  |
| EA        | environmental assessment                       |  |
| EPC       | exposure point concentrations                  |  |
| EQL       | estimate of quantification                     |  |
| GOF       | Goodness of Fit                                |  |
| HHERA     | Human Health and Ecological Risk Assessment    |  |
| ICP-MS    | inductively coupled plasma - mass spectrometry |  |
| IO        | internal organs                                |  |
| LT        | Labrador tea                                   |  |
| Marathon  | Marathon Gold Corporation                      |  |
| Miawpukek | Miawpukek First Nation                         |  |
| Project   | Valentine Gold Project                         |  |
| Qalipu    | Qalipu Mi'kmaq First Nation                    |  |
| QA/QC     | Quality Assurance/Quality Control              |  |
| RDL       | reportable detection limit                     |  |
| RPD       | relative percent differences                   |  |
| SCC       | Standards Council of Canada                    |  |
| SH        | snowshoe hare                                  |  |
| SOPs      | standard operating procedures                  |  |
| Stantec   | Stantec Consulting Ltd.                        |  |
| Т         | tissue                                         |  |
| UCLM      | upper confidence limit of the mean             |  |



May 2021

## 1.0 INTRODUCTION

Stantec Consulting Ltd. (Stantec) was retained by Marathon Gold Corporation (Marathon) to complete a country foods sampling program to establish baseline concentrations of contaminants of potential concern (i.e., metals) in locally harvested foods (country foods).

This work was conducted as part of the environmental assessment (EA) for the proposed Valentine Gold Project (the Project). The Project Area consists of the mine site, within which Project infrastructure will be located, and the existing 88 km-long access road to the site. When completed, the Project will contain two open pits, waste rock piles, crushing and stockpiling areas, conventional milling and processing facilities, a tailings management facility, personnel accommodations, and supporting infrastructure including roads, on-site power lines, buildings, and water and effluent management facilities. Because potential Project effects are likely to extend beyond the Project Area, sampling for the country foods program included locations up to ~2 km from the Project (the Assessment Area).

This report documents the methodology, and results of the country foods sampling program, as follows.

- Section 1.0 provides a general introduction and background information about the Project and the study objectives.
- Section 2.0 summarizes the methods used to collect, prepare and analyze the samples, as well as provides a description of the sampling locations.
- Section 3.0 summarizes the laboratory Quality Assurance/Quality Control (QA/QC) results.
- Section 4.0 summarizes the terrestrial and aquatic results from samples collected in the Assessment Area.
- Section 5.0 summarizes the country foods sampling program and the recommendation baseline concentrations of metals for the various sample media.
- References consulted as part of the work and personal communications are provided in Section 6.0, and additional supporting documentation is provided in the attachments.

## 1.1 PROJECT LOCATION

The proposed Project is located in the central region of the Island of Newfoundland, southwest of the towns of Buchans and Millertown near Valentine Lake and the Victoria Lake Reservoir (Figure 1-1). The area has a history of mining exploration and development activities and other land and resource uses, including commercial forestry, hydroelectric developments, outfitting, and recreational land use.



May 2021

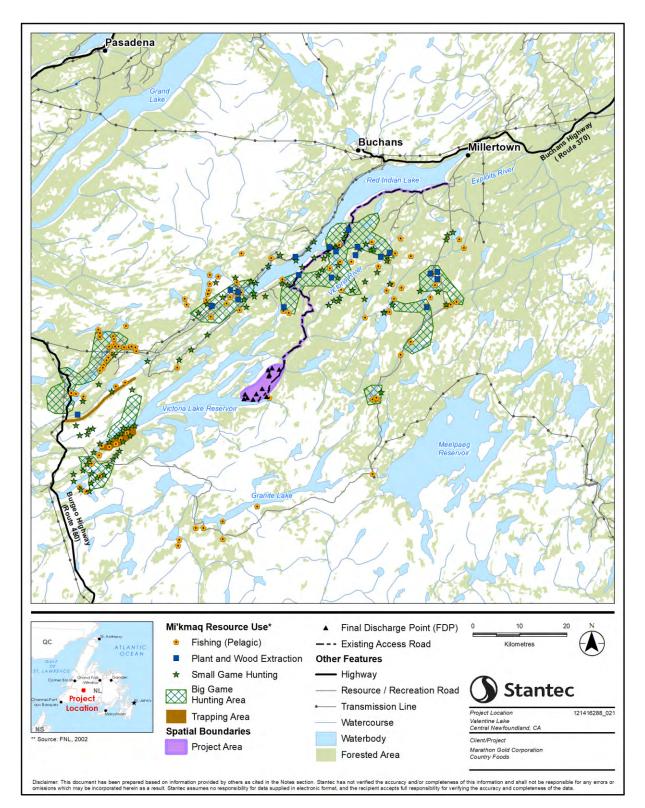



Figure 1-1 Project Location



May 2021

There are two Mi'kmaq First Nation groups on the Island of Newfoundland potentially affected by / interested in the Project: Miawpukek First Nation (Miawpukek) and Qalipu Mi'kmaq First Nation (Qalipu). The Miawpukek Reserve is located at the mouth of the Conne River on the south coast of the Island of Newfoundland, approximately 113 km from the Project Area. Although a registered band, Qalipu does not manage any reserve lands. Its members reside within 67 communities across the island, including within the nearby communities of Buchans and Millertown. Indigenous and non-Indigenous people use the Red Indian Lake / Victoria Lake Reservoir area for harvesting wood, and for fishing and hunting for sustenance and/or recreation (Figure 1-1).

## 1.2 STUDY OBJECTIVES

The objective of this study is to determine concentrations of metals in the environment that can be used to establish a baseline against which the Project and cumulative environmental effects can be assessed.

Based on previous Human Health and Ecological Risk Assessment (HHERA) experience and standard assessment protocols for mining projects, metals, including mercury, were considered. The media of interest and the rationale for inclusion in the country foods sampling program are as follows:

- **Snowshoe Hare** (*Lepus americanus*): Small mammals are exposed directly to soil and forage/browse media as well as form an exposure pathway for both human and other ecological receptors.
- **Blueberries** (*Vaccinium sp.*): Ingestion of the fruit is an exposure pathway for both human and ecological receptors.
- **Brook Trout** (*Salvelinus fontinalis*): Fish ingestion is an exposure pathway for both human and ecological receptors.
- **Labrador Tea** (*Rhododendron sp.*): Ingestion of plants is a direct pathway for both human and ecological receptors.
- **Soil**: Soil is one of the most important of the media considered. Both human and ecological receptors are exposed directly to soil, and the models used rely heavily on the soil concentrations to predict concentrations in various other media. In addition, existing soil concentrations represent the current conditions associated with any historical deposition.

## 2.0 METHODS

## 2.1 SAMPLING PROGRAM

The different media selected for analysis were grouped by occurrence into sampling locations as follows:

- Terrestrial: snowshoe hare, blueberries, Labrador tea, and soil
- Aquatic: brook trout

The locations of the soil, terrestrial, freshwater, and marine sampling locations are shown on Figure 2-1, and the coordinates provided in Table 2.1. Consistent with Health Canada guidance, sampling of representative media was conducted in areas where Project-related effects would be most likely to occur



May 2021

and where country foods are harvested. For this study, the Assessment Area encompassed the Project Area and accessible sites within approximately 2 km.

| Sampling    | ing Completed antificer UTM Coordin                                      |               | ates (Zone 21) |                                                             |  |  |  |
|-------------|--------------------------------------------------------------------------|---------------|----------------|-------------------------------------------------------------|--|--|--|
| Date        | Sample Identifier                                                        | Easting       | Northing       | General Location                                            |  |  |  |
| Terrestrial | Terrestrial Samples – Snowshoe Hare: Tissue (T) and Internal Organs (IO) |               |                |                                                             |  |  |  |
| 8-Sep       | SH-T1 and SH-IO1                                                         | 490800        | 5357019        | Mine site                                                   |  |  |  |
| 10-Sep      | SH-T2 and SH-IO2                                                         | 492545        | 5364806        | ~2.4 km from mine site / 1.8 km from access                 |  |  |  |
| 10-Sep      | SH-T3 and SH-IO3                                                         | 492616        | 5364736        | road                                                        |  |  |  |
| 19-Oct      | SH-T4 and SH-IO4                                                         | 490248        | 5356376        |                                                             |  |  |  |
| 19-Oct      | SH-T5 and SH-IO5                                                         | 490772        | 5357018        |                                                             |  |  |  |
| 20-Oct      | SH-T6 and SH-IO6                                                         | 491071        | 5357308        | Mine site                                                   |  |  |  |
| 7-Nov       | SH-T7 and SH-IO7                                                         | 491071        | 5357308        |                                                             |  |  |  |
| 8-Nov       | SH-T8 and SH-IO8                                                         | 487750        | 5355454        |                                                             |  |  |  |
| Terrestrial | Samples – Blueberri                                                      | es and Co-Loc | ated Soil      |                                                             |  |  |  |
| 6-Sep       | BB-1 / Soil                                                              | 485602        | 5355737        | Mine site                                                   |  |  |  |
| 7-Sep       | BB-2 / Soil                                                              | 486546        | 5356279        | IVIII le Site                                               |  |  |  |
| 8-Sep       | BB-3 / Soil                                                              | 509379        | 5389666        |                                                             |  |  |  |
| 8-Sep       | BB-4 / Soil                                                              | 509347        | 5389680        | Cutover ~1.4 km east of existing access road                |  |  |  |
| 8-Sep       | BB-5 / Soil                                                              | 509347        | 5389680        |                                                             |  |  |  |
| 8-Sep       | BB-6 / Soil                                                              | 511035        | 5390779        | Cutover ~2.9 km east of existing access road                |  |  |  |
| 8-Sep       | BB-7 / Soil                                                              | 511084        | 5390707        | Culover ~2.9 km east of existing access toau                |  |  |  |
| 8-Sep       | BB-8 / Soil                                                              | 509201        | 5389833        | Cutover ~1.2 km east of existing access road                |  |  |  |
| 8-Sep       | BB-9 / Soil                                                              | 508795        | 5389705        | Cutover ~883 m east of existing access road                 |  |  |  |
| 8-Sep       | BB-10 / Soil                                                             | 508795        | 5389705        | Culovel ~005 III easi of existing access road               |  |  |  |
| Terrestrial | Samples – Labrador                                                       | Tea and Co-Lo | ocated Soil    |                                                             |  |  |  |
| 5-Sep       | LT-1 / Soil                                                              | 490257        | 5356426        |                                                             |  |  |  |
| 6-Sep       | LT-2 / Soil                                                              | 486546        | 5356279        | Mine site                                                   |  |  |  |
| 6-Sep       | LT-3 / Soil                                                              | 487410        | 5356825        |                                                             |  |  |  |
| 8-Sep       | LT-4 / Soil                                                              | 496063        | 5379136        | Near access road                                            |  |  |  |
| 10-Sep      | LT-5 / Soil                                                              | 492600        | 5364410        | ~2.1 km from mine site / 1.7 km from access                 |  |  |  |
| 10-Sep      | LT-6 / Soil                                                              | 492615        | 5364412        | road                                                        |  |  |  |
| 10-Sep      | LT-7 / Soil                                                              | 491848        | 5364526        | ~2.3 km from mine site / access road                        |  |  |  |
| 10-Sep      | LT-8 / Soil                                                              | 491986        | 5364449        |                                                             |  |  |  |
| 10-Sep      | LT-9 / Soil                                                              | 495964        | 5372072        | ~2.9 km west of access road                                 |  |  |  |
| 11-Sep      | LT-10 / Soil                                                             | 530380        | 5400251        | Northwest end of Red Indian Lake near the<br>Exploits River |  |  |  |





May 2021

| Sampling                                                             | Sample Identifier | UTM Coordinates (Zone 21) |          | <b>A</b> 11 <i>H</i>                      |  |  |  |
|----------------------------------------------------------------------|-------------------|---------------------------|----------|-------------------------------------------|--|--|--|
| Date                                                                 |                   | Easting                   | Northing | General Location                          |  |  |  |
| Aquatic Samples – Brook Trout                                        |                   |                           |          |                                           |  |  |  |
| 05-Sep                                                               | BT-1 to BT-15     | 491686                    | 5360061  | Mine site, pond M1                        |  |  |  |
| 07-Sep                                                               | BT-16             | 491986                    | 5353843  | Victoria Lake; ~2.1 km south of mine site |  |  |  |
| 09-Sep                                                               | BT-17 to BT-26    | 493528                    | 5358993  |                                           |  |  |  |
| 09-Sep                                                               | BT-27 to BT-36    | 494104                    | 5360105  | Victoria River, adjacent to mine site     |  |  |  |
| 11-Sep                                                               | BT-37 to BT-40    | 503187                    | 5386327  | Unnamed tributaries to Red Indian Lake    |  |  |  |
| 11-Sep                                                               | BT-41             | 507892                    | 5389689  |                                           |  |  |  |
| 11-Sep                                                               | BT-42             | 506436                    | 5387423  |                                           |  |  |  |
| 11-Sep                                                               | BT-43 to BT-45    | 510129                    | 5395783  |                                           |  |  |  |
| 11-Sep                                                               | BT-46             | 523814                    | 5399082  |                                           |  |  |  |
| 29-Sep                                                               | BT-47             | 507892                    | 5389689  |                                           |  |  |  |
| 29-Sep                                                               | BT-48 to BT-50    | 509003                    | 5392879  |                                           |  |  |  |
| 29-Sep                                                               | BT-51             | 520643                    | 5399288  |                                           |  |  |  |
| Notes:<br>SH = Snowsł<br>T = Tissue<br>IO = Internal<br>BT = Brook T | Organs            |                           |          |                                           |  |  |  |

#### Summary of 2020 Sample Locations and UTM Coordinates Table 2.1

BB = Blueberries

LT = Labrador Tea



May 2021

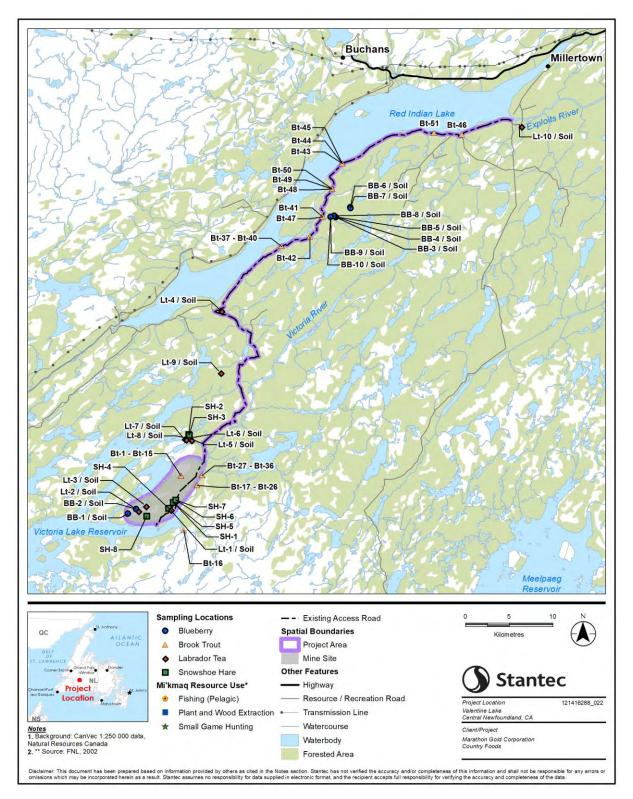



Figure 2-1 Sampling Locations



May 2021

Stantec professionals, in teams of two, collected field samples from September 5, 2020 to October 20, 2020 at the various sampling locations (Table 2.1). Snares made using 22-gauge brass wire were used to capture snowshoe hare along wildlife trails and other areas of potential. Snowshoe hare were weighed prior to and following dissection and a sample of muscle tissue removed, weighed, and frozen. Internal organs (IO; heart, liver, and kidneys) were removed, grouped together, and weighed prior to freezing. The remaining carcass was also frozen in case future analysis is required.

Gill nets with 1" to 1-1/2" panels were set in brooks, streams and tributaries. Nets were set for a maximum of 20 minutes (as per Standard Operating Procedures) and then checked for brook trout. Brook trout were weighed prior to and following dissection, and a sample of muscle tissue removed, weighed and frozen. The entrails were also weighed, bagged and frozen for potential future analysis.

Google earth imagery was used to identify probable locations of blueberries, based on the presence of cutovers and burns. An attempt was made to collect one cup of berries at each site visited. Blueberries were then bagged and stored frozen.

Labrador tea was relatively abundant, and samples were mainly collected opportunistically in the field from various locations in the Assessment Area and mine site. Only the new growth parts of the Labrador tea plant were picked for analysis; these were similarly bagged and stored frozen.

Frozen samples were submitted to the Bureau Veritas Laboratory in Bedford, Nova Scotia for analysis. A summary of the sampling program and the number of samples collected for analysis for metals is provided in Table 2.2.

| Media                           | Number of Sampling<br>Locations | Total Number of Field Samples Sent<br>for Analysis |
|---------------------------------|---------------------------------|----------------------------------------------------|
| Snowshoe Hare (Muscle Tissue)   | 8                               | 8                                                  |
| Snowshoe Hare (Internal Organs) | 8                               | 8                                                  |
| Blueberries                     | 10                              | 10 + 1 field duplicate                             |
| Labrador Tea                    | 10                              | 10 + 1 field duplicate                             |
| Soil                            | 20                              | 20 + 2 field duplicates                            |
| Brook Trout (Muscle Tissue)     | 12                              | 51                                                 |

# Table 2.2Summary of Sampling Locations and Total Samples Sent for Metal<br/>Analysis

## 2.1.1 Description of Terrestrial Sampling Locations

## 2.1.1.1 Snowshoe Hare

Targeted areas for snowshoe hare were areas proximate to other sampling sites so that snares could be set and checked at regular intervals. Target areas included six locations in the Project Area (mine site) and two in the Assessment Area, at the north end of Long Lake approximately 2.4 km from the mine site and 1.8 km from the access road (Figure 2-1 and Table 2.1). Snares were set in locations with obvious wildlife trails and where there was evidence of their presence in the area (e.g., scat, browse).



May 2021

## 2.1.1.2 Blueberries

Blueberries are generally scarce in the region (House, pers. comm.) and attempts to obtain samples from multiple locations in the Assessment Area were unsuccessful. Blueberries were collected from two nearby locations in the Project Area (mine site) and the remaining eight samples were collected in the same cutover, inland from Red Indian Lake and between approximately 800 m and 2.9 km southeast of the main access road (Figure 2-1 and Table 2.1). A photo of a typical blueberry cover found in the vicinity of the Project is shown in Photo 1.





## 2.1.1.3 Labrador Tea

Labrador Tea was common in the area, particularly in bog and shoreline habitats (Figure 2-2). Four samples of Labrador Tea were collected in the Project Area (three in the mine site and one along the access road) and six samples from three distinct locations in the Assessment Area (Figure 2-1 and Table 2.1): on a tributary of the Exploits River near the northeast end of Red Indian Lake; approximately 2.9 km inland west of the access road about half-way between Red Indian Lake and the mine site; and at the north end of Long Lake approximately 2.4 km from the mine site and 1.8 km from the access road. Photos of typical Labrador tea bog and shoreline habitat found in the vicinity of the Project are shown in Photo 2.



May 2021



Photo 2 Typical Labrador Tea Bog (left) and Shoreline (right) Habitat

## 2.1.1.4 Soil

One soil sample was collected at all Labrador tea and blueberry sampling points (20 samples total). Field sampling locations are described above and detailed in Table 2.1 and Figure 2-1.

## 2.1.2 Description of Aquatic Sampling Locations

## 2.1.2.1 Brook Trout

Sampling of brook trout focused primarily on small brooks and streams that could be accessed from the road and in specific target areas near the mine site. A total of 11 distinct areas were sampled (Figure 2-1), including seven tributaries of Red Indian Lake along the access road and four locations in the target areas on Victoria Lake (n=1), Victoria River (n=2) and in a small pond referred to as M1 (n=1). A photo of one location where brook trout was collected is shown in Photo 3.



May 2021



Photo 3 Brook Trout Sampling Location

## 2.2 SAMPLE PREPARATION

Field preparation of samples is summarized in Table 2.3. Frozen samples were sent to Bureau Veritas Laboratory in Dartmouth, Nova Scotia for sample preparation and analysis.

 Table 2.3
 Sample Preparation for Laboratory Analysis

| Media         | Sample Preparation                                                                                                                                                                                                                                                |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|               | Snowshoe hare were weighed whole prior to dissection. Internal organs (IO; heart, liver, and kidneys) were removed, grouped together, and weighed prior to freezing and submission for analysis. IO samples were homogenized at the laboratory prior to analysis. |  |  |
| Snowshoe Hare | After removal of the IOs, the carcass was weighed separately. Approximately 20 g of muscle tissue was removed, weighed and frozen prior to submission for analysis. The remaining carcass tissue was frozen and kept for potential future analysis.               |  |  |
|               | Concentrations of metals in tissue samples (muscle and IOs) are reported on a wet weight basis.                                                                                                                                                                   |  |  |
| Blueberries   | One cup of berries (if possible) was collected from each site. Berries were weighed, bagged and frozen. Concentrations of metals in blueberries are reported on a dry weight basis.                                                                               |  |  |
| Labrador Tea  | New growth parts were picked from plants, bagged and stored frozen. Concentrations of metals in Labrador tea are reported on a dry weight basis.                                                                                                                  |  |  |



May 2021

| Media       | Media Sample Preparation                                                                                                                                                                                                                                                                                                                                    |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Soil        | Soil was collected in a 250 mL glass jar at each blueberry and Labrador tea sampling site, representative of the rooting zone of the sampled plants. At the laboratory, soil was air-dried and sieved (2 mm), weighed and digested in a nitric acid and hydrochloric acid mixture. Concentrations of metals in soil are reported on a dry-weight basis.     |  |
| Brook Trout | Brook trout were measured (total length) and weighed prior to and following dissection, and a sample of approximately 20 g of muscle tissue removed, weighed and frozen separately. The entrails were weighed and frozen and kept for potential future analysis. Concentrations of metals in brook trout tissue samples are reported on a wet weight basis. |  |

## Table 2.3Sample Preparation for Laboratory Analysis

## 2.3 LABORATORY METHODS AND INSTRUMENTATION

Bureau Veritas Laboratory has documented methods and internal protocols for the sample analysis. Bureau Veritas Laboratory is accredited by the Standards Council of Canada (SCC) for a wide range of analyses. Descriptions of the laboratory methods and instrumentation are provided on the laboratory certificates and are described as follows:

- **Metals in soil** Portions of the samples are air-dried and sieved at 2 mm. Representative subsamples are digested in nitric acid and hydrochloric acid. Samples are analyzed by inductively coupled plasma mass spectrometry (ICP-MS) in accordance with USEPA SW486 Method 6020A.
- Metals in tissues and biota Representative portions of the samples are prepared by microwave digestion in nitric acid prior to analysis by collision reaction cell (CRC) ICP-MS in accordance with USEPA SW486 Method 6020B.
- **Mercury in tissues** Portions of the solutions prepared for trace metals (above) are further digested with nitric and sulfuric acids and potassium permanganate. Analysis is by cold vapor atomic fluorescence (CVAF) in accordance with USEPA Method 245.7.

## 2.4 DATA ANALYSIS

Measured concentrations of metals were used to establish baseline exposure point concentrations (EPC) in media considered (i.e., snowshoe hare, blueberries, Labrador tea, soil, and brook trout). The complete analytical data set is included in Attachment A. The determination of EPCs was based on review of available data and statistical evaluation. In the event of field duplicates collected from a same location or laboratory duplicates, the average was carried forward. Non-detectable values were carried forward in the statistical analysis at half the laboratory estimate of quantification (EQL) value, sometimes referred to as the reportable detection limit (RDL), according to standard practice.

The statistical evaluation for each metal in each medium included, minimum, maximum, median and arithmetic mean (average). When sufficient data was available to support further statistical treatment (i.e., at least 10 samples), 95% upper confidence limit of the mean (UCLM) were calculated for each metal in each medium using the USEPA ProUCL software (USEPA 2015), version 5.1. The 95% UCLMs are deemed representative of reasonably expected and spatially distributed metal exposure concentrations for human and ecological receptors. The USEPA ProUCL software also provides summary statistics. The



May 2021

ProUCL outputs, presenting both recommended 95% UCLM and summary statistics are provided as attachments below.

The following procedure was used to estimate baseline values for each medium.

- If a metal was not detected in any of the samples, the recommended baseline concentration was set as equal to the highest EQL.
- If the number of samples analysed was less than ten, the maximum concentration was recommended as the baseline concentration.
- If the number of samples equaled or exceeded ten, the 95% UCLM was calculated using the USEPA ProUCL software. The ProUCL outputs were reviewed and a baseline concentration was selected based on the following steps:
  - Select the highest of the "Suggested UCL to Use". Disregard H-statistic results due to their unstable (both high and low) tendencies.
  - If no "Suggested UCL to Use" are available, review the "Gamma Goodness of Fit (GOF) Test" results.
  - If GOF result indicates that the data is Gamma distributed, then select one of the two "95% Approximate Gamma UCL" results, depending on whether the number of observations is >=50 or <50.</li>
  - If GOF result indicates that "Data Not Gamma Distributed at 5% Significance Level" then select the maximum UCL value from the 8 (95% UCL) listed in the "Nonparametric Distribution Free UCLs" section of the ProUCL output.
  - If the selected UCL is greater than the maximum value in the dataset, then select the maximum value.
  - If the selected UCL is less than either the mean or the median, then select the highest of the mean or median.
  - In cases where analytical data is insufficient for ProUCL to provide UCL values, the maximum value between the detected and half of the non-detected concentration concentrations is selected.

## 2.5 QUALITY ASSURANCE/QUALITY CONTROL

Quality control for the collection, transport, and analysis of the samples was an important part of the study. Standard operating procedures (SOPs) that clearly describe the methods used to collect the samples were followed, field sheets were completed to document sample collection, and sample chain of custody forms were completed to ensure the integrity of the sample handling and transportation.

To confirm the adequacy of these quality controls and the reproducibility of the results, a number of QA/QC samples were analyzed. These samples included method blanks, spiked blanks, matrix spikes, laboratory duplicates, and field duplicates. Descriptions of these QA/QC samples and the purpose for each are provided in Table 2.4.



May 2021

| QA/QC<br>Sample          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Purpose                                                                                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method<br>Blanks         | High purity water/clean sand or process chemicals that are<br>analyzed in the same way for each sample. It is exposed to<br>glassware, equipment, solvents, reagents, and internal standards<br>that are used during the analysis of other samples.                                                                                                                                                                                                                                                               | Determines bias due to the potential presence of impurities in the laboratory environment.                                                                                                                      |
| Spiked<br>Blanks         | A blank to which the lab adds a known amount of contaminant.<br>The spiked blank is then prepared and analyzed by the same<br>methodology as other samples. Spike blank recoveries represent<br>the percentage of the added contaminant recovered during<br>analysis.                                                                                                                                                                                                                                             | Provides an indication of the<br>recovery expected for analytes<br>within a sample free of matrix<br>bias, and an estimate of the<br>method accuracy.                                                           |
| Matrix<br>Spikes         | A field sample to which the lab adds a known amount of<br>contaminant. The spiked sample is then prepared and analyzed<br>by the same methodology as other samples. Matrix spike<br>recoveries represent the percentage of the added contaminant<br>recovered during analysis.                                                                                                                                                                                                                                    | Provides an indication of the<br>recovery expected for field<br>samples and the bias that the<br>contaminant matrix (i.e., soil or<br>water) has on the analysis, and<br>an estimate of the method<br>accuracy. |
| Laboratory<br>Duplicates | Samples that were taken from one location in the field and split<br>into two portions in the lab. The two portions are analyzed<br>separately using identical procedures. Relative percent<br>differences (RPD) are then calculated to understand differences<br>between the two sets of results.                                                                                                                                                                                                                 | Used to measure precision or reproducibility of data.                                                                                                                                                           |
| Field<br>Duplicates      | Duplicate (second) samples collected in the field at the same<br>location as the original sample. Each sample was carried through<br>the remaining steps in the measurement process. Field duplicates<br>were collected at a subset of locations for non-mobile samples<br>(i.e., soil, Labrador tea, and blueberries). Field duplicates are not<br>considered for mobile samples (e.g., snowshoe hare or brook<br>trout). RPDs are then calculated to understand differences<br>between the two sets of results. | Used to measure precision or reproducibility of data.                                                                                                                                                           |

## Table 2.4 QA/QC Description

As indicated, the assessment of laboratory and field duplicates is based on the relative percent difference (RPD). The formula used to determine the RPD from the mean between two samples, the original and the duplicate, is the absolute value of the following:

$$RPD = 100\% x \frac{C_{original} - C_{dup}}{\frac{1}{2}(C_{original} + C_{dup})}$$

Where:

 $\begin{aligned} \text{RPD} &= \text{relative percent difference} \\ \text{C}_{\text{original}} &= \text{concentration in the original sample} \\ \text{C}_{\text{dup}} &= \text{concentration in the duplicate} \end{aligned}$ 

If a parameter was not detected in one of the duplicates but was detected in the other, the concentration in the undetected one was set equal to the EQL of the parameter to evaluate the RPD.

A summary of the QA/QC results is presented in Section 3.0.



# 3.0 QUALITY ASSURANCE/QUALITY CONTROL RESULTS

This section presents an assessment of the QA/QC program results for the country foods sampling program.

## 3.1 METHOD BLANKS

Metals were not detected in method blanks. The data is considered acceptable for the purposes of establishing baseline concentrations.

### 3.2 SPIKED BLANKS

Results for recovery for spiked blanks were within the laboratory QC limits for the metals assessed. The data is considered acceptable for the purposes of establishing baseline concentrations.

## 3.3 MATRIX SPIKES

Results for recovery for spiked blanks were generally within the laboratory QC limits for metals assessed. Some exceptions include occasional matrix spike fails, indicating possible matrix interference, in a limited number of tissue samples for a limited number of metals. These included matrix spike fails for calcium, phosphorus, potassium, sodium, and zinc in brook trout sample BT-3, matrix spike fails for silver and tin in brook trout sample BT-22, matrix spike fails for iron, potassium, and zinc in snowshoe hare internal organs sample SH-IO1, and a matrix spike fail for silver in snowshoe hare internal organs sample SH-IO1. These may be related to the complex nature of biological tissue matrices. The data is considered acceptable for the purposes of establishing baseline concentrations.

## 3.4 LABORATORY DUPLICATES

Results for the laboratory duplicates analyzed as part of the laboratory QA/QC program are summarized in Table 3.1. In general, the duplicate results agree closely with their corresponding samples and confirm the representativeness of the analytical procedures. Highest RPDs were generally encountered at concentrations less than three times the RDL (which tend to be inherently more variable) and/or associated with major elements (e.g., calcium). There are no firm guidelines for the degree of correlation expected between duplicates due to the potential for natural heterogeneity within the sample as well as potential interferences from complex matrices such as biological tissue. The reported values for the country foods sampling program are considered to indicate an acceptable duplicate correlation.



| Sample Type                                                                                | Laboratory<br>Duplicate ID | , ,      |          | Acceptable Duplicate<br>Correlation? |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------|----------|----------|--------------------------------------|--|--|--|
| Snowshoe Hare – Tissue                                                                     |                            |          |          |                                      |  |  |  |
| Snowshoe Hare – IO                                                                         | SH-IO1<br>SH-IO8           | 0 to 37% | 49 of 64 | Yes                                  |  |  |  |
| Blueberries                                                                                | BB-4                       | 0 to 30% | 30 of 31 | Yes                                  |  |  |  |
| Labrador Tea                                                                               | LT-1                       | 0 to 19% | 31 of 31 | Yes                                  |  |  |  |
| Co-Located Soil                                                                            | LT-3                       | 0 to 18% | 27 of 27 | Yes                                  |  |  |  |
| Brook Trout         BT-3<br>BT-22         0 to 38%         52 of 64         Yes            |                            |          |          |                                      |  |  |  |
| Note:<br>Laboratory duplicates results were not reported for snowshoe hare tissue samples. |                            |          |          |                                      |  |  |  |

### Table 3.1 Summary of QA/QC Laboratory Duplicates Results

## 3.5 FIELD DUPLICATES

Field duplicates were collected for blueberries, Labrador tea and soil. This consisted of taking a second sample from the same location and submitting it separately for analysis. Results for the field duplicates analyzed as part of the laboratory QA/QC program are summarized in Table 3.2. In general, the duplicate results agree closely with their corresponding samples and confirm the representativeness of the analytical procedures. With few exceptions in biological tissue, the highest RPDs were encountered for concentrations measured in soil which may indicate some heterogeneity within the field original and duplicate samples pairs. Highest RPDs were generally encountered at concentrations less than three times the RDL (which tend to be inherently more variable) and/or associated with major elements (e.g., calcium). There are no firm guidelines for the degree of correlation expected between duplicates due to the potential for natural heterogeneity within the sample as well as potential interferences from complex matrices such as biological tissue. Overall, the reported values for the country foods sampling program are considered to indicate an acceptable duplicate correlation.

| Table 3.2 St     | Table 3.2 Summary of QA/QC Field Duplicates Results |                 |                                         |                                      |  |  |  |  |  |  |
|------------------|-----------------------------------------------------|-----------------|-----------------------------------------|--------------------------------------|--|--|--|--|--|--|
| Sample Type      | Field<br>Duplicate ID                               | Range of<br>RPD | Number of Parameters<br>within ±40% RPD | Acceptable Duplicate<br>Correlation? |  |  |  |  |  |  |
| Blueberries      | BB-4 & BB-DUP                                       | 0 to 110%       | 28 of 32                                | Yes                                  |  |  |  |  |  |  |
| Labrador Tea     | LT-5 & LT-DUP                                       | 0 to 37%        | 32 of 32                                | Yes                                  |  |  |  |  |  |  |
| Call ageted Call | BB-4 & BB-DUP                                       | 0 to 170%       | 25 of 54                                | Vaa                                  |  |  |  |  |  |  |

0 to 172%

35 of 54

### Table 3.2 Summary of QA/QC Field Duplicates Results

LT-5 & LT-DUP



Co-Located Soil

Yes

## 4.0 SAMPLING RESULTS

### 4.1 TERRESTRIAL SAMPLES

### 4.1.1 Metal Concentrations in Snowshoe Hare

Recommended baseline concentrations for metals in snowshoe hare are indicated in Table 4.1 (muscle tissue) and Table 4.2 (internal organs). Concentrations of beryllium, bismuth, uranium, and vanadium were less than the detection limits in each of the eight snowshoe hare tissue samples (Table 4.1). For samples of snowshoe hare internal organs, concentrations of antimony, beryllium, bismuth, chromium, tin, uranium, and vanadium were below detectable limits in all eight samples (Table 4.2). ProUCL outputs for snowshoe hare data are provided in Attachments B and C.

| Metal           | No. Sample<br>Analyzed | No.<br>Detected | Min    | Мах    | Recommended<br>Baseline | Baseline selection |
|-----------------|------------------------|-----------------|--------|--------|-------------------------|--------------------|
| Aluminum (Al)   | 8                      | 7               | <0.2   | 7.69   | 7.69                    | Maximum value      |
| Antimony (Sb)   | 8                      | 2               | <0.001 | 0.0019 | 0.0019                  | Maximum value      |
| Arsenic (As)    | 8                      | 8               | 0.0047 | 0.0319 | 0.0319                  | Maximum value      |
| Barium (Ba)     | 8                      | 8               | 0.02   | 0.639  | 0.639                   | Maximum value      |
| Beryllium (Be)  | 8                      | 0               | <0.001 | <0.001 | <0.001                  | Maximum value      |
| Bismuth (Bi)    | 8                      | 0               | <0.001 | <0.001 | <0.001                  | Maximum value      |
| Boron (B)       | 8                      | 1               | <0.2   | 0.23   | 0.23                    | Maximum value      |
| Cadmium (Cd)    | 8                      | 7               | <0.001 | 0.0086 | 0.0086                  | Maximum value      |
| Calcium (Ca)    | 8                      | 8               | 49.2   | 109    | 109                     | Maximum value      |
| Chromium (Cr)   | 8                      | 4               | <0.01  | 0.079  | 0.079                   | Maximum value      |
| Cobalt (Co)     | 8                      | 8               | 0.0045 | 0.0163 | 0.0163                  | Maximum value      |
| Copper (Cu)     | 8                      | 8               | 1.2    | 2.31   | 2.31                    | Maximum value      |
| Iron (Fe)       | 8                      | 8               | 17.7   | 35.9   | 35.9                    | Maximum value      |
| Lead (Pb)       | 8                      | 8               | 0.0021 | 0.0477 | 0.0477                  | Maximum value      |
| Magnesium (Mg)  | 8                      | 8               | 245    | 287    | 287                     | Maximum value      |
| Manganese (Mn)  | 8                      | 8               | 0.261  | 14.6   | 14.6                    | Maximum value      |
| Mercury (Hg)    | 8                      | 4               | <0.001 | 0.0027 | 0.0027                  | Maximum value      |
| Molybdenum (Mo) | 8                      | 4               | <0.004 | 0.0082 | 0.0082                  | Maximum value      |
| Nickel (Ni)     | 8                      | 6               | <0.01  | 0.028  | 0.028                   | Maximum value      |
| Phosphorus (P)  | 8                      | 8               | 2190   | 2570   | 2570                    | Maximum value      |
| Potassium (K)   | 8                      | 8               | 3460   | 3680   | 3680                    | Maximum value      |
| Selenium (Se)   | 8                      | 8               | 0.052  | 0.242  | 0.242                   | Maximum value      |

# Table 4.1Recommended Baseline Concentrations for Metals in Snowshoe Hare<br/>Tissue (mg/kg – wet weight)



| Metal          | No. Sample<br>Analyzed | No.<br>Detected | Min     | Мах     | Recommended<br>Baseline | Baseline selection |
|----------------|------------------------|-----------------|---------|---------|-------------------------|--------------------|
| Silver (Ag)    | 8                      | 3               | <0.001  | 0.0014  | 0.0014                  | Maximum value      |
| Sodium (Na)    | 8                      | 8               | 503     | 715     | 715                     | Maximum value      |
| Strontium (Sr) | 8                      | 8               | 0.027   | 0.112   | 0.112                   | Maximum value      |
| Thallium (TI)  | 8                      | 6               | <0.0004 | 0.001   | 0.001                   | Maximum value      |
| Tin (Sn)       | 8                      | 4               | <0.02   | 0.039   | 0.039                   | Maximum value      |
| Titanium (Ti)  | 8                      | 8               | 0.123   | 0.215   | 0.215                   | Maximum value      |
| Uranium (U)    | 8                      | 0               | <0.0004 | <0.0004 | <0.0004                 | Maximum value      |
| Vanadium (V)   | 8                      | 0               | <0.02   | <0.02   | <0.02                   | Maximum value      |
| Zinc (Zn)      | 8                      | 8               | 11.9    | 20.5    | 20.5                    | Maximum value      |

# Table 4.1Recommended Baseline Concentrations for Metals in Snowshoe Hare<br/>Tissue (mg/kg – wet weight)

# Table 4.2Recommended Baseline Concentrations for Metals in Snowshoe Hare<br/>Internal Organs (mg/kg – wet weight)

| Metal           | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min    | Мах    | Recommended<br>Baseline | Baseline selection |
|-----------------|-------------------------------------|-----------------|--------|--------|-------------------------|--------------------|
| Aluminum (Al)   | 10                                  | 10              | 0.29   | 1.46   | 1.46                    | Maximum value      |
| Antimony (Sb)   | 10                                  | 0               | <0.001 | <0.001 | <0.001                  | Maximum value      |
| Arsenic (As)    | 10                                  | 8               | <0.004 | 0.068  | 0.068                   | Maximum value      |
| Barium (Ba)     | 10                                  | 10              | 0.051  | 0.303  | 0.303                   | Maximum value      |
| Beryllium (Be)  | 10                                  | 0               | <0.001 | <0.001 | <0.001                  | Maximum value      |
| Bismuth (Bi)    | 10                                  | 0               | <0.001 | <0.001 | <0.001                  | Maximum value      |
| Boron (B)       | 10                                  | 7               | <0.2   | 0.28   | 0.28                    | Maximum value      |
| Cadmium (Cd)    | 10                                  | 10              | 0.0196 | 1.49   | 1.49                    | Maximum value      |
| Calcium (Ca)    | 10                                  | 10              | 74     | 149    | 149                     | Maximum value      |
| Chromium (Cr)   | 10                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value      |
| Cobalt (Co)     | 10                                  | 10              | 0.0118 | 0.0837 | 0.0837                  | Maximum value      |
| Copper (Cu)     | 10                                  | 10              | 1.92   | 3.86   | 3.86                    | Maximum value      |
| Iron (Fe)       | 10                                  | 10              | 126    | 434    | 434                     | Maximum value      |
| Lead (Pb)       | 10                                  | 10              | 0.0049 | 0.0356 | 0.0356                  | Maximum value      |
| Magnesium (Mg)  | 10                                  | 10              | 142    | 188    | 188                     | Maximum value      |
| Manganese (Mn)  | 10                                  | 10              | 2.69   | 16.4   | 16.4                    | Maximum value      |
| Mercury (Hg)    | 10                                  | 9               | 0.0034 | 0.263  | 0.263                   | Maximum value      |
| Molybdenum (Mo) | 10                                  | 10              | 0.0842 | 0.298  | 0.298                   | Maximum value      |
| Nickel (Ni)     | 10                                  | 7               | <0.01  | 0.036  | 0.036                   | Maximum value      |



| Metal                         | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min     | Мах     | Recommended<br>Baseline | Baseline selection |
|-------------------------------|-------------------------------------|-----------------|---------|---------|-------------------------|--------------------|
| Phosphorus (P)                | 10                                  | 10              | 2060    | 2740    | 2740                    | Maximum value      |
| Potassium (K)                 | 10                                  | 10              | 2080    | 2830    | 2830                    | Maximum value      |
| Selenium (Se)                 | 10                                  | 10              | 0.2     | 0.901   | 0.901                   | Maximum value      |
| Silver (Ag)                   | 10                                  | 6               | <0.001  | 0.0496  | 0.0496                  | Maximum value      |
| Sodium (Na)                   | 10                                  | 10              | 935     | 1350    | 1350                    | Maximum value      |
| Strontium (Sr)                | 10                                  | 10              | 0.061   | 0.241   | 0.241                   | Maximum value      |
| Thallium (TI)                 | 10                                  | 10              | 0.00047 | 0.0034  | 0.0034                  | Maximum value      |
| Tin (Sn)                      | 10                                  | 0               | <0.02   | <0.02   | <0.02                   | Maximum value      |
| Titanium (Ti)                 | 10                                  | 10              | 0.102   | 0.152   | 0.152                   | Maximum value      |
| Uranium (U)                   | 10                                  | 0               | <0.0004 | <0.0004 | <0.0004                 | Maximum value      |
| Vanadium (V)                  | 10                                  | 0               | <0.02   | <0.02   | <0.02                   | Maximum value      |
| Zinc (Zn)                     | 10                                  | 10              | 16.4    | 21.6    | 21.6                    | Maximum value      |
| Note:<br>1. Number of samples | analyzed include la                 | aboratory dupli | cates.  |         | •                       |                    |

# Table 4.2Recommended Baseline Concentrations for Metals in Snowshoe Hare<br/>Internal Organs (mg/kg – wet weight)

### 4.1.2 Metal Concentrations in Blueberries

Recommended baseline concentrations for metals in blueberries are indicated in Table 4.3. Concentrations of beryllium, bismuth, chromium, cobalt, mercury, selenium, silver, tin, uranium, and vanadium were less than the detection limits in each of the 12 blueberry samples analyzed (Table 4.3). ProUCL outputs for blueberry data are provided in Attachment D.

# Table 4.3Recommended Baseline Concentrations for Metals in Blueberries<br/>(mg/kg – dry weight)

| Metal          | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min    | Мах    | Recommended<br>Baseline | Baseline selection                     |
|----------------|-------------------------------------|-----------------|--------|--------|-------------------------|----------------------------------------|
| Aluminum (Al)  | 12                                  | 12              | 32.3   | 99.5   | 70.09                   | 95% Student's-t UCL                    |
| Antimony (Sb)  | 12                                  | 1               | <0.005 | 0.0266 | 0.0266                  | Maximum value                          |
| Arsenic (As)   | 12                                  | 6               | <0.02  | 0.122  | 0.0518                  | Mean used since it is greater than UCL |
| Barium (Ba)    | 12                                  | 12              | 14.4   | 22.8   | 19.57                   | 95% Student's-t UCL                    |
| Beryllium (Be) | 12                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value                          |
| Bismuth (Bi)   | 12                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value                          |
| Boron (B)      | 12                                  | 12              | 5.4    | 10.5   | 8.901                   | 95% Student's-t UCL                    |
| Cadmium (Cd)   | 12                                  | 10              | <0.005 | 0.01   | 0.00788                 | 95% KM (t) UCL                         |
| Calcium (Ca)   | 12                                  | 12              | 1220   | 1810   | 1620                    | 95% Student's-t UCL                    |



| Metal           | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min    | Мах    | Recommended<br>Baseline | Baseline selection                     |
|-----------------|-------------------------------------|-----------------|--------|--------|-------------------------|----------------------------------------|
| Chromium (Cr)   | 12                                  | 0               | <0.1   | <0.1   | <0.1                    | Maximum value                          |
| Cobalt (Co)     | 12                                  | 0               | <0.02  | <0.02  | <0.02                   | Maximum value                          |
| Copper (Cu)     | 12                                  | 12              | 1.96   | 3.02   | 2.794                   | 95% Student's-t UCL                    |
| Iron (Fe)       | 12                                  | 12              | 11.5   | 23.6   | 17.88                   | 95% Student's-t UCL                    |
| Lead (Pb)       | 12                                  | 12              | 0.022  | 0.114  | 0.0708                  | 95% Student's-t UCL                    |
| Magnesium (Mg)  | 12                                  | 12              | 460    | 687    | 600.8                   | 95% Student's-t UCL                    |
| Manganese (Mn)  | 12                                  | 12              | 361    | 870    | 727.8                   | 95% Student's-t UCL                    |
| Mercury (Hg)    | 12                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value                          |
| Molybdenum (Mo) | 12                                  | 12              | 0.028  | 0.074  | 0.0543                  | 95% Student's-t UCL                    |
| Nickel (Ni)     | 12                                  | 12              | 0.219  | 0.403  | 0.318                   | 95% Student's-t UCL                    |
| Phosphorus (P)  | 12                                  | 12              | 658    | 1320   | 1063                    | 95% Student's-t UCL                    |
| Potassium (K)   | 12                                  | 12              | 5070   | 6830   | 5799                    | 95% Student's-t UCL                    |
| Selenium (Se)   | 12                                  | 0               | <0.05  | <0.05  | <0.05                   | Maximum value                          |
| Silver (Ag)     | 12                                  | 0               | <0.005 | <0.005 | <0.005                  | Maximum value                          |
| Sodium (Na)     | 12                                  | 12              | 12     | 52     | 34.74                   | 95% Adjusted Gamma<br>UCL              |
| Strontium (Sr)  | 12                                  | 12              | 0.697  | 9.61   | 7.083                   | 95% Chebyshev<br>(Mean, Sd) UCL        |
| Thallium (TI)   | 12                                  | 4               | <0.002 | 0.0047 | 0.0032                  | Mean used since it is greater than UCL |
| Tin (Sn)        | 12                                  | 0               | <0.1   | <0.1   | <0.1                    | Maximum value                          |
| Titanium (Ti)   | 12                                  | 1               | <0.5   | 0.55   | 0.55                    | Maximum value                          |
| Uranium (U)     | 12                                  | 0               | <0.002 | <0.002 | <0.002                  | Maximum value                          |
| Vanadium (V)    | 12                                  | 0               | <0.2   | <0.2   | <0.2                    | Maximum value                          |
| Zinc (Zn)       | 12                                  | 12              | 5.88   | 7.84   | 7.26                    | 95% Student's-t UCL                    |

# Table 4.3Recommended Baseline Concentrations for Metals in Blueberries<br/>(mg/kg – dry weight)

### 4.1.3 Metal Concentrations in Labrador Tea

Recommended baseline concentrations for metals in Labrador tea are indicated in Table 4.4. Concentrations of beryllium, bismuth, cadmium, chromium, mercury, silver, tin, uranium, and vanadium were less than the detection limits in each of the 12 Labrador tea samples analyzed (Table 4.4). ProUCL outputs for Labrador tea data are provided in Attachment E.



| Metal           | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min    | Мах    | Recommended<br>Baseline | Baseline selection                                     |
|-----------------|-------------------------------------|-----------------|--------|--------|-------------------------|--------------------------------------------------------|
| Aluminum (Al)   | 12                                  | 12              | 8.7    | 24.3   | 17.25                   | 95% Student's-t UCL                                    |
| Antimony (Sb)   | 12                                  | 3               | <0.005 | 0.0512 | 0.0512                  | Maximum value                                          |
| Arsenic (As)    | 12                                  | 8               | <0.02  | 0.035  | 0.0266                  | 95% KM (t) UCL                                         |
| Barium (Ba)     | 12                                  | 12              | 34.7   | 73     | 58.21                   | 95% Student's-t UCL                                    |
| Beryllium (Be)  | 12                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value                                          |
| Bismuth (Bi)    | 12                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value                                          |
| Boron (B)       | 12                                  | 12              | 9.7    | 14.7   | 13.3                    | 95% Student's-t UCL                                    |
| Cadmium (Cd)    | 12                                  | 0               | <0.005 | <0.005 | <0.005                  | Maximum value                                          |
| Calcium (Ca)    | 12                                  | 12              | 4190   | 5080   | 4734                    | 95% Student's-t UCL                                    |
| Chromium (Cr)   | 12                                  | 0               | <0.1   | <0.1   | <0.1                    | Maximum value                                          |
| Cobalt (Co)     | 12                                  | 1               | <0.02  | 0.024  | 0.024                   | Maximum value                                          |
| Copper (Cu)     | 12                                  | 12              | 2.2    | 3.46   | 3.238                   | 95% Student's-t UCL                                    |
| Iron (Fe)       | 12                                  | 12              | 20.9   | 29.7   | 26.11                   | 95% Student's-t UCL                                    |
| Lead (Pb)       | 12                                  | 12              | 0.021  | 0.046  | 0.0322                  | 95% Student's-t UCL                                    |
| Magnesium (Mg)  | 12                                  | 12              | 1160   | 1590   | 1405                    | 95% Student's-t UCL                                    |
| Manganese (Mn)  | 12                                  | 12              | 523    | 1410   | 1130                    | 95% Student's-t UCL                                    |
| Mercury (Hg)    | 12                                  | 0               | <0.01  | <0.01  | <0.01                   | Maximum value                                          |
| Molybdenum (Mo) | 12                                  | 10              | <0.02  | 0.046  | 0.0318                  | 95% KM (t) UCL                                         |
| Nickel (Ni)     | 12                                  | 12              | 0.085  | 0.695  | 0.695                   | Maximum used since<br>it's lower than<br>suggested UCL |
| Phosphorus (P)  | 12                                  | 12              | 824    | 1050   | 935.9                   | 95% Modified-t UCL                                     |
| Potassium (K)   | 12                                  | 12              | 3400   | 4850   | 4522                    | 95% Student's-t UCL                                    |
| Selenium (Se)   | 12                                  | 1               | <0.05  | 0.059  | 0.059                   | Maximum value                                          |
| Silver (Ag)     | 12                                  | 0               | <0.005 | <0.005 | <0.005                  | Maximum value                                          |
| Sodium (Na)     | 12                                  | 5               | <10    | 13     | 13                      | Median used since it is greater than the UCL           |
| Strontium (Sr)  | 12                                  | 12              | 4.37   | 15.8   | 9.791                   | 95% Modified-t UCL                                     |
| Thallium (TI)   | 12                                  | 12              | 0.0077 | 0.0425 | 0.0174                  | 95% Student's-t UCL                                    |
| Tin (Sn)        | 12                                  | 0               | <0.1   | <0.1   | <0.1                    | Maximum value                                          |
| Titanium (Ti)   | 12                                  | 1               | <0.5   | 0.64   | 0.64                    | Maximum value                                          |
| Uranium (U)     | 12                                  | 0               | <0.002 | <0.002 | <0.002                  | Maximum value                                          |
| Vanadium (V)    | 12                                  | 0               | <0.2   | <0.2   | <0.2                    | Maximum value                                          |
| Zinc (Zn)       | 12                                  | 12              | 11.9   | 14.6   | 14.2                    | 95% Student's-t UCL                                    |

# Table 4.4Recommended Baseline Concentrations for Metals in Labrador Tea<br/>(mg/kg – dry weight)

Note:

1. Number of samples analyzed include field and laboratory duplicates.



### 4.1.4 Metal Concentrations in Soil

Recommended baseline concentrations for metals in soil samples are indicated in Table 4.5. Concentrations of antimony, beryllium, bismuth, boron, molybdenum, and thallium were less than the detection limits in each of the 23 soil samples analyzed (Table 4.5). ProUCL outputs for soil data are provided in Attachment F.

| Metal           | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min  | Мах   | Recommended<br>Baseline | Baseline selection                                 |
|-----------------|-------------------------------------|-----------------|------|-------|-------------------------|----------------------------------------------------|
| Aluminum (Al)   | 23                                  | 23              | 200  | 13000 | 3724                    | 95% Adjusted<br>Gamma UCL                          |
| Antimony (Sb)   | 23                                  | 0               | <2   | <2    | <2                      | Maximum value                                      |
| Arsenic (As)    | 23                                  | 7               | <2   | 21    | 7.16                    | Mean used since it is greater than UCL             |
| Barium (Ba)     | 23                                  | 22              | <5   | 380   | 117.8                   | 95% KM Adjusted<br>Gamma UCL                       |
| Beryllium (Be)  | 23                                  | 0               | <2   | <2    | <2                      | Maximum value                                      |
| Bismuth (Bi)    | 23                                  | 0               | <2   | <2    | <2                      | Maximum value                                      |
| Boron (B)       | 23                                  | 0               | <50  | <50   | <50                     | Maximum value                                      |
| Cadmium (Cd)    | 23                                  | 11              | <0.3 | 0.71  | 0.493                   | Mean used since it is greater than UCL             |
| Chromium (Cr)   | 23                                  | 7               | <2   | 12    | 5.67                    | Mean used since it is greater than UCL             |
| Cobalt (Co)     | 23                                  | 11              | <1   | 20    | 3.656                   | Mean used since it is greater than UCL             |
| Copper (Cu)     | 23                                  | 21              | <2   | 28    | 9.85                    | 95% GROS Adjusted<br>Gamma UCL                     |
| Iron (Fe)       | 23                                  | 23              | 230  | 23000 | 7956                    | 95% Adjusted<br>Gamma UCL                          |
| Lead (Pb)       | 23                                  | 23              | 5.7  | 53    | 25.76                   | 95% Student's-t UCL                                |
| Lithium (Li)    | 23                                  | 4               | <2   | 4.5   | 4.5                     | Maximum value                                      |
| Manganese (Mn)  | 23                                  | 23              | 23   | 1500  | 365.7                   | 95% Student's-t UCL                                |
| Mercury (Hg)    | 23                                  | 19              | <0.1 | 0.46  | 0.298                   | 95% KM (t) UCL                                     |
| Molybdenum (Mo) | 23                                  | 0               | <2   | <2    | <2                      | Maximum value                                      |
| Nickel (Ni)     | 23                                  | 17              | <2   | 9.3   | 3.628                   | 95% KM (BCA) UCL                                   |
| Rubidium (Rb)   | 23                                  | 8               | <2   | 3.3   | 2.393                   | Mean used since it is greater than UCL             |
| Selenium (Se)   | 23                                  | 9               | <0.5 | 0.84  | 0.635                   | Mean used since it is greater than UCL             |
| Silver (Ag)     | 23                                  | 8               | <0.5 | 1.6   | 0.925                   | Median used since it<br>is greater than the<br>UCL |

# Table 4.5Recommended Baseline Concentrations for Metals in Soil<br/>(mg/kg – dry weight)



| Metal          | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min  | Мах  | Recommended<br>Baseline | Baseline selection                                 |
|----------------|-------------------------------------|-----------------|------|------|-------------------------|----------------------------------------------------|
| Strontium (Sr) | 23                                  | 20              | <5   | 61   | 26.9                    | KM H-UCL                                           |
| Thallium (TI)  | 23                                  | 0               | <0.1 | <0.1 | <0.1                    | Maximum value                                      |
| Tin (Sn)       | 23                                  | 7               | <1   | 1.4  | 1.25                    | Median used since it<br>is greater than the<br>UCL |
| Uranium (U)    | 23                                  | 9               | <0.1 | 0.33 | 0.197                   | Mean used since it is greater than UCL             |
| Vanadium (V)   | 23                                  | 15              | <2   | 45   | 15.3                    | 95% GROS Adjusted<br>Gamma UCL                     |
| Zinc (Zn)      | 23                                  | 23              | 11   | 190  | 60.88                   | 95% Adjusted<br>Gamma UCL                          |
| Note:          |                                     |                 |      |      |                         |                                                    |

# Table 4.5Recommended Baseline Concentrations for Metals in Soil<br/>(mg/kg – dry weight)

1. Number of samples analyzed include field and laboratory duplicates.

## 4.2 AQUATIC SAMPLES

### 4.2.1 Metal Concentrations in Brook Trout

Recommended baseline concentrations for metals in brook trout are indicated in Table 4.6. Concentrations of beryllium and bismuth were less than the detection limits in each of the 53 brook trout samples analyzed (Table 4.6). ProUCL outputs for brook trout are provided in Attachment G.

| Metal          | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min    | Max    | Recommended<br>Baseline | Baseline selection              |
|----------------|-------------------------------------|-----------------|--------|--------|-------------------------|---------------------------------|
| Aluminum (Al)  | 53                                  | 53              | 0.21   | 1.47   | 0.628                   | 95% Approximate<br>Gamma UCL    |
| Antimony (Sb)  | 53                                  | 2               | <0.001 | 0.0032 | 0.0032                  | Maximum value                   |
| Arsenic (As)   | 53                                  | 53              | 0.0256 | 1.55   | 0.5                     | 95% Chebyshev<br>(Mean, Sd) UCL |
| Barium (Ba)    | 53                                  | 53              | 0.025  | 1.61   | 0.41                    | 95% Chebyshev<br>(Mean, Sd) UCL |
| Beryllium (Be) | 53                                  | 0               | <0.001 | <0.001 | <0.001                  | Maximum value                   |
| Bismuth (Bi)   | 53                                  | 0               | <0.001 | <0.001 | <0.001                  | Maximum value                   |
| Boron (B)      | 53                                  | 1               | <0.2   | 0.21   | 0.21                    | Maximum value                   |
| Cadmium (Cd)   | 53                                  | 50              | <0.001 | 0.0769 | 0.0194                  | 95% KM<br>(Chebyshev) UCL       |
| Calcium (Ca)   | 53                                  | 53              | 821    | 3760   | 1763                    | 95% Modified-t UCL              |

Table 4.6Recommended Baseline Concentrations for Metals in Brook Trout<br/>(mg/kg – wet weight)



| Metal           | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected | Min     | Max     | Recommended<br>Baseline | Baseline selection                                     |
|-----------------|-------------------------------------|-----------------|---------|---------|-------------------------|--------------------------------------------------------|
| Chromium (Cr)   | 53                                  | 15              | <0.01   | 0.586   | 0.0734                  | Mean used since it<br>is greater than UCL              |
| Cobalt (Co)     | 53                                  | 53              | 0.0059  | 0.0329  | 0.0163                  | 95% Approximate<br>Gamma UCL                           |
| Copper (Cu)     | 53                                  | 53              | 0.224   | 1.54    | 0.381                   | 95% Modified-t UCL                                     |
| Iron (Fe)       | 53                                  | 53              | 3.37    | 11      | 6.552                   | 95% Student's-t<br>UCL                                 |
| Lead (Pb)       | 53                                  | 53              | 0.0025  | 0.293   | 0.0732                  | 95% Chebyshev<br>(Mean, Sd) UCL                        |
| Magnesium (Mg)  | 53                                  | 53              | 223     | 339     | 304.1                   | 95% Student's-t<br>UCL                                 |
| Manganese (Mn)  | 53                                  | 53              | 0.522   | 5.86    | 2.585                   | 95% Approximate<br>Gamma UCL                           |
| Mercury (Hg)    | 53                                  | 53              | 0.021   | 0.327   | 0.128                   | 95% Approximate<br>Gamma UCL                           |
| Molybdenum (Mo) | 53                                  | 31              | <0.004  | 0.0068  | 0.00478                 | Mean used since it<br>is greater than UCL              |
| Nickel (Ni)     | 53                                  | 24              | <0.01   | 0.053   | 0.022                   | Mean used since it<br>is greater than UCL              |
| Phosphorus (P)  | 53                                  | 53              | 2810    | 4190    | 3656                    | 95% Student's-t<br>UCL                                 |
| Potassium (K)   | 53                                  | 53              | 3620    | 4620    | 4285                    | 95% Student's-t<br>UCL                                 |
| Selenium (Se)   | 53                                  | 53              | 0.22    | 0.879   | 0.403                   | 95% Student's-t<br>UCL                                 |
| Silver (Ag)     | 53                                  | 5               | <0.001  | 0.0102  | 0.00418                 | Mean used since it<br>is greater than UCL              |
| Sodium (Na)     | 53                                  | 53              | 362     | 748     | 513.7                   | 95% Approximate<br>Gamma UCL                           |
| Strontium (Sr)  | 53                                  | 53              | 0.645   | 4.52    | 1.737                   | 95% Modified-t UCL                                     |
| Thallium (TI)   | 53                                  | 53              | 0.00096 | 0.0346  | 0.00888                 | 95% Chebyshev<br>(Mean, Sd) UCL                        |
| Tin (Sn)        | 53                                  | 13              | <0.02   | 0.039   | 0.0261                  | Mean used since it<br>is greater than UCL              |
| Titanium (Ti)   | 53                                  | 53              | 0.14    | 0.345   | 0.195                   | 95% Student's-t<br>UCL                                 |
| Uranium (U)     | 53                                  | 10              | <0.0004 | 0.00123 | 0.00123                 | Maximum used<br>since it's lower than<br>suggested UCL |
| Vanadium (V)    | 53                                  | 1               | <0.02   | 0.025   | 0.025                   | Maximum value                                          |

# Table 4.6Recommended Baseline Concentrations for Metals in Brook Trout<br/>(mg/kg – wet weight)



#### VALENTINE GOLD PROJECT: COUNTRY FOODS SAMPLING PROGRAM

May 2021

# Table 4.6Recommended Baseline Concentrations for Metals in Brook Trout<br/>(mg/kg – wet weight)

| Metal                         | No. Sample<br>Analyzed <sup>1</sup> | No.<br>Detected  | Min   | Max  | Recommended<br>Baseline | Baseline selection     |
|-------------------------------|-------------------------------------|------------------|-------|------|-------------------------|------------------------|
| Zinc (Zn)                     | 53                                  | 53               | 8.97  | 22.3 | 14.76                   | 95% Student's-t<br>UCL |
| Note:<br>1. Number of samples | analyzed include la                 | aboratory duplic | ates. |      |                         |                        |

## 5.0 SUMMARY

Stantec has completed a country foods sampling program for Marathon to establish baseline concentrations of metals in locally harvested foods. A summary of the media selected for analysis and the recommended baseline concentrations for metals is provided in Table 5.1.

|                       | Snowsh                           | oe Hare                            |                             | Labrador                        |                      |                             |
|-----------------------|----------------------------------|------------------------------------|-----------------------------|---------------------------------|----------------------|-----------------------------|
| Chemical<br>Parameter | Muscle<br>Tissue<br>(mg/kg - ww) | Internal<br>Organs<br>(mg/kg - ww) | Blueberries<br>(mg/kg - dw) | Labrador<br>Tea<br>(mg/kg - dw) | Soil<br>(mg/kg - dw) | Brook Trout<br>(mg/kg - ww) |
| Aluminum (Al)         | 7.69                             | 1.46                               | 70.09                       | 17.25                           | 3724                 | 0.628                       |
| Antimony (Sb)         | 0.0019                           | <0.001                             | 0.0266                      | 0.0512                          | <2                   | 0.0032                      |
| Arsenic (As)          | 0.0319                           | 0.068                              | 0.0518                      | 0.0266                          | 7.16                 | 0.5                         |
| Barium (Ba)           | 0.639                            | 0.303                              | 19.57                       | 58.21                           | 117.8                | 0.41                        |
| Beryllium (Be)        | <0.001                           | <0.001                             | <0.01                       | <0.01                           | <2                   | <0.001                      |
| Bismuth (Bi)          | <0.001                           | <0.001                             | <0.01                       | <0.01                           | <2                   | <0.001                      |
| Boron (B)             | 0.23                             | 0.28                               | 8.901                       | 13.3                            | <50                  | 0.21                        |
| Cadmium (Cd)          | 0.0086                           | 1.49                               | 0.00788                     | <0.005                          | 0.493                | 0.0194                      |
| Calcium (Ca)          | 109                              | 149                                | 1620                        | 4734                            |                      | 1763                        |
| Chromium (Cr)         | 0.079                            | <0.01                              | <0.1                        | <0.1                            | 5.67                 | 0.0734                      |
| Cobalt (Co)           | 0.0163                           | 0.0837                             | <0.02                       | 0.024                           | 3.656                | 0.0163                      |
| Copper (Cu)           | 2.31                             | 3.86                               | 2.794                       | 3.238                           | 9.85                 | 0.381                       |
| Iron (Fe)             | 35.9                             | 434                                | 17.88                       | 26.11                           | 7956                 | 6.552                       |
| Lead (Pb)             | 0.0477                           | 0.0356                             | 0.0708                      | 0.0322                          | 25.76                | 0.0732                      |
| Lithium (Li)          |                                  |                                    |                             |                                 | 4.5                  |                             |
| Magnesium (Mg)        | 287                              | 188                                | 600.8                       | 1405                            |                      | 304.1                       |
| Manganese (Mn)        | 14.6                             | 16.4                               | 727.8                       | 1130                            | 365.7                | 2.585                       |
| Mercury (Hg)          | 0.0027                           | 0.263                              | <0.01                       | <0.01                           | 0.298                | 0.128                       |
| Molybdenum (Mo)       | 0.0082                           | 0.298                              | 0.0543                      | 0.0318                          | <2                   | 0.00478                     |

 Table 5.1
 Recommended Baseline Concentrations for Metals



|                         | Snowsh                           | oe Hare                            |                             | Labradar                        |                      |                             |
|-------------------------|----------------------------------|------------------------------------|-----------------------------|---------------------------------|----------------------|-----------------------------|
| Chemical<br>Parameter   | Muscle<br>Tissue<br>(mg/kg - ww) | Internal<br>Organs<br>(mg/kg - ww) | Blueberries<br>(mg/kg - dw) | Labrador<br>Tea<br>(mg/kg - dw) | Soil<br>(mg/kg - dw) | Brook Trout<br>(mg/kg - ww) |
| Nickel (Ni)             | 0.028                            | 0.036                              | 0.318                       | 0.695                           | 3.628                | 0.022                       |
| Rubidium (Rb)           | 2570                             | 2740                               | 1063                        | 935.9                           |                      | 3656                        |
| Phosphorus (P)          | 3680                             | 2830                               | 5799                        | 4522                            |                      | 4285                        |
| Phosphorus (P)          |                                  |                                    |                             |                                 | 2.393                |                             |
| Selenium (Se)           | 0.242                            | 0.901                              | <0.05                       | 0.059                           | 0.635                | 0.403                       |
| Silver (Ag)             | 0.0014                           | 0.0496                             | <0.005                      | <0.005                          | 0.925                | 0.00418                     |
| Sodium (Na)             | 715                              | 1350                               | 34.74                       | 13                              |                      | 513.7                       |
| Strontium (Sr)          | 0.112                            | 0.241                              | 7.083                       | 9.791                           | 26.9                 | 1.737                       |
| Thallium (TI)           | 0.001                            | 0.0034                             | 0.0032                      | 0.0174                          | <0.1                 | 0.00888                     |
| Tin (Sn)                | 0.039                            | <0.02                              | <0.1                        | <0.1                            | 1.25                 | 0.0261                      |
| Titanium (Ti)           | 0.215                            | 0.152                              | 0.55                        | 0.64                            |                      | 0.195                       |
| Uranium (U)             | <0.0004                          | <0.0004                            | <0.002                      | <0.002                          | 0.197                | 0.00123                     |
| Vanadium (V)            | <0.02                            | <0.02                              | <0.2                        | <0.2                            | 15.3                 | 0.025                       |
| Zinc (Zn)               | 20.5                             | 21.6                               | 7.26                        | 14.2                            | 60.88                | 14.76                       |
| Notes: dw = dry weight; | ; ww = wet weight; "             | " indicates data                   | not available or n          | ot reported.                    | •                    | 1                           |

### Table 5.1 Recommended Baseline Concentrations for Metals



#### VALENTINE GOLD PROJECT: COUNTRY FOODS SAMPLING PROGRAM

May 2021

## 6.0 **REFERENCES**

- House, Kent. 2020. Camp Manager, Marathon Gold Corp. Personal communication on September 5, 2020.
- USEPA. 2015. ProUCL Version 5.1 User Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041



VALENTINE GOLD PROJECT: COUNTRY FOODS SAMPLING PROGRAM

May 2021

# ATTACHMENT A

Laboratory Analytical Data





Your Project #: 121416288 Your C.O.C. #: n/a

#### **Attention: Barry Wicks**

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL CANADA A1B 0L2

> Report Date: 2021/01/14 Report #: R6480394 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

#### BV LABS JOB #: C0V9779 Received: 2020/12/01, 09:55

Sample Matrix: Tissue # Samples Received: 89

|                                             |          | Date       | Date       |                                 |                      |
|---------------------------------------------|----------|------------|------------|---------------------------------|----------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed   | Laboratory Method               | Analytical Method    |
| Mercury in Tissue by CVAF - Wet Wt (1)      | 66       | N/A        | 2021/01/12 | BBY7SOp-00012                   | BCMOE BCLM Oct2013 m |
| Mercury in Tissue by CVAF - Wet Wt (1)      | 1        | N/A        | 2021/01/13 | BBY7SOp-00012                   | BCMOE BCLM Oct2013 m |
| Elements in Plants by CRC ICPMS -Dry Wt (1) | 22       | 2021/01/07 | 2021/01/10 | BBY7SOP-00021 BBY7SOP-<br>00002 | - EPA 6020b R2 m     |
| Elements by CRC ICPMS - Tissue Wet Wt (1)   | 24       | 2021/01/06 | 2021/01/10 | BBY7SOP00021/ BBY7SOP<br>00002  | -EPA 6020b R2 m      |
| Elements by CRC ICPMS - Tissue Wet Wt (1)   | 2        | 2021/01/06 | 2021/01/12 | BBY7SOP00021/ BBY7SOP<br>00002  | -EPA 6020b R2 m      |
| Elements by CRC ICPMS - Tissue Wet Wt (1)   | 41       | 2021/01/06 | 2021/01/09 | BBY7SOP00021/ BBY7SOP<br>00002  | -EPA 6020b R2 m      |
| Moisture in Tissue (Subcontracted) (1, 2)   | 27       | 2021/01/11 | 2021/01/12 | BBY8SOP-00017                   | BCMOE BCLM Dec2000 m |
| Moisture in Tissue (Subcontracted) (1, 2)   | 40       | 2021/01/06 | 2021/01/12 | BBY8SOP-00017                   | BCMOE BCLM Dec2000 m |
| Moisture in Tissue (Subcontracted) (1, 2)   | 20       | 2020/12/11 | 2020/12/16 | BBY8SOP-00017                   | BCMOE BCLM Dec2000 m |
| Moisture in Tissue (Subcontracted) (1, 2)   | 2        | 2020/12/16 | 2021/01/12 | BBY8SOP-00017                   | BCMOE BCLM Dec2000 m |

#### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Page 1 of 58



Your Project #: 121416288 Your C.O.C. #: n/a

#### **Attention: Barry Wicks**

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL CANADA A1B 0L2

> Report Date: 2021/01/14 Report #: R6480394 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

#### BV LABS JOB #: C0V9779 Received: 2020/12/01, 09:55

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by BVLabs Burnaby via Bedford

(2) Offsite analysis requires that subcontracted moisture be reported.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bureauveritas.com Phone# (902)420-0203 Ext:226

-----

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                     |       | OHP410     | OHP411     | OHP412     | OHP412          | OHP413     |         |          |
|--------------------------------|-------|------------|------------|------------|-----------------|------------|---------|----------|
| Sampling Date                  |       | 2020/09/05 | 2020/09/05 | 2020/09/05 | 2020/09/05      | 2020/09/05 |         |          |
| COC Number                     |       | n/a        | n/a        | n/a        | n/a             | n/a        |         |          |
|                                | UNITS | BT-1       | BT-2       | BT-3       | BT-3<br>Lab-Dup | BT-4       | RDL     | QC Batch |
| Metals                         |       |            |            |            |                 |            |         |          |
| Total (Wet Wt) Aluminum (Al)   | mg/kg | 0.71       | 0.50       | 0.32       | 0.41            | 0.53       | 0.20    | 7148857  |
| Total (Wet Wt) Antimony (Sb)   | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010         | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Arsenic (As)    | mg/kg | 0.154      | 0.290      | 0.404      | 0.374           | 0.278      | 0.0040  | 7148857  |
| Total (Wet Wt) Barium (Ba)     | mg/kg | 0.076      | 0.045      | 0.030      | 0.039           | 0.057      | 0.010   | 7148857  |
| Total (Wet Wt) Beryllium (Be)  | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010         | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Bismuth (Bi)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010         | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Boron (B)       | mg/kg | 0.21       | <0.20      | <0.20      | <0.20           | <0.20      | 0.20    | 7148857  |
| Total (Wet Wt) Cadmium (Cd)    | mg/kg | 0.0026     | 0.0024     | 0.0033     | 0.0030          | 0.0038     | 0.0010  | 7148857  |
| Total (Wet Wt) Calcium (Ca)    | mg/kg | 1300       | 1030       | 821 (1)    | 1060            | 1300       | 2.0     | 7148857  |
| Total (Wet Wt) Chromium (Cr)   | mg/kg | 0.586      | 0.011      | 0.098      | 0.139           | 0.023      | 0.010   | 7148857  |
| Total (Wet Wt) Cobalt (Co)     | mg/kg | 0.0064     | 0.0116     | 0.0131     | 0.0126          | 0.0102     | 0.0013  | 7148857  |
| Total (Wet Wt) Copper (Cu)     | mg/kg | 0.499      | 0.296      | 0.295      | 0.282           | 0.253      | 0.010   | 7148857  |
| Total (Wet Wt) Iron (Fe)       | mg/kg | 10.2       | 7.29       | 5.95       | 5.84            | 6.13       | 0.25    | 7148857  |
| Total (Wet Wt) Lead (Pb)       | mg/kg | 0.0399     | 0.0155     | 0.0106     | 0.0092          | 0.0089     | 0.0010  | 7148857  |
| Total (Wet Wt) Magnesium (Mg)  | mg/kg | 306        | 327        | 308        | 318             | 323        | 0.40    | 7148857  |
| Total (Wet Wt) Manganese (Mn)  | mg/kg | 1.33       | 0.842      | 0.698      | 0.810           | 1.27       | 0.010   | 7148857  |
| Total (Wet Wt) Molybdenum (Mo) | mg/kg | <0.0040    | <0.0040    | 0.0051     | 0.0042          | 0.0044     | 0.0040  | 7148857  |
| Total (Wet Wt) Nickel (Ni)     | mg/kg | 0.025      | <0.010     | 0.014      | 0.011           | 0.010      | 0.010   | 7148857  |
| Total (Wet Wt) Phosphorus (P)  | mg/kg | 3370       | 3430       | 3210 (2)   | 3350            | 3540       | 2.0     | 7148857  |
| Total (Wet Wt) Potassium (K)   | mg/kg | 4300       | 4550       | 4420 (3)   | 4470            | 4480       | 2.0     | 7148857  |
| Total (Wet Wt) Selenium (Se)   | mg/kg | 0.353      | 0.333      | 0.306      | 0.303           | 0.293      | 0.010   | 7148857  |
| Total (Wet Wt) Silver (Ag)     | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010         | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Sodium (Na)     | mg/kg | 457        | 440        | 425 (4)    | 445             | 429        | 2.0     | 7148857  |
| Total (Wet Wt) Strontium (Sr)  | mg/kg | 1.64       | 1.11       | 0.842      | 1.04            | 1.41       | 0.010   | 7148857  |
| Total (Wet Wt) Thallium (Tl)   | mg/kg | 0.00162    | 0.00227    | 0.00233    | 0.00223         | 0.00212    | 0.00040 | 7148857  |
| Total (Wet Wt) Tin (Sn)        | mg/kg | 0.038      | <0.020     | <0.020     | <0.020          | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Titanium (Ti)   | mg/kg | 0.154      | 0.158      | 0.149      | 0.161           | 0.158      | 0.020   | 7148857  |
| Total (Wet Wt) Uranium (U)     | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040        | <0.00040   | 0.00040 | 7148857  |
| Total (Wet Wt) Vanadium (V)    | mg/kg | <0.020     | <0.020     | <0.020     | <0.020          | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Zinc (Zn)       | mg/kg | 11.5       | 17.2       | 12.7 (5)   | 12.1            | 15.9       | 0.040   | 7148857  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Matrix spike fails for (Calcium), suspected matrix interference.

(2) Matrix spike fails for (Phosphorus), suspected matrix interference.

(3) Matrix spike fails for (Potassium), suspected matrix interference.

(4) Matrix spike fails for (Sodium), suspected matrix interference.

(5) Matrix spike fails for (Zinc), suspected matrix interference.



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                                                                                               |       | OHP410     | OHP411     | OHP412     | OHP412          | OHP413     |       |          |
|----------------------------------------------------------------------------------------------------------|-------|------------|------------|------------|-----------------|------------|-------|----------|
| Sampling Date                                                                                            |       | 2020/09/05 | 2020/09/05 | 2020/09/05 | 2020/09/05      | 2020/09/05 |       |          |
| COC Number                                                                                               |       | n/a        | n/a        | n/a        | n/a             | n/a        |       |          |
|                                                                                                          | UNITS | BT-1       | BT-2       | BT-3       | BT-3<br>Lab-Dup | BT-4       | RDL   | QC Batch |
| Mercury (Hg)                                                                                             | mg/kg | 0.123 (1)  | 0.161 (1)  | 0.167 (1)  | 0.149 (1)       | 0.141 (1)  | 0.010 | 7148860  |
| PHYSICAL PROPERTIES                                                                                      | •     |            |            | •          |                 | •          |       |          |
| Moisture-Subcontracted                                                                                   | %     | 76         | 75         | 76         | 77              | 77         | 0.30  | 7148859  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch<br>Lab-Dup = Laboratory Initiated D |       |            |            |            |                 |            |       |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP414     | OHP415     | OHP416     | OHP417     | OHP418     |         |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |       | 2020/09/05 | 2020/09/05 | 2020/09/05 | 2020/09/05 | 2020/09/05 |         |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS | BT-5       | BT-6       | BT-7       | BT-8       | BT-9       | RDL     | QC Batch |
| Metals                           |       |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 1.10       | 0.58       | 0.26       | 0.22       | 0.37       | 0.20    | 7148857  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Arsenic (As)      | mg/kg | 0.227      | 0.275      | 0.198      | 0.238      | 0.235      | 0.0040  | 7148857  |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.035      | 0.037      | 0.025      | 0.030      | 0.040      | 0.010   | 7148857  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Boron (B)         | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148857  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 0.0026     | 0.0063     | <0.0010    | 0.0032     | 0.0063     | 0.0010  | 7148857  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 950        | 1440       | 1160       | 964        | 1160       | 2.0     | 7148857  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | 0.015      | 0.020      | 0.012      | 0.010      | 0.011      | 0.010   | 7148857  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0139     | 0.0116     | 0.0083     | 0.0108     | 0.0107     | 0.0013  | 7148857  |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 0.301      | 0.267      | 0.252      | 0.268      | 0.288      | 0.010   | 7148857  |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 5.88       | 6.33       | 6.26       | 4.75       | 6.05       | 0.25    | 7148857  |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0102     | 0.0102     | 0.0053     | 0.0031     | 0.0165     | 0.0010  | 7148857  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 321        | 283        | 285        | 324        | 332        | 0.40    | 7148857  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 0.959      | 0.858      | 0.839      | 0.522      | 1.07       | 0.010   | 7148857  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | <0.0040    | 0.0041     | <0.0040    | 0.0050     | 0.0047     | 0.0040  | 7148857  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148857  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg | 3400       | 3400       | 3220       | 3430       | 3700       | 2.0     | 7148857  |
| Total (Wet Wt) Potassium (K)     | mg/kg | 4550       | 4440       | 4330       | 4500       | 4520       | 2.0     | 7148857  |
| Total (Wet Wt) Selenium (Se)     | mg/kg | 0.309      | 0.298      | 0.306      | 0.319      | 0.286      | 0.010   | 7148857  |
| Total (Wet Wt) Silver (Ag)       | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Sodium (Na)       | mg/kg | 448        | 459        | 429        | 394        | 453        | 2.0     | 7148857  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg | 0.959      | 1.33       | 1.11       | 0.963      | 1.21       | 0.010   | 7148857  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg | 0.00157    | 0.00209    | 0.00198    | 0.00240    | 0.00215    | 0.00040 | 7148857  |
| Total (Wet Wt) Tin (Sn)          | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg | 0.201      | 0.185      | 0.154      | 0.167      | 0.181      | 0.020   | 7148857  |
| Total (Wet Wt) Uranium (U)       | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148857  |
| Total (Wet Wt) Vanadium (V)      | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg | 12.5       | 15.4       | 12.9       | 13.3       | 11.8       | 0.040   | 7148857  |
| Mercury (Hg)                     | mg/kg | 0.152 (1)  | 0.228 (1)  | 0.283 (1)  | 0.144 (1)  | 0.184 (1)  | 0.010   | 7148860  |
| PHYSICAL PROPERTIES              |       |            |            | • •        |            |            | •       |          |
| Moisture-Subcontracted           | %     | 77         | 78         | 78         | 75         | 75         | 0.30    | 7148859  |
| RDL = Reportable Detection Limit |       |            | •          | •          | •          | •          | •       |          |

QC Batch = Quality Control Batch



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |          | OHP419     | OHP420     | OHP421     | OHP422     | OHP423     |         |          |
|----------------------------------|----------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |          | 2020/09/05 | 2020/09/05 | 2020/09/05 | 2020/09/05 | 2020/09/05 |         |          |
| COC Number                       |          | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS    | BT-10      | BT-11      | BT-12      | BT-13      | BT-14      | RDL     | QC Batch |
| Metals                           | <u> </u> |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg    | 0.23       | 0.34       | 0.34       | 1.10       | 1.20       | 0.20    | 7148857  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Arsenic (As)      | mg/kg    | 0.367      | 0.202      | 0.114      | 0.206      | 0.433      | 0.0040  | 7148857  |
| Total (Wet Wt) Barium (Ba)       | mg/kg    | 0.057      | 0.036      | 0.038      | 0.044      | 0.055      | 0.010   | 7148857  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Boron (B)         | mg/kg    | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148857  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg    | 0.0033     | 0.0019     | 0.0047     | 0.0076     | 0.0030     | 0.0010  | 7148857  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg    | 1130       | 1140       | 956        | 1210       | 1890       | 2.0     | 7148857  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg    | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148857  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg    | 0.0104     | 0.0059     | 0.0063     | 0.0101     | 0.0098     | 0.0013  | 7148857  |
| Total (Wet Wt) Copper (Cu)       | mg/kg    | 0.224      | 0.278      | 0.248      | 0.238      | 0.267      | 0.010   | 7148857  |
| Total (Wet Wt) Iron (Fe)         | mg/kg    | 5.68       | 5.55       | 5.97       | 7.09       | 7.64       | 0.25    | 7148857  |
| Total (Wet Wt) Lead (Pb)         | mg/kg    | 0.0081     | 0.0143     | 0.0084     | 0.0075     | 0.0077     | 0.0010  | 7148857  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg    | 324        | 335        | 305        | 326        | 322        | 0.40    | 7148857  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg    | 1.24       | 0.819      | 0.679      | 0.954      | 1.89       | 0.010   | 7148857  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg    | <0.0040    | <0.0040    | <0.0040    | 0.0046     | 0.0044     | 0.0040  | 7148857  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg    | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148857  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg    | 3460       | 3550       | 3220       | 3650       | 4080       | 2.0     | 7148857  |
| Total (Wet Wt) Potassium (K)     | mg/kg    | 4420       | 4510       | 4240       | 4320       | 4450       | 2.0     | 7148857  |
| Total (Wet Wt) Selenium (Se)     | mg/kg    | 0.327      | 0.279      | 0.277      | 0.348      | 0.301      | 0.010   | 7148857  |
| Total (Wet Wt) Silver (Ag)       | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Sodium (Na)       | mg/kg    | 446        | 421        | 362        | 409        | 485        | 2.0     | 7148857  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg    | 1.29       | 1.17       | 1.08       | 1.35       | 2.04       | 0.010   | 7148857  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg    | 0.00176    | 0.00206    | 0.00133    | 0.00175    | 0.00254    | 0.00040 | 7148857  |
| Total (Wet Wt) Tin (Sn)          | mg/kg    | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg    | 0.150      | 0.158      | 0.153      | 0.218      | 0.254      | 0.020   | 7148857  |
| Total (Wet Wt) Uranium (U)       | mg/kg    | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148857  |
| Total (Wet Wt) Vanadium (V)      | mg/kg    | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg    | 14.1       | 10.9       | 11.1       | 13.8       | 13.6       | 0.040   | 7148857  |
| Mercury (Hg)                     | mg/kg    | 0.146 (1)  | 0.327 (1)  | 0.206 (1)  | 0.137 (1)  | 0.149 (1)  | 0.010   | 7148860  |
| PHYSICAL PROPERTIES              |          |            |            |            |            |            |         |          |
| Moisture-Subcontracted           | %        | 76         | 75         | 76         | 77         | 75         | 0.30    | 7148859  |
| RDL = Reportable Detection Limit |          |            |            |            |            |            |         |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP424     | OHP425     | OHP426     | OHP427     | OHP428     |         |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |       | 2020/09/05 | 2020/09/07 | 2020/09/09 | 2020/09/09 | 2020/09/09 |         |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS | BT-15      | BT-16      | BT-17      | BT-18      | BT-19      | RDL     | QC Batch |
| Metals                           |       |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 0.44       | 0.81       | 0.54       | 0.42       | 0.57       | 0.20    | 7148857  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Arsenic (As)      | mg/kg | 0.205      | 0.121      | 0.844      | 0.192      | 0.352      | 0.0040  | 7148857  |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.025      | 0.188      | 0.058      | 0.126      | 0.127      | 0.010   | 7148857  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Boron (B)         | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148857  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 0.0028     | 0.0156     | 0.0045     | 0.0011     | 0.0027     | 0.0010  | 7148857  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 1230       | 1860       | 1690       | 2520       | 1580       | 2.0     | 7148857  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | <0.010     | 0.013      | <0.010     | <0.010     | <0.010     | 0.010   | 7148857  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0075     | 0.0144     | 0.0162     | 0.0226     | 0.0140     | 0.0013  | 7148857  |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 0.259      | 0.302      | 0.312      | 0.256      | 0.279      | 0.010   | 7148857  |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 5.82       | 8.14       | 5.48       | 5.51       | 4.93       | 0.25    | 7148857  |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0055     | 0.140      | 0.0185     | 0.0209     | 0.0288     | 0.0010  | 7148857  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 319        | 305        | 295        | 324        | 291        | 0.40    | 7148857  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 0.839      | 0.831      | 2.42       | 4.51       | 4.91       | 0.010   | 7148857  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | 0.0048     | <0.0040    | 0.0041     | 0.0046     | 0.0048     | 0.0040  | 7148857  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg | <0.010     | <0.010     | 0.011      | 0.031      | 0.016      | 0.010   | 7148857  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg | 3550       | 3850       | 3730       | 4110       | 3490       | 2.0     | 7148857  |
| Total (Wet Wt) Potassium (K)     | mg/kg | 4370       | 4410       | 4620       | 4170       | 4200       | 2.0     | 7148857  |
| Total (Wet Wt) Selenium (Se)     | mg/kg | 0.310      | 0.491      | 0.633      | 0.289      | 0.354      | 0.010   | 7148857  |
| Total (Wet Wt) Silver (Ag)       | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148857  |
| Total (Wet Wt) Sodium (Na)       | mg/kg | 388        | 527        | 528        | 501        | 446        | 2.0     | 7148857  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg | 1.17       | 2.24       | 1.23       | 1.11       | 1.06       | 0.010   | 7148857  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg | 0.00229    | 0.00646    | 0.00426    | 0.00215    | 0.00201    | 0.00040 | 7148857  |
| Total (Wet Wt) Tin (Sn)          | mg/kg | <0.020     | <0.020     | 0.021      | <0.020     | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg | 0.169      | 0.229      | 0.213      | 0.193      | 0.201      | 0.020   | 7148857  |
| Total (Wet Wt) Uranium (U)       | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148857  |
| Total (Wet Wt) Vanadium (V)      | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148857  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg | 13.0       | 13.9       | 16.6       | 12.7       | 13.6       | 0.040   | 7148857  |
| Mercury (Hg)                     | mg/kg | 0.140 (1)  | 0.264 (1)  | 0.070 (1)  | 0.062 (1)  | 0.077 (1)  | 0.010   | 7148860  |
| PHYSICAL PROPERTIES              |       |            |            | •          |            |            |         |          |
| Moisture-Subcontracted           | %     | 75         | 78         | 77         | 77         | 77         | 0.30    | 7148859  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |         |          |

QC Batch = Quality Control Batch



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                               |          | OHP429            |          | OHP430     | OHP431      | OHP431           | OHP432     |         |          |
|------------------------------------------|----------|-------------------|----------|------------|-------------|------------------|------------|---------|----------|
| Sampling Date                            |          | 2020/09/09        |          | 2020/09/09 | 2020/09/09  | 2020/09/09       | 2020/09/09 |         |          |
| COC Number                               |          | n/a               |          | n/a        | n/a         | n/a              | n/a        |         |          |
|                                          | UNITS    | BT-20             | QC Batch | BT-21      | BT-22       | BT-22<br>Lab-Dup | BT-23      | RDL     | QC Batch |
| Metals                                   |          |                   |          |            |             |                  |            |         |          |
| Total (Wet Wt) Aluminum (Al)             | mg/kg    | 0.37              | 7148857  | 0.49       | 0.34        | 0.31             | 0.27       | 0.20    | 7148861  |
| Total (Wet Wt) Antimony (Sb)             | mg/kg    | <0.0010           | 7148857  | <0.0010    | <0.0010     | <0.0010          | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Arsenic (As)              | mg/kg    | 0.770             | 7148857  | 0.291      | 0.132       | 0.127            | 0.0947     | 0.0040  | 7148861  |
| Total (Wet Wt) Barium (Ba)               | mg/kg    | 0.110             | 7148857  | 0.090      | 0.066       | 0.047            | 0.056      | 0.010   | 7148861  |
| Total (Wet Wt) Beryllium (Be)            | mg/kg    | <0.0010           | 7148857  | <0.0010    | <0.0010     | <0.0010          | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Bismuth (Bi)              | mg/kg    | <0.0010           | 7148857  | <0.0010    | <0.0010     | <0.0010          | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Boron (B)                 | mg/kg    | <0.20             | 7148857  | <0.20      | <0.20       | <0.20            | <0.20      | 0.20    | 7148861  |
| Total (Wet Wt) Cadmium (Cd)              | mg/kg    | 0.0051            | 7148857  | 0.0015     | 0.0012      | <0.0010          | 0.0022     | 0.0010  | 7148861  |
| Total (Wet Wt) Calcium (Ca)              | mg/kg    | 2550              | 7148857  | 1400       | 1460        | 1030             | 1160       | 2.0     | 7148861  |
| Total (Wet Wt) Chromium (Cr)             | mg/kg    | <0.010            | 7148857  | <0.010     | <0.010      | <0.010           | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Cobalt (Co)               | mg/kg    | 0.0275            | 7148857  | 0.0200     | 0.0070      | 0.0064           | 0.0101     | 0.0013  | 7148861  |
| Total (Wet Wt) Copper (Cu)               | mg/kg    | 0.247             | 7148857  | 0.307      | 0.257       | 0.243            | 0.314      | 0.010   | 7148861  |
| Total (Wet Wt) Iron (Fe)                 | mg/kg    | 7.29              | 7148857  | 5.39       | 3.87        | 3.37             | 4.51       | 0.25    | 7148861  |
| Total (Wet Wt) Lead (Pb)                 | mg/kg    | 0.0204            | 7148857  | 0.0187     | 0.0125      | 0.0099           | 0.0082     | 0.0010  | 7148861  |
| Total (Wet Wt) Magnesium (Mg)            | mg/kg    | 278               | 7148857  | 304        | 314         | 290              | 274        | 0.40    | 7148861  |
| Total (Wet Wt) Manganese (Mn)            | mg/kg    | 2.20              | 7148857  | 4.81       | 3.24        | 2.21             | 2.42       | 0.010   | 7148861  |
| Total (Wet Wt) Molybdenum (Mo)           | mg/kg    | 0.0050            | 7148857  | <0.0040    | <0.0040     | <0.0040          | 0.0044     | 0.0040  | 7148861  |
| Total (Wet Wt) Nickel (Ni)               | mg/kg    | 0.010             | 7148857  | <0.010     | <0.010      | <0.010           | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Phosphorus (P)            | mg/kg    | 3990              | 7148857  | 3620       | 3640        | 3170             | 3310       | 2.0     | 7148861  |
| Total (Wet Wt) Potassium (K)             | mg/kg    | 4230              | 7148857  | 4430       | 4200        | 4130             | 4200       | 2.0     | 7148861  |
| Total (Wet Wt) Selenium (Se)             | mg/kg    | 0.419             | 7148857  | 0.393      | 0.313       | 0.300            | 0.300      | 0.010   | 7148861  |
| Total (Wet Wt) Silver (Ag)               | mg/kg    | <0.0010           | 7148857  | <0.0010    | <0.0010 (1) | <0.0010          | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Sodium (Na)               | mg/kg    | 565               | 7148857  | 530        | 508         | 475              | 476        | 2.0     | 7148861  |
| Total (Wet Wt) Strontium (Sr)            | mg/kg    | 2.03              | 7148857  | 0.807      | 0.873       | 0.645            | 0.866      | 0.010   | 7148861  |
| Total (Wet Wt) Thallium (Tl)             | mg/kg    | 0.00300           | 7148857  | 0.00213    | 0.00098     | 0.00096          | 0.00103    | 0.00040 | 7148861  |
| Total (Wet Wt) Tin (Sn)                  | mg/kg    | 0.025             | 7148857  | <0.020     | <0.020 (2)  | <0.020           | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Titanium (Ti)             | mg/kg    | 0.181             | 7148857  | 0.166      | 0.190       | 0.140            | 0.157      | 0.020   | 7148861  |
| Total (Wet Wt) Uranium (U)               | mg/kg    | <0.00040          | 7148857  | <0.00040   | <0.00040    | <0.00040         | <0.00040   |         | 7148861  |
| Total (Wet Wt) Vanadium (V)              | mg/kg    | <0.020            | 7148857  | <0.020     | <0.020      | <0.020           | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Zinc (Zn)                 | mg/kg    | 15.1              | 7148857  | 11.7       | 14.6        | 12.8             | 9.51       | 0.040   | 7148861  |
| Mercury (Hg)                             | mg/kg    | 0.071 (3)         | 7148860  | 0.054 (3)  | 0.096 (3)   | 0.089 (3)        | 0.065 (3)  | 0.010   | 7148863  |
| PHYSICAL PROPERTIES                      | 0, 0     |                   |          |            |             | (-)              | (-)        |         |          |
| Moisture-Subcontracted                   | %        | 79                | 7148859  | 78         | 76          | 77               | 77         | 0.30    | 7148862  |
| RDL = Reportable Detection Limit         | ĮI       |                   | Į        |            | <u>I</u>    | <u>I</u>         | Į          | 1       | ļ        |
| QC Batch = Quality Control Batch         |          |                   |          |            |             |                  |            |         |          |
| Lab-Dup = Laboratory Initiated Dupl      | icate    |                   |          |            |             |                  |            |         |          |
| (1) Matrix spike fails for (Silver), sus | pected m | natrix interferer | ice      |            |             |                  |            |         |          |
| (2) Matrix spike fails for (Tin), suspe  | cted mat | rix interference  | e        |            |             |                  |            |         |          |
|                                          |          |                   |          |            |             |                  |            |         |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP433     | OHP434     | OHP435     | OHP436     | OHP437     |         |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |       | 2020/09/09 | 2020/09/09 | 2020/09/09 | 2020/09/09 | 2020/09/09 |         |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS | BT-24      | BT-25      | BT-26      | BT-27      | BT-28      | RDL     | QC Batch |
| Metals                           |       |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 1.47       | 0.77       | 0.63       | 0.68       | 1.14       | 0.20    | 7148861  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Arsenic (As)      | mg/kg | 0.124      | 0.202      | 0.353      | 0.277      | 0.547      | 0.0040  | 7148861  |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.066      | 0.046      | 0.153      | 0.115      | 0.048      | 0.010   | 7148861  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Boron (B)         | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148861  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 0.0052     | 0.0030     | 0.0090     | 0.0025     | 0.0027     | 0.0010  | 7148861  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 1300       | 1250       | 2310       | 2210       | 1100       | 2.0     | 7148861  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0178     | 0.0159     | 0.0211     | 0.0282     | 0.0181     | 0.0013  | 7148861  |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 0.266      | 0.304      | 0.350      | 0.243      | 0.295      | 0.010   | 7148861  |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 7.15       | 4.51       | 6.46       | 7.30       | 6.92       | 0.25    | 7148861  |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0119     | 0.0063     | 0.0160     | 0.0123     | 0.0336     | 0.0010  | 7148861  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 281        | 311        | 286        | 323        | 267        | 0.40    | 7148861  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 3.10       | 1.37       | 2.65       | 4.63       | 1.92       | 0.010   | 7148861  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | 0.0041     | 0.0042     | 0.0068     | 0.0051     | 0.0042     | 0.0040  | 7148861  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg | 0.015      | 0.013      | 0.014      | 0.012      | 0.053      | 0.010   | 7148861  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg | 3410       | 3770       | 3920       | 4060       | 3130       | 2.0     | 7148861  |
| Total (Wet Wt) Potassium (K)     | mg/kg | 4190       | 4390       | 3950       | 4200       | 4140       | 2.0     | 7148861  |
| Total (Wet Wt) Selenium (Se)     | mg/kg | 0.401      | 0.333      | 0.311      | 0.267      | 0.442      | 0.010   | 7148861  |
| Total (Wet Wt) Silver (Ag)       | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Sodium (Na)       | mg/kg | 442        | 431        | 543        | 520        | 421        | 2.0     | 7148861  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg | 1.04       | 0.987      | 2.21       | 1.37       | 0.756      | 0.010   | 7148861  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg | 0.00237    | 0.00169    | 0.00462    | 0.00146    | 0.00274    | 0.00040 | 7148861  |
| Total (Wet Wt) Tin (Sn)          | mg/kg | 0.021      | 0.026      | 0.025      | <0.020     | 0.022      | 0.020   | 7148861  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg | 0.217      | 0.198      | 0.203      | 0.185      | 0.176      | 0.020   | 7148861  |
| Total (Wet Wt) Uranium (U)       | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148861  |
| Total (Wet Wt) Vanadium (V)      | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg | 13.7       | 12.0       | 16.7       | 14.6       | 14.8       | 0.040   | 7148861  |
| Mercury (Hg)                     | mg/kg | 0.051 (1)  | 0.092 (1)  | 0.034 (1)  | 0.061 (1)  | 0.066 (1)  | 0.010   | 7148863  |
| PHYSICAL PROPERTIES              |       |            |            |            |            |            |         |          |
| Moisture-Subcontracted           | %     | 77         | 73         | 77         | 78         | 80         | 0.30    | 7148862  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |         |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP438     | OHP439     | OHP440     | OHP441     | OHP442     |         |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |       | 2020/09/09 | 2020/09/09 | 2020/09/09 | 2020/09/09 | 2020/09/09 |         |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS | BT-29      | BT-30      | BT-31      | BT-32      | BT-33      | RDL     | QC Batch |
| Metals                           |       |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 0.42       | 0.47       | 0.35       | 0.39       | 0.31       | 0.20    | 7148861  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Arsenic (As)      | mg/kg | 0.138      | 0.105      | 0.0933     | 0.142      | 0.273      | 0.0040  | 7148861  |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.094      | 0.067      | 0.070      | 0.082      | 0.069      | 0.010   | 7148861  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Boron (B)         | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148861  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 0.0026     | 0.0017     | 0.0015     | 0.0034     | 0.0025     | 0.0010  | 7148861  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 1660       | 1310       | 1640       | 1550       | 2600       | 2.0     | 7148861  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0137     | 0.0094     | 0.0087     | 0.0220     | 0.0195     | 0.0013  | 7148861  |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 0.316      | 0.292      | 0.226      | 0.260      | 0.284      | 0.010   | 7148861  |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 5.06       | 4.43       | 5.54       | 5.69       | 5.87       | 0.25    | 7148861  |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0050     | 0.0076     | 0.0055     | 0.0068     | 0.0059     | 0.0010  | 7148861  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 320        | 289        | 264        | 273        | 315        | 0.40    | 7148861  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 2.00       | 2.90       | 4.87       | 1.28       | 4.28       | 0.010   | 7148861  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | 0.0042     | <0.0040    | <0.0040    | <0.0040    | <0.0040    | 0.0040  | 7148861  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg | <0.010     | <0.010     | <0.010     | 0.012      | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg | 3710       | 3260       | 3290       | 3460       | 4180       | 2.0     | 7148861  |
| Total (Wet Wt) Potassium (K)     | mg/kg | 4360       | 4040       | 4030       | 4200       | 3920       | 2.0     | 7148861  |
| Total (Wet Wt) Selenium (Se)     | mg/kg | 0.301      | 0.240      | 0.220      | 0.277      | 0.312      | 0.010   | 7148861  |
| Total (Wet Wt) Silver (Ag)       | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Sodium (Na)       | mg/kg | 517        | 426        | 521        | 493        | 544        | 2.0     | 7148861  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg | 1.44       | 1.12       | 1.16       | 1.52       | 2.25       | 0.010   | 7148861  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg | 0.00359    | 0.00159    | 0.00135    | 0.00289    | 0.00425    | 0.00040 | 7148861  |
| Total (Wet Wt) Tin (Sn)          | mg/kg | 0.022      | 0.023      | <0.020     | <0.020     | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg | 0.192      | 0.171      | 0.169      | 0.151      | 0.183      | 0.020   | 7148861  |
| Total (Wet Wt) Uranium (U)       | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148861  |
| Total (Wet Wt) Vanadium (V)      | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg | 12.9       | 10.8       | 13.3       | 15.2       | 13.5       | 0.040   | 7148861  |
| Mercury (Hg)                     | mg/kg | 0.100 (1)  | 0.059 (1)  | 0.074 (1)  | 0.064 (1)  | 0.055 (1)  | 0.010   | 7148863  |
| PHYSICAL PROPERTIES              |       |            |            |            |            |            |         |          |
| Moisture-Subcontracted           | %     | 76         | 76         | 77         | 75         | 78         | 0.30    | 7148862  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |         |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |          | OHP443     | OHP444     | OHP445     | OHP446     | OHP447     |         |          |
|----------------------------------|----------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |          | 2020/09/09 | 2020/09/09 | 2020/09/09 | 2020/09/11 | 2020/09/11 |         |          |
| COC Number                       |          | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS    | BT-34      | BT-35      | BT-36      | BT-37      | BT-38      | RDL     | QC Batch |
| Metals                           |          |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg    | 0.38       | 0.25       | 0.26       | 0.30       | 0.27       | 0.20    | 7148861  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Arsenic (As)      | mg/kg    | 0.210      | 0.132      | 0.128      | 0.664      | 0.264      | 0.0040  | 7148861  |
| Total (Wet Wt) Barium (Ba)       | mg/kg    | 0.113      | 0.086      | 0.095      | 0.088      | 0.073      | 0.010   | 7148861  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Boron (B)         | mg/kg    | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148861  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg    | 0.0015     | <0.0010    | 0.0017     | 0.0027     | 0.0036     | 0.0010  | 7148861  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg    | 1480       | 1360       | 1670       | 2560       | 2090       | 2.0     | 7148861  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg    | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg    | 0.0166     | 0.0104     | 0.0211     | 0.0329     | 0.0111     | 0.0013  | 7148861  |
| Total (Wet Wt) Copper (Cu)       | mg/kg    | 0.281      | 0.273      | 0.316      | 0.251      | 0.238      | 0.010   | 7148861  |
| Total (Wet Wt) Iron (Fe)         | mg/kg    | 6.60       | 4.60       | 6.35       | 6.06       | 5.94       | 0.25    | 7148861  |
| Total (Wet Wt) Lead (Pb)         | mg/kg    | 0.0056     | 0.0042     | 0.0040     | 0.0066     | 0.0051     | 0.0010  | 7148861  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg    | 283        | 339        | 298        | 304        | 328        | 0.40    | 7148861  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg    | 5.86       | 2.87       | 4.00       | 3.16       | 2.88       | 0.010   | 7148861  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg    | 0.0058     | 0.0050     | <0.0040    | 0.0050     | 0.0049     | 0.0040  | 7148861  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg    | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010   | 7148861  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg    | 3490       | 3660       | 3640       | 4050       | 4120       | 2.0     | 7148861  |
| Total (Wet Wt) Potassium (K)     | mg/kg    | 3920       | 4310       | 4130       | 4070       | 4330       | 2.0     | 7148861  |
| Total (Wet Wt) Selenium (Se)     | mg/kg    | 0.364      | 0.303      | 0.252      | 0.334      | 0.373      | 0.010   | 7148861  |
| Total (Wet Wt) Silver (Ag)       | mg/kg    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148861  |
| Total (Wet Wt) Sodium (Na)       | mg/kg    | 511        | 479        | 527        | 552        | 527        | 2.0     | 7148861  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg    | 0.928      | 0.946      | 1.18       | 1.73       | 1.29       | 0.010   | 7148861  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg    | 0.00223    | 0.00143    | 0.00192    | 0.00458    | 0.00173    | 0.00040 | 7148861  |
| Total (Wet Wt) Tin (Sn)          | mg/kg    | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg    | 0.159      | 0.162      | 0.149      | 0.179      | 0.195      | 0.020   | 7148861  |
| Total (Wet Wt) Uranium (U)       | mg/kg    | 0.00050    | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148861  |
| Total (Wet Wt) Vanadium (V)      | mg/kg    | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148861  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg    | 12.1       | 17.2       | 12.9       | 15.3       | 17.4       | 0.040   | 7148861  |
| Mercury (Hg)                     | mg/kg    | 0.056 (1)  | 0.086 (1)  | 0.075 (1)  | 0.057 (1)  | 0.067 (1)  | 0.010   | 7148863  |
| PHYSICAL PROPERTIES              | <u> </u> |            |            |            | •          |            | •       | -        |
| Moisture-Subcontracted           | %        | 77         | 77         | 76         | 78         | 78         | 0.30    | 7148862  |
| RDL = Reportable Detection Limit |          |            |            |            |            |            |         |          |
| QC Batch = Quality Control Batch |          |            |            |            |            |            |         |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP448     | OHP449     |          | OHP450     | OHP451     | OHP452     |         |         |
|----------------------------------|-------|------------|------------|----------|------------|------------|------------|---------|---------|
| Sampling Date                    |       | 2020/09/11 | 2020/09/11 |          | 2020/09/11 | 2020/09/11 | 2020/09/11 |         |         |
| COC Number                       |       | n/a        | n/a        |          | n/a        | n/a        | n/a        |         |         |
|                                  | UNITS | BT-39      | BT-40      | QC Batch | BT-41      | BT-42      | BT-43      | RDL     | QC Batc |
| Metals                           |       |            |            |          |            |            |            |         |         |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 0.21       | 0.56       | 7148861  | 0.34       | 0.49       | 1.00       | 0.20    | 7148864 |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010    | <0.0010    | 7148861  | 0.0032     | <0.0010    | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Arsenic (As)      | mg/kg | 0.0401     | 0.296      | 7148861  | 0.0920     | 0.268      | 0.0540     | 0.0040  | 7148864 |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.061      | 0.418      | 7148861  | 0.042      | 0.051      | 1.21       | 0.010   | 7148864 |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010    | <0.0010    | 7148861  | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010    | <0.0010    | 7148861  | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Boron (B)         | mg/kg | <0.20      | <0.20      | 7148861  | <0.20      | <0.20      | <0.20      | 0.20    | 7148864 |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 0.0029     | 0.0361     | 7148861  | 0.0038     | 0.0062     | 0.0710     | 0.0010  | 7148864 |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 1320       | 1060       | 7148861  | 940        | 1280       | 1750       | 2.0     | 7148864 |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | <0.010     | 0.010      | 7148861  | <0.010     | <0.010     | <0.010     | 0.010   | 7148864 |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0110     | 0.0147     | 7148861  | 0.0081     | 0.0059     | 0.0270     | 0.0013  | 7148864 |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 0.285      | 0.466      | 7148861  | 0.398      | 0.369      | 0.381      | 0.010   | 7148864 |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 3.85       | 7.01       | 7148861  | 7.27       | 5.72       | 7.17       | 0.25    | 7148864 |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0025     | 0.0528     | 7148861  | 0.179      | 0.0121     | 0.293      | 0.0010  | 7148864 |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 307        | 280        | 7148861  | 293        | 268        | 271        | 0.40    | 7148864 |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 1.04       | 0.759      | 7148861  | 1.34       | 0.764      | 2.16       | 0.010   | 7148864 |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | <0.0040    | <0.0040    | 7148861  | 0.0050     | <0.0040    | <0.0040    | 0.0040  | 7148864 |
| Total (Wet Wt) Nickel (Ni)       | mg/kg | <0.010     | 0.038      | 7148861  | 0.020      | 0.041      | 0.036      | 0.010   | 7148864 |
| Total (Wet Wt) Phosphorus (P)    | mg/kg | 3650       | 3130       | 7148861  | 3110       | 3100       | 3360       | 2.0     | 7148864 |
| Total (Wet Wt) Potassium (K)     | mg/kg | 4570       | 4400       | 7148861  | 4410       | 3880       | 3980       | 2.0     | 7148864 |
| Total (Wet Wt) Selenium (Se)     | mg/kg | 0.285      | 0.684      | 7148861  | 0.879      | 0.398      | 0.337      | 0.010   | 7148864 |
| Total (Wet Wt) Silver (Ag)       | mg/kg | <0.0010    | 0.0011     | 7148861  | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Sodium (Na)       | mg/kg | 491        | 439        | 7148861  | 400        | 541        | 534        | 2.0     | 7148864 |
| Total (Wet Wt) Strontium (Sr)    | mg/kg | 1.23       | 1.12       | 7148861  | 0.887      | 1.76       | 1.64       | 0.010   | 7148864 |
| Total (Wet Wt) Thallium (Tl)     | mg/kg | 0.00300    | 0.0110     | 7148861  | 0.00185    | 0.00146    | 0.0213     | 0.00040 | 7148864 |
| Total (Wet Wt) Tin (Sn)          | mg/kg | 0.022      | <0.020     | 7148861  | <0.020     | <0.020     | <0.020     | 0.020   | 7148864 |
| Total (Wet Wt) Titanium (Ti)     | mg/kg | 0.162      | 0.345      | 7148861  | 0.321      | 0.153      | 0.173      | 0.020   | 7148864 |
| Total (Wet Wt) Uranium (U)       | mg/kg | <0.00040   | <0.00040   | 7148861  | <0.00040   | <0.00040   | 0.00102    | 0.00040 | 7148864 |
| Total (Wet Wt) Vanadium (V)      | mg/kg | <0.020     | <0.020     | 7148861  | <0.020     | <0.020     | <0.020     | 0.020   | 7148864 |
| Total (Wet Wt) Zinc (Zn)         | mg/kg | 8.97       | 12.3       | 7148861  | 12.7       | 18.6       | 16.3       | 0.040   | 7148864 |
| Mercury (Hg)                     | mg/kg | 0.122 (1)  | 0.106 (1)  | 7148863  | 0.039 (1)  | 0.097 (1)  | 0.034 (1)  | 0.010   | 7148866 |
| PHYSICAL PROPERTIES              |       |            |            | ·I       |            | •          |            | •       |         |
| Moisture-Subcontracted           | %     | 75         | 76         | 7148862  | 77         | 77         | 80         | 0.30    | 7148865 |
| RDL = Reportable Detection Limit |       |            |            |          |            | •          |            | •       |         |
| QC Batch = Quality Control Batch |       |            |            |          |            |            |            |         |         |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |            | OHP453     | OHP454     | OHP455     | OHP456     | OHP457     | OHP458     |         |          |
|----------------------------------|------------|------------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |            | 2020/09/11 | 2020/09/11 | 2020/09/11 | 2020/09/29 | 2020/09/29 | 2020/09/29 |         |          |
| COC Number                       |            | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS      | BT-44      | BT-45      | BT-46      | BT-47      | BT-48      | BT-49      | RDL     | QC Batch |
| Metals                           |            |            |            |            |            |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg      | 0.90       | 0.78       | 0.69       | 0.42       | 0.46       | 1.08       | 0.20    | 7148864  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg      | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0013     | 0.0010  | 7148864  |
| Total (Wet Wt) Arsenic (As)      | mg/kg      | 0.0685     | 0.232      | 0.0256     | 0.0961     | 0.0863     | 0.931      | 0.0040  | 7148864  |
| Total (Wet Wt) Barium (Ba)       | mg/kg      | 1.61       | 1.36       | 1.36       | 0.051      | 0.088      | 0.159      | 0.010   | 7148864  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg      | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg      | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864  |
| Total (Wet Wt) Boron (B)         | mg/kg      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148864  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg      | 0.0405     | 0.0769     | 0.0345     | 0.0163     | 0.0073     | 0.0105     | 0.0010  | 7148864  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg      | 2050       | 2100       | 1840       | 1180       | 2650       | 2810       | 2.0     | 7148864  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg      | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.120      | 0.010   | 7148864  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg      | 0.0184     | 0.0193     | 0.0158     | 0.0063     | 0.0059     | 0.0203     | 0.0013  | 7148864  |
| Total (Wet Wt) Copper (Cu)       | mg/kg      | 0.408      | 0.369      | 0.381      | 0.358      | 1.54       | 0.531      | 0.010   | 7148864  |
| Total (Wet Wt) Iron (Fe)         | mg/kg      | 5.16       | 6.19       | 6.52       | 4.86       | 5.42       | 11.0       | 0.25    | 7148864  |
| Total (Wet Wt) Lead (Pb)         | mg/kg      | 0.277      | 0.153      | 0.131      | 0.0068     | 0.0063     | 0.0158     | 0.0010  | 7148864  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg      | 290        | 302        | 288        | 223        | 250        | 299        | 0.40    | 7148864  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg      | 2.51       | 2.06       | 1.92       | 0.892      | 1.50       | 3.73       | 0.010   | 7148864  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg      | 0.0043     | 0.0046     | 0.0047     | <0.0040    | <0.0040    | 0.0058     | 0.0040  | 7148864  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg      | 0.022      | 0.018      | 0.022      | <0.010     | <0.010     | 0.050      | 0.010   | 7148864  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg      | 3680       | 3890       | 3500       | 2810       | 3720       | 4100       | 2.0     | 7148864  |
| Total (Wet Wt) Potassium (K)     | mg/kg      | 4020       | 4220       | 4020       | 3930       | 3700       | 4130       | 2.0     | 7148864  |
| Total (Wet Wt) Selenium (Se)     | mg/kg      | 0.426      | 0.535      | 0.319      | 0.430      | 0.407      | 0.582      | 0.010   | 7148864  |
| Total (Wet Wt) Silver (Ag)       | mg/kg      | <0.0010    | 0.0039     | <0.0010    | <0.0010    | <0.0010    | 0.0027     | 0.0010  | 7148864  |
| Total (Wet Wt) Sodium (Na)       | mg/kg      | 491        | 441        | 477        | 582        | 712        | 666        | 2.0     | 7148864  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg      | 2.40       | 2.25       | 2.37       | 1.56       | 4.52       | 3.87       | 0.010   | 7148864  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg      | 0.0346     | 0.0225     | 0.0311     | 0.00159    | 0.00155    | 0.00403    | 0.00040 | 7148864  |
| Total (Wet Wt) Tin (Sn)          | mg/kg      | <0.020     | <0.020     | 0.026      | <0.020     | <0.020     | 0.039      | 0.020   | 7148864  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg      | 0.183      | 0.199      | 0.182      | 0.148      | 0.198      | 0.226      | 0.020   | 7148864  |
| Total (Wet Wt) Uranium (U)       | mg/kg      | 0.00094    | 0.00123    | 0.00059    | 0.00064    | 0.00052    | 0.00055    | 0.00040 | 7148864  |
| Total (Wet Wt) Vanadium (V)      | mg/kg      | 0.025      | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148864  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg      | 15.5       | 20.3       | 17.7       | 14.1       | 13.8       | 15.8       | 0.040   | 7148864  |
| Mercury (Hg)                     | mg/kg      | 0.030 (1)  | 0.021 (1)  | 0.029 (1)  | 0.226 (1)  | 0.252 (1)  | 0.059 (1)  | 0.010   | 7148866  |
| PHYSICAL PROPERTIES              | . <u> </u> |            |            |            |            |            |            |         |          |
| Moisture-Subcontracted           | %          | 76         | 78         | 78         | 81         | 80         | 79         | 0.30    | 7148865  |
| RDL = Reportable Detection Limit |            |            |            |            |            |            |            |         | •        |
| QC Batch = Quality Control Batch |            |            |            |            |            |            |            |         |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |          | OHP459     | OHP460     |         | OHP461     | OHP462     | OHP463     |         |         |
|----------------------------------|----------|------------|------------|---------|------------|------------|------------|---------|---------|
| Sampling Date                    |          | 2020/09/29 | 2020/09/29 |         | 2020/09/07 | 2020/09/10 | 2020/09/10 |         |         |
| COC Number                       |          | n/a        | n/a        |         | n/a        | n/a        | n/a        |         |         |
|                                  | UNITS    | BT-50      | BT-51      | RDL     | SH-T1      | SH-T2      | SH-T3      | RDL     | QC Batc |
| Metals                           | <u> </u> |            |            |         |            | •          |            | -       |         |
| Total (Wet Wt) Aluminum (Al)     | mg/kg    | 0.62       | 0.66       | 0.20    | 0.94       | 7.69       | 1.72       | 0.20    | 7148864 |
| Total (Wet Wt) Antimony (Sb)     | mg/kg    | <0.0010    | <0.0010    | 0.0010  | 0.0015     | 0.0019     | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Arsenic (As)      | mg/kg    | 1.55       | 1.55       | 0.0040  | 0.0141     | 0.0118     | 0.0106     | 0.0040  | 7148864 |
| Total (Wet Wt) Barium (Ba)       | mg/kg    | 0.134      | 0.364      | 0.010   | 0.031      | 0.132      | 0.639      | 0.010   | 7148864 |
| Total (Wet Wt) Beryllium (Be)    | mg/kg    | <0.0010    | <0.0010    | 0.0010  | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg    | <0.0010    | <0.0010    | 0.0010  | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Boron (B)         | mg/kg    | <0.20      | <0.20      | 0.20    | <0.20      | <0.20      | 0.23       | 0.20    | 7148864 |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg    | 0.0130     | 0.0351     | 0.0010  | 0.0086     | 0.0012     | <0.0010    | 0.0010  | 7148864 |
| Total (Wet Wt) Calcium (Ca)      | mg/kg    | 1930       | 3760       | 2.0     | 53.4       | 109        | 74.6       | 2.0     | 7148864 |
| Total (Wet Wt) Chromium (Cr)     | mg/kg    | 0.051      | 0.027      | 0.010   | 0.026      | 0.079      | 0.019      | 0.010   | 7148864 |
| Total (Wet Wt) Cobalt (Co)       | mg/kg    | 0.0216     | 0.0254     | 0.0013  | 0.0100     | 0.0069     | 0.0045     | 0.0013  | 7148864 |
| Total (Wet Wt) Copper (Cu)       | mg/kg    | 0.494      | 0.367      | 0.010   | 1.20       | 2.12       | 1.77       | 0.010   | 7148864 |
| Total (Wet Wt) Iron (Fe)         | mg/kg    | 9.28       | 7.76       | 0.25    | 25.8       | 31.9       | 30.6       | 0.25    | 7148864 |
| Total (Wet Wt) Lead (Pb)         | mg/kg    | 0.0126     | 0.0119     | 0.0010  | 0.0126     | 0.0477     | 0.0079     | 0.0010  | 714886  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg    | 278        | 270        | 0.40    | 256        | 245        | 266        | 0.40    | 7148864 |
| Total (Wet Wt) Manganese (Mn)    | mg/kg    | 2.61       | 4.31       | 0.010   | 0.261      | 8.56       | 14.6       | 0.010   | 7148864 |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg    | 0.0044     | 0.0057     | 0.0040  | 0.0048     | 0.0082     | 0.0074     | 0.0040  | 714886  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg    | 0.012      | 0.013      | 0.010   | 0.028      | 0.026      | 0.016      | 0.010   | 7148864 |
| Total (Wet Wt) Phosphorus (P)    | mg/kg    | 3410       | 4190       | 2.0     | 2190       | 2310       | 2420       | 2.0     | 7148864 |
| Total (Wet Wt) Potassium (K)     | mg/kg    | 3790       | 3620       | 2.0     | 3490       | 3460       | 3500       | 2.0     | 7148864 |
| Total (Wet Wt) Selenium (Se)     | mg/kg    | 0.660      | 0.501      | 0.010   | 0.058      | 0.052      | 0.054      | 0.010   | 7148864 |
| Total (Wet Wt) Silver (Ag)       | mg/kg    | 0.0030     | 0.0102     | 0.0010  | 0.0014     | 0.0011     | 0.0011     | 0.0010  | 7148864 |
| Total (Wet Wt) Sodium (Na)       | mg/kg    | 748        | 735        | 2.0     | 503        | 660        | 715        | 2.0     | 7148864 |
| Total (Wet Wt) Strontium (Sr)    | mg/kg    | 2.71       | 3.67       | 0.010   | 0.030      | 0.112      | 0.063      | 0.010   | 714886  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg    | 0.00398    | 0.00329    | 0.00040 | 0.00090    | <0.00040   | <0.00040   | 0.00040 | 714886  |
| Total (Wet Wt) Tin (Sn)          | mg/kg    | 0.029      | <0.020     | 0.020   | 0.020      | 0.039      | 0.026      | 0.020   | 7148864 |
| Total (Wet Wt) Titanium (Ti)     | mg/kg    | 0.187      | 0.208      | 0.020   | 0.146      | 0.215      | 0.158      | 0.020   | 714886  |
| Total (Wet Wt) Uranium (U)       | mg/kg    | 0.00045    | 0.00061    | 0.00040 | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148864 |
| Total (Wet Wt) Vanadium (V)      | mg/kg    | <0.020     | <0.020     | 0.020   | <0.020     | <0.020     | <0.020     | 0.020   | 7148864 |
| Total (Wet Wt) Zinc (Zn)         | mg/kg    | 15.4       | 22.3       | 0.040   | 20.5       | 11.9       | 12.7       | 0.040   | 7148864 |
| Mercury (Hg)                     | mg/kg    | 0.091 (1)  | 0.054 (1)  | 0.010   | <0.0010    | <0.0010    | 0.0011     | 0.0010  | 714886  |
| PHYSICAL PROPERTIES              |          |            |            |         |            |            |            |         |         |
| Moisture-Subcontracted           | %        | 78         | 80         | 0.30    | 78         | 80         | 76         | 0.30    | 7148865 |
| RDL = Reportable Detection Limit |          |            |            |         |            |            |            |         |         |

QC Batch = Quality Control Batch



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP464     | OHP465     | OHP466     | OHP467     | OHP468     |         |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|---------|----------|
| Sampling Date                    |       | 2020/10/20 | 2020/10/20 | 2020/10/20 | 2020/11/07 | 2020/11/08 |         |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        |         |          |
|                                  | UNITS | SH-T4      | SH-T5      | SH-T6      | SH-T7      | SH-T8      | RDL     | QC Batch |
| Metals                           |       |            |            | ·          |            | ·          | •       |          |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 0.37       | 0.43       | 0.43       | 0.40       | <0.20      | 0.20    | 7148864  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864  |
| Total (Wet Wt) Arsenic (As)      | mg/kg | 0.0216     | 0.0075     | 0.0319     | 0.0209     | 0.0047     | 0.0040  | 7148864  |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.138      | 0.109      | 0.035      | 0.152      | 0.020      | 0.010   | 7148864  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864  |
| Total (Wet Wt) Boron (B)         | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20    | 7148864  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 0.0015     | 0.0014     | 0.0028     | 0.0022     | 0.0041     | 0.0010  | 7148864  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 65.2       | 64.3       | 57.8       | 70.9       | 49.2       | 2.0     | 7148864  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | <0.010     | 0.012      | <0.010     | <0.010     | <0.010     | 0.010   | 7148864  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0065     | 0.0107     | 0.0139     | 0.0163     | 0.0068     | 0.0013  | 7148864  |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 1.69       | 1.51       | 1.53       | 1.99       | 2.31       | 0.010   | 7148864  |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 17.7       | 23.5       | 20.7       | 31.8       | 35.9       | 0.25    | 7148864  |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0032     | 0.0043     | 0.0027     | 0.0039     | 0.0021     | 0.0010  | 7148864  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 271        | 269        | 257        | 264        | 287        | 0.40    | 7148864  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 3.58       | 1.70       | 2.16       | 5.18       | 0.519      | 0.010   | 7148864  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | <0.0040    | 0.0051     | <0.0040    | <0.0040    | <0.0040    | 0.0040  | 7148864  |
| Total (Wet Wt) Nickel (Ni)       | mg/kg | 0.028      | 0.027      | <0.010     | 0.013      | <0.010     | 0.010   | 7148864  |
| Total (Wet Wt) Phosphorus (P)    | mg/kg | 2330       | 2380       | 2280       | 2360       | 2570       | 2.0     | 7148864  |
| Total (Wet Wt) Potassium (K)     | mg/kg | 3580       | 3680       | 3540       | 3470       | 3460       | 2.0     | 7148864  |
| Total (Wet Wt) Selenium (Se)     | mg/kg | 0.177      | 0.069      | 0.228      | 0.242      | 0.161      | 0.010   | 7148864  |
| Total (Wet Wt) Silver (Ag)       | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010    | 0.0010  | 7148864  |
| Total (Wet Wt) Sodium (Na)       | mg/kg | 567        | 623        | 530        | 548        | 523        | 2.0     | 7148864  |
| Total (Wet Wt) Strontium (Sr)    | mg/kg | 0.106      | 0.102      | 0.078      | 0.102      | 0.027      | 0.010   | 7148864  |
| Total (Wet Wt) Thallium (Tl)     | mg/kg | 0.00080    | 0.00043    | 0.00100    | 0.00057    | 0.00046    | 0.00040 | 7148864  |
| Total (Wet Wt) Tin (Sn)          | mg/kg | <0.020     | <0.020     | <0.020     | 0.020      | <0.020     | 0.020   | 7148864  |
| Total (Wet Wt) Titanium (Ti)     | mg/kg | 0.123      | 0.129      | 0.126      | 0.125      | 0.132      | 0.020   | 7148864  |
| Total (Wet Wt) Uranium (U)       | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040   | 0.00040 | 7148864  |
| Total (Wet Wt) Vanadium (V)      | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020   | 7148864  |
| Total (Wet Wt) Zinc (Zn)         | mg/kg | 13.6       | 13.7       | 12.2       | 12.8       | 12.8       | 0.040   | 7148864  |
| Mercury (Hg)                     | mg/kg | 0.0018     | <0.0010    | 0.0027     | 0.0016     | <0.0010    | 0.0010  | 7148866  |
| PHYSICAL PROPERTIES              |       |            |            |            |            | ·          |         |          |
| Moisture-Subcontracted           | %     | 76         | 77         | 77         | 76         | 74         | 0.30    | 7148865  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |         |          |
| QC Batch = Quality Control Batch |       |            |            |            |            |            |         |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                     |       | OHP469     | OHP469            |         |          | OHP470     | OHP471     |         |          |
|--------------------------------|-------|------------|-------------------|---------|----------|------------|------------|---------|----------|
| Sampling Date                  |       | 2020/09/07 | 2020/09/07        |         |          | 2020/09/10 | 2020/09/10 |         |          |
| COC Number                     |       | n/a        | n/a               |         |          | n/a        | n/a        |         |          |
|                                | UNITS | SH-IO1     | SH-IO1<br>Lab-Dup | RDL     | QC Batch | SH-IO2     | SH-IO3     | RDL     | QC Batch |
| Metals                         |       |            |                   |         |          |            |            |         |          |
| Total (Wet Wt) Aluminum (Al)   | mg/kg | 0.44       | 0.40              | 0.20    | 7148864  | 0.34       | 1.46       | 0.20    | 7148868  |
| Total (Wet Wt) Antimony (Sb)   | mg/kg | <0.0010    | <0.0010           | 0.0010  | 7148864  | <0.0010    | <0.0010    | 0.0010  | 7148868  |
| Total (Wet Wt) Arsenic (As)    | mg/kg | 0.0196     | 0.0190            | 0.0040  | 7148864  | 0.0061     | 0.0151     | 0.0040  | 7148868  |
| Total (Wet Wt) Barium (Ba)     | mg/kg | 0.052      | 0.051             | 0.010   | 7148864  | 0.105      | 0.152      | 0.010   | 7148868  |
| Total (Wet Wt) Beryllium (Be)  | mg/kg | <0.0010    | <0.0010           | 0.0010  | 7148864  | <0.0010    | <0.0010    | 0.0010  | 7148868  |
| Total (Wet Wt) Bismuth (Bi)    | mg/kg | <0.0010    | <0.0010           | 0.0010  | 7148864  | <0.0010    | <0.0010    | 0.0010  | 7148868  |
| Total (Wet Wt) Boron (B)       | mg/kg | 0.20       | <0.20             | 0.20    | 7148864  | 0.24       | 0.28       | 0.20    | 7148868  |
| Total (Wet Wt) Cadmium (Cd)    | mg/kg | 1.49       | 1.36              | 0.0010  | 7148864  | 0.0252     | 0.0196     | 0.0010  | 7148868  |
| Total (Wet Wt) Calcium (Ca)    | mg/kg | 105        | 105               | 2.0     | 7148864  | 74.0       | 104        | 2.0     | 7148868  |
| Total (Wet Wt) Chromium (Cr)   | mg/kg | <0.010     | <0.010            | 0.010   | 7148864  | <0.010     | <0.010     | 0.010   | 7148868  |
| Total (Wet Wt) Cobalt (Co)     | mg/kg | 0.0690     | 0.0671            | 0.0013  | 7148864  | 0.0143     | 0.0118     | 0.0013  | 7148868  |
| Total (Wet Wt) Copper (Cu)     | mg/kg | 2.78       | 2.75              | 0.010   | 7148864  | 3.86       | 2.06       | 0.010   | 7148868  |
| Total (Wet Wt) Iron (Fe)       | mg/kg | 245 (1)    | 243               | 0.25    | 7148864  | 243        | 202        | 0.25    | 7148868  |
| Total (Wet Wt) Lead (Pb)       | mg/kg | 0.0233     | 0.0227            | 0.0010  | 7148864  | 0.0063     | 0.0050     | 0.0010  | 7148868  |
| Total (Wet Wt) Magnesium (Mg)  | mg/kg | 170        | 169               | 0.40    | 7148864  | 149        | 165        | 0.40    | 7148868  |
| Total (Wet Wt) Manganese (Mn)  | mg/kg | 2.73       | 2.69              | 0.010   | 7148864  | 16.4       | 14.8       | 0.010   | 7148868  |
| Total (Wet Wt) Molybdenum (Mo) | mg/kg | 0.236      | 0.234             | 0.0040  | 7148864  | 0.114      | 0.129      | 0.0040  | 7148868  |
| Total (Wet Wt) Nickel (Ni)     | mg/kg | 0.036      | 0.036             | 0.010   | 7148864  | <0.010     | <0.010     | 0.010   | 7148868  |
| Total (Wet Wt) Phosphorus (P)  | mg/kg | 2130       | 2120              | 2.0     | 7148864  | 2470       | 2500       | 2.0     | 7148868  |
| Total (Wet Wt) Potassium (K)   | mg/kg | 2330 (2)   | 2360              | 2.0     | 7148864  | 2680       | 2770       | 2.0     | 7148868  |
| Total (Wet Wt) Selenium (Se)   | mg/kg | 0.225      | 0.200             | 0.010   | 7148864  | 0.256      | 0.239      | 0.010   | 7148868  |
| Total (Wet Wt) Silver (Ag)     | mg/kg | <0.0010    | <0.0010           | 0.0010  | 7148864  | 0.0496     | 0.0382     | 0.0010  | 7148868  |
| Total (Wet Wt) Sodium (Na)     | mg/kg | 1240       | 1250              | 2.0     | 7148864  | 1250       | 1350       | 2.0     | 7148868  |
| Total (Wet Wt) Strontium (Sr)  | mg/kg | 0.077      | 0.078             | 0.010   | 7148864  | 0.061      | 0.075      | 0.010   | 7148868  |
| Total (Wet Wt) Thallium (Tl)   | mg/kg | 0.00157    | 0.00151           | 0.00040 | 7148864  | 0.00093    | 0.00047    | 0.00040 | 7148868  |
| Total (Wet Wt) Tin (Sn)        | mg/kg | <0.020     | <0.020            | 0.020   | 7148864  | <0.020     | <0.020     | 0.020   | 7148868  |
| Total (Wet Wt) Titanium (Ti)   | mg/kg | 0.129      | 0.106             | 0.020   | 7148864  | 0.106      | 0.106      | 0.020   | 7148868  |
| Total (Wet Wt) Uranium (U)     | mg/kg | <0.00040   | <0.00040          | 0.00040 | 7148864  | <0.00040   | <0.00040   | 0.00040 | 7148868  |
| Total (Wet Wt) Vanadium (V)    | mg/kg | <0.020     | <0.020            | 0.020   | 7148864  | <0.020     | <0.020     | 0.020   | 7148868  |
| Total (Wet Wt) Zinc (Zn)       | mg/kg | 20.6 (3)   | 20.3              | 0.040   | 7148864  | 18.6       | 20.6       | 0.040   | 7148868  |
| Mercury (Hg)                   | mg/kg | 0.0043     | 0.0034            | 0.0010  | 7148866  | <0.010 (4) | 0.023 (4)  | 0.010   | 7148870  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Matrix spike fails for (Iron), suspected matrix interference.

(2) Matrix spike fails for (Potassium), suspected matrix interference.

(3) Matrix spike fails for (Zinc), suspected matrix interference.



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                         |        | OHP469     | OHP469            |      |          | OHP470     | OHP471     |      |          |
|------------------------------------|--------|------------|-------------------|------|----------|------------|------------|------|----------|
| Sampling Date                      |        | 2020/09/07 | 2020/09/07        |      |          | 2020/09/10 | 2020/09/10 |      |          |
| COC Number                         |        | n/a        | n/a               |      |          | n/a        | n/a        |      |          |
|                                    | UNITS  | SH-IO1     | SH-IO1<br>Lab-Dup | RDL  | QC Batch | SH-IO2     | SH-IO3     | RDL  | QC Batch |
| PHYSICAL PROPERTIES                |        |            |                   |      |          |            |            |      |          |
| Moisture-Subcontracted             | %      | 80         | 79                | 0.30 | 7148865  | 79         | 78         | 0.30 | 7148869  |
| RDL = Reportable Detection Limit   |        |            |                   |      |          |            |            |      |          |
| QC Batch = Quality Control Batch   |        |            |                   |      |          |            |            |      |          |
| Lab-Dup = Laboratory Initiated Dup | licate |            |                   |      |          |            |            |      |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                     |       | OHP472     | OHP473     | OHP474     | OHP475     | OHP476      |         |          |
|--------------------------------|-------|------------|------------|------------|------------|-------------|---------|----------|
| Sampling Date                  |       | 2020/10/20 | 2020/10/20 | 2020/10/20 | 2020/11/07 | 2020/11/08  |         |          |
| COC Number                     |       | n/a        | n/a        | n/a        | n/a        | n/a         |         |          |
|                                | UNITS | SH-IO4     | SH-IO5     | SH-IO6     | SH-IO7     | SH-IO8      | RDL     | QC Batch |
| Metals                         |       |            |            |            |            |             |         |          |
| Total (Wet Wt) Aluminum (Al)   | mg/kg | 0.41       | 0.29       | 0.56       | 0.40       | 0.53        | 0.20    | 7148868  |
| Total (Wet Wt) Antimony (Sb)   | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010     | 0.0010  | 7148868  |
| Total (Wet Wt) Arsenic (As)    | mg/kg | 0.0160     | 0.0077     | 0.0680     | 0.0245     | <0.0040     | 0.0040  | 7148868  |
| Total (Wet Wt) Barium (Ba)     | mg/kg | 0.160      | 0.170      | 0.121      | 0.303      | 0.158       | 0.010   | 7148868  |
| Total (Wet Wt) Beryllium (Be)  | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010     | 0.0010  | 7148868  |
| Total (Wet Wt) Bismuth (Bi)    | mg/kg | <0.0010    | <0.0010    | <0.0010    | <0.0010    | <0.0010     | 0.0010  | 7148868  |
| Total (Wet Wt) Boron (B)       | mg/kg | 0.23       | <0.20      | 0.25       | 0.25       | <0.20       | 0.20    | 7148868  |
| Total (Wet Wt) Cadmium (Cd)    | mg/kg | 0.138      | 0.126      | 0.343      | 0.172      | 0.903       | 0.0010  | 7148868  |
| Total (Wet Wt) Calcium (Ca)    | mg/kg | 109        | 120        | 95.5       | 149        | 102         | 2.0     | 7148868  |
| Total (Wet Wt) Chromium (Cr)   | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010      | 0.010   | 7148868  |
| Total (Wet Wt) Cobalt (Co)     | mg/kg | 0.0357     | 0.0577     | 0.0837     | 0.0302     | 0.0267      | 0.0013  | 7148868  |
| Total (Wet Wt) Copper (Cu)     | mg/kg | 2.67       | 2.38       | 3.18       | 2.59       | 1.92        | 0.010   | 7148868  |
| Total (Wet Wt) Iron (Fe)       | mg/kg | 126        | 223        | 434        | 177        | 320         | 0.25    | 7148868  |
| Total (Wet Wt) Lead (Pb)       | mg/kg | 0.0055     | 0.0049     | 0.0199     | 0.0063     | 0.0287      | 0.0010  | 7148868  |
| Total (Wet Wt) Magnesium (Mg)  | mg/kg | 165        | 172        | 181        | 188        | 142         | 0.40    | 7148868  |
| Total (Wet Wt) Manganese (Mn)  | mg/kg | 4.36       | 3.80       | 10.9       | 14.1       | 5.90        | 0.010   | 7148868  |
| Total (Wet Wt) Molybdenum (Mo) | mg/kg | 0.136      | 0.298      | 0.245      | 0.253      | 0.0842      | 0.0040  | 7148868  |
| Total (Wet Wt) Nickel (Ni)     | mg/kg | 0.011      | 0.036      | 0.017      | 0.020      | <0.010      | 0.010   | 7148868  |
| Total (Wet Wt) Phosphorus (P)  | mg/kg | 2370       | 2460       | 2740       | 2680       | 2060        | 2.0     | 7148868  |
| Total (Wet Wt) Potassium (K)   | mg/kg | 2620       | 2740       | 2830       | 2640       | 2080        | 2.0     | 7148868  |
| Total (Wet Wt) Selenium (Se)   | mg/kg | 0.618      | 0.218      | 0.901      | 0.701      | 0.416       | 0.010   | 7148868  |
| Total (Wet Wt) Silver (Ag)     | mg/kg | 0.0102     | 0.0038     | 0.0112     | 0.0031     | <0.0010 (1) | 0.0010  | 7148868  |
| Total (Wet Wt) Sodium (Na)     | mg/kg | 1300       | 1260       | 1210       | 1120       | 935         | 2.0     | 7148868  |
| Total (Wet Wt) Strontium (Sr)  | mg/kg | 0.129      | 0.160      | 0.119      | 0.241      | 0.099       | 0.010   | 7148868  |
| Total (Wet Wt) Thallium (Tl)   | mg/kg | 0.00167    | 0.00094    | 0.00340    | 0.00179    | 0.00126     | 0.00040 | 7148868  |
| Total (Wet Wt) Tin (Sn)        | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020      | 0.020   | 7148868  |
| Total (Wet Wt) Titanium (Ti)   | mg/kg | 0.103      | 0.102      | 0.121      | 0.119      | 0.121       | 0.020   | 7148868  |
| Total (Wet Wt) Uranium (U)     | mg/kg | <0.00040   | <0.00040   | <0.00040   | <0.00040   | <0.00040    | 0.00040 | 7148868  |
| Total (Wet Wt) Vanadium (V)    | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020      | 0.020   | 7148868  |
| Total (Wet Wt) Zinc (Zn)       | mg/kg | 19.7       | 20.7       | 21.6       | 20.5       | 16.4        | 0.040   | 7148868  |
| Mercury (Hg)                   | mg/kg | 0.109 (2)  | 0.054 (2)  | 0.263 (2)  | 0.094 (2)  | 0.086 (2)   | 0.010   | 7148870  |
| PHYSICAL PROPERTIES            |       |            |            |            |            |             |         |          |
| Moisture-Subcontracted         | %     | 77         | 77         | 76         | 75         | 73          | 0.30    | 7148869  |
|                                |       |            |            |            |            |             |         |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Matrix spike fails for (Silver), suspected matrix interference



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP476            |        |          | OHP477     |        |          | OHP477          |        |          |
|----------------------------------|-------|-------------------|--------|----------|------------|--------|----------|-----------------|--------|----------|
| Sampling Date                    |       | 2020/11/08        |        |          | 2020/09/05 |        |          | 2020/09/05      |        |          |
| COC Number                       |       | n/a               |        |          | n/a        |        |          | n/a             |        |          |
|                                  | UNITS | SH-IO8<br>Lab-Dup | RDL    | QC Batch | LT-1       | RDL    | QC Batch | LT-1<br>Lab-Dup | RDL    | QC Batch |
| Metals                           |       |                   |        |          |            |        |          |                 |        |          |
| Total (Dry Wt) Aluminum (Al)     | mg/kg |                   |        |          | 8.7        | 1.0    | 7148871  | 10.5            | 1.0    | 7148871  |
| Total (Wet Wt) Aluminum (Al)     | mg/kg | 0.61              | 0.20   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Antimony (Sb)     | mg/kg |                   |        |          | <0.0050    | 0.0050 | 7148871  | <0.0050         | 0.0050 | 7148871  |
| Total (Wet Wt) Antimony (Sb)     | mg/kg | <0.0010           | 0.0010 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Arsenic (As)      | mg/kg |                   |        |          | <0.020     | 0.020  | 7148871  | <0.020          | 0.020  | 7148871  |
| Total (Wet Wt) Arsenic (As)      | mg/kg | <0.0040           | 0.0040 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Barium (Ba)       | mg/kg |                   |        |          | 34.7       | 0.050  | 7148871  | 35.6            | 0.050  | 7148871  |
| Total (Wet Wt) Barium (Ba)       | mg/kg | 0.229             | 0.010  | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Beryllium (Be)    | mg/kg |                   |        |          | <0.010     | 0.010  | 7148871  | <0.010          | 0.010  | 7148871  |
| Total (Wet Wt) Beryllium (Be)    | mg/kg | <0.0010           | 0.0010 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Bismuth (Bi)      | mg/kg |                   |        |          | <0.010     | 0.010  | 7148871  | <0.010          | 0.010  | 7148871  |
| Total (Wet Wt) Bismuth (Bi)      | mg/kg | <0.0010           | 0.0010 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Boron (B)         | mg/kg |                   |        |          | 11.4       | 1.0    | 7148871  | 10.9            | 1.0    | 7148871  |
| Total (Wet Wt) Boron (B)         | mg/kg | 0.25              | 0.20   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Cadmium (Cd)      | mg/kg |                   |        |          | <0.0050    | 0.0050 | 7148871  | <0.0050         | 0.0050 | 7148871  |
| Total (Wet Wt) Cadmium (Cd)      | mg/kg | 1.15              | 0.0010 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Calcium (Ca)      | mg/kg |                   |        |          | 4810       | 10     | 7148871  | 4730            | 10     | 7148871  |
| Total (Wet Wt) Calcium (Ca)      | mg/kg | 120               | 2.0    | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Chromium (Cr)     | mg/kg |                   |        |          | <0.10      | 0.10   | 7148871  | <0.10           | 0.10   | 7148871  |
| Total (Wet Wt) Chromium (Cr)     | mg/kg | <0.010            | 0.010  | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Cobalt (Co)       | mg/kg |                   |        |          | <0.020     | 0.020  | 7148871  | <0.020          | 0.020  | 7148871  |
| Total (Wet Wt) Cobalt (Co)       | mg/kg | 0.0320            | 0.0013 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Copper (Cu)       | mg/kg |                   |        |          | 2.39       | 0.050  | 7148871  | 2.35            | 0.050  | 7148871  |
| Total (Wet Wt) Copper (Cu)       | mg/kg | 2.39              | 0.010  | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Iron (Fe)         | mg/kg |                   |        |          | 21.7       | 5.0    | 7148871  | 20.9            | 5.0    | 7148871  |
| Total (Wet Wt) Iron (Fe)         | mg/kg | 395               | 0.25   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Lead (Pb)         | mg/kg |                   |        |          | 0.046      | 0.010  | 7148871  | 0.043           | 0.010  | 7148871  |
| Total (Wet Wt) Lead (Pb)         | mg/kg | 0.0356            | 0.0010 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Magnesium (Mg)    | mg/kg |                   |        |          | 1160       | 5.0    | 7148871  | 1160            | 5.0    | 7148871  |
| Total (Wet Wt) Magnesium (Mg)    | mg/kg | 182               | 0.40   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Manganese (Mn)    | mg/kg |                   |        |          | 523        | 0.050  | 7148871  | 554             | 0.050  | 7148871  |
| Total (Wet Wt) Manganese (Mn)    | mg/kg | 7.27              | 0.010  | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Mercury (Hg)      | mg/kg |                   |        |          | <0.010     | 0.010  | 7148871  | <0.010          | 0.010  | 7148871  |
| Total (Dry Wt) Molybdenum (Mo)   | mg/kg |                   |        |          | 0.020      | 0.020  | 7148871  | 0.020           | 0.020  | 7148871  |
| Total (Wet Wt) Molybdenum (Mo)   | mg/kg | 0.104             | 0.0040 | 7148868  |            |        |          |                 |        |          |
| RDL = Reportable Detection Limit |       |                   |        |          |            |        |          |                 |        |          |
|                                  |       |                   |        |          |            |        |          |                 |        |          |

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                                                           |       | OHP476            |         |          | OHP477     |        |          | OHP477          |        |          |
|----------------------------------------------------------------------|-------|-------------------|---------|----------|------------|--------|----------|-----------------|--------|----------|
| Sampling Date                                                        |       | 2020/11/08        |         |          | 2020/09/05 |        |          | 2020/09/05      |        |          |
| COC Number                                                           |       | n/a               |         |          | n/a        |        |          | n/a             |        |          |
|                                                                      | UNITS | SH-IO8<br>Lab-Dup | RDL     | QC Batch | LT-1       | RDL    | QC Batch | LT-1<br>Lab-Dup | RDL    | QC Batch |
| Total (Dry Wt) Nickel (Ni)                                           | mg/kg |                   |         |          | 0.087      | 0.050  | 7148871  | 0.085           | 0.050  | 7148871  |
| Total (Wet Wt) Nickel (Ni)                                           | mg/kg | 0.011             | 0.010   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Phosphorus (P)                                        | mg/kg |                   |         |          | 846        | 10     | 7148871  | 849             | 10     | 7148871  |
| Total (Wet Wt) Phosphorus (P)                                        | mg/kg | 2630              | 2.0     | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Potassium (K)                                         | mg/kg |                   |         |          | 4020       | 10     | 7148871  | 4000            | 10     | 7148871  |
| Total (Wet Wt) Potassium (K)                                         | mg/kg | 2720              | 2.0     | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Selenium (Se)                                         | mg/kg |                   |         |          | <0.050     | 0.050  | 7148871  | <0.050          | 0.050  | 7148871  |
| Total (Wet Wt) Selenium (Se)                                         | mg/kg | 0.507             | 0.010   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Silver (Ag)                                           | mg/kg |                   |         |          | <0.0050    | 0.0050 | 7148871  | <0.0050         | 0.0050 | 7148871  |
| Total (Wet Wt) Silver (Ag)                                           | mg/kg | <0.0010           | 0.0010  | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Sodium (Na)                                           | mg/kg |                   |         |          | 11         | 10     | 7148871  | <10             | 10     | 7148871  |
| Total (Wet Wt) Sodium (Na)                                           | mg/kg | 1200              | 2.0     | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Strontium (Sr)                                        | mg/kg |                   |         |          | 4.81       | 0.050  | 7148871  | 4.79            | 0.050  | 7148871  |
| Total (Wet Wt) Strontium (Sr)                                        | mg/kg | 0.121             | 0.010   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Thallium (Tl)                                         | mg/kg |                   |         |          | 0.0119     | 0.0020 | 7148871  | 0.0113          | 0.0020 | 7148871  |
| Total (Wet Wt) Thallium (Tl)                                         | mg/kg | 0.00163           | 0.00040 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Tin (Sn)                                              | mg/kg |                   |         |          | <0.10      | 0.10   | 7148871  | <0.10           | 0.10   | 7148871  |
| Total (Wet Wt) Tin (Sn)                                              | mg/kg | <0.020            | 0.020   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Titanium (Ti)                                         | mg/kg |                   |         |          | <0.50      | 0.50   | 7148871  | <0.50           | 0.50   | 7148871  |
| Total (Wet Wt) Titanium (Ti)                                         | mg/kg | 0.152             | 0.020   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Uranium (U)                                           | mg/kg |                   |         |          | <0.0020    | 0.0020 | 7148871  | <0.0020         | 0.0020 | 7148871  |
| Total (Wet Wt) Uranium (U)                                           | mg/kg | <0.00040          | 0.00040 | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Vanadium (V)                                          | mg/kg |                   |         |          | <0.20      | 0.20   | 7148871  | <0.20           | 0.20   | 7148871  |
| Total (Wet Wt) Vanadium (V)                                          | mg/kg | <0.020            | 0.020   | 7148868  |            |        |          |                 |        |          |
| Total (Dry Wt) Zinc (Zn)                                             | mg/kg |                   |         |          | 13.9       | 0.20   | 7148871  | 14.2            | 0.20   | 7148871  |
| Total (Wet Wt) Zinc (Zn)                                             | mg/kg | 19.9              | 0.040   | 7148868  |            |        |          |                 |        |          |
| Mercury (Hg)                                                         | mg/kg | 0.076 (1)         | 0.010   | 7148870  |            |        |          |                 |        |          |
| PHYSICAL PROPERTIES                                                  |       |                   | •       | •        |            |        |          |                 |        | •        |
| Moisture-Subcontracted                                               | %     | 72                | 0.30    | 7148869  | 50         | 0.30   | 7148872  |                 |        |          |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch | · ·   |                   | •       |          | -          | -      |          | -               | -      |          |

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP478     | OHP479     | OHP480     | OHP481     | OHP482     | OHP483     |        |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|------------|--------|----------|
| Sampling Date                    |       | 2020/09/06 | 2020/09/07 | 2020/09/08 | 2020/09/10 | 2020/09/10 | 2020/09/10 |        |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |        |          |
|                                  | UNITS | LT-2       | LT-3       | LT-4       | LT-5       | LT-6       | LT-7       | RDL    | QC Batch |
| Metals                           |       |            |            |            |            |            |            |        |          |
| Total (Dry Wt) Aluminum (Al)     | mg/kg | 24.3       | 19.8       | 18.1       | 11.6       | 12.4       | 10.4       | 1.0    | 7148871  |
| Total (Dry Wt) Antimony (Sb)     | mg/kg | 0.0181     | 0.0512     | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7148871  |
| Total (Dry Wt) Arsenic (As)      | mg/kg | 0.035      | 0.029      | 0.021      | <0.020     | 0.022      | 0.021      | 0.020  | 7148871  |
| Total (Dry Wt) Barium (Ba)       | mg/kg | 63.8       | 52.6       | 62.6       | 73.0       | 44.9       | 48.8       | 0.050  | 7148871  |
| Total (Dry Wt) Beryllium (Be)    | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 7148871  |
| Total (Dry Wt) Bismuth (Bi)      | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 7148871  |
| Total (Dry Wt) Boron (B)         | mg/kg | 14.4       | 9.7        | 14.7       | 12.3       | 12.6       | 12.3       | 1.0    | 7148871  |
| Total (Dry Wt) Cadmium (Cd)      | mg/kg | <0.0050    | <0.0050    | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7148871  |
| Total (Dry Wt) Calcium (Ca)      | mg/kg | 4330       | 4360       | 4770       | 4870       | 4190       | 4320       | 10     | 7148871  |
| Total (Dry Wt) Chromium (Cr)     | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10   | 7148871  |
| Total (Dry Wt) Cobalt (Co)       | mg/kg | <0.020     | 0.024      | <0.020     | <0.020     | <0.020     | <0.020     | 0.020  | 7148871  |
| Total (Dry Wt) Copper (Cu)       | mg/kg | 3.17       | 3.11       | 2.20       | 2.74       | 3.15       | 3.20       | 0.050  | 7148871  |
| Total (Dry Wt) Iron (Fe)         | mg/kg | 29.5       | 24.9       | 29.7       | 23.7       | 23.0       | 22.7       | 5.0    | 7148871  |
| Total (Dry Wt) Lead (Pb)         | mg/kg | 0.027      | 0.027      | 0.031      | 0.029      | 0.026      | 0.023      | 0.010  | 7148871  |
| Total (Dry Wt) Magnesium (Mg)    | mg/kg | 1450       | 1590       | 1180       | 1180       | 1360       | 1260       | 5.0    | 7148871  |
| Total (Dry Wt) Manganese (Mn)    | mg/kg | 548        | 635        | 1100       | 1330       | 957        | 1080       | 0.050  | 7148871  |
| Total (Dry Wt) Mercury (Hg)      | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 7148871  |
| Total (Dry Wt) Molybdenum (Mo)   | mg/kg | 0.025      | 0.046      | 0.036      | 0.024      | 0.027      | 0.020      | 0.020  | 7148871  |
| Total (Dry Wt) Nickel (Ni)       | mg/kg | 0.695      | 0.634      | 0.246      | 0.104      | 0.126      | 0.091      | 0.050  | 7148871  |
| Total (Dry Wt) Phosphorus (P)    | mg/kg | 862        | 1050       | 1020       | 824        | 833        | 833        | 10     | 7148871  |
| Total (Dry Wt) Potassium (K)     | mg/kg | 3400       | 3870       | 4270       | 4850       | 4430       | 4680       | 10     | 7148871  |
| Total (Dry Wt) Selenium (Se)     | mg/kg | 0.059      | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | 0.050  | 7148871  |
| Total (Dry Wt) Silver (Ag)       | mg/kg | <0.0050    | <0.0050    | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7148871  |
| Total (Dry Wt) Sodium (Na)       | mg/kg | 13         | 13         | <10        | <10        | <10        | <10        | 10     | 7148871  |
| Total (Dry Wt) Strontium (Sr)    | mg/kg | 15.8       | 14.6       | 5.30       | 6.27       | 4.50       | 4.59       | 0.050  | 7148871  |
| Total (Dry Wt) Thallium (Tl)     | mg/kg | 0.0133     | 0.0148     | 0.0077     | 0.0425     | 0.0078     | 0.0140     | 0.0020 | 7148871  |
| Total (Dry Wt) Tin (Sn)          | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10   | 7148871  |
| Total (Dry Wt) Titanium (Ti)     | mg/kg | 0.64       | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | 0.50   | 7148871  |
| Total (Dry Wt) Uranium (U)       | mg/kg | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7148871  |
| Total (Dry Wt) Vanadium (V)      | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20   | 7148871  |
| Total (Dry Wt) Zinc (Zn)         | mg/kg | 14.6       | 13.9       | 11.9       | 14.4       | 13.4       | 14.0       | 0.20   | 7148871  |
| PHYSICAL PROPERTIES              |       |            | •          | •          | •          | •          | •          |        | •        |
| Moisture-Subcontracted           | %     | 51         | 47         | 50         | 53         | 48         | 54         | 0.30   | 7148872  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |            |        |          |
| QC Batch = Quality Control Batch |       |            |            |            |            |            |            |        |          |



#### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP484     | OHP485     | OHP486     | OHP487     |          | OHP488     |        |          |
|----------------------------------|-------|------------|------------|------------|------------|----------|------------|--------|----------|
| Sampling Date                    |       | 2020/09/10 | 2020/09/10 | 2020/09/11 | 2020/11/30 |          | 2020/11/07 |        |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        |          | n/a        |        |          |
|                                  | UNITS | LT-8       | LT-9       | LT-10      | LT-DUP     | QC Batch | BB-1       | RDL    | QC Batch |
| Metals                           |       |            |            |            |            |          |            |        |          |
| Total (Dry Wt) Aluminum (Al)     | mg/kg | 11.5       | 13.4       | 11.6       | 16.3       | 7148871  | 43.6       | 1.0    | 7148873  |
| Total (Dry Wt) Antimony (Sb)     | mg/kg | <0.0050    | <0.0050    | <0.0050    | 0.0051     | 7148871  | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Arsenic (As)      | mg/kg | <0.020     | 0.025      | 0.024      | 0.020      | 7148871  | 0.032      | 0.020  | 7148873  |
| Total (Dry Wt) Barium (Ba)       | mg/kg | 53.2       | 58.9       | 46.8       | 50.9       | 7148871  | 14.4       | 0.050  | 7148873  |
| Total (Dry Wt) Beryllium (Be)    | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | 7148871  | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Bismuth (Bi)      | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | 7148871  | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Boron (B)         | mg/kg | 13.3       | 12.2       | 12.2       | 11.6       | 7148871  | 10.1       | 1.0    | 7148873  |
| Total (Dry Wt) Cadmium (Cd)      | mg/kg | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 7148871  | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Calcium (Ca)      | mg/kg | 4740       | 5080       | 4370       | 4610       | 7148871  | 1700       | 10     | 7148873  |
| Total (Dry Wt) Chromium (Cr)     | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | 7148871  | <0.10      | 0.10   | 7148873  |
| Total (Dry Wt) Cobalt (Co)       | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | 7148871  | <0.020     | 0.020  | 7148873  |
| Total (Dry Wt) Copper (Cu)       | mg/kg | 3.46       | 3.16       | 3.39       | 2.69       | 7148871  | 2.87       | 0.050  | 7148873  |
| Total (Dry Wt) Iron (Fe)         | mg/kg | 21.5       | 23.9       | 21.9       | 26.3       | 7148871  | 13.1       | 5.0    | 7148873  |
| Total (Dry Wt) Lead (Pb)         | mg/kg | 0.024      | 0.031      | 0.021      | 0.030      | 7148871  | 0.114      | 0.010  | 7148873  |
| Total (Dry Wt) Magnesium (Mg)    | mg/kg | 1410       | 1320       | 1300       | 1350       | 7148871  | 687        | 5.0    | 7148873  |
| Total (Dry Wt) Manganese (Mn)    | mg/kg | 1240       | 1410       | 1060       | 708        | 7148871  | 361        | 0.050  | 7148873  |
| Total (Dry Wt) Mercury (Hg)      | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | 7148871  | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Molybdenum (Mo)   | mg/kg | 0.021      | <0.020     | <0.020     | 0.038      | 7148871  | 0.032      | 0.020  | 7148873  |
| Total (Dry Wt) Nickel (Ni)       | mg/kg | 0.099      | 0.094      | 0.107      | 0.260      | 7148871  | 0.237      | 0.050  | 7148873  |
| Total (Dry Wt) Phosphorus (P)    | mg/kg | 885        | 831        | 842        | 915        | 7148871  | 763        | 10     | 7148873  |
| Total (Dry Wt) Potassium (K)     | mg/kg | 4750       | 4490       | 4600       | 3750       | 7148871  | 5070       | 10     | 7148873  |
| Total (Dry Wt) Selenium (Se)     | mg/kg | <0.050     | <0.050     | <0.050     | <0.050     | 7148871  | <0.050     | 0.050  | 7148873  |
| Total (Dry Wt) Silver (Ag)       | mg/kg | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 7148871  | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Sodium (Na)       | mg/kg | <10        | 11         | <10        | 10         | 7148871  | 47         | 10     | 7148873  |
| Total (Dry Wt) Strontium (Sr)    | mg/kg | 4.80       | 4.92       | 4.37       | 9.24       | 7148871  | 9.61       | 0.050  | 7148873  |
| Total (Dry Wt) Thallium (Tl)     | mg/kg | 0.0203     | 0.0122     | 0.0105     | 0.0122     | 7148871  | 0.0027     | 0.0020 | 7148873  |
| Total (Dry Wt) Tin (Sn)          | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | 7148871  | <0.10      | 0.10   | 7148873  |
| Total (Dry Wt) Titanium (Ti)     | mg/kg | <0.50      | <0.50      | <0.50      | <0.50      | 7148871  | <0.50      | 0.50   | 7148873  |
| Total (Dry Wt) Uranium (U)       | mg/kg | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 7148871  | <0.0020    | 0.0020 | 7148873  |
| Total (Dry Wt) Vanadium (V)      | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | 7148871  | <0.20      | 0.20   | 7148873  |
| Total (Dry Wt) Zinc (Zn)         | mg/kg | 14.0       | 14.3       | 13.6       | 13.5       | 7148871  | 5.88       | 0.20   | 7148873  |
| PHYSICAL PROPERTIES              | •     |            |            |            |            | -        |            |        | -        |
| Moisture-Subcontracted           | %     | 50         | 52         | 51         | 48         | 7148872  | 86         | 0.30   | 7148872  |
| RDL = Reportable Detection Limit |       |            |            |            |            |          |            |        |          |
| QC Batch = Quality Control Batch |       |            |            |            |            |          |            |        |          |



### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                                                             |       | OHP489     | OHP490     | OHP491     |        |          | OHP491          |        |          |
|------------------------------------------------------------------------|-------|------------|------------|------------|--------|----------|-----------------|--------|----------|
| Sampling Date                                                          |       | 2020/11/08 | 2020/09/08 | 2020/09/08 |        |          | 2020/09/08      |        |          |
| COC Number                                                             |       | n/a        | n/a        | n/a        |        |          | n/a             |        |          |
|                                                                        | UNITS | BB-2       | BB-3       | BB-4       | RDL    | QC Batch | BB-4<br>Lab-Dup | RDL    | QC Batch |
| Metals                                                                 |       |            |            |            |        |          |                 |        |          |
| Total (Dry Wt) Aluminum (Al)                                           | mg/kg | 45.2       | 33.5       | 39.1       | 1.0    | 7148873  | 35.7            | 1.0    | 7148873  |
| Total (Dry Wt) Antimony (Sb)                                           | mg/kg | 0.0266     | <0.0050    | <0.0050    | 0.0050 | 7148873  | <0.0050         | 0.0050 | 7148873  |
| Total (Dry Wt) Arsenic (As)                                            | mg/kg | 0.122      | <0.020     | 0.031      | 0.020  | 7148873  | 0.023           | 0.020  | 7148873  |
| Total (Dry Wt) Barium (Ba)                                             | mg/kg | 17.7       | 22.8       | 21.1       | 0.050  | 7148873  | 22.1            | 0.050  | 7148873  |
| Total (Dry Wt) Beryllium (Be)                                          | mg/kg | <0.010     | <0.010     | <0.010     | 0.010  | 7148873  | <0.010          | 0.010  | 7148873  |
| Total (Dry Wt) Bismuth (Bi)                                            | mg/kg | <0.010     | <0.010     | <0.010     | 0.010  | 7148873  | <0.010          | 0.010  | 7148873  |
| Total (Dry Wt) Boron (B)                                               | mg/kg | 10.5       | 8.8        | 8.3        | 1.0    | 7148873  | 8.2             | 1.0    | 7148873  |
| Total (Dry Wt) Cadmium (Cd)                                            | mg/kg | <0.0050    | 0.0059     | 0.0070     | 0.0050 | 7148873  | 0.0059          | 0.0050 | 7148873  |
| Total (Dry Wt) Calcium (Ca)                                            | mg/kg | 1760       | 1330       | 1410       | 10     | 7148873  | 1460            | 10     | 7148873  |
| Total (Dry Wt) Chromium (Cr)                                           | mg/kg | <0.10      | <0.10      | <0.10      | 0.10   | 7148873  | <0.10           | 0.10   | 7148873  |
| Total (Dry Wt) Cobalt (Co)                                             | mg/kg | <0.020     | <0.020     | <0.020     | 0.020  | 7148873  | <0.020          | 0.020  | 7148873  |
| Total (Dry Wt) Copper (Cu)                                             | mg/kg | 2.93       | 2.89       | 3.02       | 0.050  | 7148873  | 2.88            | 0.050  | 7148873  |
| Total (Dry Wt) Iron (Fe)                                               | mg/kg | 23.6       | 18.3       | 18.0       | 5.0    | 7148873  | 17.0            | 5.0    | 7148873  |
| Total (Dry Wt) Lead (Pb)                                               | mg/kg | 0.068      | 0.066      | 0.054      | 0.010  | 7148873  | 0.048           | 0.010  | 7148873  |
| Total (Dry Wt) Magnesium (Mg)                                          | mg/kg | 679        | 554        | 610        | 5.0    | 7148873  | 619             | 5.0    | 7148873  |
| Total (Dry Wt) Manganese (Mn)                                          | mg/kg | 656        | 870        | 712        | 0.050  | 7148873  | 710             | 0.050  | 7148873  |
| Total (Dry Wt) Mercury (Hg)                                            | mg/kg | <0.010     | <0.010     | <0.010     | 0.010  | 7148873  | <0.010          | 0.010  | 7148873  |
| Total (Dry Wt) Molybdenum (Mo)                                         | mg/kg | 0.048      | 0.058      | 0.050      | 0.020  | 7148873  | 0.049           | 0.020  | 7148873  |
| Total (Dry Wt) Nickel (Ni)                                             | mg/kg | 0.308      | 0.326      | 0.293      | 0.050  | 7148873  | 0.286           | 0.050  | 7148873  |
| Total (Dry Wt) Phosphorus (P)                                          | mg/kg | 822        | 1260       | 1320       | 10     | 7148873  | 1300            | 10     | 7148873  |
| Total (Dry Wt) Potassium (K)                                           | mg/kg | 5070       | 5780       | 6630       | 10     | 7148873  | 6830            | 10     | 7148873  |
| Total (Dry Wt) Selenium (Se)                                           | mg/kg | <0.050     | <0.050     | <0.050     | 0.050  | 7148873  | <0.050          | 0.050  | 7148873  |
| Total (Dry Wt) Silver (Ag)                                             | mg/kg | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7148873  | <0.0050         | 0.0050 | 7148873  |
| Total (Dry Wt) Sodium (Na)                                             | mg/kg | 52         | 17         | 16         | 10     | 7148873  | 18              | 10     | 7148873  |
| Total (Dry Wt) Strontium (Sr)                                          | mg/kg | 7.75       | 1.07       | 1.18       | 0.050  | 7148873  | 1.23            | 0.050  | 7148873  |
| Total (Dry Wt) Thallium (Tl)                                           | mg/kg | 0.0031     | <0.0020    | <0.0020    | 0.0020 | 7148873  | <0.0020         | 0.0020 | 7148873  |
| Total (Dry Wt) Tin (Sn)                                                | mg/kg | <0.10      | <0.10      | <0.10      | 0.10   | 7148873  | <0.10           | 0.10   | 7148873  |
| Total (Dry Wt) Titanium (Ti)                                           | mg/kg | 0.55       | <0.50      | <0.50      | 0.50   | 7148873  | <0.50           | 0.50   | 7148873  |
| Total (Dry Wt) Uranium (U)                                             | mg/kg | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7148873  | <0.0020         | 0.0020 | 7148873  |
| Total (Dry Wt) Vanadium (V)                                            | mg/kg | <0.20      | <0.20      | <0.20      | 0.20   | 7148873  | <0.20           | 0.20   | 7148873  |
| Total (Dry Wt) Zinc (Zn)                                               | mg/kg | 7.08       | 7.25       | 7.29       | 0.20   | 7148873  | 6.76            | 0.20   | 7148873  |
| PHYSICAL PROPERTIES                                                    |       |            |            | <u> </u>   | :      |          |                 | :      |          |
| Moisture-Subcontracted                                                 | %     | 87         | 83         | 84         | 0.30   | 7148872  |                 |        |          |
| RDL = Reportable Detection Limit                                       |       |            |            |            |        |          |                 |        |          |
| QC Batch = Quality Control Batch<br>Lab-Dup = Laboratory Initiated Dup |       |            |            |            |        |          |                 |        |          |



### **RESULTS OF ANALYSES OF TISSUE**

| BV Labs ID                       |       | OHP492     | OHP493     | OHP494     | OHP495     | OHP496     |        |          |
|----------------------------------|-------|------------|------------|------------|------------|------------|--------|----------|
| Sampling Date                    |       | 2020/09/08 | 2020/09/08 | 2020/09/08 | 2020/09/08 | 2020/09/08 |        |          |
| COC Number                       |       | n/a        | n/a        | n/a        | n/a        | n/a        |        |          |
|                                  | UNITS | BB-5       | BB-6       | BB-7       | BB-8       | BB-9       | RDL    | QC Batch |
| Metals                           |       |            |            |            |            |            |        |          |
| Total (Dry Wt) Aluminum (Al)     | mg/kg | 57.4       | 32.3       | 42.2       | 74.8       | 99.5       | 1.0    | 7148873  |
| Total (Dry Wt) Antimony (Sb)     | mg/kg | <0.0050    | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Arsenic (As)      | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020  | 7148873  |
| Total (Dry Wt) Barium (Ba)       | mg/kg | 18.3       | 17.9       | 17.3       | 14.8       | 16.0       | 0.050  | 7148873  |
| Total (Dry Wt) Beryllium (Be)    | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Bismuth (Bi)      | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Boron (B)         | mg/kg | 7.1        | 8.1        | 8.4        | 6.6        | 5.4        | 1.0    | 7148873  |
| Total (Dry Wt) Cadmium (Cd)      | mg/kg | 0.0077     | 0.0100     | 0.0079     | 0.0057     | 0.0075     | 0.0050 | 7148873  |
| Total (Dry Wt) Calcium (Ca)      | mg/kg | 1380       | 1500       | 1810       | 1260       | 1220       | 10     | 7148873  |
| Total (Dry Wt) Chromium (Cr)     | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10   | 7148873  |
| Total (Dry Wt) Cobalt (Co)       | mg/kg | <0.020     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020  | 7148873  |
| Total (Dry Wt) Copper (Cu)       | mg/kg | 2.79       | 2.81       | 2.36       | 2.14       | 1.96       | 0.050  | 7148873  |
| Total (Dry Wt) Iron (Fe)         | mg/kg | 18.8       | 12.5       | 13.2       | 14.5       | 11.5       | 5.0    | 7148873  |
| Total (Dry Wt) Lead (Pb)         | mg/kg | 0.066      | 0.038      | 0.022      | 0.035      | 0.037      | 0.010  | 7148873  |
| Total (Dry Wt) Magnesium (Mg)    | mg/kg | 564        | 522        | 542        | 460        | 470        | 5.0    | 7148873  |
| Total (Dry Wt) Manganese (Mn)    | mg/kg | 665        | 484        | 605        | 574        | 752        | 0.050  | 7148873  |
| Total (Dry Wt) Mercury (Hg)      | mg/kg | <0.010     | <0.010     | <0.010     | <0.010     | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Molybdenum (Mo)   | mg/kg | 0.074      | 0.028      | 0.043      | 0.057      | 0.029      | 0.020  | 7148873  |
| Total (Dry Wt) Nickel (Ni)       | mg/kg | 0.403      | 0.259      | 0.219      | 0.248      | 0.270      | 0.050  | 7148873  |
| Total (Dry Wt) Phosphorus (P)    | mg/kg | 1150       | 658        | 729        | 935        | 860        | 10     | 7148873  |
| Total (Dry Wt) Potassium (K)     | mg/kg | 5780       | 5870       | 5750       | 5130       | 5080       | 10     | 7148873  |
| Total (Dry Wt) Selenium (Se)     | mg/kg | <0.050     | <0.050     | <0.050     | <0.050     | <0.050     | 0.050  | 7148873  |
| Total (Dry Wt) Silver (Ag)       | mg/kg | <0.0050    | <0.0050    | <0.0050    | <0.0050    | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Sodium (Na)       | mg/kg | 14         | 13         | 12         | 23         | 18         | 10     | 7148873  |
| Total (Dry Wt) Strontium (Sr)    | mg/kg | 1.27       | 0.715      | 0.697      | 0.986      | 0.987      | 0.050  | 7148873  |
| Total (Dry Wt) Thallium (Tl)     | mg/kg | 0.0047     | 0.0023     | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7148873  |
| Total (Dry Wt) Tin (Sn)          | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10   | 7148873  |
| Total (Dry Wt) Titanium (Ti)     | mg/kg | <0.50      | <0.50      | <0.50      | <0.50      | <0.50      | 0.50   | 7148873  |
| Total (Dry Wt) Uranium (U)       | mg/kg | <0.0020    | <0.0020    | <0.0020    | <0.0020    | <0.0020    | 0.0020 | 7148873  |
| Total (Dry Wt) Vanadium (V)      | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      | 0.20   | 7148873  |
| Total (Dry Wt) Zinc (Zn)         | mg/kg | 7.17       | 7.35       | 7.84       | 6.12       | 6.25       | 0.20   | 7148873  |
| PHYSICAL PROPERTIES              |       |            |            |            |            |            |        |          |
| Moisture-Subcontracted           | %     | 85         | 85         | 87         | 86         | 85         | 0.30   | 7148872  |
| RDL = Reportable Detection Limit |       |            |            |            |            |            |        |          |
| QC Batch = Quality Control Batch |       |            |            |            |            |            |        |          |



## **RESULTS OF ANALYSES OF TISSUE**

|                                  |       | 0115407    |            | 1      |          |
|----------------------------------|-------|------------|------------|--------|----------|
| BV Labs ID                       |       | OHP497     | OHP498     |        |          |
| Sampling Date                    |       | 2020/09/08 | 2020/11/30 |        |          |
| COC Number                       |       | n/a        | n/a        |        |          |
|                                  | UNITS | BB-10      | BB-DUP     | RDL    | QC Batch |
| Metals                           |       |            |            |        |          |
| Total (Dry Wt) Aluminum (Al)     | mg/kg | 90.5       | 56.0       | 1.0    | 7148873  |
| Total (Dry Wt) Antimony (Sb)     | mg/kg | <0.0050    | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Arsenic (As)      | mg/kg | 0.025      | 0.031      | 0.020  | 7148873  |
| Total (Dry Wt) Barium (Ba)       | mg/kg | 20.9       | 17.2       | 0.050  | 7148873  |
| Total (Dry Wt) Beryllium (Be)    | mg/kg | <0.010     | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Bismuth (Bi)      | mg/kg | <0.010     | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Boron (B)         | mg/kg | 6.9        | 7.5        | 1.0    | 7148873  |
| Total (Dry Wt) Cadmium (Cd)      | mg/kg | 0.0081     | 0.0069     | 0.0050 | 7148873  |
| Total (Dry Wt) Calcium (Ca)      | mg/kg | 1600       | 1390       | 10     | 7148873  |
| Total (Dry Wt) Chromium (Cr)     | mg/kg | <0.10      | <0.10      | 0.10   | 7148873  |
| Total (Dry Wt) Cobalt (Co)       | mg/kg | <0.020     | <0.020     | 0.020  | 7148873  |
| Total (Dry Wt) Copper (Cu)       | mg/kg | 2.43       | 2.37       | 0.050  | 7148873  |
| Total (Dry Wt) Iron (Fe)         | mg/kg | 15.2       | 15.2       | 5.0    | 7148873  |
| Total (Dry Wt) Lead (Pb)         | mg/kg | 0.064      | 0.037      | 0.010  | 7148873  |
| Total (Dry Wt) Magnesium (Mg)    | mg/kg | 509        | 501        | 5.0    | 7148873  |
| Total (Dry Wt) Manganese (Mn)    | mg/kg | 770        | 650        | 0.050  | 7148873  |
| Total (Dry Wt) Mercury (Hg)      | mg/kg | <0.010     | <0.010     | 0.010  | 7148873  |
| Total (Dry Wt) Molybdenum (Mo)   | mg/kg | 0.042      | 0.045      | 0.020  | 7148873  |
| Total (Dry Wt) Nickel (Ni)       | mg/kg | 0.294      | 0.342      | 0.050  | 7148873  |
| Total (Dry Wt) Phosphorus (P)    | mg/kg | 1010       | 1020       | 10     | 7148873  |
| Total (Dry Wt) Potassium (K)     | mg/kg | 5680       | 5400       | 10     | 7148873  |
| Total (Dry Wt) Selenium (Se)     | mg/kg | <0.050     | <0.050     | 0.050  | 7148873  |
| Total (Dry Wt) Silver (Ag)       | mg/kg | <0.0050    | <0.0050    | 0.0050 | 7148873  |
| Total (Dry Wt) Sodium (Na)       | mg/kg | 20         | 19         | 10     | 7148873  |
| Total (Dry Wt) Strontium (Sr)    | mg/kg | 1.80       | 1.40       | 0.050  | 7148873  |
| Total (Dry Wt) Thallium (Tl)     | mg/kg | <0.0020    | <0.0020    | 0.0020 | 7148873  |
| Total (Dry Wt) Tin (Sn)          | mg/kg | <0.10      | <0.10      | 0.10   | 7148873  |
| Total (Dry Wt) Titanium (Ti)     | mg/kg | <0.50      | <0.50      | 0.50   | 7148873  |
| Total (Dry Wt) Uranium (U)       | mg/kg | <0.0020    | <0.0020    | 0.0020 | 7148873  |
| Total (Dry Wt) Vanadium (V)      | mg/kg | <0.20      | <0.20      | 0.20   | 7148873  |
| Total (Dry Wt) Zinc (Zn)         | mg/kg | 7.09       | 6.93       | 0.20   | 7148873  |
| PHYSICAL PROPERTIES              |       |            | ļ          |        | <u> </u> |
| Moisture-Subcontracted           | %     | 85         | 84         | 0.30   | 7148874  |
| RDL = Reportable Detection Limit | -     |            |            | •      | -        |
| QC Batch = Quality Control Batch |       |            |            |        |          |
|                                  |       |            |            |        |          |



### **TEST SUMMARY**

| BV Labs ID: OHP410<br>Sample ID: BT-1<br>Matrix: Tissue     |                 |         |               |               | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01 |
|-------------------------------------------------------------|-----------------|---------|---------------|---------------|-----------------------------------------------------------|
| Test Description                                            | Instrumentation | Batch   | Extracted     | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                          | CV/AF           | 7148860 | N/A           | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                       | ICP/MS          | 7148857 | 2021/01/06    | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148859 | 2021/01/06    | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP411<br>Sample ID: BT-2<br>Matrix: Tissue     |                 |         |               |               | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch   | Extracted     | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                          | CV/AF           | 7148860 | N/A           | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                       | ICP/MS          | 7148857 | 2021/01/06    | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148859 | 2021/01/06    | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP412<br>Sample ID: BT-3<br>Matrix: Tissue     |                 |         |               |               | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch   | Extracted     | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                          | CV/AF           | 7148860 | N/A           | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                       | ICP/MS          | 7148857 | 2021/01/06    | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148859 | 2021/01/06    | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP412 Dup<br>Sample ID: BT-3<br>Matrix: Tissue |                 | Datab   | Future at a d | Data Anglurad | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch   | Extracted     | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                          | CV/AF           | 7148860 | N/A           | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                       | ICP/MS          | 7148857 | 2021/01/06    | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148859 | 2021/01/06    | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP413<br>Sample ID: BT-4<br>Matrix: Tissue     |                 |         |               |               | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch   | Extracted     | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                          | CV/AF           | 7148860 | N/A           | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                       | ICP/MS          | 7148857 | 2021/01/06    | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148859 | 2021/01/06    | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP414<br>Sample ID: BT-5<br>Matrix: Tissue     |                 |         |               |               | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch   | Extracted     | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                          | CV/AF           | 7148860 | N/A           | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                       | ICP/MS          | 7148857 | 2021/01/06    | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148859 | 2021/01/06    | 2021/01/12    | Luz Aliaga                                                |
|                                                             |                 |         | -             |               |                                                           |

### Page 26 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP415<br>Sample ID: BT-6<br>Matrix: Tissue                                                                                                                                                                                                     |                                                                  |                                                 |                                              |                                                                                        | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                                          | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                                             | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                                             | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   | 2021/01/12                                                                             | Luz Aliaga                                                                                                                                                                                                               |
| BV Labs ID: OHP416<br>Sample ID: BT-7<br>Matrix: Tissue                                                                                                                                                                                                     |                                                                  |                                                 |                                              |                                                                                        | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                                          | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                                             | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                                             | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   | 2021/01/12                                                                             | Luz Aliaga                                                                                                                                                                                                               |
| BV Labs ID: OHP417<br>Sample ID: BT-8<br>Matrix: Tissue                                                                                                                                                                                                     |                                                                  |                                                 | <b>.</b>                                     |                                                                                        | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                                          | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                                             | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)                                                                                                                                                                                 | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                                             | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| BV Labs ID: OHP418<br>Sample ID: BT-9<br>Matrix: Tissue                                                                                                                                                                                                     |                                                                  |                                                 |                                              |                                                                                        | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                                          | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                                             | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                                             |                                                                                                                                                                                                                          |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | <b>DAI (DAI</b>                                                  |                                                 |                                              | - 1-1                                                                                  | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                       | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   | 2021/01/12                                                                             | Jocelyn Baron-Inactive<br>Luz Aliaga                                                                                                                                                                                     |
| BV Labs ID: OHP419<br>Sample ID: BT-10<br>Matrix: Tissue                                                                                                                                                                                                    | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   |                                                                                        |                                                                                                                                                                                                                          |
| Sample ID: BT-10<br>Matrix: Tissue                                                                                                                                                                                                                          | BAL/BAL                                                          | 7148859<br>Batch                                | 2021/01/06<br>Extracted                      | 2021/01/12<br>Date Analyzed                                                            | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:                                                                                                                                                                          |
| Sample ID: BT-10<br>Matrix: Tissue                                                                                                                                                                                                                          |                                                                  |                                                 |                                              | 2021/01/12                                                                             | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Sample ID: BT-10<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                       | Instrumentation                                                  | Batch                                           | Extracted                                    | 2021/01/12<br>Date Analyzed                                                            | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst                                                                                                                                       |
| Sample ID:       BT-10         Matrix:       Tissue         Test Description         Mercury in Tissue by CVAF - Wet Wt         Elements by CRC ICPMS - Tissue Wet Wt                                                                                       | Instrumentation<br>CV/AF                                         | <b>Batch</b><br>7148860                         | Extracted<br>N/A                             | 2021/01/12<br>Date Analyzed<br>2021/01/12                                              | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe                                                                                                                 |
| Sample ID: BT-10                                                                                                                                                                                                                                            | Instrumentation<br>CV/AF<br>ICP/MS                               | <b>Batch</b><br>7148860<br>7148857              | Extracted<br>N/A<br>2021/01/06               | 2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/09                                | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                       |
| Sample ID: BT-10<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP420<br>Sample ID: BT-11<br>Matrix: Tissue                     | Instrumentation<br>CV/AF<br>ICP/MS                               | <b>Batch</b><br>7148860<br>7148857              | Extracted<br>N/A<br>2021/01/06               | 2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/09                                | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:                                    |
| Sample ID: BT-10<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP420<br>Sample ID: BT-11<br>Matrix: Tissue<br>Test Description | Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL                    | <b>Batch</b><br>7148860<br>7148857<br>7148859   | Extracted<br>N/A<br>2021/01/06<br>2021/01/06 | 2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/12<br>2021/01/12                  | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01            |
| Sample ID: BT-10<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP420<br>Sample ID: BT-11                                       | Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation | Batch<br>7148860<br>7148857<br>7148859<br>Batch | Extracted<br>N/A<br>2021/01/06<br>2021/01/06 | 2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/12<br>2021/01/12<br>Date Analyzed | Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01<br>Analyst |

### Page 27 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP421<br>Sample ID: BT-12<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                  |                                                                                              |                                                                                                                           | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                                                                                                                                                                                                                       | Instrumentation                                                                                | Batch                                                                            | Extracted                                                                                    | Date Analyzed                                                                                                             | Analyst                                                                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                                                                                                     | CV/AF                                                                                          | 7148860                                                                          | N/A                                                                                          | 2021/01/12                                                                                                                | Chamila Jayasinghe                                                                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                                                                                                  | ICP/MS                                                                                         | 7148857                                                                          | 2021/01/06                                                                                   | 2021/01/09                                                                                                                | Jocelyn Baron-Inactive                                                                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                                                                                                                     | BAL/BAL                                                                                        | 7148859                                                                          | 2021/01/06                                                                                   | 2021/01/12                                                                                                                | Luz Aliaga                                                                                                                                                                                                                                                               |
| BV Labs ID: OHP422<br>Sample ID: BT-13<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                  |                                                                                              |                                                                                                                           | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                                                                                                                                                                                       | Instrumentation                                                                                | Batch                                                                            | Extracted                                                                                    | Date Analyzed                                                                                                             | Analyst                                                                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                                                                                                     | CV/AF                                                                                          | 7148860                                                                          | N/A                                                                                          | 2021/01/12                                                                                                                | Chamila Jayasinghe                                                                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                                                                                                  | ICP/MS                                                                                         | 7148857                                                                          | 2021/01/06                                                                                   | 2021/01/09                                                                                                                | Jocelyn Baron-Inactive                                                                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                                                                                                                     | BAL/BAL                                                                                        | 7148859                                                                          | 2021/01/06                                                                                   | 2021/01/12                                                                                                                | Luz Aliaga                                                                                                                                                                                                                                                               |
| BV Labs ID: OHP423<br>Sample ID: BT-14<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                  |                                                                                              |                                                                                                                           | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                                                                                                                                                                                       | Instrumentation                                                                                | Batch                                                                            | Extracted                                                                                    | Date Analyzed                                                                                                             | Analyst                                                                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                                                                                                     | CV/AF                                                                                          | 7148860                                                                          | N/A                                                                                          | 2021/01/12                                                                                                                | Chamila Jayasinghe                                                                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                                                                                                  | ICP/MS                                                                                         | 7148857                                                                          | 2021/01/06                                                                                   | 2021/01/09                                                                                                                | Jocelyn Baron-Inactive                                                                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                                                                                                                     | BAL/BAL                                                                                        | 7148859                                                                          | 2021/01/06                                                                                   | 2021/01/12                                                                                                                | Luz Aliaga                                                                                                                                                                                                                                                               |
| BV Labs ID: OHP424<br>Sample ID: BT-15<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                                  |                                                                                              |                                                                                                                           | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                |                                                                                  |                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                          |
| •                                                                                                                                                                                                                                                                                                                                                                                                      | Instrumentation                                                                                | Batch                                                                            | Extracted                                                                                    | Date Analyzed                                                                                                             | Analyst                                                                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                                                                                                     | CV/AF                                                                                          | 7148860                                                                          | N/A                                                                                          | 2021/01/12                                                                                                                | Chamila Jayasinghe                                                                                                                                                                                                                                                       |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                                                            | CV/AF<br>ICP/MS                                                                                | 7148860<br>7148857                                                               | N/A<br>2021/01/06                                                                            | 2021/01/12<br>2021/01/09                                                                                                  | Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                                                                                                                                                             |
| Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                  | CV/AF                                                                                          | 7148860                                                                          | N/A                                                                                          | 2021/01/12                                                                                                                | Chamila Jayasinghe                                                                                                                                                                                                                                                       |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                                                            | CV/AF<br>ICP/MS                                                                                | 7148860<br>7148857                                                               | N/A<br>2021/01/06                                                                            | 2021/01/12<br>2021/01/09                                                                                                  | Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                                                                                                                                                             |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue                                                                                                                                                                                                                          | CV/AF<br>ICP/MS                                                                                | 7148860<br>7148857                                                               | N/A<br>2021/01/06                                                                            | 2021/01/12<br>2021/01/09                                                                                                  | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:                                                                                                                                                                          |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue<br>Test Description                                                                                                                                                                                                      | CV/AF<br>ICP/MS<br>BAL/BAL                                                                     | 7148860<br>7148857<br>7148859                                                    | N/A<br>2021/01/06<br>2021/01/06                                                              | 2021/01/12<br>2021/01/09<br>2021/01/12                                                                                    | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                | CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation                                                  | 7148860<br>7148857<br>7148859<br>Batch                                           | N/A<br>2021/01/06<br>2021/01/06<br>Extracted                                                 | 2021/01/12<br>2021/01/09<br>2021/01/12<br>Date Analyzed                                                                   | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst                                                                                                                                       |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16                                                                                                                                                                                                                                            | CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation<br>CV/AF                                         | 7148860<br>7148857<br>7148859<br><b>Batch</b><br>7148860                         | N/A<br>2021/01/06<br>2021/01/06<br>Extracted<br>N/A                                          | 2021/01/12<br>2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12                                                     | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe                                                                                                                 |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                       | CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS                               | 7148860<br>7148857<br>7148859<br><b>Batch</b><br>7148860<br>7148857              | N/A<br>2021/01/06<br>2021/01/06<br>Extracted<br>N/A<br>2021/01/06                            | 2021/01/12<br>2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/19                                       | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                       |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP426<br>Sample ID: BT-17                                       | CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS                               | 7148860<br>7148857<br>7148859<br><b>Batch</b><br>7148860<br>7148857              | N/A<br>2021/01/06<br>2021/01/06<br>Extracted<br>N/A<br>2021/01/06                            | 2021/01/12<br>2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/19                                       | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:                                    |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP426<br>Sample ID: BT-17<br>Matrix: Tissue                     | CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL                    | 7148860<br>7148857<br>7148859<br><b>Batch</b><br>7148860<br>7148857<br>7148859   | N/A<br>2021/01/06<br>2021/01/06<br>Extracted<br>N/A<br>2021/01/06<br>2021/01/06              | 2021/01/12<br>2021/01/09<br>2021/01/12<br><b>Date Analyzed</b><br>2021/01/12<br>2021/01/09<br>2021/01/12                  | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01            |
| Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP425<br>Sample ID: BT-16<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP426<br>Sample ID: BT-17<br>Matrix: Tissue<br>Test Description | CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation | 7148860<br>7148857<br>7148859<br>Batch<br>7148860<br>7148857<br>7148859<br>Batch | N/A<br>2021/01/06<br>2021/01/06<br>Extracted<br>N/A<br>2021/01/06<br>2021/01/06<br>Extracted | 2021/01/12<br>2021/01/09<br>2021/01/12<br><b>Date Analyzed</b><br>2021/01/12<br>2021/01/12<br>2021/01/12<br>Date Analyzed | Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst |



### **TEST SUMMARY**

| BV Labs ID: OHP427<br>Sample ID: BT-18<br>Matrix: Tissue                                                                                                                                                                                    |                                                                  |                                                 |                                              |                                                                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                            | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                               | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                       | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                               | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                          | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   | 2021/01/12                                                               | Luz Aliaga                                                                                                                                                                                                               |
| BV Labs ID: OHP428<br>Sample ID: BT-19<br>Matrix: Tissue                                                                                                                                                                                    |                                                                  |                                                 |                                              |                                                                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                            | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                               | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                       | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                               | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                          | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   | 2021/01/12                                                               | Luz Aliaga                                                                                                                                                                                                               |
| BV Labs ID: OHP429<br>Sample ID: BT-20<br>Matrix: Tissue                                                                                                                                                                                    |                                                                  |                                                 |                                              |                                                                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                            | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                          | CV/AF                                                            | 7148860                                         | N/A                                          | 2021/01/12                                                               | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                       | ICP/MS                                                           | 7148857                                         | 2021/01/06                                   | 2021/01/09                                                               | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                          | BAL/BAL                                                          | 7148859                                         | 2021/01/06                                   | 2021/01/12                                                               | Luz Aliaga                                                                                                                                                                                                               |
| BV Labs ID: OHP430<br>Sample ID: BT-21<br>Matrix: Tissue                                                                                                                                                                                    |                                                                  |                                                 |                                              |                                                                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                |
| Test Description                                                                                                                                                                                                                            | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                            | Analyst                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                          | CV/AF                                                            | 7148863                                         | N/A                                          | 2021/01/12                                                               | Chamila Jayasinghe                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                       | ICP/MS                                                           | 7148861                                         | 2021/01/06                                   | 2021/01/09                                                               | Jocelyn Baron-Inactive                                                                                                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                          | BAL/BAL                                                          | 7140000                                         |                                              |                                                                          |                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             | •                                                                | 7148862                                         | 2021/01/06                                   | 2021/01/12                                                               | Luz Aliaga                                                                                                                                                                                                               |
| BV Labs ID: OHP431<br>Sample ID: BT-22<br>Matrix: Tissue                                                                                                                                                                                    |                                                                  | /148862                                         | 2021/01/06                                   | 2021/01/12                                                               | •                                                                                                                                                                                                                        |
| Sample ID: BT-22<br>Matrix: Tissue                                                                                                                                                                                                          | Instrumentation                                                  | Batch                                           | 2021/01/06<br>Extracted                      | 2021/01/12<br>Date Analyzed                                              | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:                                                                                                                                                                          |
| Sample ID: BT-22<br>Matrix: Tissue                                                                                                                                                                                                          |                                                                  |                                                 |                                              |                                                                          | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Sample ID: BT-22<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                | Instrumentation                                                  | Batch                                           | Extracted                                    | Date Analyzed                                                            | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst                                                                                                                                       |
| Sample ID:       BT-22         Matrix:       Tissue         Test Description         Mercury in Tissue by CVAF - Wet Wt         Elements by CRC ICPMS - Tissue Wet Wt                                                                       | Instrumentation<br>CV/AF                                         | <b>Batch</b><br>7148863                         | Extracted<br>N/A                             | Date Analyzed<br>2021/01/12                                              | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe                                                                                                                 |
| Sample ID: BT-22                                                                                                                                                                                                                            | Instrumentation<br>CV/AF<br>ICP/MS                               | <b>Batch</b><br>7148863<br>7148861              | Extracted<br>N/A<br>2021/01/06               | <b>Date Analyzed</b><br>2021/01/12<br>2021/01/09                         | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                       |
| Sample ID: BT-22<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP431 Dup<br>Sample ID: BT-22<br>Matrix: Tissue | Instrumentation<br>CV/AF<br>ICP/MS                               | <b>Batch</b><br>7148863<br>7148861              | Extracted<br>N/A<br>2021/01/06               | <b>Date Analyzed</b><br>2021/01/12<br>2021/01/09                         | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:                                    |
| Sample ID: BT-22<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP431 Dup<br>Sample ID: BT-22                   | Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL                    | <b>Batch</b><br>7148863<br>7148861<br>7148862   | Extracted<br>N/A<br>2021/01/06<br>2021/01/06 | Date Analyzed<br>2021/01/12<br>2021/01/09<br>2021/01/12                  | Luz Aliaga Collected: 2020/09/09 Shipped: Received: 2020/12/01 Analyst Chamila Jayasinghe Jocelyn Baron-Inactive Luz Aliaga Collected: 2020/09/09 Shipped: Received: 2020/12/01                                          |
| Sample ID: BT-22<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP431 Dup<br>Sample ID: BT-22<br>Matrix: Tissue | Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation | Batch<br>7148863<br>7148861<br>7148862<br>Batch | Extracted<br>N/A<br>2021/01/06<br>2021/01/06 | Date Analyzed<br>2021/01/12<br>2021/01/09<br>2021/01/12<br>Date Analyzed | Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst |



### **TEST SUMMARY**

| BV Labs ID: OHP432<br>Sample ID: BT-23<br>Matrix: Tissue |                          |                         |                  |                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01 |
|----------------------------------------------------------|--------------------------|-------------------------|------------------|--------------------------|-----------------------------------------------------------|
| Test Description                                         | Instrumentation          | Batch                   | Extracted        | Date Analyzed            | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF                    | 7148863                 | N/A              | 2021/01/12               | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS                   | 7148861                 | 2021/01/06       | 2021/01/10               | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL                  | 7148862                 | 2021/01/06       | 2021/01/12               | Luz Aliaga                                                |
| BV Labs ID: OHP433<br>Sample ID: BT-24<br>Matrix: Tissue |                          |                         |                  |                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation          | Batch                   | Extracted        | Date Analyzed            | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF                    | 7148863                 | N/A              | 2021/01/12               | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS                   | 7148861                 | 2021/01/06       | 2021/01/10               | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL                  | 7148862                 | 2021/01/06       | 2021/01/12               | Luz Aliaga                                                |
| BV Labs ID: OHP434<br>Sample ID: BT-25<br>Matrix: Tissue |                          |                         |                  |                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation          | Batch                   | Extracted        | Date Analyzed            | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF                    | 7148863                 | N/A              | 2021/01/12               | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS                   | 7148861                 | 2021/01/06       | 2021/01/10               | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL                  | 7148862                 | 2021/01/06       | 2021/01/12               | Luz Aliaga                                                |
| BV Labs ID: OHP435<br>Sample ID: BT-26<br>Matrix: Tissue |                          |                         |                  |                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation          | Batch                   | Extracted        | Date Analyzed            | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF                    | 7148863                 | N/A              | 2021/01/12               | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS                   | 7148861                 | 2021/01/06       | 2021/01/10               | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL                  | 7148862                 | 2021/01/06       | 2021/01/12               | Luz Aliaga                                                |
| BV Labs ID: OHP436<br>Sample ID: BT-27<br>Matrix: Tissue |                          |                         |                  |                          | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation          | Batch                   | Extracted        | Date Analyzed            | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF                    | 7148863                 | N/A              | 2021/01/12               | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS                   | 7148861                 | 2021/01/06       | 2021/01/10               | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL                  | 7148862                 | 2021/01/06       | 2021/01/12               | Luz Aliaga                                                |
| BV Labs ID: OHP437                                       |                          |                         |                  |                          | Collected: 2020/09/09<br>Shipped:                         |
| Sample ID: BT-28<br>Matrix: Tissue                       |                          |                         |                  |                          | <b>Received</b> : 2020/12/01                              |
| Matrix: Tissue                                           | Instrumentation          | Batch                   | Extracted        | Date Analyzed            | Analyst                                                   |
|                                                          | Instrumentation<br>CV/AF | <b>Batch</b><br>7148863 | Extracted<br>N/A | Date Analyzed 2021/01/12 |                                                           |
| Matrix: Tissue                                           |                          |                         |                  |                          | Analyst                                                   |

#### Page 30 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP438<br>Sample ID: BT-29<br>Matrix: Tissue                                                                                                                                                                                |                            |                                        |                                              |                                                         | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                                                        | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                           |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                      | CV/AF                      | 7148863                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                   | ICP/MS                     | 7148861                                | 2021/01/06                                   | 2021/01/10                                              | Jocelyn Baron-Inactive                                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                      | BAL/BAL                    | 7148862                                | 2021/01/06                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                        |
| BV Labs ID: OHP439<br>Sample ID: BT-30<br>Matrix: Tissue                                                                                                                                                                                |                            |                                        |                                              |                                                         | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                         |
| Test Description                                                                                                                                                                                                                        | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                           |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                      | CV/AF                      | 7148863                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                   | ICP/MS                     | 7148861                                | 2021/01/06                                   | 2021/01/10                                              | Jocelyn Baron-Inactive                                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                      | BAL/BAL                    | 7148862                                | 2021/01/06                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                        |
| BV Labs ID: OHP440<br>Sample ID: BT-31<br>Matrix: Tissue                                                                                                                                                                                |                            |                                        |                                              |                                                         | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                         |
| Test Description                                                                                                                                                                                                                        | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                           |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                      | CV/AF                      | 7148863                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                   | ICP/MS                     | 7148861                                | 2021/01/06                                   | 2021/01/10                                              | Jocelyn Baron-Inactive                                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                      | BAL/BAL                    | 7148862                                | 2021/01/06                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                        |
| BV Labs ID: OHP441<br>Sample ID: BT-32<br>Matrix: Tissue                                                                                                                                                                                |                            |                                        |                                              |                                                         | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                         |
| Test Description                                                                                                                                                                                                                        | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                           |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                      | CV/AF                      | 7148863                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                   | ICP/MS                     | 7148861                                | 2021/01/06                                   | 2021/01/10                                              | Jocelyn Baron-Inactive                                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                      | BAL/BAL                    | 7148862                                | 2021/01/06                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                        |
|                                                                                                                                                                                                                                         |                            |                                        |                                              |                                                         |                                                                                                                                                                                   |
| BV Labs ID: OHP442<br>Sample ID: BT-33<br>Matrix: Tissue                                                                                                                                                                                |                            |                                        |                                              |                                                         | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01                                                                                                                         |
| Sample ID: BT-33<br>Matrix: Tissue                                                                                                                                                                                                      | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Shipped:                                                                                                                                                                          |
| Sample ID: BT-33<br>Matrix: Tissue<br>Fest Description                                                                                                                                                                                  | Instrumentation<br>CV/AF   | Batch<br>7148863                       | Extracted<br>N/A                             | Date Analyzed<br>2021/01/12                             | Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Sample ID: BT-33<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt                                                                                                                                            |                            |                                        |                                              | -                                                       | Shipped:<br>Received: 2020/12/01<br>Analyst                                                                                                                                       |
| Sample ID: BT-33                                                                                                                                                                                                                        | CV/AF                      | 7148863                                | N/A                                          | 2021/01/12                                              | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe                                                                                                                 |
| Sample ID: BT-33<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP443<br>Sample ID: BT-34<br>Matrix: Tissue | CV/AF<br>ICP/MS<br>BAL/BAL | 7148863<br>7148861<br>7148862          | N/A<br>2021/01/06<br>2021/01/06              | 2021/01/12<br>2021/01/10<br>2021/01/12                  | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01            |
| Sample ID: BT-33<br>Matrix: Tissue<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP443<br>Sample ID: BT-34                                       | CV/AF<br>ICP/MS            | 7148863<br>7148861                     | N/A<br>2021/01/06                            | 2021/01/12<br>2021/01/10                                | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:                                    |
| Sample ID: BT-33<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP443<br>Sample ID: BT-34<br>Matrix: Tissue | CV/AF<br>ICP/MS<br>BAL/BAL | 7148863<br>7148861<br>7148862          | N/A<br>2021/01/06<br>2021/01/06              | 2021/01/12<br>2021/01/10<br>2021/01/12                  | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01            |
| Sample ID: BT-33<br>Matrix: Tissue<br>Fest Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP443<br>Sample ID: BT-34<br>Matrix: Tissue | CV/AF<br>ICP/MS<br>BAL/BAL | 7148863<br>7148861<br>7148862<br>Batch | N/A<br>2021/01/06<br>2021/01/06<br>Extracted | 2021/01/12<br>2021/01/10<br>2021/01/12<br>Date Analyzed | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01<br>Analyst |

#### Page 31 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP444<br>Sample ID: BT-35<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/09<br>Shipped:<br>Received: 2020/12/01 |
|----------------------------------------------------------|-----------------|---------|------------|---------------|-----------------------------------------------------------|
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148863 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148861 | 2021/01/06 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148862 | 2021/01/06 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP445                                       |                 |         |            |               | <b>Collected:</b> 2020/09/09                              |
| Sample ID: BT-36<br>Matrix: Tissue                       |                 |         |            |               | Shipped:<br>Received: 2020/12/01                          |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148863 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148861 | 2021/01/06 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148862 | 2021/01/06 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP446<br>Sample ID: BT-37<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148863 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148861 | 2021/01/06 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148862 | 2021/01/06 | 2021/01/12    | Luz Aliaga                                                |
| Sample ID: BT-38<br>Matrix: Tissue                       |                 |         |            |               | Shipped:<br>Received: 2020/12/01                          |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148863 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148861 | 2021/01/06 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148862 | 2021/01/06 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP448<br>Sample ID: BT-39<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148863 | N/A        | 2021/01/13    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148861 | 2021/01/06 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148862 | 2021/01/06 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP449<br>Sample ID: BT-40<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148863 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148861 | 2021/01/06 | 2021/01/12    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148862 | 2021/01/06 | 2021/01/12    | Luz Aliaga                                                |
|                                                          | ,               |         | . ,, - 3   | - ,,          | · U·                                                      |

Page 32 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP450<br>Sample ID: BT-41<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
|----------------------------------------------------------|-----------------|---------|------------|---------------|-----------------------------------------------------------|
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148866 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148864 | 2021/01/06 | 2021/01/12    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148865 | 2021/01/11 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP451<br>Sample ID: BT-42<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148866 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148864 | 2021/01/06 | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148865 | 2021/01/11 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP452<br>Sample ID: BT-43<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148866 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148864 | 2021/01/06 | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148865 | 2021/01/11 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP453<br>Sample ID: BT-44<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148866 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148864 | 2021/01/06 | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148865 | 2021/01/11 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP454<br>Sample ID: BT-45<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148866 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148864 | 2021/01/06 | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148865 | 2021/01/11 | 2021/01/12    | Luz Aliaga                                                |
| BV Labs ID: OHP455<br>Sample ID: BT-46<br>Matrix: Tissue |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                   |
| Mercury in Tissue by CVAF - Wet Wt                       | CV/AF           | 7148866 | N/A        | 2021/01/12    | Chamila Jayasinghe                                        |
| Elements by CRC ICPMS - Tissue Wet Wt                    | ICP/MS          | 7148864 | 2021/01/06 | 2021/01/09    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                       | BAL/BAL         | 7148865 | 2021/01/11 | 2021/01/12    | Luz Aliaga                                                |
|                                                          |                 |         |            |               |                                                           |

Page 33 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP456<br>Sample ID: BT-47<br>Matrix: Tissue                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                                         |                                                                                                      | Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                                                                                                                                        | Instrumentation                                                             | Batch                                                      | Extracted                                                               | Date Analyzed                                                                                        | Analyst                                                                                                                                                                                                                                            |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                      | CV/AF                                                                       | 7148866                                                    | N/A                                                                     | 2021/01/12                                                                                           | Chamila Jayasinghe                                                                                                                                                                                                                                 |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                   | ICP/MS                                                                      | 7148864                                                    | 2021/01/06                                                              | 2021/01/09                                                                                           | Jocelyn Baron-Inactive                                                                                                                                                                                                                             |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                                      | BAL/BAL                                                                     | 7148865                                                    | 2021/01/11                                                              | 2021/01/12                                                                                           | Luz Aliaga                                                                                                                                                                                                                                         |
| BV Labs ID: OHP457<br>Sample ID: BT-48<br>Matrix: Tissue                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                                         |                                                                                                      | Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                          |
| Test Description                                                                                                                                                                                                                                                                                                        | Instrumentation                                                             | Batch                                                      | Extracted                                                               | Date Analyzed                                                                                        | Analyst                                                                                                                                                                                                                                            |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                      | CV/AF                                                                       | 7148866                                                    | N/A                                                                     | 2021/01/12                                                                                           | Chamila Jayasinghe                                                                                                                                                                                                                                 |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                   | ICP/MS                                                                      | 7148864                                                    | 2021/01/06                                                              | 2021/01/09                                                                                           | Jocelyn Baron-Inactive                                                                                                                                                                                                                             |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                                      | BAL/BAL                                                                     | 7148865                                                    | 2021/01/11                                                              | 2021/01/12                                                                                           | Luz Aliaga                                                                                                                                                                                                                                         |
| BV Labs ID: OHP458<br>Sample ID: BT-49<br>Matrix: Tissue                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                                         |                                                                                                      | Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                          |
| Test Description                                                                                                                                                                                                                                                                                                        | Instrumentation                                                             | Batch                                                      | Extracted                                                               | Date Analyzed                                                                                        | Analyst                                                                                                                                                                                                                                            |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                      | CV/AF                                                                       | 7148866                                                    | N/A                                                                     | 2021/01/12                                                                                           | Chamila Jayasinghe                                                                                                                                                                                                                                 |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                   | ICP/MS                                                                      | 7148864                                                    | 2021/01/06                                                              | 2021/01/09                                                                                           | Jocelyn Baron-Inactive                                                                                                                                                                                                                             |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                                                                      | BAL/BAL                                                                     | 7148865                                                    | 2021/01/11                                                              | 2021/01/12                                                                                           | Luz Aliaga                                                                                                                                                                                                                                         |
| BV Labs ID: OHP459<br>Sample ID: BT-50<br>Matrix: Tissue                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                                         |                                                                                                      | Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                          |
| Test Description                                                                                                                                                                                                                                                                                                        | Instrumentation                                                             | Batch                                                      | Extracted                                                               | Date Analyzed                                                                                        | Analyst                                                                                                                                                                                                                                            |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                                                                                      | CV/AF                                                                       | 7148866                                                    | N/A                                                                     | 2021/01/12                                                                                           |                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                            | -                                                                       |                                                                                                      | Chamila Jayasinghe                                                                                                                                                                                                                                 |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                                                                                   | ICP/MS                                                                      | 7148864                                                    | 2021/01/06                                                              | 2021/01/09                                                                                           | Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                                                                                                                                       |
| Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                                             | ICP/MS<br>BAL/BAL                                                           | 7148864<br>7148865                                         | 2021/01/06<br>2021/01/11                                                |                                                                                                      | · · ·                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                         |                                                                             |                                                            |                                                                         | 2021/01/09                                                                                           | Jocelyn Baron-Inactive                                                                                                                                                                                                                             |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue                                                                                                                                                                                                                          |                                                                             |                                                            |                                                                         | 2021/01/09                                                                                           | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:                                                                                                                                                                          |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue                                                                                                                                                                                                                          | BAL/BAL                                                                     | 7148865                                                    | 2021/01/11                                                              | 2021/01/09<br>2021/01/12                                                                             | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue<br>Test Description                                                                                                                                                                                                      | BAL/BAL<br>Instrumentation                                                  | 7148865<br>Batch                                           | 2021/01/11<br>Extracted                                                 | 2021/01/09<br>2021/01/12<br>Date Analyzed                                                            | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01<br>Analyst                                                                                                                                       |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                | BAL/BAL<br>Instrumentation<br>CV/AF                                         | 7148865<br>Batch<br>7148866                                | 2021/01/11<br>Extracted<br>N/A                                          | 2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12                                              | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe                                                                                                                 |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                       | BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS                               | 7148865<br>Batch<br>7148866<br>7148864                     | 2021/01/11<br>Extracted<br>N/A<br>2021/01/06                            | 2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/19                                | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                       |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP461<br>Sample ID: SH-T1<br>Matrix: Tissue                     | BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS                               | 7148865<br>Batch<br>7148866<br>7148864                     | 2021/01/11<br>Extracted<br>N/A<br>2021/01/06                            | 2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/19                                | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:                                    |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP461<br>Sample ID: SH-T1<br>Matrix: Tissue                     | BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL                    | 7148865<br>Batch<br>7148866<br>7148864<br>7148865          | 2021/01/11<br>Extracted<br>N/A<br>2021/01/06<br>2021/01/11              | 2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/19<br>2021/01/12                  | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01            |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP460<br>Sample ID: BT-51<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP461<br>Sample ID: SH-T1<br>Matrix: Tissue<br>Test Description | BAL/BAL<br>Instrumentation<br>CV/AF<br>ICP/MS<br>BAL/BAL<br>Instrumentation | 7148865<br>Batch<br>7148866<br>7148865<br>7148865<br>Batch | 2021/01/11<br>Extracted<br>N/A<br>2021/01/06<br>2021/01/11<br>Extracted | 2021/01/09<br>2021/01/12<br>Date Analyzed<br>2021/01/12<br>2021/01/12<br>2021/01/12<br>Date Analyzed | Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/29<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst |



### **TEST SUMMARY**

| BV Labs ID: OHP462<br>Sample ID: SH-T2<br>Matrix: Tissue                                                                                                                                                                                                    |                            |                                        |                                              |                                                         | Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                                                                            | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                                                    |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                      | 7148866                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                                         |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                     | 7148864                                | 2021/01/06                                   | 2021/01/09                                              | Jocelyn Baron-Inactive                                                                                                                                                                                     |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | BAL/BAL                    | 7148865                                | 2021/01/11                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                                                 |
| BV Labs ID: OHP463<br>Sample ID: SH-T3<br>Matrix: Tissue                                                                                                                                                                                                    |                            |                                        |                                              |                                                         | Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Test Description                                                                                                                                                                                                                                            | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                                                    |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                      | 7148866                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                                         |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                     | 7148864                                | 2021/01/06                                   | 2021/01/09                                              | Jocelyn Baron-Inactive                                                                                                                                                                                     |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | BAL/BAL                    | 7148865                                | 2021/01/11                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                                                 |
| BV Labs ID: OHP464<br>Sample ID: SH-T4<br>Matrix: Tissue                                                                                                                                                                                                    |                            |                                        |                                              |                                                         | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Test Description                                                                                                                                                                                                                                            | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                                                    |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                      | 7148866                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                                         |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                     | 7148864                                | 2021/01/06                                   | 2021/01/09                                              | Jocelyn Baron-Inactive                                                                                                                                                                                     |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | BAL/BAL                    | 7148865                                | 2021/01/11                                   | 2021/01/12                                              | Luz Aliaga                                                                                                                                                                                                 |
| BV Labs ID: OHP465<br>Sample ID: SH-T5<br>Matrix: Tissue                                                                                                                                                                                                    |                            | Datab                                  | 5 down dated                                 | Data Arabara                                            | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Test Description                                                                                                                                                                                                                                            | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Analyst                                                                                                                                                                                                    |
| Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                                                                          | CV/AF                      | 7148866                                | N/A                                          | 2021/01/12                                              | Chamila Jayasinghe                                                                                                                                                                                         |
| Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                                                                                                                       | ICP/MS                     | 7148864                                | 2021/01/06                                   | 2021/01/09                                              | Jocelyn Baron-Inactive                                                                                                                                                                                     |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                                                                          | BAL/BAL                    | 7148865                                | 2021/01/11                                   | 2021/01/12                                              |                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                             |                            |                                        |                                              |                                                         | Luz Aliaga                                                                                                                                                                                                 |
| BV Labs ID: OHP466<br>Sample ID: SH-T6<br>Matrix: Tissue                                                                                                                                                                                                    |                            |                                        |                                              |                                                         | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Sample ID: SH-T6<br>Matrix: Tissue                                                                                                                                                                                                                          | Instrumentation            | Batch                                  | Extracted                                    | Date Analyzed                                           | Collected: 2020/10/20<br>Shipped:                                                                                                                                                                          |
| Sample ID: SH-T6<br>Matrix: Tissue<br>Test Description                                                                                                                                                                                                      | Instrumentation<br>CV/AF   | <b>Batch</b><br>7148866                | Extracted N/A                                | Date Analyzed<br>2021/01/12                             | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                  |
| Sample ID: SH-T6<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt                                                                                                                                                                |                            |                                        |                                              | •                                                       | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01<br>Analyst                                                                                                                                       |
| Sample ID: SH-T6                                                                                                                                                                                                                                            | CV/AF                      | 7148866                                | N/A                                          | 2021/01/12                                              | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe                                                                                                                 |
| Sample ID: SH-T6<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt                                                                                                                       | CV/AF<br>ICP/MS            | 7148866<br>7148864                     | N/A<br>2021/01/06                            | 2021/01/12<br>2021/01/09                                | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive                                                                                       |
| Sample ID: SH-T6<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP467<br>Sample ID: SH-T7                                       | CV/AF<br>ICP/MS            | 7148866<br>7148864                     | N/A<br>2021/01/06                            | 2021/01/12<br>2021/01/09                                | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/11/07<br>Shipped:                                    |
| Sample ID: SH-T6<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP467<br>Sample ID: SH-T7<br>Matrix: Tissue<br>Test Description | CV/AF<br>ICP/MS<br>BAL/BAL | 7148866<br>7148864<br>7148865          | N/A<br>2021/01/06<br>2021/01/11              | 2021/01/12<br>2021/01/09<br>2021/01/12                  | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/11/07<br>Shipped:<br>Received: 2020/12/01            |
| Sample ID: SH-T6<br>Matrix: Tissue<br>Test Description<br>Mercury in Tissue by CVAF - Wet Wt<br>Elements by CRC ICPMS - Tissue Wet Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP467<br>Sample ID: SH-T7<br>Matrix: Tissue                     | CV/AF<br>ICP/MS<br>BAL/BAL | 7148866<br>7148864<br>7148865<br>Batch | N/A<br>2021/01/06<br>2021/01/11<br>Extracted | 2021/01/12<br>2021/01/09<br>2021/01/12<br>Date Analyzed | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Chamila Jayasinghe<br>Jocelyn Baron-Inactive<br>Luz Aliaga<br>Collected: 2020/11/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst |



### **TEST SUMMARY**

| Mercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469OHP469OHP469OHP469OHP469Sample ID:SH-IO1<br>Matrix:InstrumentationBatchExtractedDate AuMercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469 Dup<br>Sample ID:SH-IO1<br>Matrix:TissueSH-IO1<br>Matrix:2021/01/112021/0                                                                             | Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>nalyzed Analyst<br>01/12 Chamila Jayasinghe<br>01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469OHP469OHP469OHP469OHP469Sample ID:SH-IO1<br>Matrix:TissueBatchExtractedDate AuMercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469 Dup<br>Sample ID:SH-IO1<br>Matrix:TissueSH-IO1<br>Matrix:2021/01/112021/0                                                                                      | 01/12       Chamila Jayasinghe         01/09       Jocelyn Baron-Inactive         01/12       Luz Aliaga         Collected: 2020/09/07         Shipped:       Received: 2020/12/01         Inalyzed Analyst         01/12       Chamila Jayasinghe         01/12       Chamila Jayasinghe         01/12       Luz Aliaga         Collected: 2020/09/07 |
| Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469Sample ID:SH-IO1Matrix:TissueTest DescriptionInstrumentationBatchExtractedDate ArMercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469 Dup<br>Sample ID:SH-IO1<br>Matrix:TissueSH-IO1<br>Matrix:71488652021/01/11BV Labs ID:OHP469 Dup<br>Sample ID:SH-IO1<br>Matrix:TissueSH-IO1<br>Matrix:SH-IO1<br>Matrix:SH-IO1<br>Matrix:SH-IO1<br>Matrix:SH-IO1<br> | Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>nalyzed Analyst<br>01/12 Chamila Jayasinghe<br>01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                  |
| Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469Sample ID:SH-IO1Matrix:TissueTest DescriptionInstrumentationBatchExtractedDate ArMercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/1062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469 DupSample ID:SH-IO1Matrix:Tissue                                                                                                                                                                                                                                                    | Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>01/12 Chamila Jayasinghe<br>01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                          |
| BV Labs ID:       OHP469         Sample ID:       SH-IO1         Matrix:       Tissue         Test Description       Instrumentation       Batch       Extracted       Date And Mercury in Tissue by CVAF - Wet Wt         CV/AF       7148866       N/A       2021/0         Elements by CR ICPMS - Tissue Wet Wt       ICP/MS       7148864       2021/01/06       2021/0         Moisture in Tissue (Subcontracted)       BAL/BAL       7148865       2021/01/11       2021/0         BV Labs ID:       OHP469 Dup       Sample ID:       SH-IO1       Matrix:       Tissue                                                                                    | Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>01/12 Chamila Jayasinghe<br>01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                          |
| Mercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469 Dup<br>Sample ID:SH-IO1<br>Matrix:Tissue                                                                                                                                                                                                                                                                                                                                                                                                               | 01/12 Chamila Jayasinghe<br>01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                                                                                                  |
| Mercury in Tissue by CVAF - Wet WtCV/AF7148866N/A2021/0Elements by CRC ICPMS - Tissue Wet WtICP/MS71488642021/01/062021/0Moisture in Tissue (Subcontracted)BAL/BAL71488652021/01/112021/0BV Labs ID:OHP469 DupSample ID:SH-IO1<br>Matrix:Tissue                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/12 Chamila Jayasinghe<br>01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                                                                                                  |
| Elements by CRC ICPMS - Tissue Wet Wt ICP/MS 7148864 2021/01/06 2021/0<br>Moisture in Tissue (Subcontracted) BAL/BAL 7148865 2021/01/11 2021/0<br>BV Labs ID: OHP469 Dup<br>Sample ID: SH-IO1<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/09 Jocelyn Baron-Inactive<br>01/12 Luz Aliaga<br>Collected: 2020/09/07                                                                                                                                                                                                                                                                              |
| Moisture in Tissue (Subcontracted) BAL/BAL 7148865 2021/01/11 2021/0<br>BV Labs ID: OHP469 Dup<br>Sample ID: SH-IO1<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01/12 Luz Aliaga Collected: 2020/09/07                                                                                                                                                                                                                                                                                                                 |
| BV Labs ID: OHP469 Dup<br>Sample ID: SH-IO1<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Collected:</b> 2020/09/07                                                                                                                                                                                                                                                                                                                           |
| Sample ID: SH-IO1<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,,                                                                                                                                                                                                                                                                                                                                                   |
| Test Description Batch Extracted Date A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nalyzed Analyst                                                                                                                                                                                                                                                                                                                                        |
| Mercury in Tissue by CVAF - Wet Wt CV/AF 7148866 N/A 2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                    |
| Elements by CRC ICPMS - Tissue Wet Wt         ICP/MS         7148864         2021/01/06         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , ,                                                                                                                                                                                                                                                                                                                                                  |
| Moisture in Tissue (Subcontracted) BAL/BAL 7148865 2021/01/11 2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                                                                                                                                                                                                                                                                                                                                                  |
| Sample ID: SH-IO2<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                                                                                                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalyzed Analyst                                                                                                                                                                                                                                                                                                                                        |
| Mercury in Tissue by CVAF - Wet Wt         CV/AF         7148870         N/A         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01/12 Chamila Jayasinghe                                                                                                                                                                                                                                                                                                                               |
| Elements by CRC ICPMS - Tissue Wet Wt         ICP/MS         7148868         2021/01/06         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01/10 Jocelyn Baron-Inactive                                                                                                                                                                                                                                                                                                                           |
| Moisture in Tissue (Subcontracted)         BAL/BAL         7148869         2021/01/11         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/12 Luz Aliaga                                                                                                                                                                                                                                                                                                                                       |
| BV Labs ID: OHP471<br>Sample ID: SH-IO3<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collected:         2020/09/10           Shipped:         2020/12/01                                                                                                                                                                                                                                                                                    |
| Test Description Instrumentation Batch Extracted Date A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nalyzed Analyst                                                                                                                                                                                                                                                                                                                                        |
| Mercury in Tissue by CVAF - Wet Wt CV/AF 7148870 N/A 2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                    |
| Elements by CRC ICPMS - Tissue Wet Wt ICP/MS 7148868 2021/01/06 2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |
| Moisture in Tissue (Subcontracted)         BAL/BAL         7148869         2021/01/11         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ,                                                                                                                                                                                                                                                                                                                                                    |
| BV Labs ID: OHP472<br>Sample ID: SH-IO4<br>Matrix: Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collected: 2020/10/20<br>Shipped:<br>Received: 2020/12/01                                                                                                                                                                                                                                                                                              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nalyzed Analyst                                                                                                                                                                                                                                                                                                                                        |
| Mercury in Tissue by CVAF - Wet Wt         CV/AF         7148870         N/A         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01/12 Chamila Jayasinghe                                                                                                                                                                                                                                                                                                                               |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01/10 Jocelyn Baron-Inactive                                                                                                                                                                                                                                                                                                                           |
| Elements by CRC ICPMS - Tissue Wet Wt         ICP/MS         7148868         2021/01/06         2021/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                        |

Page 36 of 58



### **TEST SUMMARY**

| BV Labs ID: OHP473<br>Sample ID: SH-IO5<br>Matrix: Tissue     |                           |                  |                         |                          | Collected:<br>Shipped:<br>Received: | 2020/10/20<br>2020/12/01 |
|---------------------------------------------------------------|---------------------------|------------------|-------------------------|--------------------------|-------------------------------------|--------------------------|
| Test Description                                              | Instrumentation           | Batch            | Extracted               | Date Analyzed            | Analyst                             |                          |
| Mercury in Tissue by CVAF - Wet Wt                            | CV/AF                     | 7148870          | N/A                     | 2021/01/12               | Chamila Ja                          | vasinghe                 |
| Elements by CRC ICPMS - Tissue Wet Wt                         | ICP/MS                    | 7148868          | 2021/01/06              | 2021/01/10               | Jocelyn Ba                          | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                            | BAL/BAL                   | 7148869          | 2021/01/11              | 2021/01/12               | Luz Aliaga                          |                          |
| BV Labs ID: OHP474<br>Sample ID: SH-IO6<br>Matrix: Tissue     |                           |                  |                         |                          | Collected:<br>Shipped:<br>Received: | 2020/10/20<br>2020/12/01 |
| Test Description                                              | Instrumentation           | Batch            | Extracted               | Date Analyzed            | Analyst                             |                          |
| Mercury in Tissue by CVAF - Wet Wt                            | CV/AF                     | 7148870          | N/A                     | 2021/01/12               | Chamila Ja                          | yasinghe                 |
| Elements by CRC ICPMS - Tissue Wet Wt                         | ICP/MS                    | 7148868          | 2021/01/06              | 2021/01/10               | Jocelyn Ba                          | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                            | BAL/BAL                   | 7148869          | 2021/01/11              | 2021/01/12               | Luz Aliaga                          |                          |
| BV Labs ID: OHP475<br>Sample ID: SH-IO7<br>Matrix: Tissue     |                           |                  |                         |                          | Collected:<br>Shipped:<br>Received: | 2020/11/07<br>2020/12/01 |
| Test Description                                              | Instrumentation           | Batch            | Extracted               | Date Analyzed            | Analyst                             |                          |
| Mercury in Tissue by CVAF - Wet Wt                            | CV/AF                     | 7148870          | N/A                     | 2021/01/12               | Chamila Ja                          | yasinghe                 |
| Elements by CRC ICPMS - Tissue Wet Wt                         | ICP/MS                    | 7148868          | 2021/01/06              | 2021/01/10               | Jocelyn Ba                          | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                            | BAL/BAL                   | 7148869          | 2021/01/11              | 2021/01/12               | Luz Aliaga                          |                          |
| BV Labs ID: OHP476<br>Sample ID: SH-IO8<br>Matrix: Tissue     |                           |                  |                         |                          | Collected:<br>Shipped:<br>Received: | 2020/11/08<br>2020/12/01 |
| Test Description                                              | Instrumentation           | Batch            | Extracted               | Date Analyzed            | Analyst                             |                          |
| Mercury in Tissue by CVAF - Wet Wt                            | CV/AF                     | 7148870          | N/A                     | 2021/01/12               | Chamila Ja                          | yasinghe                 |
| Elements by CRC ICPMS - Tissue Wet Wt                         | ICP/MS                    | 7148868          | 2021/01/06              | 2021/01/10               | Jocelyn Ba                          | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                            | BAL/BAL                   | 7148869          | 2021/01/11              | 2021/01/12               | Luz Aliaga                          |                          |
| BV Labs ID: OHP476 Dup<br>Sample ID: SH-IO8<br>Matrix: Tissue |                           |                  |                         |                          | Collected:<br>Shipped:<br>Received: | 2020/11/08<br>2020/12/01 |
| Test Description                                              | Instrumentation           | Batch            | Extracted               | Date Analyzed            | Analyst                             |                          |
| Mercury in Tissue by CVAF - Wet Wt                            | CV/AF                     | 7148870          | N/A                     | 2021/01/12               | Chamila Ja                          | yasinghe                 |
| Elements by CRC ICPMS - Tissue Wet Wt                         | ICP/MS                    | 7148868          | 2021/01/06              | 2021/01/10               | Jocelyn Ba                          | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                            | BAL/BAL                   | 7148869          | 2021/01/11              | 2021/01/12               | Luz Aliaga                          |                          |
| BV Labs ID: OHP477                                            |                           |                  |                         |                          | Collected:<br>Shipped:              | 2020/09/05               |
| Sample ID: LT-1<br>Matrix: Tissue                             |                           |                  |                         |                          | Received:                           | 2020/12/01               |
| Matrix: Tissue                                                | Instrumentation           | Batch            | Extracted               | Date Analyzed            | Analyst                             | 2020/12/01               |
|                                                               | Instrumentation<br>ICP/MS | Batch<br>7148871 | Extracted<br>2021/01/07 | Date Analyzed 2021/01/10 | Analyst                             | ron-Inactive             |



### **TEST SUMMARY**

| BV Labs ID: OHP477 Dup<br>Sample ID: LT-1<br>Matrix: Tissue                                                                                                                                           |                                      |                             |                                       |                                           | Collected: 2020/09/05<br>Shipped:<br>Received: 2020/12/01                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                                      | Instrumentation                      | Batch                       | Extracted                             | Date Analyzed                             | Analyst                                                                                                                                                           |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                                               | ICP/MS                               | 7148871                     | 2021/01/07                            | 2021/01/10                                | Jocelyn Baron-Inactive                                                                                                                                            |
| BV Labs ID: OHP478<br>Sample ID: LT-2<br>Matrix: Tissue                                                                                                                                               |                                      |                             |                                       |                                           | Collected: 2020/09/06<br>Shipped:<br>Received: 2020/12/01                                                                                                         |
| Test Description                                                                                                                                                                                      | Instrumentation                      | Batch                       | Extracted                             | Date Analyzed                             | Analyst                                                                                                                                                           |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                                               | ICP/MS                               | 7148871                     | 2021/01/07                            | 2021/01/10                                | Jocelyn Baron-Inactive                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                    | BAL/BAL                              | 7148872                     | 2020/12/11                            | 2020/12/16                                | Cyrhea Goda                                                                                                                                                       |
| BV Labs ID: OHP479<br>Sample ID: LT-3<br>Matrix: Tissue                                                                                                                                               |                                      |                             |                                       |                                           | Collected: 2020/09/07<br>Shipped:<br>Received: 2020/12/01                                                                                                         |
| Test Description                                                                                                                                                                                      | Instrumentation                      | Batch                       | Extracted                             | Date Analyzed                             | Analyst                                                                                                                                                           |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                                               | ICP/MS                               | 7148871                     | 2021/01/07                            | 2021/01/10                                | Jocelyn Baron-Inactive                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                    | BAL/BAL                              | 7148872                     | 2020/12/11                            | 2020/12/16                                | Cyrhea Goda                                                                                                                                                       |
| BV Labs ID: OHP480<br>Sample ID: LT-4<br>Matrix: Tissue                                                                                                                                               |                                      |                             |                                       |                                           | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01                                                                                                         |
| Test Description                                                                                                                                                                                      | Instrumentation                      | Batch                       | Extracted                             | Date Analyzed                             | Analyst                                                                                                                                                           |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                                               | ICP/MS                               | 7148871                     | 2021/01/07                            | 2021/01/10                                | Jocelyn Baron-Inactive                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                    | BAL/BAL                              | 7148872                     | 2020/12/11                            | 2020/12/16                                | Cyrhea Goda                                                                                                                                                       |
| BV Labs ID: OHP481<br>Sample ID: LT-5<br>Matrix: Tissue                                                                                                                                               |                                      |                             |                                       |                                           | Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                                                         |
| Test Description                                                                                                                                                                                      | Instrumentation                      | Batch                       | Extracted                             | Date Analyzed                             | Analyst                                                                                                                                                           |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                                               | ICP/MS                               | 7140071                     |                                       |                                           |                                                                                                                                                                   |
|                                                                                                                                                                                                       | ICF/IVI3                             | 7148871                     | 2021/01/07                            | 2021/01/10                                | Jocelyn Baron-Inactive                                                                                                                                            |
| Moisture in Tissue (Subcontracted)                                                                                                                                                                    | BAL/BAL                              | 7148871                     | 2021/01/07<br>2020/12/11              | 2021/01/10<br>2020/12/16                  | Jocelyn Baron-Inactive<br>Cyrhea Goda                                                                                                                             |
| Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP482<br>Sample ID: LT-6<br>Matrix: Tissue                                                                                                         | ,                                    |                             |                                       |                                           | <i>i</i>                                                                                                                                                          |
| BV Labs ID: OHP482<br>Sample ID: LT-6                                                                                                                                                                 | ,                                    | 7148872<br>Batch            |                                       |                                           | Cyrhea Goda<br>Collected: 2020/09/10<br>Shipped:                                                                                                                  |
| BV Labs ID: OHP482<br>Sample ID: LT-6<br>Matrix: Tissue<br>Test Description<br>Elements in Plants by CRC ICPMS -Dry Wt                                                                                | BAL/BAL<br>Instrumentation<br>ICP/MS | 7148872<br>Batch<br>7148871 | 2020/12/11<br>Extracted<br>2021/01/07 | 2020/12/16<br>Date Analyzed<br>2021/01/10 | Cyrhea Goda<br>Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                                          |
| BV Labs ID: OHP482<br>Sample ID: LT-6<br>Matrix: Tissue<br>Test Description<br>Elements in Plants by CRC ICPMS -Dry Wt                                                                                | BAL/BAL                              | 7148872<br>Batch            | 2020/12/11<br>Extracted               | 2020/12/16<br>Date Analyzed               | Cyrhea Goda<br>Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01<br>Analyst                                                                               |
| BV Labs ID: OHP482<br>Sample ID: LT-6<br>Matrix: Tissue<br>Test Description                                                                                                                           | BAL/BAL<br>Instrumentation<br>ICP/MS | 7148872<br>Batch<br>7148871 | 2020/12/11<br>Extracted<br>2021/01/07 | 2020/12/16<br>Date Analyzed<br>2021/01/10 | Cyrhea Goda<br>Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Jocelyn Baron-Inactive                                                     |
| BV Labs ID: OHP482<br>Sample ID: LT-6<br>Matrix: Tissue<br>Test Description<br>Elements in Plants by CRC ICPMS -Dry Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP483<br>Sample ID: LT-7 | BAL/BAL<br>Instrumentation<br>ICP/MS | 7148872<br>Batch<br>7148871 | 2020/12/11<br>Extracted<br>2021/01/07 | 2020/12/16<br>Date Analyzed<br>2021/01/10 | Cyrhea Goda<br>Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01<br>Analyst<br>Jocelyn Baron-Inactive<br>Cyrhea Goda<br>Collected: 2020/09/10<br>Shipped: |



### **TEST SUMMARY**

| BV Labs ID: OHP483<br>Sample ID: LT-7<br>Matrix: Tissue                                                                                                                         |                 |         |            |               | Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------------|---------------|---------------------------------------------------------------------------------------------------------------------------|
| Test Description                                                                                                                                                                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                                                                                   |
| Moisture in Tissue (Subcontracted)                                                                                                                                              | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                                                                                               |
| BV Labs ID: OHP484<br>Sample ID: LT-8<br>Matrix: Tissue                                                                                                                         |                 |         |            |               | Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                 |
| Test Description                                                                                                                                                                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                                                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                         | ICP/MS          | 7148871 | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                                                                                    |
| Moisture in Tissue (Subcontracted)                                                                                                                                              | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                                                                                               |
| BV Labs ID: OHP485<br>Sample ID: LT-9<br>Matrix: Tissue                                                                                                                         |                 |         |            |               | Collected: 2020/09/10<br>Shipped:<br>Received: 2020/12/01                                                                 |
| Test Description                                                                                                                                                                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                                                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                         | ICP/MS          | 7148871 | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                                                                                    |
| Moisture in Tissue (Subcontracted)                                                                                                                                              | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                                                                                               |
| BV Labs ID: OHP486<br>Sample ID: LT-10<br>Matrix: Tissue                                                                                                                        |                 |         |            |               | Collected: 2020/09/11<br>Shipped:<br>Received: 2020/12/01                                                                 |
| Test Description                                                                                                                                                                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                                                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                         | ICP/MS          | 7148871 | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                                                                                    |
| Moisture in Tissue (Subcontracted)                                                                                                                                              | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                                                                                               |
| BV Labs ID: OHP487<br>Sample ID: LT-DUP<br>Matrix: Tissue                                                                                                                       |                 |         |            |               | Collected: 2020/11/30<br>Shipped:<br>Received: 2020/12/01                                                                 |
| Test Description                                                                                                                                                                | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                                                                                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                                                                                                                                         | ICP/MS          | 7148871 | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                                                                                    |
| Moisture in Tissue (Subcontracted)                                                                                                                                              | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                                                                                               |
|                                                                                                                                                                                 |                 |         |            |               |                                                                                                                           |
| BV Labs ID: OHP488<br>Sample ID: BB-1<br>Matrix: Tissue                                                                                                                         |                 |         |            |               | Collected: 2020/11/07<br>Shipped:<br>Received: 2020/12/01                                                                 |
| Sample ID: BB-1<br>Matrix: Tissue<br>Test Description                                                                                                                           | Instrumentation | Batch   | Extracted  | Date Analyzed | Shipped:<br>Received: 2020/12/01<br>Analyst                                                                               |
| Sample ID: BB-1<br>Matrix: Tissue<br>Test Description<br>Elements in Plants by CRC ICPMS -Dry Wt                                                                                | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Jocelyn Baron-Inactive                                                     |
| Sample ID: BB-1<br>Matrix: Tissue<br>Test Description<br>Elements in Plants by CRC ICPMS -Dry Wt                                                                                |                 |         |            | -             | Shipped:<br>Received: 2020/12/01<br>Analyst                                                                               |
| Sample ID: BB-1                                                                                                                                                                 | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Jocelyn Baron-Inactive                                                     |
| Sample ID: BB-1<br>Matrix: Tissue<br>Test Description<br>Elements in Plants by CRC ICPMS -Dry Wt<br>Moisture in Tissue (Subcontracted)<br>BV Labs ID: OHP489<br>Sample ID: BB-2 | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Shipped:<br>Received: 2020/12/01<br>Analyst<br>Jocelyn Baron-Inactive<br>Cyrhea Goda<br>Collected: 2020/11/08<br>Shipped: |



### **TEST SUMMARY**

| BV Labs ID: OHP489<br>Sample ID: BB-2<br>Matrix: Tissue     |                 |          |            |               | Collected: 2020/11/08<br>Shipped:<br>Received: 2020/12/01 |
|-------------------------------------------------------------|-----------------|----------|------------|---------------|-----------------------------------------------------------|
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148872  | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                               |
| BV Labs ID: OHP490<br>Sample ID: BB-3<br>Matrix: Tissue     |                 |          |            |               | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                     | ICP/MS          | 7148873  | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148872  | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                               |
| BV Labs ID: OHP491<br>Sample ID: BB-4<br>Matrix: Tissue     |                 |          |            |               | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                     | ICP/MS          | 7148873  | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148872  | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                               |
| BV Labs ID: OHP491 Dup<br>Sample ID: BB-4<br>Matrix: Tissue |                 |          |            |               | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                     | ICP/MS          | 7148873  | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| BV Labs ID: OHP492<br>Sample ID: BB-5<br>Matrix: Tissue     |                 |          |            |               | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                     | ICP/MS          | 7148873  | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148872  | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                               |
| BV Labs ID: OHP493<br>Sample ID: BB-6<br>Matrix: Tissue     |                 |          |            |               | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                     | ICP/MS          | 7148873  | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Moisture in Tissue (Subcontracted)                          | BAL/BAL         | 7148872  | 2020/12/11 | 2020/12/16    | Cyrhea Goda                                               |
| BV Labs ID: OHP494<br>Sample ID: BB-7<br>Matrix: Tissue     |                 |          |            |               | Collected: 2020/09/08<br>Shipped:<br>Received: 2020/12/01 |
| Test Description                                            | Instrumentation | Batch    | Extracted  | Date Analyzed | Analyst                                                   |
| Elements in Plants by CRC ICPMS -Dry Wt                     | ICP/MS          | 7148873  | 2021/01/07 | 2021/01/10    | Jocelyn Baron-Inactive                                    |
| Elements in Plants by CRC ICPIVIS -DIV WI                   | 101/1110        | / 1.00/0 |            | ,,            | Jocelyn Baron maenve                                      |



### **TEST SUMMARY**

| BV Labs ID: OHP495<br>Sample ID: BB-8<br>Matrix: Tissue   |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
|-----------------------------------------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Elements in Plants by CRC ICPMS -Dry Wt                   | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Jocelyn Bai                         | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                        | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goo                          | da                       |
| BV Labs ID: OHP496<br>Sample ID: BB-9<br>Matrix: Tissue   |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Elements in Plants by CRC ICPMS -Dry Wt                   | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Jocelyn Bai                         | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                        | BAL/BAL         | 7148872 | 2020/12/11 | 2020/12/16    | Cyrhea Goo                          | da                       |
| BV Labs ID: OHP497<br>Sample ID: BB-10<br>Matrix: Tissue  |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Elements in Plants by CRC ICPMS -Dry Wt                   | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Jocelyn Bai                         | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                        | BAL/BAL         | 7148874 | 2020/12/16 | 2021/01/12    | Cyrhea Goo                          | da                       |
| BV Labs ID: OHP498<br>Sample ID: BB-DUP<br>Matrix: Tissue |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/11/30<br>2020/12/01 |
| Test Description                                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Elements in Plants by CRC ICPMS -Dry Wt                   | ICP/MS          | 7148873 | 2021/01/07 | 2021/01/10    | Jocelyn Bai                         | ron-Inactive             |
| Moisture in Tissue (Subcontracted)                        | BAL/BAL         | 7148874 | 2020/12/16 | 2021/01/12    | Cyrhea Go                           | da                       |



### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 -5.0°C

Results relate only to the items tested.



## QUALITY ASSURANCE REPORT

|          |                                |            | RPD       |           |  |
|----------|--------------------------------|------------|-----------|-----------|--|
| QC Batch | Parameter                      | Date       | Value (%) | QC Limits |  |
| 7148857  | Total (Wet Wt) Aluminum (Al)   | 2021/01/09 | 26        | 40        |  |
| 7148857  | Total (Wet Wt) Antimony (Sb)   | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Arsenic (As)    | 2021/01/09 | 7.5       | 40        |  |
| 7148857  | Total (Wet Wt) Barium (Ba)     | 2021/01/09 | 25        | 40        |  |
| 7148857  | Total (Wet Wt) Beryllium (Be)  | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Bismuth (Bi)    | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Boron (B)       | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Cadmium (Cd)    | 2021/01/09 | 7.3       | 40        |  |
| 7148857  | Total (Wet Wt) Calcium (Ca)    | 2021/01/09 | 25        | 60        |  |
| 7148857  | Total (Wet Wt) Chromium (Cr)   | 2021/01/09 | 35        | 40        |  |
| 7148857  | Total (Wet Wt) Cobalt (Co)     | 2021/01/09 | 3.7       | 40        |  |
| 7148857  | Total (Wet Wt) Copper (Cu)     | 2021/01/09 | 4.4       | 40        |  |
| 7148857  | Total (Wet Wt) Iron (Fe)       | 2021/01/09 | 1.8       | 40        |  |
| 7148857  | Total (Wet Wt) Lead (Pb)       | 2021/01/09 | 13        | 40        |  |
| 7148857  | Total (Wet Wt) Magnesium (Mg)  | 2021/01/09 | 3.4       | 40        |  |
| 7148857  | Total (Wet Wt) Manganese (Mn)  | 2021/01/09 | 15        | 40        |  |
| 7148857  | Total (Wet Wt) Molybdenum (Mo) | 2021/01/09 | 18        | 40        |  |
| 7148857  | Total (Wet Wt) Nickel (Ni)     | 2021/01/09 | 21        | 40        |  |
| 7148857  | Total (Wet Wt) Phosphorus (P)  | 2021/01/09 | 4.0       | 40        |  |
| 7148857  | Total (Wet Wt) Potassium (K)   | 2021/01/09 | 1.1       | 40        |  |
| 7148857  | Total (Wet Wt) Selenium (Se)   | 2021/01/09 | 1.0       | 40        |  |
| 7148857  | Total (Wet Wt) Silver (Ag)     | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Sodium (Na)     | 2021/01/09 | 4.5       | 40        |  |
| 7148857  | Total (Wet Wt) Strontium (Sr)  | 2021/01/09 | 21        | 60        |  |
| 7148857  | Total (Wet Wt) Thallium (TI)   | 2021/01/09 | 4.4       | 40        |  |
| 7148857  | Total (Wet Wt) Tin (Sn)        | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Titanium (Ti)   | 2021/01/09 | 7.8       | 40        |  |
| 7148857  | Total (Wet Wt) Uranium (U)     | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Vanadium (V)    | 2021/01/09 | NC        | 40        |  |
| 7148857  | Total (Wet Wt) Zinc (Zn)       | 2021/01/09 | 4.9       | 40        |  |
| 7148859  | Moisture-Subcontracted         | 2021/01/12 | 0.65      | 20        |  |
| 7148860  | Mercury (Hg)                   | 2021/01/12 | 11 (1)    | 20        |  |
| 7148861  | Total (Wet Wt) Aluminum (Al)   | 2021/01/10 | 7.8       | 40        |  |



|          |                                |            | RPD       |           |  |
|----------|--------------------------------|------------|-----------|-----------|--|
| QC Batch | Parameter                      | Date       | Value (%) | QC Limits |  |
| 7148861  | Total (Wet Wt) Antimony (Sb)   | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Arsenic (As)    | 2021/01/10 | 3.5       | 40        |  |
| 7148861  | Total (Wet Wt) Barium (Ba)     | 2021/01/10 | 34        | 40        |  |
| 7148861  | Total (Wet Wt) Beryllium (Be)  | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Bismuth (Bi)    | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Boron (B)       | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Cadmium (Cd)    | 2021/01/10 | 20        | 40        |  |
| 7148861  | Total (Wet Wt) Calcium (Ca)    | 2021/01/10 | 34        | 60        |  |
| 7148861  | Total (Wet Wt) Chromium (Cr)   | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Cobalt (Co)     | 2021/01/10 | 10        | 40        |  |
| 7148861  | Total (Wet Wt) Copper (Cu)     | 2021/01/10 | 5.5       | 40        |  |
| 7148861  | Total (Wet Wt) Iron (Fe)       | 2021/01/10 | 14        | 40        |  |
| 7148861  | Total (Wet Wt) Lead (Pb)       | 2021/01/10 | 23        | 40        |  |
| 7148861  | Total (Wet Wt) Magnesium (Mg)  | 2021/01/10 | 8.1       | 40        |  |
| 7148861  | Total (Wet Wt) Manganese (Mn)  | 2021/01/10 | 38        | 40        |  |
| 7148861  | Total (Wet Wt) Molybdenum (Mo) | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Nickel (Ni)     | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Phosphorus (P)  | 2021/01/10 | 14        | 40        |  |
| 7148861  | Total (Wet Wt) Potassium (K)   | 2021/01/10 | 1.6       | 40        |  |
| 7148861  | Total (Wet Wt) Selenium (Se)   | 2021/01/10 | 4.3       | 40        |  |
| 7148861  | Total (Wet Wt) Silver (Ag)     | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Sodium (Na)     | 2021/01/10 | 6.7       | 40        |  |
| 7148861  | Total (Wet Wt) Strontium (Sr)  | 2021/01/10 | 30        | 60        |  |
| 7148861  | Total (Wet Wt) Thallium (TI)   | 2021/01/10 | 2.1       | 40        |  |
| 7148861  | Total (Wet Wt) Tin (Sn)        | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Titanium (Ti)   | 2021/01/10 | 31        | 40        |  |
| 7148861  | Total (Wet Wt) Uranium (U)     | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Vanadium (V)    | 2021/01/10 | NC        | 40        |  |
| 7148861  | Total (Wet Wt) Zinc (Zn)       | 2021/01/10 | 13        | 40        |  |
| 7148862  | Moisture-Subcontracted         | 2021/01/12 | 1.0       | 20        |  |
| 7148863  | Mercury (Hg)                   | 2021/01/12 | 6.9 (1)   | 20        |  |
| 7148864  | Total (Wet Wt) Aluminum (Al)   | 2021/01/09 | 8.9       | 40        |  |
| 7148864  | Total (Wet Wt) Antimony (Sb)   | 2021/01/09 | NC        | 40        |  |



|          |                                |            | RPD       |           |
|----------|--------------------------------|------------|-----------|-----------|
| QC Batch | Parameter                      | Date       | Value (%) | QC Limits |
| 7148864  | Total (Wet Wt) Arsenic (As)    | 2021/01/09 | 3.1       | 40        |
| 7148864  | Total (Wet Wt) Barium (Ba)     | 2021/01/09 | 2.1       | 40        |
| 7148864  | Total (Wet Wt) Beryllium (Be)  | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Bismuth (Bi)    | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Boron (B)       | 2021/01/09 | 0.49      | 40        |
| 7148864  | Total (Wet Wt) Cadmium (Cd)    | 2021/01/09 | 9.0       | 40        |
| 7148864  | Total (Wet Wt) Calcium (Ca)    | 2021/01/09 | 0.11      | 60        |
| 7148864  | Total (Wet Wt) Chromium (Cr)   | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Cobalt (Co)     | 2021/01/09 | 2.7       | 40        |
| 7148864  | Total (Wet Wt) Copper (Cu)     | 2021/01/09 | 1.0       | 40        |
| 7148864  | Total (Wet Wt) Iron (Fe)       | 2021/01/09 | 0.81      | 40        |
| 7148864  | Total (Wet Wt) Lead (Pb)       | 2021/01/09 | 3.0       | 40        |
| 7148864  | Total (Wet Wt) Magnesium (Mg)  | 2021/01/09 | 0.82      | 40        |
| 7148864  | Total (Wet Wt) Manganese (Mn)  | 2021/01/09 | 1.4       | 40        |
| 7148864  | Total (Wet Wt) Molybdenum (Mo) | 2021/01/09 | 0.96      | 40        |
| 7148864  | Total (Wet Wt) Nickel (Ni)     | 2021/01/09 | 0.77      | 40        |
| 7148864  | Total (Wet Wt) Phosphorus (P)  | 2021/01/09 | 0.31      | 40        |
| 7148864  | Total (Wet Wt) Potassium (K)   | 2021/01/09 | 1.1       | 40        |
| 7148864  | Total (Wet Wt) Selenium (Se)   | 2021/01/09 | 12        | 40        |
| 7148864  | Total (Wet Wt) Silver (Ag)     | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Sodium (Na)     | 2021/01/09 | 0.20      | 40        |
| 7148864  | Total (Wet Wt) Strontium (Sr)  | 2021/01/09 | 1.1       | 60        |
| 7148864  | Total (Wet Wt) Thallium (Tl)   | 2021/01/09 | 3.9       | 40        |
| 7148864  | Total (Wet Wt) Tin (Sn)        | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Titanium (Ti)   | 2021/01/09 | 19        | 40        |
| 7148864  | Total (Wet Wt) Uranium (U)     | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Vanadium (V)    | 2021/01/09 | NC        | 40        |
| 7148864  | Total (Wet Wt) Zinc (Zn)       | 2021/01/09 | 1.5       | 40        |
| 7148865  | Moisture-Subcontracted         | 2021/01/12 | 0.50      | 20        |
| 7148866  | Mercury (Hg)                   | 2021/01/12 | NC        | 20        |
| 7148868  | Total (Wet Wt) Aluminum (Al)   | 2021/01/10 | 14        | 40        |
| 7148868  | Total (Wet Wt) Antimony (Sb)   | 2021/01/10 | NC        | 40        |
| 7148868  | Total (Wet Wt) Arsenic (As)    | 2021/01/10 | NC        | 40        |



|          |                                |            | RPD       |           |  |
|----------|--------------------------------|------------|-----------|-----------|--|
| QC Batch | Parameter                      | Date       | Value (%) | QC Limits |  |
| 7148868  | Total (Wet Wt) Barium (Ba)     | 2021/01/10 | 37        | 40        |  |
| 7148868  | Total (Wet Wt) Beryllium (Be)  | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Bismuth (Bi)    | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Boron (B)       | 2021/01/10 | 23        | 40        |  |
| 7148868  | Total (Wet Wt) Cadmium (Cd)    | 2021/01/10 | 24        | 40        |  |
| 7148868  | Total (Wet Wt) Calcium (Ca)    | 2021/01/10 | 17        | 60        |  |
| 7148868  | Total (Wet Wt) Chromium (Cr)   | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Cobalt (Co)     | 2021/01/10 | 18        | 40        |  |
| 7148868  | Total (Wet Wt) Copper (Cu)     | 2021/01/10 | 22        | 40        |  |
| 7148868  | Total (Wet Wt) Iron (Fe)       | 2021/01/10 | 21        | 40        |  |
| 7148868  | Total (Wet Wt) Lead (Pb)       | 2021/01/10 | 21        | 40        |  |
| 7148868  | Total (Wet Wt) Magnesium (Mg)  | 2021/01/10 | 25        | 40        |  |
| 7148868  | Total (Wet Wt) Manganese (Mn)  | 2021/01/10 | 21        | 40        |  |
| 7148868  | Total (Wet Wt) Molybdenum (Mo) | 2021/01/10 | 21        | 40        |  |
| 7148868  | Total (Wet Wt) Nickel (Ni)     | 2021/01/10 | 9.7       | 40        |  |
| 7148868  | Total (Wet Wt) Phosphorus (P)  | 2021/01/10 | 24        | 40        |  |
| 7148868  | Total (Wet Wt) Potassium (K)   | 2021/01/10 | 27        | 40        |  |
| 7148868  | Total (Wet Wt) Selenium (Se)   | 2021/01/10 | 20        | 40        |  |
| 7148868  | Total (Wet Wt) Silver (Ag)     | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Sodium (Na)     | 2021/01/10 | 25        | 40        |  |
| 7148868  | Total (Wet Wt) Strontium (Sr)  | 2021/01/10 | 21        | 60        |  |
| 7148868  | Total (Wet Wt) Thallium (Tl)   | 2021/01/10 | 26        | 40        |  |
| 7148868  | Total (Wet Wt) Tin (Sn)        | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Titanium (Ti)   | 2021/01/10 | 23        | 40        |  |
| 7148868  | Total (Wet Wt) Uranium (U)     | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Vanadium (V)    | 2021/01/10 | NC        | 40        |  |
| 7148868  | Total (Wet Wt) Zinc (Zn)       | 2021/01/10 | 19        | 40        |  |
| 7148869  | Moisture-Subcontracted         | 2021/01/12 | 1.7       | 20        |  |
| 7148870  | Mercury (Hg)                   | 2021/01/12 | 13 (1)    | 20        |  |
| 7148871  | Total (Dry Wt) Aluminum (Al)   | 2021/01/10 | 19        | 40        |  |
| 7148871  | Total (Dry Wt) Antimony (Sb)   | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Arsenic (As)    | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Barium (Ba)     | 2021/01/10 | 2.5       | 40        |  |



|          |                                |            | RPD       |           |  |
|----------|--------------------------------|------------|-----------|-----------|--|
| QC Batch | Parameter                      | Date       | Value (%) | QC Limits |  |
| 7148871  | Total (Dry Wt) Beryllium (Be)  | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Bismuth (Bi)    | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Boron (B)       | 2021/01/10 | 4.1       | 40        |  |
| 7148871  | Total (Dry Wt) Cadmium (Cd)    | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Calcium (Ca)    | 2021/01/10 | 1.6       | 60        |  |
| 7148871  | Total (Dry Wt) Chromium (Cr)   | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Cobalt (Co)     | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Copper (Cu)     | 2021/01/10 | 1.5       | 40        |  |
| 7148871  | Total (Dry Wt) Iron (Fe)       | 2021/01/10 | 3.8       | 40        |  |
| 7148871  | Total (Dry Wt) Lead (Pb)       | 2021/01/10 | 6.2       | 40        |  |
| 7148871  | Total (Dry Wt) Magnesium (Mg)  | 2021/01/10 | 0.039     | 40        |  |
| 7148871  | Total (Dry Wt) Manganese (Mn)  | 2021/01/10 | 5.7       | 40        |  |
| 7148871  | Total (Dry Wt) Mercury (Hg)    | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Molybdenum (Mo) | 2021/01/10 | 0.10      | 40        |  |
| 7148871  | Total (Dry Wt) Nickel (Ni)     | 2021/01/10 | 2.3       | 40        |  |
| 7148871  | Total (Dry Wt) Phosphorus (P)  | 2021/01/10 | 0.37      | 40        |  |
| 7148871  | Total (Dry Wt) Potassium (K)   | 2021/01/10 | 0.56      | 40        |  |
| 7148871  | Total (Dry Wt) Selenium (Se)   | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Silver (Ag)     | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Sodium (Na)     | 2021/01/10 | 5.1       | 40        |  |
| 7148871  | Total (Dry Wt) Strontium (Sr)  | 2021/01/10 | 0.32      | 40        |  |
| 7148871  | Total (Dry Wt) Thallium (TI)   | 2021/01/10 | 4.7       | 40        |  |
| 7148871  | Total (Dry Wt) Tin (Sn)        | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Titanium (Ti)   | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Uranium (U)     | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Vanadium (V)    | 2021/01/10 | NC        | 40        |  |
| 7148871  | Total (Dry Wt) Zinc (Zn)       | 2021/01/10 | 1.8       | 40        |  |
| 7148873  | Total (Dry Wt) Aluminum (Al)   | 2021/01/10 | 9.1       | 40        |  |
| 7148873  | Total (Dry Wt) Antimony (Sb)   | 2021/01/10 | NC        | 40        |  |
| 7148873  | Total (Dry Wt) Arsenic (As)    | 2021/01/10 | 29        | 40        |  |
| 7148873  | Total (Dry Wt) Barium (Ba)     | 2021/01/10 | 4.7       | 40        |  |
| 7148873  | Total (Dry Wt) Beryllium (Be)  | 2021/01/10 | NC        | 40        |  |
| 7148873  | Total (Dry Wt) Bismuth (Bi)    | 2021/01/10 | NC        | 40        |  |



Stantec Consulting Ltd Client Project #: 121416288

|          |                                |            | RP        | D         |
|----------|--------------------------------|------------|-----------|-----------|
| QC Batch | Parameter                      | Date       | Value (%) | QC Limits |
| 7148873  | Total (Dry Wt) Boron (B)       | 2021/01/10 | 2.1       | 40        |
| 7148873  | Total (Dry Wt) Cadmium (Cd)    | 2021/01/10 | 17        | 40        |
| 7148873  | Total (Dry Wt) Calcium (Ca)    | 2021/01/10 | 3.7       | 60        |
| 7148873  | Total (Dry Wt) Chromium (Cr)   | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Cobalt (Co)     | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Copper (Cu)     | 2021/01/10 | 4.9       | 40        |
| 7148873  | Total (Dry Wt) Iron (Fe)       | 2021/01/10 | 5.9       | 40        |
| 7148873  | Total (Dry Wt) Lead (Pb)       | 2021/01/10 | 12        | 40        |
| 7148873  | Total (Dry Wt) Magnesium (Mg)  | 2021/01/10 | 1.4       | 40        |
| 7148873  | Total (Dry Wt) Manganese (Mn)  | 2021/01/10 | 0.34      | 40        |
| 7148873  | Total (Dry Wt) Mercury (Hg)    | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Molybdenum (Mo) | 2021/01/10 | 2.6       | 40        |
| 7148873  | Total (Dry Wt) Nickel (Ni)     | 2021/01/10 | 2.4       | 40        |
| 7148873  | Total (Dry Wt) Phosphorus (P)  | 2021/01/10 | 1.2       | 40        |
| 7148873  | Total (Dry Wt) Potassium (K)   | 2021/01/10 | 2.9       | 40        |
| 7148873  | Total (Dry Wt) Selenium (Se)   | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Silver (Ag)     | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Sodium (Na)     | 2021/01/10 | 9.6       | 40        |
| 7148873  | Total (Dry Wt) Strontium (Sr)  | 2021/01/10 | 3.7       | 40        |
| 7148873  | Total (Dry Wt) Thallium (TI)   | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Tin (Sn)        | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Titanium (Ti)   | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Uranium (U)     | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Vanadium (V)    | 2021/01/10 | NC        | 40        |
| 7148873  | Total (Dry Wt) Zinc (Zn)       | 2021/01/10 | 7.5       | 40        |

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

David Huang, BBY Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



| BUREAU |
|--------|

 200 Bluewater Rcad, Suite 105, Bedford, Nova Scotia B4B 1G9
 Tel: 902-420-0203 Fax: 902-420-6612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, St John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G,Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-8504 Toll Free: 1-888-535-7770

ATL FCD 00149 / 25

| WWW.bylabs.com E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mail: customerservic | ebedford@   | bvlab                     | s.com                      |                                             |                            |                 |                                                              |                                    | CHAI                                    | N OF                                                       | CU                               | STO                                        | DYI               | REC                        | OR                                          | D      |                                          | C                             | :OC #: |        |        |                      | Page_ 1 of 9                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------------------|----------------------------|---------------------------------------------|----------------------------|-----------------|--------------------------------------------------------------|------------------------------------|-----------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------------------------|-------------------|----------------------------|---------------------------------------------|--------|------------------------------------------|-------------------------------|--------|--------|--------|----------------------|--------------------------------------------|
| Invoice Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | Report      | nforn                     | nation                     | (if di                                      | ffers f                    | rom in          | voice                                                        | e)                                 |                                         |                                                            | Pr                               | oject l                                    | nforma            | tion                       | when                                        | app    | icabl                                    | e)                            |        |        |        | -                    | around Time (TAT) Required                 |
| Company Name: Stantec Consulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Company Na           | sme:        | 2                         |                            |                                             | _                          |                 |                                                              |                                    |                                         | Quota                                                      | tion #:                          |                                            |                   |                            |                                             |        |                                          |                               | _      | x      |        |                      | egular TAT (5 business days) Most<br>lyses |
| Contact Name: Barry Wicks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact Nam          | ne:         |                           |                            |                                             |                            |                 |                                                              |                                    |                                         | Purch                                                      | ase On                           | der#:                                      |                   |                            |                                             |        |                                          |                               |        | PLEA   | SE PF  | ROVID                | E ADVANCE NOTICE FOR RUSH PROJECTS         |
| Address: 141 Kelsey Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Address:             | _           |                           |                            |                                             |                            |                 |                                                              |                                    |                                         | Projec                                                     |                                  |                                            |                   |                            |                                             | 1      |                                          |                               | _      |        |        |                      |                                            |
| St. John's NI x PC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |             |                           |                            |                                             |                            |                 | PC:                                                          | £                                  |                                         | Site La                                                    |                                  | 6                                          |                   |                            |                                             |        |                                          |                               |        | IF RU  | ізн рі | lease s              | specify date (Surcharges will be applied)  |
| Phone: ###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Phone:               |             |                           |                            |                                             | 1                          |                 |                                                              |                                    |                                         | Site Pr                                                    | ovince                           | ē - 1                                      |                   |                            |                                             |        |                                          |                               |        | DA     | TEF    | REQI                 | UIRED:                                     |
| Email: barry.wicks@stantec.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email:               |             |                           |                            |                                             |                            |                 |                                                              |                                    |                                         | Site #                                                     |                                  |                                            |                   |                            |                                             |        |                                          |                               |        |        |        |                      |                                            |
| Report Copies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report Copie         | es:         | -                         |                            |                                             |                            |                 |                                                              |                                    | _                                       | Samp                                                       |                                  |                                            | -                 |                            |                                             |        |                                          | _                             |        | 1.     |        |                      |                                            |
| Laboratory Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | T           |                           |                            |                                             |                            |                 |                                                              |                                    |                                         |                                                            |                                  |                                            | Analy             | sis R                      | eques                                       | ted    | _                                        | _                             |        | -      | -      |                      |                                            |
| A CONTRACT OF A | OLER TEMPERATURES    |             | T                         | Τ                          | Ja Ja                                       | sis                        |                 | Meta<br>(Wat                                                 |                                    | Me<br>(tiss                             |                                                            |                                  | ~                                          |                   | Π                          |                                             |        | Т                                        | Τ                             | T      |        | Т      |                      | Regulatory Requirements (Specify)          |
| Present Intact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _           | 41                        |                            | e wat                                       | waters                     |                 | Т                                                            |                                    |                                         |                                                            |                                  | F2-F4                                      |                   |                            | nent                                        |        | _                                        |                               |        |        | ÷      |                      |                                            |
| -6,-1,-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | _           | 11                        |                            | urfac                                       | Ground                     |                 |                                                              | DLVEL                              | Diges                                   | (III)puer)                                                 | 5]                               | STEX,                                      |                   |                            | Sedir                                       |        | sence                                    |                               |        |        |        | - 1                  |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | <u> </u>    |                           |                            | ell / S                                     | sl Gr                      |                 |                                                              | DISSC                              | able)                                   | i/ Lar                                                     | C6-C3                            | C F1/I                                     |                   |                            | CCME                                        |        | e/Ab                                     |                               |        |        |        |                      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |             |                           | CAED                       | N Isl                                       | Meta                       | thod            | water                                                        | AL /                               | (Avai                                   | ultura                                                     | TEX,                             | Hd-S/                                      | (Ilos             | ment                       | It or                                       |        | ouasa                                    | (tunt)                        |        |        |        |                      |                                            |
| COOLING MEDIA PRESENT Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1000                 |             | SUBN                      | RESE                       | Meta                                        | 1 pan                      | ult Meth        | pund                                                         | 101                                | /<br>ctable (Available) Dig             | Boro                                                       | a) suc                           | 15 (CV                                     | water/soll)       | E Sedi                     | Defat                                       |        | re lic                                   | oli (Co                       |        |        |        | ALYZI                |                                            |
| SAMPLES MUST BE KEPT COOL ( < 10 °C ) FROM TIME OF SAMPLING UNTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DELIVERY TO BV LA    | ABS         | NERS                      | 0.8 P                      | otal                                        | lissol                     | Defau           | or pro                                                       | RCLE                               | rcury                                   | luble                                                      | carbo                            | arbor                                      |                   | CCM                        | One:                                        |        | n/E.cc                                   | n/E.C                         |        |        | Т      | DT AN                |                                            |
| SAMPLE IDENTIFICATION DATE SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | MATRIX      | I OF CONTAINERS SUBMITTED | FIELD FILTERED & PRESERVED | BCAP-MS (Total Metals) Well / Surface water | BCAP-MS (Dissolved Metals) | Total Digest (D | or weil water & surface water<br>Dissolved for Projind water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extrac | Hot Water Soluble Boron<br>required for CCME Agricultural/ | RBCA Hydrocarbons (BTEX, C6-C32) | CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4) | PAHs (Default for | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | vocs   | fotał Coliform/E.coli (Presence/Absence) | fotal Coliform/E.Coli (Count) |        |        |        | HOLD- DO NOT ANALYZE | COMMENTS                                   |
| 1 Bt-1 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    | tissue      |                           |                            | 1                                           |                            |                 |                                                              |                                    | ×                                       |                                                            | <u> </u>                         |                                            |                   |                            |                                             | -      | 1                                        | -                             |        |        |        | 1                    | do not pre-weight                          |
| 2 Bt-2 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | tissue      |                           |                            |                                             |                            |                 |                                                              |                                    | х                                       |                                                            |                                  |                                            |                   |                            |                                             |        |                                          |                               |        |        |        |                      | do not pre-weight                          |
| 3 Bt-3 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | tissue      |                           |                            |                                             |                            | 1               |                                                              |                                    | x                                       |                                                            |                                  |                                            |                   |                            |                                             |        |                                          |                               |        |        |        |                      | do not pre-weight                          |
| 4 Bt-4 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                    | tissue      |                           | +                          | +                                           | 1                          |                 | +                                                            | +                                  | x                                       |                                                            |                                  |                                            |                   |                            |                                             |        | 1                                        |                               |        | +      |        |                      | do not pre-weight                          |
| 5 Bt-5 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | tissue      | +                         | +                          | +                                           | +                          |                 | +                                                            | +                                  | x                                       |                                                            |                                  |                                            |                   |                            |                                             |        | +                                        | 1                             |        | +      | +      |                      | do not pre-weight                          |
| 6 Bt-6 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    | tissue      | +                         | -                          | +                                           | +                          | +               | 1                                                            | +                                  | x                                       | 1-                                                         |                                  |                                            |                   | -                          |                                             |        | +                                        |                               |        | +      | +      |                      | do not pre-weight                          |
| 7 Bt-7 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | tissue      | +                         | +                          | +                                           | +                          | +               | +                                                            | +                                  | x                                       |                                                            | $\vdash$                         |                                            |                   |                            |                                             |        | +                                        |                               |        | +      | 1      |                      | do not pre-weight                          |
| 8 Bt-8 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                    | tissue      | t                         |                            | t                                           | +                          |                 | T                                                            |                                    | ×                                       |                                                            |                                  |                                            |                   |                            |                                             |        |                                          |                               |        | -      | 1      | 1                    | do not pre-weight                          |
| 9 Bt-9 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | tissue      | +                         |                            | +                                           |                            |                 | t                                                            |                                    | x                                       |                                                            |                                  |                                            |                   |                            |                                             |        |                                          |                               |        |        |        |                      | do not pre-weight                          |
| 10 Bt-10 9/5/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | tissue      |                           |                            | +                                           | +                          |                 |                                                              |                                    | x                                       |                                                            |                                  |                                            |                   |                            |                                             | _      |                                          |                               |        |        |        |                      | do not pre-weight                          |
| RELINQUISHED BY: (Signature/Print) DATE: (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YY/MM/DD)            | TIME: (HH   | I:MM                      | 0                          |                                             | REC                        | EIVED           | BY:(S                                                        | Signato                            | re/Print)                               | -                                                          | D                                | ATE: ()                                    | YYY/N             | AM/D                       | D)                                          | - 1    | IME:                                     | (HH:                          | :MM)   |        |        |                      | BV LABS JOB #                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |             |                           |                            | l                                           | 1                          | l               | J                                                            | 2                                  |                                         |                                                            | N                                | JV                                         | 30                | 2                          | 020                                         |        | Y                                        |                               | UC     | J      | C      | 0                    | V9779                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |             |                           |                            |                                             |                            |                 | _                                                            |                                    |                                         |                                                            |                                  |                                            |                   |                            |                                             |        |                                          |                               |        |        |        |                      |                                            |
| Unless otherwise agreed to in writing, work submitted on this Chain of Custody<br>www.bvlabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is subject to BV Lab | is standard | Term                      | ns and                     | Cand                                        | itions                     | Signin          | ng of                                                        | this Cl                            | tain of Cu                              | stody d                                                    | ocume                            | nt is a                                    | cknow             | edgm                       | ient ar                                     | id acc | epta                                     | nce o                         | ofourt | erms w | hich   | are a                | vailable for viewing at                    |

White: Maxxam



6 **8** 

 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toil Free: 1-800-565-7227

 49-55 Elizabeth Avenue, St John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toil Free: 1-888-492-7227

 465 George Street, Unit G,Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-6504 Toil Free: 1-888-535-7770

ATL FCD 00149 / 25

| UUBEAU<br>VERITAS                                                          | vlabs.com E-ma                 | il: customerser         | vicebedford | d@by                      | labs.c                     | om                      |                                             |                            |                                                     |                            |                                    | CHAI                                                            | N OF                                   | cu                       | STO                                        | DDY                           | RE                         | COF                                         | RD    |                                          | C                             | COC # | :       |         |             | Page _ 2 of 9                            |
|----------------------------------------------------------------------------|--------------------------------|-------------------------|-------------|---------------------------|----------------------------|-------------------------|---------------------------------------------|----------------------------|-----------------------------------------------------|----------------------------|------------------------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------|--------------------------------------------|-------------------------------|----------------------------|---------------------------------------------|-------|------------------------------------------|-------------------------------|-------|---------|---------|-------------|------------------------------------------|
| Invoice Information                                                        |                                |                         | Repor       | t Info                    | ormat                      | ion (i                  | f diffe                                     | ers fro                    | om inv                                              | /oice)                     | )                                  | - T                                                             |                                        | Pr                       | oject                                      | Inform                        | ation                      | (whe                                        | re ap | olicat                                   | le)                           |       | T       | Ţ       | Turna       | round Time (TAT) Required                |
| Company Name: Stanter Consulting                                           |                                | Company                 | Name:       |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 | Quota                                  | ation #                  |                                            |                               |                            |                                             |       |                                          |                               | _     | x       |         | Reg         | gular TAT (5 business days) Most<br>yses |
| Contact Name: Barry Wicks                                                  |                                | Contact N               | lame:       |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 | Purch                                  | ase Or                   | der#:                                      |                               |                            |                                             |       |                                          |                               |       | PLEA    | SE PRO  | OVID        | E ADVANCE NOTICE FOR RUSH PROJECTS       |
| Address: 141 Kelsey Dr                                                     |                                | Address:                |             |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 | Proje                                  | t#:                      |                                            |                               |                            |                                             |       |                                          |                               |       |         | ett afe |             |                                          |
| St. John's NI x                                                            | PC:                            |                         | 1           |                           |                            |                         |                                             |                            |                                                     | PC:                        | Ę.                                 |                                                                 | Site L                                 | ocation                  | n:                                         |                               |                            |                                             |       |                                          |                               |       | IF RU:  | SH pie  | ease s      | pecify date (Surcharges will be applied) |
| Phone: ####                                                                |                                | Phone:                  |             |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 | Site Pr                                | ovince                   |                                            |                               |                            |                                             |       |                                          |                               |       | DA      | TE R    | EQU         | JIRED:                                   |
| Email: barry.wicks@stantec.com                                             |                                | Email:                  |             |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 | Site #                                 |                          |                                            |                               |                            |                                             |       |                                          |                               |       |         |         |             |                                          |
| Report Copies:                                                             |                                | Report Co               | ples:       |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 | Samp                                   | led By                   | 2                                          |                               |                            |                                             |       |                                          |                               | _     |         |         |             |                                          |
| Laboratory Use                                                             | Only                           |                         |             |                           |                            |                         |                                             |                            |                                                     |                            |                                    |                                                                 |                                        |                          |                                            | Ana                           | lysis A                    | leque                                       | sted  |                                          |                               |       |         |         |             |                                          |
| CUSTODY SEAL COOLER TEMPERATURE                                            | COOLE                          | ER TEMPERATUR           | RES .       |                           |                            |                         | *                                           | S                          |                                                     | Meta<br>(Wate              |                                    | Met<br>(tiss                                                    |                                        |                          | 10001                                      |                               |                            |                                             |       |                                          |                               |       | Τ       | Т       | F           | Regulatory Requirements (Specify)        |
| Present Intact                                                             |                                |                         |             |                           |                            |                         | wate                                        | wate                       | F                                                   | 1                          | 1                                  |                                                                 |                                        | 1                        | :2-F4)                                     |                               |                            | tent                                        |       |                                          |                               |       |         |         |             |                                          |
| -6-7-2                                                                     |                                | -                       | 1.1         |                           |                            |                         | urface                                      | Ground waters              |                                                     |                            | LVED                               | Digest                                                          | (Indfill)                              | 6                        | TEX, I                                     |                               |                            | Sedin                                       |       | ence)                                    |                               |       |         |         |             |                                          |
|                                                                            |                                |                         |             |                           |                            |                         | ell / S                                     |                            |                                                     |                            | DISSO                              | able) (                                                         | V Lan                                  | C6-C32)                  | C F1/B                                     |                               |                            | COME                                        |       | e/Abs                                    |                               |       |         |         |             |                                          |
|                                                                            |                                |                         |             | UTTED                     | KED                        | G                       | W (SI                                       | Aetal                      | thod)<br>water                                      | vater                      | AL/E                               | (Availa                                                         | on<br>cultural/                        |                          | /S-PH(                                     | (lios                         | ment)                      | lt or (                                     |       | esenci                                   | (III                          |       |         | T.      |             |                                          |
| COOLING MEDIA PRES                                                         | ENT Y / N                      |                         |             | SUBN                      | RESEF                      | SQUIR                   | Meta                                        | ved h                      | ilt Meth                                            | pun                        | TOT                                | aple                                                            | Agr                                    | B) su                    | IS (CV                                     | Jater/                        | Sedi                       | Defau                                       |       | oli (Pr                                  | oli (Co                       |       |         |         | ALYZE       |                                          |
| SAMPLES MUST BE KEPT COOL ( < 10 °C ) FROM TIME                            | OF SAMPLING UNTIL DI           | ELIVERY TO BV           | LABS        | NERS                      | 0 & P                      | ON R                    | otal                                        | lissol                     | Defat.                                              | er Bro                     | RCLE                               | roury                                                           | oluble                                 | carbo                    | arbor                                      | t for w                       | CCMI                       | One:                                        |       | n/E.ct                                   | n/E.C                         |       |         |         | NOT ANALYZE |                                          |
| SAMPLE IDENTIFICATION                                                      | DATE SAMPLED T<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX      | I OF CONTAINERS SUBMITTED | PIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS [Total Metals] Well / Surface water | RCAP-MS (Dissolved Metals) | Fotal Digest (Default M<br>for well water & surface | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable (Available) Digest | Hot Water Soluble<br>required for CCME | RBCA Hydrocarbons (BTEX, | CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4) | PAHs (Default for water/soil) | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | vocs  | fotal Coliform/E.coli (Presence/Absence) | fotal Coliform/E.Coli (Count) |       |         |         | HOLD-DO NC  | COMMENTS                                 |
| 1 Bt-11                                                                    | 9/5/2020                       |                         | tissue      | Ē                         | -                          |                         | -                                           | 1                          | 1                                                   |                            |                                    | x                                                               |                                        | Ē                        | Ť                                          | -                             | -                          | -                                           | _     | -                                        | -                             |       |         | T       |             | do not pre-weight                        |
| 2 Bt-12                                                                    | 9/5/2020                       |                         | tissue      |                           |                            |                         | 1                                           |                            | 1                                                   |                            |                                    | x                                                               |                                        |                          |                                            |                               |                            |                                             |       |                                          |                               |       |         |         |             | do not pre-weight                        |
| 3 Bt-13                                                                    | 9/5/2020                       |                         | tissue      |                           |                            |                         |                                             |                            | 1                                                   | 1                          |                                    | x                                                               | t                                      |                          | 1                                          |                               |                            | İ                                           |       |                                          |                               |       |         |         |             | do not pre-weight                        |
| 4 Bt-14                                                                    | 9/5/2020                       |                         | tissue      | İ                         |                            |                         |                                             |                            |                                                     | 1                          | 1                                  | x                                                               |                                        |                          |                                            |                               |                            |                                             |       |                                          |                               |       |         | +       |             | do not pre-weight                        |
| 5 Bt-15                                                                    | 9/5/2020                       |                         | tissue      |                           | 1                          |                         |                                             |                            | 1                                                   | 1                          | -                                  | x                                                               |                                        | 1                        | 1-                                         |                               |                            |                                             |       |                                          | -                             |       | -       | +       |             | do not pre-weight                        |
| 6 Bt-16                                                                    | 9/7/2020                       |                         | tissue      | ┢                         | +                          | ┢                       | $\vdash$                                    | +                          | 1-                                                  | +                          |                                    | x                                                               | -                                      | +                        | 1                                          |                               |                            | H                                           |       |                                          |                               |       | +-      | +       |             | do not pre-weight                        |
| 7 Bt-17                                                                    | 9/9/2020                       |                         | tissue      |                           | 1                          | -                       | +                                           | -                          |                                                     | -                          |                                    | ×                                                               |                                        |                          |                                            | -                             | $\vdash$                   |                                             | -     |                                          |                               |       |         | +       |             | do not pre-weight                        |
| 8 Bt-18                                                                    | 9/9/2020                       |                         | tissue      |                           | +                          | -                       | +                                           |                            | 1                                                   | 1                          | -                                  | ×                                                               | -                                      | 1                        | -                                          | -                             | 1                          | -                                           | -     |                                          | -                             |       |         | ÷       | -           | do not pre-weight                        |
| 9 Bt-19                                                                    | 9/9/2020                       |                         | tissue      | -                         |                            |                         | 1                                           |                            |                                                     | -                          | +                                  | x                                                               |                                        | 1                        | 1                                          | -                             | 1                          | 1                                           |       |                                          |                               |       | -       | -       |             | do not pre-weight                        |
| 10 Bt-20                                                                   | 9/9/2020                       |                         | tissue      | ┢                         | +                          | +                       | +                                           | -                          | ┢                                                   | +                          | +-                                 | ×                                                               | -                                      | 1-                       |                                            |                               | ┢                          | -                                           |       |                                          |                               |       | _       | _       |             | do not pre-weight                        |
| RELINQUISHED BY: (Signature/Print)                                         | DATE: (YYYY                    | /MM/DD)                 | TIME: (     | HH:N                      | (MI)                       | ┢                       | 1                                           | RECE                       | IVED B                                              | 34:(Si                     | ignatu                             | re/Print)                                                       |                                        | 1 0                      | ATE: (                                     | YYYY/                         | MM/                        | ומכ                                         |       | TIME                                     | : (HH                         | :MM)  | -+-     |         |             | BV LABS JOB #                            |
|                                                                            |                                |                         |             |                           |                            |                         | 1Ĉ                                          |                            | ł                                                   | U                          | ~(                                 | 2                                                               |                                        |                          |                                            | 31                            |                            |                                             |       | 7.0                                      |                               | 0     |         | C       | 20          | V9779                                    |
| Unless otherwise agreed to in writing, work submitted on<br>www.bylabs.com | his Chain of Custody is s      | subject to BV L         | abs standa. | ard Te                    | erms a                     | ind C                   | onditi                                      | ons.                       | Signin                                              | ng of t                    | this Ch                            | ain of Cu                                                       | stody d                                | ocum                     | ent is a                                   | icknov                        | ledgr                      | nent a                                      | nd ad | cepta                                    | ance (                        | ofour | terms w | hich a  | are av      | vailable for viewing at                  |

White: Maxxam



\*

 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9
 Tal: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, St John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G,Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-8504 Toll Free: 1-888-535-7770

 WWW, bylabs.com
 E-mail: customerani/cab cdf = date

ATL FCD 00149 / 25

| Company Name:       Stante Consulting       Company Name:       Propertion       Properti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BUR<br>VER      | www.bv                                  | labs.com E-ma         | ail: customersen | vicebedfor | d@bv      | labs.       | com         |           |            |                 |              |            | CHAII                      | N OF                        | CU        | STO       | DY          | REC       | COR          | D     |              | 0            | coc # | ł:       |        |          | Page_3 of 9                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|-----------------------|------------------|------------|-----------|-------------|-------------|-----------|------------|-----------------|--------------|------------|----------------------------|-----------------------------|-----------|-----------|-------------|-----------|--------------|-------|--------------|--------------|-------|----------|--------|----------|----------------------------------------------|
| Company Name:         Company Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant Name:         Constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | Invoice Information                     |                       |                  | Repor      | rt Infe   | ormat       | ion (i      | if diffe  | ers fr     | om inv          | /oice)       |            |                            |                             | Pr        | oject     | Inform      | ation     | (wher        | e app | licab        | le)          |       | T        |        | Turn     | around Time (TAT) Required                   |
| Address:         121 Relies Dr.         Address:         Project if         Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Company Name:   | Stantec Consulting                      | Section 1             | Company          | Name:      |           |             |             | <u>.</u>  |            |                 |              | 2          |                            | Quota                       | tion #    |           |             |           |              | 2     | 2            |              |       | х        |        |          | egular TAT (5 business days) Most.<br>alyses |
| S.L.panty NI       x       PC       Site Location:       Prome:       Site Location:       Prome:       Site Devine:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contact Name:   | Barry Wicks                             |                       | Contact N        | lame:      |           |             |             |           |            |                 |              |            |                            | Purch                       | ase Or    | der#:     |             |           |              |       |              |              |       | PLEA     | ASE PR | ROVID    | DE ADVANCE NOTICE FOR RUSH PROJECT           |
| S. Jem Vinit X       PPC       Protect       State Province:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Address: 1      | 41 Kelsey Dr                            |                       | Address:         |            |           |             |             |           |            |                 |              |            |                            | Projec                      | t#:       |           |             |           |              |       |              |              |       | IE RI    | ISH of | desse    | specify data (Surcharmet will be applied     |
| India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         India:         Indi:         Indi:         Indi: <td>5</td> <td>t. John's NI x F</td> <td>PC;</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PC:</td> <td>_</td> <td></td> <td>Site Lo</td> <td>ocation</td> <td>1:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5               | t. John's NI x F                        | PC;                   |                  |            | _         |             |             |           |            |                 | PC:          | _          |                            | Site Lo                     | ocation   | 1:        |             |           |              |       |              |              | _     |          |        |          |                                              |
| Report Copie:::         Sampled By::           Laboratory Use Only         Laboratory Use Only         Analysis Requested           USE OVY SEAL         COOLER HAMPERATURES         COOLER HAMPERATURES         V         V         National Sequested         National Seque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone: ###      |                                         |                       | Phone:           |            |           |             | _           |           |            |                 |              |            | 1                          | Site Pr                     | ovince    | £         |             |           |              | -     |              |              | -     | DA       | TEF    | REQ      | UIRED:                                       |
| Laboratory Use Only           CUSTOOP SFAL         COOLER TIMPERATURES         Regulatory Requirements (Sp. TIMPERATURES)           COOLING MEDIA PRESENT Y / N         DATE SAMPLICD TIME SAMPLING UNTIL OLIVERY TO DV LMS         TIMPERATURES         MATRIX MORE OF TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATURES         TIMPERATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Email: barr     | y.wicks@stantec.com                     |                       | Email:           |            |           |             |             |           |            |                 |              |            |                            | Site #:                     |           |           |             |           |              |       | 2            |              |       | 1        |        |          |                                              |
| CUSTOOP YSAL         COOLAR TIMMERATURES         COOLAR TIMMERATURES         COOLAR TIMMERATURES         Metals         Metals <td>Report Copies:</td> <td></td> <td>_</td> <td>Report Co</td> <td>opies:</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>Samp</td> <td>ed By:</td> <td><u>.</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                       | Report Copies:  |                                         | _                     | Report Co        | opies:     | _         | _           | _           |           | _          | _               | _            | _          | _                          | Samp                        | ed By:    | <u>.</u>  |             |           |              |       |              |              |       | <u>.</u> |        |          |                                              |
| NUMBER         COOLER TEMPERATURES         COOLER TEMPERATURES         COOLER TEMPERATURES         COMMENTS         Etissue         Itissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Laboratory Use On                       | ıly                   |                  |            |           |             |             |           |            |                 |              |            |                            |                             |           |           | Anal        | ysis R    | eques        | ted   |              |              |       |          |        |          |                                              |
| Image: Comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison | CUSTODY SEAL    | COOLER TEMPERATURES                     | coou                  | ER TEMPERATUR    | RES        |           | Г           |             |           | 2          |                 |              |            |                            |                             |           |           |             |           |              |       |              |              |       |          | Т      |          | Regulatory Requirements (Specify)            |
| COOUNG MEDIA PRESENT Y / N         Marking Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLE UNC                                                                                                                                                                                               | Present Intact  |                                         |                       |                  |            |           |             |             | wate      | wate       | F.              |              |            |                            |                             |           | (2-F4)    |             |           | ent          |       |              |              |       |          |        |          |                                              |
| COOUNG MEDIA PRESENT Y / N         Marking Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLED UNCERV TO V / N         Market Must be kept cool ( < 10 'c') FROM TIME OF SAMPLE UNC                                                                                                                                                                                               |                 | -6,7-2                                  |                       |                  |            |           |             |             | urface    | puno       |                 |              | LVED       | Digest                     | (HHIP                       |           |           |             |           | Sedim        |       | ence)        |              |       |          | 1      | - 1      |                                              |
| 1       Bt-21       9/9/2020       tissue       I       X       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                         |                       |                  |            |           | Ŀ.          | 1.          | ell / 5   | s) Gr      |                 |              | DISSO      |                            | // tan                      | 8-03      | C F1/8    |             |           | COME         |       | e/Abs        |              |       |          | 1      | 5.       |                                              |
| 1       Bt-21       9/9/2020       tissue       I       X       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                                         | _                     |                  |            | ITTEC     | (VED        | a           | W (SI     | Metal      | (thod)<br>water | water        | AL/I       | (Avail                     | ultura                      | ITEX, (   | Hd-5/     | (1105       | ment)     | It or 0      |       | esenc        | (tunt)       |       |          |        |          |                                              |
| 1       Bt-21       9/9/2020       tissue       I       X       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | COOLING MEDIA PRESEN                    | TY/N                  |                  |            | SUBN      | RESE        | EQUIP       | Meta      | ved 1      | ult Me          | pun          | 101        | table                      | Boroi<br>Agric              | a) suc    | us (CV    | vater/      | E Sedi    | Defau        |       | oli (Pr      | oli (Cc      | . 1   |          | ÷      | ALYZI    |                                              |
| 1       Bt-21       9/9/200       tissue       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLES MUST BE | KEPT COOL ( < 10 °C ) FROM TIME OF      | SAMPLING UNTIL DI     | ELIVERY TO BV    | LABS       | NERS      | ED &P       | ON R        | otal      | Dissol     | (Defai          | or gro       | RCLE       | Extrac                     | CCME                        | ocarbo    | carbo     | t for v     | /CCM      | One:         |       | n/E.ci       | n/E.C        |       |          |        | DTAN     |                                              |
| 1       Bt-21       9/9/2020       tissue       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5AM             | IPLE IDENTIFICATION                     |                       |                  | MATRIX     | OF CONTAL | IELD FILTER | AB FILTRATI | CAP-MS [] | ICAP-MS [I | otal Digest     | oissolved fo | Aercury (C | fetals & Me<br>efault Acid | tot Water So<br>equired for | BCA Hydri | CME Hydro | AHs (Defaul | AHs (FWAL | CBs - Select | OCs   | otal Colifor | otal Colifor |       |          |        | 8        | COMMENTS                                     |
| 3       Bt-23       9/9/2020       tissue       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1               | Bt-21                                   | 9/9/2020              | -                | tissue     | 2         |             | Ē           | 1ª        | E          | F 2             |              | -          | _                          | IS                          | 1         | 0         | 4           | A.        | a.           | >     | -            | -            |       | +        | +      | <u> </u> | do not pre-weight                            |
| 4       Bt-24       9/9/2020       tissue       1       x       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2               | Bt-22                                   | 9/9/2020              |                  | tissue     |           |             |             | 1         |            |                 |              |            | x                          |                             |           |           | 1           |           |              |       |              |              |       |          |        |          | do not pre-weight                            |
| 4       Bt-24       9/9/2020       tissue         ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×       ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3               | Bt-23                                   | 9/9/2020              |                  | tissue     | t         | $\square$   | $\top$      |           | t          | T               |              | 1          | x                          |                             |           |           |             |           |              |       |              |              |       |          | 1      |          | do not pre-weight                            |
| 5       Bt-25       9/9/2020       tissue       I       I       X       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4               | Bt-24                                   | 9/9/2020              |                  | tissue     | t         | $\vdash$    | t           | 1         | T          |                 |              | 1          | ×                          |                             |           |           |             |           |              | _     |              |              |       |          | +      |          | do not pre-weight                            |
| 6       Bt-26       9/9/2020       tissue       1       X       X       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5               | Bt-25                                   | 9/9/2020              |                  | tissue     |           |             | t           | 1         | 1          | 1               | -            | 1          | x                          |                             |           | -         | -           |           |              |       |              |              |       |          | -      | -        |                                              |
| 7       Bt-27       9/9/2020       tissue       Image: state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the                                      | 6               | Bt-26                                   | 9/9/2020              |                  | tissue     | t         | $\vdash$    | t           | 1         | t          | 1               | +            | 1          |                            | -                           | 1         | -         | -           | 1         |              | -     |              | -            |       |          | +      | _        |                                              |
| 8       Bt-28       9/9/2020       tissue       Image: state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the state in the                                      | 7               | Bt-27                                   | 9/9/2020              |                  | tissue     | ┢         | t           |             | 1         | 1          | 1               | +            | 1          |                            | -                           |           | 1         |             |           |              | -     | -            |              |       |          | +      | <u> </u> |                                              |
| 9         Bt-29         9/9/2020         tissue         x         x         a         a         do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight do not pre-weight d                                                                 | 8               | Bt-28                                   | 9/9/2020              |                  | tissue     |           |             | +           | t-        | 1          |                 | 1            |            |                            | -                           |           | 1         |             |           |              | -     |              |              |       |          | -      |          |                                              |
| 10     Bt-30     9/9/2020     tissue     x     x     do not pre-weight       RELINQUISHED BY: (Signature/Print)     DATE: (YYYY/MM/DD)     TIME: (HH:MM)     RECEIVED BY: (Signature/Print)     DATE: (YYYY/MM/DD)     TIME: (HH:MM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9               | Bt-29                                   |                       |                  | tissue     | t         | +           | $\vdash$    | 1         | 1          | +               | +            | +          |                            |                             | t         | 1         | 1           | $\vdash$  |              |       |              |              |       |          | -      |          | The second second second second              |
| RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME: (HH:MM) BV LABS JOB #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10              | Bt-30                                   | 9/9/2020              |                  | tissue     | ┢         | +           | +           | +         | t          | ╞               | +            | +          |                            |                             | ┢         | 1         | $\vdash$    |           |              | _     |              |              |       |          | +      |          |                                              |
| LAC NOV 30 2020 9:00 COV9779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RELINQUI        | SHED BY: (Signature/Print)              | DATE: (YYYY           | /MM/DD)          | TIME: (    | HH:N      | AM)         | +           | 1         | BECE       | IVED B          | Y:(Si        | gnatur     |                            |                             | D         | ATE: (    | YYYY/       | MM/0      | (DC)         |       | TIME         | : (HH        | :MM)  | <u> </u> |        |          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                         |                       |                  |            |           |             | ,           | Ľ         | ł          | R               | n            | K          |                            |                             | N         | OV        | 3 (         | ) 2       | 020          |       | 2            | 3.0          | 30    |          | ł      | C        | 219779                                       |
| Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to BV Labs standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.bvlabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | d to in writing, work submitted on this | Chain of Custody is : | subject to BV L  | abs standa | erd Te    | erms a      | and C       | onditi    | ons.       | Signin          | g of t       | his Ch     | ain of Cus                 | tody d                      | ocume     | ent is a  | cknow       | ledgn     | nent a       | nd ac | cepta        | ance o       | ofour | terms w  | vhich  | are a    | vailable for viewing at                      |

White: Maxxam



200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 49-55 Elizabeth Avenue, St John's, NL A1A 1W9 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227 465 George Street, Unit G, Sydney, NS B1P 1K5 Tet: 902-567-1255 Fax: 902-539-6504 Toll Free: 1-888-535-7770 www.bv/labs.com E-mail: customerservicebedford@bvlabs.com CHAIN OF CUST ATL FCD 00149 / 25

| ydney, NS B1P 1K5 | Tel: 902-567-1255 |
|-------------------|-------------------|
|                   |                   |

|                                   | BURE       | www.bvlal                               | os.com E-m                   | ail: customerse         | rvicebedfor | d@bv            | labs.                      | com                     |                                       |                            |                                          |                            |                                    | CHAI                                                           | N OF                                                 | CU                       | STC                                 | DY                            | REC                        | COF                                         | D     |                                          | CC                            | DC #:    |           |             | Page_4 of 9                                 |
|-----------------------------------|------------|-----------------------------------------|------------------------------|-------------------------|-------------|-----------------|----------------------------|-------------------------|---------------------------------------|----------------------------|------------------------------------------|----------------------------|------------------------------------|----------------------------------------------------------------|------------------------------------------------------|--------------------------|-------------------------------------|-------------------------------|----------------------------|---------------------------------------------|-------|------------------------------------------|-------------------------------|----------|-----------|-------------|---------------------------------------------|
|                                   |            | Invoice Information                     |                              |                         | Repo        | t Info          | ormat                      | ion (i                  | if diffe                              | ers fre                    | om inv                                   | oice)                      | )                                  |                                                                |                                                      | Pr                       | oject l                             | nform                         | ation                      | (when                                       | e app | licab                                    | le)                           |          |           | Turn        | around Time (TAT) Required                  |
| Company Name                      |            | Stantec Consulting                      |                              | Company                 | Name:       |                 | r.                         | 1                       |                                       |                            |                                          |                            |                                    |                                                                | Quota                                                | tion #                   |                                     |                               |                            |                                             |       |                                          |                               |          | х         |             | egular TAT (5 business days) Most           |
| Contact Name:                     |            | Barry Wicks                             |                              | Contact I               | Vame:       |                 |                            |                         |                                       |                            |                                          |                            |                                    | 1.1                                                            | Purcha                                               | ase Or                   | der#:                               |                               |                            |                                             |       |                                          |                               |          | PLEASE    | PROVID      | DE ADVANCE NOTICE FOR RUSH PROJECTS         |
| Address:                          | 141        | Kelsey Dr                               |                              | Address:                |             |                 |                            |                         |                                       |                            |                                          |                            |                                    |                                                                | Projec                                               | t.#:                     |                                     |                               |                            |                                             |       |                                          |                               |          |           | alaara      | specify date (Surcharges will be applied)   |
|                                   | St. J      | Iohn' <u>s NI x</u> PC:                 |                              |                         |             |                 |                            |                         | -                                     |                            |                                          | PC:                        | _                                  |                                                                | Site Lo                                              | cation                   | е (                                 |                               |                            |                                             |       |                                          |                               | _ r      | - AUGA    | picase      | specify date (solicitarges will be applied) |
| Phone:                            | (709)576   | 5-1458                                  |                              | Phone:                  | 7           |                 |                            |                         |                                       |                            |                                          |                            |                                    |                                                                | Site Pr                                              | ovince                   | e .                                 |                               |                            |                                             |       |                                          |                               |          | DATE      | REQ         | UIRED:                                      |
| Email:                            | barry.     | wicks@stantec.com                       |                              | Email:                  |             |                 |                            |                         |                                       |                            |                                          |                            |                                    |                                                                | Site #:                                              |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             |                                             |
| Report Copies:                    |            |                                         |                              | Report G                | opies:      | _               |                            |                         | _                                     |                            |                                          |                            |                                    |                                                                | Sampl                                                | ed 8y                    |                                     |                               |                            |                                             |       |                                          |                               |          |           |             |                                             |
|                                   |            | Laboratory Use Only                     |                              |                         |             |                 |                            |                         |                                       |                            |                                          |                            |                                    |                                                                |                                                      |                          |                                     | Anal                          | ysis R                     | eques                                       | ted   |                                          |                               |          |           |             |                                             |
| CUSTODY                           | SEAL       | COOLER TEMPERATURES                     | COOL                         | LER TEMPERATU           | RES         |                 | Γ                          |                         | E.                                    | ers                        |                                          | Metal<br>Wate              |                                    | Met<br>(tiss                                                   | All series                                           |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           | $\square$   | Regulatory Requirements (Specify)           |
| Present                           | Intact     |                                         |                              | _                       |             |                 |                            |                         | e water                               | I wat                      |                                          |                            |                                    |                                                                |                                                      |                          | F2-F4)                              |                               |                            | nent                                        |       |                                          |                               |          |           |             |                                             |
|                                   |            | 6,1,2                                   |                              |                         |             |                 |                            |                         | Surfac                                | Ground waters              |                                          |                            | DLVEI                              | Diges                                                          | (III)                                                | ŝ                        | втех,                               |                               |                            | Sedir                                       |       | serice                                   |                               |          |           |             |                                             |
|                                   |            | ,                                       | -                            |                         | -           |                 |                            |                         | ell /                                 |                            |                                          |                            | DISSO                              | able)                                                          | al/La                                                | CG-C32)                  | C F1/                               |                               | -                          | CCME                                        |       | e/Ab                                     |                               |          |           |             |                                             |
|                                   |            | COOLING MEDIA PRESENT                   |                              | -                       |             | ILIN            | RVED                       | ED                      | N (sle                                | Meta                       | ethod)<br>water                          | wate                       | LAL/                               | (Avai                                                          | aultur                                               | втех,                    | VS-PF                               | /soil)                        | Iment                      | ultor                                       |       | resen                                    | ount)                         |          |           |             |                                             |
|                                   |            | COOLING MEDIA PRESENT                   | 1 / 18                       | -                       |             | s suBr          | PRESE                      | REQUI                   | Met                                   | lved                       | ault M                                   | puno                       | E) TO                              | ctable                                                         | e Boro<br>E Agri                                     | suo                      | ons (C)                             | water                         | IE Sed                     | : Defa                                      |       | d) ilo:                                  | Coli (C                       |          |           | NALYZ       |                                             |
| SAMPLES N                         | NUST BE KE | PT COOL ( < 10 °C ) FROM TIME OF SA     | MPLING UNTIL D               | ELIVERY TO B            | / LABS      | UNERS           | teD &                      | NOL                     | Total                                 | Disso                      | : (Defa<br>er & s                        | or gr                      | CIRCLE                             | ercun                                                          | coluble<br>r CCM                                     | rocarb                   | ocarbo                              | alt for                       | /CCN                       | t One                                       |       | m/E.c                                    | m/E.G                         |          |           | NOT ANALYZE |                                             |
|                                   | Sampl      | E IDENTIFICATION                        | DATE SAMPLED<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX      | # OF CONTAINERS | FIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface | RCAP-MS (Dissolved Metals) | Total Digest (Defa<br>for well water & s | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable (Available) Diges | Hot Water Soluble Boron<br>(required for CCME Agricu | RBCA Hydrocarbons (BTEX, | CCME Hydrocarbons (CWS-PHC F1/BTEX, | PAHs (Default for water/soil) | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | vocs  | Total Coliform/E.coli (Presence/Absence) | Total Coliform/E.Coli (Count) |          |           | HOLD- DO N  | COMMENTS                                    |
| 1                                 |            | Bt-31                                   | 9/9/2020                     |                         | tissue      |                 |                            |                         |                                       |                            |                                          |                            |                                    | x                                                              |                                                      |                          |                                     |                               | 1                          |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 2                                 |            | Bt-32                                   | 9/9/2020                     |                         | tissue      |                 |                            |                         |                                       |                            |                                          |                            |                                    | x                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 3                                 |            | Bt-33                                   | 9/9/2020                     |                         | tissue      |                 |                            |                         |                                       |                            |                                          |                            |                                    | ×                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 4                                 |            | Bt-34                                   | 9/9/2020                     |                         | tissue      |                 |                            |                         |                                       |                            | 1                                        |                            |                                    | ×                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 5                                 |            | Bt-35                                   | 9/9/2020                     |                         | tissue      |                 | 1                          |                         |                                       |                            |                                          |                            |                                    | x                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 6                                 |            | Bt-36                                   | 9/9/2020                     |                         | tissue      |                 | 1                          | 1                       |                                       |                            |                                          |                            |                                    | x                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          | $\square$ |             | do not pre-weight                           |
| 7                                 |            | Bt-37                                   | 9/11/2020                    | 1                       | tissue      |                 |                            |                         |                                       |                            |                                          |                            |                                    | x                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 8                                 |            | Bt-38                                   | 9/11/2020                    |                         | tissue      |                 |                            |                         |                                       |                            |                                          |                            | 1                                  | x                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               |          |           |             | do not pre-weight                           |
| 9                                 |            | Bt-39                                   | 9/11/2020                    |                         | tissue      |                 | 1                          | 1                       | 1                                     | 1                          |                                          | 1                          |                                    | x                                                              | 1                                                    | t                        |                                     |                               |                            | -                                           |       |                                          |                               | -        | 1         | -           | do not pre-weight                           |
| 10                                |            | Bt-40                                   | 9/11/2020                    |                         | tissue      |                 | 1                          | 1                       | 1                                     | 1                          | 1                                        | 1                          |                                    | ×                                                              |                                                      |                          |                                     |                               |                            |                                             |       |                                          |                               | -        |           |             | do not pre-weight                           |
| RI                                | ELINQUISH  | ED BY: (Signature/Print)                | DATE: (YYYY                  | (/MM/DD)                | TIME:       | HH:N            | (MIN                       | $\mathbf{t}$            | 1                                     | RECE                       | VED B                                    | ¥:(SI                      | gnatu                              | e/Print)                                                       | 1                                                    | D                        | ATE: (                              | (YYYY/I                       | /M/D                       | DD)                                         |       | IMĘ                                      | : (HH:N                       | 11/1)    | <u> </u>  | <u></u>     | BV LABS JOB #                               |
|                                   |            |                                         |                              |                         |             |                 |                            | F                       | ŀ                                     | _                          | la                                       | h                          | l                                  |                                                                | -                                                    | 101                      | / 3                                 | ۵                             | 202                        | 20                                          |       | 7                                        | 0                             | 0        |           | C           | 019779                                      |
| Unless otherwis<br>www.bvlabs.cor |            | o in writing, work submitted on this Ch | ain of Custody is            | subject to BV           | Labs standa | rd Te           | erms i                     | and C                   | onditi                                | ons.                       | Signin                                   | g of t                     | this Ch                            | ain of Cu                                                      | stody de                                             | ocume                    | ent is a                            | cknow                         | ledgm                      | ient a                                      | nd ac | epta                                     | nce of                        | our term | ns whic   | h are a     | available for viewing at                    |

White: Maxxam



200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 
 49-55 Elizabeth Avenue, St John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G, Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-8504 Toll Free: 1-888-535-7770

 www.bylabs.com
 CHAIN OF CUST
 ATL FCD 00149 / 25

| 3,Sydney, NS B1P 1K5 | Tel: 902-56 |
|----------------------|-------------|
|                      |             |

|                                    | BUREA<br>VERITA | www.bvla                             | bs.com E-m                   | ail: customerse         | rvicebedfor | d@bv            | labs.c                     | mo                      |                                             |                            |                                          |                            |                                    | CHAI                                                            | N OF                                                 | cu                               | STO                                 | DY                            | REC                        | COR                                         | D     |                                          | C                             | :0C #: |          |             |         | Page_5 of 9                            |
|------------------------------------|-----------------|--------------------------------------|------------------------------|-------------------------|-------------|-----------------|----------------------------|-------------------------|---------------------------------------------|----------------------------|------------------------------------------|----------------------------|------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|----------------------------------|-------------------------------------|-------------------------------|----------------------------|---------------------------------------------|-------|------------------------------------------|-------------------------------|--------|----------|-------------|---------|----------------------------------------|
|                                    |                 | Invoice Information                  |                              |                         | Repo        | rt Info         | ormat                      | ion (i                  | f diffe                                     | rs fro                     | om inve                                  | oice)                      |                                    |                                                                 |                                                      | Pr                               | oject l                             | nform                         | ation                      | (wher                                       | e app | licabl                                   | le)                           |        | 1        | Tur         | rnaro   | ound Time (TAT) Required               |
| Company Name:                      | 3               | Stantec Consulting                   | 1                            | Company                 | Name:       |                 |                            | ÷.                      |                                             |                            |                                          |                            |                                    |                                                                 | Quota                                                | tion #:                          | ÷.,                                 |                               | _                          |                                             |       |                                          |                               |        | x        |             | Regul   | lar TAT (5 business days) Most<br>es   |
| Contact Name:                      | - 0             | Barry Wicks                          |                              | Contact M               | Vame:       |                 |                            |                         |                                             |                            |                                          |                            |                                    |                                                                 | Purcha                                               | ase Or                           | der#;                               |                               |                            |                                             |       |                                          |                               |        | PLEASE   | PROV        | /IDE A  | DVANCE NOTICE FOR RUSH PROJECTS        |
| Address:                           | 141             | elsey Dr                             |                              | Address:                |             |                 |                            |                         |                                             |                            |                                          |                            |                                    |                                                                 | Projec                                               | t #:                             |                                     |                               |                            |                                             |       |                                          |                               |        | IF RUS   | d pleas     | se sne  | cify date (Surcharges will be applied) |
|                                    | St. Ja          | hn's NI x PC:                        |                              |                         |             | _               |                            | _                       |                                             |                            |                                          | PC:                        |                                    |                                                                 | Site Lo                                              | cation                           | ε [                                 |                               |                            |                                             |       | _                                        |                               |        |          | Preserv     | ie spei | cut ence (serciarges win be applied)   |
| Phone:                             | (709)576-       | 1458                                 |                              | Phone:                  |             |                 |                            |                         |                                             |                            |                                          |                            |                                    |                                                                 | Site Pr                                              | ovínce                           |                                     |                               |                            |                                             |       |                                          |                               | _      | DAT      | EREC        | QUI     | RED:                                   |
| Email:                             | barry.w         | vicks@stantec.com                    |                              | Email:                  |             |                 |                            |                         |                                             |                            |                                          |                            |                                    |                                                                 | Site #:                                              |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          |             |         |                                        |
| Report Copies:                     | _               |                                      |                              | Report C                | opies:      | _               |                            | _                       |                                             | _                          |                                          |                            |                                    | _                                                               | Sampl                                                | ed By:                           | 5                                   |                               |                            |                                             |       |                                          |                               |        |          |             |         |                                        |
|                                    |                 | Laboratory Use Only                  |                              |                         |             |                 |                            |                         |                                             |                            |                                          |                            |                                    |                                                                 |                                                      |                                  |                                     | Anal                          | ysis R                     | eques                                       | ted   |                                          |                               |        |          |             |         |                                        |
| CUSTODY S                          | EAL             | COOLER TEMPERATURES                  | C00                          | LER TEMPERATU           | RES         | Γ               | Γ                          |                         |                                             | ers                        |                                          | Metals<br>Water            |                                    | Met<br>(tiss                                                    |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          | Π           | Rep     | gulatory Requirements (Specify)        |
| Present                            | Intact          | 2223                                 | _                            |                         | -           |                 |                            |                         | e wate                                      | waters                     |                                          |                            |                                    |                                                                 |                                                      |                                  | F2-F4)                              |                               |                            | hent                                        |       | _                                        |                               |        |          |             |         |                                        |
|                                    |                 | 6,1,1                                | _                            |                         |             |                 |                            |                         | urface                                      | Ground                     |                                          |                            | ILVEE                              | Digest                                                          | (III)                                                | 6                                | STEX,                               |                               |                            | Sedin                                       |       | ence                                     |                               |        |          |             |         |                                        |
|                                    |                 | · /                                  | _                            | _                       | _           |                 |                            |                         | ell / S                                     |                            |                                          |                            | DISSO                              | able)                                                           | 1/ Lar                                               | C9-C3                            | C F1/8                              |                               | -                          | CCME                                        |       | e/Ab:                                    |                               |        |          | Ł.          | 1.      |                                        |
|                                    |                 |                                      |                              | _                       |             | Ĕ               | RVED                       | G                       | VI (sli                                     | Meta                       | ethod]<br>water                          | wate                       | AL/                                | (Avail                                                          | alture                                               | BTEX.                            | Hd-SN                               | (jios                         | ment                       | ult or                                      |       | esenc                                    | (annt)                        |        |          |             |         |                                        |
|                                    |                 | COOLING MEDIA PRESENT                | Y/N                          |                         | 1.00        | SUBA            | RESE                       | EQUIF                   | Meta                                        | bed                        | fault Method<br>surface water            | pund                       | TOT (                              | table                                                           | oluble Boron<br>CCME Agricultural/ Landfill          | ans (                            | ns (CV                              | vater/                        | E Sed                      | Defa                                        |       | oli (Pr                                  | oli (C                        |        |          | NOT ANALYZE |         |                                        |
| SAMPLES MI                         | UST BE KEP      | T COOL ( < 10 °C ) FROM TIME OF S    | AMPLING UNTIL [              | DELIVERY TO B           | V LABS      | NERS            | ED &F                      | ION R                   | fotal                                       | Disso                      | (Defa                                    | or gro                     | IRCLE                              | Extrac                                                          | oluble                                               | ocarbi                           | carbo                               | t for                         | /ccm                       | One:                                        |       | m/E.c                                    | m/E.C                         |        |          | OT AN       | F       |                                        |
|                                    | SAMPLE          | IDENTIFICATION                       | DATE SAMPLED<br>(YYYY/MM/DD) | TIME SAMPLED<br>{HH:MM} | MATRIX      | # OF CONTAINERS | FIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface water | RCAP-MS [Dissolved Metals] | Total Digest (Defi<br>for well water & s | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable (Available) Digesi | Hot Water Soluhle Boron<br>(required for CCME Agricu | RBCA Hydrocarbons (BTEX, C6-C32) | CCME Hydrocarbons (CWS-PHC F1/BTEX, | PAHs (Default for water/soil) | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | VOCs  | Total Coliform/E.coli (Presence/Absence) | Total Coliform/E.Coli (Count) |        |          | HOLD-DO N   |         | COMMENTS                               |
| 1                                  |                 | Bt-41                                | 9/11/2020                    |                         | tissue      |                 |                            |                         |                                             |                            |                                          |                            |                                    | x                                                               |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          | Γ           | Т       | do not pre-weight                      |
| 2                                  |                 | Bt-42                                | 9/11/2020                    |                         | tissue      |                 |                            |                         |                                             |                            |                                          |                            |                                    | x                                                               |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          |             | T       | do not pre-weight                      |
| 3                                  |                 | Bt-43                                | 9/11/2020                    |                         | tissue      |                 |                            |                         |                                             |                            | 1                                        |                            |                                    | x                                                               |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          |             | T       | do not pre-weight                      |
| 4                                  |                 | Bt-44                                | 9/11/2020                    |                         | tissue      | 1               | 1                          |                         |                                             |                            |                                          |                            |                                    | x                                                               |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          |             |         | do not pre-weight                      |
| 5                                  |                 | Bt-45                                | 9/11/2020                    |                         | tissue      |                 |                            |                         |                                             |                            |                                          |                            |                                    | x                                                               |                                                      | -                                |                                     |                               | -                          |                                             |       |                                          |                               |        |          |             |         | do not pre-weight                      |
| 6                                  |                 | Bt-46                                | 9/11/2020                    |                         | tissue      |                 |                            |                         |                                             |                            |                                          |                            |                                    | x                                                               |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          |             | T       | do not pre-weight                      |
| 7                                  |                 | Bt-47                                | 9/29/2020                    |                         | tissue      | T               | 1                          | Γ                       |                                             |                            |                                          |                            | 1                                  | x                                                               |                                                      |                                  |                                     | ĺ                             |                            |                                             |       |                                          |                               |        |          | $\top$      | T       | do not pre-weight                      |
| 8                                  |                 | Bt-48                                | 9/29/2020                    |                         | tissue      | T               |                            |                         |                                             |                            |                                          |                            |                                    | x                                                               |                                                      |                                  | 1                                   |                               |                            |                                             |       |                                          |                               |        | -        | +           | T       | do not pre-weight                      |
| 9                                  |                 | Bt-49                                | 9/29/2020                    |                         | tissue      | 1               | 1                          | $\uparrow$              | 1                                           |                            | 1                                        |                            |                                    | ×                                                               |                                                      |                                  | 1                                   |                               |                            |                                             |       |                                          |                               |        |          | -           | T       | do not pre-weight                      |
| 10                                 |                 | Bt-50                                | 9/29/2020                    |                         | tissue      |                 | 1                          | 1                       |                                             |                            |                                          |                            | 1                                  | ×                                                               |                                                      |                                  | 1                                   |                               |                            |                                             |       |                                          |                               |        | -        | -           | ┢       | do not pre-weight                      |
| RE                                 | LINQUISHE       | D BY: (Signature/Print)              | DATE: (YYY                   | Y/MM/DD)                | TIME:       | HH:N            | (MN)                       | T                       | F                                           | PCEI                       | VED B                                    | Y:(Sig                     | gnatu                              | e/Print)                                                        |                                                      | D                                | ATE: (                              | (YYY)                         | VIM/E                      | )<br>(00                                    |       | TIME                                     | (HH                           | :MM)   |          | _           | _       | BV LABS JOB #                          |
|                                    |                 |                                      | 1                            |                         |             |                 |                            | T,                      | 1                                           | 1                          | Pl                                       | r                          | R                                  |                                                                 | 8                                                    | DV                               | 3                                   | 0 2                           | 202                        | n                                           | 1     | C                                        | 3                             | )6     | 1        | r           | 0       | V9779                                  |
|                                    |                 |                                      |                              | -                       |             | _               | _                          | 1                       | -1                                          | Λ                          |                                          | _                          |                                    |                                                                 |                                                      | F                                | 5                                   | 0 1                           | UL                         | U                                           | -     | 1                                        | C                             | V      | _        | C           | 90      | V 111 1                                |
|                                    |                 |                                      |                              |                         |             |                 |                            |                         |                                             |                            |                                          |                            |                                    |                                                                 |                                                      |                                  |                                     |                               |                            |                                             |       |                                          |                               |        |          |             |         |                                        |
| Unless otherwise<br>www.hviahs.com |                 | in writing, work submitted on this C | hain of Custody is           | subject to BV           | Labs stand  | ard Te          | erms a                     | and C                   | onditi                                      | ons.                       | Signing                                  | goft                       | his Ch                             | ain of Cu                                                       | stody d                                              | ocume                            | ent is a                            | cknow                         | ledgn                      | nent a                                      | nd ac | cepta                                    | nce c                         | fourt  | erms whi | ch are      | e avai  | ilable for viewing at                  |

White: Maxxam

| Ca     |
|--------|
|        |
| BUREAU |

 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 169
 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, SL John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G, Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-8504 Toll Free: 1-888-535-7770

ATL FCD 00149 / 25

|                                 | BUREA       | www.bvl                              | abs.com E-ma                 | ail: customerse         | rvicebedford | i@bv                      | labs.c                     | com                     |                                             |                            |                                                 |               |                                    | CHAIN                                                    | I OF                                    | CU                      | STO                                | DY I                          | REC                        | OR                                          | D     |                                          | C                             | :OC #: |         |         |                      | Page_6 of 9                              |
|---------------------------------|-------------|--------------------------------------|------------------------------|-------------------------|--------------|---------------------------|----------------------------|-------------------------|---------------------------------------------|----------------------------|-------------------------------------------------|---------------|------------------------------------|----------------------------------------------------------|-----------------------------------------|-------------------------|------------------------------------|-------------------------------|----------------------------|---------------------------------------------|-------|------------------------------------------|-------------------------------|--------|---------|---------|----------------------|------------------------------------------|
|                                 |             | Invoice Information                  |                              |                         | Repor        | t Info                    | ormat                      | ion (                   | if diff                                     | ers fr                     | om inv                                          | oice)         |                                    | _                                                        |                                         | Pre                     | oject l                            | forma                         | tion                       | (where                                      | app   | licab                                    | le)                           |        |         | TL      |                      | round Time (TAT) Required                |
| Company Name                    |             | Stantec Consulting                   |                              | Company                 | Name:        | _                         |                            |                         |                                             |                            | _                                               |               |                                    | _                                                        | Quota                                   | tion #:                 |                                    |                               |                            |                                             |       |                                          |                               |        | х       |         | Reg                  | gular TAT (5 business days) Most<br>yses |
| Contact Name:                   |             | Barry Wicks                          |                              | Contact I               | Name:        |                           |                            |                         |                                             |                            |                                                 |               |                                    |                                                          | Purcha                                  | ase Oro                 | der#:                              |                               |                            |                                             |       |                                          |                               |        | PLEA    | SE PRO  | VIDE                 | E ADVANCE NOTICE FOR RUSH PROJECT        |
| Address:                        | 141 8       | (elsey Dr                            |                              | Address:                |              |                           |                            |                         |                                             |                            |                                                 |               |                                    |                                                          | Projec                                  | t#:                     |                                    |                               |                            |                                             |       |                                          |                               | _      | IF RUS  | 5H plea | ase 5                | pecify date (Surcharges will be applied  |
|                                 | St. Jo      | ohn's NI x P                         | C:                           |                         |              |                           | _                          |                         |                                             |                            |                                                 | PC:           |                                    |                                                          | Site Lo                                 | cation                  | e .                                |                               |                            |                                             |       |                                          |                               |        | 1       |         |                      |                                          |
| Phone:                          | (709)576-   | 1458                                 |                              | Phone:                  |              |                           |                            |                         |                                             |                            |                                                 |               |                                    | _                                                        | Site Pr                                 | ovince                  | s ,                                | -                             |                            |                                             | _     |                                          | _                             |        | DA      | TE RE   | EQL                  | JIRED:                                   |
| Email:                          | barry.w     | vicks@stantec.com                    |                              | Email:                  |              |                           |                            |                         |                                             |                            |                                                 |               |                                    |                                                          | Site #                                  |                         | 12                                 |                               | _                          |                                             |       |                                          |                               |        |         |         |                      |                                          |
| Report Copies:                  |             |                                      |                              | Report C                | opies:       | _                         |                            |                         |                                             |                            |                                                 |               |                                    | _                                                        | Samp                                    | ed By:                  |                                    |                               |                            |                                             |       |                                          |                               |        |         |         |                      |                                          |
|                                 |             | Laboratory Use On                    | ly                           |                         |              |                           |                            |                         |                                             |                            |                                                 |               |                                    |                                                          |                                         |                         |                                    | Anal                          | ysis R                     | eques                                       | ed    |                                          |                               |        |         |         |                      |                                          |
| CUSTODY                         | SEAL,       | COOLER TEMPERATURES                  | COOL                         | LER TEMPERATU           | RES          |                           | Γ                          |                         | La La                                       | ers                        |                                                 | Metal<br>Wate |                                    | Meta<br>(tissu                                           |                                         |                         | 3                                  |                               |                            |                                             |       |                                          |                               |        |         |         | 1                    | Regulatory Requirements (Specify)        |
| Present                         | Intact      | 1.9.3                                | _                            |                         |              |                           |                            |                         | e wat                                       | 1 wat                      |                                                 |               |                                    | 4                                                        |                                         |                         | F2-F4)                             |                               |                            | ment                                        |       | -                                        |                               |        |         |         | 4                    |                                          |
|                                 |             | 6/2                                  |                              | _                       |              |                           | Ε.                         |                         | Surfac                                      | Ground waters              |                                                 |               | IJA                                | Digest                                                   | (Illibue)                               | (2)                     | втех,                              |                               |                            | Sedi                                        |       | sence                                    |                               |        |         |         |                      |                                          |
|                                 |             | / E                                  |                              |                         |              |                           |                            |                         | ell / :                                     | Is) G                      |                                                 | L.            | DISSIC                             | lable)                                                   | al/la                                   | C6-C32)                 | IC F1/                             |                               |                            | CCMI                                        |       | ce/Ab                                    | _                             |        |         |         |                      |                                          |
|                                 |             |                                      |                              |                         | _            | ATTE                      | RVED                       | gen                     | W (sle                                      | Meta                       | Method<br>ce wate                               | wate          | LAL /                              | (Avai                                                    | n<br>cultur                             | BTEX,                   | NS-PF                              | /soil)                        | iment                      | ult or                                      |       | resen                                    | (junt)                        |        |         | 1       |                      |                                          |
|                                 |             | COOLING MEDIA PRESENT                | TY/N                         |                         |              | SUBA                      | PRESE                      | EQUI                    | Meta                                        | lved                       | ult M<br>Irface                                 | pune          | E) TO                              | ctable                                                   | e Boro<br>E Agri                        | ) suo                   | ins (C)                            | water                         | IE Sed                     | : Defa                                      |       | coli (P                                  | Coli (C                       |        |         |         | NALY                 |                                          |
| SAMPLES N                       | IUST BE KEP | PT COOL ( < 10 °C ) FROM TIME OF     | SAMPLING UNTIL D             | DELIVERY TO B           | V LABS       | INERS                     | ED &                       | 10N B                   | Total                                       | Disso                      | gest (Defa<br>water & si                        | or gr         | IRCLE                              | Extra                                                    | coluble I                               | rocarb                  | carbo                              | It for                        | -/ccn                      | t One                                       |       | rm/E.i                                   | rm/E.1                        |        |         | A TOL   | A TO                 |                                          |
|                                 | SAMPLE      | EIDENTIFICATION                      | DATE SAMPLED<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX       | # OF CONTAINERS SUBMITTED | FIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface water | RCAP-MS (Dissolved Metals) | Total Digest (Default<br>for well water & surfe | solv          | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable (Available) | Hot Water Soluble<br>(required for CCME | RBCA Hydrocarbons (BTEX | CCME Hydrocarbons (CWS-PHC F1/BTEX | PAHs (Default for water/soil) | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | vocs  | Total Coliform/E.coli (Presence/Absence) | Total Coliform/E.Coli (Count) |        |         | 100 010 | HOLD- DO NOT ANALYZE | COMMENTS                                 |
| 1                               |             | Bt-51                                | 9/29/2020                    |                         | tissue       |                           | 1                          | T                       | -                                           |                            |                                                 |               |                                    | x                                                        |                                         |                         | Ŭ                                  |                               |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 2                               |             | SH-T1                                | 9/7/2020                     |                         | tissue       |                           | 1                          | T                       | T                                           |                            |                                                 |               |                                    | x                                                        |                                         |                         |                                    |                               |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 3                               |             | SH-T2                                | 9/10/2020                    |                         | tissue       | 1                         | t                          | T                       |                                             |                            |                                                 | 1             |                                    | x                                                        |                                         | T                       |                                    |                               |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 4                               |             | SH-T3                                | 9/10/2020                    |                         | tissue       | T                         | 1                          | 1                       | 1                                           |                            | $\top$                                          |               |                                    | x                                                        |                                         |                         |                                    |                               |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 5                               |             | SH-T4                                | 10/20/2020                   |                         | tissue       | t                         |                            | t                       | 1                                           |                            |                                                 | T             | 1                                  | x                                                        |                                         |                         |                                    |                               | -                          |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 6                               |             | SH-T5                                | 10/20/2020                   |                         | tissue       | t                         | 1                          | T                       | 1                                           | -                          |                                                 |               | -                                  | x                                                        |                                         | 1                       |                                    |                               |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 7                               |             | SH-T6                                | 10/20/2020                   |                         | tissue       | F                         | 1                          | t                       | 1                                           |                            |                                                 | $\top$        |                                    | x                                                        |                                         |                         | 1                                  | 1                             |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 8                               |             | SH-T7                                | 11/7/2020                    |                         | tissue       | t                         | 1                          | +                       | 1                                           | T                          |                                                 | 1             | 1                                  | x                                                        | 1                                       |                         |                                    |                               |                            |                                             |       |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 9                               |             | SH-T8                                | 11/8/2020                    |                         | tissue       |                           | 1                          | +                       | +                                           |                            | 1                                               |               |                                    | x                                                        |                                         | $\vdash$                |                                    |                               | 1                          |                                             | _     |                                          |                               |        |         |         |                      | do not pre-weight                        |
| 10                              |             | SH-I01                               | 9/7/2020                     |                         | organs       | +                         | t                          | +                       |                                             | 1                          | 1                                               | +             |                                    | x                                                        |                                         | +                       |                                    |                               | 1                          | 1                                           | _     |                                          |                               |        | -       |         |                      | do not pre-weight                        |
|                                 | ELINQUISH   | ED BY: (Signature/Print)             | DATE: (YYY                   | Y/MM/DD)                | TIME:        | HH:N                      | (MN)                       | +                       |                                             | RECI                       | EIVED,                                          | BY:(Si        | ignatu                             | e/Print)                                                 | L                                       | D                       | ATE: (                             | YYYY/                         |                            | ,(QC                                        |       | TIME                                     | : (HH                         | I:MM)  | -1-     | 1       | -                    | BV LABS JOB #                            |
|                                 |             |                                      |                              |                         |              |                           |                            |                         | ŀ                                           | U                          | le                                              | /             | Ŕ                                  | e_                                                       |                                         | NC                      |                                    | 30                            |                            | UZU                                         | 2     | 70                                       | 90                            | ſ      |         | (       | C                    | 819779                                   |
| Unless otherwi<br>www.bvlabs.co |             | o in writing, work submitted on this | s Chain of Custody is        | s subject to BV         | Labs stand   | ard T                     | erms                       | and                     | Condi                                       | tions                      | Signir                                          | ng of         | this Ch                            | ain of Cu                                                | stody o                                 | locum                   | ent is a                           | icknow                        | ledgr                      | nent a                                      | nd ac | cept                                     | ance                          | ofour  | terms w | hich a  | are a                | vailable for viewing at                  |

White: Maxxam



 200 Bluewater Road. Suite 105, Bedford, Nova Scotia B4B 169
 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, SL John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G,Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-6504 Toll Free: 1-888-535-7770

ATL FCD 00149 / 25

|                                    | www.bvl                                             | abs.com E-ma                 | all: customerser        | vicebedford | i@bv                    | labs.c                     | mo                      |                                             |                                   |                                                             |                            | _                                  | CHAIN                                                           | 1 OF                                    | CU                | SIC                                        | ו זיטי                        | REC                       | UR                                   | U     | _                                        | C                             | DC #:    |          |                | Page 7 of 9                                 |
|------------------------------------|-----------------------------------------------------|------------------------------|-------------------------|-------------|-------------------------|----------------------------|-------------------------|---------------------------------------------|-----------------------------------|-------------------------------------------------------------|----------------------------|------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-------------------|--------------------------------------------|-------------------------------|---------------------------|--------------------------------------|-------|------------------------------------------|-------------------------------|----------|----------|----------------|---------------------------------------------|
|                                    | Invoice Information                                 |                              |                         | Repor       | t Info                  | ormati                     | ion (ii                 | f diffe                                     | rs fro                            | m inv                                                       | oice)                      |                                    |                                                                 |                                         | Pre               | oject l                                    | nforma                        | tion                      | where                                | e app | licabl                                   | e)                            |          |          | _              | around Time (TAT) Required                  |
| ompany Name:                       | Stantec Consulting                                  |                              | Company                 | Name:       |                         |                            |                         |                                             |                                   |                                                             |                            |                                    | -                                                               | Quota                                   | tion #:           |                                            |                               | 4                         |                                      |       |                                          |                               | _        | х        |                | egular TAT (5 business days) Most<br>alyses |
| ontact Name:                       | Barry Wicks                                         |                              | Contact N               | lame:       |                         |                            |                         |                                             |                                   |                                                             |                            |                                    |                                                                 | Purcha                                  | ise Ori           | ier#:                                      |                               |                           |                                      |       |                                          |                               |          | PLEASE   | PROVI          | DE ADVANCE NOTICE FOR RUSH PROJEC           |
| ddress:                            | 141 Kelsey Dr                                       |                              | Address:                |             |                         |                            |                         |                                             |                                   |                                                             |                            |                                    |                                                                 | Projec                                  | t #:              |                                            |                               |                           |                                      |       |                                          |                               | _        | IE BUSH  | nlease         | specify date (Surcharges will be applied    |
|                                    |                                                     | c:                           |                         | ÷.          |                         |                            |                         |                                             |                                   |                                                             | PC:                        |                                    |                                                                 | Site Lo                                 | cation            | ε.                                         |                               |                           |                                      |       |                                          |                               |          | 1.1.2    |                |                                             |
| hone:                              | (709)576-1458                                       | 1                            | Phone:                  | 1           |                         |                            |                         |                                             |                                   |                                                             |                            |                                    |                                                                 | Site Pr                                 | ovince            | Ξ.                                         |                               |                           |                                      |       |                                          |                               | _        | DATE     | REC            | UIRED:                                      |
| imail:                             | barry.wicks@stantec.com                             |                              | Email:                  |             |                         |                            |                         |                                             |                                   |                                                             |                            |                                    |                                                                 | Site #:                                 |                   |                                            |                               | _                         |                                      |       |                                          |                               |          |          |                |                                             |
| leport Copies:                     |                                                     |                              | Report Co               | opies:      |                         |                            |                         |                                             |                                   |                                                             |                            |                                    |                                                                 | Sampl                                   | ed By:            |                                            |                               |                           |                                      |       |                                          |                               |          |          |                |                                             |
|                                    | Laboratory Use On                                   | lγ                           |                         |             |                         |                            |                         |                                             |                                   |                                                             |                            |                                    |                                                                 |                                         |                   |                                            | Anal                          | ysis R                    | eques                                | ted   |                                          |                               |          |          |                |                                             |
| CUSTODY SE                         | AL COOLER TEMPERATURES                              | CODI                         | ER TEMPERATU            | RES         | 1                       | Г                          |                         | L.                                          | ers                               |                                                             | Metal:<br>Water            |                                    | Meta<br>(tissu                                                  |                                         |                   |                                            |                               |                           |                                      |       |                                          |                               |          |          |                | Regulatory Requirements (Specify)           |
| Present                            | Intact                                              | States                       |                         |             |                         | 1.                         |                         | e wate                                      | waters                            |                                                             |                            |                                    |                                                                 |                                         |                   | F2-F4                                      |                               |                           | nent                                 |       | _                                        |                               |          |          |                |                                             |
|                                    | -672                                                |                              |                         | _           |                         |                            |                         | urfact                                      | puno                              |                                                             |                            | ILVEL                              | Digest                                                          | (III)                                   | 5)                | зтех,                                      |                               |                           | Sedir                                |       | sence                                    |                               |          |          | L              |                                             |
|                                    | 1 1                                                 |                              |                         | _           |                         |                            |                         | ell / S                                     | Is) Gr                            |                                                             | 1.                         | DISSIC                             | able)                                                           | al/ Lar                                 | C6-C32)           | C F1/                                      |                               |                           | CCME                                 |       | ce/Ab                                    |                               |          |          |                |                                             |
|                                    | and the second second                               |                              |                         |             | TTE                     | KED                        | a                       | w [s]                                       | Vieta                             | thod]<br>water                                              | wate                       | AL/                                | (Avail                                                          | Boron<br>Agricultural/                  | (BTEX,            | Hd-SA                                      | (Ilos)                        | ment                      | ultor                                |       | iuasa.                                   | ount)                         |          |          | ω.             |                                             |
|                                    | COOLING MEDIA PRESEN                                | TY/N                         | - C                     |             | SUBA                    | RESE                       | EQUIF                   | Meta                                        | ved                               | ult Me                                                      | pund                       | 101 (                              | table                                                           |                                         | ) sug             | ns (C)                                     | water                         | E Sed                     | Defa                                 |       | oli (P                                   | oli (C                        |          |          | AALYZ          |                                             |
| SAMPLES MU                         | JST BE KEPT COOL ( < 10 $^{\circ}$ C ) FROM TIME OF | SAMPLING UNTIL D             | DELIVERY TO B           | V LABS      | VINERS                  | RED &F                     | TION R                  | Total                                       | (Disso                            | t (Defa<br>er & st                                          | for gro                    | CIRCLE                             | lercury<br>5 Extrac                                             | Soluble<br>ir CCMI                      | rocarb            | ocarbo                                     | ult for                       | L/CCM                     | Select One: Default or CCME Sediment |       | orm/E.c                                  | orm/E.C                       |          | 4        | DO NOT ANALYZE |                                             |
|                                    | SAMPLE IDENTIFICATION                               | DATE SAMPLED<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX      | # OF CONTAINERS SUBMITT | FIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface water | RCAP-MS (Dissolved Metals) Ground | Total Digest (Default Metho<br>for well water & surface wat | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable (Available) Digesi | Hot Water Soluble<br>(required for CCME | RBCA Hydrocarbons | CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4) | PAHs (Default for water/soll) | PAHs (FWAL/CCME Sediment) | PCBs - Sele                          | vocs  | Total Coliform/E.coli (Presence/Absence) | Total Coliform/E.Coli (Count) |          |          | HOLD- DO       | COMMENTS                                    |
| 1                                  | SH-IO2                                              | 9/10/2020                    |                         | organs      |                         |                            | T                       |                                             |                                   |                                                             |                            |                                    | х                                                               |                                         |                   |                                            | _                             |                           |                                      |       |                                          |                               | Τ        |          | $\Gamma$       | do not pre-weight                           |
| 2                                  | SH-IO3                                              | 9/10/2020                    |                         | organs      | Γ                       |                            |                         |                                             |                                   |                                                             |                            |                                    | x                                                               |                                         |                   |                                            |                               |                           |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 3                                  | SH-104                                              | 10/20/2020                   |                         | organs      | Γ                       |                            | 1                       |                                             |                                   |                                                             |                            |                                    | x                                                               |                                         |                   |                                            | 1                             |                           |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 4                                  | SH-105                                              | 10/20/2020                   |                         | organs      | Γ                       |                            | 1                       |                                             |                                   |                                                             | 1                          |                                    | x                                                               |                                         |                   |                                            |                               |                           |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 5                                  | SH-IO6                                              | 10/20/2020                   |                         | organs      | Γ                       | $\top$                     | T                       | 1                                           |                                   |                                                             |                            |                                    | x                                                               |                                         |                   |                                            |                               |                           |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 6                                  | SH-IO7                                              | 11/7/2020                    |                         | organs      | F                       | 1                          | 1                       | 1                                           |                                   | 1                                                           | 1                          |                                    | x                                                               |                                         |                   |                                            |                               |                           |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 7                                  | SH-108                                              | 11/8/2020                    |                         | organs      | t                       | 1                          | 1                       | 1                                           |                                   | 1                                                           | 1                          |                                    | x                                                               |                                         |                   |                                            |                               |                           |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 8                                  | LT-1                                                | 9/5/2020                     |                         | organic     | t                       |                            | 1                       | 1                                           |                                   |                                                             |                            | j.                                 | x                                                               |                                         |                   |                                            |                               | 1                         |                                      |       |                                          |                               |          |          |                | do not pre-weight                           |
| 9                                  | LT-2                                                | 9/6/2020                     |                         | organic     | 1                       | $\top$                     | 1                       | 1                                           | 1                                 | 1                                                           | 1                          |                                    | x                                                               |                                         | 1                 | 1                                          |                               |                           |                                      |       |                                          |                               |          |          | 1              | do not pre-weight                           |
| 10                                 | LT-3                                                | 9/7/2020                     |                         | organic     | t                       | +                          | t                       | 1                                           | 1                                 | $\mathbf{T}$                                                | +                          |                                    | x                                                               |                                         |                   |                                            |                               |                           | 1                                    |       |                                          |                               |          |          |                | do not pre-weight                           |
|                                    | LINQUISHED BY: (Signature/Print)                    | DATE: (YYY                   | Y/MM/DD)                | TIME:       | (HH:7                   | (MN)                       | t                       | ñ                                           | RECE                              | IVED B                                                      | IY:(Si                     | gnatu                              | e/Print)                                                        |                                         | D                 | ATE: (                                     | YYYY/                         | MM/I                      | (00                                  | -     | TIME                                     | : (HH:                        | MM)      | -1       |                | BV LABS JOB #                               |
|                                    |                                                     |                              |                         |             |                         |                            |                         | L                                           | ł                                 | Ú                                                           | Ú                          | 0                                  |                                                                 | î                                       | VOV               | 3                                          | 0                             | 202                       | 20                                   |       | 70                                       | 0                             | 0        |          | С              | 019779                                      |
| Unless otherwise<br>www.bvlabs.com | e agreed to in writing, work submitted on this      | s Chain of Custody Is        | s subject to BV         | Labs stand  | ard T                   | erms                       | and C                   | Condit                                      | ions.                             | Signir                                                      | ng of t                    | this Ch                            | ain of Cu                                                       | stody o                                 | locum             | ent is i                                   | acknow                        | /ledgr                    | nent a                               | nd ac | cepti                                    | ance o                        | of our t | erms whi | .ch are        | available for viewing at                    |

White: Maxxam



 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9
 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, St John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G,Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-6504 Toll Free: 1-888-535-7770

ATL FCD 00149 / 25

| www.bvlabs.com E-mail: customerservicebedford@bvlabs.com |                                                    |                              |                         |              |                          |                              |                                           |                                             |                            |                                      |                            | CHAIN                              | HAIN OF CUSTODY RECORD coc #: Pa             |                                         |                   |                                            |                   |                            |                                      |        |                                          | Page 8 of 9                    |         |                                                          |                                   |                            |  |  |
|----------------------------------------------------------|----------------------------------------------------|------------------------------|-------------------------|--------------|--------------------------|------------------------------|-------------------------------------------|---------------------------------------------|----------------------------|--------------------------------------|----------------------------|------------------------------------|----------------------------------------------|-----------------------------------------|-------------------|--------------------------------------------|-------------------|----------------------------|--------------------------------------|--------|------------------------------------------|--------------------------------|---------|----------------------------------------------------------|-----------------------------------|----------------------------|--|--|
| Invoice Information Report                               |                                                    |                              |                         |              |                          |                              | ort Information (if differs from invoice) |                                             |                            |                                      |                            |                                    |                                              |                                         |                   | oject I                                    | nforma            | ation                      | (where                               | abb    | licabl                                   | Turnaround Time (TAT) Required |         |                                                          |                                   |                            |  |  |
| Company Name:                                            | mpany Name: Stantec Consulting Company Na          |                              |                         |              |                          |                              | ompany Name:                              |                                             |                            |                                      |                            |                                    |                                              |                                         |                   |                                            |                   |                            |                                      |        |                                          | х                              |         | Regular TAT (5 business days) Most<br>nalyses            |                                   |                            |  |  |
| Contact Name:                                            | Barry Wicks                                        |                              | Contact N               | act Name:    |                          |                              |                                           |                                             |                            |                                      |                            |                                    |                                              | Purchase Order#:                        |                   |                                            |                   |                            |                                      |        |                                          |                                |         | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS          |                                   |                            |  |  |
| Address:                                                 | 141 Kelsey Dr                                      |                              | Address:                |              |                          |                              |                                           |                                             |                            |                                      |                            |                                    |                                              | Project #:                              |                   |                                            |                   |                            |                                      |        |                                          |                                | _       | IF BUIEL along could, date /Fund-supervisition and       |                                   |                            |  |  |
|                                                          |                                                    | C:                           |                         | - H (        | PC:                      |                              |                                           |                                             |                            |                                      |                            |                                    |                                              |                                         | Site Location:    |                                            |                   |                            |                                      |        |                                          |                                |         | IF RUSH please specify date (Surcharges will be applied) |                                   |                            |  |  |
| Phone: (                                                 | 709)576-1458                                       | 1.000                        | Phone:                  |              |                          |                              |                                           |                                             |                            |                                      |                            |                                    |                                              | Site Province:                          |                   |                                            |                   |                            |                                      |        | 1.                                       |                                |         | DATE REQUIRED:                                           |                                   |                            |  |  |
| Email: k                                                 | mail: barry.wicks@stantec.com Email:               |                              |                         |              |                          |                              |                                           |                                             |                            |                                      |                            |                                    |                                              |                                         | Site #:           |                                            |                   |                            |                                      |        |                                          |                                |         | Ε.                                                       |                                   |                            |  |  |
| eport Coples: Report Coples:                             |                                                    |                              |                         |              |                          |                              |                                           |                                             |                            |                                      |                            |                                    |                                              | Sampled By:                             |                   |                                            |                   |                            |                                      |        |                                          |                                |         |                                                          |                                   |                            |  |  |
|                                                          | Laboratory Use On                                  | ly                           |                         |              |                          |                              |                                           |                                             |                            |                                      |                            |                                    |                                              |                                         |                   |                                            | Anal              | ysis R                     | eques                                | ted    |                                          |                                |         |                                                          |                                   |                            |  |  |
| CUSTODY SEAL COOLER TEMPERATURES COOLER TEL              |                                                    |                              |                         | TEMPERATURES |                          |                              |                                           |                                             | 52                         |                                      |                            | Meta<br>(tissu                     |                                              |                                         |                   |                                            |                   |                            |                                      | Τ      | Τ                                        | Τ                              |         | Г                                                        | Regulatory Requirements (Specify) |                            |  |  |
| Present In                                               | ntact                                              |                              |                         |              |                          |                              |                                           | wate                                        | wate                       |                                      | T                          |                                    |                                              |                                         |                   | F2-F4)                                     |                   |                            | nent                                 |        |                                          |                                |         |                                                          | 1                                 |                            |  |  |
|                                                          | 6-7-2                                              |                              |                         |              | 1                        |                              |                                           | urface                                      | Ground waters              |                                      | 1                          | LVED                               | Digest                                       | (Illiford)                              | (7                | STEX,                                      |                   |                            | Sedin                                |        | ence                                     |                                |         |                                                          | 1                                 |                            |  |  |
|                                                          | / /                                                | 21 Marca 1                   | 1.54                    |              |                          |                              | -                                         | ell / S                                     |                            |                                      |                            | DISSIC                             | able) (                                      |                                         | (C6-C32)          | C F1/E                                     |                   |                            | CCME                                 |        | e/Abs                                    |                                |         |                                                          | <u> </u> -                        |                            |  |  |
|                                                          |                                                    |                              |                         | _            | Datti                    | IVED                         | a                                         | w [s]                                       | Metal                      | thod)                                | water                      | AL/I                               | (Available)                                  | r<br>ultural/                           | (BTEX,            | Hd-S/                                      | (iios             | ment                       | It or I                              |        | esenc                                    | ount)                          |         |                                                          |                                   |                            |  |  |
|                                                          | COOLING MEDIA PRESEN                               | ry/N                         |                         |              | NBNS                     | RESEF                        | guir                                      | Meta                                        | ved h                      | ault Mel                             | pun                        | TOT (                              | table                                        | Boroi<br>Agric                          | a) suc            | IS (CV                                     | water/soli)       | E Sedi                     | Defau                                |        | oli (Pr                                  | oli (Cc                        |         |                                                          | IALYZI                            |                            |  |  |
| SAMPLES MUS                                              | ST BE KEPT COOL ( < 10 $^{\circ}$ C ) FROM TIME OF | SAMPLING UNTIL D             | ELIVERY TO B            | / LABS       | AINERS                   | CRED &P                      | VTION RE                                  | (Total                                      | (Dissol                    | -                                    | for gro                    | CIRCLE                             | Aercury<br>d Extrac                          | tter Soluble Bor<br>ed for CCME Ag      | drocarbo          | rocarboi                                   | sult for v        | AL /COM                    | Select One: Default or CCME Sediment |        | orm/E.c                                  | orm/E.C                        |         |                                                          | NOT AN                            |                            |  |  |
|                                                          |                                                    | DATE SAMPLED<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX       | # OF CONTAINERS SUBMITTE | FIELD FILTERED & PRESERVED   | LAB FILTRATION REQUIRED                   | RCAP-MS (Total Metals) Well / Surface water | RCAP-MS (Dissolved Metals) | Total Digest (De<br>for well water & | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable | Hot Water Soluble<br>(required for CCME | RBCA Hydrocarbons | CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4) | PAHs (Default for | PAHs (FWAL /CCME Sediment) | PCBs - Sele                          | VOCS   | Total Coliform/E.coli (Presence/Absence) | Total Coliform/E.Coli (Count)  |         |                                                          | HOLD- DO NOT ANALYZE              | COMMENTS                   |  |  |
| 1                                                        | Lt-4                                               | 9/8/2020                     |                         | organic      |                          |                              |                                           |                                             |                            |                                      |                            |                                    | x                                            |                                         |                   |                                            |                   |                            |                                      |        |                                          |                                |         |                                                          | T                                 | do not pre-weight          |  |  |
| 2                                                        | Lt-5                                               | 9/10/2020                    |                         | organic      |                          |                              |                                           |                                             |                            |                                      |                            |                                    | x                                            |                                         |                   |                                            |                   |                            |                                      |        |                                          |                                |         |                                                          |                                   | do not pre-weight          |  |  |
| 3                                                        | Lt-6                                               | 9/10/2020                    |                         | organic      | Γ                        |                              |                                           |                                             |                            |                                      |                            |                                    | x                                            |                                         |                   |                                            |                   |                            |                                      |        |                                          |                                |         |                                                          |                                   | do not pre-weight          |  |  |
| 4                                                        | Lt-7                                               | 9/10/2020                    |                         | organic      | r                        |                              |                                           | 1                                           |                            |                                      | 1                          |                                    | x                                            |                                         |                   |                                            |                   |                            |                                      |        |                                          |                                |         |                                                          |                                   | do not pre-weight          |  |  |
| 5                                                        | Lt-8                                               | 9/10/2020                    |                         | organic      | F                        | 1                            |                                           | $\vdash$                                    | 1                          | 1                                    | 1                          | 1                                  | x                                            |                                         |                   |                                            |                   |                            |                                      | _      |                                          |                                |         |                                                          |                                   | do not pre-weight          |  |  |
| 6                                                        | Lt-9                                               | 9/10/2020                    |                         | organic      | t                        |                              |                                           |                                             |                            | 1                                    | +                          | 1                                  | x                                            |                                         |                   |                                            |                   |                            |                                      | _      |                                          |                                |         |                                                          |                                   | do not pre-weight          |  |  |
| 7                                                        | Lt-10                                              | 9/11/2020                    |                         | organic      | ┢                        | 1                            |                                           |                                             | 1                          | 1                                    | +                          | +                                  | x                                            |                                         |                   | 1                                          | -                 |                            |                                      |        |                                          |                                |         | -                                                        | -                                 | do not pre-weight          |  |  |
| 8                                                        | Lt-dup                                             | Jan and Annael               |                         | organic      | ┢                        |                              | $\vdash$                                  | +                                           | -                          | t                                    | 1                          | +                                  | x                                            |                                         |                   | -                                          | -                 |                            |                                      |        |                                          |                                |         | -                                                        |                                   | do not pre-weight          |  |  |
| 9                                                        | BB-1                                               | 11/7/2020                    | 1                       | organic      | F                        | 1                            | $\vdash$                                  | +                                           | 1                          | 1                                    | +                          | +                                  | ×                                            |                                         |                   | -                                          | $\vdash$          |                            |                                      |        |                                          |                                |         |                                                          | -                                 | do not pre-weight          |  |  |
| 10                                                       | BB-2                                               | 11/8/2020                    |                         | organic      | ┢                        | +                            | 1                                         |                                             |                            | 1                                    | +                          | +                                  | ×                                            |                                         | 1                 | -                                          | +                 |                            |                                      |        |                                          |                                |         | -                                                        | +                                 | do not pre-weight          |  |  |
| RELINQUISHED BY: (Signature/Print) DATE: (YYYY)          |                                                    | /MM/DD)                      |                         |              |                          | (HH:MM) RECEIVED BY:(Signatu |                                           |                                             |                            |                                      |                            | 1.1                                | DATE: (YYYY/MM/DD)                           |                                         |                   |                                            |                   |                            | TIME                                 | : (HH: | :MM)                                     | 1                              | _       | BV LABS JOB #                                            |                                   |                            |  |  |
|                                                          |                                                    |                              |                         |              |                          |                              | hthe                                      |                                             |                            |                                      | Ú                          |                                    | NOV 3 0 2020                                 |                                         |                   |                                            |                   | 900                        |                                      |        |                                          |                                | COV9779 |                                                          |                                   |                            |  |  |
| Unless otherwise a<br>www.bylabs.com                     | agreed to in writing, work submitted on this       | Chain of Custody Is          | subject to BV           | Labs stand   | ard T                    | erms a                       | and C                                     | onditi                                      | ions.                      | Signin                               | ug of t                    | this Cł                            | ain of Cu                                    | stody d                                 | locume            | ent is a                                   | acknow            | rledgr                     | nent a                               | nd a   | cepta                                    | ince o                         | afourt  | erms wh                                                  | lch are                           | e available for viewing at |  |  |

White: Maxxam



 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9
 Tel; 902:420-0203 Fax: 902:420-8612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, St John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Street, Unit G, Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-6504 Toll Free: 1-888-535-7770

ATL FCD 00149 / 25

| www.bvlabs.com E-mail: customerservicebedfor              |                                                     |                                |                        |            |                                         |                            |                         | rd@bvlabs.com CHA                           |                            |                            |                 |                                        |                                                          |                                              | N OF CUSTODY RECORD coc #: |                                            |                               |                            |                                             |       |                                          |                               |                                |                                                          | Page_ 9 of 9                                   |                      |                                   |  |  |
|-----------------------------------------------------------|-----------------------------------------------------|--------------------------------|------------------------|------------|-----------------------------------------|----------------------------|-------------------------|---------------------------------------------|----------------------------|----------------------------|-----------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------|--------------------------------------------|-------------------------------|----------------------------|---------------------------------------------|-------|------------------------------------------|-------------------------------|--------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------|-----------------------------------|--|--|
|                                                           |                                                     | Repor                          | rt Info                | ormat      | ion (i                                  | f diffe                    | rs fro                  | om Inv                                      | oice)                      |                            |                 | Project Information (where applicable) |                                                          |                                              |                            |                                            |                               |                            |                                             |       |                                          |                               | Turnaround Time (TAT) Required |                                                          |                                                |                      |                                   |  |  |
| Company Name                                              | Name: Stantec Consulting Company Name:              |                                |                        |            |                                         |                            |                         | HE:                                         |                            |                            |                 |                                        |                                                          |                                              |                            | Quotation #:                               |                               |                            |                                             |       |                                          |                               |                                |                                                          | Regular TAT (5 business days) Most<br>analyses |                      |                                   |  |  |
| Contact Name:                                             | ontact Name: Barry Wicks Contact Name:              |                                |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          |                                              | Purchase Order#:           |                                            |                               |                            |                                             |       |                                          |                               |                                | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS          |                                                |                      |                                   |  |  |
| Address:                                                  | dress: 141 Kelsey Dr Address:                       |                                |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          |                                              |                            | Project #:                                 |                               |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      |                                   |  |  |
| St. John's NI x PC:                                       |                                                     |                                |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          |                                              | Site Location:             |                                            |                               |                            |                                             |       |                                          |                               |                                | IF RUSH please specify date (Surcharges will be applied) |                                                |                      |                                   |  |  |
| Phone: (709)576-1458 Phone:                               |                                                     |                                |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          | Site Province:                               |                            |                                            |                               |                            |                                             |       |                                          |                               |                                | D                                                        | DATE REQUIRED:                                 |                      |                                   |  |  |
| Email: barry.wicks@stantec.com Email:                     |                                                     |                                |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          | Site #                                       |                            | ,                                          |                               |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      |                                   |  |  |
| Report Copies: Report Copies:                             |                                                     |                                |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          | Sampled By:                                  |                            |                                            |                               |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      |                                   |  |  |
| 1                                                         | Laboratory Use O                                    | niy                            |                        |            |                                         |                            |                         |                                             |                            |                            |                 |                                        |                                                          |                                              |                            |                                            | Anal                          | ysis R                     | eques                                       | ted   |                                          |                               |                                |                                                          |                                                |                      |                                   |  |  |
| CUSTODY                                                   | SEAL COOLER TEMPERATURES                            | COOLE                          | ER TEMPERATU           | RES        |                                         |                            |                         | 5                                           | sus                        |                            | Metals<br>Water |                                        | Met<br>(tiss                                             |                                              |                            |                                            |                               |                            |                                             |       |                                          |                               |                                |                                                          | Т                                              | -                    | Regulatory Requirements (Specify) |  |  |
| Present                                                   | Intact A                                            |                                |                        |            |                                         | 1                          |                         | wate                                        | wate                       |                            |                 |                                        |                                                          |                                              | 1                          | -2-F4)                                     |                               |                            | tient                                       |       |                                          |                               |                                |                                                          |                                                |                      |                                   |  |  |
|                                                           | 6.1-2                                               |                                |                        |            |                                         | 1.1                        |                         | urface                                      | Ground waters              |                            |                 | LVED                                   | Digest                                                   | dflii)                                       | ភ                          | STEX,                                      |                               |                            | Sedin                                       |       | (ence)                                   |                               |                                |                                                          |                                                |                      |                                   |  |  |
|                                                           | 1 1                                                 |                                |                        |            |                                         |                            |                         | ell / S                                     |                            |                            |                 | DISSO                                  | able) I                                                  | (/ Lan                                       | C6-C32)                    | C F1/B                                     |                               |                            | COME                                        |       | e/Abs                                    |                               |                                |                                                          |                                                |                      |                                   |  |  |
|                                                           |                                                     |                                |                        |            | E                                       | ÆD                         | 8                       | s) We                                       | Aetal                      | thod)<br>vater             | vater           | AL / E                                 | Availa                                                   | ultura                                       |                            | S-PH(                                      | (lio                          | nent)                      | It or 0                                     |       | sence                                    | (tun                          |                                |                                                          |                                                |                      |                                   |  |  |
|                                                           | COOLING MEDIA PRESEN                                | ITY/N                          |                        |            | SUBM                                    | RESER                      | auir                    | Meta                                        | ved N                      | It Me                      | nud v           | TOT                                    | able                                                     | Agric                                        | ns (B                      | s (CV                                      | ater/                         | Sedir                      | Defau                                       |       | ii (Pri                                  | oli (Co                       |                                |                                                          |                                                | ALYZE                |                                   |  |  |
| SAMPLES N                                                 | /UST BE KEPT COOL ( < 10 $^{\circ}$ C ) FROM TIME O | F SAMPLING UNTIL DE            | ELIVERY TO B           | / LABS     | VINERS :                                | RED &P                     | TION RE                 | Total                                       | Dissol                     | gest (Defau<br>water & su  | for gro         | CIRCLE)                                | ercury<br>I Extract                                      | Water Soluble Boron<br>uired for CCME Agricu | rocarbo                    | ocarbor                                    | ult for w                     | CCM                        | t One:                                      |       | rm/E.cc                                  | rm/E.C                        |                                |                                                          |                                                | VOT AN               |                                   |  |  |
|                                                           | SAMPLE IDENTIFICATION                               | DATE SAMPLED 1<br>(YYYY/MM/DD) | NME SAMPLED<br>(HH:MM) | MATRIX     | # OF CONTAINERS SUBMIT                  | FIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface water | RCAP-MS (Dissolved Metals) | Total Digest (Default Meth | vlos            | Mercury (CIRCLE) TOTAL / DISSOLVED     | Metals & Mercury<br>Default Acid Extractable (Available) | Hot Water Soluble<br>(required for CCME      | RBCA Hydrocarbons (BTEX,   | CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4) | PAHs (Default for water/soil) | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | vocs  | Total Coliform/E.coli (Presence/Absence) | Total Coliform/E.Coli (Count) |                                |                                                          |                                                | HOLD- DO NOT ANALYZE | COMMENTS                          |  |  |
| 1                                                         | BB-3                                                | 9/8/2020                       |                        | organic    |                                         |                            |                         |                                             |                            |                            |                 |                                        | x                                                        |                                              |                            |                                            |                               |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      | do not pre-weight                 |  |  |
| 2                                                         | BB-4                                                | 9/8/2020                       |                        | organic    |                                         |                            |                         |                                             |                            |                            |                 |                                        | х                                                        |                                              | 1                          |                                            |                               |                            |                                             |       |                                          |                               |                                | -                                                        |                                                |                      | do not pre-weight                 |  |  |
| 3                                                         | BB-5                                                | 9/8/2020                       |                        | organic    |                                         |                            |                         |                                             |                            |                            |                 | 1                                      | x                                                        |                                              |                            |                                            | N.                            |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      | do not pre-weight                 |  |  |
| 4                                                         | BB-6                                                | 9/8/2020                       |                        | organic    | 1                                       |                            |                         |                                             |                            |                            |                 |                                        | x                                                        |                                              |                            |                                            |                               |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      | do not pre-weight                 |  |  |
| 5                                                         | BB-7                                                | 9/8/2020                       |                        | organic    | $\uparrow$                              | 1                          |                         | 1                                           |                            | 1                          | 1               | 1                                      | x                                                        |                                              | 1                          |                                            | 1                             |                            |                                             |       |                                          |                               |                                |                                                          |                                                |                      | do not pre-weight                 |  |  |
| 6                                                         | BB-8                                                | 9/8/2020                       |                        | organic    | ┢                                       |                            | t                       |                                             |                            |                            |                 | 1                                      | x                                                        |                                              |                            |                                            |                               | 1                          |                                             |       |                                          |                               |                                |                                                          |                                                | -                    | do not pre-weight                 |  |  |
| 7                                                         | BB-9                                                | 9/8/2020                       |                        | organic    | t                                       | +                          |                         | 1-                                          |                            |                            |                 | 1                                      | x                                                        |                                              |                            |                                            | 1                             | 1                          |                                             | -     | -                                        | $\vdash$                      |                                |                                                          | -                                              | -                    | do not pre-weight                 |  |  |
| 8                                                         | BB-10                                               | 9/8/2020                       |                        | organic    | t                                       | +                          |                         | 1                                           | 1                          | -                          |                 | -                                      | x                                                        |                                              | $\vdash$                   | -                                          | -                             | -                          |                                             | -     |                                          |                               |                                |                                                          |                                                | -                    | do not pre-weight                 |  |  |
| 9                                                         | BB-dup                                              |                                |                        | organic    | t                                       | 1                          | -                       | 1-                                          | 1                          | -                          | 1               | 1                                      | x                                                        |                                              |                            | -                                          | 1                             | -                          |                                             |       |                                          |                               |                                |                                                          |                                                |                      | do not pre-weight                 |  |  |
| 10                                                        |                                                     |                                |                        |            | t                                       | 1                          |                         | 1                                           |                            |                            |                 | 1                                      |                                                          | Ì                                            |                            | 1                                          | 1                             |                            |                                             |       | =                                        |                               |                                |                                                          | _                                              | 1                    |                                   |  |  |
| RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIM |                                                     |                                |                        | TIME:      | : (HH:MM) / RECEIVEØ'BY:(Signature/Prin |                            |                         |                                             |                            |                            |                 | e/Print)                               | ) DATE: (YYYY/MM/DD)                                     |                                              |                            |                                            |                               |                            | TIME: (HH:MM)                               |       |                                          |                               |                                | BV LABS JOB #                                            |                                                |                      |                                   |  |  |
|                                                           |                                                     |                                |                        |            |                                         |                            | K                       | KMU                                         |                            |                            |                 |                                        |                                                          |                                              | 10                         | OV 3 0 2020                                |                               |                            |                                             |       | 900                                      |                               |                                |                                                          |                                                | C                    | 019779                            |  |  |
| <u> </u>                                                  |                                                     |                                |                        |            | 1                                       |                            |                         |                                             |                            |                            |                 |                                        |                                                          |                                              |                            |                                            |                               |                            |                                             | _/    | V                                        | <u> </u>                      |                                |                                                          |                                                |                      |                                   |  |  |
|                                                           | se agreed to in writing, work submitted on th       | s Chain of Custody is :        | subject to BV          | Labs stand | ard Te                                  | erms a                     | and C                   | onditi                                      | ons.                       | Signin                     | g of ti         | his Ch                                 | ain of Cu                                                | stody d                                      | locume                     | ent is a                                   | icknow                        | ledgn                      | ient a                                      | nd ac | cept                                     | ance                          | of our                         | terms                                                    | which                                          | n are                | available for viewing at          |  |  |
| www.bvlabs.co                                             | m                                                   |                                |                        | _          | _                                       | _                          |                         |                                             |                            | _                          | _               | _                                      |                                                          | _                                            |                            |                                            | _                             | _                          | _                                           | _     |                                          |                               | _                              |                                                          |                                                |                      |                                   |  |  |

White: Maxxam



Your Project #: 121416288 Your C.O.C. #: n/a

### **Attention: Barry Wicks**

Stantec Consulting Ltd 141 Kelsey Drive St. John's, NL CANADA A1B 0L2

> Report Date: 2020/12/10 Report #: R6444235 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### BV LABS JOB #: COW4941 Received: 2020/12/01, 09:55

Sample Matrix: Soil # Samples Received: 22

|                                | Date              | Date          |                   |                   |
|--------------------------------|-------------------|---------------|-------------------|-------------------|
| Analyses                       | Quantity Extracte | Analyzed      | Laboratory Method | Analytical Method |
| Metals Solids Acid Extr. ICPMS | 22 2020/12        | ′09 2020/12/1 | 0 ATL SOP 00058   | EPA 6020B R2 m    |

### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Heather Macumber, Senior Project Manager Email: Heather.MACUMBER@bvlabs.com Phone# (902)420-0203 Ext:226

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 16



### **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| BV Labs ID                                                           |       | OIR770     | OIR771     |          | OIR772     | OIR772          |          | OIR773     |      |          |
|----------------------------------------------------------------------|-------|------------|------------|----------|------------|-----------------|----------|------------|------|----------|
| Sampling Date                                                        |       | 2020/09/05 | 2020/09/06 |          | 2020/09/07 | 2020/09/07      |          | 2020/09/08 |      |          |
| COC Number                                                           |       | n/a        | n/a        |          | n/a        | n/a             |          | n/a        |      |          |
|                                                                      | UNITS | LT-1       | LT-2       | QC Batch | LT-3       | LT-3<br>Lab-Dup | QC Batch | LT-4       | RDL  | QC Batch |
| Metals                                                               |       |            |            |          |            |                 |          |            |      |          |
| Acid Extractable Aluminum (Al)                                       | mg/kg | 350        | 600        | 7099631  | 12000      | 13000           | 7099641  | 3800       | 10   | 7099631  |
| Acid Extractable Antimony (Sb)                                       | mg/kg | <2.0       | <2.0       | 7099631  | <2.0       | <2.0            | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Arsenic (As)                                        | mg/kg | <2.0       | <2.0       | 7099631  | 21         | 21              | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Barium (Ba)                                         | mg/kg | 16         | 23         | 7099631  | 9.3        | 9.2             | 7099641  | 59         | 5.0  | 7099631  |
| Acid Extractable Beryllium (Be)                                      | mg/kg | <2.0       | <2.0       | 7099631  | <2.0       | <2.0            | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Bismuth (Bi)                                        | mg/kg | <2.0       | <2.0       | 7099631  | <2.0       | <2.0            | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Boron (B)                                           | mg/kg | <50        | <50        | 7099631  | <50        | <50             | 7099641  | <50        | 50   | 7099631  |
| Acid Extractable Cadmium (Cd)                                        | mg/kg | 0.37       | 0.37       | 7099631  | <0.30      | <0.30           | 7099641  | 0.41       | 0.30 | 7099631  |
| Acid Extractable Chromium (Cr)                                       | mg/kg | <2.0       | <2.0       | 7099631  | 11         | 12              | 7099641  | 2.5        | 2.0  | 7099631  |
| Acid Extractable Cobalt (Co)                                         | mg/kg | <1.0       | <1.0       | 7099631  | 2.9        | 3.1             | 7099641  | 1.3        | 1.0  | 7099631  |
| Acid Extractable Copper (Cu)                                         | mg/kg | <2.0       | 7.7        | 7099631  | 8.3        | 8.9             | 7099641  | 6.3        | 2.0  | 7099631  |
| Acid Extractable Iron (Fe)                                           | mg/kg | 350        | 580        | 7099631  | 21000      | 23000           | 7099641  | 8000       | 50   | 7099631  |
| Acid Extractable Lead (Pb)                                           | mg/kg | 21         | 12         | 7099631  | 5.7        | 5.9             | 7099641  | 23         | 0.50 | 7099631  |
| Acid Extractable Lithium (Li)                                        | mg/kg | <2.0       | <2.0       | 7099631  | 3.2        | 3.5             | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Manganese (Mn)                                      | mg/kg | 58         | 320        | 7099631  | 130        | 140             | 7099641  | 280        | 2.0  | 7099631  |
| Acid Extractable Mercury (Hg)                                        | mg/kg | 0.23       | 0.27       | 7099631  | 0.11       | <0.10           | 7099641  | 0.20       | 0.10 | 7099631  |
| Acid Extractable Molybdenum (Mo)                                     | mg/kg | <2.0       | <2.0       | 7099631  | <2.0       | <2.0            | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Nickel (Ni)                                         | mg/kg | <2.0       | <2.0       | 7099631  | 5.0        | 5.2             | 7099641  | 2.8        | 2.0  | 7099631  |
| Acid Extractable Rubidium (Rb)                                       | mg/kg | <2.0       | 2.1        | 7099631  | 2.6        | 2.8             | 7099641  | <2.0       | 2.0  | 7099631  |
| Acid Extractable Selenium (Se)                                       | mg/kg | 0.72       | <0.50      | 7099631  | 0.52       | 0.62            | 7099641  | 0.55       | 0.50 | 7099631  |
| Acid Extractable Silver (Ag)                                         | mg/kg | <0.50      | <0.50      | 7099631  | <0.50      | <0.50           | 7099641  | <0.50      | 0.50 | 7099631  |
| Acid Extractable Strontium (Sr)                                      | mg/kg | 16         | 13         | 7099631  | <5.0       | <5.0            | 7099641  | 12         | 5.0  | 7099631  |
| Acid Extractable Thallium (Tl)                                       | mg/kg | <0.10      | <0.10      | 7099631  | <0.10      | <0.10           | 7099641  | <0.10      | 0.10 | 7099631  |
| Acid Extractable Tin (Sn)                                            | mg/kg | 1.2        | 1.3        | 7099631  | <1.0       | <1.0            | 7099641  | 1.1        | 1.0  | 7099631  |
| Acid Extractable Uranium (U)                                         | mg/kg | <0.10      | <0.10      | 7099631  | 0.23       | 0.27            | 7099641  | 0.12       | 0.10 | 7099631  |
| Acid Extractable Vanadium (V)                                        | mg/kg | <2.0       | <2.0       | 7099631  | 43         | 45              | 7099641  | 10         | 2.0  | 7099631  |
| Acid Extractable Zinc (Zn)                                           | mg/kg | 16         | 31         | 7099631  | 18         | 19              | 7099641  | 34         | 5.0  | 7099631  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |            |          |            |                 |          |            |      |          |

Lab-Dup = Laboratory Initiated Duplicate



# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| BV Labs ID                       |       | OIR774     |          | OIR775     | OIR776     | OIR777     | OIR778     | OIR779     |      |          |
|----------------------------------|-------|------------|----------|------------|------------|------------|------------|------------|------|----------|
| Sampling Date                    |       | 2020/09/10 |          | 2020/09/10 | 2020/09/10 | 2020/09/10 | 2020/09/10 | 2020/09/11 |      |          |
| COC Number                       |       | n/a        |          | n/a        | n/a        | n/a        | n/a        | n/a        |      |          |
|                                  | UNITS | LT-5       | QC Batch | LT-6       | LT-7       | LT-8       | LT-9       | LT-10      | RDL  | QC Batch |
| Metals                           |       |            |          |            |            |            |            |            |      |          |
| Acid Extractable Aluminum (Al)   | mg/kg | 1700       | 7099631  | 1500       | 4000       | 200        | 2800       | 6800       | 10   | 7099641  |
| Acid Extractable Antimony (Sb)   | mg/kg | <2.0       | 7099631  | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Arsenic (As)    | mg/kg | 3.4        | 7099631  | <2.0       | 2.1        | <2.0       | 3.8        | 6.1        | 2.0  | 7099641  |
| Acid Extractable Barium (Ba)     | mg/kg | 39         | 7099631  | 28         | 45         | 17         | 37         | 380        | 5.0  | 7099641  |
| Acid Extractable Beryllium (Be)  | mg/kg | <2.0       | 7099631  | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Bismuth (Bi)    | mg/kg | <2.0       | 7099631  | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Boron (B)       | mg/kg | <50        | 7099631  | <50        | <50        | <50        | <50        | <50        | 50   | 7099641  |
| Acid Extractable Cadmium (Cd)    | mg/kg | 0.40       | 7099631  | <0.30      | <0.30      | <0.30      | <0.30      | 0.71       | 0.30 | 7099641  |
| Acid Extractable Chromium (Cr)   | mg/kg | <2.0       | 7099631  | <2.0       | <2.0       | <2.0       | <2.0       | 8.5        | 2.0  | 7099641  |
| Acid Extractable Cobalt (Co)     | mg/kg | 20         | 7099631  | 1.4        | 1.8        | <1.0       | 4.8        | 4.1        | 1.0  | 7099641  |
| Acid Extractable Copper (Cu)     | mg/kg | 6.5        | 7099631  | 3.1        | 8.0        | 3.8        | 4.1        | 28         | 2.0  | 7099641  |
| Acid Extractable Iron (Fe)       | mg/kg | 9900       | 7099631  | 1700       | 7500       | 230        | 15000      | 12000      | 50   | 7099641  |
| Acid Extractable Lead (Pb)       | mg/kg | 11         | 7099631  | 9.4        | 19         | 9.0        | 14         | 47         | 0.50 | 7099641  |
| Acid Extractable Lithium (Li)    | mg/kg | <2.0       | 7099631  | <2.0       | <2.0       | <2.0       | <2.0       | 4.5        | 2.0  | 7099641  |
| Acid Extractable Manganese (Mn)  | mg/kg | 1500       | 7099631  | 190        | 130        | 620        | 580        | 440        | 2.0  | 7099641  |
| Acid Extractable Mercury (Hg)    | mg/kg | 0.16       | 7099631  | <0.10      | 0.20       | 0.19       | 0.13       | 0.28       | 0.10 | 7099641  |
| Acid Extractable Molybdenum (Mo) | mg/kg | <2.0       | 7099631  | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Nickel (Ni)     | mg/kg | 2.5        | 7099631  | <2.0       | 2.3        | <2.0       | 2.2        | 9.3        | 2.0  | 7099641  |
| Acid Extractable Rubidium (Rb)   | mg/kg | <2.0       | 7099631  | <2.0       | 2.0        | <2.0       | <2.0       | 3.2        | 2.0  | 7099641  |
| Acid Extractable Selenium (Se)   | mg/kg | <0.50      | 7099631  | <0.50      | 0.58       | <0.50      | <0.50      | 0.52       | 0.50 | 7099641  |
| Acid Extractable Silver (Ag)     | mg/kg | <0.50      | 7099631  | <0.50      | <0.50      | <0.50      | <0.50      | 1.1        | 0.50 | 7099641  |
| Acid Extractable Strontium (Sr)  | mg/kg | 32         | 7099631  | 28         | 30         | 14         | 20         | 31         | 5.0  | 7099641  |
| Acid Extractable Thallium (Tl)   | mg/kg | <0.10      | 7099631  | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10 | 7099641  |
| Acid Extractable Tin (Sn)        | mg/kg | 1.3        | 7099631  | 1.4        | 1.3        | <1.0       | <1.0       | <1.0       | 1.0  | 7099641  |
| Acid Extractable Uranium (U)     | mg/kg | 0.11       | 7099631  | <0.10      | 0.20       | <0.10      | 0.17       | 0.33       | 0.10 | 7099641  |
| Acid Extractable Vanadium (V)    | mg/kg | 8.8        | 7099631  | <2.0       | 5.7        | <2.0       | 10         | 19         | 2.0  | 7099641  |
| Acid Extractable Zinc (Zn)       | mg/kg | 34         | 7099631  | 21         | 25         | 29         | 18         | 110        | 5.0  | 7099641  |
| RDL = Reportable Detection Limit |       | -          | -        |            | -          |            | -          |            | -    | -        |
| QC Batch = Quality Control Batch |       |            |          |            |            |            |            |            |      |          |



# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| BV Labs ID                                                           |       | OIR780     | OIR781     | OIR782     | OIR783     | OIR784     | OIR785     |      |          |
|----------------------------------------------------------------------|-------|------------|------------|------------|------------|------------|------------|------|----------|
| Sampling Date                                                        |       | 2020/09/10 | 2020/11/07 | 2020/11/08 | 2020/09/08 | 2020/09/08 | 2020/09/08 |      |          |
| COC Number                                                           |       | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |      |          |
|                                                                      | UNITS | LT-DUP     | BB-1       | BB-2       | BB-3       | BB-4       | BB-5       | RDL  | QC Batch |
| Metals                                                               |       |            |            |            |            |            |            |      |          |
| Acid Extractable Aluminum (Al)                                       | mg/kg | 2400       | 2200       | 2900       | 1100       | 350        | 280        | 10   | 7099641  |
| Acid Extractable Antimony (Sb)                                       | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Arsenic (As)                                        | mg/kg | 2.2        | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Barium (Ba)                                         | mg/kg | 140        | 54         | <5.0       | 120        | 22         | 30         | 5.0  | 7099641  |
| Acid Extractable Beryllium (Be)                                      | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Bismuth (Bi)                                        | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Boron (B)                                           | mg/kg | <50        | <50        | <50        | <50        | <50        | <50        | 50   | 7099641  |
| Acid Extractable Cadmium (Cd)                                        | mg/kg | 0.55       | 0.57       | 0.40       | 0.58       | <0.30      | 0.48       | 0.30 | 7099641  |
| Acid Extractable Chromium (Cr)                                       | mg/kg | 2.4        | <2.0       | 3.7        | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Cobalt (Co)                                         | mg/kg | 1.5        | <1.0       | 2.1        | <1.0       | <1.0       | <1.0       | 1.0  | 7099641  |
| Acid Extractable Copper (Cu)                                         | mg/kg | 5.5        | 7.4        | <2.0       | 4.3        | 3.5        | 3.9        | 2.0  | 7099641  |
| Acid Extractable Iron (Fe)                                           | mg/kg | 3900       | 2600       | 4100       | 900        | 380        | 320        | 50   | 7099641  |
| Acid Extractable Lead (Pb)                                           | mg/kg | 19         | 53         | 15         | 27         | 9.2        | 17         | 0.50 | 7099641  |
| Acid Extractable Lithium (Li)                                        | mg/kg | <2.0       | <2.0       | 2.6        | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Manganese (Mn)                                      | mg/kg | 430        | 23         | 47         | 150        | 96         | 36         | 2.0  | 7099641  |
| Acid Extractable Mercury (Hg)                                        | mg/kg | 0.31       | 0.37       | <0.10      | 0.43       | 0.31       | 0.32       | 0.10 | 7099641  |
| Acid Extractable Molybdenum (Mo)                                     | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Nickel (Ni)                                         | mg/kg | 3.6        | 2.4        | 4.0        | 2.7        | <2.0       | 2.4        | 2.0  | 7099641  |
| Acid Extractable Rubidium (Rb)                                       | mg/kg | 3.3        | 2.2        | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Selenium (Se)                                       | mg/kg | <0.50      | 0.84       | <0.50      | 0.63       | <0.50      | <0.50      | 0.50 | 7099641  |
| Acid Extractable Silver (Ag)                                         | mg/kg | 1.6        | <0.50      | <0.50      | 1.3        | 0.64       | 0.68       | 0.50 | 7099641  |
| Acid Extractable Strontium (Sr)                                      | mg/kg | 31         | 61         | <5.0       | 33         | 12         | 14         | 5.0  | 7099641  |
| Acid Extractable Thallium (Tl)                                       | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10 | 7099641  |
| Acid Extractable Tin (Sn)                                            | mg/kg | <1.0       | 1.1        | <1.0       | <1.0       | <1.0       | <1.0       | 1.0  | 7099641  |
| Acid Extractable Uranium (U)                                         | mg/kg | <0.10      | <0.10      | 0.11       | <0.10      | <0.10      | <0.10      | 0.10 | 7099641  |
| Acid Extractable Vanadium (V)                                        | mg/kg | 9.3        | 4.9        | 6.8        | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Zinc (Zn)                                           | mg/kg | 190        | 30         | 17         | 47         | 55         | 56         | 5.0  | 7099641  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |            |            |            |            |            |      |          |



# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| BV Labs ID                                                           |       | OIR786     | OIR787     | OIR788     | OIR789     | OIR790     | OIR791     |      |          |
|----------------------------------------------------------------------|-------|------------|------------|------------|------------|------------|------------|------|----------|
| Sampling Date                                                        |       | 2020/09/08 | 2020/09/08 | 2020/09/08 | 2020/09/08 | 2020/09/08 | 2020/09/08 |      |          |
| COC Number                                                           |       | n/a        | n/a        | n/a        | n/a        | n/a        | n/a        |      |          |
|                                                                      | UNITS | BB-6       | BB-7       | BB-8       | BB-9       | BB-10      | BB-DUP     | RDL  | QC Batch |
| Metals                                                               |       |            |            |            |            |            |            |      |          |
| Acid Extractable Aluminum (Al)                                       | mg/kg | 570        | 300        | 460        | 890        | 1000       | 2700       | 10   | 7099641  |
| Acid Extractable Antimony (Sb)                                       | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Arsenic (As)                                        | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Barium (Ba)                                         | mg/kg | 58         | 41         | 35         | 140        | 69         | 10         | 5.0  | 7099641  |
| Acid Extractable Beryllium (Be)                                      | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Bismuth (Bi)                                        | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Boron (B)                                           | mg/kg | <50        | <50        | <50        | <50        | <50        | <50        | 50   | 7099641  |
| Acid Extractable Cadmium (Cd)                                        | mg/kg | <0.30      | <0.30      | <0.30      | 0.56       | <0.30      | <0.30      | 0.30 | 7099641  |
| Acid Extractable Chromium (Cr)                                       | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 3.3        | 2.0  | 7099641  |
| Acid Extractable Cobalt (Co)                                         | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | 1.2        | 1.0  | 7099641  |
| Acid Extractable Copper (Cu)                                         | mg/kg | 5.2        | 3.9        | 4.0        | 4.5        | 4.9        | 2.7        | 2.0  | 7099641  |
| Acid Extractable Iron (Fe)                                           | mg/kg | 990        | 350        | 540        | 980        | 1800       | 4300       | 50   | 7099641  |
| Acid Extractable Lead (Pb)                                           | mg/kg | 19         | 25         | 27         | 31         | 22         | 14         | 0.50 | 7099641  |
| Acid Extractable Lithium (Li)                                        | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Manganese (Mn)                                      | mg/kg | 440        | 240        | 91         | 290        | 340        | 44         | 2.0  | 7099641  |
| Acid Extractable Mercury (Hg)                                        | mg/kg | 0.34       | 0.31       | 0.46       | 0.35       | 0.33       | <0.10      | 0.10 | 7099641  |
| Acid Extractable Molybdenum (Mo)                                     | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Nickel (Ni)                                         | mg/kg | <2.0       | 2.2        | 2.1        | 2.4        | 2.7        | 2.9        | 2.0  | 7099641  |
| Acid Extractable Rubidium (Rb)                                       | mg/kg | <2.0       | <2.0       | <2.0       | 2.4        | <2.0       | <2.0       | 2.0  | 7099641  |
| Acid Extractable Selenium (Se)                                       | mg/kg | <0.50      | <0.50      | 0.67       | <0.50      | <0.50      | <0.50      | 0.50 | 7099641  |
| Acid Extractable Silver (Ag)                                         | mg/kg | <0.50      | <0.50      | 0.56       | 1.2        | 0.67       | <0.50      | 0.50 | 7099641  |
| Acid Extractable Strontium (Sr)                                      | mg/kg | 11         | 15         | 14         | 21         | 15         | 8.2        | 5.0  | 7099641  |
| Acid Extractable Thallium (Tl)                                       | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.10 | 7099641  |
| Acid Extractable Tin (Sn)                                            | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       | 1.0  | 7099641  |
| Acid Extractable Uranium (U)                                         | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      | 0.13       | 0.10 | 7099641  |
| Acid Extractable Vanadium (V)                                        | mg/kg | 2.1        | <2.0       | 2.2        | 2.0        | 2.9        | 6.8        | 2.0  | 7099641  |
| Acid Extractable Zinc (Zn)                                           | mg/kg | 65         | 79         | 51         | 89         | 45         | 11         | 5.0  | 7099641  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |            |            |            |            |            |      |          |



| BV Labs ID:<br>Sample ID:<br>Matrix:                     | OIR770<br>LT-1<br>Soil        |                           |                  |                      |                          | Collected:<br>Shipped:<br>Received: | 2020/09/05<br>2020/12/01          |
|----------------------------------------------------------|-------------------------------|---------------------------|------------------|----------------------|--------------------------|-------------------------------------|-----------------------------------|
| Test Description                                         |                               | Instrumentation           | Batch            | Extracted            | Date Analyzed            | Analyst                             |                                   |
| Metals Solids Acid Extr. IC                              | PMS                           | ICP/MS                    | 7099631          | 2020/12/09           | 2020/12/10               | Bryon Ang                           | evine                             |
| BV Labs ID:<br>Sample ID:<br>Matrix:                     | OIR771<br>LT-2<br>Soil        |                           |                  |                      |                          | Collected:<br>Shipped:<br>Received: | 2020/09/06<br>2020/12/01          |
| Test Description                                         |                               | Instrumentation           | Batch            | Extracted            | Date Analyzed            | Analyst                             |                                   |
| Metals Solids Acid Extr. IC                              | PMS                           | ICP/MS                    | 7099631          | 2020/12/09           | 2020/12/10               | Bryon Ang                           | evine                             |
| BV Labs ID:<br>Sample ID:<br>Matrix:                     | OIR772<br>LT-3<br>Soil        |                           |                  |                      |                          | Collected:<br>Shipped:<br>Received: | 2020/09/07<br>2020/12/01          |
| Test Description                                         |                               | Instrumentation           | Batch            | Extracted            | Date Analyzed            | Analyst                             |                                   |
| Metals Solids Acid Extr. IC                              | PMS                           | ICP/MS                    | 7099641          | 2020/12/09           | 2020/12/10               | Bryon Ang                           | evine                             |
| BV Labs ID:<br>Sample ID:<br>Matrix:                     | OIR772 Dup<br>LT-3<br>Soil    |                           |                  |                      |                          | Collected:<br>Shipped:<br>Received: | 2020/09/07<br>2020/12/01          |
| Test Description                                         |                               | Instrumentation           | Batch            | Extracted            | Date Analyzed            | Analyst                             |                                   |
| Metals Solids Acid Extr. IC                              | PMS                           | ICP/MS                    | 7099641          | 2020/12/09           | 2020/12/10               | Bryon Ang                           | evine                             |
| BV Labs ID:<br>Sample ID:<br>Matrix:                     | OIR773<br>LT-4<br>Soil        |                           |                  |                      |                          | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01          |
| Test Description                                         |                               | Instrumentation           | Batch            | Extracted            | Date Analyzed            | Analyst                             |                                   |
| Metals Solids Acid Extr. IC                              | PMS                           | ICP/MS                    | 7099631          | 2020/12/09           | 2020/12/10               | Bryon Ang                           | evine                             |
| BV Labs ID:<br>Sample ID:<br>Matrix:                     | OIR774<br>LT-5<br>Soil        |                           |                  |                      |                          | Collected:<br>Shipped:<br>Received: | 2020/09/10<br>2020/12/01          |
|                                                          |                               |                           |                  |                      |                          |                                     |                                   |
| Test Description                                         |                               | Instrumentation           | Batch            | Extracted            | Date Analyzed            | Analyst                             |                                   |
| Test Description<br>Metals Solids Acid Extr. IC          | PMS                           | Instrumentation<br>ICP/MS | Batch<br>7099631 | Extracted 2020/12/09 | Date Analyzed 2020/12/10 | Analyst<br>Bryon Ang                | evine                             |
|                                                          | PMS<br>OIR775<br>LT-6<br>Soil |                           |                  |                      | -                        | -                                   | evine<br>2020/09/10<br>2020/12/01 |
| Metals Solids Acid Extr. IC<br>BV Labs ID:<br>Sample ID: | OIR775<br>LT-6                |                           |                  |                      | -                        | Bryon Ang<br>Collected:<br>Shipped: | 2020/09/10                        |



| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR776<br>LT-7<br>Soil   |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/10<br>2020/12/01 |
|--------------------------------------|--------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                     |                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                     | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR777<br>LT-8<br>Soil   |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/10<br>2020/12/01 |
| Test Description                     |                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                     | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR778<br>LT-9<br>Soil   |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/10<br>2020/12/01 |
| Test Description                     |                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                     | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR779<br>LT-10<br>Soil  |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/11<br>2020/12/01 |
| Test Description                     |                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                     | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR780<br>LT-DUP<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/10<br>2020/12/01 |
| Test Description                     |                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                     | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR781<br>BB-1<br>Soil   |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/11/07<br>2020/12/01 |
| Test Description                     |                          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                     | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:                          | OIR782                   |                 |         |            |               | Collected:                          | 2020/11/08               |
| Sample ID:<br>Matrix:                | BB-2<br>Soil             |                 |         |            |               | Shipped:<br>Received:               | 2020/12/01               |
| •                                    | BB-2                     | Instrumentation | Batch   | Extracted  | Date Analyzed |                                     | 2020/12/01               |



| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR783<br>BB-3<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
|--------------------------------------|------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                     |                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                   | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR784<br>BB-4<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                     |                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                   | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR785<br>BB-5<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                     |                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                   | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR786<br>BB-6<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                     |                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                   | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR787<br>BB-7<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                     |                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | CPMS                   | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR788<br>BB-8<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                     |                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. IC          | PMS                    | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | evine                    |
|                                      |                        |                 |         |            |               |                                     |                          |
| BV Labs ID:<br>Sample ID:<br>Matrix: | OIR789<br>BB-9<br>Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Sample ID:                           | OIR789<br>BB-9         | Instrumentation | Batch   | Extracted  | Date Analyzed | Shipped:                            |                          |



| BV Labs ID: OIR790<br>Sample ID: BB-10<br>Matrix: Soil  |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
|---------------------------------------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. ICPMS                          | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | gevine                   |
| BV Labs ID: OIR791<br>Sample ID: BB-DUP<br>Matrix: Soil |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2020/09/08<br>2020/12/01 |
| Test Description                                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Metals Solids Acid Extr. ICPMS                          | ICP/MS          | 7099641 | 2020/12/09 | 2020/12/10    | Bryon Ang                           | gevine                   |



### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 -13.7°C

Mercury analyzed past recommended hold time.

Results relate only to the items tested.



## QUALITY ASSURANCE REPORT

Stantec Consulting Ltd Client Project #: 121416288

|          |                                  |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPD       |           |  |
|----------|----------------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|--|
| QC Batch | Parameter                        | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |  |
| 7099631  | Acid Extractable Aluminum (Al)   | 2020/12/10 |            |           |            |           | <10      | mg/kg | 0.55      | 35        |  |
| 7099631  | Acid Extractable Antimony (Sb)   | 2020/12/10 | 90         | 75 - 125  | 107        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |  |
| 7099631  | Acid Extractable Arsenic (As)    | 2020/12/10 | 110        | 75 - 125  | 100        | 75 - 125  | <2.0     | mg/kg | 1.9       | 35        |  |
| 7099631  | Acid Extractable Barium (Ba)     | 2020/12/10 | NC         | 75 - 125  | 103        | 75 - 125  | <5.0     | mg/kg | 5.7       | 35        |  |
| 7099631  | Acid Extractable Beryllium (Be)  | 2020/12/10 | 112        | 75 - 125  | 103        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |  |
| 7099631  | Acid Extractable Bismuth (Bi)    | 2020/12/10 | 108        | 75 - 125  | 102        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |  |
| 7099631  | Acid Extractable Boron (B)       | 2020/12/10 | 101        | 75 - 125  | 100        | 75 - 125  | <50      | mg/kg | NC        | 35        |  |
| 7099631  | Acid Extractable Cadmium (Cd)    | 2020/12/10 | 107        | 75 - 125  | 99         | 75 - 125  | <0.30    | mg/kg | 0.64      | 35        |  |
| 7099631  | Acid Extractable Chromium (Cr)   | 2020/12/10 | 108        | 75 - 125  | 97         | 75 - 125  | <2.0     | mg/kg | 0.23      | 35        |  |
| 7099631  | Acid Extractable Cobalt (Co)     | 2020/12/10 | 107        | 75 - 125  | 99         | 75 - 125  | <1.0     | mg/kg | 0.39      | 35        |  |
| 7099631  | Acid Extractable Copper (Cu)     | 2020/12/10 | NC         | 75 - 125  | 96         | 75 - 125  | <2.0     | mg/kg | 0.19      | 35        |  |
| 7099631  | Acid Extractable Iron (Fe)       | 2020/12/10 |            |           |            |           | <50      | mg/kg | 1.3       | 35        |  |
| 7099631  | Acid Extractable Lead (Pb)       | 2020/12/10 | NC         | 75 - 125  | 101        | 75 - 125  | <0.50    | mg/kg | 0.095     | 35        |  |
| 7099631  | Acid Extractable Lithium (Li)    | 2020/12/10 | 123        | 75 - 125  | 105        | 75 - 125  | <2.0     | mg/kg | 2.1       | 35        |  |
| 7099631  | Acid Extractable Manganese (Mn)  | 2020/12/10 | NC         | 75 - 125  | 99         | 75 - 125  | <2.0     | mg/kg | 2.3       | 35        |  |
| 7099631  | Acid Extractable Mercury (Hg)    | 2020/12/10 | 107        | 75 - 125  | 107        | 75 - 125  | <0.10    | mg/kg | 5.0       | 35        |  |
| 7099631  | Acid Extractable Molybdenum (Mo) | 2020/12/10 | NC         | 75 - 125  | 103        | 75 - 125  | <2.0     | mg/kg | 1.6       | 35        |  |
| 7099631  | Acid Extractable Nickel (Ni)     | 2020/12/10 | 109        | 75 - 125  | 100        | 75 - 125  | <2.0     | mg/kg | 0.46      | 35        |  |
| 7099631  | Acid Extractable Rubidium (Rb)   | 2020/12/10 | 104        | 75 - 125  | 100        | 75 - 125  | <2.0     | mg/kg | 0.66      | 35        |  |
| 7099631  | Acid Extractable Selenium (Se)   | 2020/12/10 | 106        | 75 - 125  | 100        | 75 - 125  | <0.50    | mg/kg | 7.4       | 35        |  |
| 7099631  | Acid Extractable Silver (Ag)     | 2020/12/10 | NC         | 75 - 125  | 101        | 75 - 125  | <0.50    | mg/kg | 0.17      | 35        |  |
| 7099631  | Acid Extractable Strontium (Sr)  | 2020/12/10 | NC         | 75 - 125  | 102        | 75 - 125  | <5.0     | mg/kg | 1.3       | 35        |  |
| 7099631  | Acid Extractable Thallium (TI)   | 2020/12/10 | 108        | 75 - 125  | 101        | 75 - 125  | <0.10    | mg/kg | 1.8       | 35        |  |
| 7099631  | Acid Extractable Tin (Sn)        | 2020/12/10 | NC         | 75 - 125  | 104        | 75 - 125  | <1.0     | mg/kg | 2.7       | 35        |  |
| 7099631  | Acid Extractable Uranium (U)     | 2020/12/10 | 111        | 75 - 125  | 102        | 75 - 125  | <0.10    | mg/kg | 1.9       | 35        |  |
| 7099631  | Acid Extractable Vanadium (V)    | 2020/12/10 | NC         | 75 - 125  | 98         | 75 - 125  | <2.0     | mg/kg | 1.2       | 35        |  |
| 7099631  | Acid Extractable Zinc (Zn)       | 2020/12/10 | NC         | 75 - 125  | 102        | 75 - 125  | <5.0     | mg/kg | 0.69      | 35        |  |
| 7099641  | Acid Extractable Aluminum (Al)   | 2020/12/10 |            |           |            |           | <10      | mg/kg | 4.1       | 35        |  |
| 7099641  | Acid Extractable Antimony (Sb)   | 2020/12/10 | 111        | 75 - 125  | 105        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |  |
| 7099641  | Acid Extractable Arsenic (As)    | 2020/12/10 | 109        | 75 - 125  | 101        | 75 - 125  | <2.0     | mg/kg | 2.7       | 35        |  |
| 7099641  | Acid Extractable Barium (Ba)     | 2020/12/10 | 114        | 75 - 125  | 102        | 75 - 125  | <5.0     | mg/kg | 0.91      | 35        |  |
| 7099641  | Acid Extractable Beryllium (Be)  | 2020/12/10 | 113        | 75 - 125  | 101        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |  |
| 7099641  | Acid Extractable Bismuth (Bi)    | 2020/12/10 | 108        | 75 - 125  | 101        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |  |

Bureau Veritas Laboratories 200 Bluewater Rd, Suite 105, Bedford, Nova Scotia Canada B4B 1G9 Tel: 902-420-0203 Toll-free: 800-565-7227 Fax: 902-420-8612 www.bvlabs.com



### QUALITY ASSURANCE REPORT(CONT'D)

Stantec Consulting Ltd Client Project #: 121416288

|          |                                  |            | Matrix     | Spike     | SPIKED     | BLANK     | Method E | Blank | RPI       | )         |
|----------|----------------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                        | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 7099641  | Acid Extractable Boron (B)       | 2020/12/10 | 99         | 75 - 125  | 103        | 75 - 125  | <50      | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Cadmium (Cd)    | 2020/12/10 | 106        | 75 - 125  | 99         | 75 - 125  | <0.30    | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Chromium (Cr)   | 2020/12/10 | 110        | 75 - 125  | 99         | 75 - 125  | <2.0     | mg/kg | 4.4       | 35        |
| 7099641  | Acid Extractable Cobalt (Co)     | 2020/12/10 | 107        | 75 - 125  | 101        | 75 - 125  | <1.0     | mg/kg | 7.6       | 35        |
| 7099641  | Acid Extractable Copper (Cu)     | 2020/12/10 | 106        | 75 - 125  | 97         | 75 - 125  | <2.0     | mg/kg | 7.3       | 35        |
| 7099641  | Acid Extractable Iron (Fe)       | 2020/12/10 |            |           |            |           | <50      | mg/kg | 6.7       | 35        |
| 7099641  | Acid Extractable Lead (Pb)       | 2020/12/10 | 111        | 75 - 125  | 102        | 75 - 125  | <0.50    | mg/kg | 3.5       | 35        |
| 7099641  | Acid Extractable Lithium (Li)    | 2020/12/10 | 119        | 75 - 125  | 104        | 75 - 125  | <2.0     | mg/kg | 9.9       | 35        |
| 7099641  | Acid Extractable Manganese (Mn)  | 2020/12/10 | NC         | 75 - 125  | 98         | 75 - 125  | <2.0     | mg/kg | 5.9       | 35        |
| 7099641  | Acid Extractable Mercury (Hg)    | 2020/12/10 | 106        | 75 - 125  | 107        | 75 - 125  | <0.10    | mg/kg | 7.0       | 35        |
| 7099641  | Acid Extractable Molybdenum (Mo) | 2020/12/10 | 116        | 75 - 125  | 105        | 75 - 125  | <2.0     | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Nickel (Ni)     | 2020/12/10 | 107        | 75 - 125  | 100        | 75 - 125  | <2.0     | mg/kg | 3.9       | 35        |
| 7099641  | Acid Extractable Rubidium (Rb)   | 2020/12/10 | 106        | 75 - 125  | 100        | 75 - 125  | <2.0     | mg/kg | 4.5       | 35        |
| 7099641  | Acid Extractable Selenium (Se)   | 2020/12/10 | 104        | 75 - 125  | 101        | 75 - 125  | <0.50    | mg/kg | 17        | 35        |
| 7099641  | Acid Extractable Silver (Ag)     | 2020/12/10 | 109        | 75 - 125  | 99         | 75 - 125  | <0.50    | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Strontium (Sr)  | 2020/12/10 | 114        | 75 - 125  | 104        | 75 - 125  | <5.0     | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Thallium (Tl)   | 2020/12/10 | 110        | 75 - 125  | 99         | 75 - 125  | <0.10    | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Tin (Sn)        | 2020/12/10 | 106        | 75 - 125  | 104        | 75 - 125  | <1.0     | mg/kg | NC        | 35        |
| 7099641  | Acid Extractable Uranium (U)     | 2020/12/10 | 112        | 75 - 125  | 102        | 75 - 125  | <0.10    | mg/kg | 17        | 35        |
| 7099641  | Acid Extractable Vanadium (V)    | 2020/12/10 | 117        | 75 - 125  | 100        | 75 - 125  | <2.0     | mg/kg | 3.4       | 35        |
| 7099641  | Acid Extractable Zinc (Zn)       | 2020/12/10 | 108        | 75 - 125  | 100        | 75 - 125  | <5.0     | mg/kg | 6.6       | 35        |

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mike Mac Sulle

Mike MacGillivray, Scientific Specialist (Inorganics)

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

121416288

|                                    | $(\mathbf{O})$                            | 200 Bluewater R<br>49-55 Elizabeth<br>465 George Stre | Avenue, St John              | i's, NL A1A 1W          |             |                       | Tel: 70                    | 09-75                   | 4-020                                 | 3 Fax                      | 709-7                                | 754-8                      | 612 Te                   | oll Free: 1<br>oll Free: 1<br>oll Free: 1        | -888-49                       | 92-722            | 7                                   |                   |                            |                                             |                                                  |                               |          |          |             |          | ATL FCD 00149 / 25                      |
|------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------|-------------------------|-------------|-----------------------|----------------------------|-------------------------|---------------------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------|--------------------------------------------------|-------------------------------|-------------------|-------------------------------------|-------------------|----------------------------|---------------------------------------------|--------------------------------------------------|-------------------------------|----------|----------|-------------|----------|-----------------------------------------|
|                                    | VERITAS                                   | www.bvlabs                                            | s.com E-m                    | all: customerser        | vicebedford | d@bv                  | labs.c                     | om                      |                                       |                            |                                      |                            |                          | CHAI                                             | N OF                          | cu                | STO                                 | DY                | REC                        | OR                                          | D                                                |                               | COC #    |          |             |          | Page 1 of 3                             |
|                                    | Invoice Informa                           | ation                                                 |                              |                         | Repor       | t Info                | ormati                     | on (if                  | diffe                                 | rs fra                     | om inve                              | oice)                      |                          |                                                  |                               | Pr                | oject                               | nforma            | tion                       | where                                       | applic                                           | able)                         |          | T        | Tur         | rnar     | ound Time (TAT) Required                |
| Company Name:                      | Stantec Consulting                        |                                                       |                              | Company                 | Name:       |                       |                            |                         |                                       |                            |                                      |                            |                          |                                                  | Quota                         | tion #            | 6 F.                                |                   |                            |                                             |                                                  |                               |          | x        |             | Regu     | alar TAT (5 business days) Most         |
| Contact Name:                      | Barry Wicks                               | 1.00                                                  |                              | Contact N               | lame:       |                       |                            |                         |                                       |                            |                                      |                            | 11                       |                                                  | Purcha                        | a ce Or           | dert                                |                   | 1                          |                                             |                                                  |                               |          | PLEAS    | -           | <u>^</u> | ADVANCE NOTICE FOR RUSH PROJECTS        |
| Address:                           | 141 Kelsey Dr                             | 1.2                                                   |                              | Address:                |             | T                     | -                          | -                       |                                       | -                          |                                      |                            | -                        |                                                  | Projec                        |                   | actin.                              |                   |                            |                                             |                                                  |                               |          |          |             |          |                                         |
|                                    | St. John's NI x                           | PC:                                                   |                              |                         | 2           |                       |                            |                         |                                       |                            |                                      | PC:                        | _                        |                                                  | Site Lo                       |                   | n:                                  |                   |                            |                                             |                                                  |                               |          | IF RUS   | H pleas     | se spe   | ecify date (Surcharges will be applied) |
| Phone:                             | (709)576-1458                             | Line and                                              |                              | Phone:                  | 1           | 2                     | _                          |                         |                                       | 5                          |                                      |                            | 12                       |                                                  | Site Pr                       | ovince            | ÷ .                                 |                   | 5                          | 10                                          |                                                  |                               |          | DAT      | TE REC      | QUI      | RED:                                    |
| Email:                             | barry.wicks@stantec.                      | com                                                   |                              | Email:                  |             |                       |                            |                         |                                       |                            |                                      |                            | 1                        |                                                  | Site #:                       | 8                 |                                     |                   | 1                          |                                             |                                                  |                               |          | 1        |             |          |                                         |
| Report Copies:                     |                                           | _                                                     | _                            | Report Co               | opies:      | _                     | 1                          |                         |                                       |                            |                                      | 1                          |                          |                                                  | Sampl                         | led By            | 1                                   | 11                | 1                          |                                             |                                                  |                               |          |          |             |          | Constant and the                        |
|                                    | Labo                                      | ratory Use Only                                       |                              |                         |             |                       |                            |                         |                                       |                            |                                      |                            |                          |                                                  |                               |                   |                                     | Anah              | sis R                      | equest                                      | ed                                               |                               |          |          |             |          |                                         |
| CUSTODY SE                         | AL COOLER TEN                             |                                                       |                              | LER TEMPERATU           |             |                       |                            |                         |                                       | S                          |                                      | Metals                     |                          | Met                                              |                               |                   |                                     |                   |                            | T                                           |                                                  | Т                             |          |          | T           | Re       | egulatory Requirements (Specify)        |
| Present                            | Intact                                    | APERATURES                                            |                              | LER TEMPERATU           | RES         | D.                    |                            |                         | water                                 | vater                      | - 0                                  | Water                      | r)                       | (sa                                              | α)<br>Γ                       |                   | F2-F4)                              |                   |                            | ŧ                                           |                                                  |                               | 11       |          | 1.1         | L        | (1) (1)                                 |
|                                    | -13.7                                     | 3-15                                                  |                              |                         |             | L.                    |                            |                         | rface                                 | Ground waters              |                                      |                            | VED                      | gest                                             | Î                             |                   | TEX, FI                             |                   |                            | edime                                       | horal                                            |                               |          |          | 11          | L        |                                         |
|                                    |                                           |                                                       |                              |                         |             |                       |                            |                         | II / Su                               |                            |                                      |                            | DISSOLVED                | ble) D                                           | / Lanc                        | C6-C32)           | E1/8                                |                   |                            | CME                                         | Ahee                                             |                               |          |          | 11          | 1        |                                         |
|                                    |                                           |                                                       |                              |                         |             | 03LL                  | VED                        | 8                       | s) We                                 | Aetal                      | thod)<br>vater                       | vater                      | AL/D                     | Availa                                           | ultura                        | (BTEX, C          | OHd-S                               | ())0              | nent)                      | It or C                                     | Canre                                            | unt)                          |          |          |             | L        |                                         |
|                                    | COOLING ME                                | DIA PRESENT                                           | Y/N                          |                         | 1.00        | SUBM                  | RESER                      | GUIR                    | Metal                                 | ved N                      | auft Me                              | A pun                      | TOT                      | table                                            | Boron<br>Agricu               |                   | IS (CM                              | water/soll)       | E Sedir                    | Defau                                       | di Ibra                                          | oli (Co                       |          |          | ALYZE       |          |                                         |
| SAMPLES MU                         | JST BE KEPT COOL ( < 10 $^{\circ}$ C ) FF | ROM TIME OF SAM                                       | APLING UNTIL D               | ELIVERY TO B            | / LABS      | NERS                  | ED &P                      | ON RE                   | otal I                                | lossic                     |                                      | or gro                     | RCLE                     | & Mercury<br>Acid Extractable (Available) Digest | Soluble<br>or CCME            | carbo             | carbor                              |                   | /CCMB                      | One:                                        | w/c or                                           | n/E.C                         |          |          | NOT ANALYZE | F        |                                         |
|                                    | SAMPLE IDENTIFICATION                     |                                                       | DATE SAMPLED<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX      | # OF CONTAINERS SUBMI | FIELD FILTERED & PRESERVED | LAB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface | RCAP-MS (Dissolved Metals) | Total Digest (De<br>for weil water & | Dissolved for ground water | Mercury (CIRCLE) TOTAL / | Metals & Me<br>Default Acid                      | Hot Water St<br>(required for | RBCA Hydrocarbons | CCME Hydrocarbons (CWS-PHC F1/BTEX, | PAHs (Default for | PAHs (FWAL /CCME Sediment) | PCBs - Select One: Default or CCME Sediment | VOCs<br>Total Coliform/E coli (Bretance Ahsonce) | Tatal Coliform/E.Coli (Count) |          |          | HOLD- DO N  |          | COMMENTS                                |
| 1                                  | LT-1                                      |                                                       | 9/5/2020                     |                         | organic     |                       |                            |                         |                                       |                            | 1                                    | 1                          |                          | х                                                |                               |                   |                                     |                   |                            |                                             |                                                  | T                             |          |          | T           | T        | do not pre-weight                       |
| 2                                  | LT-2                                      |                                                       | 9/6/2020                     |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | x                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          |             | T        | do not pre-weight                       |
| 3                                  | LT-3                                      |                                                       | 9/7/2020                     |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | ×                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          |             | T        | do not pre-weight                       |
| 4                                  | LT-4                                      |                                                       | 9/8/2020                     |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | ×                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          |             | T        | do not pre-weight                       |
| 5                                  | LT-5                                      |                                                       | 9/10/2020                    |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | ×                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          |             |          | do not pre-weight                       |
| 6                                  | LT-6                                      |                                                       | 9/10/2020                    |                         | organic     | Γ                     |                            |                         |                                       |                            |                                      |                            |                          | ×                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          |             | T        | do not pre-weight                       |
| 7                                  | LT-7                                      |                                                       | 9/10/2020                    |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | x                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          | 1           | t        | do not pre-weight                       |
| 8                                  | LT-8                                      |                                                       | 9/10/2020                    |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | x                                                |                               | 1                 |                                     |                   |                            |                                             |                                                  |                               |          |          |             | T        | do not pre-weight                       |
| 9                                  | LT-9                                      |                                                       | 9/10/2020                    |                         | organic     |                       |                            |                         |                                       |                            |                                      | 1                          |                          | x                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          | 1           | t        | do not pre-weight                       |
| 10                                 | LT-10                                     |                                                       | 9/11/2020                    |                         | organic     |                       |                            |                         |                                       |                            |                                      |                            |                          | x                                                |                               |                   |                                     |                   |                            |                                             |                                                  |                               |          |          |             | t        | do not pre-weight                       |
| REI                                | INQUISHED BY: (Signature/Pri              | int)                                                  | DATE: (YYY                   | Y/MM/DD)                | TIME: (     | HH:N                  | (M)                        |                         | F                                     | RECEI                      | VEDB                                 | Y:(Sig                     | gnatur                   | e/Print)                                         |                               | D                 | ATE: (                              | YYYY/N            | 10.00                      | A 64                                        | M                                                | VIE: (⊦                       | H:MM)    |          |             |          | BV LABS JOB #                           |
|                                    |                                           |                                                       |                              |                         |             |                       |                            | ,                       | K                                     | 1                          | Ņ                                    | Λ                          | 1                        | L                                                |                               | NO                | V                                   | 3 0               | 20                         | 20                                          | 21                                               | 5(                            | )        |          | (           | l        | 164941                                  |
| Unless otherwise<br>www.bvlabs.com | agreed to in writing, work sub            | mitted on this Cha                                    | ain of Custody is            | subject to BV           | Labs standa | ard Te                | erms a                     | nd Co                   | onditio                               | ons. !                     | Signing                              | g of ti                    | his Chi                  | ain of Cu                                        | stody de                      | ocume             | ent is a                            | cknowl            | edgm                       | ent ar                                      | d acce                                           | ptanc                         | e of our | terms wh | lch are     | e ava    | llable for viewing at                   |

White: Maxxam

14

Pink: Client

| (0)         |
|-------------|
| (6)         |
| CRUMER RALL |

 200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9
 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227

 49-55 Elizabeth Avenue, St. John's, NL A1A 1W9
 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227

 465 George Sireet, Unit G,Sydney, NS B1P 1K5
 Tel: 902-567-1255 Fax: 902-539-8504 Toll Free: 1-888-535-7770

|                                                                                                      | WWW.bVlabs.com E-mail: customerservicebed            |                                |                         |            |                                          |                            |                         | ford@bvlabs.com CHA                         |                            |                                                |                            |                                    |                                              |                                        | AIN OF CUSTODY RECORD coc # |                                    |                   |                           |                                             |         |                                          |                               | OC #:                                           |                                |                                               | Page_2 of 3                                 |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------|-------------------------|------------|------------------------------------------|----------------------------|-------------------------|---------------------------------------------|----------------------------|------------------------------------------------|----------------------------|------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------|------------------------------------|-------------------|---------------------------|---------------------------------------------|---------|------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------------|-----------------------------------------------|---------------------------------------------|
| _                                                                                                    | Invoice Information                                  |                                |                         | Repor      | t Info                                   | rmati                      | ion (i                  | f diffe                                     | rs fro                     | m inv                                          | oice)                      |                                    |                                              | Project Information (where applicable) |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 | Turnaround Time (TAT) Required |                                               |                                             |
| Company Name                                                                                         | : Stantec Consulting                                 | 1000                           | Company                 | Name:      |                                          | 1E                         |                         | ۰.                                          |                            |                                                |                            |                                    |                                              | Quotation #:                           |                             |                                    |                   |                           |                                             |         |                                          |                               | х                                               |                                | Regular TAT (5 business days) Most<br>nalyses |                                             |
| Contact Name:                                                                                        | Barry Wicks                                          |                                | Contact N               | lame:      |                                          |                            |                         |                                             |                            |                                                |                            |                                    | 1.1                                          | Purchase Order#:                       |                             |                                    |                   |                           |                                             |         |                                          |                               | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS |                                |                                               |                                             |
| Address:                                                                                             | 141 Kelsey Dr                                        |                                | Address:                |            |                                          |                            |                         |                                             |                            |                                                | _                          | Projec                             |                                              |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 |                                |                                               |                                             |
|                                                                                                      | St. John's NI x                                      | PC:                            |                         | 10.50      |                                          |                            |                         |                                             |                            |                                                | PC:                        | 11                                 | -                                            |                                        | ocation                     |                                    |                   |                           |                                             |         |                                          |                               |                                                 | IF RUS                         | H pleas                                       | e specify date (Surcharges will be applied) |
| Phone:                                                                                               | (709)576-1458                                        |                                | Phone:                  | Phone:     |                                          |                            | a large enderson i be r |                                             |                            |                                                |                            |                                    | Site Province:                               |                                        |                             |                                    |                   |                           |                                             |         |                                          | DAT                           | EREC                                            | QUIRED:                        |                                               |                                             |
| Email;                                                                                               | barry.wicks@stantec.com                              | .wicks@stantec.com Email:      |                         |            |                                          |                            |                         |                                             |                            |                                                |                            |                                    | Site #:                                      |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 |                                |                                               |                                             |
| Report Copies:                                                                                       |                                                      |                                | Report Co               | pies:      |                                          |                            |                         | -                                           |                            |                                                |                            |                                    |                                              | Sampl                                  | led By:                     | . 1                                |                   |                           |                                             |         |                                          |                               |                                                 | 1.                             |                                               |                                             |
|                                                                                                      | Laboratory Use Or                                    | ıly                            |                         |            |                                          |                            |                         |                                             |                            |                                                |                            |                                    |                                              |                                        |                             |                                    | Anal              | ysis R                    | eques                                       | ted     |                                          |                               |                                                 |                                |                                               |                                             |
| CUSTODY                                                                                              | CUSTODY SEAL COOLER TEMPERATURES COOLER TEMPERATURES |                                |                         |            |                                          |                            | Ξ                       | 2                                           | 10                         |                                                |                            | Met<br>(sol                        |                                              |                                        |                             |                                    |                   |                           | 1                                           | Τ       | Т                                        |                               |                                                 | Г                              | Regulatory Requirements (Specify)             |                                             |
| Present                                                                                              | Intact Intact                                        |                                | _                       | _          |                                          |                            | 15                      | wate                                        | wati                       |                                                |                            |                                    |                                              |                                        | 1                           | F2-F4)                             |                   |                           | hent                                        |         |                                          |                               |                                                 |                                | 1.                                            | 1                                           |
|                                                                                                      | -13, -15                                             | 17                             |                         | 5.77       |                                          |                            |                         | urfac                                       | Ground waters              |                                                |                            | ILVEC                              | Digest                                       | lillip                                 | 1                           |                                    |                   |                           | Sedin                                       |         | (ence)                                   |                               |                                                 |                                |                                               |                                             |
|                                                                                                      | 1 1                                                  |                                | 1.1                     |            |                                          |                            |                         | ell / S                                     |                            |                                                |                            | DISSC                              | able) Diges                                  | 1/ Lar                                 | C6-C32                      | C F1/8                             |                   | -                         | COME                                        |         | e/Ab:                                    |                               |                                                 |                                | 1-1                                           | ·                                           |
|                                                                                                      |                                                      |                                |                         |            |                                          |                            | 9                       | is) w                                       | Meta                       | (thod)                                         | water                      | AL/I                               | (Avail                                       | ultura                                 |                             | Hd-S/                              | (iios             | ment                      | dt or                                       |         | esenc                                    | unt)                          |                                                 | 1                              | 5                                             |                                             |
| COOLING MEDIA PRESENT Y / N                                                                          |                                                      |                                |                         | SUBN       | RESE                                     | EQUIF                      | Meta                    | ved                                         | fault Meth<br>surface wi   | pune                                           | 101                        | table                              | Boro                                         | a) suc                                 | us (CV                      | water/soll)                        | E Sedi            | Defau                     |                                             | oli (Pr | oli (C                                   |                               |                                                 | ALYZI                          |                                               |                                             |
| SAMPLES MUST BE KEPT COOL ( < 10 $^{\rm 9}{\rm C}$ ) FROM TIME OF SAMPLING UNTIL DELIVERY TO BV LABS |                                                      |                                |                         | LABS       | C IN IN IN IN IN IN IN IN IN IN IN IN IN |                            |                         |                                             | Extrac                     | id Extract<br>Soluble I<br>or CCME<br>drocarbo |                            |                                    |                                              | ncarbo<br>carbo<br>//CCM<br>m/E.c      |                             |                                    |                   |                           |                                             |         | DTAN                                     |                               |                                                 |                                |                                               |                                             |
|                                                                                                      | SAMPLE IDENTIFICATION                                | DATE SAMPLED T<br>(YYYY/MM/DD) | TIME SAMPLED<br>(HH:MM) | MATRIX     | # OF CONTAINERS                          | CIELD FILTERED & PRESERVED | AB FILTRATION REQUIRED  | RCAP-MS [Total Metals] Well / Surface water | RCAP-MS (Dissolved Metals) | Total Digest (D<br>for well water §            | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable | Hot Water So<br>[required for          | RBCA Hydrocarbons (BTEX,    | CCME Hydrocarbons (CWS-PHC F1/8TEX | oAHs (Default for | AHs (FWAL /CCME Sediment) | PCBs + Select One: Default or CCME Sediment | vocs    | fotal Coliform/E.coli (Presence/Absence) | fotal Coliform/E.Coli (Count) |                                                 |                                | HOLD- DO NOT ANALYZI                          | COMMENTS                                    |
| 1                                                                                                    | Lt_dup                                               |                                |                         | organic    | -                                        | -                          | -                       | u.                                          |                            | F C                                            |                            |                                    | x                                            |                                        | -                           | U                                  | u                 | u.                        | -                                           | -       | -                                        | -                             |                                                 |                                | -                                             | do not pre-weight                           |
| 2                                                                                                    | 88-1                                                 | 11/7/2020                      |                         | organic    |                                          |                            |                         |                                             |                            |                                                |                            |                                    | x                                            |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 |                                |                                               | do not pre-weight                           |
| 3                                                                                                    | BB-2                                                 | 11/8/2020                      |                         | organic    |                                          |                            |                         |                                             |                            |                                                |                            |                                    | x                                            |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 |                                |                                               | do not pre-weight                           |
| 4                                                                                                    | BB-3                                                 | 9/8/2020                       |                         | organic    |                                          |                            |                         |                                             | 1                          |                                                |                            |                                    | x                                            |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 |                                |                                               | do not pre-weight                           |
| 5                                                                                                    | BB-4                                                 | 9/8/2020                       |                         | organic    |                                          |                            |                         | $\square$                                   |                            |                                                |                            |                                    | x                                            |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 |                                |                                               | do not pre-weight                           |
| 6                                                                                                    | BB-5                                                 | 9/8/2020                       |                         | organic    |                                          |                            |                         |                                             |                            |                                                |                            |                                    | x                                            |                                        |                             |                                    |                   |                           | $\square$                                   | _       |                                          |                               |                                                 |                                |                                               | do not pre-weight                           |
| 7                                                                                                    | BB-6                                                 | 9/8/2020                       |                         | organic    |                                          |                            | $\vdash$                |                                             | 1                          |                                                |                            |                                    | ×                                            |                                        |                             |                                    |                   |                           |                                             |         |                                          |                               |                                                 | -                              | 1                                             | do not pre-weight                           |
| 8                                                                                                    | BB-7                                                 | 9/8/2020                       |                         | organic    | t                                        |                            | 1                       |                                             |                            | 1                                              |                            |                                    | x                                            | T                                      | 1                           |                                    |                   |                           |                                             |         |                                          | +                             |                                                 |                                | 1                                             | do not pre-weight                           |
| 9                                                                                                    | BB-8                                                 | 9/8/2020                       |                         | organic    | 1                                        |                            | T                       |                                             | 1                          | 1                                              | 1                          |                                    | ×                                            | 1                                      | 1-                          |                                    | -                 | -                         |                                             | -       |                                          | -                             |                                                 |                                |                                               | do not pre-weight                           |
| 10                                                                                                   | BB-9                                                 | 9/8/2020                       |                         |            | t                                        |                            |                         |                                             |                            | 1                                              | -                          |                                    | x                                            |                                        |                             | -                                  | -                 | -                         |                                             |         |                                          |                               | -                                               | 1                              | 18                                            | do not pre-weight                           |
| RE                                                                                                   | ELINQUISHED BY: (Signature/Print)                    | DATE: (YYYY)                   | /MM/DD)                 | TIME: (    | HH:N                                     | IM)                        | t                       | 1                                           | RECEI                      | VED B                                          | Y:(Sig                     | natur                              | e/Print)                                     |                                        | D                           | AIE; (                             | 1/1/1             | MM/D                      | 1001                                        |         | TIME                                     | (HH:                          | MM)                                             | 1-                             |                                               | BV LABS JOB #                               |
|                                                                                                      |                                                      |                                |                         |            |                                          |                            | N                       | 2                                           | b                          | L                                              | L                          |                                    | ~                                            |                                        | 101                         |                                    |                   | 202                       |                                             | 200     | 0                                        | /                             | COW4941                                         |                                |                                               |                                             |
| Unless otherwis<br>www.bvlabs.cor                                                                    | e agreed to in writing, work submitted on this<br>n  | Chain of Custody is s          | subject to BV l         | abs standa | ard Te                                   | erms a                     | ind C                   | onditi                                      | ons.                       | Signin                                         | g of th                    | his Ch                             | sin of Cu                                    | stody d                                | ocume                       | nt is a                            | cknow             | ledgn                     | nent a                                      | nd ac   | cepta                                    | nce o                         | f our te                                        | rms wh                         | ich are                                       | available for viewing at                    |

White: Maxxam

Pink: Client



200 Bluewater Road, Suite 105, Bedford, Nova Scotia B4B 1G9 Tel: 902-420-0203 Fax: 902-420-8612 Toll Free: 1-800-565-7227 49-55 Elizabeth Avenue, St John's, NL A1A 1W9 Tel: 709-754-0203 Fax: 709-754-8612 Toll Free: 1-888-492-7227 465 George Street,Unit G,Sydney, NS B1P 1K5 Tel: 902-567-1255 Fax: 902-539-6504 Toll Free: 1-888-535-7770

ATL FCD 00149 / 25

|                                                                                                 | BUREA    | www.bvlat                             | os.com E-m        | ail: customerse           | rvicebedfor | d@bv                   | vlabs.d                                     | com                        |                                                    |                            |                                    |                                                                |                                        | CHAI                     | N OF                                       | cu                           | STC                          | DY                                          | REC     | COR                                     | D                            |         | (       | coc #                                                    | ł:          |                                     |         | Page _ 3 of 3                                                                                                   |
|-------------------------------------------------------------------------------------------------|----------|---------------------------------------|-------------------|---------------------------|-------------|------------------------|---------------------------------------------|----------------------------|----------------------------------------------------|----------------------------|------------------------------------|----------------------------------------------------------------|----------------------------------------|--------------------------|--------------------------------------------|------------------------------|------------------------------|---------------------------------------------|---------|-----------------------------------------|------------------------------|---------|---------|----------------------------------------------------------|-------------|-------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                 |          | Invoice Information                   |                   |                           | Repo        | rt Infe                | ormat                                       | ion (i                     | f diffe                                            | ers fro                    | om inv                             | voice)                                                         |                                        |                          |                                            | Pr                           | oject l                      | nform                                       | ation   | (wher                                   | e app                        | licab   | le)     |                                                          | T           |                                     | Turr    | around Time (TAT) Required                                                                                      |
| Company Name                                                                                    | 2        | Stantec Consulting                    | 1.1               | Company                   | /Name:      | _                      | 2                                           |                            | 1                                                  |                            | 1                                  |                                                                |                                        |                          | Quota                                      | tion #                       |                              |                                             |         |                                         |                              |         |         |                                                          | )           | x                                   |         | egular TAT (5 business days) Most<br>alyses                                                                     |
| Contact Name:                                                                                   |          | Barry Wicks                           |                   | Contact I                 | Name:       |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          | Purchase Order#:                           |                              |                              |                                             |         |                                         |                              |         | PL      | LEASE                                                    | PROVI       | DE ADVANCE NOTICE FOR RUSH PROJECTS |         |                                                                                                                 |
| Address:                                                                                        | 141      | Kelsey Dr                             |                   | Address:                  |             |                        |                                             |                            |                                                    |                            |                                    |                                                                | Projec                                 | t#:                      |                                            |                              |                              |                                             |         |                                         |                              |         | IF      | IF RUSH please specify date (Surcharges will be applied) |             |                                     |         |                                                                                                                 |
|                                                                                                 | St. Jo   | hn's NI x PC:                         |                   |                           |             | PC:                    |                                             |                            |                                                    |                            |                                    |                                                                |                                        | Site Location:           |                                            |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
| Phone:                                                                                          | (709)576 | 1458                                  |                   | Phone:                    |             |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        | Site Province:           |                                            |                              |                              |                                             |         |                                         |                              | 2       | DATE    | REQ                                                      | UIRED:      |                                     |         |                                                                                                                 |
| Email:                                                                                          | barry.v  | vicks@stantec.com                     |                   | Email:                    |             | Site #:                |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          |                                            |                              | 1                            |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
| Report Copies:                                                                                  |          |                                       |                   | Report C                  | opies:      | _                      | Sampled By:                                 |                            |                                                    |                            |                                    |                                                                |                                        |                          |                                            |                              |                              |                                             |         | _                                       |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
|                                                                                                 |          | Laboratory Use Only                   |                   |                           |             |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          |                                            |                              |                              | Anal                                        | ysis R  | eques                                   | ted                          |         |         |                                                          |             |                                     |         |                                                                                                                 |
| CUSTODY                                                                                         | SEAL     | COOLER TEMPERATURES                   | coo               | LER TEMPERATU             | IRES        |                        |                                             |                            | ater                                               | sters                      |                                    |                                                                |                                        | Met<br>(so               |                                            |                              | (†                           |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         | Regulatory Requirements (Specify)                                                                               |
| Fresent                                                                                         | Indet    | 12 -12 -15                            | -                 | _                         |             |                        |                                             |                            | ICE W                                              | Ground waters              |                                    |                                                                | 0                                      | ž                        | -                                          |                              | (, F2-F                      |                                             |         | men                                     |                              | (ə      |         |                                                          |             |                                     |         |                                                                                                                 |
|                                                                                                 |          | -13, -13, -15                         |                   | _                         | _           |                        |                                             |                            | Surfa                                              | Srour                      |                                    |                                                                | SOLVI                                  | e) Dige                  | Landfill                                   | (32)                         | /BTE>                        |                                             |         | IE Sed                                  |                              | bsenc   |         |                                                          |             |                                     |         |                                                                                                                 |
|                                                                                                 |          |                                       | ++++              |                           | -           | 8                      |                                             |                            | Well                                               |                            |                                    | ja j                                                           | / DIS!                                 | ailable                  | Iral/L                                     | 8                            | HCF                          | 3                                           | (1)     | L CCN                                   |                              | suce/A  | 2       |                                                          |             |                                     |         |                                                                                                                 |
| COOLING MEDIA PRESENT Y / N                                                                     |          |                                       |                   |                           | BMITT       | SERVE                  | UIRED                                       | etals)                     | d Met                                              | Metho                      | id wat                             | OTAL                                                           | ole (Avi                               | Boron<br>Agriculti       | (BTE)                                      | CWS-F                        | er/sol                       | edimer                                      | fault o |                                         | (Prese                       | (Count  |         |                                                          |             | YZE                                 |         |                                                                                                                 |
| SAMPLES MUST BE KEPT COOL ( < 10 $^{\circ}$ C ) FROM TIME OF SAMPLING UNTIL DELIVERY TO BV LABS |          |                                       |                   | ERS SU                    | S.PRE       | N REQ                  | tal M                                       | ssolve                     | efault<br>& surfa                                  | grour                      | CLE) T                             | ury<br>tractal                                                 | uble Bo                                | arbons                   | rbons                                      | or wat                       | CME S                        | ne: De                                      |         | 'E.coli                                 | 'E.Coli                      |         |         |                                                          | NOT ANALYZE |                                     |         |                                                                                                                 |
| DATE SAMPLED THA                                                                                |          | TIME SAMPLED                          |                   | Y OF CONTAINERS SUBMITTED |             | AB FILTRATION REQUIRED | RCAP-MS (Total Metals) Well / Surface water | RCAP-MS (Dissolved Metals) | fotal Digest (Default M<br>or well water & surface | Dissolved for ground water | Mercury (CIRCLE) TOTAL / DISSOLVED | Metals & Mercury<br>Default Acid Extractable (Available) Diges | lot Water Soluble<br>required for CCME | RBCA Hydrocarbons (BTEX, | CCME Hydrocarbons (CWS-PHC F1/BTEX, F2-F4) | AHs (Default for water/soll) | PAHs (FW/AL //CCME Sediment) | PCBs - Select One: Default or CCME Sediment |         | otal Coliform/E.coli (Presence/Absence) | otal Coliform/E.Coli (Count) |         |         |                                                          | LON OG-     | COMMENTS                            |         |                                                                                                                 |
|                                                                                                 | SAIVIPLI | IDENTIFICATION                        | (YYYY/MM/DD)      | (HH:MM)                   | MATRIX      | # OF C                 | FIELD                                       | LAB FI                     | RCAP                                               | RCAP                       | Total Di<br>for well               | Disso                                                          | Merc                                   | Metal                    | Hot M<br>(requi                            | RBC/                         | CCME                         | PAHs                                        | PAHs    | PCBs -                                  | vocs                         | Total ( | Total ( |                                                          |             |                                     | HOLD-DO |                                                                                                                 |
| 1                                                                                               |          | BB-10                                 | 9/8/2020          |                           | organic     |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        | х                        |                                            |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         | do not pre-weight                                                                                               |
| 2                                                                                               |          | BB-dup                                |                   |                           | organic     |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        | x                        |                                            |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         | do not pre-weight                                                                                               |
| 3                                                                                               |          |                                       |                   |                           |             |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          |                                            |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
| 4                                                                                               |          |                                       |                   |                           |             | 1                      |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          | 1                                          |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
| 5                                                                                               |          |                                       |                   |                           |             |                        |                                             |                            |                                                    | 1                          | 1                                  |                                                                |                                        |                          | 1                                          | $\square$                    |                              |                                             | 1       |                                         |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
| 6                                                                                               |          |                                       |                   |                           |             | 1                      |                                             | 1                          |                                                    |                            | 1                                  |                                                                | 1                                      |                          |                                            |                              |                              |                                             |         |                                         |                              |         | -       |                                                          |             |                                     |         |                                                                                                                 |
| 7                                                                                               |          |                                       |                   |                           |             | T                      | 1                                           | 1                          | 1                                                  | 1                          | 1                                  |                                                                |                                        |                          |                                            |                              | 1                            |                                             |         |                                         |                              |         |         |                                                          |             |                                     | -       |                                                                                                                 |
| 8                                                                                               |          |                                       | 1                 |                           |             | 1                      |                                             |                            |                                                    | 1                          | 1                                  |                                                                |                                        |                          |                                            | 1                            | 1                            |                                             |         |                                         |                              |         |         |                                                          |             |                                     | 1       |                                                                                                                 |
| 9                                                                                               |          |                                       |                   |                           |             | t                      | 1                                           | 1                          | $\vdash$                                           | 1                          | $\mathbf{t}$                       | $\top$                                                         |                                        | 1                        |                                            |                              |                              | t                                           |         |                                         |                              |         |         |                                                          |             |                                     | 1       |                                                                                                                 |
| 10                                                                                              |          |                                       |                   |                           |             | ┢                      | 1                                           | ┢                          | 1                                                  |                            | 1                                  | 1                                                              | 1                                      |                          |                                            |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     | 1       |                                                                                                                 |
| RELINQUISHED BY: (Signature/Print) DATE: (YYYY/MM/DD) TIME:                                     |          |                                       |                   | HH:N                      | MM}         |                        | 21                                          | RECE                       | IVED B                                             | Y:(Sig                     | natur                              | e/Print)                                                       |                                        | D                        | ATE: (                                     | 1/144                        |                              | )<br>(00)                                   |         | TIME                                    | : (HH                        | :MM)    | T       |                                                          |             | BV LABS JOB #                       |         |                                                                                                                 |
|                                                                                                 |          |                                       | mac               |                           |             |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          |                                            |                              | 2                            | 900                                         |         |                                         |                              | COWY941 |         |                                                          |             |                                     |         |                                                                                                                 |
|                                                                                                 |          |                                       |                   |                           |             |                        |                                             |                            |                                                    |                            |                                    |                                                                |                                        |                          |                                            |                              |                              |                                             |         |                                         |                              |         |         |                                                          |             |                                     |         |                                                                                                                 |
| Unless otherwis<br>www.bvlabs.co                                                                |          | in writing, work submitted on this Cf | ain of Custody is | subject to BV             | Labs stand  | ard Te                 | erms a                                      | and C                      | onditi                                             | ons.                       | Signin                             | g of t                                                         | his Ch                                 | ain of Cu                | stody d                                    | ocume                        | ent is a                     | cknow                                       | ledgn   | ient a                                  | nd ac                        | cepta   | nce o   | of our                                                   | terms       | s whic                              | h are i | available for viewing at                                                                                        |
|                                                                                                 |          |                                       |                   |                           | _           | -                      | _                                           | -                          | _                                                  | _                          | _                                  | _                                                              | _                                      | _                        | -                                          | _                            | _                            | _                                           | _       | _                                       |                              | _       | _       | _                                                        | _           | _                                   |         | the second second second second second second second second second second second second second second second se |

White: Maxxam

Pink: Client

281

# ATTACHMENT B

# **ProUCL Outputs: Snowshoe Hare - Tissue**

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:34:33 PM From File Snowshoe Hare - Tissue, Aluminum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Aluminum, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7     |
| Number of Detects            | 7                  | Number of Non-Detects           | 1     |
| Number of Distinct Detects   | 6                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 0.37               | Minimum Non-Detect              | 0.2   |
| Maximum Detect               | 7.69               | Maximum Non-Detect              | 0.2   |
| Variance Detects             | 7.19               | Percent Non-Detects             | 12.5% |
| Mean Detects                 | 1.711              | SD Detects                      | 2.681 |
| Median Detects               | 0.43               | CV Detects                      | 1.567 |
| Skewness Detects             | 2.473              | Kurtosis Detects                | 6.24  |
| Mean of Logged Detects       | -0.154             | SD of Logged Detects            | 1.121 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

### Normal GOF Test on Detects Only

|                                                   |       | -                                                 |  |  |  |  |  |  |  |
|---------------------------------------------------|-------|---------------------------------------------------|--|--|--|--|--|--|--|
| Shapiro Wilk Test Statistic                       | 0.587 | Shapiro Wilk GOF Test                             |  |  |  |  |  |  |  |
| 5% Shapiro Wilk Critical Value                    | 0.803 | Detected Data Not Normal at 5% Significance Level |  |  |  |  |  |  |  |
| Lilliefors Test Statistic                         | 0.356 | Lilliefors GOF Test                               |  |  |  |  |  |  |  |
| 5% Lilliefors Critical Value                      | 0.304 | Detected Data Not Normal at 5% Significance Level |  |  |  |  |  |  |  |
| Detected Data Not Normal at 5% Significance Level |       |                                                   |  |  |  |  |  |  |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 1.523 | KM Standard Error of Mean         | 0.907 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 2.375 | 95% KM (BCA) UCL                  | 3.186 |
| 95% KM (t) UCL         | 3.241 | 95% KM (Percentile Bootstrap) UCL | 3.223 |
| 95% KM (z) UCL         | 3.015 | 95% KM Bootstrap t UCL            | 13.51 |
| 90% KM Chebyshev UCL   | 4.244 | 95% KM Chebyshev UCL              | 5.477 |
| 97.5% KM Chebyshev UCL | 7.188 | 99% KM Chebyshev UCL              | 10.55 |
|                        |       |                                   |       |

### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                                     | 0.954 | Anderson-Darling GOF Test                                       |  |  |  |  |  |
|------------------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|--|--|--|
| 5% A-D Critical Value                                                  | 0.733 | Detected Data Not Gamma Distributed at 5% Significance Level    |  |  |  |  |  |
| K-S Test Statistic                                                     | 0.313 | Kolmogorov-Smirnov GOF                                          |  |  |  |  |  |
| 5% K-S Critical Value                                                  | 0.321 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |  |  |
| Detected data follow Appr. Gamma Distribution at 5% Significance Level |       |                                                                 |  |  |  |  |  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:34:33 PM

 From File
 Snowshoe Hare - Tissue, Aluminum, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

### Snowshoe Hare - Tissue, Aluminum, mg/kg - ww

### Gamma Statistics on Detected Data Only

| k hat (MLE)     | 0.852 | k star (bias corrected MLE)     | 0.582 |
|-----------------|-------|---------------------------------|-------|
| Theta hat (MLE) | 2.01  | Theta star (bias corrected MLE) | 2.941 |
| nu hat (MLE)    | 11.92 | nu star (bias corrected)        | 8.146 |
| Mean (detects)  | 1.711 |                                 |       |

### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

### This is especially true when the sample size is small.

### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                        | 0.01   | Mean                                       | 1.499 |
|------------------------------------------------|--------|--------------------------------------------|-------|
| Maximum                                        | 7.69   | Median                                     | 0.43  |
| SD                                             | 2.554  | CV                                         | 1.704 |
| k hat (MLE)                                    | 0.56   | k star (bias corrected MLE)                | 0.433 |
| Theta hat (MLE)                                | 2.677  | Theta star (bias corrected MLE)            | 3.459 |
| nu hat (MLE)                                   | 8.958  | nu star (bias corrected)                   | 6.932 |
| Adjusted Level of Significance ( $\beta$ )     | 0.0195 |                                            |       |
| Approximate Chi Square Value (6.93, $\alpha$ ) | 2.133  | Adjusted Chi Square Value (6.93, $\beta$ ) | 1.526 |
| 95% Gamma Approximate UCL (use when n>=50)     | 4.87   | 95% Gamma Adjusted UCL (use when n<50)     | 6.81  |

### Estimates of Gamma Parameters using KM Estimates

| 2.375 | SD (KM)                   | 1.523 | Mean (KM)                 |
|-------|---------------------------|-------|---------------------------|
| 0.907 | SE of Mean (KM)           | 5.643 | Variance (KM)             |
| 0.34  | k star (KM)               | 0.411 | k hat (KM)                |
| 5.441 | nu star (KM)              | 6.573 | nu hat (KM)               |
| 4.477 | theta star (KM)           | 3.706 | theta hat (KM)            |
| 4.416 | 90% gamma percentile (KM) | 2.398 | 80% gamma percentile (KM) |
| 12.49 | 99% gamma percentile (KM) | 6.684 | 95% gamma percentile (KM) |
|       |                           |       |                           |

### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (5.44, $\alpha$ ) | 1.361 | Adjusted Chi Square Value (5.44, $\beta$ ) | 0.914 |
|------------------------------------------------|-------|--------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)  | 6.085 | 95% Gamma Adjusted KM-UCL (use when n<50)  | 9.064 |

| User Selected Options          | 3                                                |
|--------------------------------|--------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:34:33 PM                    |
| From File                      | Snowshoe Hare - Tissue, Aluminum, mg_kg - ww.xls |
| Full Precision                 | OFF                                              |
| Confidence Coefficient         | 95%                                              |
| Number of Bootstrap Operations | 2000                                             |

### Snowshoe Hare - Tissue, Aluminum, mg/kg - ww

| Lognormal GOF                             | Test on D    | Detected Observations Only                           |        |
|-------------------------------------------|--------------|------------------------------------------------------|--------|
| Shapiro Wilk Test Statistic               | 0.791        | Shapiro Wilk GOF Test                                |        |
| 5% Shapiro Wilk Critical Value            | 0.803        | Detected Data Not Lognormal at 5% Significance Leve  | el     |
| Lilliefors Test Statistic                 | 0.302        | Lilliefors GOF Test                                  |        |
| 5% Lilliefors Critical Value              | 0.304        | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Detected Data appear Ap                   | proximate    | Lognormal at 5% Significance Level                   |        |
| Lognormal ROS                             | Statistics   | Using Imputed Non-Detects                            |        |
| Mean in Original Scale                    | 1.505        | Mean in Log Scale                                    | -0.479 |
| SD in Original Scale                      | 2.55         | SD in Log Scale                                      | 1.386  |
| 95% t UCL (assumes normality of ROS data) | 3.214        | 95% Percentile Bootstrap UCL                         | 3.163  |
| 95% BCA Bootstrap UCL                     | 4.01         | 95% Bootstrap t UCL                                  | 11.96  |
| 95% H-UCL (Log ROS)                       | 16.52        |                                                      |        |
| Statistics using KM estimates o           | n Logged I   | Data and Assuming Lognormal Distribution             |        |
| KM Mean (logged)                          | -0.336       | KM Geo Mean                                          | 0.715  |
| KM SD (logged)                            | 1.084        | 95% Critical H Value (KM-Log)                        | 3.636  |
| KM Standard Error of Mean (logged)        | 0.414        | 95% H-UCL (KM -Log)                                  | 5.703  |
| KM SD (logged)                            | 1.084        | 95% Critical H Value (KM-Log)                        | 3.636  |
| KM Standard Error of Mean (logged)        | 0.414        |                                                      |        |
|                                           | DL/2 S       | tatistics                                            |        |
| DL/2 Normal                               |              | DL/2 Log-Transformed                                 |        |
| Mean in Original Scale                    | 1.51         | Mean in Log Scale                                    | -0.423 |
| SD in Original Scale                      | 2.547        | SD in Log Scale                                      | 1.286  |
| 95% t UCL (Assumes normality)             | 3.216        | 95% H-Stat UCL                                       | 11.36  |
| DL/2 is not a recommended me              | thod, provi  | ded for comparisons and historical reasons           |        |
| Nonparamet                                | ric Distribu | tion Free UCL Statistics                             |        |
| Detected Data appear Approx               | kimate Gar   | nma Distributed at 5% Significance Level             |        |
|                                           | Suggested    | UCL to Use                                           |        |

95% KM Bootstrap t UCL 13.51 a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 9.064

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:34:33 PM

 From File
 Snowshoe Hare - Tissue, Aluminum, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

### Snowshoe Hare - Tissue, Aluminum, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:35:18 PM From File Snowshoe Hare - Tissue, Antimony, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Antimony, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 3         |
| Number of Detects            | 2                  | Number of Non-Detects           | 6         |
| Number of Distinct Detects   | 2                  | Number of Distinct Non-Detects  | 1         |
| Minimum Detect               | 0.0015             | Minimum Non-Detect              | 0.001     |
| Maximum Detect               | 0.0019             | Maximum Non-Detect              | 0.001     |
| Variance Detects 8           | 3.0000E-8          | Percent Non-Detects             | 75%       |
| Mean Detects                 | 0.0017             | SD Detects                      | 2.8284E-4 |
| Median Detects               | 0.0017             | CV Detects                      | 0.166     |
| Skewness Detects             | N/A                | Kurtosis Detects                | N/A       |
| Mean of Logged Detects       | -6.384             | SD of Logged Detects            | 0.167     |

### Warning: Data set has only 2 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

> Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| 0.00118   | KM Standard Error of Mean                  | 1.5959E-4                                                                                                                                                                                      |
|-----------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.1918E-4 | 95% KM (BCA) UCL                           | N/A                                                                                                                                                                                            |
| 0.00148   | 95% KM (Percentile Bootstrap) UCL          | N/A                                                                                                                                                                                            |
| 0.00144   | 95% KM Bootstrap t UCL                     | N/A                                                                                                                                                                                            |
| 0.00165   | 95% KM Chebyshev UCL                       | 0.00187                                                                                                                                                                                        |
| 0.00217   | 99% KM Chebyshev UCL                       | 0.00276                                                                                                                                                                                        |
|           | 8.1918E-4<br>0.00148<br>0.00144<br>0.00165 | B.1918E-4         95% KM (BCA) UCL           0.00148         95% KM (Percentile Bootstrap) UCL           0.00144         95% KM Bootstrap t UCL           0.00165         95% KM Chebyshev UCL |

### Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

### Gamma Statistics on Detected Data Only

| N/A | k star (bias corrected MLE)     | ) 71.92     | k hat (MLE)     |
|-----|---------------------------------|-------------|-----------------|
| N/A | Theta star (bias corrected MLE) | ) 2.3639E-5 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | ) 287.7     | nu hat (MLE)    |
|     |                                 | ) 0.0017    | Mean (detects)  |

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Antimony, mg/kg - ww

### Estimates of Gamma Parameters using KM Estimates

| Mean (KM) 0.00118                 | SD (KM)                   | 3.1918E-4 |
|-----------------------------------|---------------------------|-----------|
| Variance (KM) 1.0188E-7           | SE of Mean (KM)           | 1.5959E-4 |
| k hat (KM) 13.55                  | k star (KM)               | 8.553     |
| nu hat (KM) 216.8                 | nu star (KM)              | 136.9     |
| theta hat (KM) 8.6702E-5          | theta star (KM)           | 1.3737E-4 |
| 80% gamma percentile (KM) 0.00149 | 90% gamma percentile (KM) | 0.00171   |
| 95% gamma percentile (KM) 0.0019  | 99% gamma percentile (KM) | 0.0023    |

### Gamma Kaplan-Meier (KM) Statistics

|                                                  |         | Adjusted Level of Significance (β)           | 0.0195  |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| Approximate Chi Square Value (136.85, $\alpha$ ) | 110.8   | Adjusted Chi Square Value (136.85, $\beta$ ) | 104.9   |
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.00145 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.00153 |

### Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

### Lognormal ROS Statistics Using Imputed Non-Detects

| -7.043  | Mean in Log Scale            | jinal Scale 9.7498E-4 | Mean in Original Scal                    |
|---------|------------------------------|-----------------------|------------------------------------------|
| 0.5     | SD in Log Scale              | ginal Scale 5.0106E-4 | SD in Original Scal                      |
| 0.00125 | 95% Percentile Bootstrap UCL | ROS data) 0.00131     | 95% t UCL (assumes normality of ROS data |
| 0.00153 | 95% Bootstrap t UCL          | strap UCL 0.00131     | 95% BCA Bootstrap UC                     |
|         |                              | (Log ROS) 0.00154     | 95% H-UCL (Log ROS                       |

| Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution |   |
|----------------------------------------------------------------------------------|---|
| KM Mean (logged) -6 777                                                          | k |

| • • • • • • • • • • • • • • • • • • • • | 00     |                               |         |
|-----------------------------------------|--------|-------------------------------|---------|
| KM Mean (logged)                        | -6.777 | KM Geo Mean                   | 0.00114 |
| KM SD (logged)                          | 0.234  | 95% Critical H Value (KM-Log) | 1.98    |
| KM Standard Error of Mean (logged)      | 0.117  | 95% H-UCL (KM -Log)           | 0.0014  |
| KM SD (logged)                          | 0.234  | 95% Critical H Value (KM-Log) | 1.98    |
| KM Standard Error of Mean (logged)      | 0.117  |                               |         |

### **DL/2 Statistics**

| DL/2 Normal                           | DL/2 Log-Transformed |         |
|---------------------------------------|----------------------|---------|
| Mean in Original Scale 8.0000E-4      | Mean in Log Scale    | -7.297  |
| SD in Original Scale 5.6569E-4        | SD in Log Scale      | 0.567   |
| 95% t UCL (Assumes normality) 0.00118 | 95% H-Stat UCL       | 0.00135 |

DL/2 is not a recommended method, provided for comparisons and historical reasons

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:35:18 PM From File Snowshoe Hare - Tissue, Antimony, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Antimony, mg/kg - ww

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

KM H-UCL 0.0014

95% KM (BCA) UCL N/A

95% KM (t) UCL 0.00148

Warning: One or more Recommended UCL(s) not available!

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:36:02 PM

 From File
 Snowshoe Hare - Tissue, Arsenic, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

### Snowshoe Hare - Tissue, Arsenic, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0047             | Mean                            | 0.0154  |
| Maximum                      | 0.0319             | Median                          | 0.013   |
| SD                           | 0.00891            | Std. Error of Mean              | 0.00315 |
| Coefficient of Variation     | 0.579              | Skewness                        | 0.819   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.94  | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.182 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

| Assuming | Normal | Distribution |
|----------|--------|--------------|
|----------|--------|--------------|

| 95% Normal UCL      |                | 95% UCLs (Adjusted for Skewness)  |        |
|---------------------|----------------|-----------------------------------|--------|
| 95% Student's-t UCL | 0.0214         | 95% Adjusted-CLT UCL (Chen-1995)  | 0.0215 |
|                     |                | 95% Modified-t UCL (Johnson-1978) | 0.0215 |
|                     | Gamma GOF Test |                                   |        |

| A-D Test Statistic 0.169                                        | Anderson-Darling Gamma GOF Test                               |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------------|--|--|
| % A-D Critical Value 0.72 De                                    | tected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic 0.154                                        | Kolmogorov-Smirnov Gamma GOF Test                             |  |  |
| % K-S Critical Value 0.296 De                                   | tected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |                                                               |  |  |

### Gamma Statistics

| k hat (MLE)                    | 3.343  | k star (bias corrected MLE)         | 2.173   |
|--------------------------------|--------|-------------------------------------|---------|
| Theta hat (MLE)                | 0.0046 | Theta star (bias corrected MLE)     | 0.00708 |
| nu hat (MLE)                   | 53.48  | nu star (bias corrected)            | 34.76   |
| MLE Mean (bias corrected)      | 0.0154 | MLE Sd (bias corrected)             | 0.0104  |
|                                |        | Approximate Chi Square Value (0.05) | 22.27   |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 19.78   |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:36:02 PM From File Snowshoe Hare - Tissue, Arsenic, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Arsenic, mg/kg - ww

### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.024

95% Adjusted Gamma UCL (use when n<50) 0.027

### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.98  | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.148 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

|                        | Lognormal Statistics |                     |        |
|------------------------|----------------------|---------------------|--------|
| Minimum of Logged Data | -5.36                | Mean of logged Data | -4.331 |
| Maximum of Logged Data | -3.445               | SD of logged Data   | 0.619  |

### Assuming Lognormal Distribution

| 95% H-UCL                | 0.0291 | 90% Chebyshev (MVUE) UCL   | 0.0258 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0305 | 97.5% Chebyshev (MVUE) UCL | 0.037  |
| 99% Chebyshev (MVUE) UCL | 0.0497 |                            |        |

### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0206 | 95% Jackknife UCL            | 0.0214 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0203 | 95% Bootstrap-t UCL          | 0.0229 |
| 95% Hall's Bootstrap UCL      | 0.0224 | 95% Percentile Bootstrap UCL | 0.0205 |
| 95% BCA Bootstrap UCL         | 0.021  |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0248 | 95% Chebyshev(Mean, Sd) UCL  | 0.0291 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0351 | 99% Chebyshev(Mean, Sd) UCL  | 0.0467 |

### Suggested UCL to Use

95% Student's-t UCL 0.0214

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:36:45 PM From File Snowshoe Hare - Tissue, Barium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Barium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.02               | Mean                            | 0.157  |
| Maximum                      | 0.639              | Median                          | 0.121  |
| SD                           | 0.202              | Std. Error of Mean              | 0.0714 |
| Coefficient of Variation     | 1.286              | Skewness                        | 2.443  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.655       | Shapiro Wilk GOF Test                    |
|--------------------------------|-------------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818       | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.385       | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.283       | Data Not Normal at 5% Significance Level |
| Data Not N                     | Jormal at 5 | K Significance Level                     |

Data Not Normal at 5% Significance Level

### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 0.292 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.34  |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 0.302 |

### Gamma GOF Test

| A-D Test Statistic                                              | 0.52  | Anderson-Darling Gamma GOF Test                                 |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value                                           | 0.735 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic                                              | 0.257 | Kolmogorov-Smirnov Gamma GOF Test                               |  |
| 5% K-S Critical Value                                           | 0.301 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |

### Gamma Statistics

| k hat (MLE)                    | 1.028  | k star (bias corrected MLE)         | 0.726 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.153  | Theta star (bias corrected MLE)     | 0.216 |
| nu hat (MLE)                   | 16.44  | nu star (bias corrected)            | 11.61 |
| MLE Mean (bias corrected)      | 0.157  | MLE Sd (bias corrected)             | 0.184 |
|                                |        | Approximate Chi Square Value (0.05) | 4.971 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 3.93  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:36:45 PM From File Snowshoe Hare - Tissue, Barium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Barium, mg/kg - ww

### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.367

95% Adjusted Gamma UCL (use when n<50) 0.464

### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.925    | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|----------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.194    | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Lognormal at 5% Significance Level |
| Data appear l                  | ognormal | at 5% Significance Level                       |

Data appear Lognormal at 5% Significance Level

### Lognormal Statistics

| Minimum of Logged Data | -3.912 | Mean of logged Data | -2.411 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -0.448 | SD of logged Data   | 1.119  |

### Assuming Lognormal Distribution

| 95% H-UCL                | 0.812 | 90% Chebyshev (MVUE) UCL   | 0.333 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.416 | 97.5% Chebyshev (MVUE) UCL | 0.531 |
| 99% Chebyshev (MVUE) UCL | 0.756 |                            |       |

### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.274 | 95% Jackknife UCL            | 0.292 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.266 | 95% Bootstrap-t UCL          | 0.505 |
| 95% Hall's Bootstrap UCL      | 0.765 | 95% Percentile Bootstrap UCL | 0.285 |
| 95% BCA Bootstrap UCL         | 0.316 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.371 | 95% Chebyshev(Mean, Sd) UCL  | 0.468 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.603 | 99% Chebyshev(Mean, Sd) UCL  | 0.867 |

### Suggested UCL to Use

95% Adjusted Gamma UCL 0.464

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Tissue, Beryllium, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

### Snowshoe Hare - Tissue, Beryllium, mg/kg - ww

### **General Statistics**

8

0

Total Number of Observations Number of Detects

- Number of Distinct Detects 0
- Number of Distinct Observations
   1

   Number of Non-Detects
   8

   Number of Distinct Non-Detects
   1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Tissue, Beryllium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:38:11 PM From File Snowshoe Hare - Tissue, Bismuth, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Bismuth, mg/kg - ww

### **General Statistics**

8

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 8

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Tissue, Bismuth, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:38:54 PM From File Snowshoe Hare - Tissue, Boron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Boron, mg/kg - ww

### **General Statistics**

8

Total Number of Observations

- Number of Detects 1
- Number of Distinct Detects 1

Number of Distinct Observations 2

Number of Non-Detects 7

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Tissue, Boron, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Cadmium, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8       |
| Number of Detects            | 7                  | Number of Non-Detects           | 1       |
| Number of Distinct Detects   | 7                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.0012             | Minimum Non-Detect              | 0.001   |
| Maximum Detect               | 0.0086             | Maximum Non-Detect              | 0.001   |
| Variance Detects             | 6.8681E-6          | Percent Non-Detects             | 12.5%   |
| Mean Detects                 | 0.00311            | SD Detects                      | 0.00262 |
| Median Detects               | 0.0022             | CV Detects                      | 0.842   |
| Skewness Detects             | 1.931              | Kurtosis Detects                | 3.861   |
| Mean of Logged Detects       | -6.007             | SD of Logged Detects            | 0.699   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                                      | 0.765 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                                   | 0.803 | Detected Data Not Normal at 5% Significance Level    |  |
| Lilliefors Test Statistic                                        | 0.262 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                                     | 0.304 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Approximate Normal at 5% Significance Level |       |                                                      |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.00285 | KM Standard Error of Mean 9       | ).0692E-4 |
|------------------------|---------|-----------------------------------|-----------|
| KM SD                  | 0.00237 | 95% KM (BCA) UCL                  | 0.0045    |
| 95% KM (t) UCL         | 0.00457 | 95% KM (Percentile Bootstrap) UCL | 0.00435   |
| 95% KM (z) UCL         | 0.00434 | 95% KM Bootstrap t UCL            | 0.00736   |
| 90% KM Chebyshev UCL   | 0.00557 | 95% KM Chebyshev UCL              | 0.0068    |
| 97.5% KM Chebyshev UCL | 0.00851 | 99% KM Chebyshev UCL              | 0.0119    |
|                        |         |                                   |           |

### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.446    | Anderson-Darling GOF Test                                       |
|-----------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.714    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.202    | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.315    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Di | stributed at 5% Significance Level                              |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:39:37 PM

 From File
 Snowshoe Hare - Tissue, Cadmium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

### Snowshoe Hare - Tissue, Cadmium, mg/kg - ww

### Gamma Statistics on Detected Data Only

| 1.397   | k star (bias corrected MLE)     | 2.278   | k hat (MLE)     |
|---------|---------------------------------|---------|-----------------|
| 0.00223 | Theta star (bias corrected MLE) | 0.00137 | Theta hat (MLE) |
| 19.56   | nu star (bias corrected)        | 31.89   | nu hat (MLE)    |
|         |                                 | 0.00311 | Mean (detects)  |

### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

### This is especially true when the sample size is small.

### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.0012  | Mean                                        | 0.00398 |
|-------------------------------------------------|---------|---------------------------------------------|---------|
| Maximum                                         | 0.01    | Median                                      | 0.0025  |
| SD                                              | 0.00344 | CV                                          | 0.865   |
| k hat (MLE)                                     | 1.793   | k star (bias corrected MLE)                 | 1.204   |
| Theta hat (MLE)                                 | 0.00222 | Theta star (bias corrected MLE)             | 0.0033  |
| nu hat (MLE)                                    | 28.69   | nu star (bias corrected)                    | 19.26   |
| Adjusted Level of Significance ( $\beta$ )      | 0.0195  |                                             |         |
| Approximate Chi Square Value (19.26, $\alpha$ ) | 10.31   | Adjusted Chi Square Value (19.26, $\beta$ ) | 8.703   |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.00743 | 95% Gamma Adjusted UCL (use when n<50)      | 0.0088  |

### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.00285   | SD (KM)                   | 0.00237   |
|---------------------------|-----------|---------------------------|-----------|
| Variance (KM) 8           | 5.6400E-6 | SE of Mean (KM)           | 9.0692E-4 |
| k hat (KM)                | 1.44      | k star (KM)               | 0.983     |
| nu hat (KM)               | 23.04     | nu star (KM)              | 15.73     |
| theta hat (KM)            | 0.00198   | theta star (KM)           | 0.0029    |
| 80% gamma percentile (KM) | 0.00459   | 90% gamma percentile (KM) | 0.00659   |
| 95% gamma percentile (KM) | 0.00859   | 99% gamma percentile (KM) | 0.0132    |

### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (15.73, $\alpha$ ) | 7.776   | Adjusted Chi Square Value (15.73, $\beta$ ) | 6.413   |
|-------------------------------------------------|---------|---------------------------------------------|---------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.00577 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.00699 |

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Cadmium, mg/kg - ww

| Shapiro Wilk Test Statistic    | 0.917 | acted Observations Only<br>Shapiro Wilk GOF Test        |
|--------------------------------|-------|---------------------------------------------------------|
| ·                              |       | •                                                       |
| 5% Shapiro Wilk Critical Value | 0.803 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.189 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.304 | Detected Data appear Lognormal at 5% Significance Level |

### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.00278 | Mean in Log Scale            | -6.224  |
|-------------------------------------------|---------|------------------------------|---------|
| SD in Original Scale                      | 0.0026  | SD in Log Scale              | 0.892   |
| 95% t UCL (assumes normality of ROS data) | 0.00452 | 95% Percentile Bootstrap UCL | 0.00423 |
| 95% BCA Bootstrap UCL                     | 0.00476 | 95% Bootstrap t UCL          | 0.00678 |
| 95% H-UCL (Log ROS)                       | 0.00856 |                              |         |

### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -6.12 | KM Geo Mean                   | 0.0022  |
|------------------------------------|-------|-------------------------------|---------|
| KM SD (logged)                     | 0.675 | 95% Critical H Value (KM-Log) | 2.683   |
| KM Standard Error of Mean (logged) | 0.258 | 95% H-UCL (KM -Log)           | 0.00548 |
| KM SD (logged)                     | 0.675 | 95% Critical H Value (KM-Log) | 2.683   |
| KM Standard Error of Mean (logged) | 0.258 |                               |         |
|                                    |       |                               |         |

### **DL/2 Statistics**

| DL/2 Normal                   |         | DL/2 Log-Transformed        |         |
|-------------------------------|---------|-----------------------------|---------|
| Mean in Original Scale        | 0.00279 | Mean in Log Scale           | -6.206  |
| SD in Original Scale          | 0.0026  | SD in Log Scale             | 0.858   |
| 95% t UCL (Assumes normality) | 0.00453 | 95% H-Stat UCL              | 0.00793 |
| DL/0 is not a second address  |         | and block-sheet as a second |         |

DL/2 is not a recommended method, provided for comparisons and historical reasons

### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

### Suggested UCL to Use

95% KM (t) UCL 0.00457

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:39:37 PM

 From File
 Snowshoe Hare - Tissue, Cadmium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

### Snowshoe Hare - Tissue, Cadmium, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:40:21 PM From File Snowshoe Hare - Tissue, Calcium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

### Snowshoe Hare - Tissue, Calcium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 49.2               | Mean                            | 68.05 |
| Maximum                      | 109                | Median                          | 64.75 |
| SD                           | 18.61              | Std. Error of Mean              | 6.581 |
| Coefficient of Variation     | 0.274              | Skewness                        | 1.713 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.844 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.237 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

# Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)    |       |
|---------------------|-------|-------------------------------------|-------|
| 95% Student's-t UCL | 80.52 | 95% Adjusted-CLT UCL (Chen-1995) 8  | 83.13 |
|                     |       | 95% Modified-t UCL (Johnson-1978) 8 | 81.18 |
|                     |       |                                     |       |

### Gamma GOF Test

| A-D Test Statistic                                              | 0.39  | Anderson-Darling Gamma GOF Test                                 |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.716 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.193 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| 5% K-S Critical Value                                           | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

### Gamma Statistics

| k hat (MLE)                    | 17.91  | k star (bias corrected MLE)         | 11.27 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 3.8    | Theta star (bias corrected MLE)     | 6.036 |
| nu hat (MLE)                   | 286.5  | nu star (bias corrected)            | 180.4 |
| MLE Mean (bias corrected)      | 68.05  | MLE Sd (bias corrected)             | 20.27 |
|                                |        | Approximate Chi Square Value (0.05) | 150.3 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 143.4 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:40:21 PM From File Snowshoe Hare - Tissue, Calcium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Calcium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 81.66

95% Adjusted Gamma UCL (use when n<50) 85.62

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.923 | Shapiro Wilk Lognormal GOF Test                |  |  |  |
|------------------------------------------------|-------|------------------------------------------------|--|--|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |  |  |
| Lilliefors Test Statistic                      | 0.187 | Lilliefors Lognormal GOF Test                  |  |  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |  |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |  |  |

#### Lognormal Statistics

| Minimum of Logged Data | 3.896 | Mean of logged Data | 4.192 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 4.691 | SD of logged Data   | 0.245 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 82.02 | 90% Chebyshev (MVUE) UCL   | 85.64 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 93.67 | 97.5% Chebyshev (MVUE) UCL | 104.8 |
| 99% Chebyshev (MVUE) UCL | 126.7 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 78.87 | 95% Jackknife UCL            | 80.52 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 78.32 | 95% Bootstrap-t UCL          | 88.55 |
| 95% Hall's Bootstrap UCL      | 131   | 95% Percentile Bootstrap UCL | 78.69 |
| 95% BCA Bootstrap UCL         | 81.33 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 87.79 | 95% Chebyshev(Mean, Sd) UCL  | 96.73 |
| 97.5% Chebyshev(Mean, Sd) UCL | 109.1 | 99% Chebyshev(Mean, Sd) UCL  | 133.5 |

#### Suggested UCL to Use

95% Student's-t UCL 80.52

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:41:04 PM From File Snowshoe Hare - Tissue, Chromium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Chromium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 5      |
| Number of Detects            | 4                  | Number of Non-Detects           | 4      |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.012              | Minimum Non-Detect              | 0.01   |
| Maximum Detect               | 0.079              | Maximum Non-Detect              | 0.01   |
| Variance Detects 9           | 0.3267E-4          | Percent Non-Detects             | 50%    |
| Mean Detects                 | 0.034              | SD Detects                      | 0.0305 |
| Median Detects               | 0.0225             | CV Detects                      | 0.898  |
| Skewness Detects             | 1.793              | Kurtosis Detects                | 3.321  |
| Mean of Logged Detects       | -3.644             | SD of Logged Detects            | 0.802  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.797 | Shapiro Wilk GOF Test                                |  |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.748 | Detected Data appear Normal at 5% Significance Level |  |  |  |
| Lilliefors Test Statistic                            | 0.353 | Lilliefors GOF Test                                  |  |  |  |
| 5% Lilliefors Critical Value                         | 0.375 | Detected Data appear Normal at 5% Significance Level |  |  |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |  |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.022  | KM Standard Error of Mean         | 0.00907 |
|------------------------|--------|-----------------------------------|---------|
| KM SD                  | 0.0222 | 95% KM (BCA) UCL                  | N/A     |
| 95% KM (t) UCL         | 0.0392 | 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (z) UCL         | 0.0369 | 95% KM Bootstrap t UCL            | N/A     |
| 90% KM Chebyshev UCL   | 0.0492 | 95% KM Chebyshev UCL              | 0.0615  |
| 97.5% KM Chebyshev UCL | 0.0787 | 99% KM Chebyshev UCL              | 0.112   |
|                        |        |                                   |         |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.387 | Anderson-Darling GOF Test                                       |  |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|--|
| 5% A-D Critical Value                                           | 0.66  | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| K-S Test Statistic                                              | 0.302 | Kolmogorov-Smirnov GOF                                          |  |  |  |
| 5% K-S Critical Value                                           | 0.398 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |  |

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Chromium, mg/kg - ww

### Gamma Statistics on Detected Data Only

| 0.681  | k star (bias corrected MLE)     | 2.059  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0499 | Theta star (bias corrected MLE) | 0.0165 | Theta hat (MLE) |
| 5.45   | nu star (bias corrected)        | 16.47  | nu hat (MLE)    |
|        |                                 | 0.034  | Mean (detects)  |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01   | Mean                                        | 0.022  |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.079  | Median                                      | 0.011  |
| SD                                              | 0.0238 | CV                                          | 1.08   |
| k hat (MLE)                                     | 1.774  | k star (bias corrected MLE)                 | 1.192  |
| Theta hat (MLE)                                 | 0.0124 | Theta star (bias corrected MLE)             | 0.0185 |
| nu hat (MLE)                                    | 28.38  | nu star (bias corrected)                    | 19.07  |
| Adjusted Level of Significance (β)              | 0.0195 |                                             |        |
| Approximate Chi Square Value (19.07, $\alpha$ ) | 10.17  | Adjusted Chi Square Value (19.07, $\beta$ ) | 8.574  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0413 | 95% Gamma Adjusted UCL (use when n<50)      | N/A    |

#### Estimates of Gamma Parameters using KM Estimates

| 0.022     | SD (KM)                                        | 0.0222                                                                                                                                                                                                |
|-----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.9375E-4 | SE of Mean (KM)                                | 0.00907                                                                                                                                                                                               |
| 0.98      | k star (KM)                                    | 0.696                                                                                                                                                                                                 |
| 15.68     | nu star (KM)                                   | 11.14                                                                                                                                                                                                 |
| 0.0224    | theta star (KM)                                | 0.0316                                                                                                                                                                                                |
| 0.0362    | 90% gamma percentile (KM)                      | 0.0553                                                                                                                                                                                                |
| 0.075     | 99% gamma percentile (KM)                      | 0.122                                                                                                                                                                                                 |
|           | 1.9375E-4<br>0.98<br>15.68<br>0.0224<br>0.0362 | I.9375E-4         SE of Mean (KM)           0.98         k star (KM)           15.68         nu star (KM)           0.0224         theta star (KM)           0.0362         90% gamma percentile (KM) |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (11.14, $\alpha$ ) | 4.664  | Adjusted Chi Square Value (11.14, $\beta$ ) | 3.663  |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0525 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.0669 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:41:04 PM From File Snowshoe Hare - Tissue, Chromium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Chromium, mg/kg - ww

| Lognormal GOF Test on Detected Observations Only        |       |                                                         |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| Shapiro Wilk Test Statistic                             | 0.94  | Shapiro Wilk GOF Test                                   |  |
| 5% Shapiro Wilk Critical Value                          | 0.748 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.253 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.375 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0182 | Mean in Log Scale            | -4.938 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0262 | SD in Log Scale              | 1.568  |
| 95% t UCL (assumes normality of ROS data) | 0.0358 | 95% Percentile Bootstrap UCL | 0.0354 |
| 95% BCA Bootstrap UCL                     | 0.0411 | 95% Bootstrap t UCL          | 0.0624 |
| 95% H-UCL (Log ROS)                       | 0.454  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -4.124 | KM Geo Mean                   | 0.0162 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.687  | 95% Critical H Value (KM-Log) | 2.709  |
| KM Standard Error of Mean (logged) | 0.281  | 95% H-UCL (KM -Log)           | 0.0414 |
| KM SD (logged)                     | 0.687  | 95% Critical H Value (KM-Log) | 2.709  |
| KM Standard Error of Mean (logged) | 0.281  |                               |        |
|                                    |        |                               |        |

#### **DL/2 Statistics**

| DL/2 Normal                   | DL/2 Log-Trar | sformed           |        |
|-------------------------------|---------------|-------------------|--------|
| Mean in Original Scale        | 0.0195        | Mean in Log Scale | -4.471 |
| SD in Original Scale          | 0.0253        | SD in Log Scale   | 1.029  |
| 95% t UCL (Assumes normality) | 0.0364        | 95% H-Stat UCL    | 0.0756 |
|                               |               |                   |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.0392

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Cobalt, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0045             | Mean                            | 0.00945 |
| Maximum                      | 0.0163             | Median                          | 0.00845 |
| SD                           | 0.00406            | Std. Error of Mean              | 0.00144 |
| Coefficient of Variation     | 0.43               | Skewness                        | 0.654   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.926 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.235 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

# Assuming Normal Distribution

| 95% Normal UCL      |        | 95% UCLs (Adjusted for Skewness)  |        |
|---------------------|--------|-----------------------------------|--------|
| 95% Student's-t UCL | 0.0122 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.0122 |
|                     |        | 95% Modified-t UCL (Johnson-1978) | 0.0122 |
|                     |        |                                   |        |

#### Gamma GOF Test

| A-D Test Statistic     | 0.294    | Anderson-Darling Gamma GOF Test                                 |
|------------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.718    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.231    | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value  | 0.295    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear ( | Commo Di | istributed at 5% Significance Loval                             |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)                    | 6.336   | k star (bias corrected MLE)         | 4.043   |
|--------------------------------|---------|-------------------------------------|---------|
| Theta hat (MLE)                | 0.00149 | Theta star (bias corrected MLE)     | 0.00234 |
| nu hat (MLE)                   | 101.4   | nu star (bias corrected)            | 64.69   |
| MLE Mean (bias corrected)      | 0.00945 | MLE Sd (bias corrected)             | 0.0047  |
|                                |         | Approximate Chi Square Value (0.05) | 47.18   |
| Adjusted Level of Significance | 0.0195  | Adjusted Chi Square Value           | 43.43   |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:41:47 PM From File Snowshoe Hare - Tissue, Cobalt, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Cobalt, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.013

95% Adjusted Gamma UCL (use when n<50) 0.0141

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.956 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.205 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | -5.404 | Mean of logged Data | -4.743 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -4.117 | SD of logged Data   | 0.433  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.0138 | 90% Chebyshev (MVUE) UCL   | 0.0138 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0158 | 97.5% Chebyshev (MVUE) UCL | 0.0185 |
| 99% Chebyshev (MVUE) UCL | 0.0239 |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0118 | 95% Jackknife UCL            | 0.0122 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0117 | 95% Bootstrap-t UCL          | 0.0128 |
| 95% Hall's Bootstrap UCL      | 0.0129 | 95% Percentile Bootstrap UCL | 0.0118 |
| 95% BCA Bootstrap UCL         | 0.012  |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0138 | 95% Chebyshev(Mean, Sd) UCL  | 0.0157 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0184 | 99% Chebyshev(Mean, Sd) UCL  | 0.0237 |

#### Suggested UCL to Use

95% Student's-t UCL 0.0122

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:42:31 PM From File Snowshoe Hare - Tissue, Copper, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Copper, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 1.2                | Mean                            | 1.765  |
| Maximum                      | 2.31               | Median                          | 1.73   |
| SD                           | 0.362              | Std. Error of Mean              | 0.128  |
| Coefficient of Variation     | 0.205              | Skewness                        | 0.0307 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.981 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.119 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

| Assum | ing | Normal | Distribution |  |
|-------|-----|--------|--------------|--|
|-------|-----|--------|--------------|--|

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 2.008 | 95% Adjusted-CLT UCL (Chen-1995)  | 1.977 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 2.008 |
|                     |       |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic                                              | 0.174 | Anderson-Darling Gamma GOF Test                                 |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.716 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.131 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| 5% K-S Critical Value                                           | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

| k hat (MLE)                    | 26.31  | k star (bias corrected MLE)         | 16.53 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.0671 | Theta star (bias corrected MLE)     | 0.107 |
| nu hat (MLE)                   | 420.9  | nu star (bias corrected)            | 264.4 |
| MLE Mean (bias corrected)      | 1.765  | MLE Sd (bias corrected)             | 0.434 |
|                                |        | Approximate Chi Square Value (0.05) | 227.8 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 219.1 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:42:31 PM From File Snowshoe Hare - Tissue, Copper, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Copper, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.049

95% Adjusted Gamma UCL (use when n<50) 2.13

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.974 | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.134 | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

# Lognormal Statistics

|                        | Loghonnarotatotoo |                     |       |
|------------------------|-------------------|---------------------|-------|
| Minimum of Logged Data | 0.182             | Mean of logged Data | 0.549 |
| Maximum of Logged Data | 0.837             | SD of logged Data   | 0.211 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 2.07  | 90% Chebyshev (MVUE) UCL   | 2.163 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 2.342 | 97.5% Chebyshev (MVUE) UCL | 2.592 |
| 99% Chebyshev (MVUE) UCL | 3.082 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1.976 | 95% Jackknife UCL            | 2.008 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 1.968 | 95% Bootstrap-t UCL          | 2.012 |
| 95% Hall's Bootstrap UCL      | 1.995 | 95% Percentile Bootstrap UCL | 1.966 |
| 95% BCA Bootstrap UCL         | 1.968 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 2.149 | 95% Chebyshev(Mean, Sd) UCL  | 2.323 |
| 97.5% Chebyshev(Mean, Sd) UCL | 2.565 | 99% Chebyshev(Mean, Sd) UCL  | 3.039 |

#### Suggested UCL to Use

95% Student's-t UCL 2.008

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:43:14 PM From File Snowshoe Hare - Tissue, Iron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Iron, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 17.7               | Mean                            | 27.24  |
| Maximum                      | 35.9               | Median                          | 28.2   |
| SD                           | 6.309              | Std. Error of Mean              | 2.231  |
| Coefficient of Variation     | 0.232              | Skewness                        | -0.241 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.951 | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.203 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

# Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 31.46 | 95% Adjusted-CLT UCL (Chen-1995)  | 30.7  |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 31.43 |
|                     |       |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic 0                                            | .309     | Anderson-Darling Gamma GOF Test                               |  |
|-----------------------------------------------------------------|----------|---------------------------------------------------------------|--|
| 5% A-D Critical Value 0                                         | 0.716 De | tected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic 0                                            | .227     | Kolmogorov-Smirnov Gamma GOF Test                             |  |
| 5% K-S Critical Value 0                                         | .294 De  | tected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear Gamma Distributed at 5% Significance Level |          |                                                               |  |

| k hat (MLE)                    | 19.98  | k star (bias corrected MLE)         | 12.57 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 1.363  | Theta star (bias corrected MLE)     | 2.167 |
| nu hat (MLE)                   | 319.7  | nu star (bias corrected)            | 201.1 |
| MLE Mean (bias corrected)      | 27.24  | MLE Sd (bias corrected)             | 7.682 |
|                                |        | Approximate Chi Square Value (0.05) | 169.3 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 161.9 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:43:14 PM From File Snowshoe Hare - Tissue, Iron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Iron, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 32.36

95% Adjusted Gamma UCL (use when n<50) 33.83

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.937 | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.219 | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | 2.874 | Mean of logged Data | 3.279 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 3.581 | SD of logged Data   | 0.245 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 32.91 | 90% Chebyshev (MVUE) UCL   | 34.36 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 37.58 | 97.5% Chebyshev (MVUE) UCL | 42.04 |
| 99% Chebyshev (MVUE) UCL | 50.81 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 30.91 | 95% Jackknife UCL            | 31.46 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 30.66 | 95% Bootstrap-t UCL          | 30.99 |
| 95% Hall's Bootstrap UCL      | 30.33 | 95% Percentile Bootstrap UCL | 30.56 |
| 95% BCA Bootstrap UCL         | 30.53 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 33.93 | 95% Chebyshev(Mean, Sd) UCL  | 36.96 |
| 97.5% Chebyshev(Mean, Sd) UCL | 41.17 | 99% Chebyshev(Mean, Sd) UCL  | 49.43 |

#### Suggested UCL to Use

95% Student's-t UCL 31.46

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:43:14 PM From File Snowshoe Hare - Tissue, Iron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

## Snowshoe Hare - Tissue, Iron, mg/kg - ww

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:43:57 PM From File Snowshoe Hare - Tissue, Lead, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Lead, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0021             | Mean                            | 0.0106  |
| Maximum                      | 0.0477             | Median                          | 0.0041  |
| SD                           | 0.0154             | Std. Error of Mean              | 0.00545 |
| Coefficient of Variation     | 1.46               | Skewness                        | 2.564   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.6                    | Shapiro Wilk GOF Test                    |
|--------------------------------|------------------------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818                  | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.322                  | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.283                  | Data Not Normal at 5% Significance Level |
| Data Math                      | In success of the Pro- | V. Olanificana a Lauri                   |

Data Not Normal at 5% Significance Level

#### Assuming Normal Distribution

| 95% Normal UCL      |        | 95% UCLs (Adjusted for Skewness)  |
|---------------------|--------|-----------------------------------|
| 95% Student's-t UCL | 0.0209 | 95% Adjusted-CLT UCL (Chen-1995)  |
|                     |        | 95% Modified-t UCL (Johnson-1978) |

#### Gamma GOF Test

| A-D Test Statistic                                                     | 0.809 | Anderson-Darling Gamma GOF Test                                 |  |
|------------------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value                                                  | 0.736 | Data Not Gamma Distributed at 5% Significance Level             |  |
| K-S Test Statistic                                                     | 0.288 | Kolmogorov-Smirnov Gamma GOF Test                               |  |
| 5% K-S Critical Value                                                  | 0.302 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data follow Appr. Gamma Distribution at 5% Significance Level |       |                                                                 |  |

0.0248

0.0217

| k hat (MLE)                    | 0.991  | k star (bias corrected MLE)         | 0.703  |
|--------------------------------|--------|-------------------------------------|--------|
| Theta hat (MLE)                | 0.0106 | Theta star (bias corrected MLE)     | 0.015  |
| nu hat (MLE)                   | 15.85  | nu star (bias corrected)            | 11.24  |
| MLE Mean (bias corrected)      | 0.0106 | MLE Sd (bias corrected)             | 0.0126 |
|                                |        | Approximate Chi Square Value (0.05) | 4.732  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 3.722  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:43:57 PM From File Snowshoe Hare - Tissue, Lead, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Lead, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.0251

95% Adjusted Gamma UCL (use when n<50) 0.0319

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.878 | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.245 | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

|           | <b>.</b>   |
|-----------|------------|
| Lognormal | Statistics |

| Minimum of Logged Data | -6.166 | Mean of logged Data | -5.135 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -3.043 | SD of logged Data   | 1.025  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.0384 | 90% Chebyshev (MVUE) UCL   | 0.0193 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0238 | 97.5% Chebyshev (MVUE) UCL | 0.0302 |
| 99% Chebyshev (MVUE) UCL | 0.0427 |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0195 | 95% Jackknife UCL            | 0.0209 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.019  | 95% Bootstrap-t UCL          | 0.0673 |
| 95% Hall's Bootstrap UCL      | 0.0561 | 95% Percentile Bootstrap UCL | 0.0203 |
| 95% BCA Bootstrap UCL         | 0.0266 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0269 | 95% Chebyshev(Mean, Sd) UCL  | 0.0343 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0446 | 99% Chebyshev(Mean, Sd) UCL  | 0.0647 |

# Suggested UCL to Use

95% Adjusted Gamma UCL 0.0319

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:43:57 PM

 From File
 Snowshoe Hare - Tissue, Lead, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Lead, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:44:41 PM From File Snowshoe Hare - Tissue, Magnesium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Magnesium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 245                | Mean                            | 264.4 |
| Maximum                      | 287                | Median                          | 265   |
| SD                           | 12.42              | Std. Error of Mean              | 4.391 |
| Coefficient of Variation     | 0.047              | Skewness                        | 0.369 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.97  | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.172 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

#### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 272.7 | 95% Adjusted-CLT UCL (Chen-1995)  | 272.2 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 272.8 |

#### Gamma GOF Test

| A-D Test Statistic                                              | 0.219 | Anderson-Darling Gamma GOF Test                                 |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value                                           | 0.715 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic                                              | 0.155 | Kolmogorov-Smirnov Gamma GOF Test                               |  |
| 5% K-S Critical Value                                           | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |

| k hat (MLE)                    | 521.1  | k star (bias corrected MLE)         | 325.8 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.507  | Theta star (bias corrected MLE)     | 0.812 |
| nu hat (MLE)                   | 8337   | nu star (bias corrected)            | 5212  |
| MLE Mean (bias corrected)      | 264.4  | MLE Sd (bias corrected)             | 14.65 |
|                                |        | Approximate Chi Square Value (0.05) | 5045  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 5003  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:44:41 PM From File Snowshoe Hare - Tissue, Magnesium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Magnesium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 273.1

95% Adjusted Gamma UCL (use when n<50) 275.4

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.974 | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.166 | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | 5.501 | Mean of logged Data | 5.576  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 5.659 | SD of logged Data   | 0.0468 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A   | 90% Chebyshev (MVUE) UCL   | 277.5 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 283.4 | 97.5% Chebyshev (MVUE) UCL | 291.7 |
| 99% Chebyshev (MVUE) UCL | 307.9 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 271.6 | 95% Jackknife UCL            | 272.7 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 271   | 95% Bootstrap-t UCL          | 273.4 |
| 95% Hall's Bootstrap UCL      | 275.1 | 95% Percentile Bootstrap UCL | 271.8 |
| 95% BCA Bootstrap UCL         | 271.6 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 277.5 | 95% Chebyshev(Mean, Sd) UCL  | 283.5 |
| 97.5% Chebyshev(Mean, Sd) UCL | 291.8 | 99% Chebyshev(Mean, Sd) UCL  | 308.1 |

#### Suggested UCL to Use

95% Student's-t UCL 272.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:45:24 PM From File Snowshoe Hare - Tissue, Manganese, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Manganese, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.261              | Mean                            | 4.57  |
| Maximum                      | 14.6               | Median                          | 2.87  |
| SD                           | 4.883              | Std. Error of Mean              | 1.726 |
| Coefficient of Variation     | 1.068              | Skewness                        | 1.452 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.85  | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.205 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

# Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 7.841 | 95% Adjusted-CLT UCL (Chen-1995)  | 8.357 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 7.988 |
|                     |       |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic     | 0.146   | Anderson-Darling Gamma GOF Test                                 |
|------------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.739   | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.126   | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value  | 0.302   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear ( | Gamma D | istributed at 5% Significance Level                             |

| k hat (MLE)                    | 0.914  | k star (bias corrected MLE)         | 0.655 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 4.999  | Theta star (bias corrected MLE)     | 6.98  |
| nu hat (MLE)                   | 14.63  | nu star (bias corrected)            | 10.47 |
| MLE Mean (bias corrected)      | 4.57   | MLE Sd (bias corrected)             | 5.648 |
|                                |        | Approximate Chi Square Value (0.05) | 4.241 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 3.297 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:45:24 PM From File Snowshoe Hare - Tissue, Manganese, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Manganese, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 11.29

95% Adjusted Gamma UCL (use when n<50) 14.52

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.965    | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|----------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.149    | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Lognormal at 5% Significance Level |
| Data appear L                  | ognormal | at 5% Significance Level                       |

# Lognormal Statistics

| Minimum of Logged Data | -1.343 | Mean of logged Data | 0.881 |
|------------------------|--------|---------------------|-------|
| Maximum of Logged Data | 2.681  | SD of logged Data   | 1.364 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 58.3  | 90% Chebyshev (MVUE) UCL   | 12.63 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 16.04 | 97.5% Chebyshev (MVUE) UCL | 20.76 |
| 99% Chebyshev (MVUE) UCL | 30.03 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 7.41  | 95% Jackknife UCL            | 7.841 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 7.238 | 95% Bootstrap-t UCL          | 11.12 |
| 95% Hall's Bootstrap UCL      | 21.99 | 95% Percentile Bootstrap UCL | 7.508 |
| 95% BCA Bootstrap UCL         | 8.143 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 9.749 | 95% Chebyshev(Mean, Sd) UCL  | 12.09 |
| 97.5% Chebyshev(Mean, Sd) UCL | 15.35 | 99% Chebyshev(Mean, Sd) UCL  | 21.75 |

#### Suggested UCL to Use

95% Student's-t UCL 7.841

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:46:07 PM From File Snowshoe Hare - Tissue, Mercury, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Mercury, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 5         |
| Number of Detects            | 4                  | Number of Non-Detects           | 4         |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1         |
| Minimum Detect               | 0.0011             | Minimum Non-Detect              | 0.001     |
| Maximum Detect               | 0.0027             | Maximum Non-Detect              | 0.001     |
| Variance Detects 4           | 1.4667E-7          | Percent Non-Detects             | 50%       |
| Mean Detects                 | 0.0018             | SD Detects (                    | 5.6833E-4 |
| Median Detects               | 0.0017             | CV Detects                      | 0.371     |
| Skewness Detects             | 0.844              | Kurtosis Detects                | 1.5       |
| Mean of Logged Detects       | -6.371             | SD of Logged Detects            | 0.37      |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.958     | Shapiro Wilk GOF Test                                |
|--------------------------------|-----------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.748     | Detected Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.25      | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value   | 0.375     | Detected Data appear Normal at 5% Significance Level |
| Detected Data ap               | pear Norm | al at 5% Significance Level                          |
|                                |           |                                                      |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0014    | KM Standard Error of Mean 2       | .3363E-4 |
|------------------------|-----------|-----------------------------------|----------|
| KM SD :                | 5.7228E-4 | 95% KM (BCA) UCL                  | N/A      |
| 95% KM (t) UCL         | 0.00184   | 95% KM (Percentile Bootstrap) UCL | N/A      |
| 95% KM (z) UCL         | 0.00178   | 95% KM Bootstrap t UCL            | N/A      |
| 90% KM Chebyshev UCL   | 0.0021    | 95% KM Chebyshev UCL              | 0.00242  |
| 97.5% KM Chebyshev UCL | 0.00286   | 99% KM Chebyshev UCL              | 0.00372  |
|                        |           |                                   |          |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.232    | Anderson-Darling GOF Test                                       |
|-----------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.657    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.208    | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.395    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Di | stributed at 5% Significance Level                              |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:46:07 PM From File Snowshoe Hare - Tissue, Mercury, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Mercury, mg/kg - ww

#### Gamma Statistics on Detected Data Only

| k hat (MLE)         | 9.93   | k star (bias corrected MLE)     | 2.649     |
|---------------------|--------|---------------------------------|-----------|
| Theta hat (MLE) 1.8 | 128E-4 | Theta star (bias corrected MLE) | 6.7948E-4 |
| nu hat (MLE)        | 79.44  | nu star (bias corrected)        | 21.19     |
| Mean (detects) 0    | .0018  |                                 |           |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.0011 | Mean                                        | 0.0059  |
|-------------------------------------------------|--------|---------------------------------------------|---------|
| Maximum                                         | 0.01   | Median                                      | 0.00635 |
| SD                                              | 0.0044 | CV                                          | 0.747   |
| k hat (MLE)                                     | 1.553  | k star (bias corrected MLE)                 | 1.054   |
| Theta hat (MLE)                                 | 0.0038 | Theta star (bias corrected MLE)             | 0.0056  |
| nu hat (MLE)                                    | 24.84  | nu star (bias corrected)                    | 16.86   |
| Adjusted Level of Significance ( $\beta$ )      | 0.0195 |                                             |         |
| Approximate Chi Square Value (16.86, $\alpha$ ) | 8.572  | Adjusted Chi Square Value (16.86, $\beta$ ) | 7.129   |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0116 | 95% Gamma Adjusted UCL (use when n<50)      | N/A     |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0014    | SD (KM)                   | 5.7228E-4 |
|---------------------------|-----------|---------------------------|-----------|
| Variance (KM)             | 3.2750E-7 | SE of Mean (KM)           | 2.3363E-4 |
| k hat (KM)                | 5.985     | k star (KM)               | 3.824     |
| nu hat (KM)               | 95.76     | nu star (KM)              | 61.18     |
| theta hat (KM)            | 2.3393E-4 | theta star (KM)           | 3.6613E-4 |
| 80% gamma percentile (KM) | 0.00194   | 90% gamma percentile (KM) | 0.00236   |
| 95% gamma percentile (KM) | 0.00275   | 99% gamma percentile (KM) | 0.00357   |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (61.18, $\alpha$ ) | 44.19   | Adjusted Chi Square Value (61.18, $\beta$ ) | 40.56   |
|-------------------------------------------------|---------|---------------------------------------------|---------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.00194 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.00211 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:46:07 PM From File Snowshoe Hare - Tissue, Mercury, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Mercury, mg/kg - ww

| Lognormal GOF Test on Detected Observations Only        |       |                                                         |  |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|--|
| Shapiro Wilk Test Statistic                             | 0.988 | Shapiro Wilk GOF Test                                   |  |  |
| 5% Shapiro Wilk Critical Value                          | 0.748 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                               | 0.195 | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value                            | 0.375 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |  |

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.00117 | Mean in Log Scale            | -6.967  |
|-------------------------------------------|---------|------------------------------|---------|
| SD in Original Scale 8.                   | 1042E-4 | SD in Log Scale              | 0.722   |
| 95% t UCL (assumes normality of ROS data) | 0.00172 | 95% Percentile Bootstrap UCL | 0.00162 |
| 95% BCA Bootstrap UCL                     | 0.00169 | 95% Bootstrap t UCL          | 0.0019  |
| 95% H-UCL (Log ROS)                       | 0.00261 |                              |         |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -6.639 | KM Geo Mean                   | 0.00131 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.351  | 95% Critical H Value (KM-Log) | 2.125   |
| KM Standard Error of Mean (logged) | 0.143  | 95% H-UCL (KM -Log)           | 0.00184 |
| KM SD (logged)                     | 0.351  | 95% Critical H Value (KM-Log) | 2.125   |
| KM Standard Error of Mean (logged) | 0.143  |                               |         |

#### **DL/2 Statistics**

| DL/2 Normal DL/2 Log- I ransfo                                                    | ormed             |         |
|-----------------------------------------------------------------------------------|-------------------|---------|
| Mean in Original Scale 0.00115                                                    | Mean in Log Scale | -6.986  |
| SD in Original Scale 8.2115E-4                                                    | SD in Log Scale   | 0.7     |
| 95% t UCL (Assumes normality) 0.0017                                              | 95% H-Stat UCL    | 0.00244 |
| DL/2 is not a recommended method, provided for comparisons and historical reasons |                   |         |

\_ . . . .

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.00184

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:46:51 PM From File Snowshoe Hare - Tissue, Molybdenum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Molybdenum, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 5       |
| Number of Detects            | 4                  | Number of Non-Detects           | 4       |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.0048             | Minimum Non-Detect              | 0.004   |
| Maximum Detect               | 0.0082             | Maximum Non-Detect              | 0.004   |
| Variance Detects             | 2.8292E-6          | Percent Non-Detects             | 50%     |
| Mean Detects                 | 0.00638            | SD Detects                      | 0.00168 |
| Median Detects               | 0.00625            | CV Detects                      | 0.264   |
| Skewness Detects             | 0.165              | Kurtosis Detects                | -4.757  |
| Mean of Logged Detects       | -5.082             | SD of Logged Detects            | 0.267   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.873 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.748 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.276 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.375 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.00519 | KM Standard Error of Mean 6       | 6.4175E-4 |
|------------------------|---------|-----------------------------------|-----------|
| KM SD                  | 0.00157 | 95% KM (BCA) UCL                  | N/A       |
| 95% KM (t) UCL         | 0.0064  | 95% KM (Percentile Bootstrap) UCL | N/A       |
| 95% KM (z) UCL         | 0.00624 | 95% KM Bootstrap t UCL            | N/A       |
| 90% KM Chebyshev UCL   | 0.00711 | 95% KM Chebyshev UCL              | 0.00798   |
| 97.5% KM Chebyshev UCL | 0.0092  | 99% KM Chebyshev UCL              | 0.0116    |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.438 | Anderson-Darling GOF Test                                       |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value                                           | 0.657 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic                                              | 0.305 | Kolmogorov-Smirnov GOF                                          |  |
| 5% K-S Critical Value                                           | 0.394 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:46:51 PM

 From File
 Snowshoe Hare - Tissue, Molybdenum, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Molybdenum, mg/kg - ww

### Gamma Statistics on Detected Data Only

| k hat (MLE)         | 19.02   | k star (bias corrected MLE)     | 4.922  |
|---------------------|---------|---------------------------------|--------|
| Theta hat (MLE) 3.3 | 3515E-4 | Theta star (bias corrected MLE) | 0.0013 |
| nu hat (MLE)        | 152.2   | nu star (bias corrected)        | 39.38  |
| Mean (detects)      | 0.00638 |                                 |        |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0048    | Mean                                         | 0.00819   |
|--------------------------------------------------|-----------|----------------------------------------------|-----------|
| Maximum                                          | 0.01      | Median                                       | 0.0091    |
| SD                                               | 0.00223   | CV                                           | 0.272     |
| k hat (MLE)                                      | 13.19     | k star (bias corrected MLE)                  | 8.328     |
| Theta hat (MLE)                                  | 6.2067E-4 | Theta star (bias corrected MLE) 9            | 9.8314E-4 |
| nu hat (MLE)                                     | 211.1     | nu star (bias corrected)                     | 133.2     |
| Adjusted Level of Significance ( $\beta$ )       | 0.0195    |                                              |           |
| Approximate Chi Square Value (133.25, $\alpha$ ) | 107.6     | Adjusted Chi Square Value (133.25, $\beta$ ) | 101.7     |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.0101    | 95% Gamma Adjusted UCL (use when n<50)       | N/A       |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.00519   | SD (KM)                   | 0.00157   |
|---------------------------|-----------|---------------------------|-----------|
| Variance (KM)             | 2.4711E-6 | SE of Mean (KM)           | 6.4175E-4 |
| k hat (KM)                | 10.89     | k star (KM)               | 6.89      |
| nu hat (KM)               | 174.2     | nu star (KM)              | 110.2     |
| theta hat (KM)            | 4.7636E-4 | theta star (KM)           | 7.5295E-4 |
| 80% gamma percentile (KM) | 0.00674   | 90% gamma percentile (KM) | 0.00783   |
| 95% gamma percentile (KM) | 0.00881   | 99% gamma percentile (KM) | 0.0109    |
|                           |           |                           |           |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (110.23, $\alpha$ ) | 87      | Adjusted Chi Square Value (110.23, $\beta$ ) | 81.79   |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.00657 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.00699 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:46:51 PM From File Snowshoe Hare - Tissue, Molybdenum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Molybdenum, mg/kg - ww

| Lognormal GO                              | F Test on De | etected Observations Only                            |         |
|-------------------------------------------|--------------|------------------------------------------------------|---------|
| Shapiro Wilk Test Statistic               | 0.869        | Shapiro Wilk GOF Test                                |         |
| 5% Shapiro Wilk Critical Value            | 0.748        | Detected Data appear Lognormal at 5% Significance Le | vel     |
| Lilliefors Test Statistic                 | 0.27         | Lilliefors GOF Test                                  |         |
| 5% Lilliefors Critical Value              | 0.375        | Detected Data appear Lognormal at 5% Significance Le | vel     |
| Detected Data ap                          | pear Lognor  | mal at 5% Significance Level                         |         |
| Lognormal ROS                             | Statistics L | Ising Imputed Non-Detects                            |         |
| Mean in Original Scale                    | 0.00457      | Mean in Log Scale                                    | -5.498  |
| SD in Original Scale                      | 0.00226      | SD in Log Scale                                      | 0.506   |
| 95% t UCL (assumes normality of ROS data) | 0.00609      | 95% Percentile Bootstrap UCL                         | 0.00587 |
| 95% BCA Bootstrap UCL                     | 0.00595      | 95% Bootstrap t UCL                                  | 0.00667 |
| 95% H-UCL (Log ROS)                       | 0.00731      |                                                      |         |
| Statistics using KM estimates of          | on Logged D  | ata and Assuming Lognormal Distribution              |         |
| KM Mean (logged)                          | -5.302       | KM Geo Mean                                          | 0.00498 |
| KM SD (logged)                            | 0.274        | 95% Critical H Value (KM-Log)                        | 2.026   |
|                                           |              |                                                      |         |

| KM SD (logged)                     | 0.274 | 95% Critical H Value (KM-Log) | 2.026   |
|------------------------------------|-------|-------------------------------|---------|
| KM Standard Error of Mean (logged) | 0.112 | 95% H-UCL (KM -Log)           | 0.00638 |
| KM SD (logged)                     | 0.274 | 95% Critical H Value (KM-Log) | 2.026   |
| KM Standard Error of Mean (logged) | 0.112 |                               |         |
|                                    |       |                               |         |

#### **DL/2 Statistics**

| DL/2 Normal                   | DL                                       | /2 Log-Transformed |         |
|-------------------------------|------------------------------------------|--------------------|---------|
| Mean in Original Scale        | 0.00419                                  | Mean in Log Scale  | -5.648  |
| SD in Original Scale          | 0.00258                                  | SD in Log Scale    | 0.63    |
| 95% t UCL (Assumes normality) | 0.00592                                  | 95% H-Stat UCL     | 0.00797 |
| DL /2 is not a recommended me | the dimensional for comparisons and blat |                    |         |

DL/2 is not a recommended method, provided for comparisons and historical reasons

### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.0064

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Nickel, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 6       |
| Number of Detects            | 6                  | Number of Non-Detects           | 2       |
| Number of Distinct Detects   | 5                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.013              | Minimum Non-Detect              | 0.01    |
| Maximum Detect               | 0.028              | Maximum Non-Detect              | 0.01    |
| Variance Detects 4           | .4800E-5           | Percent Non-Detects             | 25%     |
| Mean Detects                 | 0.023              | SD Detects                      | 0.00669 |
| Median Detects               | 0.0265             | CV Detects                      | 0.291   |
| Skewness Detects             | -1.002             | Kurtosis Detects                | -1.371  |
| Mean of Logged Detects       | -3.815             | SD of Logged Detects            | 0.336   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

|                                |                  | -                                                 |
|--------------------------------|------------------|---------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.766            | Shapiro Wilk GOF Test                             |
| 5% Shapiro Wilk Critical Value | 0.788            | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.34             | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.325            | Detected Data Not Normal at 5% Significance Level |
| Detected Data                  | Not Normal at 5% | Significance Level                                |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0198  | KM Standard Error of Mean         | 0.00299 |
|------------------------|---------|-----------------------------------|---------|
| KM SD                  | 0.00773 | 95% KM (BCA) UCL                  | 0.024   |
| 95% KM (t) UCL         | 0.0254  | 95% KM (Percentile Bootstrap) UCL | 0.024   |
| 95% KM (z) UCL         | 0.0247  | 95% KM Bootstrap t UCL            | 0.0242  |
| 90% KM Chebyshev UCL   | 0.0287  | 95% KM Chebyshev UCL              | 0.0328  |
| 97.5% KM Chebyshev UCL | 0.0384  | 99% KM Chebyshev UCL              | 0.0495  |
|                        |         |                                   |         |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                           | 0.827 | Anderson-Darling GOF Test                                    |  |  |
|--------------------------------------------------------------|-------|--------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                        | 0.698 | Detected Data Not Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                           | 0.367 | Kolmogorov-Smirnov GOF                                       |  |  |
| 5% K-S Critical Value                                        | 0.332 | Detected Data Not Gamma Distributed at 5% Significance Level |  |  |
| Detected Data Not Gamma Distributed at 5% Significance Level |       |                                                              |  |  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:47:35 PM

 From File
 Snowshoe Hare - Tissue, Nickel, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Nickel, mg/kg - ww

### Gamma Statistics on Detected Data Only

| k hat (MLE)     | 11.83   | k star (bias corrected MLE)     | 6.028   |
|-----------------|---------|---------------------------------|---------|
| Theta hat (MLE) | 0.00194 | Theta star (bias corrected MLE) | 0.00382 |
| nu hat (MLE)    | 142     | nu star (bias corrected)        | 72.33   |
| Mean (detects)  | 0.023   |                                 |         |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01    | Mean                                        | 0.02    |
|-------------------------------------------------|---------|---------------------------------------------|---------|
| Maximum                                         | 0.028   | Median                                      | 0.021   |
| SD                                              | 0.00798 | CV                                          | 0.399   |
| k hat (MLE)                                     | 6.515   | k star (bias corrected MLE)                 | 4.155   |
| Theta hat (MLE)                                 | 0.00307 | Theta star (bias corrected MLE)             | 0.00481 |
| nu hat (MLE)                                    | 104.2   | nu star (bias corrected)                    | 66.48   |
| Adjusted Level of Significance ( $\beta$ )      | 0.0195  |                                             |         |
| Approximate Chi Square Value (66.48, $\alpha$ ) | 48.72   | Adjusted Chi Square Value (66.48, $\beta$ ) | 44.9    |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0273  | 95% Gamma Adjusted UCL (use when n<50)      | 0.0296  |

#### Estimates of Gamma Parameters using KM Estimates

| 0.0198    | SD (KM)                                          | 0.00773                                                                                                                                                                                                 |
|-----------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.9688E-5 | SE of Mean (KM)                                  | 0.00299                                                                                                                                                                                                 |
| 6.535     | k star (KM)                                      | 4.168                                                                                                                                                                                                   |
| 104.6     | nu star (KM)                                     | 66.68                                                                                                                                                                                                   |
| 0.00302   | theta star (KM)                                  | 0.00474                                                                                                                                                                                                 |
| 0.0271    | 90% gamma percentile (KM)                        | 0.0327                                                                                                                                                                                                  |
| 0.0379    | 99% gamma percentile (KM)                        | 0.0489                                                                                                                                                                                                  |
|           | 5.9688E-5<br>6.535<br>104.6<br>0.00302<br>0.0271 | 5.9688E-5         SE of Mean (KM)           6.535         k star (KM)           104.6         nu star (KM)           0.00302         theta star (KM)           0.0271         90% gamma percentile (KM) |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (66.68, $\alpha$ ) | 48.89  | Adjusted Chi Square Value (66.68, $\beta$ ) | 45.06  |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0269 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.0292 |

| User Selected Options          | 6                                              |
|--------------------------------|------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:47:35 PM                  |
| From File                      | Snowshoe Hare - Tissue, Nickel, mg_kg - ww.xls |
| Full Precision                 | OFF                                            |
| Confidence Coefficient         | 95%                                            |
| Number of Bootstrap Operations | 2000                                           |
|                                |                                                |

## Snowshoe Hare - Tissue, Nickel, mg/kg - ww

| Lognormal GO                                       | F Test on D   | etected Observations Only                                       |        |  |
|----------------------------------------------------|---------------|-----------------------------------------------------------------|--------|--|
| Shapiro Wilk Test Statistic                        | 0.757         | Shapiro Wilk GOF Test                                           |        |  |
| 5% Shapiro Wilk Critical Value                     | 0.788         | Detected Data Not Lognormal at 5% Significance Level            |        |  |
| Lilliefors Test Statistic                          | 0.355         | Lilliefors GOF Test                                             |        |  |
| 5% Lilliefors Critical Value                       | 0.325         | Detected Data Not Lognormal at 5% Significance Leve             | el     |  |
| Detected Data N                                    | lot Lognorn   | nal at 5% Significance Level                                    |        |  |
|                                                    |               |                                                                 |        |  |
| -                                                  |               | Using Imputed Non-Detects                                       |        |  |
| Mean in Original Scale                             | 0.0199        | Mean in Log Scale                                               | -4.001 |  |
| SD in Original Scale                               | 0.0081        | SD in Log Scale                                                 | 0.449  |  |
| 95% t UCL (assumes normality of ROS data)          | 0.0253        | 95% Percentile Bootstrap UCL                                    | 0.0242 |  |
| 95% BCA Bootstrap UCL                              | 0.0241        | 95% Bootstrap t UCL                                             | 0.0248 |  |
| 95% H-UCL (Log ROS)                                | 0.0297        |                                                                 |        |  |
| Statistics using KM estimates of                   | on Logged I   | Data and Assuming Lognormal Distribution                        |        |  |
| KM Mean (logged)                                   | -4.013        | KM Geo Mean                                                     | 0.0181 |  |
| KM SD (logged)                                     | 0.433         | 95% Critical H Value (KM-Log)                                   | 2.245  |  |
| KM Standard Error of Mean (logged)                 | 0.168         | 95% H-UCL (KM -Log)                                             | 0.0287 |  |
| KM SD (logged)                                     | 0.433         | 95% Critical H Value (KM-Log)                                   | 2.245  |  |
| KM Standard Error of Mean (logged)                 | 0.168         |                                                                 |        |  |
|                                                    | DI /2 S       | tatistics                                                       |        |  |
| DL/2 Normal                                        |               | DL/2 Log-Transformed                                            |        |  |
| Mean in Original Scale                             | 0.0185        | Mean in Log Scale                                               | -4.186 |  |
| SD in Original Scale                               | 0.0101        | SD in Log Scale                                                 | 0.743  |  |
| 95% t UCL (Assumes normality)                      | 0.0252        | 95% H-Stat UCL                                                  | 0.0443 |  |
|                                                    |               | ded for comparisons and historical reasons                      |        |  |
|                                                    |               |                                                                 |        |  |
|                                                    |               | tion Free UCL Statistics                                        |        |  |
| Data do not follow a Dis                           | scernible D   | istribution at 5% Significance Level                            |        |  |
|                                                    | Suggested     | UCL to Use                                                      |        |  |
| 95% KM (t) UCL                                     | 0.0254        | KM H-UCL                                                        | 0.0287 |  |
| 95% KM (BCA) UCL                                   | 0.024         |                                                                 |        |  |
| Note: Suggestions regarding the selection of a 95% | UCL are pr    | ovided to help the user to select the most appropriate 95% UCL. |        |  |
|                                                    |               | ta size, data distribution, and skewness.                       |        |  |
| These recommendations are based upon the result    | to of the sim | sulation studios summarized in Singh Maiphle, and Les (2006)    |        |  |

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:48:18 PM From File Snowshoe Hare - Tissue, Phosphorus, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Phosphorus, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 2190               | Mean                            | 2355  |
| Maximum                      | 2570               | Median                          | 2345  |
| SD                           | 111.2              | Std. Error of Mean              | 39.32 |
| Coefficient of Variation     | 0.0472             | Skewness                        | 0.721 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.959 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.161 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

#### Assuming Normal Distribution

| 95% Normal UCL |  |      |
|----------------|--|------|
|                |  | <br> |

95% Student's-t UCL 2430

# 95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 2430 95% Modified-t UCL (Johnson-1978) 2431

#### Gamma GOF Test

| -D Test Statistic                                               | 0.236 | Anderson-Darling Gamma GOF Test                                 |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|
| -D Critical Value                                               | 0.715 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| -S Test Statistic                                               | 0.149 | Kolmogorov-Smirnov Gamma GOF Test                               |  |
| -S Critical Value                                               | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear Gamma Distributed at 5% Significance Loval |       |                                                                 |  |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)                    | 519.8  | k star (bias corrected MLE)         | 325   |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 4.53   | Theta star (bias corrected MLE)     | 7.247 |
| nu hat (MLE)                   | 8317   | nu star (bias corrected)            | 5199  |
| MLE Mean (bias corrected)      | 2355   | MLE Sd (bias corrected)             | 130.6 |
|                                |        | Approximate Chi Square Value (0.05) | 5033  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 4991  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:48:18 PM From File Snowshoe Hare - Tissue, Phosphorus, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Phosphorus, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2433

95% Adjusted Gamma UCL (use when n<50) 2453

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.967 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.153 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | 7.692 | Mean of logged Data | 7.763  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 7.852 | SD of logged Data   | 0.0467 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 2472 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 2525 | 97.5% Chebyshev (MVUE) UCL | 2598 |
| 99% Chebyshev (MVUE) UCL | 2742 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 2420 | 95% Jackknife UCL            | 2430 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 2416 | 95% Bootstrap-t UCL          | 2443 |
| 95% Hall's Bootstrap UCL      | 2475 | 95% Percentile Bootstrap UCL | 2418 |
| 95% BCA Bootstrap UCL         | 2423 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 2473 | 95% Chebyshev(Mean, Sd) UCL  | 2526 |
| 97.5% Chebyshev(Mean, Sd) UCL | 2601 | 99% Chebyshev(Mean, Sd) UCL  | 2746 |

#### Suggested UCL to Use

95% Student's-t UCL 2430

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:49:02 PM From File Snowshoe Hare - Tissue, Potassium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Potassium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 3460               | Mean                            | 3523  |
| Maximum                      | 3680               | Median                          | 3495  |
| SD                           | 76.11              | Std. Error of Mean              | 26.91 |
| Coefficient of Variation     | 0.0216             | Skewness                        | 1.479 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.834 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.241 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

eta appear Normal at 5% Significance Level

#### Assuming Normal Distribution

| 95% | Normal | UCL |
|-----|--------|-----|
|-----|--------|-----|

95% Student's-t UCL 3573

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 3582

95% Modified-t UCL (Johnson-1978) 3576

#### Gamma GOF Test

| A-D Test Statistic                                              | 0.608 | Anderson-Darling Gamma GOF Test                                 |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value                                           | 0.715 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic                                              | 0.258 | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value                                           | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear Gamma Distributed at 5% Significance Loval |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)                    | 2486   | k star (bias corrected MLE)         | 1554  |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 1.417  | Theta star (bias corrected MLE)     | 2.267 |
| nu hat (MLE)                   | 39780  | nu star (bias corrected)            | 24864 |
| MLE Mean (bias corrected)      | 3523   | MLE Sd (bias corrected)             | 89.36 |
|                                |        | Approximate Chi Square Value (0.05) | 24498 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 24405 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:49:02 PM From File Snowshoe Hare - Tissue, Potassium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Potassium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3575

95% Adjusted Gamma UCL (use when n<50) 3589

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.838 | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.239 | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | 8.149 | Mean of logged Data | 8.167  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 8.211 | SD of logged Data   | 0.0214 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 3602 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 3638 | 97.5% Chebyshev (MVUE) UCL | 3689 |
| 99% Chebyshev (MVUE) UCL | 3787 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 3567 | 95% Jackknife UCL            | 3573 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 3563 | 95% Bootstrap-t UCL          | 3615 |
| 95% Hall's Bootstrap UCL      | 3753 | 95% Percentile Bootstrap UCL | 3566 |
| 95% BCA Bootstrap UCL         | 3576 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 3603 | 95% Chebyshev(Mean, Sd) UCL  | 3640 |
| 97.5% Chebyshev(Mean, Sd) UCL | 3691 | 99% Chebyshev(Mean, Sd) UCL  | 3790 |

#### Suggested UCL to Use

95% Student's-t UCL 3573

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:49:46 PM From File Snowshoe Hare - Tissue, Selenium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Selenium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.052              | Mean                            | 0.13   |
| Maximum                      | 0.242              | Median                          | 0.115  |
| SD                           | 0.0811             | Std. Error of Mean              | 0.0287 |
| Coefficient of Variation     | 0.624              | Skewness                        | 0.338  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.833    | Shapiro Wilk GOF Test                       |
|--------------------------------|----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.274    | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Normal at 5% Significance Level |
| Data appear                    | Normal a | t 5% Significance Level                     |

| Ass                 | uming Normal Distribution |                                   |       |
|---------------------|---------------------------|-----------------------------------|-------|
| 95% Normal UCL      |                           | 95% UCLs (Adjusted for Skewness)  |       |
| 95% Student's-t UCL | 0.184                     | 95% Adjusted-CLT UCL (Chen-1995)  | 0.181 |
|                     |                           | 95% Modified-t UCL (Johnson-1978) | 0.185 |
|                     |                           |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic 0.698 Anders                          | on-Darling Gamma GOF Test                  |
|----------------------------------------------------------|--------------------------------------------|
| 5% A-D Critical Value 0.722 Detected data appear         | Gamma Distributed at 5% Significance Level |
| K-S Test Statistic 0.271 Kolmogo                         | rov-Smirnov Gamma GOF Test                 |
| 5% K-S Critical Value 0.297 Detected data appear         | Gamma Distributed at 5% Significance Level |
| Detected data appear Gamma Distributed at 5% Significand | ce Level                                   |

| k hat (MLE)                    | 2.757  | k star (bias corrected MLE)         | 1.807  |
|--------------------------------|--------|-------------------------------------|--------|
| Theta hat (MLE)                | 0.0472 | Theta star (bias corrected MLE)     | 0.072  |
| nu hat (MLE)                   | 44.12  | nu star (bias corrected)            | 28.91  |
| MLE Mean (bias corrected)      | 0.13   | MLE Sd (bias corrected)             | 0.0968 |
|                                |        | Approximate Chi Square Value (0.05) | 17.63  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 15.45  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:49:46 PM From File Snowshoe Hare - Tissue, Selenium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Selenium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.213

95% Adjusted Gamma UCL (use when n<50) 0.243

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.825       | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|-------------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818       | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.243       | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283       | Data appear Lognormal at 5% Significance Level |
| Data appear l                  | _ognormal a | at 5% Significance Level                       |

#### a appear Lognormal at one orginited nee i

#### Lognormal Statistics

| Minimum of Logged Data | -2.957 | Mean of logged Data | -2.231 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -1.419 | SD of logged Data   | 0.678  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.269 | 90% Chebyshev (MVUE) UCL   | 0.226 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.269 | 97.5% Chebyshev (MVUE) UCL | 0.329 |
| 99% Chebyshev (MVUE) UCL | 0.447 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.177 | 95% Jackknife UCL            | 0.184 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.174 | 95% Bootstrap-t UCL          | 0.193 |
| 95% Hall's Bootstrap UCL      | 0.172 | 95% Percentile Bootstrap UCL | 0.175 |
| 95% BCA Bootstrap UCL         | 0.178 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.216 | 95% Chebyshev(Mean, Sd) UCL  | 0.255 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.309 | 99% Chebyshev(Mean, Sd) UCL  | 0.416 |

#### Suggested UCL to Use

95% Student's-t UCL 0.184

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:50:29 PM From File Snowshoe Hare - Tissue, Silver, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Silver, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 3         |
| Number of Detects            | 3                  | Number of Non-Detects           | 5         |
| Number of Distinct Detects   | 2                  | Number of Distinct Non-Detects  | 1         |
| Minimum Detect               | 0.0011             | Minimum Non-Detect              | 0.001     |
| Maximum Detect               | 0.0014             | Maximum Non-Detect              | 0.001     |
| Variance Detects 3           | 3.0000E-8          | Percent Non-Detects             | 62.5%     |
| Mean Detects                 | 0.0012             | SD Detects                      | 1.7321E-4 |
| Median Detects               | 0.0011             | CV Detects                      | 0.144     |
| Skewness Detects             | 1.732              | Kurtosis Detects                | N/A       |
| Mean of Logged Detects       | -6.732             | SD of Logged Detects            | 0.139     |

# Warning: Data set has only 3 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                                      | 0.75  | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                                   | 0.767 | Detected Data Not Normal at 5% Significance Level    |  |  |
| Lilliefors Test Statistic                                        | 0.385 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                                     | 0.425 | Detected Data appear Normal at 5% Significance Level |  |  |
| Detected Data appear Approximate Normal at 5% Significance Level |       |                                                      |  |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.00108   | KM Standard Error of Mean 5       | .6250E-5 |
|------------------------|-----------|-----------------------------------|----------|
| KM SD 1                | 1.2990E-4 | 95% KM (BCA) UCL                  | N/A      |
| 95% KM (t) UCL         | 0.00118   | 95% KM (Percentile Bootstrap) UCL | N/A      |
| 95% KM (z) UCL         | 0.00117   | 95% KM Bootstrap t UCL            | N/A      |
| 90% KM Chebyshev UCL   | 0.00124   | 95% KM Chebyshev UCL              | 0.00132  |
| 97.5% KM Chebyshev UCL | 0.00143   | 99% KM Chebyshev UCL              | 0.00163  |
|                        |           |                                   |          |

#### Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:50:29 PM

 From File
 Snowshoe Hare - Tissue, Silver, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Silver, mg/kg - ww

### Gamma Statistics on Detected Data Only

| N/A | k star (bias corrected MLE)     | 75.65     | k hat (MLE)     |
|-----|---------------------------------|-----------|-----------------|
| N/A | Theta star (bias corrected MLE) | 1.5863E-5 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | 453.9     | nu hat (MLE)    |
|     |                                 | 0.0012    | Mean (detects)  |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.0011  | Mean                                        | 0.0067  |
|-------------------------------------------------|---------|---------------------------------------------|---------|
| Maximum                                         | 0.01    | Median                                      | 0.01    |
| SD                                              | 0.00456 | CV                                          | 0.68    |
| k hat (MLE)                                     | 1.402   | k star (bias corrected MLE)                 | 0.96    |
| Theta hat (MLE)                                 | 0.00478 | Theta star (bias corrected MLE)             | 0.00698 |
| nu hat (MLE)                                    | 22.44   | nu star (bias corrected)                    | 15.36   |
| Adjusted Level of Significance (β)              | 0.0195  |                                             |         |
| Approximate Chi Square Value (15.36, $\alpha$ ) | 7.511   | Adjusted Chi Square Value (15.36, $\beta$ ) | 6.176   |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0137  | 95% Gamma Adjusted UCL (use when n<50)      | N/A     |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.00108   | SD (KM)                   | 1.2990E-4 |
|---------------------------|-----------|---------------------------|-----------|
| Variance (KM)             | 1.6875E-8 | SE of Mean (KM)           | 5.6250E-5 |
| k hat (KM)                | 68.48     | k star (KM)               | 42.88     |
| nu hat (KM)               | 1096      | nu star (KM)              | 686.1     |
| theta hat (KM)            | 1.5698E-5 | theta star (KM)           | 2.5067E-5 |
| 80% gamma percentile (KM) | 0.00121   | 90% gamma percentile (KM) | 0.00129   |
| 95% gamma percentile (KM) | 0.00136   | 99% gamma percentile (KM) | 0.00149   |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (686.15, $\alpha$ ) | 626.4   | Adjusted Chi Square Value (686.15, $\beta$ ) | 611.8   |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.00118 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.00121 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:50:29 PM From File Snowshoe Hare - Tissue, Silver, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Silver, mg/kg - ww

| Lognormal GOF Test on Detected Observations Only                    |       |                                                         |  |  |
|---------------------------------------------------------------------|-------|---------------------------------------------------------|--|--|
| Shapiro Wilk Test Statistic                                         | 0.75  | Shapiro Wilk GOF Test                                   |  |  |
| 5% Shapiro Wilk Critical Value                                      | 0.767 | Detected Data Not Lognormal at 5% Significance Level    |  |  |
| Lilliefors Test Statistic                                           | 0.385 | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value                                        | 0.425 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data appear Approximate Lognormal at 5% Significance Level |       |                                                         |  |  |

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale 9                  | .0632E-4 | Mean in Log Scale            | -7.046  |
|-------------------------------------------|----------|------------------------------|---------|
| SD in Original Scale 2                    | .7676E-4 | SD in Log Scale              | 0.301   |
| 95% t UCL (assumes normality of ROS data) | 0.00109  | 95% Percentile Bootstrap UCL | 0.00106 |
| 95% BCA Bootstrap UCL                     | 0.00108  | 95% Bootstrap t UCL          | 0.00114 |
| 95% H-UCL (Log ROS)                       | 0.00115  |                              |         |

## Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -6.842 | KM Geo Mean                   | 0.00107 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.11   | 95% Critical H Value (KM-Log) | 1.857   |
| KM Standard Error of Mean (logged) | 0.0476 | 95% H-UCL (KM -Log)           | 0.00116 |
| KM SD (logged)                     | 0.11   | 95% Critical H Value (KM-Log) | 1.857   |
| KM Standard Error of Mean (logged) | 0.0476 |                               |         |

#### **DL/2 Statistics**

| DL/2 Normal                                                      | DL/2 Log-Transformed |         |
|------------------------------------------------------------------|----------------------|---------|
| Mean in Original Scale 7.6250E-4                                 | Mean in Log Scale    | -7.275  |
| SD in Original Scale 3.7393E-4                                   | SD in Log Scale      | 0.456   |
| 95% t UCL (Assumes normality) 0.00101                            | 95% H-Stat UCL       | 0.00114 |
| DL/2 is not a recommended method, provided for comparisons and I | nistorical reasons   |         |

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.00118

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:50:29 PM

 From File
 Snowshoe Hare - Tissue, Silver, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Silver, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:02:06 PM From File Snowshoe Hare - Tissue, Sodium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Sodium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 503                | Mean                            | 583.6 |
| Maximum                      | 715                | Median                          | 557.5 |
| SD                           | 74.87              | Std. Error of Mean              | 26.47 |
| Coefficient of Variation     | 0.128              | Skewness                        | 0.827 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.91     | Shapiro Wilk GOF Test                       |
|--------------------------------|----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.213    | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Normal at 5% Significance Level |
| Data appear                    | Normal a | 5% Significance Level                       |

#### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 633.8 | 95% Adjusted-CLT UCL (Chen-1995)  | 635.4 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 635.1 |

#### Gamma GOF Test

| A-D Test Statistic     | 0.372   | Anderson-Darling Gamma GOF Test                                 |
|------------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.715   | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.206   | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value  | 0.293   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear ( | Gamma D | istributed at 5% Significance Level                             |

#### Gamma Statistics

| k hat (MLE)                    | 72.48  | k star (bias corrected MLE)         | 45.38 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 8.053  | Theta star (bias corrected MLE)     | 12.86 |
| nu hat (MLE)                   | 1160   | nu star (bias corrected)            | 726.1 |
| MLE Mean (bias corrected)      | 583.6  | MLE Sd (bias corrected)             | 86.64 |
|                                |        | Approximate Chi Square Value (0.05) | 664.6 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 649.6 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:02:06 PM From File Snowshoe Hare - Tissue, Sodium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Sodium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 637.7

95% Adjusted Gamma UCL (use when n<50) 652.4

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.924 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.195 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | 6.221 | Mean of logged Data | 6.362 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 6.572 | SD of logged Data   | 0.124 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 637.8 | 90% Chebyshev (MVUE) UCL   | 660.6 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 695.6 | 97.5% Chebyshev (MVUE) UCL | 744   |
| 99% Chebyshev (MVUE) UCL | 839.2 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 627.2 | 95% Jackknife UCL            | 633.8 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 623.8 | 95% Bootstrap-t UCL          | 653.1 |
| 95% Hall's Bootstrap UCL      | 635.1 | 95% Percentile Bootstrap UCL | 627.3 |
| 95% BCA Bootstrap UCL         | 625.5 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 663   | 95% Chebyshev(Mean, Sd) UCL  | 699   |
| 97.5% Chebyshev(Mean, Sd) UCL | 748.9 | 99% Chebyshev(Mean, Sd) UCL  | 847   |

#### Suggested UCL to Use

95% Student's-t UCL 633.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:02:49 PM From File Snowshoe Hare - Tissue, Strontium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Strontium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.027              | Mean                            | 0.0775 |
| Maximum                      | 0.112              | Median                          | 0.09   |
| SD                           | 0.0343             | Std. Error of Mean              | 0.0121 |
| Coefficient of Variation     | 0.442              | Skewness                        | -0.688 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.851    | Shapiro Wilk GOF Test                       |
|--------------------------------|----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.263    | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Normal at 5% Significance Level |
| Data appear                    | Normal a | t 5% Significance Level                     |

#### Assuming Normal Distribution

| 95% Normal UCL      |     | 95% UCLs (Adjusted for Skewness)  |        |
|---------------------|-----|-----------------------------------|--------|
| 95% Student's-t UCL | 0.1 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.0943 |
|                     |     | 95% Modified-t UCL (Johnson-1978) | 0.1    |
|                     |     |                                   |        |

#### Gamma GOF Test

| A-D Test Statistic                                                     | 0.733 | Anderson-Darling Gamma GOF Test                                 |  |  |
|------------------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                                  | 0.719 | Data Not Gamma Distributed at 5% Significance Level             |  |  |
| K-S Test Statistic                                                     | 0.274 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| 5% K-S Critical Value                                                  | 0.295 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data follow Appr. Gamma Distribution at 5% Significance Level |       |                                                                 |  |  |

### Gamma Statistics

| 2.751  | k star (bias corrected MLE)         | 4.269  | k hat (MLE)                    |
|--------|-------------------------------------|--------|--------------------------------|
| 0.0282 | Theta star (bias corrected MLE)     | 0.0182 | Theta hat (MLE)                |
| 44.02  | nu star (bias corrected)            | 68.3   | nu hat (MLE)                   |
| 0.0467 | MLE Sd (bias corrected)             | 0.0775 | MLE Mean (bias corrected)      |
| 29.8   | Approximate Chi Square Value (0.05) |        |                                |
| 26.88  | Adjusted Chi Square Value           | 0.0195 | Adjusted Level of Significance |
|        |                                     |        |                                |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:02:49 PM From File Snowshoe Hare - Tissue, Strontium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Strontium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.114

95% Adjusted Gamma UCL (use when n<50) 0.127

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                                | 0.796 | Shapiro Wilk Lognormal GOF Test                |  |  |
|------------------------------------------------------------|-------|------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                             | 0.818 | Data Not Lognormal at 5% Significance Level    |  |  |
| Lilliefors Test Statistic                                  | 0.254 | Lilliefors Lognormal GOF Test                  |  |  |
| 5% Lilliefors Critical Value                               | 0.283 | Data appear Lognormal at 5% Significance Level |  |  |
| Data appear Approximate Lognormal at 5% Significance Level |       |                                                |  |  |

#### Lognormal Statistics

| Minimum of Logged Data | -3.612 | Mean of logged Data | -2.679 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -2.189 | SD of logged Data   | 0.576  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.139 | 90% Chebyshev (MVUE) UCL   | 0.128 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.15  | 97.5% Chebyshev (MVUE) UCL | 0.181 |
| 99% Chebyshev (MVUE) UCL | 0.242 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0974 | 95% Jackknife UCL            | 0.1    |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0961 | 95% Bootstrap-t UCL          | 0.0977 |
| 95% Hall's Bootstrap UCL      | 0.0926 | 95% Percentile Bootstrap UCL | 0.0951 |
| 95% BCA Bootstrap UCL         | 0.0941 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.114  | 95% Chebyshev(Mean, Sd) UCL  | 0.13   |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.153  | 99% Chebyshev(Mean, Sd) UCL  | 0.198  |

#### Suggested UCL to Use

95% Student's-t UCL 0.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:02:49 PM

 From File
 Snowshoe Hare - Tissue, Strontium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Strontium, mg/kg - ww

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:03:33 PM From File Snowshoe Hare - Tissue, Thallium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Thallium, mg/kg - ww

| General Statistics             |                                   |
|--------------------------------|-----------------------------------|
| Total Number of Observations 8 | Number of Distinct Observations 7 |
| Number of Detects 6            | Number of Non-Detects 2           |
| Number of Distinct Detects 6   | Number of Distinct Non-Detects 1  |
| Minimum Detect 4.3000E-4       | Minimum Non-Detect 4.0000E-4      |
| Maximum Detect 0.001           | Maximum Non-Detect 4.0000E-4      |
| Variance Detects 5.7427E-8     | Percent Non-Detects 25%           |
| Mean Detects 6.9333E-4         | SD Detects 2.3964E-4              |
| Median Detects 6.8500E-4       | CV Detects 0.346                  |
| Skewness Detects 0.132         | Kurtosis Detects -2.259           |
| Mean of Logged Detects -7.326  | SD of Logged Detects 0.358        |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.906 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.788 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.197 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.325 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean 6.2000E-4              | KM Standard Error of Mean 8.8339E-5         |
|--------------------------------|---------------------------------------------|
| KM SD 2.2809E-4                | 95% KM (BCA) UCL 7.5000E-4                  |
| 95% KM (t) UCL 7.8736E-4       | 95% KM (Percentile Bootstrap) UCL 7.6125E-4 |
| 95% KM (z) UCL 7.6530E-4       | 95% KM Bootstrap t UCL 8.1330E-4            |
| 90% KM Chebyshev UCL 8.8502E-4 | 95% KM Chebyshev UCL 0.00101                |
| 97.5% KM Chebyshev UCL 0.00117 | 99% KM Chebyshev UCL 0.0015                 |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.37  | Anderson-Darling GOF Test                                       |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.698 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.213 | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value                                           | 0.332 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:03:33 PM From File Snowshoe Hare - Tissue, Thallium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Thallium, mg/kg - ww

#### Gamma Statistics on Detected Data Only

k hat (MLE) 9.728 Theta hat (MLE) 7.1270E-5 nu hat (MLE) 116.7 Mean (detects) 6.9333E-4 k star (bias corrected MLE) 4.975 Theta star (bias corrected MLE) 1.3936E-4 nu star (bias corrected) 59.7

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum 4                                      | 4.3000E-4 | Mean                                       | 0.00302   |
|------------------------------------------------|-----------|--------------------------------------------|-----------|
| Maximum                                        | 0.01      | Median                                     | 8.5000E-4 |
| SD                                             | 0.00431   | CV                                         | 1.428     |
| k hat (MLE)                                    | 0.714     | k star (bias corrected MLE)                | 0.53      |
| Theta hat (MLE)                                | 0.00423   | Theta star (bias corrected MLE)            | 0.0057    |
| nu hat (MLE)                                   | 11.43     | nu star (bias corrected)                   | 8.478     |
| Adjusted Level of Significance (β)             | 0.0195    |                                            |           |
| Approximate Chi Square Value (8.48, $\alpha$ ) | 3.015     | Adjusted Chi Square Value (8.48, $\beta$ ) | 2.253     |
| 95% Gamma Approximate UCL (use when n>=50)     | 0.00849   | 95% Gamma Adjusted UCL (use when n<50)     | 0.0114    |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM) 6.2000E-4                 | SD (KM)                   | 2.2809E-4 |
|-------------------------------------|---------------------------|-----------|
| Variance (KM) 5.2025E-8             | SE of Mean (KM)           | 8.8339E-5 |
| k hat (KM) 7.389                    | k star (KM)               | 4.701     |
| nu hat (KM) 118.2                   | nu star (KM)              | 75.22     |
| theta hat (KM) 8.3911E-5            | theta star (KM)           | 1.3188E-4 |
| 80% gamma percentile (KM) 8.3918E-4 | 90% gamma percentile (KM) | 0.001     |
| 95% gamma percentile (KM) 0.00115   | 99% gamma percentile (KM) | 0.00147   |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (75.22, $\alpha$ )  | 56.25   | Adjusted Chi Square Value (75.22, $\beta$ ) | 52.11    |
|--------------------------------------------------|---------|---------------------------------------------|----------|
| 95% Gamma Approximate KM-UCL (use when n>=50) 8. | 2917E-4 | 95% Gamma Adjusted KM-UCL (use when n<50) 8 | .9489E-4 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:03:33 PM From File Snowshoe Hare - Tissue, Thallium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Thallium, mg/kg - ww

| Lognormal GOF Test on Detected Observations Only        |       |                                                         |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| Shapiro Wilk Test Statistic                             | 0.903 | Shapiro Wilk GOF Test                                   |  |
| 5% Shapiro Wilk Critical Value                          | 0.788 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.207 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.325 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale 5.8682E-4                    | Mean in Log Scale            | -7.553    |
|-----------------------------------------------------|------------------------------|-----------|
| SD in Original Scale 2.8322E-4                      | SD in Log Scale              | 0.522     |
| 95% t UCL (assumes normality of ROS data) 7.7654E-4 | 95% Percentile Bootstrap UCL | 7.4247E-4 |
| 95% BCA Bootstrap UCL 7.5435E-4                     | 95% Bootstrap t UCL          | 7.9834E-4 |
| 95% H-UCL (Log ROS) 9.6351E-4                       |                              |           |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -7.451 | KM Geo Mean                   | 5.8102E-4 |
|------------------------------------|--------|-------------------------------|-----------|
| KM SD (logged)                     | 0.356  | 95% Critical H Value (KM-Log) | 2.132     |
| KM Standard Error of Mean (logged) | 0.138  | 95% H-UCL (KM -Log)           | 8.2451E-4 |
| KM SD (logged)                     | 0.356  | 95% Critical H Value (KM-Log) | 2.132     |
| KM Standard Error of Mean (logged) | 0.138  |                               |           |

#### **DL/2 Statistics**

| DL/2 Normal                                                    | DL/2 Log-Transformed |        |
|----------------------------------------------------------------|----------------------|--------|
| Mean in Original Scale 5.7000E-4                               | Mean in Log Scale    | -7.624 |
| SD in Original Scale 3.0524E-4                                 | SD in Log Scale      | 0.629  |
| 95% t UCL (Assumes normality) 7.7446E-4                        | 95% H-Stat UCL       | 0.0011 |
| DL/2 is not a recommended method, provided for comparisons and | d historical reasons |        |

**D** 1 10 1 -

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 7.8736E-4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Tin, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 3       |
| Number of Detects            | 4                  | Number of Non-Detects           | 4       |
| Number of Distinct Detects   | 3                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.02               | Minimum Non-Detect              | 0.02    |
| Maximum Detect               | 0.039              | Maximum Non-Detect              | 0.02    |
| Variance Detects 8           | 3.0250E-5          | Percent Non-Detects             | 50%     |
| Mean Detects                 | 0.0263             | SD Detects                      | 0.00896 |
| Median Detects               | 0.023              | CV Detects                      | 0.341   |
| Skewness Detects             | 1.469              | Kurtosis Detects                | 1.758   |
| Mean of Logged Detects       | -3.679             | SD of Logged Detects            | 0.315   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.821             | Shapiro Wilk GOF Test                                |
|--------------------------------|-------------------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.748             | Detected Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.261             | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value   | 0.375             | Detected Data appear Normal at 5% Significance Level |
| Detected Data ap               | pear Normal at 5% | 6 Significance Level                                 |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0231  | KM Standard Error of Mean         | 0.00258 |
|------------------------|---------|-----------------------------------|---------|
| KM SD                  | 0.00631 | 95% KM (BCA) UCL                  | N/A     |
| 95% KM (t) UCL         | 0.028   | 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (z) UCL         | 0.0274  | 95% KM Bootstrap t UCL            | N/A     |
| 90% KM Chebyshev UCL   | 0.0309  | 95% KM Chebyshev UCL              | 0.0344  |
| 97.5% KM Chebyshev UCL | 0.0392  | 99% KM Chebyshev UCL              | 0.0488  |
|                        |         |                                   |         |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.47     | Anderson-Darling GOF Test                                       |
|-----------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.657    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.299    | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.395    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Di | stributed at 5% Significance Level                              |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:04:16 PM

 From File
 Snowshoe Hare - Tissue, Tin, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Tissue, Tin, mg/kg - ww

#### Gamma Statistics on Detected Data Only

| k hat (MLE)     | 12.86   | k star (bias corrected MLE)     | 3.382   |
|-----------------|---------|---------------------------------|---------|
| Theta hat (MLE) | 0.00204 | Theta star (bias corrected MLE) | 0.00776 |
| nu hat (MLE)    | 102.9   | nu star (bias corrected)        | 27.05   |
| Mean (detects)  | 0.0263  |                                 |         |

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01    | Mean                                        | 0.0181 |
|-------------------------------------------------|---------|---------------------------------------------|--------|
| Maximum                                         | 0.039   | Median                                      | 0.015  |
| SD                                              | 0.0105  | CV                                          | 0.578  |
| k hat (MLE)                                     | 3.951   | k star (bias corrected MLE)                 | 2.553  |
| Theta hat (MLE)                                 | 0.00459 | Theta star (bias corrected MLE)             | 0.0071 |
| nu hat (MLE)                                    | 63.21   | nu star (bias corrected)                    | 40.84  |
| Adjusted Level of Significance (β)              | 0.0195  |                                             |        |
| Approximate Chi Square Value (40.84, $\alpha$ ) | 27.2    | Adjusted Chi Square Value (40.84, $\beta$ ) | 24.42  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0272  | 95% Gamma Adjusted UCL (use when n<50)      | N/A    |

#### Estimates of Gamma Parameters using KM Estimates

| 0.00631 | SD (KM)                   | 0.0231    | Mean (KM)                 |
|---------|---------------------------|-----------|---------------------------|
| 0.00258 | SE of Mean (KM)           | 3.9859E-5 | Variance (KM)             |
| 8.469   | k star (KM)               | 13.42     | k hat (KM)                |
| 135.5   | nu star (KM)              | 214.7     | nu hat (KM)               |
| 0.00273 | theta star (KM)           | 0.00172   | theta hat (KM)            |
| 0.0337  | 90% gamma percentile (KM) | 0.0294    | 80% gamma percentile (KM) |
| 0.0455  | 99% gamma percentile (KM) | 0.0376    | 95% gamma percentile (KM) |
|         |                           |           |                           |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (135.50, $\alpha$ ) | 109.6  | Adjusted Chi Square Value (135.50, $\beta$ ) | 103.7  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.0286 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.0302 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:04:16 PM From File Snowshoe Hare - Tissue, Tin, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Tin, mg/kg - ww

| Lognormal GOF Test on Detected Observations Only |            |                                                      |        |  |
|--------------------------------------------------|------------|------------------------------------------------------|--------|--|
| Shapiro Wilk Test Statistic                      | 0.847      | Shapiro Wilk GOF Test                                |        |  |
| 5% Shapiro Wilk Critical Value                   | 0.748      | Detected Data appear Lognormal at 5% Significance Le | vel    |  |
| Lilliefors Test Statistic                        | 0.27       | Lilliefors GOF Test                                  |        |  |
| 5% Lilliefors Critical Value                     | 0.375      | Detected Data appear Lognormal at 5% Significance Le | vel    |  |
| Detected Data app                                | ear Logno  | rmal at 5% Significance Level                        |        |  |
|                                                  |            |                                                      |        |  |
| Lognormal ROS                                    | Statistics | Using Imputed Non-Detects                            |        |  |
| Mean in Original Scale                           | 0.0179     | Mean in Log Scale                                    | -4.177 |  |
| SD in Original Scale                             | 0.0108     | SD in Log Scale                                      | 0.604  |  |
| 95% t UCL (assumes normality of ROS data)        | 0.0252     | 95% Percentile Bootstrap UCL                         | 0.0241 |  |
| 95% BCA Bootstrap UCL                            | 0.0254     | 95% Bootstrap t UCL                                  | 0.0291 |  |
| 95% H-UCL (Log ROS)                              | 0.0329     |                                                      |        |  |
|                                                  |            |                                                      |        |  |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -3.796 | KM Geo Mean                   | 0.0225 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.225  | 95% Critical H Value (KM-Log) | 1.97   |
| KM Standard Error of Mean (logged) | 0.092  | 95% H-UCL (KM -Log)           | 0.0273 |
| KM SD (logged)                     | 0.225  | 95% Critical H Value (KM-Log) | 1.97   |
| KM Standard Error of Mean (logged) | 0.092  |                               |        |
|                                    |        |                               |        |

#### **DL/2 Statistics**

| DL/2 Normal                   |        | DL/2 Log-Transformed |        |
|-------------------------------|--------|----------------------|--------|
| Mean in Original Scale        | 0.0181 | Mean in Log Scale    | -4.142 |
| SD in Original Scale          | 0.0105 | SD in Log Scale      | 0.536  |
| 95% t UCL (Assumes normality) | 0.0251 | 95% H-Stat UCL       | 0.0299 |
|                               |        |                      |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.028

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:05:00 PM From File Snowshoe Hare - Tissue, Titanium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Titanium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.123              | Mean                            | 0.144 |
| Maximum                      | 0.215              | Median                          | 0.131 |
| SD                           | 0.031              | Std. Error of Mean              | 0.011 |
| Coefficient of Variation     | 0.215              | Skewness                        | 2.097 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.723     | Shapiro Wilk GOF Test                       |
|--------------------------------|-----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818     | Data Not Normal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.279     | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283     | Data appear Normal at 5% Significance Level |
| Data appear Appro              | vimete Ne | mol at 5% Significance Level                |

Data appear Approximate Normal at 5% Significance Level

| Assuming Normal Distribution |  |
|------------------------------|--|
|------------------------------|--|

| 95% Normal UCL      |          | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|----------|-----------------------------------|-------|
| 95% Student's-t UCL | 0.165    | 95% Adjusted-CLT UCL (Chen-1995)  | 0.171 |
|                     |          | 95% Modified-t UCL (Johnson-1978) | 0.166 |
|                     | 0.0057.1 |                                   |       |

#### Gamma GOF Test

| Anderson-Darling Gamma GOF Test                                        | 0.877 | A-D Test Statistic    |  |
|------------------------------------------------------------------------|-------|-----------------------|--|
| Data Not Gamma Distributed at 5% Significance Level                    | 0.716 | 5% A-D Critical Value |  |
| Kolmogorov-Smirnov Gamma GOF Test                                      | 0.285 | K-S Test Statistic    |  |
| Detected data appear Gamma Distributed at 5% Significance L            | 0.294 | 5% K-S Critical Value |  |
| Detected data follow Appr. Gamma Distribution at 5% Significance Level |       |                       |  |

|                                | Gamma Statistics |                                     |         |
|--------------------------------|------------------|-------------------------------------|---------|
| k hat (MLE)                    | 29.55            | k star (bias corrected MLE)         | 18.55   |
| Theta hat (MLE)                | 0.00488          | Theta star (bias corrected MLE)     | 0.00778 |
| nu hat (MLE)                   | 472.7            | nu star (bias corrected)            | 296.8   |
| MLE Mean (bias corrected)      | 0.144            | MLE Sd (bias corrected)             | 0.0335  |
|                                |                  | Approximate Chi Square Value (0.05) | 257.9   |
| Adjusted Level of Significance | 0.0195           | Adjusted Chi Square Value           | 248.7   |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:05:00 PM From File Snowshoe Hare - Tissue, Titanium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Titanium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.166

95% Adjusted Gamma UCL (use when n<50) 0.172

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.771      | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|------------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818      | Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.273      | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283      | Data appear Lognormal at 5% Significance Level |
| Data appear Approxi            | imate Logn | ormal at 5% Significance Level                 |

#### Lognormal Statistics

| Minimum of Logged Data | -2.096 | Mean of logged Data | -1.953 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -1.537 | SD of logged Data   | 0.189  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.166 | 90% Chebyshev (MVUE) UCL   | 0.173 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.186 | 97.5% Chebyshev (MVUE) UCL | 0.204 |
| 99% Chebyshev (MVUE) UCL | 0.24  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.162 | 95% Jackknife UCL            | 0.165 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.161 | 95% Bootstrap-t UCL          | 0.206 |
| 95% Hall's Bootstrap UCL      | 0.227 | 95% Percentile Bootstrap UCL | 0.162 |
| 95% BCA Bootstrap UCL         | 0.17  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.177 | 95% Chebyshev(Mean, Sd) UCL  | 0.192 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.213 | 99% Chebyshev(Mean, Sd) UCL  | 0.253 |

#### Suggested UCL to Use

95% Student's-t UCL 0.165

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:05:00 PM From File Snowshoe Hare - Tissue, Titanium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Titanium, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:05:43 PM From File Snowshoe Hare - Tissue, Uranium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Uranium, mg/kg - ww

#### **General Statistics**

 Total Number of Observations
 8

 Number of Detects
 0

 Number of Distinct Detects
 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Tissue, Uranium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:06:26 PM From File Snowshoe Hare - Tissue, Vanadium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Tissue, Vanadium, mg/kg - ww

#### **General Statistics**

Total Number of Observations Number of Detects

Number of Detects0Number of Distinct Detects0

8

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Tissue, Vanadium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:07:09 PM From File Snowshoe Hare - Tissue, Zinc, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

95% Normal UCL

#### Snowshoe Hare - Tissue, Zinc, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 11.9               | Mean                            | 13.78 |
| Maximum                      | 20.5               | Median                          | 12.8  |
| SD                           | 2.786              | Std. Error of Mean              | 0.985 |
| Coefficient of Variation     | 0.202              | Skewness                        | 2.56  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic              | 0.627 | Shapiro Wilk GOF Test                    |  |
|------------------------------------------|-------|------------------------------------------|--|
| 5% Shapiro Wilk Critical Value           | 0.818 | Data Not Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                | 0.386 | Lilliefors GOF Test                      |  |
| 5% Lilliefors Critical Value             | 0.283 | Data Not Normal at 5% Significance Level |  |
| Date Not Normal at 5% Significance Level |       |                                          |  |

Data Not Normal at 5% Significance Level

| Assuming Normal Distributio | butior | Distrib | Normal | iing | Assum |
|-----------------------------|--------|---------|--------|------|-------|
|-----------------------------|--------|---------|--------|------|-------|

| nal UCL             | -              | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|----------------|-----------------------------------|-------|
| 95% Student's-t UCL | 15.64          | 95% Adjusted-CLT UCL (Chen-1995)  | 16.35 |
|                     |                | 95% Modified-t UCL (Johnson-1978) | 15.79 |
|                     | Gamma GOF Test |                                   |       |

#### Gamma GOF Test

|                                                     | A-D Test Statistic    | 1.26  | Anderson-Darling Gamma GOF Test                     |
|-----------------------------------------------------|-----------------------|-------|-----------------------------------------------------|
|                                                     | 5% A-D Critical Value | 0.716 | Data Not Gamma Distributed at 5% Significance Level |
|                                                     | K-S Test Statistic    | 0.365 | Kolmogorov-Smirnov Gamma GOF Test                   |
|                                                     | 5% K-S Critical Value | 0.294 | Data Not Gamma Distributed at 5% Significance Level |
| Data Not Gamma Distributed at 5% Significance Level |                       |       |                                                     |

#### Gamma Statistics

| k hat (MLE)                    | 34.5   | k star (bias corrected MLE)         | 21.65 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.399  | Theta star (bias corrected MLE)     | 0.636 |
| nu hat (MLE)                   | 552.1  | nu star (bias corrected)            | 346.4 |
| MLE Mean (bias corrected)      | 13.78  | MLE Sd (bias corrected)             | 2.961 |
|                                |        | Approximate Chi Square Value (0.05) | 304.3 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 294.2 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:07:09 PM From File Snowshoe Hare - Tissue, Zinc, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Tissue, Zinc, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 15.68

95% Adjusted Gamma UCL (use when n<50) 16.22

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.679           | Shapiro Wilk Lognormal GOF Test             |
|--------------------------------|-----------------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818           | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.354           | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.283           | Data Not Lognormal at 5% Significance Level |
|                                | 1 . 50/ 01 . 10 |                                             |

Data Not Lognormal at 5% Significance Level

#### Lognormal Statistics

| Minimum of Logged Data | 2.477 | Mean of logged Data | 2.608 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 3.02  | SD of logged Data   | 0.173 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 15.62 | 90% Chebyshev (MVUE) UCL   | 16.29 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 17.43 | 97.5% Chebyshev (MVUE) UCL | 19.02 |
| 99% Chebyshev (MVUE) UCL | 22.15 |                            |       |

Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 15.39 | 95% Jackknife UCL            | 15.64 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 15.25 | 95% Bootstrap-t UCL          | 19.87 |
| 95% Hall's Bootstrap UCL      | 21.81 | 95% Percentile Bootstrap UCL | 15.59 |
| 95% BCA Bootstrap UCL         | 16.5  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 16.73 | 95% Chebyshev(Mean, Sd) UCL  | 18.07 |
| 97.5% Chebyshev(Mean, Sd) UCL | 19.93 | 99% Chebyshev(Mean, Sd) UCL  | 23.57 |

#### Suggested UCL to Use

95% Student's-t UCL 15.64

or 95% Modified-t UCL 15.79

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

# ATTACHMENT C

## **ProUCL Outputs: Snowshoe Hare - Internal Organs**

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:11:58 PM

 From File
 Snowshoe Hare - Internal Organs, Aluminum, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Snowshoe Hare - Internal Organs, Aluminum, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.29               | Mean                            | 0.556 |
| Maximum                      | 1.46               | Median                          | 0.415 |
| SD                           | 0.378              | Std. Error of Mean              | 0.134 |
| Coefficient of Variation     | 0.679              | Skewness                        | 2.472 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.656           | Shapiro Wilk GOF Test                    |
|--------------------------------|-----------------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818           | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.36            | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.283           | Data Not Normal at 5% Significance Level |
| Data Nat N                     | lormal at 5% Si |                                          |

Data Not Normal at 5% Significance Level

#### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)       |    |
|---------------------|-------|----------------------------------------|----|
| 95% Student's-t UCL | 0.809 | 95% Adjusted-CLT UCL (Chen-1995) 0.90  | )1 |
|                     |       | 95% Modified-t UCL (Johnson-1978) 0.82 | 29 |
|                     |       |                                        |    |

#### Gamma GOF Test

| A-D Test Statistic        | 0.849   | Anderson-Darling Gamma GOF Test                                 |
|---------------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value     | 0.719   | Data Not Gamma Distributed at 5% Significance Level             |
| K-S Test Statistic        | 0.289   | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value     | 0.295   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data follow Appr | . Gamma | Distribution at 5% Significance Level                           |

#### Gamma Statistics

| k hat (MLE)                    | 3.921  | k star (bias corrected MLE)         | 2.534 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.142  | Theta star (bias corrected MLE)     | 0.22  |
| nu hat (MLE)                   | 62.73  | nu star (bias corrected)            | 40.54 |
| MLE Mean (bias corrected)      | 0.556  | MLE Sd (bias corrected)             | 0.349 |
|                                |        | Approximate Chi Square Value (0.05) | 26.95 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 24.18 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:11:58 PM From File Snowshoe Hare - Internal Organs, Aluminum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Aluminum, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 0.837

95% Adjusted Gamma UCL (use when n<50)

0.933

#### Lognormal GOF Test

|                                | •                |                                                |
|--------------------------------|------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.831            | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.818            | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.251            | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283            | Data appear Lognormal at 5% Significance Level |
| Dete opposit                   | ognormal at 5% S | ignificance Level                              |

Data appear Lognormal at 5% Significance Level

#### Lognormal Statistics

| Minimum of Logged Data | -1.238 | Mean of logged Data | -0.719 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | 0.378  | SD of logged Data   | 0.498  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.859 | 90% Chebyshev (MVUE) UCL   | 0.832 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.963 | 97.5% Chebyshev (MVUE) UCL | 1.145 |
| 99% Chebyshev (MVUE) UCL | 1.502 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.776 | 95% Jackknife UCL            | 0.809 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.764 | 95% Bootstrap-t UCL          | 1.305 |
| 95% Hall's Bootstrap UCL      | 1.578 | 95% Percentile Bootstrap UCL | 0.804 |
| 95% BCA Bootstrap UCL         | 0.93  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.957 | 95% Chebyshev(Mean, Sd) UCL  | 1.138 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1.39  | 99% Chebyshev(Mean, Sd) UCL  | 1.885 |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 0.933

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:11:58 PM

 From File
 Snowshoe Hare - Internal Organs, Aluminum, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Aluminum, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:12:42 PM From File Snowshoe Hare - Internal Organs, Antimony, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Antimony, mg/kg - ww

#### **General Statistics**

Total Number of Observations8Number of Distinct ObservationsNumber of Detects0Number of Non-DetectsNumber of Distinct Detects0Number of Distinct Non-Detects

1

8

1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Antimony, mg/kg - ww was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:13:25 PM

 From File
 Snowshoe Hare - Internal Organs, Arsenic, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Arsenic, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
| Number of Detects            | 7                  | Number of Non-Detects           | 1      |
| Number of Distinct Detects   | 7                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.0061             | Minimum Non-Detect              | 0.004  |
| Maximum Detect               | 0.068              | Maximum Non-Detect              | 0.004  |
| Variance Detects 4           | 1.4490E-4          | Percent Non-Detects             | 12.5%  |
| Mean Detects                 | 0.0224             | SD Detects                      | 0.0211 |
| Median Detects               | 0.016              | CV Detects                      | 0.942  |
| Skewness Detects             | 2.157              | Kurtosis Detects                | 5.093  |
| Mean of Logged Detects       | -4.091             | SD of Logged Detects            | 0.792  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

|                                |           | -                                                 |
|--------------------------------|-----------|---------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.734     | Shapiro Wilk GOF Test                             |
| 5% Shapiro Wilk Critical Value | 0.803     | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.317     | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.304     | Detected Data Not Normal at 5% Significance Level |
| Detected Data                  | Not Norma | l at 5% Significance Level                        |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0201 | KM Standard Error of Mean         | 0.00735 |
|------------------------|--------|-----------------------------------|---------|
| KM SD                  | 0.0193 | 95% KM (BCA) UCL                  | 0.0342  |
| 95% KM (t) UCL         | 0.034  | 95% KM (Percentile Bootstrap) UCL | 0.0328  |
| 95% KM (z) UCL         | 0.0322 | 95% KM Bootstrap t UCL            | 0.05    |
| 90% KM Chebyshev UCL   | 0.0421 | 95% KM Chebyshev UCL              | 0.0521  |
| 97.5% KM Chebyshev UCL | 0.066  | 99% KM Chebyshev UCL              | 0.0932  |
|                        |        |                                   |         |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.412 | Anderson-Darling GOF Test                                       |  |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|--|
| 5% A-D Critical Value                                           | 0.717 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| K-S Test Statistic                                              | 0.213 | Kolmogorov-Smirnov GOF                                          |  |  |  |
| 5% K-S Critical Value                                           | 0.316 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |  |

 User Selected Options

 Date/Time of Computation

 From File

 From File

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

#### Snowshoe Hare - Internal Organs, Arsenic, mg/kg - ww

### Gamma Statistics on Detected Data Only

| 1.159  | k star (bias corrected MLE)     | 1.862  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0193 | Theta star (bias corrected MLE) | 0.012  | Theta hat (MLE) |
| 16.23  | nu star (bias corrected)        | 26.06  | nu hat (MLE)    |
|        |                                 | 0.0224 | Mean (detects)  |

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.0061 | Mean                                        | 0.0208 |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.068  | Median                                      | 0.0156 |
| SD                                              | 0.02   | CV                                          | 0.96   |
| k hat (MLE)                                     | 1.907  | k star (bias corrected MLE)                 | 1.275  |
| Theta hat (MLE)                                 | 0.0109 | Theta star (bias corrected MLE)             | 0.0163 |
| nu hat (MLE)                                    | 30.51  | nu star (bias corrected)                    | 20.4   |
| Adjusted Level of Significance ( $\beta$ )      | 0.0195 |                                             |        |
| Approximate Chi Square Value (20.40, $\alpha$ ) | 11.15  | Adjusted Chi Square Value (20.40, $\beta$ ) | 9.467  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0381 | 95% Gamma Adjusted UCL (use when n<50)      | 0.0449 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0201    | SD (KM)                   | 0.0193  |
|---------------------------|-----------|---------------------------|---------|
| Variance (KM)             | 3.7065E-4 | SE of Mean (KM)           | 0.00735 |
| k hat (KM)                | 1.089     | k star (KM)               | 0.764   |
| nu hat (KM)               | 17.42     | nu star (KM)              | 12.22   |
| theta hat (KM)            | 0.0185    | theta star (KM)           | 0.0263  |
| 80% gamma percentile (KM) | 0.0329    | 90% gamma percentile (KM) | 0.0494  |
| 95% gamma percentile (KM) | 0.0663    | 99% gamma percentile (KM) | 0.106   |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (12.22, $\alpha$ ) | 5.372  | Adjusted Chi Square Value (12.22, $\beta$ ) | 4.281  |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0457 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.0573 |

| User Selected Options          | 3                                                        |
|--------------------------------|----------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:13:25 PM                            |
| From File                      | Snowshoe Hare - Internal Organs, Arsenic, mg_kg - ww.xls |
| Full Precision                 | OFF                                                      |
| Confidence Coefficient         | 95%                                                      |
| Number of Bootstrap Operations | 2000                                                     |

#### Snowshoe Hare - Internal Organs, Arsenic, mg/kg - ww

| Lognormal GO                             | F Test on Det    | ected Observations Only                              |        |
|------------------------------------------|------------------|------------------------------------------------------|--------|
| Shapiro Wilk Test Statistic              | 0.947            | Shapiro Wilk GOF Test                                |        |
| 5% Shapiro Wilk Critical Value           | 0.803            | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Lilliefors Test Statistic                | 0.172            | Lilliefors GOF Test                                  |        |
| 5% Lilliefors Critical Value             | 0.304            | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Detected Data ap                         | pear Lognorm     | al at 5% Significance Level                          |        |
| Lognormal ROS                            | Statistics Us    | ing Imputed Non-Detects                              |        |
| Mean in Original Scale                   | 0.0199           | Mean in Log Scale                                    | -4.336 |
| SD in Original Scale                     | 0.0208           | SD in Log Scale                                      | 1.007  |
| 5% t UCL (assumes normality of ROS data) | 0.0338           | 95% Percentile Bootstrap UCL                         | 0.0332 |
| 95% BCA Bootstrap UCL                    | 0.0396           | 95% Bootstrap t UCL                                  | 0.0497 |
| 95% H-UCL (Log ROS)                      | 0.0808           |                                                      |        |
| Statistics using KM estimates of         | on Logged Da     | ta and Assuming Lognormal Distribution               |        |
| KM Mean (logged)                         | -4.27            | KM Geo Mean                                          | 0.014  |
| KM SD (logged)                           | 0.833            | 95% Critical H Value (KM-Log)                        | 3.028  |
| KM Standard Error of Mean (logged)       | 0.318            | 95% H-UCL (KM -Log)                                  | 0.0513 |
| KM SD (logged)                           | 0.833            | 95% Critical H Value (KM-Log)                        | 3.028  |
| KM Standard Error of Mean (logged)       | 0.318            |                                                      |        |
|                                          | DL/2 Stat        | istics                                               |        |
| DL/2 Normal                              |                  | DL/2 Log-Transformed                                 |        |
| Mean in Original Scale                   | 0.0198           | Mean in Log Scale                                    | -4.357 |
| SD in Original Scale                     | 0.0208           | SD in Log Scale                                      | 1.049  |
| 95% t UCL (Assumes normality)            | 0.0338           | 95% H-Stat UCL                                       | 0.0909 |
| DL/2 is not a recommended me             | thod, provide    | d for comparisons and historical reasons             |        |
| Nonparamet                               | tric Distributio | n Free UCL Statistics                                |        |
| Detected Data appear                     | Gamma Distr      | ibuted at 5% Significance Level                      |        |
|                                          | Suggested U      | CL to Use                                            |        |
|                                          | 0.0570           | 05% OBOO Adjusted Osmus HOL                          | 0.0440 |

95% KM Adjusted Gamma UCL 0.0573

95% GROS Adjusted Gamma UCL 0.0449

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Barium, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

#### Snowshoe Hare - Internal Organs, Barium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.0515             | Mean                            | 0.157 |
| Maximum                      | 0.303              | Median                          | 0.156 |
| SD                           | 0.0737             | Std. Error of Mean              | 0.026 |
| Coefficient of Variation     | 0.469              | Skewness                        | 0.858 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.942 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.185 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 0.206 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.208 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 0.208 |
|                     |       |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic                                              | 0.25  | Anderson-Darling Gamma GOF Test                                 |  |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|--|
| 5% A-D Critical Value                                           | 0.719 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| K-S Test Statistic                                              | 0.157 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |  |
| 5% K-S Critical Value                                           | 0.295 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |  |

### Gamma Statistics

| k hat (MLE)                    | 4.896  | k star (bias corrected MLE)         | 3.143  |
|--------------------------------|--------|-------------------------------------|--------|
| Theta hat (MLE)                | 0.0321 | Theta star (bias corrected MLE)     | 0.05   |
| nu hat (MLE)                   | 78.33  | nu star (bias corrected)            | 50.29  |
| MLE Mean (bias corrected)      | 0.157  | MLE Sd (bias corrected)             | 0.0886 |
|                                |        | Approximate Chi Square Value (0.05) | 35.01  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 31.81  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:14:09 PM From File Snowshoe Hare - Internal Organs, Barium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Barium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.226

95% Adjusted Gamma UCL (use when n<50) 0.248

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.945 | Shapiro Wilk Lognormal GOF Test                |  |  |
|------------------------------------------------|-------|------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                      | 0.181 | Lilliefors Lognormal GOF Test                  |  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |  |

#### Lognormal Statistics

| Minimum of Logged Data | -2.966 | Mean of logged Data | -1.957 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -1.194 | SD of logged Data   | 0.516  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.257 | 90% Chebyshev (MVUE) UCL   | 0.246 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.286 | 97.5% Chebyshev (MVUE) UCL | 0.341 |
| 99% Chebyshev (MVUE) UCL | 0.45  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.2   | 95% Jackknife UCL            | 0.206 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.196 | 95% Bootstrap-t UCL          | 0.217 |
| 95% Hall's Bootstrap UCL      | 0.25  | 95% Percentile Bootstrap UCL | 0.198 |
| 95% BCA Bootstrap UCL         | 0.204 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.235 | 95% Chebyshev(Mean, Sd) UCL  | 0.271 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.32  | 99% Chebyshev(Mean, Sd) UCL  | 0.416 |

#### Suggested UCL to Use

95% Student's-t UCL 0.206

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:14:53 PM From File Snowshoe Hare - Internal Organs, Beryllium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Beryllium, mg/kg - ww

#### **General Statistics**

Total Number of Observations8Number of Distinct Observations1Number of Detects0Number of Non-Detects8Number of Distinct Detects0Number of Distinct Non-Detects1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Beryllium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:15:36 PM From File Snowshoe Hare - Internal Organs, Bismuth, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Bismuth, mg/kg - ww

#### **General Statistics**

Total Number of Observations 8 Number of Detects 0

Number of Distinct Detects 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Bismuth, mg/kg - ww was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:16:19 PM

 From File
 Snowshoe Hare - Internal Organs, Boron, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Boron, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 5      |
| Number of Detects            | 5                  | Number of Non-Detects           | 3      |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.23               | Minimum Non-Detect              | 0.2    |
| Maximum Detect               | 0.28               | Maximum Non-Detect              | 0.2    |
| Variance Detects 3           | 3.5000E-4          | Percent Non-Detects             | 37.5%  |
| Mean Detects                 | 0.25               | SD Detects                      | 0.0187 |
| Median Detects               | 0.25               | CV Detects                      | 0.0748 |
| Skewness Detects             | 1.145              | Kurtosis Detects                | 2      |
| Mean of Logged Detects       | -1.388             | SD of Logged Detects            | 0.0732 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.907 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.762 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.3   | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.343 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.231  | KM Standard Error of Mean         | 0.0109 |
|------------------------|--------|-----------------------------------|--------|
| KM SD                  | 0.0276 | 95% KM (BCA) UCL                  | N/A    |
| 95% KM (t) UCL         | 0.252  | 95% KM (Percentile Bootstrap) UCL | N/A    |
| 95% KM (z) UCL         | 0.249  | 95% KM Bootstrap t UCL            | N/A    |
| 90% KM Chebyshev UCL   | 0.264  | 95% KM Chebyshev UCL              | 0.279  |
| 97.5% KM Chebyshev UCL | 0.299  | 99% KM Chebyshev UCL              | 0.34   |
|                        |        |                                   |        |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.358 | Anderson-Darling GOF Test                                       |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.678 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.291 | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value                                           | 0.357 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Boron, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

#### Snowshoe Hare - Internal Organs, Boron, mg/kg - ww

#### Gamma Statistics on Detected Data Only

| 92.15   | k star (bias corrected MLE)     | 230.1   | k hat (MLE)     |
|---------|---------------------------------|---------|-----------------|
| 0.00271 | Theta star (bias corrected MLE) | 0.00109 | Theta hat (MLE) |
| 921.5   | nu star (bias corrected)        | 2301    | nu hat (MLE)    |
|         |                                 | 0.25    | Mean (detects)  |

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.188   | Mean                                         | 0.231  |
|--------------------------------------------------|---------|----------------------------------------------|--------|
| Maximum                                          | 0.28    | Median                                       | 0.235  |
| SD                                               | 0.0301  | CV                                           | 0.13   |
| k hat (MLE)                                      | 67.14   | k star (bias corrected MLE)                  | 42.05  |
| Theta hat (MLE)                                  | 0.00345 | Theta star (bias corrected MLE)              | 0.0055 |
| nu hat (MLE)                                     | 1074    | nu star (bias corrected)                     | 672.8  |
| Adjusted Level of Significance (β)               | 0.0195  |                                              |        |
| Approximate Chi Square Value (672.76, $\alpha$ ) | 613.6   | Adjusted Chi Square Value (672.76, $\beta$ ) | 599.2  |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.254   | 95% Gamma Adjusted UCL (use when n<50)       | 0.26   |

#### Estimates of Gamma Parameters using KM Estimates

| 0.0276  | SD (KM)                   | 0.231     | Mean (KM)                 |
|---------|---------------------------|-----------|---------------------------|
| 0.0109  | SE of Mean (KM)           | 7.6094E-4 | Variance (KM)             |
| 44.01   | k star (KM)               | 70.28     | k hat (KM)                |
| 704.1   | nu star (KM)              | 1124      | nu hat (KM)               |
| 0.00525 | theta star (KM)           | 0.00329   | theta hat (KM)            |
| 0.277   | 90% gamma percentile (KM) | 0.26      | 80% gamma percentile (KM) |
| 0.32    | 99% gamma percentile (KM) | 0.291     | 95% gamma percentile (KM) |
|         |                           |           |                           |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (704.11, $\alpha$ ) | 643.5 | Adjusted Chi Square Value (704.11, $\beta$ ) | 628.8 |
|--------------------------------------------------|-------|----------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.253 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.259 |

| User Selected Options          | 3                                                      |
|--------------------------------|--------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:16:19 PM                          |
| From File                      | Snowshoe Hare - Internal Organs, Boron, mg_kg - ww.xls |
| Full Precision                 | OFF                                                    |
| Confidence Coefficient         | 95%                                                    |
| Number of Bootstrap Operations | 2000                                                   |

#### Snowshoe Hare - Internal Organs, Boron, mg/kg - ww

| Lognormal GOI                            | - Test on Dete  | acted Observations Only                              |        |
|------------------------------------------|-----------------|------------------------------------------------------|--------|
| Shapiro Wilk Test Statistic              | 0.922           | Shapiro Wilk GOF Test                                |        |
| 5% Shapiro Wilk Critical Value           | 0.762           | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Lilliefors Test Statistic                | 0.288           | Lilliefors GOF Test                                  |        |
| 5% Lilliefors Critical Value             | 0.343           | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Detected Data app                        | ear Lognorma    | al at 5% Significance Level                          |        |
| Lognormal ROS                            | Statistics Usi  | ing Imputed Non-Detects                              |        |
| Mean in Original Scale                   | 0.233           | Mean in Log Scale                                    | -1.464 |
| SD in Original Scale                     | 0.0282          | SD in Log Scale                                      | 0.121  |
| 5% t UCL (assumes normality of ROS data) | 0.252           | 95% Percentile Bootstrap UCL                         | 0.249  |
| 95% BCA Bootstrap UCL                    | 0.249           | 95% Bootstrap t UCL                                  | 0.253  |
| 95% H-UCL (Log ROS)                      | 0.254           |                                                      |        |
| Statistics using KM estimates of         | n Logged Dat    | a and Assuming Lognormal Distribution                |        |
| KM Mean (logged)                         | -1.471          | KM Geo Mean                                          | 0.23   |
| KM SD (logged)                           | 0.119           | 95% Critical H Value (KM-Log)                        | 1.865  |
| KM Standard Error of Mean (logged)       | 0.047           | 95% H-UCL (KM -Log)                                  | 0.251  |
| KM SD (logged)                           | 0.119           | 95% Critical H Value (KM-Log)                        | 1.865  |
| KM Standard Error of Mean (logged)       | 0.047           |                                                      |        |
|                                          | DL/2 Stati      | istics                                               |        |
| DL/2 Normal                              |                 | DL/2 Log-Transformed                                 |        |
| Mean in Original Scale                   | 0.194           | Mean in Log Scale                                    | -1.731 |
| SD in Original Scale                     | 0.0789          | SD in Log Scale                                      | 0.476  |
| 95% t UCL (Assumes normality)            | 0.247           | 95% H-Stat UCL                                       | 0.301  |
| DL/2 is not a recommended me             | thod, provided  | d for comparisons and historical reasons             |        |
| Nonparamet                               | ric Distributio | n Free UCL Statistics                                |        |
| Detected Data appear                     | Normal Distri   | buted at 5% Significance Level                       |        |
|                                          |                 |                                                      |        |

#### Suggested UCL to Use

95% KM (t) UCL 0.252

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:17:03 PM From File Snowshoe Hare - Internal Organs, Cadmium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Cadmium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.0196             | Mean                            | 0.409 |
| Maximum                      | 1.425              | Median                          | 0.155 |
| SD                           | 0.525              | Std. Error of Mean              | 0.185 |
| Coefficient of Variation     | 1.281              | Skewness                        | 1.464 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.756                      | Shapiro Wilk GOF Test                    |
|--------------------------------|----------------------------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818                      | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.3                        | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.283                      | Data Not Normal at 5% Significance Level |
| Date Mat N                     | larmal at EV. Cignificance | Level                                    |

Data Not Normal at 5% Significance Level

#### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)     |     |
|---------------------|-------|--------------------------------------|-----|
| 95% Student's-t UCL | 0.761 | 95% Adjusted-CLT UCL (Chen-1995) 0.8 | 817 |
|                     |       | 95% Modified-t UCL (Johnson-1978) 0. | 777 |

#### Gamma GOF Test

| A-D Test Statistic    | 0.361    | Anderson-Darling Gamma GOF Test                                 |
|-----------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.749    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.208    | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.305    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Di | stributed at 5% Significance Level                              |

#### Gamma Statistics

| k hat (MLE)                    | 0.694  | k star (bias corrected MLE)         | 0.517 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.59   | Theta star (bias corrected MLE)     | 0.791 |
| nu hat (MLE)                   | 11.11  | nu star (bias corrected)            | 8.277 |
| MLE Mean (bias corrected)      | 0.409  | MLE Sd (bias corrected)             | 0.569 |
|                                |        | Approximate Chi Square Value (0.05) | 2.896 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 2.154 |

| User Selected Options          | 3                                                        |
|--------------------------------|----------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:17:03 PM                            |
| From File                      | Snowshoe Hare - Internal Organs, Cadmium, mg_kg - ww.xls |
| Full Precision                 | OFF                                                      |
| Confidence Coefficient         | 95%                                                      |
| Number of Bootstrap Operations | 2000                                                     |

Snowshoe Hare - Internal Organs, Cadmium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 1.17

95% Adjusted Gamma UCL (use when n<50) 1.573

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.937 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.171 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | -3.932 | Mean of logged Data | -1.764 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | 0.354  | SD of logged Data   | 1.544  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 9.632 | 90% Chebyshev (MVUE) UCL   | 1.166 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 1.494 | 97.5% Chebyshev (MVUE) UCL | 1.95  |
| 99% Chebyshev (MVUE) UCL | 2.845 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.714 | 95% Jackknife UCL            | 0.761 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.697 | 95% Bootstrap-t UCL          | 1.803 |
| 95% Hall's Bootstrap UCL      | 2.5   | 95% Percentile Bootstrap UCL | 0.706 |
| 95% BCA Bootstrap UCL         | 0.814 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.966 | 95% Chebyshev(Mean, Sd) UCL  | 1.218 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1.568 | 99% Chebyshev(Mean, Sd) UCL  | 2.255 |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 1.573

Recommended UCL exceeds the maximum observation

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:17:03 PM From File Snowshoe Hare - Internal Organs, Cadmium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Snowshoe Hare - Internal Organs, Cadmium, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:17:47 PM From File Snowshoe Hare - Internal Organs, Calcium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Calcium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 74                 | Mean                            | 108.4 |
| Maximum                      | 149                | Median                          | 107   |
| SD                           | 21.28              | Std. Error of Mean              | 7.525 |
| Coefficient of Variation     | 0.196              | Skewness                        | 0.497 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.94       | Shapiro Wilk GOF Test                       |
|--------------------------------|------------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818      | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.202      | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283      | Data appear Normal at 5% Significance Level |
| Data appear                    | · Normal a | t 5% Significance Level                     |

#### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 122.7 | 95% Adjusted-CLT UCL (Chen-1995)  | 122.2 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 122.9 |

#### Gamma GOF Test

| A-D Test Statistic 0.341                 | Anderson-Darling Gamma GOF Test                            |
|------------------------------------------|------------------------------------------------------------|
| 5% A-D Critical Value 0.716 Detect       | ted data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic 0.185                 | Kolmogorov-Smirnov Gamma GOF Test                          |
| 5% K-S Critical Value 0.294 Detection    | ted data appear Gamma Distributed at 5% Significance Level |
| Detected data appear Gamma Distributed a | t 5% Significance Level                                    |

| k hat (MLE)                    | 29.68  | k star (bias corrected MLE)         | 18.63 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 3.654  | Theta star (bias corrected MLE)     | 5.82  |
| nu hat (MLE)                   | 474.9  | nu star (bias corrected)            | 298.1 |
| MLE Mean (bias corrected)      | 108.4  | MLE Sd (bias corrected)             | 25.12 |
|                                |        | Approximate Chi Square Value (0.05) | 259.1 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 249.9 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:17:47 PM From File Snowshoe Hare - Internal Organs, Calcium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Calcium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 124.8

95% Adjusted Gamma UCL (use when n<50) 129.4

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.945          | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|----------------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818          | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.2            | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283          | Data appear Lognormal at 5% Significance Level |
| Data appear L                  | .ognormal at ! | 5% Significance Level                          |

#### Lognormal Statistics

| Minimum of Logged Data | 4.304 | Mean of logged Data | 4.669 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 5.004 | SD of logged Data   | 0.198 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 125.7 | 90% Chebyshev (MVUE) UCL   | 131.3 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 141.6 | 97.5% Chebyshev (MVUE) UCL | 156   |
| 99% Chebyshev (MVUE) UCL | 184.1 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 120.8 | 95% Jackknife UCL            | 122.7 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 119.7 | 95% Bootstrap-t UCL          | 124.5 |
| 95% Hall's Bootstrap UCL      | 132.9 | 95% Percentile Bootstrap UCL | 120.3 |
| 95% BCA Bootstrap UCL         | 120.6 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 131   | 95% Chebyshev(Mean, Sd) UCL  | 141.2 |
| 97.5% Chebyshev(Mean, Sd) UCL | 155.4 | 99% Chebyshev(Mean, Sd) UCL  | 183.3 |

# Suggested UCL to Use

95% Student's-t UCL 122.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:18:31 PM From File Snowshoe Hare - Internal Organs, Chromium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Chromium, mg/kg - ww

#### **General Statistics**

 Total Number of Observations
 8

 Number of Detects
 0

Number of Distinct Detects 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Chromium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:19:14 PM From File Snowshoe Hare - Internal Organs, Cobalt, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Snowshoe Hare - Internal Organs, Cobalt, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0118             | Mean                            | 0.0414  |
| Maximum                      | 0.0837             | Median                          | 0.033   |
| SD                           | 0.0259             | Std. Error of Mean              | 0.00914 |
| Coefficient of Variation     | 0.625              | Skewness                        | 0.556   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.925 | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.211 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

#### Assuming Normal Distribution

| 95% Normal UCL      |                | 95% UCLs (Adjusted for Skewness)  |        |
|---------------------|----------------|-----------------------------------|--------|
| 95% Student's-t UCL | 0.0587         | 95% Adjusted-CLT UCL (Chen-1995)  | 0.0583 |
|                     |                | 95% Modified-t UCL (Johnson-1978) | 0.059  |
|                     | Gamma GOF Test |                                   |        |

| A-D Test Statistic    | 0.268 | Anderson-Darling Gamma GOF Test                                 |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.722 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.156 | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.297 | Detected data appear Gamma Distributed at 5% Significance Level |
| <b>B</b> • • • • • •  | 0 D   |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)                    | 2.682  | k star (bias corrected MLE)         | 1.759  |
|--------------------------------|--------|-------------------------------------|--------|
| Theta hat (MLE)                | 0.0154 | Theta star (bias corrected MLE)     | 0.0235 |
| nu hat (MLE)                   | 42.9   | nu star (bias corrected)            | 28.15  |
| MLE Mean (bias corrected)      | 0.0414 | MLE Sd (bias corrected)             | 0.0312 |
|                                |        | Approximate Chi Square Value (0.05) | 17.04  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 14.9   |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:19:14 PM From File Snowshoe Hare - Internal Organs, Cobalt, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Cobalt, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.0683

95% Adjusted Gamma UCL (use when n<50) 0.0781

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.937    | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|----------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.169    | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Lognormal at 5% Significance Level |
| Data appear l                  | ognormol | at 5% Significance Level                       |

Data appear Lognormal at 5% Significance Level

#### Lognormal Statistics

| Minimum of Logged Data | -4.44  | Mean of logged Data | -3.384 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -2.481 | SD of logged Data   | 0.705  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.0904 | 90% Chebyshev (MVUE) UCL   | 0.0739 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0883 | 97.5% Chebyshev (MVUE) UCL | 0.108  |
| 99% Chebyshev (MVUE) UCL | 0.148  |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0564 | 95% Jackknife UCL            | 0.0587 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0555 | 95% Bootstrap-t UCL          | 0.0619 |
| 95% Hall's Bootstrap UCL      | 0.0587 | 95% Percentile Bootstrap UCL | 0.0559 |
| 95% BCA Bootstrap UCL         | 0.0583 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0688 | 95% Chebyshev(Mean, Sd) UCL  | 0.0812 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0984 | 99% Chebyshev(Mean, Sd) UCL  | 0.132  |

# Suggested UCL to Use

95% Student's-t UCL 0.0587

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Copper, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

Snowshoe Hare - Internal Organs, Copper, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 2.06               | Mean                            | 2.708 |
| Maximum                      | 3.86               | Median                          | 2.63  |
| SD                           | 0.586              | Std. Error of Mean              | 0.207 |
| Coefficient of Variation     | 0.216              | Skewness                        | 1.099 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.918    | Shapiro Wilk GOF Test                       |
|--------------------------------|----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.211    | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Normal at 5% Significance Level |
| Data appear                    | Normal a | t 5% Significance Level                     |

| Assuming | Normal | Distribution |
|----------|--------|--------------|
|----------|--------|--------------|

| 95% Normal UCL 95% UCLs (Adjusted for Skewness) |     |                                   |       |
|-------------------------------------------------|-----|-----------------------------------|-------|
| 95% Student's-t UCL                             | 3.1 | 95% Adjusted-CLT UCL (Chen-1995)  | 3.134 |
|                                                 |     | 95% Modified-t UCL (Johnson-1978) | 3.113 |
|                                                 |     |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic    | 0.254   | Anderson-Darling Gamma GOF Test                                 |
|-----------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.716   | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.181   | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.294   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma D | istributed at 5% Significance Level                             |

| k hat (MLE)                    | 26.43  | k star (bias corrected MLE)         | 16.6  |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.102  | Theta star (bias corrected MLE)     | 0.163 |
| nu hat (MLE)                   | 422.9  | nu star (bias corrected)            | 265.7 |
| MLE Mean (bias corrected)      | 2.708  | MLE Sd (bias corrected)             | 0.664 |
|                                |        | Approximate Chi Square Value (0.05) | 228.9 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 220.3 |

| User Selected Options          | 3                                                       |
|--------------------------------|---------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:19:58 PM                           |
| From File                      | Snowshoe Hare - Internal Organs, Copper, mg_kg - ww.xls |
| Full Precision                 | OFF                                                     |
| Confidence Coefficient         | 95%                                                     |
| Number of Bootstrap Operations | 2000                                                    |

Snowshoe Hare - Internal Organs, Copper, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.142

95% Adjusted Gamma UCL (use when n<50) 3.266

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.957      | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|------------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818      | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.173      | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283      | Data appear Lognormal at 5% Significance Level |
| Data annear l                  | ognormal a | t 5% Significance Level                        |

# Data appear Lognormal at 5% Significance Level

#### Lognormal Statistics

| Minimum of Logged Data | 0.723 | Mean of logged Data | 0.977 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 1.351 | SD of logged Data   | 0.205 |

# Assuming Lognormal Distribution

| 95% H-UCL                | 3.156 | 90% Chebyshev (MVUE) UCL   | 3.296 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 3.563 | 97.5% Chebyshev (MVUE) UCL | 3.934 |
| 99% Chebyshev (MVUE) UCL | 4.663 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 3.048 | 95% Jackknife UCL            | 3.1   |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 3.017 | 95% Bootstrap-t UCL          | 3.3   |
| 95% Hall's Bootstrap UCL      | 5.242 | 95% Percentile Bootstrap UCL | 3.049 |
| 95% BCA Bootstrap UCL         | 3.156 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 3.329 | 95% Chebyshev(Mean, Sd) UCL  | 3.61  |
| 97.5% Chebyshev(Mean, Sd) UCL | 4.001 | 99% Chebyshev(Mean, Sd) UCL  | 4.768 |

# Suggested UCL to Use

95% Student's-t UCL 3.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:20:42 PM From File Snowshoe Hare - Internal Organs, Iron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Snowshoe Hare - Internal Organs, Iron, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 126                | Mean                            | 250.8 |
| Maximum                      | 434                | Median                          | 233   |
| SD                           | 99.45              | Std. Error of Mean              | 35.16 |
| Coefficient of Variation     | 0.397              | Skewness                        | 0.944 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.917 | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.277 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

# Assuming Normal Distribution

| 95% Normal UCL      | 95% UCLs (Adjusted for Skewness) |                                   |       |
|---------------------|----------------------------------|-----------------------------------|-------|
| 95% Student's-t UCL | 317.4                            | 95% Adjusted-CLT UCL (Chen-1995)  | 321.2 |
|                     |                                  | 95% Modified-t UCL (Johnson-1978) | 319.4 |

#### Gamma GOF Test

| A-D Test Statistic     | 0.278   | Anderson-Darling Gamma GOF Test                                 |
|------------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.717   | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.232   | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value  | 0.295   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear ( | Gamma D | istributed at 5% Significance Level                             |

| k hat (MLE)                    | 7.748  | k star (bias corrected MLE)         | 4.926 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 32.37  | Theta star (bias corrected MLE)     | 50.92 |
| nu hat (MLE)                   | 124    | nu star (bias corrected)            | 78.81 |
| MLE Mean (bias corrected)      | 250.8  | MLE Sd (bias corrected)             |       |
|                                |        | Approximate Chi Square Value (0.05) | 59.36 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 55.11 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:20:42 PM From File Snowshoe Hare - Internal Organs, Iron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Iron, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 333

95% Adjusted Gamma UCL (use when n<50) 358.7

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.97  | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.211 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | 4.836 | Mean of logged Data | 5.459 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 6.073 | SD of logged Data   | 0.387 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 348   | 90% Chebyshev (MVUE) UCL   | 354.2 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 401.1 | 97.5% Chebyshev (MVUE) UCL | 466.2 |
| 99% Chebyshev (MVUE) UCL | 594.2 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 308.6 | 95% Jackknife UCL            | 317.4 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 305.4 | 95% Bootstrap-t UCL          | 371.7 |
| 95% Hall's Bootstrap UCL      | 791.7 | 95% Percentile Bootstrap UCL | 307.3 |
| 95% BCA Bootstrap UCL         | 318.2 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 356.3 | 95% Chebyshev(Mean, Sd) UCL  | 404.1 |
| 97.5% Chebyshev(Mean, Sd) UCL | 470.4 | 99% Chebyshev(Mean, Sd) UCL  | 600.7 |

# Suggested UCL to Use

95% Student's-t UCL 317.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:21:26 PM From File Snowshoe Hare - Internal Organs, Lead, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Snowshoe Hare - Internal Organs, Lead, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0049             | Mean                            | 0.0129  |
| Maximum                      | 0.0322             | Median                          | 0.0063  |
| SD                           | 0.0106             | Std. Error of Mean              | 0.00376 |
| Coefficient of Variation     | 0.825              | Skewness                        | 1.043   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic              | 0.772 | Shapiro Wilk GOF Test                    |  |  |
|------------------------------------------|-------|------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value           | 0.818 | Data Not Normal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                | 0.357 | Lilliefors GOF Test                      |  |  |
| 5% Lilliefors Critical Value             | 0.283 | Data Not Normal at 5% Significance Level |  |  |
| Date Net Normal at 5% Starificance Level |       |                                          |  |  |

Data Not Normal at 5% Significance Level

#### Assuming Normal Distribution

95% Student's-t UCL

0.02

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)

0.0205 95% Modified-t UCL (Johnson-1978) 0.0202

#### Gamma GOF Test

| A-D Test Statistic    | 0.92      | Anderson-Darling Gamma GOF Test                     |
|-----------------------|-----------|-----------------------------------------------------|
| 5% A-D Critical Value | 0.725     | Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.361     | Kolmogorov-Smirnov Gamma GOF Test                   |
| 5% K-S Critical Value | 0.298     | Data Not Gamma Distributed at 5% Significance Level |
| Data Mat Oama         | Distribut |                                                     |

Data Not Gamma Distributed at 5% Significance Level

| 1.281  | k star (bias corrected MLE)         | 1.916   | k hat (MLE)                    |
|--------|-------------------------------------|---------|--------------------------------|
| 0.0101 | Theta star (bias corrected MLE)     | 0.00672 | Theta hat (MLE)                |
| 20.49  | nu star (bias corrected)            | 30.65   | nu hat (MLE)                   |
| 0.0114 | MLE Sd (bias corrected)             | 0.0129  | MLE Mean (bias corrected)      |
| 11.21  | Approximate Chi Square Value (0.05) |         |                                |
| 9.527  | Adjusted Chi Square Value           | 0.0195  | Adjusted Level of Significance |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:21:26 PM From File Snowshoe Hare - Internal Organs, Lead, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Lead, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.0235

95% Adjusted Gamma UCL (use when n<50) 0.0277

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.792 | Shapiro Wilk Lognormal GOF Test             |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818 | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.334 | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.283 | Data Not Lognormal at 5% Significance Level |
|                                |       |                                             |

Data Not Lognormal at 5% Significance Level

#### Lognormal Statistics

| Minimum of Logged Data | -5.319 | Mean of logged Data | -4.635 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -3.437 | SD of logged Data   | 0.784  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.0313 | 90% Chebyshev (MVUE) UCL   | 0.0233 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0281 | 97.5% Chebyshev (MVUE) UCL | 0.0348 |
| 99% Chebyshev (MVUE) UCL | 0.048  |                            |        |

# Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0191 | 95% Jackknife UCL            | 0.02   |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0188 | 95% Bootstrap-t UCL          | 0.0243 |
| 95% Hall's Bootstrap UCL      | 0.0174 | 95% Percentile Bootstrap UCL | 0.0188 |
| 95% BCA Bootstrap UCL         | 0.02   |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0241 | 95% Chebyshev(Mean, Sd) UCL  | 0.0293 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0363 | 99% Chebyshev(Mean, Sd) UCL  | 0.0502 |

# Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 0.0293

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:22:09 PM

 From File
 Snowshoe Hare - Internal Organs, Magnesium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Snowshoe Hare - Internal Organs, Magnesium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 149                | Mean                            | 168.9 |
| Maximum                      | 188                | Median                          | 167.3 |
| SD                           | 11.92              | Std. Error of Mean              | 4.216 |
| Coefficient of Variation     | 0.0706             | Skewness                        | 0.037 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.971       | Shapiro Wilk GOF Test                       |
|--------------------------------|-------------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818       | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.155       | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283       | Data appear Normal at 5% Significance Level |
| Data appea                     | r Normal at | 5% Significance Level                       |

| Assumir | ng No | rmal D | istributior | l. |
|---------|-------|--------|-------------|----|
|---------|-------|--------|-------------|----|

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 176.9 | 95% Adjusted-CLT UCL (Chen-1995)  | 175.9 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 176.9 |
|                     |       |                                   |       |

#### Gamma GOF Test

| A-D Test Statistic     | 0.233    | Anderson-Darling Gamma GOF Test                                 |
|------------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.715    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.147    | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value  | 0.294    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear ( | Gamma Di | istributed at 5% Significance Level                             |

| k hat (MLE)                    | 228.6  | k star (bias corrected MLE)         | 143   |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.739  | Theta star (bias corrected MLE)     | 1.182 |
| nu hat (MLE)                   | 3658   | nu star (bias corrected)            | 2287  |
| MLE Mean (bias corrected)      | 168.9  | MLE Sd (bias corrected)             | 14.13 |
|                                |        | Approximate Chi Square Value (0.05) | 2177  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 2150  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:22:09 PM From File Snowshoe Hare - Internal Organs, Magnesium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Magnesium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 177.5

95% Adjusted Gamma UCL (use when n<50) 179.7

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.97      | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|-----------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818     | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.162     | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283     | Data appear Lognormal at 5% Significance Level |
| Data appear L                  | .ognormal | at 5% Significance Level                       |

#### Lognormal Statistics

| Minimum of Logged Data | 5.004 | Mean of logged Data | 5.127  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 5.236 | SD of logged Data   | 0.0708 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A   | 90% Chebyshev (MVUE) UCL   | 181.6 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 187.4 | 97.5% Chebyshev (MVUE) UCL | 195.4 |
| 99% Chebyshev (MVUE) UCL | 211   |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 175.9 | 95% Jackknife UCL            | 176.9 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 175.5 | 95% Bootstrap-t UCL          | 177.7 |
| 95% Hall's Bootstrap UCL      | 179.2 | 95% Percentile Bootstrap UCL | 175.6 |
| 95% BCA Bootstrap UCL         | 175.5 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 181.6 | 95% Chebyshev(Mean, Sd) UCL  | 187.3 |
| 97.5% Chebyshev(Mean, Sd) UCL | 195.3 | 99% Chebyshev(Mean, Sd) UCL  | 210.9 |

# Suggested UCL to Use

95% Student's-t UCL 176.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:22:53 PM From File Snowshoe Hare - Internal Organs, Manganese, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Snowshoe Hare - Internal Organs, Manganese, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 2.71               | Mean                            | 9.207 |
| Maximum                      | 16.4               | Median                          | 8.743 |
| SD                           | 5.499              | Std. Error of Mean              | 1.944 |
| Coefficient of Variation     | 0.597              | Skewness                        | 0.12  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.888    | Shapiro Wilk GOF Test                       |
|--------------------------------|----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.188    | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Normal at 5% Significance Level |
| Data appear                    | Normal a | t 5% Significance Level                     |

| Assuming Normal Distribution |
|------------------------------|
|------------------------------|

| 95% Normal UCL      | 95% UCLs (Adjusted for Skewness) |                                   | 95% UCLs (Adjusted for Skewness |  |  |  |
|---------------------|----------------------------------|-----------------------------------|---------------------------------|--|--|--|
| 95% Student's-t UCL | 12.89                            | 95% Adjusted-CLT UCL (Chen-1995)  | 12.49                           |  |  |  |
|                     |                                  | 95% Modified-t UCL (Johnson-1978) | 12.9                            |  |  |  |
|                     | Gamma GOF Test                   |                                   |                                 |  |  |  |

| 9 Anderson-Darling Gamma GOF Test                           | Anderson-Darling Gamma GOF Test                     |     |
|-------------------------------------------------------------|-----------------------------------------------------|-----|
| 2 Detected data appear Gamma Distributed at 5% Significance | ata appear Gamma Distributed at 5% Significance Lev | vel |
| 5 Kolmogorov-Smirnov Gamma GOF Test                         | Kolmogorov-Smirnov Gamma GOF Test                   |     |
| 7 Detected data appear Gamma Distributed at 5% Significance | ata appear Gamma Distributed at 5% Significance Lev | vel |
| a Distributed at 5% Significance Level                      | Significance Level                                  |     |

| k hat (MLE)                    | 2.747  | k star (bias corrected MLE)         | 1.8   |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 3.352  | Theta star (bias corrected MLE)     | 5.115 |
| nu hat (MLE)                   | 43.95  | nu star (bias corrected)            | 28.8  |
| MLE Mean (bias corrected)      | 9.207  | MLE Sd (bias corrected)             | 6.862 |
|                                |        | Approximate Chi Square Value (0.05) | 17.55 |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 15.37 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:22:53 PM From File Snowshoe Hare - Internal Organs, Manganese, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Manganese, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 15.11

95% Adjusted Gamma UCL (use when n<50) 17.25

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.898 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.198 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       | t 5% Significance Level                        |

# Lognormal Statistics

| Minimum of Logged Data | 0.997 | Mean of logged Data | 2.027 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 2.797 | SD of logged Data   | 0.699 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 19.96 | 90% Chebyshev (MVUE) UCL   | 16.4  |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 19.6  | 97.5% Chebyshev (MVUE) UCL | 24.03 |
| 99% Chebyshev (MVUE) UCL | 32.73 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 12.4  | 95% Jackknife UCL            | 12.89 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 12.23 | 95% Bootstrap-t UCL          | 13.13 |
| 95% Hall's Bootstrap UCL      | 11.66 | 95% Percentile Bootstrap UCL | 12.28 |
| 95% BCA Bootstrap UCL         | 12.3  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 15.04 | 95% Chebyshev(Mean, Sd) UCL  | 17.68 |
| 97.5% Chebyshev(Mean, Sd) UCL | 21.35 | 99% Chebyshev(Mean, Sd) UCL  | 28.55 |

# Suggested UCL to Use

95% Student's-t UCL 12.89

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:23:37 PM From File Snowshoe Hare - Internal Organs, Mercury, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Internal Organs, Mercury, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
| Number of Detects            | 7                  | Number of Non-Detects           | 1      |
| Number of Distinct Detects   | 7                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.00385            | Minimum Non-Detect              | 0.01   |
| Maximum Detect               | 0.263              | Maximum Non-Detect              | 0.01   |
| Variance Detects             | 0.00727            | Percent Non-Detects             | 12.5%  |
| Mean Detects                 | 0.0897             | SD Detects                      | 0.0852 |
| Median Detects               | 0.081              | CV Detects                      | 0.95   |
| Skewness Detects             | 1.596              | Kurtosis Detects                | 3.246  |
| Mean of Logged Detects       | -2.954             | SD of Logged Detects            | 1.364  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.856 | Shapiro Wilk GOF Test                                |
|------------------------------------------------------|-------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                       | 0.803 | Detected Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                            | 0.268 | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value                         | 0.304 | Detected Data appear Normal at 5% Significance Level |
| Detected Data appear Normal at 5% Significance Level |       | Significance Level                                   |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.079  | KM Standard Error of Mean         | 0.0302 |
|------------------------|--------|-----------------------------------|--------|
| KM SD                  | 0.0791 | 95% KM (BCA) UCL                  | 0.129  |
| 95% KM (t) UCL         | 0.136  | 95% KM (Percentile Bootstrap) UCL | 0.127  |
| 95% KM (z) UCL         | 0.129  | 95% KM Bootstrap t UCL            | 0.17   |
| 90% KM Chebyshev UCL   | 0.17   | 95% KM Chebyshev UCL              | 0.211  |
| 97.5% KM Chebyshev UCL | 0.268  | 99% KM Chebyshev UCL              | 0.379  |
|                        |        |                                   |        |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.236    | Anderson-Darling GOF Test                                       |
|-----------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.727    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.161    | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.319    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Di | stributed at 5% Significance Level                              |

 User Selected Options
 ProUCL 5.12/1/2021 5:23:37 PM

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:23:37 PM

 From File
 Snowshoe Hare - Internal Organs, Mercury, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Mercury, mg/kg - ww

# Gamma Statistics on Detected Data Only

| 0.699 | k star (bias corrected MLE)     | 1.056  | k hat (MLE)     |
|-------|---------------------------------|--------|-----------------|
| 0.128 | Theta star (bias corrected MLE) | 0.0849 | Theta hat (MLE) |
| 9.784 | nu star (bias corrected)        | 14.79  | nu hat (MLE)    |
|       |                                 | 0.0897 | Mean (detects)  |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.00385 | Mean                                        | 0.0797 |
|-------------------------------------------------|---------|---------------------------------------------|--------|
| Maximum                                         | 0.263   | Median                                      | 0.0675 |
| SD                                              | 0.0838  | CV                                          | 1.051  |
| k hat (MLE)                                     | 0.923   | k star (bias corrected MLE)                 | 0.66   |
| Theta hat (MLE)                                 | 0.0864  | Theta star (bias corrected MLE)             | 0.121  |
| nu hat (MLE)                                    | 14.76   | nu star (bias corrected)                    | 10.56  |
| Adjusted Level of Significance ( $\beta$ )      | 0.0195  |                                             |        |
| Approximate Chi Square Value (10.56, $\alpha$ ) | 4.295   | Adjusted Chi Square Value (10.56, $\beta$ ) | 3.344  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.196   | 95% Gamma Adjusted UCL (use when n<50)      | 0.252  |

# Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.079   | SD (KM)                   | 0.0791 |
|---------------------------|---------|---------------------------|--------|
| Variance (KM)             | 0.00626 | SE of Mean (KM)           | 0.0302 |
| k hat (KM)                | 0.997   | k star (KM)               | 0.706  |
| nu hat (KM)               | 15.95   | nu star (KM)              | 11.3   |
| theta hat (KM)            | 0.0792  | theta star (KM)           | 0.112  |
| 80% gamma percentile (KM) | 0.13    | 90% gamma percentile (KM) | 0.198  |
| 95% gamma percentile (KM) | 0.268   | 99% gamma percentile (KM) | 0.435  |

# Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (11.30, $\alpha$ ) | 4.77  | Adjusted Chi Square Value (11.30, $\beta$ ) | 3.756 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.187 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.238 |

| User Selected Options          | 3                                                        |
|--------------------------------|----------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:23:37 PM                            |
| From File                      | Snowshoe Hare - Internal Organs, Mercury, mg_kg - ww.xls |
| Full Precision                 | OFF                                                      |
| Confidence Coefficient         | 95%                                                      |
| Number of Bootstrap Operations | 2000                                                     |

#### Snowshoe Hare - Internal Organs, Mercury, mg/kg - ww

| Lognormal GOF                             | Test on I   | Detected Observations Only                           |        |
|-------------------------------------------|-------------|------------------------------------------------------|--------|
| Shapiro Wilk Test Statistic               | 0.907       | Shapiro Wilk GOF Test                                |        |
| 5% Shapiro Wilk Critical Value            | 0.803       | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Lilliefors Test Statistic                 | 0.225       | Lilliefors GOF Test                                  |        |
| 5% Lilliefors Critical Value              | 0.304       | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Detected Data app                         | oear Logno  | ormal at 5% Significance Level                       |        |
| Lognormal ROS                             | Statistics  | Using Imputed Non-Detects                            |        |
| Mean in Original Scale                    | 0.0792      | Mean in Log Scale                                    | -3.228 |
| SD in Original Scale                      | 0.0843      | SD in Log Scale                                      | 1.481  |
| 95% t UCL (assumes normality of ROS data) | 0.136       | 95% Percentile Bootstrap UCL                         | 0.129  |
| 95% BCA Bootstrap UCL                     | 0.137       | 95% Bootstrap t UCL                                  | 0.178  |
| 95% H-UCL (Log ROS)                       | 1.638       |                                                      |        |
|                                           |             |                                                      |        |
| Statistics using KM estimates of          | n Logged    | Data and Assuming Lognormal Distribution             |        |
| KM Mean (logged)                          | -3.28       | KM Geo Mean                                          | 0.0376 |
| KM SD (logged)                            | 1.462       | 95% Critical H Value (KM-Log)                        | 4.637  |
| KM Standard Error of Mean (logged)        | 0.558       | 95% H-UCL (KM -Log)                                  | 1.422  |
| KM SD (logged)                            | 1.462       | 95% Critical H Value (KM-Log)                        | 4.637  |
| KM Standard Error of Mean (logged)        | 0.558       |                                                      |        |
|                                           | DL/2 \$     | Statistics                                           |        |
| DL/2 Normal                               |             | DL/2 Log-Transformed                                 |        |
| Mean in Original Scale                    | 0.0791      | Mean in Log Scale                                    | -3.247 |
| SD in Original Scale                      | 0.0844      | SD in Log Scale                                      | 1.511  |
| 95% t UCL (Assumes normality)             | 0.136       | 95% H-Stat UCL                                       | 1.853  |
| DL/2 is not a recommended me              | thod, prov  | ided for comparisons and historical reasons          |        |
| No                                        | rie Dietrik | ition Free U.C. Statistics                           |        |
| •                                         |             | ution Free UCL Statistics                            |        |
| Detected Data appear                      | Normal D    | istributed at 5% Significance Level                  |        |

# Suggested UCL to Use

95% KM (t) UCL 0.136

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation

 From File

 From File

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

# Snowshoe Hare - Internal Organs, Molybdenum, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.0941             | Mean                            | 0.188  |
| Maximum                      | 0.298              | Median                          | 0.186  |
| SD                           | 0.0777             | Std. Error of Mean              | 0.0275 |
| Coefficient of Variation     | 0.413              | Skewness                        | 0.127  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.883 | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.248 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

# Assuming Normal Distribution

| 95% Normal UCL      |      | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|------|-----------------------------------|-------|
| 95% Student's-t UCL | 0.24 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.235 |
|                     |      | 95% Modified-t UCL (Johnson-1978) | 0.24  |
|                     |      |                                   |       |

#### Gamma GOF Test

| c 0.55 Anderson-Darling Gamma GOF Test                           |          |
|------------------------------------------------------------------|----------|
| e 0.718 Detected data appear Gamma Distributed at 5% Significant | ce Level |
| c 0.262 Kolmogorov-Smirnov Gamma GOF Test                        |          |
| e 0.295 Detected data appear Gamma Distributed at 5% Significant | ce Level |
| ar Gamma Distributed at 5% Significance Level                    |          |

| k hat (MLE)                    | 6.338  | k star (bias corrected MLE)         | 4.044  |
|--------------------------------|--------|-------------------------------------|--------|
| Theta hat (MLE)                | 0.0297 | Theta star (bias corrected MLE)     | 0.0465 |
| nu hat (MLE)                   | 101.4  | nu star (bias corrected)            | 64.71  |
| MLE Mean (bias corrected)      | 0.188  | MLE Sd (bias corrected)             | 0.0935 |
|                                |        | Approximate Chi Square Value (0.05) | 47.2   |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 43.44  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:24:21 PM From File Snowshoe Hare - Internal Organs, Molybdenum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Molybdenum, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.258

95% Adjusted Gamma UCL (use when n<50)

0.28

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.888 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.256 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

# Lognormal Statistics

| Minimum of Logged Data | -2.363 | Mean of logged Data | -1.752 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -1.211 | SD of logged Data   | 0.438  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.277 | 90% Chebyshev (MVUE) UCL   | 0.277 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.317 | 97.5% Chebyshev (MVUE) UCL | 0.372 |
| 99% Chebyshev (MVUE) UCL | 0.481 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.233 | 95% Jackknife UCL            | 0.24  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.23  | 95% Bootstrap-t UCL          | 0.239 |
| 95% Hall's Bootstrap UCL      | 0.223 | 95% Percentile Bootstrap UCL | 0.231 |
| 95% BCA Bootstrap UCL         | 0.228 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.27  | 95% Chebyshev(Mean, Sd) UCL  | 0.308 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.36  | 99% Chebyshev(Mean, Sd) UCL  | 0.461 |

# Suggested UCL to Use

95% Student's-t UCL 0.24

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:25:05 PM

 From File
 Snowshoe Hare - Internal Organs, Nickel, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Nickel, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 5      |
| Number of Detects            | 5                  | Number of Non-Detects           | 3      |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.011              | Minimum Non-Detect              | 0.01   |
| Maximum Detect               | 0.036              | Maximum Non-Detect              | 0.01   |
| Variance Detects 1           | .3050E-4           | Percent Non-Detects             | 37.5%  |
| Mean Detects                 | 0.024              | SD Detects                      | 0.0114 |
| Median Detects               | 0.02               | CV Detects                      | 0.476  |
| Skewness Detects             | 0.238              | Kurtosis Detects                | -2.665 |
| Mean of Logged Detects       | -3.829             | SD of Logged Detects            | 0.51   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.861             | Shapiro Wilk GOF Test                                |
|--------------------------------|-------------------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762             | Detected Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.253             | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value   | 0.343             | Detected Data appear Normal at 5% Significance Level |
| Detected Data ap               | pear Normal at 5% | Significance Level                                   |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0188 | KM Standard Error of Mean         | 0.00417 |
|------------------------|--------|-----------------------------------|---------|
| KM SD                  | 0.0105 | 95% KM (BCA) UCL                  | N/A     |
| 95% KM (t) UCL         | 0.0266 | 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (z) UCL         | 0.0256 | 95% KM Bootstrap t UCL            | N/A     |
| 90% KM Chebyshev UCL   | 0.0313 | 95% KM Chebyshev UCL              | 0.0369  |
| 97.5% KM Chebyshev UCL | 0.0448 | 99% KM Chebyshev UCL              | 0.0602  |
|                        |        |                                   |         |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.39    | Anderson-Darling GOF Test                                       |
|-----------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.681   | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.271   | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.358   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma D | istributed at 5% Significance Level                             |

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Nickel, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

#### Snowshoe Hare - Internal Organs, Nickel, mg/kg - ww

# Gamma Statistics on Detected Data Only

| 2.212  | k star (bias corrected MLE)     | 5.197   | k hat (MLE)     |
|--------|---------------------------------|---------|-----------------|
| 0.0108 | Theta star (bias corrected MLE) | 0.00462 | Theta hat (MLE) |
| 22.12  | nu star (bias corrected)        | 51.97   | nu hat (MLE)    |
|        |                                 | 0.024   | Mean (detects)  |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.01    | Mean                                                            | 0.0188                                                                                                                                                                |
|---------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.036   | Median                                                          | 0.014                                                                                                                                                                 |
| 0.0113  | CV                                                              | 0.601                                                                                                                                                                 |
| 3.643   | k star (bias corrected MLE)                                     | 2.36                                                                                                                                                                  |
| 0.00515 | Theta star (bias corrected MLE)                                 | 0.00794                                                                                                                                                               |
| 58.29   | nu star (bias corrected)                                        | 37.76                                                                                                                                                                 |
| 0.0195  |                                                                 |                                                                                                                                                                       |
| 24.69   | Adjusted Chi Square Value (37.76, $\beta$ )                     | 22.05                                                                                                                                                                 |
| 0.0287  | 95% Gamma Adjusted UCL (use when n<50)                          | 0.0321                                                                                                                                                                |
|         | 0.036<br>0.0113<br>3.643<br>0.00515<br>58.29<br>0.0195<br>24.69 | 0.036Median0.0113CV3.643k star (bias corrected MLE)0.00515Theta star (bias corrected MLE)58.29nu star (bias corrected)0.019524.69Adjusted Chi Square Value (37.76, β) |

# Estimates of Gamma Parameters using KM Estimates

| 0.0105  | SD (KM)                   | 0.0188    | Mean (KM)                 |
|---------|---------------------------|-----------|---------------------------|
| 0.00417 | SE of Mean (KM)           | 1.1119E-4 | Variance (KM)             |
| 2.06    | k star (KM)               | 3.162     | k hat (KM)                |
| 32.95   | nu star (KM)              | 50.59     | nu hat (KM)               |
| 0.0091  | theta star (KM)           | 0.00593   | theta hat (KM)            |
| 0.0362  | 90% gamma percentile (KM) | 0.028     | 80% gamma percentile (KM) |
| 0.0614  | 99% gamma percentile (KM) | 0.0441    | 95% gamma percentile (KM) |
|         |                           |           |                           |

# Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (32.95, $\alpha$ ) | 20.83  | Adjusted Chi Square Value (32.95, $\beta$ ) | 18.43  |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0297 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.0335 |

| User Selected Options          | 3                                                       |
|--------------------------------|---------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:25:05 PM                           |
| From File                      | Snowshoe Hare - Internal Organs, Nickel, mg_kg - ww.xls |
| Full Precision                 | OFF                                                     |
| Confidence Coefficient         | 95%                                                     |
| Number of Bootstrap Operations | 2000                                                    |

#### Snowshoe Hare - Internal Organs, Nickel, mg/kg - ww

| Lognormal GOI                             | Test on I   | Detected Observations Only                           |        |
|-------------------------------------------|-------------|------------------------------------------------------|--------|
| Shapiro Wilk Test Statistic               | 0.903       | Shapiro Wilk GOF Test                                |        |
| 5% Shapiro Wilk Critical Value            | 0.762       | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Lilliefors Test Statistic                 | 0.239       | Lilliefors GOF Test                                  |        |
| 5% Lilliefors Critical Value              | 0.343       | Detected Data appear Lognormal at 5% Significance Le | vel    |
| Detected Data ap                          | oear Logn   | ormal at 5% Significance Level                       |        |
|                                           |             |                                                      |        |
| -                                         |             | Using Imputed Non-Detects                            |        |
| Mean in Original Scale                    | 0.0171      | Mean in Log Scale                                    | -4.348 |
| SD in Original Scale                      | 0.0129      | SD in Log Scale                                      | 0.834  |
| 95% t UCL (assumes normality of ROS data) | 0.0257      | 95% Percentile Bootstrap UCL                         | 0.0243 |
| 95% BCA Bootstrap UCL                     | 0.0255      | 95% Bootstrap t UCL                                  | 0.0305 |
| 95% H-UCL (Log ROS)                       | 0.0476      |                                                      |        |
| Statistics using KM estimates of          | on Logged   | Data and Assuming Lognormal Distribution             |        |
| KM Mean (logged)                          | -4.12       | KM Geo Mean                                          | 0.0162 |
| KM SD (logged)                            | 0.521       | 95% Critical H Value (KM-Log)                        | 2.39   |
| KM Standard Error of Mean (logged)        | 0.206       | 95% H-UCL (KM -Log)                                  | 0.0298 |
| KM SD (logged)                            | 0.521       | 95% Critical H Value (KM-Log)                        | 2.39   |
| KM Standard Error of Mean (logged)        | 0.206       |                                                      |        |
|                                           | DL/2 \$     | Statistics                                           |        |
| DL/2 Normal                               |             | DL/2 Log-Transformed                                 |        |
| Mean in Original Scale                    | 0.0169      | Mean in Log Scale                                    | -4.38  |
| SD in Original Scale                      | 0.0131      | SD in Log Scale                                      | 0.853  |
| 95% t UCL (Assumes normality)             | 0.0256      | 95% H-Stat UCL                                       | 0.0485 |
| DL/2 is not a recommended me              | thod, prov  | ided for comparisons and historical reasons          |        |
| Nonnaramet                                | ric Distrib | ution Free UCL Statistics                            |        |
| •                                         |             | istributed at 5% Significance Level                  |        |
|                                           |             | -                                                    |        |
|                                           | Suggested   | I UCL to Use                                         |        |

95% KM (t) UCL 0.0266

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Phosphorus, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

Snowshoe Hare - Internal Organs, Phosphorus, mg/kg - ww

95% Normal UCL

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 2125               | Mean                            | 2461   |
| Maximum                      | 2740               | Median                          | 2465   |
| SD                           | 193.5              | Std. Error of Mean              | 68.4   |
| Coefficient of Variation     | 0.0786             | Skewness                        | -0.215 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.959 | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.171 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

# Assuming Normal Distribution

| nal UCL             |      | 95% UCLs (Adjusted for Skewness)  |      |
|---------------------|------|-----------------------------------|------|
| 95% Student's-t UCL | 2591 | 95% Adjusted-CLT UCL (Chen-1995)  | 2568 |
|                     |      | 95% Modified-t UCL (Johnson-1978) | 2590 |

#### Gamma GOF Test

| 62 Anderson-Darling Gamma GOF Test                           | Anderson-Darling Gamma GOF Test                        |          |  |
|--------------------------------------------------------------|--------------------------------------------------------|----------|--|
| 15 Detected data appear Gamma Distributed at 5% Significance | etected data appear Gamma Distributed at 5% Significan | ce Level |  |
| 57 Kolmogorov-Smirnov Gamma GOF Test                         | Kolmogorov-Smirnov Gamma GOF Test                      |          |  |
| 94 Detected data appear Gamma Distributed at 5% Significance | etected data appear Gamma Distributed at 5% Significan | ce Level |  |
| na Distributed at 5% Significance Level                      |                                                        |          |  |

| k hat (MLE)                    | 182.3  | k star (bias corrected MLE)         | 114   |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 13.5   | Theta star (bias corrected MLE)     | 21.59 |
| nu hat (MLE)                   | 2917   | nu star (bias corrected)            | 1824  |
| MLE Mean (bias corrected)      | 2461   | MLE Sd (bias corrected)             | 230.5 |
|                                |        | Approximate Chi Square Value (0.05) | 1726  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 1702  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:25:48 PM From File Snowshoe Hare - Internal Organs, Phosphorus, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Phosphorus, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2601

95% Adjusted Gamma UCL (use when n<50) 2638

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.954 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.159 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | 7.662 | Mean of logged Data | 7.806  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 7.916 | SD of logged Data   | 0.0796 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 2669 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 2763 | 97.5% Chebyshev (MVUE) UCL | 2894 |
| 99% Chebyshev (MVUE) UCL | 3150 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 2574 | 95% Jackknife UCL            | 2591 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 2569 | 95% Bootstrap-t UCL          | 2585 |
| 95% Hall's Bootstrap UCL      | 2619 | 95% Percentile Bootstrap UCL | 2566 |
| 95% BCA Bootstrap UCL         | 2569 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 2666 | 95% Chebyshev(Mean, Sd) UCL  | 2759 |
| 97.5% Chebyshev(Mean, Sd) UCL | 2888 | 99% Chebyshev(Mean, Sd) UCL  | 3142 |

# Suggested UCL to Use

95% Student's-t UCL 2591

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:25:48 PM

 From File
 Snowshoe Hare - Internal Organs, Phosphorus, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Snowshoe Hare - Internal Organs, Phosphorus, mg/kg - ww

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:26:32 PM From File Snowshoe Hare - Internal Organs, Potassium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Snowshoe Hare - Internal Organs, Potassium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 2345               | Mean                            | 2628   |
| Maximum                      | 2830               | Median                          | 2660   |
| SD                           | 172.6              | Std. Error of Mean              | 61.02  |
| Coefficient of Variation     | 0.0657             | Skewness                        | -0.813 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.902 | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.231 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

#### Assuming Normal Distribution

| 95% | Normal | UCL |
|-----|--------|-----|
|-----|--------|-----|

95% Student's-t UCL 2744

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 2710 95% Modified-t UCL (Johnson-1978) 2741

#### Gamma GOF Test

| A-D Test Statistic                                              | 0.465 | Anderson-Darling Gamma GOF Test                                 |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.715 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.238 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| 5% K-S Critical Value                                           | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data annear Commo Distributed at 5% Significance Lovel |       |                                                                 |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)                    | 257.2  | k star (bias corrected MLE)         | 160.9 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 10.22  | Theta star (bias corrected MLE)     | 16.34 |
| nu hat (MLE)                   | 4116   | nu star (bias corrected)            | 2574  |
| MLE Mean (bias corrected)      | 2628   | MLE Sd (bias corrected)             | 207.2 |
|                                |        | Approximate Chi Square Value (0.05) | 2457  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 2428  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:26:32 PM From File Snowshoe Hare - Internal Organs, Potassium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Potassium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2753

95% Adjusted Gamma UCL (use when n<50) 2786

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.891 | Shapiro Wilk Lognormal GOF Test                |  |  |
|------------------------------------------------|-------|------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                      | 0.243 | Lilliefors Lognormal GOF Test                  |  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |  |

#### Lognormal Statistics

| Minimum of Logged Data | 7.76  | Mean of logged Data | 7.872  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 7.948 | SD of logged Data   | 0.0672 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 2816 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 2900 | 97.5% Chebyshev (MVUE) UCL | 3018 |
| 99% Chebyshev (MVUE) UCL | 3250 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 2728 | 95% Jackknife UCL            | 2744 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 2720 | 95% Bootstrap-t UCL          | 2724 |
| 95% Hall's Bootstrap UCL      | 2709 | 95% Percentile Bootstrap UCL | 2719 |
| 95% BCA Bootstrap UCL         | 2711 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 2811 | 95% Chebyshev(Mean, Sd) UCL  | 2894 |
| 97.5% Chebyshev(Mean, Sd) UCL | 3009 | 99% Chebyshev(Mean, Sd) UCL  | 3235 |

# Suggested UCL to Use

95% Student's-t UCL 2744

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:26:32 PM

 From File
 Snowshoe Hare - Internal Organs, Potassium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Snowshoe Hare - Internal Organs, Potassium, mg/kg - ww

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 User Selected Options

 Date/Time of Computation

 From File

 From File

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

Snowshoe Hare - Internal Organs, Selenium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.213              | Mean                            | 0.451  |
| Maximum                      | 0.901              | Median                          | 0.359  |
| SD                           | 0.264              | Std. Error of Mean              | 0.0933 |
| Coefficient of Variation     | 0.585              | Skewness                        | 0.71   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.86  | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.27  | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

# Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |  |
|---------------------|-------|-----------------------------------|-------|--|
| 95% Student's-t UCL | 0.628 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.629 |  |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 0.631 |  |
|                     |       |                                   |       |  |

#### Gamma GOF Test

| A-D Test Statistic                                              | 0.563 | Anderson-Darling Gamma GOF Test                                 |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.72  | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.281 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| 5% K-S Critical Value                                           | 0.296 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

| k hat (MLE)                    | 3.471  | k star (bias corrected MLE)         | 2.252 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.13   | Theta star (bias corrected MLE)     | 0.2   |
| nu hat (MLE)                   | 55.53  | nu star (bias corrected)            | 36.04 |
| MLE Mean (bias corrected)      | 0.451  | MLE Sd (bias corrected)             | 0.3   |
|                                |        | Approximate Chi Square Value (0.05) | 23.3  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 20.75 |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:27:16 PM From File Snowshoe Hare - Internal Organs, Selenium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Selenium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.697

95% Adjusted Gamma UCL (use when n<50)

0.783

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.864 | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.26  | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | -1.549 | Mean of logged Data | -0.947 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -0.104 | SD of logged Data   | 0.587  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.803 | 90% Chebyshev (MVUE) UCL   | 0.733 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.861 | 97.5% Chebyshev (MVUE) UCL | 1.039 |
| 99% Chebyshev (MVUE) UCL | 1.389 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.604 | 95% Jackknife UCL            | 0.628 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.596 | 95% Bootstrap-t UCL          | 0.658 |
| 95% Hall's Bootstrap UCL      | 0.585 | 95% Percentile Bootstrap UCL | 0.603 |
| 95% BCA Bootstrap UCL         | 0.612 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.731 | 95% Chebyshev(Mean, Sd) UCL  | 0.857 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1.033 | 99% Chebyshev(Mean, Sd) UCL  | 1.379 |

# Suggested UCL to Use

95% Student's-t UCL 0.628

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:28:00 PM From File Snowshoe Hare - Internal Organs, Silver, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Snowshoe Hare - Internal Organs, Silver, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7      |
| Number of Detects            | 6                  | Number of Non-Detects           | 2      |
| Number of Distinct Detects   | 6                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.0031             | Minimum Non-Detect              | 0.001  |
| Maximum Detect               | 0.0496             | Maximum Non-Detect              | 0.001  |
| Variance Detects 3           | 3.8528E-4          | Percent Non-Detects             | 25%    |
| Mean Detects                 | 0.0194             | SD Detects                      | 0.0196 |
| Median Detects               | 0.0107             | CV Detects                      | 1.014  |
| Skewness Detects             | 0.993              | Kurtosis Detects                | -1.048 |
| Mean of Logged Detects       | -4.449             | SD of Logged Detects            | 1.143  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                                                          | 0.816 | Shapiro Wilk GOF Test                                |  |  |
|--------------------------------------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                                                       | 0.788 | Detected Data appear Normal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                                                            | 0.328 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value 0.325 Detected Data Not Normal at 5% Significance Level |       |                                                      |  |  |
| Detected Data appear Approximate Normal at 5% Significance Level                     |       |                                                      |  |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| Mean 0.00 | KM Standard Error of Mean         | 0.0148 | KM Mean                |
|-----------|-----------------------------------|--------|------------------------|
| UCL 0.02  | 95% KM (BCA) UCL                  | 0.0174 | KM SD                  |
| UCL 0.02  | 95% KM (Percentile Bootstrap) UCL | 0.0276 | 95% KM (t) UCL         |
| tUCL 0.0  | 95% KM Bootstrap t UCL            | 0.0259 | 95% KM (z) UCL         |
| UCL 0.04  | 95% KM Chebyshev UCL              | 0.035  | 90% KM Chebyshev UCL   |
| UCL 0.08  | 99% KM Chebyshev UCL              | 0.0569 | 97.5% KM Chebyshev UCL |
|           |                                   |        |                        |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.407 | Anderson-Darling GOF Test                                       |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.713 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.248 | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value                                           | 0.34  | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:28:00 PM

 From File
 Snowshoe Hare - Internal Organs, Silver, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Snowshoe Hare - Internal Organs, Silver, mg/kg - ww

# Gamma Statistics on Detected Data Only

| 0.676  | k star (bias corrected MLE)     | 1.129  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0286 | Theta star (bias corrected MLE) | 0.0171 | Theta hat (MLE) |
| 8.11   | nu star (bias corrected)        | 13.55  | nu hat (MLE)    |
|        |                                 | 0.0194 | Mean (detects)  |

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.0031 | Mean                                        | 0.017  |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.0496 | Median                                      | 0.0101 |
| SD                                              | 0.0171 | CV                                          | 1.008  |
| k hat (MLE)                                     | 1.349  | k star (bias corrected MLE)                 | 0.926  |
| Theta hat (MLE)                                 | 0.0126 | Theta star (bias corrected MLE)             | 0.0184 |
| nu hat (MLE)                                    | 21.58  | nu star (bias corrected)                    | 14.82  |
| Adjusted Level of Significance (β)              | 0.0195 |                                             |        |
| Approximate Chi Square Value (14.82, $\alpha$ ) | 7.139  | Adjusted Chi Square Value (14.82, $\beta$ ) | 5.844  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0353 | 95% Gamma Adjusted UCL (use when n<50)      | 0.0432 |

# Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0148    | SD (KM)                   | 0.0174  |
|---------------------------|-----------|---------------------------|---------|
| Variance (KM)             | 3.0393E-4 | SE of Mean (KM)           | 0.00675 |
| k hat (KM)                | 0.717     | k star (KM)               | 0.531   |
| nu hat (KM)               | 11.47     | nu star (KM)              | 8.504   |
| theta hat (KM)            | 0.0206    | theta star (KM)           | 0.0278  |
| 80% gamma percentile (KM) | 0.0243    | 90% gamma percentile (KM) | 0.0394  |
| 95% gamma percentile (KM) | 0.0555    | 99% gamma percentile (KM) | 0.0947  |

# Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (8.50, $\alpha$ ) | 3.03   | Adjusted Chi Square Value (8.50, $\beta$ ) | 2.266  |
|------------------------------------------------|--------|--------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)  | 0.0414 | 95% Gamma Adjusted KM-UCL (use when n<50)  | 0.0554 |

| User Selected Options          | 3                                                       |
|--------------------------------|---------------------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 5:28:00 PM                           |
| From File                      | Snowshoe Hare - Internal Organs, Silver, mg_kg - ww.xls |
| Full Precision                 | OFF                                                     |
| Confidence Coefficient         | 95%                                                     |
| Number of Bootstrap Operations | 2000                                                    |

# Snowshoe Hare - Internal Organs, Silver, mg/kg - ww

| Lognormal GOI                             | Test on Dete    | ected Observations Only                                 |       |
|-------------------------------------------|-----------------|---------------------------------------------------------|-------|
| Shapiro Wilk Test Statistic               | 0.91            | Shapiro Wilk GOF Test                                   |       |
| 5% Shapiro Wilk Critical Value            | 0.788           | Detected Data appear Lognormal at 5% Significance Le    | vel   |
| Lilliefors Test Statistic                 | 0.183           | Lilliefors GOF Test                                     |       |
| 5% Lilliefors Critical Value              | 0.325           | Detected Data appear Lognormal at 5% Significance Level |       |
| Detected Data app                         | ear Lognorm     | al at 5% Significance Level                             |       |
| Lognormal ROS                             | Statistics Usi  | ing Imputed Non-Detects                                 |       |
| Mean in Original Scale                    | 0.0147          | Mean in Log Scale                                       | -5.17 |
| SD in Original Scale                      | 0.0187          | SD in Log Scale                                         | 1.6   |
| 95% t UCL (assumes normality of ROS data) | 0.0272          | 95% Percentile Bootstrap UCL                            | 0.02  |
| 95% BCA Bootstrap UCL                     | 0.0281          | 95% Bootstrap t UCL                                     | 0.05  |
| 95% H-UCL (Log ROS)                       | 0.619           |                                                         |       |
| Statistics using KM estimates of          | n Logged Dat    | a and Assuming Lognormal Distribution                   |       |
| KM Mean (logged)                          | -5.064          | KM Geo Mean                                             | 0.00  |
| KM SD (logged)                            | 1.397           | 95% Critical H Value (KM-Log)                           | 4.4   |
| KM Standard Error of Mean (logged)        | 0.541           | 95% H-UCL (KM -Log)                                     | 0.1   |
| KM SD (logged)                            | 1.397           | 95% Critical H Value (KM-Log)                           | 4.4   |
| KM Standard Error of Mean (logged)        | 0.541           |                                                         |       |
|                                           | DL/2 Stat       | istics                                                  |       |
| DL/2 Normal                               |                 | DL/2 Log-Transformed                                    |       |
| Mean in Original Scale                    | 0.0146          | Mean in Log Scale                                       | -5.23 |
| SD in Original Scale                      | 0.0187          | SD in Log Scale                                         | 1.7   |
| 95% t UCL (Assumes normality)             | 0.0272          | 95% H-Stat UCL                                          | 0.8   |
| DL/2 is not a recommended me              | thod, provided  | I for comparisons and historical reasons                |       |
| Nonparamet                                | ric Distributio | n Free UCL Statistics                                   |       |
| Detected Data appear Approx               | denote blowne   | Distributed at 5% Oleville and Level                    |       |

# Suggested UCL to Use

95% KM (t) UCL 0.0276

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:28:00 PM

 From File
 Snowshoe Hare - Internal Organs, Silver, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Silver, mg/kg - ww

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Sodium, mg\_kg - ww.xls

 Full Precision

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

Snowshoe Hare - Internal Organs, Sodium, mg/kg - ww

95% Normal UCL

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 1068               | Mean                            | 1225   |
| Maximum                      | 1350               | Median                          | 1248   |
| SD                           | 92.24              | Std. Error of Mean              | 32.61  |
| Coefficient of Variation     | 0.0753             | Skewness                        | -0.651 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.942 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.21  | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

## Assuming Normal Distribution

|      | 95% UCLs (Adjusted for Skewness)  |                                       |
|------|-----------------------------------|---------------------------------------|
| 1287 | 95% Adjusted-CLT UCL (Chen-1995)  | 1271                                  |
|      | 95% Modified-t UCL (Johnson-1978) | 1286                                  |
|      | 1287                              | 1287 95% Adjusted-CLT UCL (Chen-1995) |

#### Gamma GOF Test

| Anderson-Darling Gamma GOF Test                                 | 0.358 | A-D Test Statistic    |  |
|-----------------------------------------------------------------|-------|-----------------------|--|
| 5 Detected data appear Gamma Distributed at 5% Significance     | 0.715 | 5% A-D Critical Value |  |
| 3 Kolmogorov-Smirnov Gamma GOF Test                             | 0.223 | K-S Test Statistic    |  |
| 4 Detected data appear Gamma Distributed at 5% Significance     | 0.294 | 5% K-S Critical Value |  |
| Detected data appear Gamma Distributed at 5% Significance Level |       |                       |  |

#### Gamma Statistics

| k hat (MLE)                    | 195.9  | k star (bias corrected MLE)         | 122.5 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 6.256  | Theta star (bias corrected MLE)     | 10    |
| nu hat (MLE)                   | 3134   | nu star (bias corrected)            | 1960  |
| MLE Mean (bias corrected)      | 1225   | MLE Sd (bias corrected)             | 110.7 |
|                                |        | Approximate Chi Square Value (0.05) | 1858  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 1833  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:28:44 PM From File Snowshoe Hare - Internal Organs, Sodium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Sodium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1292

95% Adjusted Gamma UCL (use when n<50) 1310

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.93  | Shapiro Wilk Lognormal GOF Test                |  |
|------------------------------------------------|-------|------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.22  | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |       |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | 6.973 | Mean of logged Data | 7.108 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 7.208 | SD of logged Data   | 0.077 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 1325 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 1371 | 97.5% Chebyshev (MVUE) UCL | 1434 |
| 99% Chebyshev (MVUE) UCL | 1557 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1279 | 95% Jackknife UCL            | 1287 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 1275 | 95% Bootstrap-t UCL          | 1275 |
| 95% Hall's Bootstrap UCL      | 1272 | 95% Percentile Bootstrap UCL | 1273 |
| 95% BCA Bootstrap UCL         | 1266 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 1323 | 95% Chebyshev(Mean, Sd) UCL  | 1367 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1429 | 99% Chebyshev(Mean, Sd) UCL  | 1550 |

#### Suggested UCL to Use

95% Student's-t UCL 1287

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:28:44 PM

 From File
 Snowshoe Hare - Internal Organs, Sodium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Snowshoe Hare - Internal Organs, Sodium, mg/kg - ww

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Strontium, mg\_kg - ww.xls

 Full Precision

 OFF

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

Snowshoe Hare - Internal Organs, Strontium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.061              | Mean                            | 0.122  |
| Maximum                      | 0.241              | Median                          | 0.115  |
| SD                           | 0.0582             | Std. Error of Mean              | 0.0206 |
| Coefficient of Variation     | 0.479              | Skewness                        | 1.305  |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.89  | Shapiro Wilk GOF Test                       |
|---------------------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic                   | 0.199 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |
| Data appear Normal at 5% Significance Level |       |                                             |

| Assuming | Normal | Distribution |
|----------|--------|--------------|
|----------|--------|--------------|

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |  |
|---------------------|-------|-----------------------------------|-------|--|
| 95% Student's-t UCL | 0.161 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.166 |  |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 0.162 |  |
|                     |       |                                   |       |  |

#### Gamma GOF Test

| A-D Test Statistic    | 0.254    | Anderson-Darling Gamma GOF Test                                 |
|-----------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.719    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.178    | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.295    | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Di | stributed at 5% Significance Level                              |

#### Gamma Statistics

| k hat (MLE)                    | 5.676  | k star (bias corrected MLE)         | 3.631  |
|--------------------------------|--------|-------------------------------------|--------|
| Theta hat (MLE)                | 0.0214 | Theta star (bias corrected MLE)     | 0.0335 |
| nu hat (MLE)                   | 90.81  | nu star (bias corrected)            | 58.09  |
| MLE Mean (bias corrected)      | 0.122  | MLE Sd (bias corrected)             | 0.0638 |
|                                |        | Approximate Chi Square Value (0.05) | 41.57  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 38.06  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:29:27 PM From File Snowshoe Hare - Internal Organs, Strontium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Strontium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.17

95% Adjusted Gamma UCL (use when n<50) 0.186

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.966 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.164 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | -2.797 | Mean of logged Data | -2.198 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -1.423 | SD of logged Data   | 0.448  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.18  | 90% Chebyshev (MVUE) UCL   | 0.179 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.205 | 97.5% Chebyshev (MVUE) UCL | 0.242 |
| 99% Chebyshev (MVUE) UCL | 0.313 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.155 | 95% Jackknife UCL            | 0.161 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.153 | 95% Bootstrap-t UCL          | 0.181 |
| 95% Hall's Bootstrap UCL      | 0.332 | 95% Percentile Bootstrap UCL | 0.156 |
| 95% BCA Bootstrap UCL         | 0.161 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.183 | 95% Chebyshev(Mean, Sd) UCL  | 0.211 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.25  | 99% Chebyshev(Mean, Sd) UCL  | 0.326 |

#### Suggested UCL to Use

95% Student's-t UCL 0.161

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:30:11 PM

 From File
 Snowshoe Hare - Internal Organs, Thallium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Snowshoe Hare - Internal Organs, Thallium, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8         |
|                              |                    | Number of Missing Observations  | 0         |
| Minimum 4                    | 4.7000E-4          | Mean                            | 0.00152   |
| Maximum                      | 0.0034             | Median                          | 0.00149   |
| SD 8                         | 3.8016E-4          | Std. Error of Mean              | 3.1118E-4 |
| Coefficient of Variation     | 0.578              | Skewness                        | 1.413     |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.875 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.256 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

#### Assuming Normal Distribution

| 95% Normal UCL      |                | 95% UCLs (Adjusted for Skewness)  |         |  |
|---------------------|----------------|-----------------------------------|---------|--|
| 95% Student's-t UCL | 0.00211        | 95% Adjusted-CLT UCL (Chen-1995)  | 0.0022  |  |
|                     |                | 95% Modified-t UCL (Johnson-1978) | 0.00214 |  |
|                     |                |                                   |         |  |
|                     | Gamma GOF Test |                                   |         |  |
| A-D Test Statistic  | 0 299          | Anderson-Darling Gamma GOF Test   |         |  |

|   | A-D Test Statistic                                              | 0.299 | Anderson-Daning Gamma GOF Test                                  |  |  |
|---|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| ļ | 5% A-D Critical Value                                           | 0.72  | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
|   | K-S Test Statistic                                              | 0.187 | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| ! | 5% K-S Critical Value                                           | 0.296 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
|   | Detected data appear Gamma Distributed at 5% Significance Level |       |                                                                 |  |  |

#### Gamma Statistics

| k hat (MLE)                    | 3.677     | k star (bias corrected MLE)         | 2.381     |
|--------------------------------|-----------|-------------------------------------|-----------|
| Theta hat (MLE) 4              | 1.1426E-4 | Theta star (bias corrected MLE)     | 6.3962E-4 |
| nu hat (MLE)                   | 58.83     | nu star (bias corrected)            | 38.1      |
| MLE Mean (bias corrected)      | 0.00152   | MLE Sd (bias corrected)             | 9.8702E-4 |
|                                |           | Approximate Chi Square Value (0.05) | 24.97     |
| Adjusted Level of Significance | 0.0195    | Adjusted Chi Square Value           | 22.31     |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:30:11 PM From File Snowshoe Hare - Internal Organs, Thallium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Thallium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.00232

95% Adjusted Gamma UCL (use when n<50) 0.0026

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.956    | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|----------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.186    | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Lognormal at 5% Significance Level |
| Data appear l                  | ognormal | at 5% Significance Level                       |

Data appear Lognormal at 5% Significance Level

#### Lognormal Statistics

| Minimum of Logged Data | -7.663 | Mean of logged Data | -6.629 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -5.684 | SD of logged Data   | 0.583  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.00272 | 90% Chebyshev (MVUE) UCL   | 0.00249 |
|--------------------------|---------|----------------------------|---------|
| 95% Chebyshev (MVUE) UCL | 0.00292 | 97.5% Chebyshev (MVUE) UCL | 0.00352 |
| 99% Chebyshev (MVUE) UCL | 0.00471 |                            |         |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.00203 | 95% Jackknife UCL            | 0.00211 |
|-------------------------------|---------|------------------------------|---------|
| 95% Standard Bootstrap UCL    | 0.00201 | 95% Bootstrap-t UCL          | 0.00232 |
| 95% Hall's Bootstrap UCL      | 0.00462 | 95% Percentile Bootstrap UCL | 0.00201 |
| 95% BCA Bootstrap UCL         | 0.00217 |                              |         |
| 90% Chebyshev(Mean, Sd) UCL   | 0.00246 | 95% Chebyshev(Mean, Sd) UCL  | 0.00288 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.00347 | 99% Chebyshev(Mean, Sd) UCL  | 0.00462 |
|                               |         |                              |         |

#### Suggested UCL to Use

95% Student's-t UCL 0.00211

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:30:55 PM

 From File
 Snowshoe Hare - Internal Organs, Tin, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Tin, mg/kg - ww

#### **General Statistics**

8

0

Total Number of Observations Number of Detects

Number of Distinct Detects 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Tin, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:31:38 PM From File Snowshoe Hare - Internal Organs, Titanium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Titanium, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 7       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.102              | Mean                            | 0.114   |
| Maximum                      | 0.137              | Median                          | 0.112   |
| SD                           | 0.0119             | Std. Error of Mean              | 0.00419 |
| Coefficient of Variation     | 0.104              | Skewness                        | 0.934   |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic                 | 0.882 | Shapiro Wilk GOF Test                       |  |
|---------------------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value              | 0.818 | Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                   | 0.247 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value                | 0.283 | Data appear Normal at 5% Significance Level |  |
| Data appear Normal at 5% Significance Level |       |                                             |  |

| Assuming Normal Distrib | Dution |  |
|-------------------------|--------|--|
|-------------------------|--------|--|

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |  |
|---------------------|-------|-----------------------------------|-------|--|
| 95% Student's-t UCL | 0.122 | 95% Adjusted-CLT UCL (Chen-1995)  | 0.122 |  |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 0.122 |  |
|                     |       |                                   |       |  |

#### Gamma GOF Test

| A-D Test Statistic     | 0.464   | Anderson-Darling Gamma GOF Test                                 |
|------------------------|---------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.715   | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.261   | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value  | 0.294   | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data annear ( | Gamma D | istributed at 5% Significance Level                             |

mma Distributed at 5% Significance Level tected data appear

#### Gamma Statistics

| k hat (MLE)                    | 109.6   | k star (bias corrected MLE)         | 68.58   |
|--------------------------------|---------|-------------------------------------|---------|
| Theta hat (MLE)                | 0.00104 | Theta star (bias corrected MLE)     | 0.00166 |
| nu hat (MLE)                   | 1754    | nu star (bias corrected)            | 1097    |
| MLE Mean (bias corrected)      | 0.114   | MLE Sd (bias corrected)             | 0.0138  |
|                                |         | Approximate Chi Square Value (0.05) | 1021    |
| Adjusted Level of Significance | 0.0195  | Adjusted Chi Square Value           | 1003    |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:31:38 PM From File Snowshoe Hare - Internal Organs, Titanium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Titanium, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 0.122

95% Adjusted Gamma UCL (use when n<50)

0.125

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic                    | 0.894 | Shapiro Wilk Lognormal GOF Test                |
|------------------------------------------------|-------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value                 | 0.818 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                      | 0.246 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value                   | 0.283 | Data appear Lognormal at 5% Significance Level |
| Data appear Lognormal at 5% Significance Level |       |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | -2.283 | Mean of logged Data | -2.177 |
|------------------------|--------|---------------------|--------|
| Maximum of Logged Data | -1.991 | SD of logged Data   | 0.101  |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.122 | 90% Chebyshev (MVUE) UCL   | 0.126 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.132 | 97.5% Chebyshev (MVUE) UCL | 0.139 |
| 99% Chebyshev (MVUE) UCL | 0.154 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.121 | 95% Jackknife UCL            | 0.122 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.12  | 95% Bootstrap-t UCL          | 0.124 |
| 95% Hall's Bootstrap UCL      | 0.122 | 95% Percentile Bootstrap UCL | 0.12  |
| 95% BCA Bootstrap UCL         | 0.122 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.126 | 95% Chebyshev(Mean, Sd) UCL  | 0.132 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.14  | 99% Chebyshev(Mean, Sd) UCL  | 0.156 |

#### Suggested UCL to Use

95% Student's-t UCL 0.122

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:32:22 PM

 From File
 Snowshoe Hare - Internal Organs, Uranium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Snowshoe Hare - Internal Organs, Uranium, mg/kg - ww

#### **General Statistics**

Total Number of Observations8Number of Detects0

Number of Distinct Detects 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Uranium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:33:06 PM From File Snowshoe Hare - Internal Organs, Vanadium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Vanadium, mg/kg - ww

#### **General Statistics**

 Total Number of Observations
 8

 Number of Detects
 0

Number of Distinct Detects 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 8

Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Snowshoe Hare - Internal Organs, Vanadium, mg/kg - ww was not processed!

 User Selected Options

 Date/Time of Computation

 From File

 Snowshoe Hare - Internal Organs, Zinc, mg\_kg - ww.xls

 Full Precision

 Confidence Coefficient

 95%

 Number of Bootstrap Operations

 2000

#### Snowshoe Hare - Internal Organs, Zinc, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 8                  | Number of Distinct Observations | 8      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 18.15              | Mean                            | 20.04  |
| Maximum                      | 21.6               | Median                          | 20.48  |
| SD                           | 1.154              | Std. Error of Mean              | 0.408  |
| Coefficient of Variation     | 0.0576             | Skewness                        | -0.654 |

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.91     | Shapiro Wilk GOF Test                       |
|--------------------------------|----------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818    | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.265    | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.283    | Data appear Normal at 5% Significance Level |
| Data appear                    | Normal a | t 5% Significance Level                     |

### Assuming Normal Distribution

| 95% Normal UCL      |       | 95% UCLs (Adjusted for Skewness)  |       |
|---------------------|-------|-----------------------------------|-------|
| 95% Student's-t UCL | 20.81 | 95% Adjusted-CLT UCL (Chen-1995)  | 20.61 |
|                     |       | 95% Modified-t UCL (Johnson-1978) | 20.79 |
|                     |       |                                   |       |

#### Gamma GOF Test

| Statistic 0.498 Anderson-Darling Gamma GOF                 | Test               |
|------------------------------------------------------------|--------------------|
| I Value 0.715 Detected data appear Gamma Distributed at 5% | Significance Level |
| Statistic 0.278 Kolmogorov-Smirnov Gamma GO                | F Test             |
| I Value 0.294 Detected data appear Gamma Distributed at 5% | Significance Level |
| appear Gamma Distributed at 5% Significance Level          |                    |

#### Gamma Statistics

| k hat (MLE)                    | 337.2  | k star (bias corrected MLE)         | 210.8 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 0.0594 | Theta star (bias corrected MLE)     | 0.095 |
| nu hat (MLE)                   | 5396   | nu star (bias corrected)            | 3374  |
| MLE Mean (bias corrected)      | 20.04  | MLE Sd (bias corrected)             | 1.38  |
|                                |        | Approximate Chi Square Value (0.05) | 3240  |
| Adjusted Level of Significance | 0.0195 | Adjusted Chi Square Value           | 3206  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 5:33:49 PM From File Snowshoe Hare - Internal Organs, Zinc, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Snowshoe Hare - Internal Organs, Zinc, mg/kg - ww

#### Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 20.87

95% Adjusted Gamma UCL (use when n<50) 21.08

#### Lognormal GOF Test

| Shapiro Wilk Test Statistic    | 0.901       | Shapiro Wilk Lognormal GOF Test                |
|--------------------------------|-------------|------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.818       | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.271       | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.283       | Data appear Lognormal at 5% Significance Level |
| Data appear L                  | .ognormal a | at 5% Significance Level                       |

#### Lognormal Statistics

| Minimum of Logged Data | 2.899 | Mean of logged Data | 2.996  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 3.073 | SD of logged Data   | 0.0586 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A   | 90% Chebyshev (MVUE) UCL   | 21.28 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 21.85 | 97.5% Chebyshev (MVUE) UCL | 22.63 |
| 99% Chebyshev (MVUE) UCL | 24.17 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 20.71 | 95% Jackknife UCL            | 20.81 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 20.66 | 95% Bootstrap-t UCL          | 20.68 |
| 95% Hall's Bootstrap UCL      | 20.62 | 95% Percentile Bootstrap UCL | 20.64 |
| 95% BCA Bootstrap UCL         | 20.57 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 21.26 | 95% Chebyshev(Mean, Sd) UCL  | 21.82 |
| 97.5% Chebyshev(Mean, Sd) UCL | 22.59 | 99% Chebyshev(Mean, Sd) UCL  | 24.1  |

#### Suggested UCL to Use

95% Student's-t UCL 20.81

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 5:33:49 PM

 From File
 Snowshoe Hare - Internal Organs, Zinc, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Snowshoe Hare - Internal Organs, Zinc, mg/kg - ww

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

# ATTACHMENT D

**ProUCL Outputs: Blueberry** 

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 7:50:26 PM

 From File
 Blueberry, Aluminum, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Aluminum, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 32.3               | Mean                            | 56.26 |
| Maximum                      | 99.5               | Median                          | 44.4  |
| SD                           | 23.85              | Std. Error of Mean              | 7.542 |
| Coefficient of Variation     | 0.424              | Skewness                        | 0.958 |
|                              |                    |                                 |       |

#### Normal GOF Test

# Shapiro Wilk Test Statistic0.852Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data appear Normal at 5% Significance LevelLilliefors Test Statistic0.279Lilliefors GOF Test5% Lilliefors Critical Value0.262Data Not Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

| Ass                            | uming Norn | nal Distribution                                          |         |
|--------------------------------|------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 70.09      | 95% Adjusted-CLT UCL (Chen-1995)                          | 71.11   |
|                                |            | 95% Modified-t UCL (Johnson-1978)                         | 70.47   |
|                                | Gamma C    | GOF Test                                                  |         |
| A-D Test Statistic             | 0.568      | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.728      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.265      | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.267      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma Dis  | tributed at 5% Significance Level                         |         |
|                                | Gamma S    | Statistics                                                |         |
| k hat (MLE)                    | 6.926      | k star (bias corrected MLE)                               | 4.915   |
| Theta hat (MLE)                | 8.123      | Theta star (bias corrected MLE)                           | 11.45   |
| nu hat (MLE)                   | 138.5      | nu star (bias corrected)                                  | 98.3    |
| MLE Mean (bias corrected)      | 56.26      | MLE Sd (bias corrected)                                   | 25.38   |
|                                |            | Approximate Chi Square Value (0.05)                       | 76.43   |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                 | 73.08   |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 75.67

95% Approximate Gamma UCL (use when n>=50)) 72.36

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:50:26 PM From File Blueberry, Aluminum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Aluminum, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.903                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.243                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 3.475 | Mean of logged Data | 3.956 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 4.6   | SD of logged Data   | 0.397 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 74.46 | 90% Chebyshev (MVUE) UCL   | 77.4  |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 87.06 | 97.5% Chebyshev (MVUE) UCL | 100.5 |
| 99% Chebyshev (MVUE) UCL | 126.8 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 68.67 | 95% Jackknife UCL            | 70.09 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 67.88 | 95% Bootstrap-t UCL          | 76.07 |
| 95% Hall's Bootstrap UCL      | 70.3  | 95% Percentile Bootstrap UCL | 68.21 |
| 95% BCA Bootstrap UCL         | 69.44 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 78.89 | 95% Chebyshev(Mean, Sd) UCL  | 89.14 |
| 97.5% Chebyshev(Mean, Sd) UCL | 103.4 | 99% Chebyshev(Mean, Sd) UCL  | 131.3 |

#### Suggested UCL to Use

95% Student's-t UCL 70.09

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 7:51:09 PM

 From File
 Blueberry, Antimony, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Antimony, mg/kg - dw

#### **General Statistics**

10

1

Total Number of Observations Number of Detects

Number of Distinct Detects 1

Number of Distinct Observations 2

Number of Non-Detects 9

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Antimony, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:51:50 PM From File Blueberry, Arsenic, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Arsenic, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 5      |
| Number of Detects            | 4                  | Number of Non-Detects           | 6      |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.025              | Minimum Non-Detect              | 0.02   |
| Maximum Detect               | 0.122              | Maximum Non-Detect              | 0.02   |
| Variance Detects             | 0.0022             | Percent Non-Detects             | 60%    |
| Mean Detects                 | 0.0518             | SD Detects                      | 0.0469 |
| Median Detects               | 0.0302             | CV Detects                      | 0.904  |
| Skewness Detects             | 1.978              | Kurtosis Detects                | 3.926  |
| Mean of Logged Detects       | -3.2               | SD of Logged Detects            | 0.737  |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.687 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.748 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.414 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.375 | Detected Data Not Normal at 5% Significance Level |
| Data and Data                  |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0327 | KM Standard Error of Mean         | 0.011  |
|------------------------|--------|-----------------------------------|--------|
| KM SD                  | 0.03   | 95% KM (BCA) UCL                  | N/A    |
| 95% KM (t) UCL         | 0.0528 | 95% KM (Percentile Bootstrap) UCL | N/A    |
| 95% KM (z) UCL         | 0.0508 | 95% KM Bootstrap t UCL            | N/A    |
| 90% KM Chebyshev UCL   | 0.0656 | 95% KM Chebyshev UCL              | 0.0805 |
| 97.5% KM Chebyshev UCL | 0.101  | 99% KM Chebyshev UCL              | 0.142  |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.731 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.66  | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.418 | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.398 | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 0.726  | k star (bias corrected MLE)     | 2.237  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0714 | Theta star (bias corrected MLE) | 0.0232 | Theta hat (MLE) |
| 5.807  | nu star (bias corrected)        | 17.9   | nu hat (MLE)    |
|        |                                 | 0.0518 | Mean (detects)  |

| User Selected Options          | 6                                  |
|--------------------------------|------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 7:51:50 PM      |
| From File                      | Blueberry, Arsenic, mg_kg - dw.xls |
| Full Precision                 | OFF                                |
| Confidence Coefficient         | 95%                                |
| Number of Bootstrap Operations | 2000                               |

#### Blueberry, Arsenic, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01   | Mean                                        | 0.0267 |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.122  | Median                                      | 0.01   |
| SD                                              | 0.0346 | CV                                          | 1.295  |
| k hat (MLE)                                     | 1.329  | k star (bias corrected MLE)                 | 0.997  |
| Theta hat (MLE)                                 | 0.0201 | Theta star (bias corrected MLE)             | 0.0268 |
| nu hat (MLE)                                    | 26.59  | nu star (bias corrected)                    | 19.94  |
| Adjusted Level of Significance (β)              | 0.0267 |                                             |        |
| Approximate Chi Square Value (19.94, $\alpha$ ) | 10.81  | Adjusted Chi Square Value (19.94, $\beta$ ) | 9.662  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0493 | 95% Gamma Adjusted UCL (use when n<50)      | N/A    |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0327    | SD (KM)                   | 0.03   |
|---------------------------|-----------|---------------------------|--------|
| Variance (KM) 9           | 9.0211E-4 | SE of Mean (KM)           | 0.011  |
| k hat (KM)                | 1.188     | k star (KM)               | 0.898  |
| nu hat (KM)               | 23.75     | nu star (KM)              | 17.96  |
| theta hat (KM)            | 0.0276    | theta star (KM)           | 0.0364 |
| 80% gamma percentile (KM) | 0.0531    | 90% gamma percentile (KM) | 0.0774 |
| 95% gamma percentile (KM) | 0.102     | 99% gamma percentile (KM) | 0.159  |

8.305 0.0708

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (17.96, $\alpha$ ) | 9.363  | Adjusted Chi Square Value (17.96, β)      |
|-------------------------------------------------|--------|-------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0628 | 95% Gamma Adjusted KM-UCL (use when n<50) |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.755     | Shapiro Wilk GOF Test                                   |
|--------------------------------|-----------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.748     | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.379     | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.375     | Detected Data Not Lognormal at 5% Significance Level    |
| Detected Data appear Ap        | nrovimate | a Lognormal at 5% Significance Level                    |

Detected Data appear Approximate Lognormal at 5% Significance Level

| User Selected Options          | 3                                  |
|--------------------------------|------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 7:51:50 PM      |
| From File                      | Blueberry, Arsenic, mg_kg - dw.xls |
| Full Precision                 | OFF                                |
| Confidence Coefficient         | 95%                                |
| Number of Bootstrap Operations | 2000                               |

#### Blueberry, Arsenic, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0235 | Mean in Log Scale            | -4.677 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0365 | SD in Log Scale              | 1.486  |
| 95% t UCL (assumes normality of ROS data) | 0.0446 | 95% Percentile Bootstrap UCL | 0.0447 |
| 95% BCA Bootstrap UCL                     | 0.0532 | 95% Bootstrap t UCL          | 0.0787 |
| 95% H-UCL (Log ROS)                       | 0.222  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -3.627 | KM Geo Mean                   | 0.0266 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.534  | 95% Critical H Value (KM-Log) | 2.268  |
| KM Standard Error of Mean (logged) | 0.195  | 95% H-UCL (KM -Log)           | 0.0459 |
| KM SD (logged)                     | 0.534  | 95% Critical H Value (KM-Log) | 2.268  |
| KM Standard Error of Mean (logged) | 0.195  |                               |        |

#### DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-Tran                                           | sformed           |        |
|-------------------------------|---------------------------------------------------------|-------------------|--------|
| Mean in Original Scale        | 0.0267                                                  | Mean in Log Scale | -4.043 |
| SD in Original Scale          | 0.0346                                                  | SD in Log Scale   | 0.842  |
| 95% t UCL (Assumes normality) | 0.0468                                                  | 95% H-Stat UCL    | 0.0546 |
| DL/2 is not a recommended ma  | wheel are vided for comparisons and biotoxical research |                   |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

#### Suggested UCL to Use

KM H-UCL 0.0459

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:52:33 PMFrom FileBlueberry, Barium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Barium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 14.4               | Mean                            | 18.02 |
| Maximum                      | 22.8               | Median                          | 17.8  |
| SD                           | 2.664              | Std. Error of Mean              | 0.842 |
| Coefficient of Variation     | 0.148              | Skewness                        | 0.385 |
|                              |                    |                                 |       |

#### Normal GOF Test

# Shapiro Wilk Test Statistic0.963Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data appear Normal at 5% Significance LevelLilliefors Test Statistic0.159Lilliefors GOF Test5% Lilliefors Critical Value0.262Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

|                             | Assuming Nor                      | mal Distribution                                                                           |                |
|-----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|----------------|
| 95% Normal UCL              |                                   | 95% UCLs (Adjusted for Skewness)                                                           |                |
| 95% Student's-t U           | CL 19.57                          | 95% Adjusted-CLT UCL (Chen-1995)                                                           | 19.52          |
|                             |                                   | 95% Modified-t UCL (Johnson-1978)                                                          | 19.58          |
|                             | Gamma                             | GOF Test                                                                                   |                |
| A-D Test Statis             | stic 0.204                        | Anderson-Darling Gamma GOF Test                                                            |                |
| 5% A-D Critical Va          | lue 0.724                         | Detected data appear Gamma Distributed at 5% Significanc                                   | e Level        |
| K-S Test Statis             | stic 0.138                        | Kolmogorov-Smirnov Gamma GOF Test                                                          |                |
| 5% K-S Critical Va          | lue 0.266                         | Detected data appear Gamma Distributed at 5% Significanc                                   | e Level        |
| Detected data app           | ear Gamma Di                      | stributed at 5% Significance Level                                                         |                |
|                             |                                   |                                                                                            |                |
|                             | Gamma                             | Statistics                                                                                 |                |
| k hat (ML                   |                                   | Statistics<br>k star (bias corrected MLE)                                                  | 36.13          |
| k hat (ML<br>Theta hat (ML  | .E) 51.52                         |                                                                                            | 36.13<br>0.499 |
| · ·                         | E) 51.52<br>E) 0.35               | k star (bias corrected MLE)                                                                |                |
| Theta hat (ML               | .E) 51.52<br>.E) 0.35<br>.E) 1030 | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                             | 0.499          |
| Theta hat (ML<br>nu hat (ML | .E) 51.52<br>.E) 0.35<br>.E) 1030 | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)<br>nu star (bias corrected) | 0.499<br>722.6 |

95% Adjusted Gamma UCL (use when n<50) 20.01

95% Approximate Gamma UCL (use when n>=50)) 19.7

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:52:33 PM From File Blueberry, Barium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Barium, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.969                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.133                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 2.667                       | Mean of logged Data | 2.882 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 3.127                       | SD of logged Data   | 0.147 |
|                        |                             |                     |       |
| Assun                  | ning Lognormal Distribution |                     |       |

| 95% H-UCL                | 19.74 | 90% Chebyshev (MVUE) UCL   | 20.54 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 21.68 | 97.5% Chebyshev (MVUE) UCL | 23.26 |
| 99% Chebyshev (MVUE) UCL | 26.37 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 19.41 | 95% Jackknife UCL            | 19.57 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 19.31 | 95% Bootstrap-t UCL          | 19.75 |
| 95% Hall's Bootstrap UCL      | 19.68 | 95% Percentile Bootstrap UCL | 19.36 |
| 95% BCA Bootstrap UCL         | 19.38 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 20.55 | 95% Chebyshev(Mean, Sd) UCL  | 21.7  |
| 97.5% Chebyshev(Mean, Sd) UCL | 23.28 | 99% Chebyshev(Mean, Sd) UCL  | 26.41 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 19.57

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:53:15 PM From File Blueberry, Beryllium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Beryllium, mg/kg - dw

#### **General Statistics**

 Total Number of Observations
 10

 Number of Detects
 0

 Number of Distinct Detects
 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Beryllium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:53:57 PM From File Blueberry, Bismuth, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Bismuth, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 10 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 10 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Bismuth, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:54:38 PMFrom FileBlueberry, Boron, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Boron, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 5.4                | Mean                            | 7.99  |
| Maximum                      | 10.5               | Median                          | 8.05  |
| SD                           | 1.571              | Std. Error of Mean              | 0.497 |
| Coefficient of Variation     | 0.197              | Skewness                        | 0.134 |
|                              |                    |                                 |       |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.973 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.114 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution   |           |                                                          |         |  |  |
|--------------------------------|-----------|----------------------------------------------------------|---------|--|--|
| 95% Normal UCL                 |           | 95% UCLs (Adjusted for Skewness)                         |         |  |  |
| 95% Student's-t UCL            | 8.901     | 95% Adjusted-CLT UCL (Chen-1995)                         | 8.83    |  |  |
|                                |           | 95% Modified-t UCL (Johnson-1978)                        | 8.904   |  |  |
|                                | Gamma (   | GOF Test                                                 |         |  |  |
| A-D Test Statistic             | 0.184     | Anderson-Darling Gamma GOF Test                          |         |  |  |
| 5% A-D Critical Value          | 0.725     | Detected data appear Gamma Distributed at 5% Significanc | e Level |  |  |
| K-S Test Statistic             | 0.128     | Kolmogorov-Smirnov Gamma GOF Test                        |         |  |  |
| 5% K-S Critical Value          | 0.266     | Detected data appear Gamma Distributed at 5% Significanc | e Level |  |  |
| Detected data appear           | Gamma Dis | stributed at 5% Significance Level                       |         |  |  |
|                                |           |                                                          |         |  |  |
|                                | Gamma     | Statistics                                               |         |  |  |
| k hat (MLE)                    | 28.16     | k star (bias corrected MLE)                              | 19.78   |  |  |
| Theta hat (MLE)                | 0.284     | Theta star (bias corrected MLE)                          | 0.404   |  |  |
| nu hat (MLE)                   | 563.2     | nu star (bias corrected)                                 | 395.5   |  |  |
| MLE Mean (bias corrected)      | 7.99      | MLE Sd (bias corrected)                                  | 1.797   |  |  |
|                                |           | Approximate Chi Square Value (0.05)                      | 350.4   |  |  |
| Adjusted Level of Significance | 0.0267    | Adjusted Chi Square Value                                | 343.1   |  |  |
|                                |           |                                                          |         |  |  |
| Ass                            | uming Gam | ma Distribution                                          |         |  |  |

95% Adjusted Gamma UCL (use when n<50) 9.212

95% Approximate Gamma UCL (use when n>=50)) 9.018

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:54:38 PMFrom FileBlueberry, Boron, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Boron, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.972                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.138                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 1.686                       | Mean of logged Data | 2.06  |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 2.351                       | SD of logged Data   | 0.201 |
| Assu                   | ming Lognormal Distribution |                     |       |
|                        |                             |                     |       |

| 95% H-UCL                | 9.085 | 90% Chebyshev (MVUE) UCL   | 9.522 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 10.21 | 97.5% Chebyshev (MVUE) UCL | 11.18 |
| 99% Chebyshev (MVUE) UCL | 13.07 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 8.807 | 95% Jackknife UCL              | 8.901                                                                                        |
|-------|--------------------------------|----------------------------------------------------------------------------------------------|
| 8.767 | 95% Bootstrap-t UCL            | 8.96                                                                                         |
| 9.011 | 95% Percentile Bootstrap UCL   | 8.74                                                                                         |
| 8.77  |                                |                                                                                              |
| 9.48  | 95% Chebyshev(Mean, Sd) UCL    | 10.16                                                                                        |
| 11.09 | 99% Chebyshev(Mean, Sd) UCL    | 12.93                                                                                        |
|       | 8.767<br>9.011<br>8.77<br>9.48 | 8.76795% Bootstrap-t UCL9.01195% Percentile Bootstrap UCL8.779.4895% Chebyshev(Mean, Sd) UCL |

#### Suggested UCL to Use

95% Student's-t UCL 8.901

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:55:20 PM From File Blueberry, Cadmium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Cadmium, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9       |
| Number of Detects            | 8                  | Number of Non-Detects           | 2       |
| Number of Distinct Detects   | 8                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.0057             | Minimum Non-Detect              | 0.005   |
| Maximum Detect               | 0.01               | Maximum Non-Detect              | 0.005   |
| Variance Detects             | 1.9107E-6          | Percent Non-Detects             | 20%     |
| Mean Detects                 | 0.00743            | SD Detects                      | 0.00138 |
| Median Detects               | 0.0076             | CV Detects                      | 0.186   |
| Skewness Detects             | 0.596              | Kurtosis Detects                | 0.637   |
| Mean of Logged Detects       | -4.918             | SD of Logged Detects            | 0.184   |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.935 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.818 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.188 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.283 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| • |                        | -       | •                                 |          |
|---|------------------------|---------|-----------------------------------|----------|
|   | KM Mean                | 0.00694 | KM Standard Error of Mean 5       | .1028E-4 |
|   | KM SD                  | 0.00151 | 95% KM (BCA) UCL                  | 0.0077   |
|   | 95% KM (t) UCL         | 0.00788 | 95% KM (Percentile Bootstrap) UCL | 0.00777  |
|   | 95% KM (z) UCL         | 0.00778 | 95% KM Bootstrap t UCL            | 0.00795  |
|   | 90% KM Chebyshev UCL   | 0.00847 | 95% KM Chebyshev UCL              | 0.00916  |
|   | 97.5% KM Chebyshev UCL | 0.0101  | 99% KM Chebyshev UCL              | 0.012    |
|   |                        |         |                                   |          |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.292 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.716 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.171 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris da da terra a com |       | strikuted at E% Oispifeenee Level                               |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| k hat (MLE) 33.81         | k star (bias corrected MLE) 21.21         |
|---------------------------|-------------------------------------------|
| Theta hat (MLE) 2.1962E-4 | Theta star (bias corrected MLE) 3.5001E-4 |
| nu hat (MLE) 540.9        | nu star (bias corrected) 339.4            |
| Mean (detects) 0.00743    |                                           |

| User Selected Options          | 3                                  |
|--------------------------------|------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 7:55:20 PM      |
| From File                      | Blueberry, Cadmium, mg_kg - dw.xls |
| Full Precision                 | OFF                                |
| Confidence Coefficient         | 95%                                |
| Number of Bootstrap Operations | 2000                               |

#### Blueberry, Cadmium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0057    | Mean                                         | 0.00794   |
|--------------------------------------------------|-----------|----------------------------------------------|-----------|
| Maximum                                          | 0.01      | Median                                       | 0.0078    |
| SD                                               | 0.00163   | CV                                           | 0.206     |
| k hat (MLE)                                      | 25.93     | k star (bias corrected MLE)                  | 18.22     |
| Theta hat (MLE)                                  | 3.0617E-4 | Theta star (bias corrected MLE)              | 1.3578E-4 |
| nu hat (MLE)                                     | 518.7     | nu star (bias corrected)                     | 364.4     |
| Adjusted Level of Significance ( $\beta$ )       | 0.0267    |                                              |           |
| Approximate Chi Square Value (364.40, $\alpha$ ) | 321.2     | Adjusted Chi Square Value (364.40, $\beta$ ) | 314.1     |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.00901   | 95% Gamma Adjusted UCL (use when n<50)       | 0.00921   |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.00694   | SD (KM)                   | 0.00151   |
|---------------------------|-----------|---------------------------|-----------|
| Variance (KM)             | 2.2784E-6 | SE of Mean (KM)           | 5.1028E-4 |
| k hat (KM)                | 21.14     | k star (KM)               | 14.86     |
| nu hat (KM)               | 422.8     | nu star (KM)              | 297.3     |
| theta hat (KM)            | 3.2830E-4 | theta star (KM)           | 4.6690E-4 |
| 80% gamma percentile (KM) | 0.00839   | 90% gamma percentile (KM) | 0.00932   |
| 95% gamma percentile (KM) | 0.0101    | 99% gamma percentile (KM) | 0.0118    |

#### Gamma Kaplan-Meier (KM) Statistics

 Approximate Chi Square Value (297.28, α)
 258.3
 Adjusted Chi Square Value (297.28, β)
 252

 95% Gamma Approximate KM-UCL (use when n>=50)
 0.00799
 95% Gamma Adjusted KM-UCL (use when n<50)</td>
 0.00819

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.948 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.818 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.179 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.283 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

| User Selected Options          | 6                                  |
|--------------------------------|------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 7:55:20 PM      |
| From File                      | Blueberry, Cadmium, mg_kg - dw.xls |
| Full Precision                 | OFF                                |
| Confidence Coefficient         | 95%                                |
| Number of Bootstrap Operations | 2000                               |

#### Blueberry, Cadmium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.00688 | Mean in Log Scale            | -5.007  |
|-------------------------------------------|---------|------------------------------|---------|
| SD in Original Scale                      | 0.00169 | SD in Log Scale              | 0.25    |
| 95% t UCL (assumes normality of ROS data) | 0.00785 | 95% Percentile Bootstrap UCL | 0.0077  |
| 95% BCA Bootstrap UCL                     | 0.00773 | 95% Bootstrap t UCL          | 0.00791 |
| 95% H-UCL (Log ROS)                       | 0.0081  |                              |         |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -4.994 | KM Geo Mean                   | 0.00678 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.216  | 95% Critical H Value (KM-Log) | 1.896   |
| KM Standard Error of Mean (logged) | 0.0731 | 95% H-UCL (KM -Log)           | 0.00796 |
| KM SD (logged)                     | 0.216  | 95% Critical H Value (KM-Log) | 1.896   |
| KM Standard Error of Mean (logged) | 0.0731 |                               |         |

#### DL/2 Statistics

| DL/2 Normal                                                                       | DL/2 Log-Tra | nsformed          |         |
|-----------------------------------------------------------------------------------|--------------|-------------------|---------|
| Mean in Original Scale                                                            | 0.00644      | Mean in Log Scale | -5.133  |
| SD in Original Scale                                                              | 0.00241      | SD in Log Scale   | 0.481   |
| 95% t UCL (Assumes normality)                                                     | 0.00784      | 95% H-Stat UCL    | 0.00942 |
| DL/2 is not a recommended method, provided for comparisons and historical records |              |                   |         |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.00788

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 7:56:02 PM

 From File
 Blueberry, Calcium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Calcium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 1220               | Mean                            | 1498  |
| Maximum                      | 1810               | Median                          | 1460  |
| SD                           | 210.6              | Std. Error of Mean              | 66.61 |
| Coefficient of Variation     | 0.141              | Skewness                        | 0.235 |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.939 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.144 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution |                                                                                                          |                                                                                                                                                                                                               |  |
|------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                              | 95% UCLs (Adjusted for Skewness)                                                                         |                                                                                                                                                                                                               |  |
| 1620                         | 95% Adjusted-CLT UCL (Chen-1995)                                                                         | 1613                                                                                                                                                                                                          |  |
|                              | 95% Modified-t UCL (Johnson-1978)                                                                        | 1621                                                                                                                                                                                                          |  |
| Gamma                        | GOF Test                                                                                                 |                                                                                                                                                                                                               |  |
| 0.274                        | Anderson-Darling Gamma GOF Test                                                                          |                                                                                                                                                                                                               |  |
| 0.724                        | Detected data appear Gamma Distributed at 5% Significance Level                                          |                                                                                                                                                                                                               |  |
| 0.145                        | Kolmogorov-Smirnov Gamma GOF Test                                                                        |                                                                                                                                                                                                               |  |
| 0.266                        | Detected data appear Gamma Distributed at 5% Significance Level                                          |                                                                                                                                                                                                               |  |
| Gamma Di                     | stributed at 5% Significance Level                                                                       |                                                                                                                                                                                                               |  |
|                              |                                                                                                          |                                                                                                                                                                                                               |  |
| Gamma                        | Statistics                                                                                               |                                                                                                                                                                                                               |  |
| 56.54                        | k star (bias corrected MLE)                                                                              | 39.65                                                                                                                                                                                                         |  |
| 26.49                        | Theta star (bias corrected MLE)                                                                          | 37.78                                                                                                                                                                                                         |  |
| 1131                         | nu star (bias corrected)                                                                                 | 792.9                                                                                                                                                                                                         |  |
| 1498                         | MLE Sd (bias corrected)                                                                                  | 237.9                                                                                                                                                                                                         |  |
|                              | Approximate Chi Square Value (0.05)                                                                      | 728.6                                                                                                                                                                                                         |  |
| 0.0267                       | Adjusted Chi Square Value                                                                                | 717.8                                                                                                                                                                                                         |  |
|                              | 1620<br>Gamma<br>0.274<br>0.724<br>0.145<br>0.266<br>Gamma Di<br>Gamma<br>56.54<br>26.49<br>1131<br>1498 | 95% UCLs (Adjusted for Skewness)<br>1620 95% Adjusted-CLT UCL (Chen-1995)<br>95% Modified-t UCL (Johnson-1978)<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |  |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 1655

95% Approximate Gamma UCL (use when n>=50)) 1630

User Selected Options Date/Time of Computation From File Blueberry, Calcium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Calcium, mg/kg - dw

|                                                | Lognormal GOF Test |                                                |  |
|------------------------------------------------|--------------------|------------------------------------------------|--|
| Shapiro Wilk Test Statistic                    | 0.945              | Shapiro Wilk Lognormal GOF Test                |  |
| 5% Shapiro Wilk Critical Value                 | 0.842              | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.133              | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.262              | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |                    |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | 7.107 | Mean of logged Data | 7.303 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 7.501 | SD of logged Data   | 0.14  |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 1634 | 90% Chebyshev (MVUE) UCL   | 1698 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 1788 | 97.5% Chebyshev (MVUE) UCL | 1914 |
| 99% Chebyshev (MVUE) UCL | 2160 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1608 | 95% Jackknife UCL            | 1620 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 1602 | 95% Bootstrap-t UCL          | 1622 |
| 95% Hall's Bootstrap UCL      | 1595 | 95% Percentile Bootstrap UCL | 1602 |
| 95% BCA Bootstrap UCL         | 1607 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 1698 | 95% Chebyshev(Mean, Sd) UCL  | 1788 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1914 | 99% Chebyshev(Mean, Sd) UCL  | 2161 |
|                               |      |                              |      |

#### Suggested UCL to Use

95% Student's-t UCL 1620

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:56:44 PM From File Blueberry, Chromium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Chromium, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 

 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Chromium, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:57:26 PMFrom FileBlueberry, Cobalt, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Cobalt, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 

 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Cobalt, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 7:58:08 PM

 From File
 Blueberry, Copper, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Copper, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 1.96               | Mean                            | 2.594  |
| Maximum                      | 2.93               | Median                          | 2.773  |
| SD                           | 0.346              | Std. Error of Mean              | 0.109  |
| Coefficient of Variation     | 0.133              | Skewness                        | -0.864 |
|                              |                    |                                 |        |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.856 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.281 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level    |

Data appear Approximate Normal at 5% Significance Level

| Ass                                                 | suming Norma | al Distribution                                    |        |  |
|-----------------------------------------------------|--------------|----------------------------------------------------|--------|--|
| 95% Normal UCL                                      |              | 95% UCLs (Adjusted for Skewness)                   |        |  |
| 95% Student's-t UCL                                 | 2.794        | 95% Adjusted-CLT UCL (Chen-1995)                   | 2.742  |  |
|                                                     |              | 95% Modified-t UCL (Johnson-1978)                  | 2.789  |  |
|                                                     | Gamma G      | OF Test                                            |        |  |
| A-D Test Statistic                                  | 0.738        | Anderson-Darling Gamma GOF Test                    |        |  |
| 5% A-D Critical Value                               | 0.724        | Data Not Gamma Distributed at 5% Significance Leve | el     |  |
| K-S Test Statistic                                  | 0.296        | Kolmogorov-Smirnov Gamma GOF Test                  |        |  |
| 5% K-S Critical Value                               | 0.266        | Data Not Gamma Distributed at 5% Significance Leve | ł      |  |
| Data Not Gamma Distributed at 5% Significance Level |              |                                                    |        |  |
|                                                     |              |                                                    |        |  |
|                                                     | Gamma S      | tatistics                                          |        |  |
| k hat (MLE)                                         | 57.9         | k star (bias corrected MLE)                        | 40.6   |  |
| Theta hat (MLE)                                     | 0.0448       | Theta star (bias corrected MLE)                    | 0.0639 |  |
| nu hat (MLE)                                        | 1158         | nu star (bias corrected)                           | 811.9  |  |
| MLE Mean (bias corrected)                           | 2.594        | MLE Sd (bias corrected)                            | 0.407  |  |
|                                                     |              | Approximate Chi Square Value (0.05)                | 746.8  |  |
| Adjusted Level of Significance                      | 0.0267       | Adjusted Chi Square Value                          | 735.9  |  |
|                                                     |              |                                                    |        |  |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 2.862

95% Approximate Gamma UCL (use when n>=50)) 2.82

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 7:58:08 PM From File Blueberry, Copper, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Copper, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.843                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.289                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data Not Lognormal at 5% Significance Level    |
| Data appear Appro              | ximate Lognormal at 5% | Significance Level                             |

#### Lognormal Statistics

| Minimum of Logged Data | 0.673                       | Mean of logged Data      | 0.944 |
|------------------------|-----------------------------|--------------------------|-------|
| Maximum of Logged Data | 1.075                       | SD of logged Data        | 0.141 |
|                        |                             |                          |       |
| Assu                   | ning Lognormal Distribution |                          |       |
| 95% H-UCL              | 2.832                       | 90% Chebyshev (MVUE) UCL | 2.943 |
| Assu                   | ning Lognormal Distribution |                          |       |

| 95% H-UCL                | 2.832 | 90% Chebyshev (MVUE) UCL   | 2.943 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 3.101 | 97.5% Chebyshev (MVUE) UCL | 3.321 |
| 99% Chebyshev (MVUE) UCL | 3.751 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 2.774 | 95% Jackknife UCL            | 2.794 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 2.767 | 95% Bootstrap-t UCL          | 2.763 |
| 95% Hall's Bootstrap UCL      | 2.735 | 95% Percentile Bootstrap UCL | 2.757 |
| 95% BCA Bootstrap UCL         | 2.738 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 2.922 | 95% Chebyshev(Mean, Sd) UCL  | 3.071 |
| 97.5% Chebyshev(Mean, Sd) UCL | 3.277 | 99% Chebyshev(Mean, Sd) UCL  | 3.683 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 2.794

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:58:08 PMFrom FileBlueberry, Copper, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Copper, mg/kg - dw

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:58:50 PMFrom FileBlueberry, Iron, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Iron, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 11.5               | Mean                            | 15.74 |
| Maximum                      | 23.6               | Median                          | 14.85 |
| SD                           | 3.688              | Std. Error of Mean              | 1.166 |
| Coefficient of Variation     | 0.234              | Skewness                        | 1.062 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.916 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.159 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Nor | mal Distribution                                         |         |
|--------------------------------|------------|----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-t UCL            | 17.88      | 95% Adjusted-CLT UCL (Chen-1995)                         | 18.08   |
|                                |            | 95% Modified-t UCL (Johnson-1978)                        | 17.95   |
|                                | Gamma      | GOF Test                                                 |         |
| A-D Test Statistic             | 0.284      | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical Value          | 0.725      | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test Statistic             | 0.168      | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical Value          | 0.266      | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data appear           | Gamma Di   | stributed at 5% Significance Level                       |         |
|                                |            |                                                          |         |
|                                |            | Statistics                                               |         |
| k hat (MLE)                    | 22.06      | k star (bias corrected MLE)                              | 15.51   |
| Theta hat (MLE)                | 0.714      | Theta star (bias corrected MLE)                          | 1.015   |
| nu hat (MLE)                   | 441.1      | nu star (bias corrected)                                 | 310.1   |
| MLE Mean (bias corrected)      | 15.74      | MLE Sd (bias corrected)                                  | 3.998   |
|                                |            | Approximate Chi Square Value (0.05)                      | 270.3   |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                | 263.9   |
| Ass                            | uming Gan  | nma Distribution                                         |         |

95% Adjusted Gamma UCL (use when n<50) 18.5

95% Approximate Gamma UCL (use when n>=50)) 18.06

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 7:58:50 PM

 From File
 Blueberry, Iron, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Iron, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.956                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.156                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 2.442                       | Mean of logged Data | 2.734 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 3.161                       | SD of logged Data   | 0.221 |
| Assu                   | ming Lognormal Distribution |                     |       |
|                        |                             |                     |       |

| 95% H-UCL                | 18.14 | 90% Chebyshev (MVUE) UCL   | 19.05 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 20.55 | 97.5% Chebyshev (MVUE) UCL | 22.64 |
| 99% Chebyshev (MVUE) UCL | 26.73 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 17.66 | 95% Jackknife UCL            | 17.88 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 17.53 | 95% Bootstrap-t UCL          | 18.45 |
| 95% Hall's Bootstrap UCL      | 18.47 | 95% Percentile Bootstrap UCL | 17.55 |
| 95% BCA Bootstrap UCL         | 18.02 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 19.24 | 95% Chebyshev(Mean, Sd) UCL  | 20.83 |
| 97.5% Chebyshev(Mean, Sd) UCL | 23.03 | 99% Chebyshev(Mean, Sd) UCL  | 27.35 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 17.88

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 7:59:32 PMFrom FileBlueberry, Lead, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Lead, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.022              | Mean                            | 0.0556  |
| Maximum                      | 0.114              | Median                          | 0.0552  |
| SD                           | 0.0261             | Std. Error of Mean              | 0.00826 |
| Coefficient of Variation     | 0.47               | Skewness                        | 1.12    |
|                              |                    |                                 |         |

### Normal GOF Test

# Shapiro Wilk Test Statistic0.891Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data appear Normal at 5% Significance LevelLilliefors Test Statistic0.218Lilliefors GOF Test5% Lilliefors Critical Value0.262Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

| Ass                                   | uming Norr                           | nal Distribution                                          |         |
|---------------------------------------|--------------------------------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                        | 95% Normal UCL 95% UCLs (Adjusted fo |                                                           |         |
| 95% Student's-t UCL                   | 0.0708                               | 95% Adjusted-CLT UCL (Chen-1995)                          | 0.0724  |
|                                       |                                      | 95% Modified-t UCL (Johnson-1978)                         | 0.0713  |
|                                       | Gamma (                              | GOF Test                                                  |         |
| A-D Test Statistic                    | 0.366                                | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value                 | 0.729                                | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic                    | 0.183                                | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value                 | 0.267                                | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear                  | Gamma Dis                            | stributed at 5% Significance Level                        |         |
|                                       | Gamma                                | Statistics                                                |         |
| k hat (MLE)                           | 5.352                                | k star (bias corrected MLE)                               | 3.813   |
| Theta hat (MLE)                       | 0.0104                               | Theta star (bias corrected MLE)                           | 0.0146  |
| nu hat (MLE)                          | 107                                  | nu star (bias corrected)                                  | 76.27   |
| MLE Mean (bias corrected)             | 0.0556                               | MLE Sd (bias corrected)                                   | 0.0285  |
| , , , , , , , , , , , , , , , , , , , |                                      | Approximate Chi Square Value (0.05)                       | 57.15   |
| Adjusted Level of Significance        | 0.0267                               | Adjusted Chi Square Value                                 | 54.28   |
|                                       |                                      |                                                           |         |
| Ass                                   | uming Gam                            | ma Distribution                                           |         |

95% Adjusted Gamma UCL (use when n<50) 0.0782

95% Approximate Gamma UCL (use when n>=50)) 0.0742

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 7:59:32 PM

 From File
 Blueberry, Lead, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Lead, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.953                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.194                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | -3.817                      | Mean of logged Data | -2.985 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | -2.172                      | SD of logged Data   | 0.467  |
| Δεειι                  | ning Lognormal Distribution |                     |        |
| Addu                   | ning Lognormal Distribution |                     |        |

| 95% H-UCL                | 0.079  | 90% Chebyshev (MVUE) UCL   | 0.0807 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0921 | 97.5% Chebyshev (MVUE) UCL | 0.108  |
| 99% Chebyshev (MVUE) UCL | 0.139  |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0692 | 95% Jackknife UCL            | 0.0708 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0682 | 95% Bootstrap-t UCL          | 0.0739 |
| 95% Hall's Bootstrap UCL      | 0.0803 | 95% Percentile Bootstrap UCL | 0.0683 |
| 95% BCA Bootstrap UCL         | 0.0706 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0804 | 95% Chebyshev(Mean, Sd) UCL  | 0.0917 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.107  | 99% Chebyshev(Mean, Sd) UCL  | 0.138  |
|                               |        |                              |        |

#### Suggested UCL to Use

95% Student's-t UCL 0.0708

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:00:14 PM

 From File
 Blueberry, Magnesium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Magnesium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 460                | Mean                            | 556.4 |
| Maximum                      | 687                | Median                          | 548   |
| SD                           | 76.71              | Std. Error of Mean              | 24.26 |
| Coefficient of Variation     | 0.138              | Skewness                        | 0.736 |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.907 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.196 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution   |          |                                                          |         |
|--------------------------------|----------|----------------------------------------------------------|---------|
| 95% Normal UCL                 |          | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-t UCL            | 600.8    | 95% Adjusted-CLT UCL (Chen-1995)                         | 602.3   |
|                                |          | 95% Modified-t UCL (Johnson-1978)                        | 601.8   |
|                                | Gamma    | GOF Test                                                 |         |
| A-D Test Statistic             | 0.368    | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical Value          | 0.724    | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test Statistic             | 0.173    | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical Value          | 0.266    | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data appear           | Gamma Di | stributed at 5% Significance Level                       |         |
|                                | Gamma    | Statistics                                               |         |
| k hat (MLE)                    | 60.78    | k star (bias corrected MLE)                              | 42.61   |
| Theta hat (MLE)                | 9.154    | Theta star (bias corrected MLE)                          | 13.06   |
| nu hat (MLE)                   | 1216     | nu star (bias corrected)                                 | 852.2   |
| MLE Mean (bias corrected)      | 556.4    | MLE Sd (bias corrected)                                  | 85.23   |
|                                |          | Approximate Chi Square Value (0.05)                      | 785.4   |
| Adjusted Level of Significance | 0.0267   | Adjusted Chi Square Value                                | 774.3   |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 612.3

95% Approximate Gamma UCL (use when n>=50)) 603.6

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Blueberry, Magnesium, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.929                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.171                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 6.131 | Mean of logged Data | 6.313 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 6.532 | SD of logged Data   | 0.134 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 604.2 | 90% Chebyshev (MVUE) UCL   | 627.3 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 659.4 | 97.5% Chebyshev (MVUE) UCL | 704   |
| 99% Chebyshev (MVUE) UCL | 791.7 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 600.8 | 95% Jackknife UCL            | 95% CLT UCL                   |
|-------|------------------------------|-------------------------------|
| 616.3 | 95% Bootstrap-t UCL          | 95% Standard Bootstrap UCL    |
| 595.7 | 95% Percentile Bootstrap UCL | 95% Hall's Bootstrap UCL      |
|       |                              | 95% BCA Bootstrap UCL         |
| 662.1 | 95% Chebyshev(Mean, Sd) UCL  | 90% Chebyshev(Mean, Sd) UCL   |
| 797.7 | 99% Chebyshev(Mean, Sd) UCL  | 97.5% Chebyshev(Mean, Sd) UCL |
|       |                              |                               |

#### Suggested UCL to Use

95% Student's-t UCL 600.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:00:56 PM

 From File
 Blueberry, Manganese, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Manganese, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 361                | Mean                            | 642.8  |
| Maximum                      | 870                | Median                          | 660.5  |
| SD                           | 146.6              | Std. Error of Mean              | 46.36  |
| Coefficient of Variation     | 0.228              | Skewness                        | -0.508 |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.979 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.136 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Nor | mal Distribution                                          |         |
|--------------------------------|------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 727.8      | 95% Adjusted-CLT UCL (Chen-1995)                          | 711.1   |
|                                |            | 95% Modified-t UCL (Johnson-1978)                         | 726.5   |
|                                | Gamma      | GOF Test                                                  |         |
| A-D Test Statistic             | 0.286      | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.725      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.166      | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.266      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma D    | istributed at 5% Significance Level                       |         |
|                                | Gamma      | Statistics                                                |         |
| k hat (MLE)                    | 18.84      | k star (bias corrected MLE)                               | 13.25   |
| Theta hat (MLE)                | 34.12      | Theta star (bias corrected MLE)                           | 48.5    |
| nu hat (MLE)                   | 376.8      | nu star (bias corrected)                                  | 265.1   |
| MLE Mean (bias corrected)      | 642.8      | MLE Sd (bias corrected)                                   | 176.6   |
|                                |            | Approximate Chi Square Value (0.05)                       | 228.4   |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                 | 222.4   |
|                                |            |                                                           |         |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 765.9

95% Approximate Gamma UCL (use when n>=50)) 746.1

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:00:56 PM From File Blueberry, Manganese, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Manganese, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.927                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.174                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

|                        | sing Lognormal Distribution |                     |       |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 6.768                       | SD of logged Data   | 0.253 |
| Minimum of Logged Data | 5.889                       | Mean of logged Data | 6.439 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 760.7 | 90% Chebyshev (MVUE) UCL   | 799.8 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 870.3 | 97.5% Chebyshev (MVUE) UCL | 968.1 |
| 99% Chebyshev (MVUE) UCL | 1160  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 719   | 95% Jackknife UCL            | 727.8 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 714.9 | 95% Bootstrap-t UCL          | 721.8 |
| 95% Hall's Bootstrap UCL      | 713.8 | 95% Percentile Bootstrap UCL | 713   |
| 95% BCA Bootstrap UCL         | 716.7 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 781.9 | 95% Chebyshev(Mean, Sd) UCL  | 844.9 |
| 97.5% Chebyshev(Mean, Sd) UCL | 932.3 | 99% Chebyshev(Mean, Sd) UCL  | 1104  |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 727.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:01:38 PM From File Blueberry, Mercury, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Mercury, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 10 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 10 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Mercury, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:02:20 PM

 From File
 Blueberry, Molybdenum, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Molybdenum, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10      |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.028              | Mean                            | 0.0459  |
| Maximum                      | 0.074              | Median                          | 0.0455  |
| SD                           | 0.0145             | Std. Error of Mean              | 0.00458 |
| Coefficient of Variation     | 0.316              | Skewness                        | 0.548   |

# Normal GOF Test

# Shapiro Wilk Test Statistic0.943Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data appear Normal at 5% Significance LevelLilliefors Test Statistic0.142Lilliefors GOF Test5% Lilliefors Critical Value0.262Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

|          | Ass                             | suming Norm               | al Distribution                                                                            |                  |
|----------|---------------------------------|---------------------------|--------------------------------------------------------------------------------------------|------------------|
| 95% Norm | al UCL                          |                           | 95% UCLs (Adjusted for Skewness)                                                           |                  |
|          | 95% Student's-t UCL             | 0.0543                    | 95% Adjusted-CLT UCL (Chen-1995)                                                           | 0.0543           |
|          |                                 |                           | 95% Modified-t UCL (Johnson-1978)                                                          | 0.0544           |
|          |                                 | Gamma G                   | OF Test                                                                                    |                  |
|          | A-D Test Statistic              | 0.265                     | Anderson-Darling Gamma GOF Test                                                            |                  |
|          | 5% A-D Critical Value           | 0.725                     | Detected data appear Gamma Distributed at 5% Significanc                                   | e Level          |
|          | K-S Test Statistic              | 0.151                     | Kolmogorov-Smirnov Gamma GOF Test                                                          |                  |
|          | 5% K-S Critical Value           | 0.267                     | Detected data appear Gamma Distributed at 5% Significanc                                   | e Level          |
|          | Detected data appear            | Gamma Dist                | tributed at 5% Significance Level                                                          |                  |
|          |                                 |                           |                                                                                            |                  |
|          |                                 | Gamma S                   | tatistics                                                                                  |                  |
|          | k hat (MLE)                     | <b>Gamma S</b><br>11.26   | tatistics<br>k star (bias corrected MLE)                                                   | 7.949            |
|          | k hat (MLE)<br>Theta hat (MLE)  |                           |                                                                                            | 7.949<br>0.00577 |
|          | . ,                             | 11.26                     | k star (bias corrected MLE)                                                                |                  |
| MLE      | Theta hat (MLE)                 | 11.26<br>0.00408          | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                             | 0.00577          |
| MLE      | Theta hat (MLE)<br>nu hat (MLE) | 11.26<br>0.00408<br>225.2 | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)<br>nu star (bias corrected) | 0.00577<br>159   |

95% Adjusted Gamma UCL (use when n<50) 0.0577

95% Approximate Gamma UCL (use when n>=50)) 0.0558

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:02:20 PM From File Blueberry, Molybdenum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Molybdenum, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.95                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.145                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data          | -3.576 | Mean of logged Data | -3.126 |
|---------------------------------|--------|---------------------|--------|
| Maximum of Logged Data          | -2.604 | SD of logged Data   | 0.318  |
|                                 |        |                     |        |
| Assuming Lognormal Distribution |        |                     |        |

| 95% H-UCL                | 0.057  | 90% Chebyshev (MVUE) UCL   | 0.0599 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0662 | 97.5% Chebyshev (MVUE) UCL | 0.075  |
| 99% Chebyshev (MVUE) UCL | 0.0922 |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 0.0543 | 95% Jackknife UCL            | 0.0534 | 95% CLT UCL                   |
|--------|------------------------------|--------|-------------------------------|
| 0.0554 | 95% Bootstrap-t UCL          | 0.0532 | 95% Standard Bootstrap UCL    |
| 0.0533 | 95% Percentile Bootstrap UCL | 0.0557 | 95% Hall's Bootstrap UCL      |
|        |                              | 0.0533 | 95% BCA Bootstrap UCL         |
| 0.0659 | 95% Chebyshev(Mean, Sd) UCL  | 0.0597 | 90% Chebyshev(Mean, Sd) UCL   |
| 0.0915 | 99% Chebyshev(Mean, Sd) UCL  | 0.0745 | 97.5% Chebyshev(Mean, Sd) UCL |
|        |                              |        |                               |

#### Suggested UCL to Use

95% Student's-t UCL 0.0543

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:03:04 PMFrom FileBlueberry, Nickel, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Nickel, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.219              | Mean                            | 0.287  |
| Maximum                      | 0.403              | Median                          | 0.282  |
| SD                           | 0.0533             | Std. Error of Mean              | 0.0169 |
| Coefficient of Variation     | 0.186              | Skewness                        | 1.012  |
|                              |                    |                                 |        |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.934 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.148 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                                            | suming Norm                          | al Distribution                                                                                         |                            |
|------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------|
| 95% Normal UCL                                 |                                      | 95% UCLs (Adjusted for Skewness)                                                                        |                            |
| 95% Student's-t UCL                            | 0.318                                | 95% Adjusted-CLT UCL (Chen-1995)                                                                        | 0.32                       |
|                                                |                                      | 95% Modified-t UCL (Johnson-1978)                                                                       | 0.319                      |
|                                                | Gamma G                              | OF Test                                                                                                 |                            |
| A-D Test Statistic                             | 0.223                                | Anderson-Darling Gamma GOF Test                                                                         |                            |
| 5% A-D Critical Value                          | 0.724                                | Detected data appear Gamma Distributed at 5% Significanc                                                | e Level                    |
| K-S Test Statistic                             | 0.118                                | 0.118 Kolmogorov-Smirnov Gamma GOF Test                                                                 |                            |
| 5% K-S Critical Value                          | 0.266                                | 266 Detected data appear Gamma Distributed at 5% Significance Level                                     |                            |
|                                                |                                      |                                                                                                         |                            |
| Detected data appear                           | Gamma Dist                           | ributed at 5% Significance Level                                                                        |                            |
| Detected data appear                           | Gamma Dist<br>Gamma S                |                                                                                                         |                            |
| Detected data appear<br>k hat (MLE)            |                                      |                                                                                                         | 24.13                      |
|                                                | Gamma S                              | tatistics                                                                                               |                            |
| k hat (MLE)                                    | <b>Gamma S</b><br>34.38              | tatistics<br>k star (bias corrected MLE)                                                                |                            |
| k hat (MLE)<br>Theta hat (MLE)                 | <b>Gamma S</b><br>34.38<br>0.00835   | tatistics<br>k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                             | 0.01                       |
| k hat (MLE)<br>Theta hat (MLE)<br>nu hat (MLE) | Gamma S<br>34.38<br>0.00835<br>687.6 | tatistics<br>k star (bias corrected MLE)<br>Theta star (bias corrected MLE)<br>nu star (bias corrected) | 0.01 <sup>-</sup><br>482.7 |

# Assuming Gamma Distribution 50)) 0.32 95% Adjusted Gamma UCL (use when n<50)

0.326

95% Approximate Gamma UCL (use when n>=50)) 0.32

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:03:04 PM From File Blueberry, Nickel, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Nickel, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.969                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.117                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | -1.519                      | Mean of logged Data | -1.263 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | -0.909                      | SD of logged Data   | 0.178  |
| Assu                   | ming Lognormal Distribution |                     |        |

| 95% H-UCL                | 0.321 | 90% Chebyshev (MVUE) UCL   | 0.336 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.358 | 97.5% Chebyshev (MVUE) UCL | 0.388 |
| 99% Chebyshev (MVUE) UCL | 0.448 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 0.318 | 95% Jackknife UCL            | 0.315 | 95% CLT UCL                   |
|-------|------------------------------|-------|-------------------------------|
| 0.326 | 95% Bootstrap-t UCL          | 0.313 | 95% Standard Bootstrap UCL    |
| 0.315 | 95% Percentile Bootstrap UCL | 0.336 | 95% Hall's Bootstrap UCL      |
|       |                              | 0.319 | 95% BCA Bootstrap UCL         |
| 0.361 | 95% Chebyshev(Mean, Sd) UCL  | 0.338 | 90% Chebyshev(Mean, Sd) UCL   |
| 0.455 | 99% Chebyshev(Mean, Sd) UCL  | 0.392 | 97.5% Chebyshev(Mean, Sd) UCL |
|       |                              |       |                               |

#### Suggested UCL to Use

95% Student's-t UCL 0.318

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:03:46 PM

 From File
 Blueberry, Phosphorus, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Phosphorus, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 658                | Mean                            | 940   |
| Maximum                      | 1260               | Median                          | 897.5 |
| SD                           | 211.3              | Std. Error of Mean              | 66.82 |
| Coefficient of Variation     | 0.225              | Skewness                        | 0.342 |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.937 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.148 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Nor | mal Distribution                                         |         |
|--------------------------------|------------|----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-t UCL            | 1063       | 95% Adjusted-CLT UCL (Chen-1995)                         | 1058    |
|                                |            | 95% Modified-t UCL (Johnson-1978)                        | 1064    |
|                                | Gamma      | GOF Test                                                 |         |
| A-D Test Statistic             | 0.264      | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical Value          | 0.725      | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test Statistic             | 0.154      | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical Value          | 0.266      | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data appear           | Gamma Di   | stributed at 5% Significance Level                       |         |
|                                |            |                                                          |         |
|                                | Gamma      | Statistics                                               |         |
| k hat (MLE)                    | 22.23      | k star (bias corrected MLE)                              | 15.63   |
| Theta hat (MLE)                | 42.28      | Theta star (bias corrected MLE)                          | 60.14   |
| nu hat (MLE)                   | 444.7      | nu star (bias corrected)                                 | 312.6   |
| MLE Mean (bias corrected)      | 940        | MLE Sd (bias corrected)                                  | 237.8   |
|                                |            | Approximate Chi Square Value (0.05)                      | 272.6   |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                | 266.1   |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 1104

95% Approximate Gamma UCL (use when n>=50)) 1078

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:03:46 PM From File Blueberry, Phosphorus, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Phosphorus, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.953                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.141                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 6.489 | Mean of logged Data | 6.823 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 7.139 | SD of logged Data   | 0.224 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 1087 | 90% Chebyshev (MVUE) UCL   | 1141 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 1232 | 97.5% Chebyshev (MVUE) UCL | 1358 |
| 99% Chebyshev (MVUE) UCL | 1606 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1050 | 95% Jackknife UCL            | 1063 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 1042 | 95% Bootstrap-t UCL          | 1076 |
| 95% Hall's Bootstrap UCL      | 1047 | 95% Percentile Bootstrap UCL | 1048 |
| 95% BCA Bootstrap UCL         | 1043 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 1140 | 95% Chebyshev(Mean, Sd) UCL  | 1231 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1357 | 99% Chebyshev(Mean, Sd) UCL  | 1605 |

#### Suggested UCL to Use

95% Student's-t UCL 1063

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:04:28 PM

 From File
 Blueberry, Potassium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Potassium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 8     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 5070               | Mean                            | 5550  |
| Maximum                      | 6287               | Median                          | 5715  |
| SD                           | 430.2              | Std. Error of Mean              | 136.1 |
| Coefficient of Variation     | 0.0775             | Skewness                        | 0.121 |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.855 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.235 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming No | rmal Distribution                                         |         |
|--------------------------------|-----------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |           | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 5799      | 95% Adjusted-CLT UCL (Chen-1995)                          | 5779    |
|                                |           | 95% Modified-t UCL (Johnson-1978)                         | 5800    |
|                                | Gamma     | GOF Test                                                  |         |
| A-D Test Statistic             | 0.789     | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.724     | Data Not Gamma Distributed at 5% Significance Leve        | el      |
| K-S Test Statistic             | 0.249     | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.266     | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data follow App       | or. Gamma | Distribution at 5% Significance Level                     |         |
|                                | Gamma     | I Statistics                                              |         |
| k hat (MLE)                    | 185.1     | k star (bias corrected MLE)                               | 129.6   |
| Theta hat (MLE)                | 29.98     | Theta star (bias corrected MLE)                           | 42.81   |
| nu hat (MLE)                   | 3702      | nu star (bias corrected)                                  | 2593    |
| MLE Mean (bias corrected)      | 5550      | MLE Sd (bias corrected)                                   | 487.4   |
|                                |           | Approximate Chi Square Value (0.05)                       | 2476    |
| Adjusted Level of Significance | 0.0267    | Adjusted Chi Square Value                                 | 2456    |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 5860

95% Approximate Gamma UCL (use when n>=50)) 5813

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:04:28 PM From File Blueberry, Potassium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Potassium, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.85                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.236                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 8.531 | Mean of logged Data | 8.619  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 8.746 | SD of logged Data   | 0.0775 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 5958 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 6143 | 97.5% Chebyshev (MVUE) UCL | 6400 |
| 99% Chebyshev (MVUE) UCL | 6904 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 5773 | 95% Jackknife UCL            | 5799 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 5761 | 95% Bootstrap-t UCL          | 5797 |
| 95% Hall's Bootstrap UCL      | 5767 | 95% Percentile Bootstrap UCL | 5769 |
| 95% BCA Bootstrap UCL         | 5756 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 5958 | 95% Chebyshev(Mean, Sd) UCL  | 6143 |
| 97.5% Chebyshev(Mean, Sd) UCL | 6399 | 99% Chebyshev(Mean, Sd) UCL  | 6903 |

#### Suggested UCL to Use

95% Student's-t UCL 5799

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:05:11 PM From File Blueberry, Selenium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Selenium, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 10 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 10 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Selenium, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:05:52 PMFrom FileBlueberry, Silver, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Silver, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 

 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Silver, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:06:34 PMFrom FileBlueberry, Sodium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Sodium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 12                 | Mean                            | 23.37 |
| Maximum                      | 52                 | Median                          | 17.83 |
| SD                           | 14.21              | Std. Error of Mean              | 4.492 |
| Coefficient of Variation     | 0.608              | Skewness                        | 1.581 |
|                              |                    |                                 |       |

#### Normal GOF Test

# Shapiro Wilk Test Statistic0.732Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.31Lilliefors GOF Test5% Lilliefors Critical Value0.262Data Not Normal at 5% Significance Level

#### Data Not Normal at 5% Significance Level

| Assuming Normal Distribution   |         |                                                           |         |  |
|--------------------------------|---------|-----------------------------------------------------------|---------|--|
| 95% Normal UCL                 |         | 95% UCLs (Adjusted for Skewness)                          |         |  |
| 95% Student's-t UCL            | 31.6    | 95% Adjusted-CLT UCL (Chen-1995)                          | 33.16   |  |
|                                |         | 95% Modified-t UCL (Johnson-1978)                         | 31.98   |  |
|                                | Gamma   | GOF Test                                                  |         |  |
| A-D Test Statistic             | 0.908   | Anderson-Darling Gamma GOF Test                           |         |  |
| 5% A-D Critical Value          | 0.729   | Data Not Gamma Distributed at 5% Significance Level       |         |  |
| K-S Test Statistic             | 0.254   | Kolmogorov-Smirnov Gamma GOF Test                         |         |  |
| 5% K-S Critical Value          | 0.268   | Detected data appear Gamma Distributed at 5% Significance | e Level |  |
| Detected data follow Appr      | . Gamma | Distribution at 5% Significance Level                     |         |  |
|                                |         |                                                           |         |  |
|                                | Gamma   | Statistics                                                |         |  |
| k hat (MLE)                    | 4.016   | k star (bias corrected MLE)                               | 2.878   |  |
| Theta hat (MLE)                | 5.818   | Theta star (bias corrected MLE)                           | 8.119   |  |
| nu hat (MLE)                   | 80.32   | nu star (bias corrected)                                  | 57.56   |  |
| MLE Mean (bias corrected)      | 23.37   | MLE Sd (bias corrected)                                   | 13.77   |  |
|                                |         | Approximate Chi Square Value (0.05)                       | 41.12   |  |
| Adjusted Level of Significance | 0.0267  | Adjusted Chi Square Value                                 | 38.72   |  |
|                                |         |                                                           |         |  |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 34.74

95% Approximate Gamma UCL (use when n>=50) 32.71

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:06:34 PM From File Blueberry, Sodium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Sodium, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.848                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.221                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 2.485                       | Mean of logged Data      | 3.022 |
|------------------------|-----------------------------|--------------------------|-------|
| Maximum of Logged Data | 3.951                       | SD of logged Data        | 0.504 |
| Assu                   | ming Lognormal Distribution |                          |       |
| 95% H-UCI              | 33.85                       | 90% Chebyshey (MVUE) UCI | 34 16 |

| 95% H-UCL                | 33.85 | 90% Chebyshev (MVUE) UCL   | 34.16 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 39.22 | 97.5% Chebyshev (MVUE) UCL | 46.25 |
| 99% Chebyshev (MVUE) UCL | 60.05 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 30.76 | 95% Jackknife UCL            | 31.6  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 30.48 | 95% Bootstrap-t UCL          | 51.63 |
| 95% Hall's Bootstrap UCL      | 81.55 | 95% Percentile Bootstrap UCL | 31.17 |
| 95% BCA Bootstrap UCL         | 32.87 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 36.84 | 95% Chebyshev(Mean, Sd) UCL  | 42.95 |
| 97.5% Chebyshev(Mean, Sd) UCL | 51.42 | 99% Chebyshev(Mean, Sd) UCL  | 68.06 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 34.74

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:07:16 PM

 From File
 Blueberry, Strontium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Strontium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.697              | Mean                            | 2.616 |
| Maximum                      | 9.61               | Median                          | 1.17  |
| SD                           | 3.241              | Std. Error of Mean              | 1.025 |
| Coefficient of Variation     | 1.239              | Skewness                        | 1.818 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.618 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.399 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level |

### Data Not Normal at 5% Significance Level

| Assuming Normal Distribution   |                     |                                                     |       |
|--------------------------------|---------------------|-----------------------------------------------------|-------|
| 95% Normal UCL                 |                     | 95% UCLs (Adjusted for Skewness)                    |       |
| 95% Student's-t UCL            | 4.494               | 95% Adjusted-CLT UCL (Chen-1995)                    | 4.931 |
|                                |                     | 95% Modified-t UCL (Johnson-1978)                   | 4.593 |
|                                | Gamma GOF To        | əst                                                 |       |
| A-D Test Statistic             | 1.431               | Anderson-Darling Gamma GOF Test                     |       |
| 5% A-D Critical Value          | 0.745               | Data Not Gamma Distributed at 5% Significance Level |       |
| K-S Test Statistic             | 0.343               | Kolmogorov-Smirnov Gamma GOF Test                   |       |
| 5% K-S Critical Value          | 0.273               | Data Not Gamma Distributed at 5% Significance Level |       |
| Data Not Gamm                  | a Distributed at 59 | % Significance Level                                |       |
|                                |                     |                                                     |       |
|                                | Gamma Statisti      | CS                                                  |       |
| k hat (MLE)                    | 1.16                | k star (bias corrected MLE)                         | 0.879 |
| Theta hat (MLE)                | 2.255               | Theta star (bias corrected MLE)                     | 2.977 |
| nu hat (MLE)                   | 23.2                | nu star (bias corrected)                            | 17.57 |
| MLE Mean (bias corrected)      | 2.616               | MLE Sd (bias corrected)                             | 2.79  |
|                                |                     | Approximate Chi Square Value (0.05)                 | 9.082 |
| Adjusted Level of Significance | 0.0267              | Adjusted Chi Square Value                           | 8.043 |
|                                |                     |                                                     |       |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 5.714

95% Approximate Gamma UCL (use when n>=50)) 5.06

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:07:16 PM From File Blueberry, Strontium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Strontium, mg/kg - dw

|                                | Lognormal GOF Test       |                                             |
|--------------------------------|--------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.774                    | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk Critical Value | 0.842                    | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.299                    | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.262                    | Data Not Lognormal at 5% Significance Level |
| Data Not L                     | ognormal at 5% Significa | ance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | -0.361                      | Mean of logged Data | 0.472 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 2.263                       | SD of logged Data   | 0.931 |
|                        |                             |                     |       |
| Assu                   | ming Lognormal Distribution |                     |       |

| Assuming | Lognormal | Distribution |
|----------|-----------|--------------|
|----------|-----------|--------------|

| 95% H-UCL                | 6.195 | 90% Chebyshev (MVUE) UCL   | 4.493 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 5.47  | 97.5% Chebyshev (MVUE) UCL | 6.825 |
| 99% Chebyshev (MVUE) UCL | 9.488 |                            |       |

### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 4.302 | 95% Jackknife UCL            | 4.494 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 4.231 | 95% Bootstrap-t UCL          | 18.36 |
| 95% Hall's Bootstrap UCL      | 15.73 | 95% Percentile Bootstrap UCL | 4.266 |
| 95% BCA Bootstrap UCL         | 4.944 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 5.691 | 95% Chebyshev(Mean, Sd) UCL  | 7.083 |
| 97.5% Chebyshev(Mean, Sd) UCL | 9.017 | 99% Chebyshev(Mean, Sd) UCL  | 12.81 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 7.083

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:07:58 PMFrom FileBlueberry, Thallium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Thallium, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 5       |
| Number of Detects            | 4                  | Number of Non-Detects           | 6       |
| Number of Distinct Detects   | 4                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.0023             | Minimum Non-Detect              | 0.002   |
| Maximum Detect               | 0.0047             | Maximum Non-Detect              | 0.002   |
| Variance Detects             | 1.1067E-6          | Percent Non-Detects             | 60%     |
| Mean Detects                 | 0.0032             | SD Detects                      | 0.00105 |
| Median Detects               | 0.0029             | CV Detects                      | 0.329   |
| Skewness Detects             | 1.443              | Kurtosis Detects                | 2.235   |
| Mean of Logged Detects       | -5.781             | SD of Logged Detects            | 0.306   |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.887 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.748 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.288 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.375 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| • | ( )                    | •         | •                                 |           |
|---|------------------------|-----------|-----------------------------------|-----------|
|   | KM Mean                | 0.00248   | KM Standard Error of Mean 3       | 3.0058E-4 |
|   | KM SD 8                | 8.2316E-4 | 95% KM (BCA) UCL                  | N/A       |
|   | 95% KM (t) UCL         | 0.00303   | 95% KM (Percentile Bootstrap) UCL | N/A       |
|   | 95% KM (z) UCL         | 0.00297   | 95% KM Bootstrap t UCL            | N/A       |
|   | 90% KM Chebyshev UCL   | 0.00338   | 95% KM Chebyshev UCL              | 0.00379   |
|   | 97.5% KM Chebyshev UCL | 0.00436   | 99% KM Chebyshev UCL              | 0.00547   |
|   |                        |           |                                   |           |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.329 | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.657 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.261 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.395 | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| k hat (MLE) 13.73         | k star (bias corrected MLE) 3.598         |
|---------------------------|-------------------------------------------|
| Theta hat (MLE) 2.3314E-4 | Theta star (bias corrected MLE) 8.8934E-4 |
| nu hat (MLE) 109.8        | nu star (bias corrected) 28.79            |
| Mean (detects) 0.0032     |                                           |

| User Selected Options          | 3                                   |
|--------------------------------|-------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 8:07:58 PM       |
| From File                      | Blueberry, Thallium, mg_kg - dw.xls |
| Full Precision                 | OFF                                 |
| Confidence Coefficient         | 95%                                 |
| Number of Bootstrap Operations | 2000                                |

#### Blueberry, Thallium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.0023  | Mean                                                            | 0.00728                                                                                                                           |
|---------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0.01    | Median                                                          | 0.01                                                                                                                              |
| 0.00356 | CV                                                              | 0.49                                                                                                                              |
| 3.424   | k star (bias corrected MLE)                                     | 2.464                                                                                                                             |
| 0.00213 | Theta star (bias corrected MLE)                                 | 0.00295                                                                                                                           |
| 68.48   | nu star (bias corrected)                                        | 49.27                                                                                                                             |
| 0.0267  |                                                                 |                                                                                                                                   |
| 34.16   | Adjusted Chi Square Value (49.27, $\beta$ )                     | 31.98                                                                                                                             |
| 0.0105  | 95% Gamma Adjusted UCL (use when n<50)                          | N/A                                                                                                                               |
|         | 0.01<br>0.00356<br>3.424<br>0.00213<br>68.48<br>0.0267<br>34.16 | 0.01Median0.00356CV3.424k star (bias corrected MLE)0.00213Theta star (bias corrected MLE)68.48nu star (bias corrected)0.026734.16 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM) 0.00248                 | SD (KM)                   | 8.2316E-4 |
|-----------------------------------|---------------------------|-----------|
| Variance (KM) 6.7760E-7           | SE of Mean (KM)           | 3.0058E-4 |
| k hat (KM) 9.077                  | k star (KM)               | 6.42      |
| nu hat (KM) 181.5                 | nu star (KM)              | 128.4     |
| theta hat (KM) 2.7323E-4          | theta star (KM)           | 3.8627E-4 |
| 80% gamma percentile (KM) 0.00324 | 90% gamma percentile (KM) | 0.00379   |
| 95% gamma percentile (KM) 0.00428 | 99% gamma percentile (KM) | 0.0053    |

#### Gamma Kaplan-Meier (KM) Statistics

 Approximate Chi Square Value (128.41, α)
 103.2
 Adjusted Chi Square Value (128.41, β)
 99.31

 95% Gamma Approximate KM-UCL (use when n>=50)
 0.00308
 95% Gamma Adjusted KM-UCL (use when n<50)</td>
 0.00321

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.94  | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.748 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.243 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.375 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognermal at 5% Significance Lovel |       |                                                         |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                                   |
|--------------------------------|-------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 8:07:58 PM       |
| From File                      | Blueberry, Thallium, mg_kg - dw.xls |
| Full Precision                 | OFF                                 |
| Confidence Coefficient         | 95%                                 |
| Number of Bootstrap Operations | 2000                                |

#### Blueberry, Thallium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.00193 | Mean in Log Scale            | -6.447  |
|-------------------------------------------|---------|------------------------------|---------|
| SD in Original Scale                      | 0.00129 | SD in Log Scale              | 0.665   |
| 95% t UCL (assumes normality of ROS data) | 0.00267 | 95% Percentile Bootstrap UCL | 0.00259 |
| 95% BCA Bootstrap UCL                     | 0.00267 | 95% Bootstrap t UCL          | 0.00294 |
| 95% H-UCL (Log ROS)                       | 0.00342 |                              |         |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -6.041 | KM Geo Mean                   | 0.00238 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.27   | 95% Critical H Value (KM-Log) | 1.947   |
| KM Standard Error of Mean (logged) | 0.0988 | 95% H-UCL (KM -Log)           | 0.00294 |
| KM SD (logged)                     | 0.27   | 95% Critical H Value (KM-Log) | 1.947   |
| KM Standard Error of Mean (logged) | 0.0988 |                               |         |

#### DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-Transfo                                     | ormed             |         |
|-------------------------------|------------------------------------------------------|-------------------|---------|
| Mean in Original Scale        | 0.00188                                              | Mean in Log Scale | -6.457  |
| SD in Original Scale          | 0.00129                                              | SD in Log Scale   | 0.608   |
| 95% t UCL (Assumes normality) | 0.00263                                              | 95% H-Stat UCL    | 0.00306 |
| DL /2 is not a recommended me | thad provided for comparisons and historical reasons |                   |         |

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.00303

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:08:40 PM

 From File
 Blueberry, Tin, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Tin, mg/kg - dw

#### **General Statistics**

Total Number of Observations10Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Tin, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:09:22 PMFrom FileBlueberry, Titanium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Blueberry, Titanium, mg/kg - dw

#### **General Statistics**

10

Total Number of Observations Number of Detects

Number of Detects1Number of Distinct Detects1

Number of Distinct Observations 2

Number of Non-Detects 9

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Titanium, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:10:04 PM

 From File
 Blueberry, Uranium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Blueberry, Uranium, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 

 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Uranium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:10:46 PM From File Blueberry, Vanadium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Vanadium, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 10 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 10 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Blueberry, Vanadium, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:11:28 PMFrom FileBlueberry, Zinc, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Blueberry, Zinc, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 5.88               | Mean                            | 6.902  |
| Maximum                      | 7.84               | Median                          | 7.085  |
| SD                           | 0.617              | Std. Error of Mean              | 0.195  |
| Coefficient of Variation     | 0.0894             | Skewness                        | -0.494 |
|                              |                    |                                 |        |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.909 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.259 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution   |           |                                                           |         |  |  |
|--------------------------------|-----------|-----------------------------------------------------------|---------|--|--|
| 95% Normal UCL                 |           | 95% UCLs (Adjusted for Skewness)                          |         |  |  |
| 95% Student's-t UCL            | 7.26      | 95% Adjusted-CLT UCL (Chen-1995)                          | 7.191   |  |  |
|                                |           | 95% Modified-t UCL (Johnson-1978)                         | 7.255   |  |  |
|                                | Gamma     | GOF Test                                                  |         |  |  |
| A-D Test Statistic             | 0.613     | Anderson-Darling Gamma GOF Test                           |         |  |  |
| 5% A-D Critical Value          | 0.724     | Detected data appear Gamma Distributed at 5% Significance | e Level |  |  |
| K-S Test Statistic             | 0.272     | Kolmogorov-Smirnov Gamma GOF Test                         |         |  |  |
| 5% K-S Critical Value          | 0.266     | Data Not Gamma Distributed at 5% Significance Leve        | el      |  |  |
| Detected data follow App       | or. Gamma | Distribution at 5% Significance Level                     |         |  |  |
|                                |           |                                                           |         |  |  |
|                                | Gamma     | Statistics                                                |         |  |  |
| k hat (MLE)                    | 134.8     | k star (bias corrected MLE)                               | 94.44   |  |  |
| Theta hat (MLE)                | 0.0512    | Theta star (bias corrected MLE)                           | 0.0731  |  |  |
| nu hat (MLE)                   | 2696      | nu star (bias corrected)                                  | 1889    |  |  |
| MLE Mean (bias corrected)      | 6.902     | MLE Sd (bias corrected)                                   | 0.71    |  |  |
|                                |           | Approximate Chi Square Value (0.05)                       | 1789    |  |  |
| Adjusted Level of Significance | 0.0267    | Adjusted Chi Square Value                                 | 1772    |  |  |
|                                |           |                                                           |         |  |  |
| Assuming Gamma Distribution    |           |                                                           |         |  |  |

n>=50)) 7.288 95% Adjusted Gamma UCL (use when n<50)

7.358

95% Approximate Gamma UCL (use when n>=50)) 7.288

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:11:28 PM From File Blueberry, Zinc, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Blueberry, Zinc, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.898                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.273                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data Not Lognormal at 5% Significance Level    |
| Data appear Approx             | ximate Lognormal at 5% | Significance Level                             |

#### Lognormal Statistics

| Minimum of Logged Data | 1.772                       | Mean of logged Data      | 1.928  |
|------------------------|-----------------------------|--------------------------|--------|
| Maximum of Logged Data | 2.059                       | SD of logged Data        | 0.0916 |
| Assur                  | ning Lognormal Distribution |                          |        |
| 95% H-UCL              | N/A                         | 90% Chebyshev (MVUE) UCL | 7.503  |

| 95% H-UCL                | N/A   | 90% Chebyshev (MVUE) UCL   | 7.503 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 7.775 | 97.5% Chebyshev (MVUE) UCL | 8.152 |
| 99% Chebyshev (MVUE) UCL | 8.893 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 7.223 | 95% Jackknife UCL            | 7.26  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 7.208 | 95% Bootstrap-t UCL          | 7.233 |
| 95% Hall's Bootstrap UCL      | 7.176 | 95% Percentile Bootstrap UCL | 7.202 |
| 95% BCA Bootstrap UCL         | 7.174 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 7.488 | 95% Chebyshev(Mean, Sd) UCL  | 7.753 |
| 97.5% Chebyshev(Mean, Sd) UCL | 8.121 | 99% Chebyshev(Mean, Sd) UCL  | 8.845 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 7.26

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

# ATTACHMENT E

**ProUCL Outputs: Labrador Tea** 

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:12:10 PM From File Labrador Tea, Aluminum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Aluminum, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 9.6                | Mean                            | 14.51 |
| Maximum                      | 24.3               | Median                          | 12.9  |
| SD                           | 4.729              | Std. Error of Mean              | 1.495 |
| Coefficient of Variation     | 0.326              | Skewness                        | 1.162 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.875 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.247 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Nor                  | mal Distribution                                         |         |  |  |  |
|--------------------------------|-----------------------------|----------------------------------------------------------|---------|--|--|--|
| 95% Normal UCL                 |                             | 95% UCLs (Adjusted for Skewness)                         |         |  |  |  |
| 95% Student's-t UCL            | 17.25                       | 95% Adjusted-CLT UCL (Chen-1995)                         | 17.55   |  |  |  |
|                                |                             | 95% Modified-t UCL (Johnson-1978)                        | 17.34   |  |  |  |
|                                | Gamma                       | GOF Test                                                 |         |  |  |  |
| A-D Test Statistic             | 0.453                       | Anderson-Darling Gamma GOF Test                          |         |  |  |  |
| 5% A-D Critical Value          | 0.725                       | Detected data appear Gamma Distributed at 5% Significanc | e Level |  |  |  |
| K-S Test Statistic             | 0.214                       | Kolmogorov-Smirnov Gamma GOF Test                        |         |  |  |  |
| 5% K-S Critical Value          | 0.267                       | Detected data appear Gamma Distributed at 5% Significanc | e Level |  |  |  |
| Detected data appear           | Gamma Di                    | stributed at 5% Significance Level                       |         |  |  |  |
|                                | Gamma                       | Statistics                                               |         |  |  |  |
| k hat (MLE)                    | 11.86                       | k star (bias corrected MLE)                              | 8.369   |  |  |  |
| Theta hat (MLE)                | 1.223                       | Theta star (bias corrected MLE)                          | 1.733   |  |  |  |
| nu hat (MLE)                   | 237.2                       | nu star (bias corrected)                                 | 167.4   |  |  |  |
| MLE Mean (bias corrected)      | 14.51                       | MLE Sd (bias corrected)                                  | 5.014   |  |  |  |
|                                |                             | Approximate Chi Square Value (0.05)                      | 138.5   |  |  |  |
| Adjusted Level of Significance | 0.0267                      | Adjusted Chi Square Value                                | 133.9   |  |  |  |
|                                |                             |                                                          |         |  |  |  |
| Ass                            | Assuming Gamma Distribution |                                                          |         |  |  |  |

95% Approximate Gamma UCL (use when n>=50)) 17.53 95% Adjusted Gamma UCL (use when n<50) 18.13

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:12:10 PM From File Labrador Tea, Aluminum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Aluminum, mg/kg - dw

|                                | Lognormal GOF Test   | 1                                              |
|--------------------------------|----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.928                | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.195                | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Sign | ificance Level                                 |

#### Lognormal Statistics

|                                                        | Maximum of Logged Data | 3.19  | SD of logged Data   | 0.5   |
|--------------------------------------------------------|------------------------|-------|---------------------|-------|
| Minimum of Loaged Data 2 262 Mean of loaged Data 2 632 | Minimum of Logged Data | 2.262 | Mean of logged Data | 2.632 |
|                                                        | Maximum of Logged Data | 3.19  | SD of logged Data   | 0.3   |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 17.72 | 90% Chebyshev (MVUE) UCL   | 18.62 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 20.5  | 97.5% Chebyshev (MVUE) UCL | 23.11 |
| 99% Chebyshev (MVUE) UCL | 28.24 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 16.96 | 95% Jackknife UCL            | 17.25 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 16.83 | 95% Bootstrap-t UCL          | 18.51 |
| 95% Hall's Bootstrap UCL      | 17.7  | 95% Percentile Bootstrap UCL | 17.08 |
| 95% BCA Bootstrap UCL         | 17.55 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 18.99 | 95% Chebyshev(Mean, Sd) UCL  | 21.02 |
| 97.5% Chebyshev(Mean, Sd) UCL | 23.84 | 99% Chebyshev(Mean, Sd) UCL  | 29.38 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 17.25

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:12:52 PM From File Labrador Tea, Antimony, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Antimony, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 3      |
| Number of Detects            | 2                  | Number of Non-Detects           | 8      |
| Number of Distinct Detects   | 2                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.0181             | Minimum Non-Detect              | 0.005  |
| Maximum Detect               | 0.0512             | Maximum Non-Detect              | 0.005  |
| Variance Detects 5           | 5.4781E-4          | Percent Non-Detects             | 80%    |
| Mean Detects                 | 0.0347             | SD Detects                      | 0.0234 |
| Median Detects               | 0.0347             | CV Detects                      | 0.675  |
| Skewness Detects             | N/A                | Kurtosis Detects                | N/A    |
| Mean of Logged Detects       | -3.492             | SD of Logged Detects            | 0.735  |

# Warning: Data set has only 2 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

# Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0109 | KM Standard Error of Mean         | 0.00625 |
|------------------------|--------|-----------------------------------|---------|
| KM SD                  | 0.014  | 95% KM (BCA) UCL                  | N/A     |
| 95% KM (t) UCL         | 0.0224 | 95% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (z) UCL         | 0.0212 | 95% KM Bootstrap t UCL            | N/A     |
| 90% KM Chebyshev UCL   | 0.0297 | 95% KM Chebyshev UCL              | 0.0382  |
| 97.5% KM Chebyshev UCL | 0.05   | 99% KM Chebyshev UCL              | 0.0731  |

# Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

#### Gamma Statistics on Detected Data Only

| N/A | k star (bias corrected MLE)     | 4.021   | k hat (MLE)     |
|-----|---------------------------------|---------|-----------------|
| N/A | Theta star (bias corrected MLE) | 0.00862 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | 16.08   | nu hat (MLE)    |
|     |                                 | 0.0347  | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:12:52 PM From File Labrador Tea, Antimony, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Antimony, mg/kg - dw

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0109    | SD (KM)                   | 0.014   |
|---------------------------|-----------|---------------------------|---------|
| Variance (KM)             | 1.9544E-4 | SE of Mean (KM)           | 0.00625 |
| k hat (KM)                | 0.611     | k star (KM)               | 0.495   |
| nu hat (KM)               | 12.23     | nu star (KM)              | 9.891   |
| theta hat (KM)            | 0.0179    | theta star (KM)           | 0.0221  |
| 80% gamma percentile (KM) | 0.0179    | 90% gamma percentile (KM) | 0.0296  |
| 95% gamma percentile (KM) | 0.0422    | 99% gamma percentile (KM) | 0.073   |

# Gamma Kaplan-Meier (KM) Statistics

|                                                |        | Adjusted Level of Significance (β)         | 0.0267 |
|------------------------------------------------|--------|--------------------------------------------|--------|
| Approximate Chi Square Value (9.89, $\alpha$ ) | 3.874  | Adjusted Chi Square Value (9.89, $\beta$ ) | 3.246  |
| 95% Gamma Approximate KM-UCL (use when n>=50)  | 0.0279 | 95% Gamma Adjusted KM-UCL (use when n<50)  | 0.0333 |

#### Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

#### Lognormal ROS Statistics Using Imputed Non-Detects

| 0.0078 | Mean in Log Scale            | -6.929                                                                           |
|--------|------------------------------|----------------------------------------------------------------------------------|
| 0.0162 | SD in Log Scale              | 2.368                                                                            |
| 0.0172 | 95% Percentile Bootstrap UCL | 0.0163                                                                           |
| 0.0207 | 95% Bootstrap t UCL          | 0.0884                                                                           |
| 2.33   |                              |                                                                                  |
|        | 0.0162<br>0.0172<br>0.0207   | 0.0162SD in Log Scale0.017295% Percentile Bootstrap UCL0.020795% Bootstrap t UCL |

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -4.937 | KM Geo Mean                   | 0.00718 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.759  | 95% Critical H Value (KM-Log) | 2.635   |
| KM Standard Error of Mean (logged) | 0.339  | 95% H-UCL (KM -Log)           | 0.0186  |
| KM SD (logged)                     | 0.759  | 95% Critical H Value (KM-Log) | 2.635   |
| KM Standard Error of Mean (logged) | 0.339  |                               |         |

# **DL/2 Statistics**

# DL/2 NormalDL/2 Log-TransformedMean in Original Scale0.00893Mean in Log Scale-5.492SD in Original Scale0.0156SD in Log Scale1.08295% t UCL (Assumes normality)0.01895% H-Stat UCL0.0241

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:12:52 PM From File Labrador Tea, Antimony, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Antimony, mg/kg - dw

# Suggested UCL to Use

95% KM (Chebyshev) UCL 0.0382

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Arsenic, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 7       |
| Number of Detects            | 7                  | Number of Non-Detects           | 3       |
| Number of Distinct Detects   | 6                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.021              | Minimum Non-Detect              | 0.02    |
| Maximum Detect               | 0.035              | Maximum Non-Detect              | 0.02    |
| Variance Detects             | 2.6238E-5          | Percent Non-Detects             | 30%     |
| Mean Detects                 | 0.0253             | SD Detects                      | 0.00512 |
| Median Detects               | 0.024              | CV Detects                      | 0.203   |
| Skewness Detects             | 1.342              | Kurtosis Detects                | 1.304   |
| Mean of Logged Detects       | -3.694             | SD of Logged Detects            | 0.189   |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.851 | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.803 | Detected Data appear Normal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                            | 0.237 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                         | 0.304 | Detected Data appear Normal at 5% Significance Level |  |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |  |

| Kaplan-Meier (KM) Statistics using | y Normal Critic | al Values and other Nonparametric UCLs |
|------------------------------------|-----------------|----------------------------------------|
| KM Moon                            | 0 0227          | KM Standard Error of Moan              |

|    | KM Mean               | 0.0237  | KM Standard Error of Mean         | 0.00159 |
|----|-----------------------|---------|-----------------------------------|---------|
|    | KM SD                 | 0.00465 | 95% KM (BCA) UCL                  | 0.0266  |
|    | 95% KM (t) UCL        | 0.0266  | 95% KM (Percentile Bootstrap) UCL | 0.0264  |
|    | 95% KM (z) UCL        | 0.0263  | 95% KM Bootstrap t UCL            | 0.0294  |
|    | 90% KM Chebyshev UCL  | 0.0285  | 95% KM Chebyshev UCL              | 0.0306  |
| 97 | 7.5% KM Chebyshev UCL | 0.0336  | 99% KM Chebyshev UCL              | 0.0395  |
|    |                       |         |                                   |         |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic             | 0.451 | Anderson-Darling GOF Test                                       |
|--------------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value          | 0.707 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic             | 0.216 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value          | 0.311 | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris da da terra a como como |       | the stand set 50% Of an IG a set of Landal                      |

Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| 18.04  | k star (bias corrected MLE)     | k hat (MLE) 31.41         |
|--------|---------------------------------|---------------------------|
| 0.0014 | Theta star (bias corrected MLE) | Theta hat (MLE) 8.0499E-4 |
| 252.6  | nu star (bias corrected)        | nu hat (MLE) 439.8        |
|        |                                 | Mean (detects) 0.0253     |

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Arsenic, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0108  | Mean                                         | 0.0217  |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| Maximum                                          | 0.035   | Median                                       | 0.0215  |
| SD                                               | 0.00722 | CV                                           | 0.333   |
| k hat (MLE)                                      | 9.473   | k star (bias corrected MLE)                  | 6.698   |
| Theta hat (MLE)                                  | 0.00229 | Theta star (bias corrected MLE)              | 0.00324 |
| nu hat (MLE)                                     | 189.5   | nu star (bias corrected)                     | 134     |
| Adjusted Level of Significance (β)               | 0.0267  |                                              |         |
| Approximate Chi Square Value (133.95, $\alpha$ ) | 108.2   | Adjusted Chi Square Value (133.95, $\beta$ ) | 104.2   |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.0269  | 95% Gamma Adjusted UCL (use when n<50)       | 0.0279  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0237    | SD (KM)                   | 0.00465 |
|---------------------------|-----------|---------------------------|---------|
| Variance (KM)             | 2.1610E-5 | SE of Mean (KM)           | 0.00159 |
| k hat (KM)                | 25.99     | k star (KM)               | 18.26   |
| nu hat (KM)               | 519.8     | nu star (KM)              | 365.2   |
| theta hat (KM)            | 9.1181E-4 | theta star (KM)           | 0.0013  |
| 80% gamma percentile (KM) | 0.0282    | 90% gamma percentile (KM) | 0.031   |
| 95% gamma percentile (KM) | 0.0335    | 99% gamma percentile (KM) | 0.0385  |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (365.22, $\alpha$ ) | 321.9  | Adjusted Chi Square Value (365.22, $\beta$ ) | 314.9  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.0269 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.0275 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.881 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.803 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.204 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.304 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data and              |       |                                                         |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          |                                       |
|--------------------------------|---------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 8:13:34 PM         |
| From File                      | Labrador Tea, Arsenic, mg_kg - dw.xls |
| Full Precision                 | OFF                                   |
| Confidence Coefficient         | 95%                                   |
| Number of Bootstrap Operations | 2000                                  |

#### Labrador Tea, Arsenic, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0223  | Mean in Log Scale            | -3.84  |
|-------------------------------------------|---------|------------------------------|--------|
| SD in Original Scale                      | 0.00641 | SD in Log Scale              | 0.286  |
| 95% t UCL (assumes normality of ROS data) | 0.026   | 95% Percentile Bootstrap UCL | 0.0256 |
| 95% BCA Bootstrap UCL                     | 0.0259  | 95% Bootstrap t UCL          | 0.0268 |
| 95% H-UCL (Log ROS)                       | 0.027   |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -3.759 | KM Geo Mean                   | 0.0233 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.177  | 95% Critical H Value (KM-Log) | 1.862  |
| KM Standard Error of Mean (logged) | 0.0605 | 95% H-UCL (KM -Log)           | 0.0264 |
| KM SD (logged)                     | 0.177  | 95% Critical H Value (KM-Log) | 1.862  |
| KM Standard Error of Mean (logged) | 0.0605 |                               |        |

# DL/2 Statistics

| DL/2 Normal                   |                       | DL/2 Log-Transformed                 |        |
|-------------------------------|-----------------------|--------------------------------------|--------|
| Mean in Original Scale        | 0.0207                | Mean in Log Scale                    | -3.967 |
| SD in Original Scale          | 0.00849               | SD in Log Scale                      | 0.467  |
| 95% t UCL (Assumes normality) | 0.0256                | 95% H-Stat UCL                       | 0.0296 |
| DL/2 is not a recommended me  | فالممادة بمعتد الممطة | an assumption and bistorical ressons |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.0266

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:14:17 PM

 From File
 Labrador Tea, Barium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Barium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 35.15              | Mean                            | 52.87  |
| Maximum                      | 63.8               | Median                          | 52.9   |
| SD                           | 9.214              | Std. Error of Mean              | 2.914  |
| Coefficient of Variation     | 0.174              | Skewness                        | -0.562 |
|                              |                    |                                 |        |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.938 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.144 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| As                              | suming Norm   | al Distribution                                             |                                |
|---------------------------------|---------------|-------------------------------------------------------------|--------------------------------|
| 95% Normal UCL                  |               | 95% UCLs (Adjusted for Skewness)                            |                                |
| 95% Student's-t UCL             | 58.21         | 95% Adjusted-CLT UCL (Chen-1995)                            | 57.1 <sup>-</sup>              |
|                                 |               | 95% Modified-t UCL (Johnson-1978)                           | 58.12                          |
|                                 | Gamma G       | OF Test                                                     |                                |
| A-D Test Statistic              | 0.324         | Anderson-Darling Gamma GOF Test                             |                                |
| 5% A-D Critical Value           | 0.724         | Detected data appear Gamma Distributed at 5% Significanc    | e Level                        |
| K-S Test Statistic              | 0.157         | Kolmogorov-Smirnov Gamma GOF Test                           |                                |
| 5% K-S Critical Value           | 0.266         | Detected data appear Gamma Distributed at 5% Significanc    | e Level                        |
| Detected data appear            | Gamma Dist    | tributed at 5% Significance Level                           |                                |
|                                 | Gamma S       | tatistics                                                   |                                |
| k hat (MLE)                     | 33.67         | k star (bias corrected MLE)                                 | 23.64                          |
|                                 |               |                                                             |                                |
| Theta hat (MLE)                 | 1.57          | Theta star (bias corrected MLE)                             | 2.23                           |
| Theta hat (MLE)<br>nu hat (MLE) | 1.57<br>673.5 | Theta star (bias corrected MLE)<br>nu star (bias corrected) | 2.23<br>472.8                  |
| ( )                             |               |                                                             | 472.8                          |
| nu hat (MLE)                    | 673.5         | nu star (bias corrected)                                    | 2.23<br>472.8<br>10.8<br>423.3 |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 60.2

95% Approximate Gamma UCL (use when n>=50)) 59.04

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Barium, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.914                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.145                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ificance Level                                 |

#### Lognormal Statistics

| ٨٠٠                    | ning Lognormal Distribution |                     |       |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 4.156                       | SD of logged Data   | 0.187 |
| Minimum of Logged Data | 3.56                        | Mean of logged Data | 3.953 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 59.53 | 90% Chebyshev (MVUE) UCL   | 62.3  |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 66.55 | 97.5% Chebyshev (MVUE) UCL | 72.45 |
| 99% Chebyshev (MVUE) UCL | 84.04 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 57.66 | 95% Jackknife UCL            | 58.21 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 57.47 | 95% Bootstrap-t UCL          | 57.82 |
| 95% Hall's Bootstrap UCL      | 57.41 | 95% Percentile Bootstrap UCL | 57.31 |
| 95% BCA Bootstrap UCL         | 56.74 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 61.61 | 95% Chebyshev(Mean, Sd) UCL  | 65.57 |
| 97.5% Chebyshev(Mean, Sd) UCL | 71.07 | 99% Chebyshev(Mean, Sd) UCL  | 81.86 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 58.21

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:14:59 PM From File Labrador Tea, Beryllium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Beryllium, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 10 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 10 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Beryllium, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:15:41 PM

 From File
 Labrador Tea, Bismuth, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Labrador Tea, Bismuth, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Bismuth, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:16:23 PM

 From File
 Labrador Tea, Boron, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Boron, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 9.7                | Mean                            | 12.45  |
| Maximum                      | 14.7               | Median                          | 12.25  |
| SD                           | 1.463              | Std. Error of Mean              | 0.463  |
| Coefficient of Variation     | 0.117              | Skewness                        | -0.166 |
|                              |                    |                                 |        |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.952 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.166 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Norm | nal Distribution                                          |         |
|--------------------------------|-------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 13.3        | 95% Adjusted-CLT UCL (Chen-1995)                          | 13.19   |
|                                |             | 95% Modified-t UCL (Johnson-1978)                         | 13.29   |
|                                | Gamma G     | GOF Test                                                  |         |
| A-D Test Statistic             | 0.33        | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.724       | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.173       | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.266       | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma Dis   | tributed at 5% Significance Level                         |         |
|                                | Gamma S     | Statistics                                                |         |
| k hat (MLE)                    | 78.41       | k star (bias corrected MLE)                               | 54.95   |
| Theta hat (MLE)                | 0.159       | Theta star (bias corrected MLE)                           | 0.227   |
| nu hat (MLE)                   | 1568        | nu star (bias corrected)                                  | 1099    |
| MLE Mean (bias corrected)      | 12.45       | MLE Sd (bias corrected)                                   | 1.679   |
|                                |             | Approximate Chi Square Value (0.05)                       | 1023    |
| Adjusted Level of Significance | 0.0267      | Adjusted Chi Square Value                                 | 1010    |
| Ass                            | uming Gam   | ma Distribution                                           |         |

# 95% Adjusted Gamma UCL (use when n<50) 13.54

95% Approximate Gamma UCL (use when n>=50)) 13.37

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:16:23 PM From File Labrador Tea, Boron, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Boron, mg/kg - dw

|                                | Lognormal GOF Test   |                                                |
|--------------------------------|----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.942                | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.187                | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Sign | ificance Level                                 |

#### Lognormal Statistics

| Minimum of Logged Data | 2.272                       | Mean of logged Data | 2.515 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 2.688                       | SD of logged Data   | 0.12  |
| Assu                   | ning Lognormal Distribution |                     |       |
| Assu                   | ning Lognormal Distribution |                     |       |

| 95% H-UCL                | 13.4  | 90% Chebyshev (MVUE) UCL   | 13.87 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 14.52 | 97.5% Chebyshev (MVUE) UCL | 15.41 |
| 99% Chebyshev (MVUE) UCL | 17.16 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 13.21 | 95% Jackknife UCL            | 13.3  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 13.17 | 95% Bootstrap-t UCL          | 13.28 |
| 95% Hall's Bootstrap UCL      | 13.45 | 95% Percentile Bootstrap UCL | 13.15 |
| 95% BCA Bootstrap UCL         | 13.12 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 13.84 | 95% Chebyshev(Mean, Sd) UCL  | 14.47 |
| 97.5% Chebyshev(Mean, Sd) UCL | 15.34 | 99% Chebyshev(Mean, Sd) UCL  | 17.05 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 13.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:17:05 PM From File Labrador Tea, Cadmium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Cadmium, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Cadmium, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:17:47 PM

 From File
 Labrador Tea, Calcium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Calcium, mg/kg - dw

| General Statistics |                                                                 |                                                                                                                                                                                                          |
|--------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10                 | Number of Distinct Observations                                 | 8                                                                                                                                                                                                        |
|                    | Number of Missing Observations                                  | 0                                                                                                                                                                                                        |
| 4190               | Mean                                                            | 4567                                                                                                                                                                                                     |
| 5080               | Median                                                          | 4555                                                                                                                                                                                                     |
| 288                | Std. Error of Mean                                              | 91.07                                                                                                                                                                                                    |
| 0.0631             | Skewness                                                        | 0.37                                                                                                                                                                                                     |
| ,                  | <ul> <li>10</li> <li>4190</li> <li>5080</li> <li>288</li> </ul> | Initial Particular     Number of Distinct Observations       10     Number of Distinct Observations       Number of Missing Observations     Mean       5080     Median       288     Std. Error of Mean |

# Normal GOF Test

# Shapiro Wilk Test Statistic0.888Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data appear Normal at 5% Significance LevelLilliefors Test Statistic0.253Lilliefors GOF Test5% Lilliefors Critical Value0.262Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

| As                             | suming No            | rmal Distribution                                         |         |
|--------------------------------|----------------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |                      | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 4734                 | 95% Adjusted-CLT UCL (Chen-1995)                          | 4728    |
|                                |                      | 95% Modified-t UCL (Johnson-1978)                         | 4736    |
|                                | Gamma                | GOF Test                                                  |         |
| A-D Test Statistic             | 0.672                | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.724                | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.263                | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.266                | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | <sup>.</sup> Gamma D | istributed at 5% Significance Level                       |         |
|                                | Gamma                | Statistics                                                |         |
| k hat (MLE)                    | 282.2                | k star (bias corrected MLE)                               | 197.6   |
| Theta hat (MLE)                | 16.18                | Theta star (bias corrected MLE)                           | 23.11   |
| nu hat (MLE)                   | 5644                 | nu star (bias corrected)                                  | 3952    |
| MLE Mean (bias corrected)      | 4567                 | MLE Sd (bias corrected)                                   | 324.9   |
|                                |                      | Approximate Chi Square Value (0.05)                       | 3807    |
| Adjusted Level of Significance | 0.0267               | Adjusted Chi Square Value                                 | 3782    |
|                                |                      |                                                           |         |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 4772

95% Approximate Gamma UCL (use when n>=50)) 4741

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:17:47 PM From File Labrador Tea, Calcium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Calcium, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.891                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.25                   | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 8.34  | Mean of logged Data | 8.425  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 8.533 | SD of logged Data   | 0.0626 |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 4838 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 4961 | 97.5% Chebyshev (MVUE) UCL | 5132 |
| 99% Chebyshev (MVUE) UCL | 5467 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 4717 | 95% Jackknife UCL 4734            |
|-------------------------------|------|-----------------------------------|
| 95% Standard Bootstrap UCL    | 4708 | 95% Bootstrap-t UCL 4757          |
| 95% Hall's Bootstrap UCL      | 4719 | 95% Percentile Bootstrap UCL 4716 |
| 95% BCA Bootstrap UCL         | 4710 |                                   |
| 90% Chebyshev(Mean, Sd) UCL   | 4840 | 95% Chebyshev(Mean, Sd) UCL 4964  |
| 97.5% Chebyshev(Mean, Sd) UCL | 5136 | 99% Chebyshev(Mean, Sd) UCL 5473  |

#### Suggested UCL to Use

95% Student's-t UCL 4734

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:18:29 PM

 From File
 Labrador Tea, Chromium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Labrador Tea, Chromium, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Chromium, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:19:11 PM

 From File
 Labrador Tea, Cobalt, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Labrador Tea, Cobalt, mg/kg - dw

#### **General Statistics**

10

1

Total Number of Observations Number of Detects

Number of Distinct Detects 1

Number of Distinct Observations 2

Number of Non-Detects 9

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Cobalt, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:19:53 PM

 From File
 Labrador Tea, Copper, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Copper, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 2.2                | Mean                            | 2.993  |
| Maximum                      | 3.46               | Median                          | 3.155  |
| SD                           | 0.423              | Std. Error of Mean              | 0.134  |
| Coefficient of Variation     | 0.141              | Skewness                        | -1.047 |
|                              |                    |                                 |        |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.851 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.309 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level    |

Data appear Approximate Normal at 5% Significance Level

| Ass                       | uming Normal Distri | bution                                             |        |
|---------------------------|---------------------|----------------------------------------------------|--------|
| 95% Normal UCL            |                     | 95% UCLs (Adjusted for Skewness)                   |        |
| 95% Student's-t UCL       | 3.238               | 95% Adjusted-CLT UCL (Chen-1995)                   | 3.165  |
|                           |                     | 95% Modified-t UCL (Johnson-1978)                  | 3.23   |
|                           | Gamma GOF Tes       | t                                                  |        |
| A-D Test Statistic        | 0.864               | Anderson-Darling Gamma GOF Test                    |        |
| 5% A-D Critical Value     | 0.724               | Data Not Gamma Distributed at 5% Significance Leve | el     |
| K-S Test Statistic        | 0.326               | Kolmogorov-Smirnov Gamma GOF Test                  |        |
| 5% K-S Critical Value     | 0.266               | Data Not Gamma Distributed at 5% Significance Leve | el     |
| Data Not Gamn             | a Distributed at 5% | Significance Level                                 |        |
|                           | Gamma Statistics    | 1                                                  |        |
| k hat (MLE)               | 50.48               | k star (bias corrected MLE)                        | 35.4   |
| Theta hat (MLE)           | 0.0593              | Theta star (bias corrected MLE)                    | 0.0845 |
| nu hat (MLE)              | 1010                | nu star (bias corrected)                           | 708.1  |
| MLE Mean (bias corrected) | 2.993               | MLE Sd (bias corrected)                            | 0.503  |
|                           |                     | Approximate Chi Square Value (0.05)                | 647.3  |
|                           |                     |                                                    |        |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 3.325

95% Approximate Gamma UCL (use when n>=50)) 3.273

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Copper, mg/kg - dw

|                                | Lognormal GOF Test       |                                             |
|--------------------------------|--------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.825                    | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk Critical Value | 0.842                    | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.325                    | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.262                    | Data Not Lognormal at 5% Significance Level |
| Data Not L                     | ognormal at 5% Significa | ance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 0.788                       | Mean of logged Data      | 1.086 |
|------------------------|-----------------------------|--------------------------|-------|
| Maximum of Logged Data | 1.241                       | SD of logged Data        | 0.152 |
| A                      | in a Leanennel Distribution |                          |       |
| Assun                  | ning Lognormal Distribution |                          |       |
| 95% H-UCL              | 3.291                       | 90% Chebyshev (MVUE) UCL | 3.428 |

| 95% H-UCL                | 3.291 | 90% Chebyshev (MVUE) UCL   | 3.428 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 3.624 | 97.5% Chebyshev (MVUE) UCL | 3.897 |
| 99% Chebyshev (MVUE) UCL | 4.432 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 3.238 | 95% Jackknife UCL            | 3.213 | 95% CLT UCL                   |
|-------|------------------------------|-------|-------------------------------|
| 3.182 | 95% Bootstrap-t UCL          | 3.198 | 95% Standard Bootstrap UCL    |
| 3.186 | 95% Percentile Bootstrap UCL | 3.167 | 95% Hall's Bootstrap UCL      |
|       |                              | 3.168 | 95% BCA Bootstrap UCL         |
| 3.576 | 95% Chebyshev(Mean, Sd) UCL  | 3.394 | 90% Chebyshev(Mean, Sd) UCL   |
| 4.323 | 99% Chebyshev(Mean, Sd) UCL  | 3.828 | 97.5% Chebyshev(Mean, Sd) UCL |
|       |                              |       |                               |

#### Suggested UCL to Use

95% Student's-t UCL 3.238

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:19:53 PM

 From File
 Labrador Tea, Copper, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Labrador Tea, Copper, mg/kg - dw

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:20:35 PM

 From File
 Labrador Tea, Iron, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Iron, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 21.3               | Mean                            | 24.34 |
| Maximum                      | 29.7               | Median                          | 23.45 |
| SD                           | 3.056              | Std. Error of Mean              | 0.966 |
| Coefficient of Variation     | 0.126              | Skewness                        | 1.068 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.844 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.215 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Nor | mal Distribution                                          |         |
|--------------------------------|------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 26.11      | 95% Adjusted-CLT UCL (Chen-1995)                          | 26.28   |
|                                |            | 95% Modified-t UCL (Johnson-1978)                         | 26.17   |
|                                | Gamma      | GOF Test                                                  |         |
| A-D Test Statistic             | 0.602      | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.724      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.193      | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.266      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma Di   | stributed at 5% Significance Level                        |         |
|                                | •          |                                                           |         |
|                                |            | Statistics                                                | 50.40   |
| k hat (MLE)                    | 74.85      | k star (bias corrected MLE)                               | 52.46   |
| Theta hat (MLE)                | 0.325      | Theta star (bias corrected MLE)                           | 0.464   |
| nu hat (MLE)                   | 1497       | nu star (bias corrected)                                  | 1049    |
| MLE Mean (bias corrected)      | 24.34      | MLE Sd (bias corrected)                                   | 3.36    |
|                                |            | Approximate Chi Square Value (0.05)                       | 975.1   |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                 | 962.6   |
| Ass                            | suming Gam | nma Distribution                                          |         |

95% Adjusted Gamma UCL (use when n<50) 26.53

95% Approximate Gamma UCL (use when n>=50)) 26.19

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:20:35 PM From File Labrador Tea, Iron, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Iron, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.868                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.19                   | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 3.059                       | Mean of logged Data | 3.185 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 3.391                       | SD of logged Data   | 0.12  |
|                        |                             |                     |       |
| Assu                   | ning Lognormal Distribution |                     |       |
|                        |                             |                     |       |

| 95% H-UCL                | 26.19 | 90% Chebyshev (MVUE) UCL   | 27.11 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 28.37 | 97.5% Chebyshev (MVUE) UCL | 30.12 |
| 99% Chebyshev (MVUE) UCL | 33.55 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 26.11 | 95% Jackknife UCL            | 25.93 | 95% CLT UCL                   |
|-------|------------------------------|-------|-------------------------------|
| 27.27 | 95% Bootstrap-t UCL          | 25.83 | 95% Standard Bootstrap UCL    |
| 25.95 | 95% Percentile Bootstrap UCL | 28.52 | 95% Hall's Bootstrap UCL      |
|       |                              | 26.15 | 95% BCA Bootstrap UCL         |
| 28.55 | 95% Chebyshev(Mean, Sd) UCL  | 27.24 | 90% Chebyshev(Mean, Sd) UCL   |
| 33.96 | 99% Chebyshev(Mean, Sd) UCL  | 30.37 | 97.5% Chebyshev(Mean, Sd) UCL |
|       |                              |       |                               |

#### Suggested UCL to Use

95% Student's-t UCL 26.11

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:21:18 PMFrom FileLabrador Tea, Lead, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Labrador Tea, Lead, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 8       |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.021              | Mean                            | 0.0284  |
| Maximum                      | 0.0445             | Median                          | 0.027   |
| SD                           | 0.00656            | Std. Error of Mean              | 0.00207 |
| Coefficient of Variation     | 0.231              | Skewness                        | 1.746   |
|                              |                    |                                 |         |

# Normal GOF Test

# Shapiro Wilk Test Statistic0.842Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.246Lilliefors GOF Test5% Lilliefors Critical Value0.262Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

| Ass                            | suming Nori | nal Distribution                                         |         |
|--------------------------------|-------------|----------------------------------------------------------|---------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-t UCL            | 0.0322      | 95% Adjusted-CLT UCL (Chen-1995)                         | 0.033   |
|                                |             | 95% Modified-t UCL (Johnson-1978)                        | 0.0324  |
|                                | Gamma       | GOF Test                                                 |         |
| A-D Test Statistic             | 0.436       | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical Value          | 0.725       | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test Statistic             | 0.207       | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical Value          | 0.266       | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data appear           | Gamma Di    | stributed at 5% Significance Level                       |         |
|                                |             |                                                          |         |
|                                | Gamma       | Statistics                                               |         |
| k hat (MLE)                    | 24.18       | k star (bias corrected MLE)                              | 16.99   |
| Theta hat (MLE)                | 0.00117     | Theta star (bias corrected MLE)                          | 0.00167 |
| nu hat (MLE)                   | 483.6       | nu star (bias corrected)                                 | 339.9   |
| MLE Mean (bias corrected)      | 0.0284      | MLE Sd (bias corrected)                                  | 0.00689 |
|                                |             | Approximate Chi Square Value (0.05)                      | 298.2   |
| Adjusted Level of Significance | 0.0267      | Adjusted Chi Square Value                                | 291.4   |
|                                |             |                                                          |         |
| Ass                            | uming Garr  | ma Distribution                                          |         |

95% Adjusted Gamma UCL (use when n<50) 0.0331

95% Approximate Gamma UCL (use when n>=50)) 0.0324

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:21:18 PM From File Labrador Tea, Lead, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Lead, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.919                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.201                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | -3.863                      | Mean of logged Data | -3.582 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | -3.112                      | SD of logged Data   | 0.208  |
|                        |                             |                     |        |
| Assu                   | ming Lognormal Distribution |                     |        |

| 95% H-UCL                | 0.0324 | 90% Chebyshev (MVUE) UCL   | 0.034  |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0365 | 97.5% Chebyshev (MVUE) UCL | 0.0401 |
| 99% Chebyshev (MVUE) UCL | 0.047  |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0318 | 95% Jackknife UCL            | 0.0322 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0317 | 95% Bootstrap-t UCL          | 0.0343 |
| 95% Hall's Bootstrap UCL      | 0.0482 | 95% Percentile Bootstrap UCL | 0.032  |
| 95% BCA Bootstrap UCL         | 0.0328 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0346 | 95% Chebyshev(Mean, Sd) UCL  | 0.0374 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0413 | 99% Chebyshev(Mean, Sd) UCL  | 0.049  |
|                               |        |                              |        |

#### Suggested UCL to Use

95% Student's-t UCL 0.0322

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:22:00 PM

 From File
 Labrador Tea, Magnesium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Magnesium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 1160               | Mean                            | 1330  |
| Maximum                      | 1590               | Median                          | 1310  |
| SD                           | 129.5              | Std. Error of Mean              | 40.94 |
| Coefficient of Variation     | 0.0974             | Skewness                        | 0.713 |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.958 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.129 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| As                             | suming No | rmal Distribution                                               |  |
|--------------------------------|-----------|-----------------------------------------------------------------|--|
| 95% Normal UCL                 |           | 95% UCLs (Adjusted for Skewness)                                |  |
| 95% Student's-t UCL            | 1405      | 95% Adjusted-CLT UCL (Chen-1995) 1407                           |  |
|                                |           | 95% Modified-t UCL (Johnson-1978) 1406                          |  |
|                                | Gamma     | GOF Test                                                        |  |
| A-D Test Statistic             | 0.188     | Anderson-Darling Gamma GOF Test                                 |  |
| 5% A-D Critical Value          | 0.724     | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic             | 0.119     | Kolmogorov-Smirnov Gamma GOF Test                               |  |
| 5% K-S Critical Value          | 0.266     | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear           | Gamma D   | istributed at 5% Significance Level                             |  |
|                                | Gamma     | a Statistics                                                    |  |
| k hat (MLE)                    | 120.5     | k star (bias corrected MLE) 84.43                               |  |
| Theta hat (MLE)                | 11.03     | Theta star (bias corrected MLE) 15.75                           |  |
| nu hat (MLE)                   | 2410      | nu star (bias corrected) 1689                                   |  |
| MLE Mean (bias corrected)      | 1330      | MLE Sd (bias corrected) 144.7                                   |  |
|                                |           | Approximate Chi Square Value (0.05) 1594                        |  |
| Adjusted Level of Significance | 0.0267    | Adjusted Chi Square Value 1578                                  |  |
|                                |           |                                                                 |  |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 1423

95% Approximate Gamma UCL (use when n>=50)) 1408

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Magnesium, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.971                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.113                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 7.056 | Mean of logged Data | 7.188  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 7.371 | SD of logged Data   | 0.0955 |
|                        |       |                     |        |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 1450 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 1505 | 97.5% Chebyshev (MVUE) UCL | 1580 |
| 99% Chebyshev (MVUE) UCL | 1729 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1397 | 95% Jackknife UCL            | 1405 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 1393 | 95% Bootstrap-t UCL          | 1426 |
| 95% Hall's Bootstrap UCL      | 1428 | 95% Percentile Bootstrap UCL | 1392 |
| 95% BCA Bootstrap UCL         | 1407 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 1452 | 95% Chebyshev(Mean, Sd) UCL  | 1508 |
| 97.5% Chebyshev(Mean, Sd) UCL | 1585 | 99% Chebyshev(Mean, Sd) UCL  | 1737 |

#### Suggested UCL to Use

95% Student's-t UCL 1405

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:22:42 PMFrom FileLabrador Tea, Manganese, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Labrador Tea, Manganese, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 538.5              | Mean                            | 958.8  |
| Maximum                      | 1410               | Median                          | 1040   |
| SD                           | 294.7              | Std. Error of Mean              | 93.18  |
| Coefficient of Variation     | 0.307              | Skewness                        | -0.312 |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.912 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.198 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Ass                            | suming Nor | mal Distribution                                         |         |
|--------------------------------|------------|----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-t UCL            | 1130       | 95% Adjusted-CLT UCL (Chen-1995)                         | 1102    |
|                                |            | 95% Modified-t UCL (Johnson-1978)                        | 1128    |
|                                | Gamma      | GOF Test                                                 |         |
| A-D Test Statistic             | 0.632      | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical Value          | 0.725      | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test Statistic             | 0.239      | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical Value          | 0.267      | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data appear           | Gamma Di   | stributed at 5% Significance Level                       |         |
|                                | Gamma      | Statistics                                               |         |
| k hat (MLE)                    | 10.38      | k star (bias corrected MLE)                              | 7.336   |
| Theta hat (MLE)                | 92.33      | Theta star (bias corrected MLE)                          | 130.7   |
| nu hat (MLE)                   | 207.7      | nu star (bias corrected)                                 | 146.7   |
| MLE Mean (bias corrected)      | 958.8      | MLE Sd (bias corrected)                                  | 354     |
|                                |            | Approximate Chi Square Value (0.05)                      | 119.7   |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                | 115.5   |
|                                |            |                                                          |         |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 1218

95% Approximate Gamma UCL (use when n>=50)) 1175

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:22:42 PM From File Labrador Tea, Manganese, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Manganese, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.866                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.255                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 6.289 | Mean of logged Data | 6.817 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 7.251 | SD of logged Data   | 0.342 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 1219 | 90% Chebyshev (MVUE) UCL   | 1277 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 1420 | 97.5% Chebyshev (MVUE) UCL | 1618 |
| 99% Chebyshev (MVUE) UCL | 2007 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 1112 | 95% Jackknife UCL                            | 1130                                                                                       |
|------|----------------------------------------------|--------------------------------------------------------------------------------------------|
| 1107 | 95% Bootstrap-t UCL                          | 1125                                                                                       |
| 1099 | 95% Percentile Bootstrap UCL                 | 1097                                                                                       |
| 1098 |                                              |                                                                                            |
| 1238 | 95% Chebyshev(Mean, Sd) UCL                  | 1365                                                                                       |
| 1541 | 99% Chebyshev(Mean, Sd) UCL                  | 1886                                                                                       |
|      | 1112<br>1107<br>1099<br>1098<br>1238<br>1541 | 110795% Bootstrap-t UCL109995% Percentile Bootstrap UCL1098123895% Chebyshev(Mean, Sd) UCL |

#### Suggested UCL to Use

95% Student's-t UCL 1130

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:23:24 PM

 From File
 Labrador Tea, Mercury, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Labrador Tea, Mercury, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Mercury, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:24:06 PM From File Labrador Tea, Molybdenum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Molybdenum, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 7       |
| Number of Detects            | 8                  | Number of Non-Detects           | 2       |
| Number of Distinct Detects   | 7                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.02               | Minimum Non-Detect              | 0.02    |
| Maximum Detect               | 0.046              | Maximum Non-Detect              | 0.02    |
| Variance Detects 8           | 3.3357E-5          | Percent Non-Detects             | 20%     |
| Mean Detects                 | 0.0283             | SD Detects                      | 0.00913 |
| Median Detects               | 0.026              | CV Detects                      | 0.323   |
| Skewness Detects             | 1.136              | Kurtosis Detects                | 0.778   |
| Mean of Logged Detects       | -3.608             | SD of Logged Detects            | 0.301   |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.879 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.818 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.183 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.283 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

|                               | •                                 |         |
|-------------------------------|-----------------------------------|---------|
| KM Mean 0.0266                | KM Standard Error of Mean         | 0.00281 |
| KM SD 0.00832                 | 95% KM (BCA) UCL                  | 0.0312  |
| 95% KM (t) UCL 0.0318         | 95% KM (Percentile Bootstrap) UCL | 0.0309  |
| 95% KM (z) UCL 0.0312         | 95% KM Bootstrap t UCL            | 0.0349  |
| 90% KM Chebyshev UCL 0.035    | 95% KM Chebyshev UCL              | 0.0389  |
| 97.5% KM Chebyshev UCL 0.0442 | 99% KM Chebyshev UCL              | 0.0546  |
|                               |                                   |         |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic     | 0.357 | Anderson-Darling GOF Test                                       |
|------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.715 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.188 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value  | 0.294 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear ( | 2     | intributed at 5%. Cignificance Lovel                            |

Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| k hat (MLE)     | 12.22   | k star (bias corrected MLE)     | 7.718   |
|-----------------|---------|---------------------------------|---------|
| Theta hat (MLE) | 0.00231 | Theta star (bias corrected MLE) | 0.00366 |
| nu hat (MLE)    | 195.5   | nu star (bias corrected)        | 123.5   |
| Mean (detects)  | 0.0283  |                                 |         |

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:24:06 PM From File Labrador Tea, Molybdenum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Molybdenum, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.01    | Mean                                                           | 0.0247                                                                                                                                                                                                                                       |
|---------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.046   | Median                                                         | 0.023                                                                                                                                                                                                                                        |
| 0.011   | CV                                                             | 0.446                                                                                                                                                                                                                                        |
| 5.269   | k star (bias corrected MLE)                                    | 3.755                                                                                                                                                                                                                                        |
| 0.00468 | Theta star (bias corrected MLE)                                | 0.00657                                                                                                                                                                                                                                      |
| 105.4   | nu star (bias corrected)                                       | 75.1                                                                                                                                                                                                                                         |
| 0.0267  |                                                                |                                                                                                                                                                                                                                              |
| 56.14   | Adjusted Chi Square Value (75.10, $\beta$ )                    | 53.3                                                                                                                                                                                                                                         |
| 0.033   | 95% Gamma Adjusted UCL (use when n<50)                         | 0.0348                                                                                                                                                                                                                                       |
|         | 0.046<br>0.011<br>5.269<br>0.00468<br>105.4<br>0.0267<br>56.14 | 0.046         Median           0.011         CV           5.269         k star (bias corrected MLE)           0.00468         Theta star (bias corrected MLE)           105.4         nu star (bias corrected)           0.0267         6.14 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0266    | SD (KM)                   | 0.00832 |
|---------------------------|-----------|---------------------------|---------|
| Variance (KM) 6           | 6.9240E-5 | SE of Mean (KM)           | 0.00281 |
| k hat (KM)                | 10.22     | k star (KM)               | 7.22    |
| nu hat (KM)               | 204.4     | nu star (KM)              | 144.4   |
| theta hat (KM)            | 0.0026    | theta star (KM)           | 0.00368 |
| 80% gamma percentile (KM) | 0.0344    | 90% gamma percentile (KM) | 0.0398  |
| 95% gamma percentile (KM) | 0.0447    | 99% gamma percentile (KM) | 0.0548  |

Adjusted Chi Square Value (144.40,  $\beta$ ) 113.4

0.0339

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (144.40, $\alpha$ ) | 117.6  |
|--------------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.0327 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.915 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.818 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.177 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.283 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Loval |       |                                                         |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 6                                        |
|--------------------------------|------------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 8:24:06 PM            |
| From File                      | Labrador Tea, Molybdenum, mg_kg - dw.xls |
| Full Precision                 | OFF                                      |
| Confidence Coefficient         | 95%                                      |
| Number of Bootstrap Operations | 2000                                     |
|                                |                                          |

#### Labrador Tea, Molybdenum, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0252 | Mean in Log Scale            | -3.757 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0103 | SD in Log Scale              | 0.414  |
| 95% t UCL (assumes normality of ROS data) | 0.0312 | 95% Percentile Bootstrap UCL | 0.0302 |
| 95% BCA Bootstrap UCL                     | 0.0313 | 95% Bootstrap t UCL          | 0.0327 |
| 95% H-UCL (Log ROS)                       | 0.034  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -3.669 | KM Geo Mean                   | 0.0255 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.28   | 95% Critical H Value (KM-Log) | 1.956  |
| KM Standard Error of Mean (logged) | 0.0946 | 95% H-UCL (KM -Log)           | 0.0318 |
| KM SD (logged)                     | 0.28   | 95% Critical H Value (KM-Log) | 1.956  |
| KM Standard Error of Mean (logged) | 0.0946 |                               |        |

# DL/2 Statistics

| DL/2 Normal                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL/2 Log-Transformed  |        |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|
| Mean in Original Scale           | 0.0246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean in Log Scale     | -3.808 |
| SD in Original Scale             | 0.0111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD in Log Scale       | 0.497  |
| 95% t UCL (Assumes normality)    | 0.0311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% H-Stat UCL        | 0.0363 |
| DL/O is not a supervise dod as a | and a second she was a second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the sec | I blatestaal as as as |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.0318

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:24:49 PM

 From File
 Labrador Tea, Nickel, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Labrador Tea, Nickel, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.086              | Mean                            | 0.236  |
| Maximum                      | 0.695              | Median                          | 0.117  |
| SD                           | 0.232              | Std. Error of Mean              | 0.0733 |
| Coefficient of Variation     | 0.982              | Skewness                        | 1.61   |
|                              |                    |                                 |        |
|                              | Normal GOF Test    |                                 |        |

| Shapiro Wilk Test Statistic    | 0.676 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.292 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level |

# Data Not Normal at 5% Significance Level

| Ass                            | suming Normal Dist   | ribution                                            |       |
|--------------------------------|----------------------|-----------------------------------------------------|-------|
| 95% Normal UCL                 |                      | 95% UCLs (Adjusted for Skewness)                    |       |
| 95% Student's-t UCL            | 0.37                 | 95% Adjusted-CLT UCL (Chen-1995)                    | 0.396 |
|                                |                      | 95% Modified-t UCL (Johnson-1978)                   | 0.377 |
|                                | Gamma GOF Te         | st                                                  |       |
| A-D Test Statistic             | 1.131                | Anderson-Darling Gamma GOF Test                     |       |
| 5% A-D Critical Value          | 0.738                | Data Not Gamma Distributed at 5% Significance Level |       |
| K-S Test Statistic             | 0.276                | Kolmogorov-Smirnov Gamma GOF Test                   |       |
| 5% K-S Critical Value          | 0.271                | Data Not Gamma Distributed at 5% Significance Level |       |
| Data Not Gamn                  | na Distributed at 5% | Significance Level                                  |       |
|                                |                      |                                                     |       |
|                                | Gamma Statistic      | S                                                   |       |
| k hat (MLE)                    | 1.653                | k star (bias corrected MLE)                         | 1.224 |
| Theta hat (MLE)                | 0.143                | Theta star (bias corrected MLE)                     | 0.193 |
| nu hat (MLE)                   | 33.06                | nu star (bias corrected)                            | 24.47 |
| MLE Mean (bias corrected)      | 0.236                | MLE Sd (bias corrected)                             | 0.213 |
|                                |                      | Approximate Chi Square Value (0.05)                 | 14.21 |
| Adjusted Level of Significance | 0.0267               | Adjusted Chi Square Value                           | 12.87 |
|                                |                      |                                                     |       |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.449

95% Approximate Gamma UCL (use when n>=50)) 0.406

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:24:49 PM From File Labrador Tea, Nickel, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Nickel, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.798                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.245                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear Approx             | ximate Lognormal at 5% | 6 Significance Level                           |

#### Lognormal Statistics

| Minimum of Logged Data          | -2.453                      | Mean of logged Data | -1.776 |  |  |
|---------------------------------|-----------------------------|---------------------|--------|--|--|
| Maximum of Logged Data          | -0.364                      | SD of logged Data   | 0.793  |  |  |
| Assuming Lognormal Distribution |                             |                     |        |  |  |
| Assu                            | ning Lognornal Distribution |                     |        |  |  |

| 95% H-UCL                | 0.473 | 90% Chebyshev (MVUE) UCL   | 0.397 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.476 | 97.5% Chebyshev (MVUE) UCL | 0.586 |
| 99% Chebyshev (MVUE) UCL | 0.8   |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.357 | 95% Jackknife UCL            | 0.37  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.35  | 95% Bootstrap-t UCL          | 0.74  |
| 95% Hall's Bootstrap UCL      | 1.01  | 95% Percentile Bootstrap UCL | 0.356 |
| 95% BCA Bootstrap UCL         | 0.388 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.456 | 95% Chebyshev(Mean, Sd) UCL  | 0.555 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.694 | 99% Chebyshev(Mean, Sd) UCL  | 0.965 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% H-UCL 0.473

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:24:49 PM

 From File
 Labrador Tea, Nickel, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Labrador Tea, Nickel, mg/kg - dw

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:25:32 PMFrom FileLabrador Tea, Phosphorus, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Labrador Tea, Phosphorus, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 831                | Mean                            | 887.3 |
| Maximum                      | 1050               | Median                          | 854.8 |
| SD                           | 80.1               | Std. Error of Mean              | 25.33 |
| Coefficient of Variation     | 0.0903             | Skewness                        | 1.613 |
|                              |                    |                                 |       |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.709 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.311 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level |

#### Data Not Normal at 5% Significance Level

| Ass                            | suming No   | rmal Distribution                                   |       |
|--------------------------------|-------------|-----------------------------------------------------|-------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                    |       |
| 95% Student's-t UCL            | 933.7       | 95% Adjusted-CLT UCL (Chen-1995)                    | 942.8 |
|                                |             | 95% Modified-t UCL (Johnson-1978)                   | 935.9 |
|                                | Gamma       | GOF Test                                            |       |
| A-D Test Statistic             | 1.334       | Anderson-Darling Gamma GOF Test                     |       |
| 5% A-D Critical Value          | 0.724       | Data Not Gamma Distributed at 5% Significance Level |       |
| K-S Test Statistic             | 0.302       | Kolmogorov-Smirnov Gamma GOF Test                   |       |
| 5% K-S Critical Value          | 0.266       | Data Not Gamma Distributed at 5% Significance Level |       |
| Data Not Gamn                  | na Distribu | ted at 5% Significance Level                        |       |
|                                | Gamma       | Statistics                                          |       |
| k hat (MLE)                    | 146.4       | k star (bias corrected MLE)                         | 102.5 |
| Theta hat (MLE)                | 6.062       | Theta star (bias corrected MLE)                     | 8.654 |
| nu hat (MLE)                   | 2927        | nu star (bias corrected)                            | 2051  |
| MLE Mean (bias corrected)      | 887.3       | MLE Sd (bias corrected)                             | 87.63 |
|                                |             | Approximate Chi Square Value (0.05)                 | 1946  |
| Adjusted Level of Significance | 0.0267      | Adjusted Chi Square Value                           | 1929  |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 943.4

95% Approximate Gamma UCL (use when n>=50)) 934.8

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:25:32 PM From File Labrador Tea, Phosphorus, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Phosphorus, mg/kg - dw

|                                | Lognormal GOF Test       |                                             |
|--------------------------------|--------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.723                    | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk Critical Value | 0.842                    | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.296                    | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.262                    | Data Not Lognormal at 5% Significance Level |
| Data Not L                     | ognormal at 5% Significa | ance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 6.723 | Mean of logged Data | 6.785  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 6.957 | SD of logged Data   | 0.0857 |
|                        |       |                     |        |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   |
|--------------------------|------|----------------------------|
| 95% Chebyshev (MVUE) UCL | 992  | 97.5% Chebyshev (MVUE) UCL |
| 99% Chebyshev (MVUE) UCL | 1126 |                            |

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

| 933.7 | 95% Jackknife UCL            | - 9 | 95% CLT UCL                   |
|-------|------------------------------|-----|-------------------------------|
| 1057  | 95% Bootstrap-t UCL          | - 9 | 95% Standard Bootstrap UCL    |
| 928.7 | 95% Percentile Bootstrap UCL | . 1 | 95% Hall's Bootstrap UCL      |
|       |                              | - 9 | 95% BCA Bootstrap UCL         |
| 997.7 | 95% Chebyshev(Mean, Sd) UCL  | - 9 | 90% Chebyshev(Mean, Sd) UCL   |
| 1139  | 99% Chebyshev(Mean, Sd) UCL  | . 1 | 97.5% Chebyshev(Mean, Sd) UCL |
|       |                              |     |                               |

#### Suggested UCL to Use

95% Student's-t UCL 933.7

or 95% Modified-t UCL 935.9

959.3 1037

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:26:15 PM From File Labrador Tea, Potassium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Potassium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 3400               | Mean                            | 4280   |
| Maximum                      | 4750               | Median                          | 4365   |
| SD                           | 417.1              | Std. Error of Mean              | 131.9  |
| Coefficient of Variation     | 0.0975             | Skewness                        | -1.066 |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.919 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.19  | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.262 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution   |         |                                                           |         |  |  |
|--------------------------------|---------|-----------------------------------------------------------|---------|--|--|
| 95% Normal UCL                 |         | 95% UCLs (Adjusted for Skewness)                          |         |  |  |
| 95% Student's-t UCL            | 4522    | 95% Adjusted-CLT UCL (Chen-1995)                          | 4449    |  |  |
|                                |         | 95% Modified-t UCL (Johnson-1978)                         | 4514    |  |  |
|                                | Gamma   | GOF Test                                                  |         |  |  |
| A-D Test Statistic             | 0.409   | Anderson-Darling Gamma GOF Test                           |         |  |  |
| 5% A-D Critical Value          | 0.724   | Detected data appear Gamma Distributed at 5% Significance | e Level |  |  |
| K-S Test Statistic             | 0.203   | Kolmogorov-Smirnov Gamma GOF Test                         |         |  |  |
| 5% K-S Critical Value          | 0.266   | Detected data appear Gamma Distributed at 5% Significance | e Level |  |  |
| Detected data appear           | Gamma D | istributed at 5% Significance Level                       |         |  |  |
|                                | _       |                                                           |         |  |  |
|                                | Gamma   | Statistics                                                |         |  |  |
| k hat (MLE)                    | 109.5   | k star (bias corrected MLE)                               | 76.72   |  |  |
| Theta hat (MLE)                | 39.08   | Theta star (bias corrected MLE)                           | 55.79   |  |  |
| nu hat (MLE)                   | 2190    | nu star (bias corrected)                                  | 1534    |  |  |
| MLE Mean (bias corrected)      | 4280    | MLE Sd (bias corrected)                                   | 488.6   |  |  |
|                                |         | Approximate Chi Square Value (0.05)                       | 1444    |  |  |
| Adjusted Level of Significance | 0.0267  | Adjusted Chi Square Value                                 | 1429    |  |  |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 4595

95% Approximate Gamma UCL (use when n>=50)) 4547

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Potassium, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.895                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.209                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 8.132 | Mean of logged Data | 8.357 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 8.466 | SD of logged Data   | 0.103 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 4555 | 90% Chebyshev (MVUE) UCL   | 4698 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 4886 | 97.5% Chebyshev (MVUE) UCL | 5149 |
| 99% Chebyshev (MVUE) UCL | 5664 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 4497 | 95% Jackknife UCL            | 4522 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 4482 | 95% Bootstrap-t UCL          | 4481 |
| 95% Hall's Bootstrap UCL      | 4462 | 95% Percentile Bootstrap UCL | 4474 |
| 95% BCA Bootstrap UCL         | 4458 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 4676 | 95% Chebyshev(Mean, Sd) UCL  | 4855 |
| 97.5% Chebyshev(Mean, Sd) UCL | 5104 | 99% Chebyshev(Mean, Sd) UCL  | 5592 |

#### Suggested UCL to Use

95% Student's-t UCL 4522

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:26:57 PM From File Labrador Tea, Selenium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Selenium, mg/kg - dw

#### **General Statistics**

10

1

Total Number of Observations Number of Detects

Number of Distinct Detects 1

Number of Distinct Observations 2

Number of Non-Detects 9

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Selenium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:27:40 PM From File Labrador Tea, Silver, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Silver, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Silver, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:28:22 PM From File Labrador Tea, Sodium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Sodium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 3      |
| Number of Detects            | 3                  | Number of Non-Detects           | 7      |
| Number of Distinct Detects   | 2                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 11                 | Minimum Non-Detect              | 10     |
| Maximum Detect               | 13                 | Maximum Non-Detect              | 10     |
| Variance Detects             | 1.333              | Percent Non-Detects             | 70%    |
| Mean Detects                 | 12.33              | SD Detects                      | 1.155  |
| Median Detects               | 13                 | CV Detects                      | 0.0936 |
| Skewness Detects             | -1.732             | Kurtosis Detects                | N/A    |
| Mean of Logged Detects       | 2.509              | SD of Logged Detects            | 0.0964 |

#### Warning: Data set has only 3 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                                      | 0.75  | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                                   | 0.767 | Detected Data Not Normal at 5% Significance Level    |  |
| Lilliefors Test Statistic                                        | 0.385 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                                     | 0.425 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Approximate Normal at 5% Significance Level |       |                                                      |  |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 10.7  | KM Standard Error of Mean         | 0.46  |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 1.187 | 95% KM (BCA) UCL                  | N/A   |
| 95% KM (t) UCL         | 11.54 | 95% KM (Percentile Bootstrap) UCL | N/A   |
| 95% KM (z) UCL         | 11.46 | 95% KM Bootstrap t UCL            | N/A   |
| 90% KM Chebyshev UCL   | 12.08 | 95% KM Chebyshev UCL              | 12.7  |
| 97.5% KM Chebyshev UCL | 13.57 | 99% KM Chebyshev UCL              | 15.28 |

#### Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

#### Gamma Statistics on Detected Data Only

| N/A | k star (bias corrected MLE)     | 164.6  | k hat (MLE)     |
|-----|---------------------------------|--------|-----------------|
| N/A | Theta star (bias corrected MLE) | 0.0749 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | 987.5  | nu hat (MLE)    |
|     |                                 | 12.33  | Mean (detects)  |

| User Selected Options          | 6                                    |
|--------------------------------|--------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 8:28:22 PM        |
| From File                      | Labrador Tea, Sodium, mg_kg - dw.xls |
| Full Precision                 | OFF                                  |
| Confidence Coefficient         | 95%                                  |
| Number of Bootstrap Operations | 2000                                 |

#### Labrador Tea, Sodium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 6.137  | Mean                                         | 9.566 |
|--------------------------------------------------|--------|----------------------------------------------|-------|
| Maximum                                          | 13     | Median                                       | 9.37  |
| SD                                               | 2.305  | CV                                           | 0.241 |
| k hat (MLE)                                      | 18.95  | k star (bias corrected MLE)                  | 13.33 |
| Theta hat (MLE)                                  | 0.505  | Theta star (bias corrected MLE)              | 0.718 |
| nu hat (MLE)                                     | 379    | nu star (bias corrected)                     | 266.6 |
| Adjusted Level of Significance ( $\beta$ )       | 0.0267 |                                              |       |
| Approximate Chi Square Value (266.64, $\alpha$ ) | 229.8  | Adjusted Chi Square Value (266.64, $\beta$ ) | 223.9 |
| 95% Gamma Approximate UCL (use when n>=50)       | 11.1   | 95% Gamma Adjusted UCL (use when n<50)       | N/A   |

#### Estimates of Gamma Parameters using KM Estimates

| 1.187 | SD (KM)                   | 10.7  | Mean (KM)                 |
|-------|---------------------------|-------|---------------------------|
| 0.46  | SE of Mean (KM)           | 1.41  | Variance (KM)             |
| 56.91 | k star (KM)               | 81.2  | k hat (KM)                |
| 1138  | nu star (KM)              | 1624  | nu hat (KM)               |
| 0.188 | theta star (KM)           | 0.132 | theta hat (KM)            |
| 12.55 | 90% gamma percentile (KM) | 11.87 | 80% gamma percentile (KM) |
| 14.27 | 99% gamma percentile (KM) | 13.14 | 95% gamma percentile (KM) |

Adjusted Chi Square Value (N/A,  $\beta$ ) 1048

95% Gamma Adjusted KM-UCL (use when n<50) 11.62

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (N/A, $\alpha$ ) | 1061 |
|-----------------------------------------------|------|
|                                               |      |

95% Gamma Approximate KM-UCL (use when n>=50) 11.48

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                                           | 0.75  | Shapiro Wilk GOF Test                                   |  |
|-----------------------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                                        | 0.767 | Detected Data Not Lognormal at 5% Significance Level    |  |
| Lilliefors Test Statistic                                             | 0.385 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                                          | 0.425 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Approximate   ognormal at 5% Significance   eval |       |                                                         |  |

Detected Data appear Approximate Lognormal at 5% Significance Level

| User Selected Options          |                                      |
|--------------------------------|--------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/8/2021 8:28:22 PM        |
| From File                      | Labrador Tea, Sodium, mg_kg - dw.xls |
| Full Precision                 | OFF                                  |
| Confidence Coefficient         | 95%                                  |
| Number of Bootstrap Operations | 2000                                 |

#### Labrador Tea, Sodium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 9.833 | Mean in Log Scale            | 2.267 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 2.028 | SD in Log Scale              | 0.203 |
| 95% t UCL (assumes normality of ROS data) | 11.01 | 95% Percentile Bootstrap UCL | 10.85 |
| 95% BCA Bootstrap UCL                     | 10.92 | 95% Bootstrap t UCL          | 11.24 |
| 95% H-UCL (Log ROS)                       | 11.2  |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 2.365  | KM Geo Mean                   | 10.64 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.104  | 95% Critical H Value (KM-Log) | 1.805 |
| KM Standard Error of Mean (logged) | 0.0403 | 95% H-UCL (KM -Log)           | 11.39 |
| KM SD (logged)                     | 0.104  | 95% Critical H Value (KM-Log) | 1.805 |
| KM Standard Error of Mean (logged) | 0.0403 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                    |                     | DL/2 Log-Transformed             |       |
|--------------------------------|---------------------|----------------------------------|-------|
| Mean in Original Scale         | 7.2                 | Mean in Log Scale                | 1.879 |
| SD in Original Scale           | 3.584               | SD in Log Scale                  | 0.437 |
| 95% t UCL (Assumes normality)  | 9.278               | 95% H-Stat UCL                   | 9.835 |
| DL /2 is not a recommended met | had provided for or | mparisons and historical reasons |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 11.54

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:29:04 PM

 From File
 Labrador Tea, Strontium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Labrador Tea, Strontium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9     |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 4.37               | Mean                            | 7.144 |
| Maximum                      | 15.8               | Median                          | 4.86  |
| SD                           | 4.364              | Std. Error of Mean              | 1.38  |
| Coefficient of Variation     | 0.611              | Skewness                        | 1.611 |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.659 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.364 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level |

#### Data Not Normal at 5% Significance Level

| Ass                            | uming Normal Distr  | ibution                                             |       |
|--------------------------------|---------------------|-----------------------------------------------------|-------|
| 95% Normal UCL                 |                     | 95% UCLs (Adjusted for Skewness)                    |       |
| 95% Student's-t UCL            | 9.673               | 95% Adjusted-CLT UCL (Chen-1995)                    | 10.16 |
|                                |                     | 95% Modified-t UCL (Johnson-1978)                   | 9.791 |
|                                | Gamma GOF Tes       | it                                                  |       |
| A-D Test Statistic             | 1.501               | Anderson-Darling Gamma GOF Test                     |       |
| 5% A-D Critical Value          | 0.729               | Data Not Gamma Distributed at 5% Significance Level | l     |
| K-S Test Statistic             | 0.358               | Kolmogorov-Smirnov Gamma GOF Test                   |       |
| 5% K-S Critical Value          | 0.268               | Data Not Gamma Distributed at 5% Significance Level | l     |
| Data Not Gamm                  | a Distributed at 5% | Significance Level                                  |       |
|                                | Gamma Statistic     |                                                     |       |
| k hat (MLE)                    | 4.091               | k star (bias corrected MLE)                         | 2.93  |
| Theta hat (MLE)                | 1.746               | Theta star (bias corrected MLE)                     | 2.438 |
| nu hat (MLE)                   | 81.82               | nu star (bias corrected)                            | 58.61 |
| MLE Mean (bias corrected)      | 7.144               | MLE Sd (bias corrected)                             | 4.173 |
|                                |                     | Approximate Chi Square Value (0.05)                 | 42.01 |
| Adjusted Level of Significance | 0.0267              | Adjusted Chi Square Value                           | 39.58 |
|                                | 0.0207              |                                                     | 00.00 |
| Assu                           | uming Gamma Disti   | ibution                                             |       |

95% Adjusted Gamma UCL (use when n<50) 10.58

95% Approximate Gamma UCL (use when n>=50)) 9.967

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:29:04 PM From File Labrador Tea, Strontium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Strontium, mg/kg - dw

|                                | Lognormal GOF Test       |                                             |
|--------------------------------|--------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.717                    | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk Critical Value | 0.842                    | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.336                    | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.262                    | Data Not Lognormal at 5% Significance Level |
| Data Not Lo                    | ognormal at 5% Significa | Ince Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data          | 1.475 | Mean of logged Data | 1.839 |
|---------------------------------|-------|---------------------|-------|
| Maximum of Logged Data          | 2.76  | SD of logged Data   | 0.492 |
|                                 |       |                     |       |
| Assuming Lognormal Distribution |       |                     |       |

#### Lognormal Distribution

| 95% H-UCL                | 10.2  | 90% Chebyshev (MVUE) UCL   | 10.34 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 11.85 | 97.5% Chebyshev (MVUE) UCL | 13.94 |
| 99% Chebyshev (MVUE) UCL | 18.05 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 9.414 | 95% Jackknife UCL            | 9.673 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 9.303 | 95% Bootstrap-t UCL          | 16.43 |
| 95% Hall's Bootstrap UCL      | 19.88 | 95% Percentile Bootstrap UCL | 9.352 |
| 95% BCA Bootstrap UCL         | 9.976 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 11.28 | 95% Chebyshev(Mean, Sd) UCL  | 13.16 |
| 97.5% Chebyshev(Mean, Sd) UCL | 15.76 | 99% Chebyshev(Mean, Sd) UCL  | 20.88 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 9.673

or 95% Modified-t UCL 9.791

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/8/2021 8:29:46 PM

 From File
 Labrador Tea, Thallium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Labrador Tea, Thallium, mg/kg - dw

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 10      |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0077             | Mean                            | 0.014   |
| Maximum                      | 0.0274             | Median                          | 0.0128  |
| SD                           | 0.00595            | Std. Error of Mean              | 0.00188 |
| Coefficient of Variation     | 0.426              | Skewness                        | 1.4     |
|                              |                    |                                 |         |

#### Normal GOF Test

# Shapiro Wilk Test Statistic0.871Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.842Data appear Normal at 5% Significance LevelLilliefors Test Statistic0.244Lilliefors GOF Test5% Lilliefors Critical Value0.262Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution   |            |                                                           |         |  |
|--------------------------------|------------|-----------------------------------------------------------|---------|--|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                          |         |  |
| 95% Student's-t UCL            | 0.0174     | 95% Adjusted-CLT UCL (Chen-1995)                          | 0.0179  |  |
|                                |            | 95% Modified-t UCL (Johnson-1978)                         | 0.0175  |  |
|                                | Gamma G    | OF Test                                                   |         |  |
| A-D Test Statistic             | 0.33       | Anderson-Darling Gamma GOF Test                           |         |  |
| 5% A-D Critical Value          | 0.728      | Detected data appear Gamma Distributed at 5% Significance | e Level |  |
| K-S Test Statistic             | 0.189      | Kolmogorov-Smirnov Gamma GOF Test                         |         |  |
| 5% K-S Critical Value          | 0.267      | Detected data appear Gamma Distributed at 5% Significance | e Level |  |
| Detected data appear           | Gamma Dis  | tributed at 5% Significance Level                         |         |  |
|                                |            |                                                           |         |  |
|                                | Gamma S    |                                                           |         |  |
| k hat (MLE)                    | 7.122      | k star (bias corrected MLE)                               | 5.052   |  |
| Theta hat (MLE)                | 0.00196    | Theta star (bias corrected MLE)                           | 0.00276 |  |
| nu hat (MLE)                   | 142.4      | nu star (bias corrected)                                  | 101     |  |
| MLE Mean (bias corrected)      | 0.014      | MLE Sd (bias corrected)                                   | 0.00621 |  |
|                                |            | Approximate Chi Square Value (0.05)                       | 78.85   |  |
| Adjusted Level of Significance | 0.0267     | Adjusted Chi Square Value                                 | 75.45   |  |
|                                |            |                                                           |         |  |
| Ass                            | uming Gamı | ma Distribution                                           |         |  |

95% Adjusted Gamma UCL (use when n<50) 0.0187

95% Approximate Gamma UCL (use when n>=50)) 0.0179

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:29:46 PM From File Labrador Tea, Thallium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Thallium, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.95                   | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.842                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.169                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.262                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | -4.867                      | Mean of logged Data | -4.344 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | -3.599                      | SD of logged Data   | 0.391  |
| Assu                   | ming Lognormal Distribution |                     |        |

| 95% H-UCL                | 0.0184 | 90% Chebyshev (MVUE) UCL   | 0.0191 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0215 | 97.5% Chebyshev (MVUE) UCL | 0.0248 |
| 99% Chebyshev (MVUE) UCL | 0.0312 |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.017  | 95% Jackknife UCL            | 0.0174 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0168 | 95% Bootstrap-t UCL          | 0.0201 |
| 95% Hall's Bootstrap UCL      | 0.0369 | 95% Percentile Bootstrap UCL | 0.0171 |
| 95% BCA Bootstrap UCL         | 0.018  |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0196 | 95% Chebyshev(Mean, Sd) UCL  | 0.0222 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0257 | 99% Chebyshev(Mean, Sd) UCL  | 0.0327 |
|                               |        |                              |        |

#### Suggested UCL to Use

95% Student's-t UCL 0.0174

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:30:29 PMFrom FileLabrador Tea, Tin, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Labrador Tea, Tin, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Tin, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:31:11 PM From File Labrador Tea, Titanium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Titanium, mg/kg - dw

#### **General Statistics**

10

1

Total Number of Observations Number of Detects

Number of Distinct Detects 1

Number of Distinct Observations 2

Number of Non-Detects 9

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Titanium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:31:53 PM From File Labrador Tea, Uranium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Uranium, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Uranium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/8/2021 8:32:35 PM From File Labrador Tea, Vanadium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Labrador Tea, Vanadium, mg/kg - dw

#### **General Statistics**

10

0

0

Total Number of Observations Number of Detects Number of Distinct Detects 
 Number of Distinct Observations
 1

 Number of Non-Detects
 10

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Labrador Tea, Vanadium, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/8/2021 8:33:17 PMFrom FileLabrador Tea, Zinc, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Labrador Tea, Zinc, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 10                 | Number of Distinct Observations | 9      |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 11.9               | Mean                            | 13.77  |
| Maximum                      | 14.6               | Median                          | 13.98  |
| SD                           | 0.735              | Std. Error of Mean              | 0.233  |
| Coefficient of Variation     | 0.0534             | Skewness                        | -2.033 |
|                              |                    |                                 |        |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.787 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.27  | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.262 | Data Not Normal at 5% Significance Level |

#### Data Not Normal at 5% Significance Level

| Assuming Normal Distribution   |             |                                                    |        |
|--------------------------------|-------------|----------------------------------------------------|--------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                   |        |
| 95% Student's-t UCL            | 14.2        | 95% Adjusted-CLT UCL (Chen-1995)                   | 13.99  |
|                                |             | 95% Modified-t UCL (Johnson-1978)                  | 14.17  |
|                                | Gamma       | GOF Test                                           |        |
| A-D Test Statistic             | 0.987       | Anderson-Darling Gamma GOF Test                    |        |
| 5% A-D Critical Value          | 0.724       | Data Not Gamma Distributed at 5% Significance Leve | el     |
| K-S Test Statistic             | 0.278       | Kolmogorov-Smirnov Gamma GOF Test                  |        |
| 5% K-S Critical Value          | 0.266       | Data Not Gamma Distributed at 5% Significance Leve | el     |
| Data Not Gamm                  | na Distribu | ted at 5% Significance Level                       |        |
|                                | _           |                                                    |        |
|                                | Gamma       | Statistics                                         |        |
| k hat (MLE)                    | 365.8       | k star (bias corrected MLE)                        | 256.1  |
| Theta hat (MLE)                | 0.0376      | Theta star (bias corrected MLE)                    | 0.0538 |
| nu hat (MLE)                   | 7317        | nu star (bias corrected)                           | 5123   |
| MLE Mean (bias corrected)      | 13.77       | MLE Sd (bias corrected)                            | 0.86   |
|                                |             | Approximate Chi Square Value (0.05)                | 4958   |
| Adjusted Level of Significance | 0.0267      | Adjusted Chi Square Value                          | 4929   |
| Ass                            | uming Gai   | nma Distribution                                   |        |

95% Adjusted Gamma UCL (use when n<50) 14.31

95% Approximate Gamma UCL (use when n>=50)) 14.23

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Labrador Tea, Zinc, mg/kg - dw

|                                | Lognormal GOF Test       |                                             |
|--------------------------------|--------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.762                    | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk Critical Value | 0.842                    | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.276                    | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value   | 0.262                    | Data Not Lognormal at 5% Significance Level |
| Data Not L                     | ognormal at 5% Significa | ance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 2.477 | Mean of logged Data | 2.621 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 2.681 | SD of logged Data   | 0.056 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A   | 90% Chebyshev (MVUE) UCL   | 14.5  |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 14.83 | 97.5% Chebyshev (MVUE) UCL | 15.29 |
| 99% Chebyshev (MVUE) UCL | 16.2  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 14.15 | 95% Jackknife UCL            | 14.2  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 14.13 | 95% Bootstrap-t UCL          | 14.07 |
| 95% Hall's Bootstrap UCL      | 14.04 | 95% Percentile Bootstrap UCL | 14.09 |
| 95% BCA Bootstrap UCL         | 14.04 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 14.47 | 95% Chebyshev(Mean, Sd) UCL  | 14.78 |
| 97.5% Chebyshev(Mean, Sd) UCL | 15.22 | 99% Chebyshev(Mean, Sd) UCL  | 16.08 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Student's-t UCL 14.2

or 95% Modified-t UCL 14.17

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

VALENTINE GOLD PROJECT: COUNTRY FOODS SAMPLING PROGRAM

## ATTACHMENT F

**ProUCL Outputs: Soil** 

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:07:52 PMFrom FileSoil, Aluminum, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Aluminum, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 20    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 200                | Mean                            | 2291  |
| Maximum                      | 12500              | Median                          | 1300  |
| SD                           | 2920               | Std. Error of Mean              | 653   |
| Coefficient of Variation     | 1.275              | Skewness                        | 2.602 |
|                              |                    |                                 |       |

#### Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.689 | Shapiro Wilk GOF Test                       |  |
|--------------------------------|-------|---------------------------------------------|--|
| 5% Shapiro Wilk Critical Value | 0.905 | D5 Data Not Normal at 5% Significance Level |  |
| Lilliefors Test Statistic      | 0.237 | Lilliefors GOF Test                         |  |
| 5% Lilliefors Critical Value   | 0.192 | Data Not Normal at 5% Significance Level    |  |

#### Data Not Normal at 5% Significance Level

| As                    | suming Norn                      | nal Distribution                                                |  |
|-----------------------|----------------------------------|-----------------------------------------------------------------|--|
| 95% Normal UCL        | 95% UCLs (Adjusted for Skewness) |                                                                 |  |
| 95% Student's-t UCL   | 3420                             | 95% Adjusted-CLT UCL (Chen-1995) 3771                           |  |
|                       |                                  | 95% Modified-t UCL (Johnson-1978) 3484                          |  |
|                       | Gamma (                          | GOF Test                                                        |  |
| A-D Test Statistic    | 0.402                            | Anderson-Darling Gamma GOF Test                                 |  |
| 5% A-D Critical Value | 0.77                             | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic    | 0.112                            | Kolmogorov-Smirnov Gamma GOF Test                               |  |
| 5% K-S Critical Value | 0.2                              | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Detected data appear  | Gamma Dis                        | stributed at 5% Significance Level                              |  |
|                       |                                  |                                                                 |  |
|                       | Gamma                            | Statistics                                                      |  |

| k hat (MLE)                    | 0.966 | k star (bias corrected MLE)         | 0.855 |
|--------------------------------|-------|-------------------------------------|-------|
| Theta hat (MLE)                | 2371  | Theta star (bias corrected MLE)     | 2681  |
| nu hat (MLE)                   | 38.65 | nu star (bias corrected)            | 34.18 |
| MLE Mean (bias corrected)      | 2291  | MLE Sd (bias corrected)             | 2478  |
|                                |       | Approximate Chi Square Value (0.05) | 21.81 |
| Adjusted Level of Significance | 0.038 | Adjusted Chi Square Value           | 21.03 |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 3724

95% Approximate Gamma UCL (use when n>=50) 3591

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:07:52 PM From File Soil, Aluminum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Aluminum, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.978                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.0934                | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 5.298 | Mean of logged Data | 7.137 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 9.433 | SD of logged Data   | 1.132 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 4978 | 90% Chebyshev (MVUE) UCL   | 4244 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 5137 | 97.5% Chebyshev (MVUE) UCL | 6376 |
| 99% Chebyshev (MVUE) UCL | 8810 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 3365 | 95% Jackknife UCL            | 3420 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 3314 | 95% Bootstrap-t UCL          | 4609 |
| 95% Hall's Bootstrap UCL      | 8319 | 95% Percentile Bootstrap UCL | 3423 |
| 95% BCA Bootstrap UCL         | 3883 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 4250 | 95% Chebyshev(Mean, Sd) UCL  | 5138 |
| 97.5% Chebyshev(Mean, Sd) UCL | 6369 | 99% Chebyshev(Mean, Sd) UCL  | 8788 |
|                               |      |                              |      |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 3724

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:08:34 PMFrom FileSoil, Antimony, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Antimony, mg/kg - dw

#### **General Statistics**

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Antimony, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:09:16 PM

 From File
 Soil, Arsenic, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Arsenic, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 6     |
| Number of Detects            | 5                  | Number of Non-Detects           | 15    |
| Number of Distinct Detects   | 5                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.1                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 21                 | Maximum Non-Detect              | 2     |
| Variance Detects             | 62.14              | Percent Non-Detects             | 75%   |
| Mean Detects                 | 7.16               | SD Detects                      | 7.883 |
| Median Detects               | 3.8                | CV Detects                      | 1.101 |
| Skewness Detects             | 2.041              | Kurtosis Detects                | 4.247 |
| Mean of Logged Detects       | 1.592              | SD of Logged Detects            | 0.903 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.718 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.353 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.343 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 3.29  | KM Standard Error of Mean         | 1.043 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 4.174 | 95% KM (BCA) UCL                  | 5.135 |
| 95% KM (t) UCL         | 5.094 | 95% KM (Percentile Bootstrap) UCL | 5.1   |
| 95% KM (z) UCL         | 5.006 | 95% KM Bootstrap t UCL            | 10.62 |
| 90% KM Chebyshev UCL   | 6.42  | 95% KM Chebyshev UCL              | 7.838 |
| 97.5% KM Chebyshev UCL | 9.806 | 99% KM Chebyshev UCL              | 13.67 |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.498 | Anderson-Darling GOF Test                                       |  |
|--------------------------|-------|-----------------------------------------------------------------|--|
| 5% A-D Critical Value    | 0.687 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| K-S Test Statistic       | 0.264 | Kolmogorov-Smirnov GOF                                          |  |
| 5% K-S Critical Value    | 0.362 | Detected data appear Gamma Distributed at 5% Significance Level |  |
| Barris da da terra a com |       | - Distribute dist 500 Otarifican et la seci                     |  |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 0.722 | k star (bias corrected MLE)     | 1.4 | k hat (MLE)     |
|-------|---------------------------------|-----|-----------------|
| 9.915 | Theta star (bias corrected MLE) | 4.8 | Theta hat (MLE) |
| 7.221 | nu star (bias corrected)        | 14. | nu hat (MLE)    |
|       |                                 | 7.1 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:09:16 PM From File Soil, Arsenic, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Arsenic, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                        | 0.01  | Mean                                       | 1.798 |
|------------------------------------------------|-------|--------------------------------------------|-------|
| Maximum                                        | 21    | Median                                     | 0.01  |
| SD                                             | 4.814 | CV                                         | 2.678 |
| k hat (MLE)                                    | 0.202 | k star (bias corrected MLE)                | 0.205 |
| Theta hat (MLE)                                | 8.909 | Theta star (bias corrected MLE)            | 8.775 |
| nu hat (MLE)                                   | 8.071 | nu star (bias corrected)                   | 8.194 |
| Adjusted Level of Significance ( $\beta$ )     | 0.038 |                                            |       |
| Approximate Chi Square Value (8.19, $\alpha$ ) | 2.848 | Adjusted Chi Square Value (8.19, $\beta$ ) | 2.604 |
| 95% Gamma Approximate UCL (use when n>=50)     | 5.172 | 95% Gamma Adjusted UCL (use when n<50)     | 5.656 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 3.29  | SD (KM)                   | 4.174 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 17.42 | SE of Mean (KM)           | 1.043 |
| k hat (KM)                | 0.621 | k star (KM)               | 0.561 |
| nu hat (KM)               | 24.85 | nu star (KM)              | 22.46 |
| theta hat (KM)            | 5.295 | theta star (KM)           | 5.86  |
| 80% gamma percentile (KM) | 5.421 | 90% gamma percentile (KM) | 8.684 |
| 95% gamma percentile (KM) | 12.12 | 99% gamma percentile (KM) | 20.5  |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (22.46, $\alpha$ ) | 12.68 | Adjusted Chi Square Value (22.46, $\beta$ ) | 12.1  |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 5.826 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 6.105 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.905    | Shapiro Wilk GOF Test                                   |
|--------------------------------|----------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762    | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.212    | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.343    | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data ann              | ear Logn | ormal at 5% Significance Level                          |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:09:16 PM |
| From File                      | Soil, Arsenic, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Arsenic, mg/kg - dw

| Lognormal ROS Statistics U | Using Imputed Non-Detects |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

| Mean in Original Scale                    | 1.964 | Mean in Log Scale            | -1.361 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 4.755 | SD in Log Scale              | 2.263  |
| 95% t UCL (assumes normality of ROS data) | 3.803 | 95% Percentile Bootstrap UCL | 3.798  |
| 95% BCA Bootstrap UCL                     | 5.049 | 95% Bootstrap t UCL          | 8.56   |
| 95% H-UCL (Log ROS)                       | 39.73 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| 2.504 | KM Geo Mean                   | 0.918 | KM Mean (logged)                   |
|-------|-------------------------------|-------|------------------------------------|
| 2.08  | 95% Critical H Value (KM-Log) | 0.561 | KM SD (logged)                     |
| 3.83  | 95% H-UCL (KM -Log)           | 0.14  | KM Standard Error of Mean (logged) |
| 2.08  | 95% Critical H Value (KM-Log) | 0.561 | KM SD (logged)                     |
|       |                               | 0.14  | KM Standard Error of Mean (logged) |

#### DL/2 Statistics

| DL/2 Normal                    |                 | DL/2 Log-Transformed                  |       |
|--------------------------------|-----------------|---------------------------------------|-------|
| Mean in Original Scale         | 2.54            | Mean in Log Scale                     | 0.398 |
| SD in Original Scale           | 4.536           | SD in Log Scale                       | 0.82  |
| 95% t UCL (Assumes normality)  | 4.294           | 95% H-Stat UCL                        | 3.262 |
| DL /2 is not a recommended mat | thad provided f | or comparisons and historical reasons |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Gamma Distributed at 5% Significance Level

#### Suggested UCL to Use

a Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) 6.105

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:09:59 PM

 From File
 Soil, Barium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Barium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 19    |
| Number of Detects            | 19                 | Number of Non-Detects           | 1     |
| Number of Distinct Detects   | 18                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 9.25               | Minimum Non-Detect              | 5     |
| Maximum Detect               | 380                | Maximum Non-Detect              | 5     |
| Variance Detects             | 6993               | Percent Non-Detects             | 5%    |
| Mean Detects                 | 66.67              | SD Detects                      | 83.62 |
| Median Detects               | 41                 | CV Detects                      | 1.254 |
| Skewness Detects             | 3.235              | Kurtosis Detects                | 11.85 |
| Mean of Logged Detects       | 3.773              | SD of Logged Detects            | 0.887 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.603 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.901 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.278 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.197 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

Detected Data Not Normal at 5% Significance Level

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 63.59 | KM Standard Error of Mean         | 18.49 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 80.46 | 95% KM (BCA) UCL                  | 94.45 |
| 95% KM (t) UCL         | 95.55 | 95% KM (Percentile Bootstrap) UCL | 96.45 |
| 95% KM (z) UCL         | 93.99 | 95% KM Bootstrap t UCL            | 140.3 |
| 90% KM Chebyshev UCL   | 119   | 95% KM Chebyshev UCL              | 144.2 |
| 97.5% KM Chebyshev UCL | 179   | 99% KM Chebyshev UCL              | 247.5 |
|                        |       |                                   |       |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.659 | Anderson-Darling GOF Test                                       |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                           | 0.762 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                              | 0.173 | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value                                           | 0.203 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data annual Oceana Distributed at 5% Oceanigana Laurel |       |                                                                 |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 1.14  | k star (bias corrected MLE)     | 1.313 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 58.46 | Theta star (bias corrected MLE) | 50.79 | Theta hat (MLE) |
| 43.34 | nu star (bias corrected)        | 49.88 | nu hat (MLE)    |
|       |                                 | 66.67 | Mean (detects)  |

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:09:59 PM

 From File
 Soil, Barium, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Barium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 63.34 | Mean                                        | 0.01  | Minimum                                         |
|-------|---------------------------------------------|-------|-------------------------------------------------|
| 39    | Median                                      | 380   | Maximum                                         |
| 1.306 | CV                                          | 82.75 | SD                                              |
| 0.673 | k star (bias corrected MLE)                 | 0.753 | k hat (MLE)                                     |
| 94.06 | Theta star (bias corrected MLE)             | 84.12 | Theta hat (MLE)                                 |
| 26.93 | nu star (bias corrected)                    | 30.12 | nu hat (MLE)                                    |
|       |                                             | 0.038 | Adjusted Level of Significance ( $\beta$ )      |
| 15.44 | Adjusted Chi Square Value (26.93, $\beta$ ) | 16.1  | Approximate Chi Square Value (26.93, $\alpha$ ) |
| 110.5 | 95% Gamma Adjusted UCL (use when n<50)      | 106   | 95% Gamma Approximate UCL (use when n>=50)      |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 63.59 | SD (KM)                   | 80.46 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 6474  | SE of Mean (KM)           | 18.49 |
| k hat (KM)                | 0.625 | k star (KM)               | 0.564 |
| nu hat (KM)               | 24.98 | nu star (KM)              | 22.57 |
| theta hat (KM)            | 101.8 | theta star (KM)           | 112.7 |
| 80% gamma percentile (KM) | 104.8 | 90% gamma percentile (KM) | 167.7 |
| 95% gamma percentile (KM) | 233.9 | 99% gamma percentile (KM) | 395.1 |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (22.57, $\alpha$ ) | 12.76 | Adjusted Chi Square Value (22.57, $\beta$ ) | 12.18 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 112.4 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 117.8 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                               | 0.975 | Shapiro Wilk GOF Test                                   |  |
|-----------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                            | 0.901 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                                 | 0.102 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                              | 0.197 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data annear   ognormal at 5% Significance   evel |       |                                                         |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | ;                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:09:59 PM |
| From File                      | Soil, Barium, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Barium, mg/kg - dw

| Lognormal ROS                             | Statistics | Using Imputed Non-Detects    |       |
|-------------------------------------------|------------|------------------------------|-------|
| Mean in Original Scale                    | 63.58      | Mean in Log Scale            | 3.664 |
| SD in Original Scale                      | 82.56      | SD in Log Scale              | 0.992 |
| 95% t UCL (assumes normality of ROS data) | 95.5       | 95% Percentile Bootstrap UCL | 95.99 |
| 95% BCA Bootstrap UCL                     | 113.3      | 95% Bootstrap t UCL          | 141.5 |
| 95% H-UCL (Log ROS)                       | 115.8      |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 3.665 | KM Geo Mean                   | 39.04 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.964 | 95% Critical H Value (KM-Log) | 2.582 |
| KM Standard Error of Mean (logged) | 0.222 | 95% H-UCL (KM -Log)           | 110   |
| KM SD (logged)                     | 0.964 | 95% Critical H Value (KM-Log) | 2.582 |
| KM Standard Error of Mean (logged) | 0.222 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                                                                        | DL/2  | Log-Transformed   |       |  |
|------------------------------------------------------------------------------------|-------|-------------------|-------|--|
| Mean in Original Scale                                                             | 63.46 | Mean in Log Scale | 3.63  |  |
| SD in Original Scale                                                               | 82.65 | SD in Log Scale   | 1.074 |  |
| 95% t UCL (Assumes normality)                                                      | 95.42 | 95% H-Stat UCL    | 131.9 |  |
| DL/Q is not a recommended wethod, are vided for comparisons and historical records |       |                   |       |  |

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM Adjusted Gamma UCL 117.8

95% GROS Adjusted Gamma UCL 110.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:10:42 PMFrom FileSoil, Beryllium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Beryllium, mg/kg - dw

#### General Statistics

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Beryllium, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:11:24 PMFrom FileSoil, Bismuth, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Bismuth, mg/kg - dw

#### General Statistics

 Total Number of Observations
 20

 Number of Detects
 0

 Number of Distinct Detects
 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Bismuth, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:12:06 PMFrom FileSoil, Boron, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

Soil, Boron, mg/kg - dw

#### General Statistics

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Boron, mg/kg - dw was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:12:48 PMFrom FileSoil, Cadmium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Cadmium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 10     |
| Number of Detects            | 10                 | Number of Non-Detects           | 10     |
| Number of Distinct Detects   | 9                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.37               | Minimum Non-Detect              | 0.3    |
| Maximum Detect               | 0.71               | Maximum Non-Detect              | 0.3    |
| Variance Detects             | 0.0124             | Percent Non-Detects             | 50%    |
| Mean Detects                 | 0.493              | SD Detects                      | 0.111  |
| Median Detects               | 0.478              | CV Detects                      | 0.226  |
| Skewness Detects             | 0.676              | Kurtosis Detects                | -0.172 |
| Mean of Logged Detects       | -0.73              | SD of Logged Detects            | 0.22   |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.915 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.842 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.171 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.262 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| 0.396 | KM Standard Error of Mean         | 0.0287                                                                                                          |
|-------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 0.122 | 95% KM (BCA) UCL                  | 0.445                                                                                                           |
| 0.446 | 95% KM (Percentile Bootstrap) UCL | 0.442                                                                                                           |
| 0.443 | 95% KM Bootstrap t UCL            | 0.456                                                                                                           |
| 0.482 | 95% KM Chebyshev UCL              | 0.521                                                                                                           |
| 0.576 | 99% KM Chebyshev UCL              | 0.682                                                                                                           |
|       | 0.122<br>0.446<br>0.443<br>0.482  | 0.12295% KM (BCA) UCL0.44695% KM (Percentile Bootstrap) UCL0.44395% KM Bootstrap t UCL0.48295% KM Chebyshev UCL |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic     | 0.362 | Anderson-Darling GOF Test                                       |
|------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.725 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.182 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value  | 0.266 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data surround |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 15.99  | k star (bias corrected MLE)     | 22.75  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0308 | Theta star (bias corrected MLE) | 0.0216 | Theta hat (MLE) |
| 319.9  | nu star (bias corrected)        | 455.1  | nu hat (MLE)    |
|        |                                 | 0.493  | Mean (detects)  |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:12:48 PM |
| From File                      | Soil, Cadmium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Cadmium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

#### For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.0507 | Mean                                                       | 0.348                                                                                                                                                                                                                                               |
|--------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.71   | Median                                                     | 0.343                                                                                                                                                                                                                                               |
| 0.177  | CV                                                         | 0.509                                                                                                                                                                                                                                               |
| 3.214  | k star (bias corrected MLE)                                | 2.766                                                                                                                                                                                                                                               |
| 0.108  | Theta star (bias corrected MLE)                            | 0.126                                                                                                                                                                                                                                               |
| 128.6  | nu star (bias corrected)                                   | 110.6                                                                                                                                                                                                                                               |
| 0.038  |                                                            |                                                                                                                                                                                                                                                     |
| 87.35  | Adjusted Chi Square Value (110.62, $\beta$ )               | 85.71                                                                                                                                                                                                                                               |
| 0.44   | 95% Gamma Adjusted UCL (use when n<50)                     | 0.449                                                                                                                                                                                                                                               |
|        | 0.71<br>0.177<br>3.214<br>0.108<br>128.6<br>0.038<br>87.35 | 0.71       Median         0.177       CV         3.214       k star (bias corrected MLE)         0.108       Theta star (bias corrected MLE)         128.6       nu star (bias corrected)         0.038       4000000000000000000000000000000000000 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.396  | SD (KM)                   | 0.122  |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0148 | SE of Mean (KM)           | 0.0287 |
| k hat (KM)                | 10.59  | k star (KM)               | 9.031  |
| nu hat (KM)               | 423.4  | nu star (KM)              | 361.3  |
| theta hat (KM)            | 0.0374 | theta star (KM)           | 0.0439 |
| 80% gamma percentile (KM) | 0.501  | 90% gamma percentile (KM) | 0.572  |
| 95% gamma percentile (KM) | 0.635  | 99% gamma percentile (KM) | 0.765  |

Adjusted Chi Square Value (361.26,  $\beta$ ) 315

0.454

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (361.26, $\alpha$ ) | 318.2 |  |
|--------------------------------------------------|-------|--|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.45  |  |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.929 | Shapiro Wilk GOF Test                                   |  |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                          | 0.842 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                               | 0.168 | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value                            | 0.262 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data appear Lognermal at 5% Significance Lovel |       |                                                         |  |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:12:48 PM |
| From File                      | Soil, Cadmium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Cadmium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.375 | Mean in Log Scale            | -1.052 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 0.147 | SD in Log Scale              | 0.392  |
| 95% t UCL (assumes normality of ROS data) | 0.432 | 95% Percentile Bootstrap UCL | 0.429  |
| 95% BCA Bootstrap UCL                     | 0.435 | 95% Bootstrap t UCL          | 0.437  |
| 95% H-UCL (Log ROS)                       | 0.448 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -0.967 | KM Geo Mean                   | 0.38  |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.279  | 95% Critical H Value (KM-Log) | 1.836 |
| KM Standard Error of Mean (logged) | 0.0658 | 95% H-UCL (KM -Log)           | 0.445 |
| KM SD (logged)                     | 0.279  | 95% Critical H Value (KM-Log) | 1.836 |
| KM Standard Error of Mean (logged) | 0.0658 |                               |       |

#### DL/2 Statistics

| DL/2 Normal                   |       | DL/2 Log-Transformed                       |        |
|-------------------------------|-------|--------------------------------------------|--------|
| Mean in Original Scale        | 0.321 | Mean in Log Scale                          | -1.314 |
| SD in Original Scale          | 0.192 | SD in Log Scale                            | 0.617  |
| 95% t UCL (Assumes normality) | 0.395 | 95% H-Stat UCL                             | 0.44   |
| DL /0 /                       |       | and the second determination of the second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

#### Suggested UCL to Use

95% KM (t) UCL 0.446

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:13:30 PMFrom FileSoil, Chromium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Chromium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 6     |
| Number of Detects            | 5                  | Number of Non-Detects           | 15    |
| Number of Distinct Detects   | 5                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.15               | Minimum Non-Detect              | 2     |
| Maximum Detect               | 11.5               | Maximum Non-Detect              | 2     |
| Variance Detects             | 17.08              | Percent Non-Detects             | 75%   |
| Mean Detects                 | 5.67               | SD Detects                      | 4.133 |
| Median Detects               | 3.7                | CV Detects                      | 0.729 |
| Skewness Detects             | 0.813              | Kurtosis Detects                | -1.62 |
| Mean of Logged Detects       | 1.515              | SD of Logged Detects            | 0.744 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.859       | Shapiro Wilk GOF Test                                |
|--------------------------------|-------------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762       | Detected Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.283       | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value   | 0.343       | Detected Data appear Normal at 5% Significance Level |
| Detected Data ap               | pear Normal | at 5% Significance Level                             |

#### Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.918 | KM Standard Error of Mean         | 0.609 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 2.437 | 95% KM (BCA) UCL                  | 3.925 |
| 95% KM (t) UCL         | 3.971 | 95% KM (Percentile Bootstrap) UCL | 3.9   |
| 95% KM (z) UCL         | 3.92  | 95% KM Bootstrap t UCL            | 6.195 |
| 90% KM Chebyshev UCL   | 4.746 | 95% KM Chebyshev UCL              | 5.574 |
| 97.5% KM Chebyshev UCL | 6.723 | 99% KM Chebyshev UCL              | 8.981 |

#### Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.404 | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.684 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.254 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.36  | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

#### Gamma Statistics on Detected Data Only

| 1.101 | k star (bias corrected MLE)     | 2.419 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 5.15  | Theta star (bias corrected MLE) | 2.344 | Theta hat (MLE) |
| 11.01 | nu star (bias corrected)        | 24.19 | nu hat (MLE)    |
|       |                                 | 5.67  | Mean (detects)  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:13:30 PM  |
| From File                      | Soil, Chromium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Chromium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

# GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

# For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                        | 0.01  | Mean                                       | 1.425 |
|------------------------------------------------|-------|--------------------------------------------|-------|
| Maximum                                        | 11.5  | Median                                     | 0.01  |
| SD                                             | 3.149 | CV                                         | 2.21  |
| k hat (MLE)                                    | 0.213 | k star (bias corrected MLE)                | 0.214 |
| Theta hat (MLE)                                | 6.704 | Theta star (bias corrected MLE)            | 6.659 |
| nu hat (MLE)                                   | 8.502 | nu star (bias corrected)                   | 8.56  |
| Adjusted Level of Significance ( $\beta$ )     | 0.038 |                                            |       |
| Approximate Chi Square Value (8.56, $\alpha$ ) | 3.063 | Adjusted Chi Square Value (8.56, $\beta$ ) | 2.809 |
| 95% Gamma Approximate UCL (use when n>=50)     | 3.982 | 95% Gamma Adjusted UCL (use when n<50)     | 4.343 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.918 | SD (KM)                   | 2.437 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 5.941 | SE of Mean (KM)           | 0.609 |
| k hat (KM)                | 1.433 | k star (KM)               | 1.251 |
| nu hat (KM)               | 57.31 | nu star (KM)              | 50.04 |
| theta hat (KM)            | 2.036 | theta star (KM)           | 2.332 |
| 80% gamma percentile (KM) | 4.601 | 90% gamma percentile (KM) | 6.356 |
| 95% gamma percentile (KM) | 8.083 | 99% gamma percentile (KM) | 12.03 |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (50.04, $\alpha$ ) | 34.8  | Adjusted Chi Square Value (50.04, $\beta$ ) | 33.8 |
|-------------------------------------------------|-------|---------------------------------------------|------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 4.195 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 4.32 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.898 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.762 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.209 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.343 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Date on               |       | armal at EV/ Significance Loval                         |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:13:30 PM  |
| From File                      | Soil, Chromium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Chromium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 1.675 | Mean in Log Scale            | -0.893 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 3.048 | SD in Log Scale              | 1.845  |
| 95% t UCL (assumes normality of ROS data) | 2.853 | 95% Percentile Bootstrap UCL | 2.903  |
| 95% BCA Bootstrap UCL                     | 3.351 | 95% Bootstrap t UCL          | 4.788  |
| 95% H-UCL (Log ROS)                       | 12.36 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.898 | KM Geo Mean                   | 2.456 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.487 | 95% Critical H Value (KM-Log) | 2.007 |
| KM Standard Error of Mean (logged) | 0.122 | 95% H-UCL (KM -Log)           | 3.46  |
| KM SD (logged)                     | 0.487 | 95% Critical H Value (KM-Log) | 2.007 |
| KM Standard Error of Mean (logged) | 0.122 |                               |       |

# DL/2 Statistics

| DL/2 Normal                               |       | DL/2 Log-Transformed                       |       |
|-------------------------------------------|-------|--------------------------------------------|-------|
| Mean in Original Scale                    | 2.168 | Mean in Log Scale                          | 0.379 |
| SD in Original Scale                      | 2.811 | SD in Log Scale                            | 0.754 |
| 95% t UCL (Assumes normality)             | 3.254 | 95% H-Stat UCL                             | 2.891 |
| DL /O I I I I I I I I I I I I I I I I I I |       | and the second design of the second second |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 3.971

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:14:13 PM From File Soil, Cobalt, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Cobalt, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 9     |
| Number of Detects            | 8                  | Number of Non-Detects           | 12    |
| Number of Distinct Detects   | 8                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 1.3                | Minimum Non-Detect              | 1     |
| Maximum Detect               | 10.75              | Maximum Non-Detect              | 1     |
| Variance Detects             | 9.824              | Percent Non-Detects             | 60%   |
| Mean Detects                 | 3.656              | SD Detects                      | 3.134 |
| Median Detects               | 2.55               | CV Detects                      | 0.857 |
| Skewness Detects             | 2.001              | Kurtosis Detects                | 4.367 |
| Mean of Logged Detects       | 1.048              | SD of Logged Detects            | 0.717 |
|                              |                    |                                 |       |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                                      | 0.764 | Shapiro Wilk GOF Test                                |
|------------------------------------------------------------------|-------|------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                                   | 0.818 | Detected Data Not Normal at 5% Significance Level    |
| Lilliefors Test Statistic                                        | 0.233 | Lilliefors GOF Test                                  |
| 5% Lilliefors Critical Value                                     | 0.283 | Detected Data appear Normal at 5% Significance Level |
| Detected Data appear Approximate Normal at 5% Significance Level |       |                                                      |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.063 | KM Standard Error of Mean         | 0.542 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 2.265 | 95% KM (BCA) UCL                  | 3.018 |
| 95% KM (t) UCL         | 2.999 | 95% KM (Percentile Bootstrap) UCL | 2.983 |
| 95% KM (z) UCL         | 2.953 | 95% KM Bootstrap t UCL            | 4.005 |
| 90% KM Chebyshev UCL   | 3.687 | 95% KM Chebyshev UCL              | 4.423 |
| 97.5% KM Chebyshev UCL | 5.444 | 99% KM Chebyshev UCL              | 7.451 |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.403 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.724 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.195 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.297 | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris da da terra a com |       | hadhadad 500 Otor (Campan Land)                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| 1.435 | k star (bias corrected MLE)     | 2.162 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 2.548 | Theta star (bias corrected MLE) | 1.691 | Theta hat (MLE) |
| 22.95 | nu star (bias corrected)        | 34.59 | nu hat (MLE)    |
|       |                                 | 3.656 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:14:13 PM From File Soil, Cobalt, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Soil, Cobalt, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.01  | Mean                                                        | 1.469                                                                                                                                                             |
|-------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.75 | Median                                                      | 0.01                                                                                                                                                              |
| 2.642 | CV                                                          | 1.799                                                                                                                                                             |
| 0.259 | k star (bias corrected MLE)                                 | 0.253                                                                                                                                                             |
| 5.672 | Theta star (bias corrected MLE)                             | 5.796                                                                                                                                                             |
| 10.36 | nu star (bias corrected)                                    | 10.14                                                                                                                                                             |
| 0.038 |                                                             |                                                                                                                                                                   |
| 4.027 | Adjusted Chi Square Value (10.14, $\beta$ )                 | 3.726                                                                                                                                                             |
| 3.696 | 95% Gamma Adjusted UCL (use when n<50)                      | 3.994                                                                                                                                                             |
|       | 10.75<br>2.642<br>0.259<br>5.672<br>10.36<br>0.038<br>4.027 | 10.75Median2.642CV0.259k star (bias corrected MLE)5.672Theta star (bias corrected MLE)10.36nu star (bias corrected)0.0384.027Adjusted Chi Square Value (10.14, β) |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.063 | SD (KM)                   | 2.265 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 5.132 | SE of Mean (KM)           | 0.542 |
| k hat (KM)                | 0.829 | k star (KM)               | 0.738 |
| nu hat (KM)               | 33.16 | nu star (KM)              | 29.52 |
| theta hat (KM)            | 2.488 | theta star (KM)           | 2.795 |
| 80% gamma percentile (KM) | 3.384 | 90% gamma percentile (KM) | 5.113 |
| 95% gamma percentile (KM) | 6.888 | 99% gamma percentile (KM) | 11.11 |

17.41

3.497

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (29.52, $\alpha$ ) | 18.11 | Adjusted Chi Square Value (29.52, $\beta$ ) |
|-------------------------------------------------|-------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 3.361 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.933 | Shapiro Wilk GOF Test                                   |  |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                          | 0.818 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                               | 0.165 | Lilliefors GOF Test                                     |  |  |
| 5% Lilliefors Critical Value                            | 0.283 | Detected Data appear Lognormal at 5% Significance Level |  |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |  |

| User Selected Options          | ;                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:14:13 PM |
| From File                      | Soil, Cobalt, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

# Soil, Cobalt, mg/kg - dw

| Lognormal ROS Statistics Using Impu | uted Non-Detects |
|-------------------------------------|------------------|
|-------------------------------------|------------------|

| Mean in Original Scale                    | 1.672 | Mean in Log Scale            | -0.393 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 2.533 | SD in Log Scale              | 1.448  |
| 95% t UCL (assumes normality of ROS data) | 2.652 | 95% Percentile Bootstrap UCL | 2.675  |
| 95% BCA Bootstrap UCL                     | 3.019 | 95% Bootstrap t UCL          | 3.504  |
| 95% H-UCL (Log ROS)                       | 5.846 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.419 | KM Geo Mean                   | 1.521 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.666 | 95% Critical H Value (KM-Log) | 2.196 |
| KM Standard Error of Mean (logged) | 0.159 | 95% H-UCL (KM -Log)           | 2.654 |
| KM SD (logged)                     | 0.666 | 95% Critical H Value (KM-Log) | 2.196 |
| KM Standard Error of Mean (logged) | 0.159 |                               |       |

# DL/2 Statistics

| DL/2 Normal                               |       | DL/2 Log-Transformed                |        |
|-------------------------------------------|-------|-------------------------------------|--------|
| Mean in Original Scale                    | 1.763 | Mean in Log Scale                   | 0.0032 |
| SD in Original Scale                      | 2.477 | SD in Log Scale                     | 0.977  |
| 95% t UCL (Assumes normality)             | 2.72  | 95% H-Stat UCL                      | 2.897  |
| DL /O I I I I I I I I I I I I I I I I I I |       | and the second design of the second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 2.999

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:14:56 PM From File Soil, Copper, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Soil, Copper, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 17    |
| Number of Detects            | 18                 | Number of Non-Detects           | 2     |
| Number of Distinct Detects   | 16                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 3.1                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 28                 | Maximum Non-Detect              | 2     |
| Variance Detects             | 31.79              | Percent Non-Detects             | 10%   |
| Mean Detects                 | 6.489              | SD Detects                      | 5.639 |
| Median Detects               | 4.7                | CV Detects                      | 0.869 |
| Skewness Detects             | 3.612              | Kurtosis Detects                | 14.19 |
| Mean of Logged Detects       | 1.698              | SD of Logged Detects            | 0.517 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.525 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.897 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.298 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.202 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 6.04  | KM Standard Error of Mean         | 1.236 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 5.37  | 95% KM (BCA) UCL                  | 8.345 |
| 95% KM (t) UCL         | 8.177 | 95% KM (Percentile Bootstrap) UCL | 8.315 |
| 95% KM (z) UCL         | 8.072 | 95% KM Bootstrap t UCL            | 11.2  |
| 90% KM Chebyshev UCL   | 9.747 | 95% KM Chebyshev UCL              | 11.43 |
| 97.5% KM Chebyshev UCL | 13.76 | 99% KM Chebyshev UCL              | 18.33 |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic            | 1.488 | Anderson-Darling GOF Test                                       |
|-------------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value         | 0.746 | Detected Data Not Gamma Distributed at 5% Significance Level    |
| K-S Test Statistic            | 0.185 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value         | 0.205 | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris and data follows Assoc | •     | Distribution of 5% Other (Company)                              |

Detected data follow Appr. Gamma Distribution at 5% Significance Level

| 2.582 | k star (bias corrected MLE)     | 3.055 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 2.513 | Theta star (bias corrected MLE) | 2.124 | Theta hat (MLE) |
| 92.97 | nu star (bias corrected)        | 110   | nu hat (MLE)    |
|       |                                 | 6.489 | Mean (detects)  |

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:14:56 PMFrom FileSoil, Copper, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Soil, Copper, mg/kg - dw

95%

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 5.841 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 28    | Median                                      | 4.4   |
| SD                                              | 5.694 | CV                                          | 0.975 |
| k hat (MLE)                                     | 0.845 | k star (bias corrected MLE)                 | 0.751 |
| Theta hat (MLE)                                 | 6.915 | Theta star (bias corrected MLE)             | 7.774 |
| nu hat (MLE)                                    | 33.79 | nu star (bias corrected)                    | 30.05 |
| Adjusted Level of Significance (β)              | 0.038 |                                             |       |
| Approximate Chi Square Value (30.05, $\alpha$ ) | 18.54 | Adjusted Chi Square Value (30.05, $\beta$ ) | 17.82 |
| 95% Gamma Approximate UCL (use when n>=50)      | 9.471 | 95% Gamma Adjusted UCL (use when n<50)      | 9.85  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 6.04  | SD (KM)                   | 5.37  |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 28.84 | SE of Mean (KM)           | 1.236 |
| k hat (KM)                | 1.265 | k star (KM)               | 1.109 |
| nu hat (KM)               | 50.6  | nu star (KM)              | 44.35 |
| theta hat (KM)            | 4.774 | theta star (KM)           | 5.448 |
| 80% gamma percentile (KM) | 9.635 | 90% gamma percentile (KM) | 13.56 |
| 95% gamma percentile (KM) | 17.45 | 99% gamma percentile (KM) | 26.42 |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (44.35, $\alpha$ ) | 30.07 | Adjusted Chi Square Value (44.35, $\beta$ ) | 29.14 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Gamma Approximate KM-UCL (use when n>=50)       | 8.907 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 9.191 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.822     | Shapiro Wilk GOF Test                                   |
|--------------------------------|-----------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.897     | Detected Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.149     | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.202     | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Ap        | provimate | Lognormal at 5% Significance Level                      |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:14:56 PM |
| From File                      | Soil, Copper, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

# Soil, Copper, mg/kg - dw

| Lognormal ROS Sta | itistics Using I | mputed Non-Detects |
|-------------------|------------------|--------------------|
|-------------------|------------------|--------------------|

| Mean in Original Scale                    | 6.017 | Mean in Log Scale            | 1.584 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 5.528 | SD in Log Scale              | 0.602 |
| 95% t UCL (assumes normality of ROS data) | 8.154 | 95% Percentile Bootstrap UCL | 8.282 |
| 95% BCA Bootstrap UCL                     | 9.285 | 95% Bootstrap t UCL          | 11.1  |
| 95% H-UCL (Log ROS)                       | 7.835 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 1.597 | KM Geo Mean                   | 4.939 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.564 | 95% Critical H Value (KM-Log) | 2.084 |
| KM Standard Error of Mean (logged) | 0.13  | 95% H-UCL (KM -Log)           | 7.584 |
| KM SD (logged)                     | 0.564 | 95% Critical H Value (KM-Log) | 2.084 |
| KM Standard Error of Mean (logged) | 0.13  |                               |       |

#### DL/2 Statistics

| DL/2 Normal                                                                       |       | DL/2 Log-Transformed |       |  |
|-----------------------------------------------------------------------------------|-------|----------------------|-------|--|
| Mean in Original Scale                                                            | 5.94  | Mean in Log Scale    | 1.528 |  |
| SD in Original Scale                                                              | 5.595 | SD in Log Scale      | 0.716 |  |
| 95% t UCL (Assumes normality)                                                     | 8.103 | 95% H-Stat UCL       | 8.623 |  |
| DL/2 is not a recommended method, provided for comparisons and historical records |       |                      |       |  |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

# Suggested UCL to Use

| 95% KM Ac | iusted ( | Gamma | UCI | 9.191 |
|-----------|----------|-------|-----|-------|
|           |          |       |     |       |

95% GROS Adjusted Gamma UCL

9.85

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:15:38 PM From File Soil, Iron, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Soil, Iron, mg/kg - dw

| General Statistics |                                 |                                                                                                             |
|--------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations | 19                                                                                                          |
|                    | Number of Missing Observations  | 0                                                                                                           |
| 230                | Mean                            | 4459                                                                                                        |
| 22000              | Median                          | 1750                                                                                                        |
| 5903               | Std. Error of Mean              | 1320                                                                                                        |
| 1.324              | Skewness                        | 1.846                                                                                                       |
|                    | 20<br>230<br>22000<br>5903      | 20Number of Distinct Observations<br>Number of Missing Observations230Mean22000Median5903Std. Error of Mean |

# Normal GOF Test

# Shapiro Wilk Test Statistic0.739Shapiro Wilk GOF Test5% Shapiro Wilk Critical Value0.905Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.274Lilliefors GOF Test5% Lilliefors Critical Value0.192Data Not Normal at 5% Significance Level

# Data Not Normal at 5% Significance Level

| As                    | suming Norm | al Distribution                                                 |
|-----------------------|-------------|-----------------------------------------------------------------|
| 95% Normal UCL        |             | 95% UCLs (Adjusted for Skewness)                                |
| 95% Student's-t UCL   | 6742        | 95% Adjusted-CLT UCL (Chen-1995) 7213                           |
|                       |             | 95% Modified-t UCL (Johnson-1978) 6832                          |
|                       | Gamma G     | OF Test                                                         |
| A-D Test Statistic    | 0.64        | Anderson-Darling Gamma GOF Test                                 |
| 5% A-D Critical Value | 0.784       | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.169       | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value | 0.202       | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear  | Gamma Dis   | tributed at 5% Significance Level                               |
|                       |             |                                                                 |
|                       | Gamma S     | itatistics                                                      |

#### k hat (MLE) 0.7 k star (bias corrected MLE) 0.629 Theta hat (MLE) 6367 Theta star (bias corrected MLE) 7094 nu hat (MLE) nu star (bias corrected) 28.01 25.14 MLE Mean (bias corrected) 4459 MLE Sd (bias corrected) 5624 Approximate Chi Square Value (0.05) 14.72 Adjusted Level of Significance 0.038 Adjusted Chi Square Value 14.09

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 7956

95% Approximate Gamma UCL (use when n>=50) 7616

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:15:38 PM From File Soil, Iron, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Soil, Iron, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.949                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.126                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 5.438 | Mean of logged Data | 7.54 |
|------------------------|-------|---------------------|------|
| Maximum of Logged Data | 9.999 | SD of logged Data   | 1.41 |

#### Assuming Lognormal Distribution

| 95% H-UCL 14677                |  |
|--------------------------------|--|
| 95% Chebyshev (MVUE) UCL 12237 |  |
| 99% Chebyshev (MVUE) UCL 21960 |  |

90% Chebyshev (MVUE) UCL 9874 97.5% Chebyshev (MVUE) UCL 15517

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 6630  | 95% Jackknife UCL            | 6742  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 6606  | 95% Bootstrap-t UCL          | 8091  |
| 95% Hall's Bootstrap UCL      | 7468  | 95% Percentile Bootstrap UCL | 6723  |
| 95% BCA Bootstrap UCL         | 7190  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 8419  | 95% Chebyshev(Mean, Sd) UCL  | 10213 |
| 97.5% Chebyshev(Mean, Sd) UCL | 12703 | 99% Chebyshev(Mean, Sd) UCL  | 17593 |
|                               |       |                              |       |

# Suggested UCL to Use

95% Adjusted Gamma UCL 7956

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:16:20 PMFrom FileSoil, Lead, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Soil, Lead, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 17    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 5.8                | Mean                            | 21.14 |
| Maximum                      | 53                 | Median                          | 19    |
| SD                           | 11.96              | Std. Error of Mean              | 2.674 |
| Coefficient of Variation     | 0.566              | Skewness                        | 1.419 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.876 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.162 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.192 | Data appear Normal at 5% Significance Level |

Data appear Approximate Normal at 5% Significance Level

|                      | Ass     | suming Norn | nal Distribution                                         |         |
|----------------------|---------|-------------|----------------------------------------------------------|---------|
| 95% Normal UCL       |         |             | 95% UCLs (Adjusted for Skewness)                         |         |
| 95% Student's-       | t UCL   | 25.76       | 95% Adjusted-CLT UCL (Chen-1995)                         | 26.44   |
|                      |         |             | 95% Modified-t UCL (Johnson-1978)                        | 25.9    |
|                      |         | Gamma C     | GOF Test                                                 |         |
| A-D Test St          | atistic | 0.223       | Anderson-Darling Gamma GOF Test                          |         |
| 5% A-D Critical      | Value   | 0.746       | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| K-S Test St          | atistic | 0.103       | Kolmogorov-Smirnov Gamma GOF Test                        |         |
| 5% K-S Critical      | Value   | 0.195       | Detected data appear Gamma Distributed at 5% Significanc | e Level |
| Detected data        | appear  | Gamma Dis   | tributed at 5% Significance Level                        |         |
|                      |         | Gamma S     | Statistics                                               |         |
| k hat                | (MLE)   | 3.758       | k star (bias corrected MLE)                              | 3.227   |
| Theta hat            | (MLE)   | 5.626       | Theta star (bias corrected MLE)                          | 6.55    |
| nu hat               | (MLE)   | 150.3       | nu star (bias corrected)                                 | 129.1   |
| MLE Mean (bias corre | ected)  | 21.14       | MLE Sd (bias corrected)                                  | 11.77   |
|                      |         |             |                                                          |         |
|                      |         |             | Approximate Chi Square Value (0.05)                      | 103.9   |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 26.74

95% Approximate Gamma UCL (use when n>=50)) 26.28

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:16:20 PM From File Soil, Lead, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Lead, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.987                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.0902                | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 1.758                       | Mean of logged Data | 2.912 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 3.97                        | SD of logged Data   | 0.544 |
|                        |                             |                     |       |
| Assun                  | ning Lognormal Distribution |                     |       |

| 95% H-UCL                | 27.58 | 90% Chebyshev (MVUE) UCL   | 29.2 |
|--------------------------|-------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 32.84 | 97.5% Chebyshev (MVUE) UCL | 37.9 |
| 99% Chebyshev (MVUE) UCL | 47.83 |                            |      |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 25.54 | 95% Jackknife UCL            | 25.76 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 25.37 | 95% Bootstrap-t UCL          | 27.58 |
| 95% Hall's Bootstrap UCL      | 30.52 | 95% Percentile Bootstrap UCL | 25.72 |
| 95% BCA Bootstrap UCL         | 26.25 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 29.16 | 95% Chebyshev(Mean, Sd) UCL  | 32.79 |
| 97.5% Chebyshev(Mean, Sd) UCL | 37.84 | 99% Chebyshev(Mean, Sd) UCL  | 47.74 |
|                               |       |                              |       |

# Suggested UCL to Use

95% Student's-t UCL 25.76

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:17:02 PM From File Soil, Lithium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Lithium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 4     |
| Number of Detects            | 3                  | Number of Non-Detects           | 17    |
| Number of Distinct Detects   | 3                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.6                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 4.5                | Maximum Non-Detect              | 2     |
| Variance Detects             | 0.916              | Percent Non-Detects             | 85%   |
| Mean Detects                 | 3.483              | SD Detects                      | 0.957 |
| Median Detects               | 3.35               | CV Detects                      | 0.275 |
| Skewness Detects             | 0.615              | Kurtosis Detects                | N/A   |
| Mean of Logged Detects       | 1.223              | SD of Logged Detects            | 0.275 |

# Warning: Data set has only 3 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.985 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.767 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.222 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.425 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.223 | KM Standard Error of Mean         | 0.167 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 0.61  | 95% KM (BCA) UCL                  | N/A   |
| 95% KM (t) UCL         | 2.511 | 95% KM (Percentile Bootstrap) UCL | N/A   |
| 95% KM (z) UCL         | 2.497 | 95% KM Bootstrap t UCL            | N/A   |
| 90% KM Chebyshev UCL   | 2.724 | 95% KM Chebyshev UCL              | 2.951 |
| 97.5% KM Chebyshev UCL | 3.266 | 99% KM Chebyshev UCL              | 3.885 |

# Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

| N/A | k star (bias corrected MLE)     | 20.05 | k hat (MLE)     |
|-----|---------------------------------|-------|-----------------|
| N/A | Theta star (bias corrected MLE) | 0.174 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | 120.3 | nu hat (MLE)    |
|     |                                 | 3.483 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:17:02 PM From File Soil, Lithium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

## Soil, Lithium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 0.687 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 4.5   | Median                                      | 0.01  |
| SD                                              | 1.302 | CV                                          | 1.894 |
| k hat (MLE)                                     | 0.276 | k star (bias corrected MLE)                 | 0.268 |
| Theta hat (MLE)                                 | 2.494 | Theta star (bias corrected MLE)             | 2.568 |
| nu hat (MLE)                                    | 11.03 | nu star (bias corrected)                    | 10.71 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (10.71, $\alpha$ ) | 4.388 | Adjusted Chi Square Value (10.71, $\beta$ ) | 4.073 |
| 95% Gamma Approximate UCL (use when n>=50)      | 1.677 | 95% Gamma Adjusted UCL (use when n<50)      | N/A   |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.223 | SD (KM)                   | 0.61  |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 0.372 | SE of Mean (KM)           | 0.167 |
| k hat (KM)                | 13.27 | k star (KM)               | 11.32 |
| nu hat (KM)               | 531   | nu star (KM)              | 452.6 |
| theta hat (KM)            | 0.167 | theta star (KM)           | 0.196 |
| 80% gamma percentile (KM) | 2.751 | 90% gamma percentile (KM) | 3.1   |
| 95% gamma percentile (KM) | 3.409 | 99% gamma percentile (KM) | 4.04  |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (452.65, $\alpha$ ) | 404.3 | Adjusted Chi Square Value (452.65, $\beta$ ) | 400.7 |
|--------------------------------------------------|-------|----------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 2.488 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 2.511 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.998 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.767 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.187 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.425 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:17:02 PM |
| From File                      | Soil, Lithium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Lithium, mg/kg - dw

| -0.185 | Mean in Log Scale            | 1.2   | Mean in Original Scale                    |
|--------|------------------------------|-------|-------------------------------------------|
| 0.884  | SD in Log Scale              | 1.129 | SD in Original Scale                      |
| 1.638  | 95% Percentile Bootstrap UCL | 1.636 | 95% t UCL (assumes normality of ROS data) |
| 1.852  | 95% Bootstrap t UCL          | 1.703 | 95% BCA Bootstrap UCL                     |
|        |                              | 2.027 | 95% H-UCL (Log ROS)                       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.773 | KM Geo Mean                   | 2.165 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.208 | 95% Critical H Value (KM-Log) | 1.791 |
| KM Standard Error of Mean (logged) | 0.057 | 95% H-UCL (KM -Log)           | 2.41  |
| KM SD (logged)                     | 0.208 | 95% Critical H Value (KM-Log) | 1.791 |
| KM Standard Error of Mean (logged) | 0.057 |                               |       |

# DL/2 Statistics

| DL/2 Normal                    |                 | DL/2 Log-Transformed                      |       |
|--------------------------------|-----------------|-------------------------------------------|-------|
| Mean in Original Scale         | 1.373           | Mean in Log Scale                         | 0.183 |
| SD in Original Scale           | 0.961           | SD in Log Scale                           | 0.457 |
| 95% t UCL (Assumes normality)  | 1.744           | 95% H-Stat UCL                            | 1.641 |
| DL /2 is not a recommended met | الماديمين المحط | ad for comparisons and biotoxical reasons |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 2.511

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:17:45 PMFrom FileSoil, Manganese, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Soil, Manganese, mg/kg - dw

| servations | 19                               |
|------------|----------------------------------|
| servations | 0                                |
| Mean       | 272.3                            |
| Median     | 215                              |
| or of Mean | 54.03                            |
| Skewness   | 1.416                            |
|            | Mean<br>Mean<br>Median<br>Median |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.869 | Shapiro Wilk GOF Test                       |
|--------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.151 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value   | 0.192 | Data appear Normal at 5% Significance Level |

Data appear Approximate Normal at 5% Significance Level

| Ass                       | suming No | rmal Distribution                                           |       |
|---------------------------|-----------|-------------------------------------------------------------|-------|
| 95% Normal UCL            |           | 95% UCLs (Adjusted for Skewness)                            |       |
| 95% Student's-t UCL       | 365.7     | 95% Adjusted-CLT UCL (Chen-1995) 3                          | 79.4  |
|                           |           | 95% Modified-t UCL (Johnson-1978) 3                         | 68.5  |
|                           | Gamma     | a GOF Test                                                  |       |
| A-D Test Statistic        | 0.159     | Anderson-Darling Gamma GOF Test                             |       |
| 5% A-D Critical Value     | 0.761     | Detected data appear Gamma Distributed at 5% Significance L | evel  |
| K-S Test Statistic        | 0.0815    | Kolmogorov-Smirnov Gamma GOF Test                           |       |
| 5% K-S Critical Value     | 0.198     | Detected data appear Gamma Distributed at 5% Significance L | evel  |
| Detected data appear      | Gamma D   | Distributed at 5% Significance Level                        |       |
|                           | •         |                                                             |       |
|                           | Gamma     | a Statistics                                                |       |
| k hat (MLE)               | 1.319     | k star (bias corrected MLE)                                 | 1.155 |
| Theta hat (MLE)           | 206.4     | Theta star (bias corrected MLE) 2                           | 35.8  |
| nu hat (MLE)              | 52.76     | nu star (bias corrected)                                    | 46.18 |
| MLE Mean (bias corrected) | 272.3     | MLE Sd (bias corrected) 2                                   | 53.4  |
|                           |           | Approximate Chi Square Value (0.05)                         | 31.59 |
|                           |           |                                                             |       |

Adjusted Level of Significance 0.038

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 410.4

Adjusted Chi Square Value 30.64

95% Approximate Gamma UCL (use when n>=50)) 398

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:17:45 PM From File Soil, Manganese, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Manganese, mg/kg - dw

|                                | Lognormal GOF Test     |                                                |
|--------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.971                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.12                   | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                  | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 3.135 | Mean of logged Data | 5.182 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 6.872 | SD of logged Data   | 1.027 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 566.6 | 90% Chebyshev (MVUE) UCL   | 515.5 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 617.4 | 97.5% Chebyshev (MVUE) UCL | 758.9 |
| 99% Chebyshev (MVUE) UCL | 1037  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| nife UCL 365.7 | 95% Jackknife UCL            | 361.1 | 95% CLT UCL                   |
|----------------|------------------------------|-------|-------------------------------|
| p-t UCL 395.8  | 95% Bootstrap-t UCL          | 357.8 | 95% Standard Bootstrap UCL    |
| rap UCL 356.9  | 95% Percentile Bootstrap UCL | 409.5 | 95% Hall's Bootstrap UCL      |
|                |                              | 375.5 | 95% BCA Bootstrap UCL         |
| Sd) UCL 507.8  | 95% Chebyshev(Mean, Sd) UCL  | 434.3 | 90% Chebyshev(Mean, Sd) UCL   |
| Sd) UCL 809.8  | 99% Chebyshev(Mean, Sd) UCL  | 609.7 | 97.5% Chebyshev(Mean, Sd) UCL |
|                |                              |       |                               |

# Suggested UCL to Use

95% Student's-t UCL 365.7

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:18:27 PMFrom FileSoil, Mercury, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

## Soil, Mercury, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 17     |
| Number of Detects            | 17                 | Number of Non-Detects           | 3      |
| Number of Distinct Detects   | 16                 | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.13               | Minimum Non-Detect              | 0.1    |
| Maximum Detect               | 0.46               | Maximum Non-Detect              | 0.1    |
| Variance Detects             | 0.00839            | Percent Non-Detects             | 15%    |
| Mean Detects                 | 0.284              | SD Detects                      | 0.0916 |
| Median Detects               | 0.28               | CV Detects                      | 0.323  |
| Skewness Detects             | 0.26               | Kurtosis Detects                | -0.583 |
| Mean of Logged Detects       | -1.312             | SD of Logged Detects            | 0.341  |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.972 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.892 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.115 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.207 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.256 | KM Standard Error of Mean         | 0.0242 |
|------------------------|-------|-----------------------------------|--------|
| KM SD                  | 0.105 | 95% KM (BCA) UCL                  | 0.296  |
| 95% KM (t) UCL         | 0.298 | 95% KM (Percentile Bootstrap) UCL | 0.295  |
| 95% KM (z) UCL         | 0.296 | 95% KM Bootstrap t UCL            | 0.3    |
| 90% KM Chebyshev UCL   | 0.329 | 95% KM Chebyshev UCL              | 0.362  |
| 97.5% KM Chebyshev UCL | 0.407 | 99% KM Chebyshev UCL              | 0.497  |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic       | 0.222 | Anderson-Darling GOF Test                                       |
|--------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value    | 0.739 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic       | 0.121 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value    | 0.209 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data services ( |       | strikuted at E% Oispifeenee Level                               |

Detected data appear Gamma Distributed at 5% Significance Level

| k hat (MLE)     | 9.74   | k star (bias corrected MLE)     | 8.061  |
|-----------------|--------|---------------------------------|--------|
| Theta hat (MLE) | 0.0291 | Theta star (bias corrected MLE) | 0.0352 |
| nu hat (MLE)    | 331.2  | nu star (bias corrected)        | 274.1  |
| Mean (detects)  | 0.284  |                                 |        |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:18:27 PM From File Soil, Mercury, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

## Soil, Mercury, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0804 | Mean                                         | 0.257  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| Maximum                                          | 0.46   | Median                                       | 0.253  |
| SD                                               | 0.107  | CV                                           | 0.416  |
| k hat (MLE)                                      | 5.301  | k star (bias corrected MLE)                  | 4.539  |
| Theta hat (MLE)                                  | 0.0485 | Theta star (bias corrected MLE)              | 0.0566 |
| nu hat (MLE)                                     | 212.1  | nu star (bias corrected)                     | 181.6  |
| Adjusted Level of Significance ( $\beta$ )       | 0.038  |                                              |        |
| Approximate Chi Square Value (181.58, $\alpha$ ) | 151.4  | Adjusted Chi Square Value (181.58, $\beta$ ) | 149.2  |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.308  | 95% Gamma Adjusted UCL (use when n<50)       | 0.313  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.256 | SD (KM)                   | 0.105  |
|---------------------------|-------|---------------------------|--------|
| Variance (KM)             | 0.011 | SE of Mean (KM)           | 0.0242 |
| k hat (KM)                | 5.957 | k star (KM)               | 5.097  |
| nu hat (KM)               | 238.3 | nu star (KM)              | 203.9  |
| theta hat (KM)            | 0.043 | theta star (KM)           | 0.0503 |
| 80% gamma percentile (KM) | 0.344 | 90% gamma percentile (KM) | 0.408  |
| 95% gamma percentile (KM) | 0.467 | 99% gamma percentile (KM) | 0.591  |

Adjusted Chi Square Value (203.89,  $\beta$ ) 169.5

0.308

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (203.89, $\alpha$ ) | 171.8 |
|--------------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.304 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.969 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.892 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.131 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.207 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data and              |       | armal at E% Significance Level                          |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:18:27 PM |
| From File                      | Soil, Mercury, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

## Soil, Mercury, mg/kg - dw

| Lognormal ROS Statistics U | Using Imputed Non-Detects |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

| Mean in Original Scale                    | 0.26  | Mean in Log Scale            | -1.43 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 0.103 | SD in Log Scale              | 0.428 |
| 95% t UCL (assumes normality of ROS data) | 0.299 | 95% Percentile Bootstrap UCL | 0.297 |
| 95% BCA Bootstrap UCL                     | 0.297 | 95% Bootstrap t UCL          | 0.301 |
| 95% H-UCL (Log ROS)                       | 0.318 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -1.46 | KM Geo Mean                   | 0.232 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.467 | 95% Critical H Value (KM-Log) | 1.988 |
| KM Standard Error of Mean (logged) | 0.108 | 95% H-UCL (KM -Log)           | 0.32  |
| KM SD (logged)                     | 0.467 | 95% Critical H Value (KM-Log) | 1.988 |
| KM Standard Error of Mean (logged) | 0.108 |                               |       |

# DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-Ti                                                                                                       | ransformed        |        |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|--------|
| Mean in Original Scale        | 0.249                                                                                                             | Mean in Log Scale | -1.564 |
| SD in Original Scale          | 0.12                                                                                                              | SD in Log Scale   | 0.692  |
| 95% t UCL (Assumes normality) | 0.295                                                                                                             | 95% H-Stat UCL    | 0.378  |
|                               | a second second second second second second second second second second second second second second second second |                   |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.298

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:19:10 PM From File Soil, Molybdenum, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Molybdenum, mg/kg - dw

#### **General Statistics**

0

0

Total Number of Observations 20 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 20 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Molybdenum, mg/kg - dw was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:19:53 PM

 From File
 Soil, Nickel, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Nickel, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 11    |
| Number of Detects            | 14                 | Number of Non-Detects           | 6     |
| Number of Distinct Detects   | 10                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2.1                | Minimum Non-Detect              | 2     |
| Maximum Detect               | 9.3                | Maximum Non-Detect              | 2     |
| Variance Detects             | 3.695              | Percent Non-Detects             | 30%   |
| Mean Detects                 | 3.261              | SD Detects                      | 1.922 |
| Median Detects               | 2.55               | CV Detects                      | 0.589 |
| Skewness Detects             | 2.776              | Kurtosis Detects                | 8.254 |
| Mean of Logged Detects       | 1.082              | SD of Logged Detects            | 0.412 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.607 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.874 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.329 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.226 | Detected Data Not Normal at 5% Significance Level |
| Determined Date                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 2.883 | KM Standard Error of Mean         | 0.384 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 1.654 | 95% KM (BCA) UCL                  | 3.628 |
| 95% KM (t) UCL         | 3.546 | 95% KM (Percentile Bootstrap) UCL | 3.565 |
| 95% KM (z) UCL         | 3.514 | 95% KM Bootstrap t UCL            | 4.674 |
| 90% KM Chebyshev UCL   | 4.034 | 95% KM Chebyshev UCL              | 4.555 |
| 97.5% KM Chebyshev UCL | 5.279 | 99% KM Chebyshev UCL              | 6.701 |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 1.637 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.738 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.29  | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.229 | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

| 4.124 | k star (bias corrected MLE)     | 5.189 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 0.791 | Theta star (bias corrected MLE) | 0.628 | Theta hat (MLE) |
| 115.5 | nu star (bias corrected)        | 145.3 | nu hat (MLE)    |
|       |                                 | 3.261 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:19:53 PM From File Soil, Nickel, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Nickel, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 2.352 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 9.3   | Median                                      | 2.35  |
| SD                                              | 2.14  | CV                                          | 0.91  |
| k hat (MLE)                                     | 0.659 | k star (bias corrected MLE)                 | 0.593 |
| Theta hat (MLE)                                 | 3.572 | Theta star (bias corrected MLE)             | 3.966 |
| nu hat (MLE)                                    | 26.34 | nu star (bias corrected)                    | 23.72 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (23.72, $\alpha$ ) | 13.64 | Adjusted Chi Square Value (23.72, $\beta$ ) | 13.03 |
| 95% Gamma Approximate UCL (use when n>=50)      | 4.092 | 95% Gamma Adjusted UCL (use when n<50)      | 4.281 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.883 | SD (KM)                   | 1.654 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 2.735 | SE of Mean (KM)           | 0.384 |
| k hat (KM)                | 3.038 | k star (KM)               | 2.615 |
| nu hat (KM)               | 121.5 | nu star (KM)              | 104.6 |
| theta hat (KM)            | 0.949 | theta star (KM)           | 1.102 |
| 80% gamma percentile (KM) | 4.18  | 90% gamma percentile (KM) | 5.271 |
| 95% gamma percentile (KM) | 6.297 | 99% gamma percentile (KM) | 8.537 |

80.43 3.749

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (104.61, $\alpha$ ) | 82.01 | Adjusted Chi Square Value (104.61, $\beta$ ) |
|--------------------------------------------------|-------|----------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 3.677 | 95% Gamma Adjusted KM-UCL (use when n<50)    |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                          | 0.752 | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.874 | Detected Data Not Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                            | 0.265 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                         | 0.226 | Detected Data Not Lognormal at 5% Significance Level |  |  |
| Detected Data Not Lognormal at 5% Significance Level |       |                                                      |  |  |

| User Selected Options          | ;                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:19:53 PM |
| From File                      | Soil, Nickel, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Nickel, mg/kg - dw

| Lognormal ROS Statistics Using Imputed Non-Detects |       |                              |       |  |  |
|----------------------------------------------------|-------|------------------------------|-------|--|--|
| Mean in Original Scale                             | 2.634 | Mean in Log Scale            | 0.799 |  |  |
| SD in Original Scale                               | 1.874 | SD in Log Scale              | 0.574 |  |  |
| 95% t UCL (assumes normality of ROS data)          | 3.359 | 95% Percentile Bootstrap UCL | 3.388 |  |  |
| 95% BCA Bootstrap UCL                              | 3.67  | 95% Bootstrap t UCL          | 4.036 |  |  |
| 95% H-UCL (Log ROS)                                | 3.451 |                              |       |  |  |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.966  | KM Geo Mean                   | 2.627 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.377  | 95% Critical H Value (KM-Log) | 1.91  |
| KM Standard Error of Mean (logged) | 0.0875 | 95% H-UCL (KM -Log)           | 3.327 |
| KM SD (logged)                     | 0.377  | 95% Critical H Value (KM-Log) | 1.91  |
| KM Standard Error of Mean (logged) | 0.0875 |                               |       |

# DL/2 Statistics

| DL/2 Normal                   |       | DL/2 Log-Transformed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|-------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Mean in Original Scale        | 2.583 | Mean in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.758 |
| SD in Original Scale          | 1.913 | SD in Log Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.613 |
| 95% t UCL (Assumes normality) | 3.322 | 95% H-Stat UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.475 |
| DL /O 1                       |       | and a second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

| 95% KM (t) UCL   | 3.546 | KM H-UCL | 3.327 |
|------------------|-------|----------|-------|
| 95% KM (BCA) UCL | 3.628 |          |       |

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:20:35 PMFrom FileSoil, Rubidium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Rubidium, mg/kg - dw

| General Statistics |                                                           |                                                                                                                                                                                                        |
|--------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations                           | 7                                                                                                                                                                                                      |
| 7                  | Number of Non-Detects                                     | 13                                                                                                                                                                                                     |
| 7                  | Number of Distinct Non-Detects                            | 1                                                                                                                                                                                                      |
| 2                  | Minimum Non-Detect                                        | 2                                                                                                                                                                                                      |
| 3.2                | Maximum Non-Detect                                        | 2                                                                                                                                                                                                      |
| 0.18               | Percent Non-Detects                                       | 65%                                                                                                                                                                                                    |
| 2.393              | SD Detects                                                | 0.425                                                                                                                                                                                                  |
| 2.2                | CV Detects                                                | 0.177                                                                                                                                                                                                  |
| 1.363              | Kurtosis Detects                                          | 1.334                                                                                                                                                                                                  |
| 0.86               | SD of Logged Detects                                      | 0.166                                                                                                                                                                                                  |
|                    | 20<br>7<br>7<br>2<br>3.2<br>0.18<br>2.393<br>2.2<br>1.363 | 20Number of Distinct Observations7Number of Non-Detects7Number of Distinct Non-Detects2Minimum Non-Detect3.2Maximum Non-Detect0.18Percent Non-Detects2.393SD Detects2.2CV Detects1.363Kurtosis Detects |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.86  | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.803 | Detected Data appear Normal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                            | 0.247 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                         | 0.304 | Detected Data appear Normal at 5% Significance Level |  |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| • | · / ·                  | -     | •                                 |        |
|---|------------------------|-------|-----------------------------------|--------|
|   | KM Mean                | 2.138 | KM Standard Error of Mean         | 0.0721 |
|   | KM SD                  | 0.299 | 95% KM (BCA) UCL                  | 2.255  |
|   | 95% KM (t) UCL         | 2.262 | 95% KM (Percentile Bootstrap) UCL | 2.255  |
|   | 95% KM (z) UCL         | 2.256 | 95% KM Bootstrap t UCL            | 2.418  |
|   | 90% KM Chebyshev UCL   | 2.354 | 95% KM Chebyshev UCL              | 2.452  |
|   | 97.5% KM Chebyshev UCL | 2.588 | 99% KM Chebyshev UCL              | 2.855  |
|   |                        |       |                                   |        |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                              | 0.458 | Anderson-Darling GOF Test                                       |  |  |  |
|-----------------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|--|
| 5% A-D Critical Value                                           | 0.707 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| K-S Test Statistic                                              | 0.254 | Kolmogorov-Smirnov GOF                                          |  |  |  |
| 5% K-S Critical Value                                           | 0.311 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Detected data annuar Oceana Distributed at 5% Oceaniganas Level |       |                                                                 |  |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

| 23.3  | k star (bias corrected MLE)     | 40.61  | k hat (MLE)     |
|-------|---------------------------------|--------|-----------------|
| 0.103 | Theta star (bias corrected MLE) | 0.0589 | Theta hat (MLE) |
| 326.2 | nu star (bias corrected)        | 568.6  | nu hat (MLE)    |
|       |                                 | 2.393  | Mean (detects)  |

| User Selected Options          | ;                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:20:35 PM  |
| From File                      | Soil, Rubidium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Rubidium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.109 | Mean                                                    | 1.497                                                                                                                     |
|-------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 3.2   | Median                                                  | 1.429                                                                                                                     |
| 0.811 | CV                                                      | 0.542                                                                                                                     |
| 2.52  | k star (bias corrected MLE)                             | 2.175                                                                                                                     |
| 0.594 | Theta star (bias corrected MLE)                         | 0.688                                                                                                                     |
| 100.8 | nu star (bias corrected)                                | 87                                                                                                                        |
| 0.038 |                                                         |                                                                                                                           |
| 66.5  | Adjusted Chi Square Value (87.00, $\beta$ )             | 65.08                                                                                                                     |
| 1.959 | 95% Gamma Adjusted UCL (use when n<50)                  | 2.002                                                                                                                     |
|       | 3.2<br>0.811<br>2.52<br>0.594<br>100.8<br>0.038<br>66.5 | 3.2Median0.811CV2.52k star (bias corrected MLE)0.594Theta star (bias corrected MLE)100.8nu star (bias corrected)0.03866.5 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 2.138  | SD (KM)                   | 0.299  |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0892 | SE of Mean (KM)           | 0.0721 |
| k hat (KM)                | 51.21  | k star (KM)               | 43.56  |
| nu hat (KM)               | 2048   | nu star (KM)              | 1742   |
| theta hat (KM)            | 0.0417 | theta star (KM)           | 0.0491 |
| 80% gamma percentile (KM) | 2.404  | 90% gamma percentile (KM) | 2.562  |
| 95% gamma percentile (KM) | 2.697  | 99% gamma percentile (KM) | 2.962  |

Adjusted Chi Square Value (N/A,  $\beta$ ) 1639

2.272

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (N/A, $\alpha$ ) | 1647  | Adjusted Chi Square Value (N/A, $\beta$ ) |
|-----------------------------------------------|-------|-------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50) | 2.262 | 95% Gamma Adjusted KM-UCL (use when n<50) |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.892 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.803 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.238 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.304 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Loval |       |                                                         |  |

| User Selected Options          | ;                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:20:35 PM  |
| From File                      | Soil, Rubidium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Rubidium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 1.704 | Mean in Log Scale            | 0.473 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 0.615 | SD in Log Scale              | 0.356 |
| 95% t UCL (assumes normality of ROS data) | 1.942 | 95% Percentile Bootstrap UCL | 1.928 |
| 95% BCA Bootstrap UCL                     | 1.955 | 95% Bootstrap t UCL          | 1.981 |
| 95% H-UCL (Log ROS)                       | 1.995 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.752  | KM Geo Mean                   | 2.12  |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.121  | 95% Critical H Value (KM-Log) | 1.743 |
| KM Standard Error of Mean (logged) | 0.0292 | 95% H-UCL (KM -Log)           | 2.242 |
| KM SD (logged)                     | 0.121  | 95% Critical H Value (KM-Log) | 1.743 |
| KM Standard Error of Mean (logged) | 0.0292 |                               |       |

# DL/2 Statistics

| DL/2 Normal                                                                       |       | DL/2 Log-Transformed |       |
|-----------------------------------------------------------------------------------|-------|----------------------|-------|
| Mean in Original Scale                                                            | 1.488 | Mean in Log Scale    | 0.301 |
| SD in Original Scale                                                              | 0.722 | SD in Log Scale      | 0.431 |
| 95% t UCL (Assumes normality)                                                     | 1.767 | 95% H-Stat UCL       | 1.799 |
| DL/2 is not a recommended worked, provided for comparisons and historical records |       |                      |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 2.262

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:21:18 PMFrom FileSoil, Selenium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Selenium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 9     |
| Number of Detects            | 8                  | Number of Non-Detects           | 12    |
| Number of Distinct Detects   | 8                  | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 0.52               | Minimum Non-Detect              | 0.5   |
| Maximum Detect               | 0.84               | Maximum Non-Detect              | 0.5   |
| Variance Detects             | 0.0112             | Percent Non-Detects             | 60%   |
| Mean Detects                 | 0.635              | SD Detects                      | 0.106 |
| Median Detects               | 0.605              | CV Detects                      | 0.166 |
| Skewness Detects             | 1.08               | Kurtosis Detects                | 0.798 |
| Mean of Logged Detects       | -0.465             | SD of Logged Detects            | 0.159 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.916 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.818 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.199 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.283 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| 0.0218 | KM Standard Error of Mean         | 0.554 | KM Mean                |  |
|--------|-----------------------------------|-------|------------------------|--|
| 0.587  | 95% KM (BCA) UCL                  | 0.091 | KM SD                  |  |
| 0.589  | 95% KM (Percentile Bootstrap) UCL | 0.592 | 95% KM (t) UCL         |  |
| 0.606  | 95% KM Bootstrap t UCL            | 0.59  | 95% KM (z) UCL         |  |
| 0.649  | 95% KM Chebyshev UCL              | 0.619 | 90% KM Chebyshev UCL   |  |
| 0.77   | 99% KM Chebyshev UCL              | 0.69  | 97.5% KM Chebyshev UCL |  |
|        |                                   |       |                        |  |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic     | 0.293                                                            | Anderson-Darling GOF Test                                       |  |  |
|------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value  | 0.715                                                            | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic     | 0.206                                                            | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value  | 0.293                                                            | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data surround | Detected data annual Oceana Distributed at 5% Oracificance Lovel |                                                                 |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

| 27.68  | k star (bias corrected MLE)     | 44.15  | k hat (MLE)     |
|--------|---------------------------------|--------|-----------------|
| 0.0229 | Theta star (bias corrected MLE) | 0.0144 | Theta hat (MLE) |
| 442.9  | nu star (bias corrected)        | 706.4  | nu hat (MLE)    |
|        |                                 | 0.635  | Mean (detects)  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:21:18 PM  |
| From File                      | Soil, Selenium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Selenium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.107  | Mean                                         | 0.441 |
|--------------------------------------------------|--------|----------------------------------------------|-------|
| Maximum                                          | 0.84   | Median                                       | 0.423 |
| SD                                               | 0.194  | CV                                           | 0.44  |
| k hat (MLE)                                      | 4.65   | k star (bias corrected MLE)                  | 3.986 |
| Theta hat (MLE)                                  | 0.0947 | Theta star (bias corrected MLE)              | 0.111 |
| nu hat (MLE)                                     | 186    | nu star (bias corrected)                     | 159.4 |
| Adjusted Level of Significance ( $\beta$ )       | 0.038  |                                              |       |
| Approximate Chi Square Value (159.44, $\alpha$ ) | 131.2  | Adjusted Chi Square Value (159.44, $\beta$ ) | 129.2 |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.535  | 95% Gamma Adjusted UCL (use when n<50)       | 0.544 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.554   | SD (KM)                   | 0.091  |
|---------------------------|---------|---------------------------|--------|
| Variance (KM)             | 0.00828 | SE of Mean (KM)           | 0.0218 |
| k hat (KM)                | 37.05   | k star (KM)               | 31.53  |
| nu hat (KM)               | 1482    | nu star (KM)              | 1261   |
| theta hat (KM)            | 0.015   | theta star (KM)           | 0.0176 |
| 80% gamma percentile (KM) | 0.635   | 90% gamma percentile (KM) | 0.684  |
| 95% gamma percentile (KM) | 0.726   | 99% gamma percentile (KM) | 0.809  |

Adjusted Chi Square Value (N/A,  $\beta$ ) 1173

0.595

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (N/A, $\alpha$ ) | 1180 |  |
|-----------------------------------------------|------|--|
|                                               |      |  |

95% Gamma Approximate KM-UCL (use when n>=50) 0.592

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.945 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.818 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.191 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.283 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data annear Lognormal at 5% Significance Level |       |                                                         |  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:21:18 PM  |
| From File                      | Soil, Selenium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Selenium, mg/kg - dw

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.479 | Mean in Log Scale            | -0.785 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 0.155 | SD in Log Scale              | 0.322  |
| 95% t UCL (assumes normality of ROS data) | 0.539 | 95% Percentile Bootstrap UCL | 0.534  |
| 95% BCA Bootstrap UCL                     | 0.539 | 95% Bootstrap t UCL          | 0.545  |
| 95% H-UCL (Log ROS)                       | 0.551 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -0.602 | KM Geo Mean                   | 0.548 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.146  | 95% Critical H Value (KM-Log) | 1.756 |
| KM Standard Error of Mean (logged) | 0.0349 | 95% H-UCL (KM -Log)           | 0.587 |
| KM SD (logged)                     | 0.146  | 95% Critical H Value (KM-Log) | 1.756 |
| KM Standard Error of Mean (logged) | 0.0349 |                               |       |

# DL/2 Statistics

| DL/2 Normal                                 |       | DL/2 Log-Transformed                |        |
|---------------------------------------------|-------|-------------------------------------|--------|
| Mean in Original Scale                      | 0.404 | Mean in Log Scale                   | -1.018 |
| SD in Original Scale                        | 0.204 | SD in Log Scale                     | 0.473  |
| 95% t UCL (Assumes normality)               | 0.483 | 95% H-Stat UCL                      | 0.502  |
| DL /O I · · · · · · · · · · · · · · · · · · |       | and the second design of the second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.592

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:22:01 PM From File Soil, Silver, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Silver, mg/kg - dw

| General Statistics |                                                                  |                                                                                                                                                                                                               |
|--------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations                                  | 8                                                                                                                                                                                                             |
| 7                  | Number of Non-Detects                                            | 13                                                                                                                                                                                                            |
| 7                  | Number of Distinct Non-Detects                                   | 1                                                                                                                                                                                                             |
| 0.56               | Minimum Non-Detect                                               | 0.5                                                                                                                                                                                                           |
| 1.3                | Maximum Non-Detect                                               | 0.5                                                                                                                                                                                                           |
| 0.0842             | Percent Non-Detects                                              | 65%                                                                                                                                                                                                           |
| 0.919              | SD Detects                                                       | 0.29                                                                                                                                                                                                          |
| 0.925              | CV Detects                                                       | 0.316                                                                                                                                                                                                         |
| 0.073              | Kurtosis Detects                                                 | -1.968                                                                                                                                                                                                        |
| -0.129             | SD of Logged Detects                                             | 0.328                                                                                                                                                                                                         |
|                    | 20<br>7<br>7<br>0.56<br>1.3<br>0.0842<br>0.919<br>0.925<br>0.073 | 20Number of Distinct Observations7Number of Non-Detects7Number of Distinct Non-Detects0.56Minimum Non-Detect1.3Maximum Non-Detect0.0842Percent Non-Detects0.919SD Detects0.925CV Detects0.073Kurtosis Detects |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.918 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.803 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.224 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.304 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.647 | KM Standard Error of Mean         | 0.0617 |
|------------------------|-------|-----------------------------------|--------|
| KM SD                  | 0.255 | 95% KM (BCA) UCL                  | 0.748  |
| 95% KM (t) UCL         | 0.753 | 95% KM (Percentile Bootstrap) UCL | 0.75   |
| 95% KM (z) UCL         | 0.748 | 95% KM Bootstrap t UCL            | 0.762  |
| 90% KM Chebyshev UCL   | 0.832 | 95% KM Chebyshev UCL              | 0.916  |
| 97.5% KM Chebyshev UCL | 1.032 | 99% KM Chebyshev UCL              | 1.261  |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.37  | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.708 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.234 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.312 | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

| 6.542 | k star (bias corrected MLE)     | 11.28  | k hat (MLE)     |
|-------|---------------------------------|--------|-----------------|
| 0.141 | Theta star (bias corrected MLE) | 0.0815 | Theta hat (MLE) |
| 91.59 | nu star (bias corrected)        | 157.9  | nu hat (MLE)    |
|       |                                 | 0.919  | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:22:01 PM From File Soil, Silver, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Silver, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

#### For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.42  | Mean                                        | 0.01  | Minimum                                         |
|-------|---------------------------------------------|-------|-------------------------------------------------|
| 0.3   | Median                                      | 1.3   | Maximum                                         |
| 1.025 | CV                                          | 0.43  | SD                                              |
| 0.544 | k star (bias corrected MLE)                 | 0.601 | k hat (MLE)                                     |
| 0.772 | Theta star (bias corrected MLE)             | 0.699 | Theta hat (MLE)                                 |
| 21.76 | nu star (bias corrected)                    | 24.03 | nu hat (MLE)                                    |
|       |                                             | 0.038 | Adjusted Level of Significance ( $\beta$ )      |
| 11.59 | Adjusted Chi Square Value (21.76, $\beta$ ) | 12.16 | Approximate Chi Square Value (21.76, $\alpha$ ) |
| 0.788 | 95% Gamma Adjusted UCL (use when n<50)      | 0.751 | 95% Gamma Approximate UCL (use when n>=50)      |

#### Estimates of Gamma Parameters using KM Estimates

| (M) 0.255  | SD (KM)                   | 0.647  | Mean (KM)                 |
|------------|---------------------------|--------|---------------------------|
| (M) 0.0617 | SE of Mean (KM)           | 0.0652 | Variance (KM)             |
| (M) 5.483  | k star (KM)               | 6.411  | k hat (KM)                |
| (M) 219.3  | nu star (KM)              | 256.5  | nu hat (KM)               |
| (M) 0.118  | theta star (KM)           | 0.101  | theta hat (KM)            |
| (M) 1.016  | 90% gamma percentile (KM) | 0.861  | 80% gamma percentile (KM) |
| (M) 1.455  | 99% gamma percentile (KM) | 1.158  | 95% gamma percentile (KM) |

Adjusted Chi Square Value (219.32,  $\beta$ ) 183.6

0.772

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (219.32, $\alpha$ ) | 186   |
|--------------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.762 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.916 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.803 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.211 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.304 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data app              |       | armal at 5% Significance Loval                          |

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:22:01 PM |
| From File                      | Soil, Silver, mg_kg - dw.xls  |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Silver, mg/kg - dw

| Lognormal ROS Statistics U | Using Imputed Non-Detects |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

| Mean in Original Scale                    | 0.521 | Mean in Log Scale            | -0.866 |
|-------------------------------------------|-------|------------------------------|--------|
| SD in Original Scale                      | 0.354 | SD in Log Scale              | 0.679  |
| 95% t UCL (assumes normality of ROS data) | 0.658 | 95% Percentile Bootstrap UCL | 0.655  |
| 95% BCA Bootstrap UCL                     | 0.674 | 95% Bootstrap t UCL          | 0.688  |
| 95% H-UCL (Log ROS)                       | 0.747 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -0.496 | KM Geo Mean                   | 0.609 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.324  | 95% Critical H Value (KM-Log) | 1.868 |
| KM Standard Error of Mean (logged) | 0.0781 | 95% H-UCL (KM -Log)           | 0.737 |
| KM SD (logged)                     | 0.324  | 95% Critical H Value (KM-Log) | 1.868 |
| KM Standard Error of Mean (logged) | 0.0781 |                               |       |

# DL/2 Statistics

| DL/2 Normal                   |                                                                                                                | DL/2 Log-Transformed         |        |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|--------|
| Mean in Original Scale        | 0.484                                                                                                          | Mean in Log Scale            | -0.946 |
| SD in Original Scale          | 0.366                                                                                                          | SD in Log Scale              | 0.642  |
| 95% t UCL (Assumes normality) | 0.626                                                                                                          | 95% H-Stat UCL               | 0.657  |
| DL /0 is not a second address | and an and shared s | concerning and blatestarians |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.753

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:22:44 PMFrom FileSoil, Strontium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Strontium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 16    |
| Number of Detects            | 18                 | Number of Non-Detects           | 2     |
| Number of Distinct Detects   | 15                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 10.1               | Minimum Non-Detect              | 5     |
| Maximum Detect               | 61                 | Maximum Non-Detect              | 5     |
| Variance Detects             | 158                | Percent Non-Detects             | 10%   |
| Mean Detects                 | 21.64              | SD Detects                      | 12.57 |
| Median Detects               | 15.5               | CV Detects                      | 0.581 |
| Skewness Detects             | 1.954              | Kurtosis Detects                | 4.782 |
| Mean of Logged Detects       | 2.952              | SD of Logged Detects            | 0.485 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.778 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.897 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.229 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.202 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                                | 19.98          | KM Standard Error of Mean                      | 2.903          |
|----------------------------------------|----------------|------------------------------------------------|----------------|
| KM SD                                  | 12.62          | 95% KM (BCA) UCL                               | 25.38          |
| 95% KM (t) UCL                         | 25             | 95% KM (Percentile Bootstrap) UCL              | 24.98          |
| 95% KM (z) UCL                         | 24.76          | 95% KM Bootstrap t UCL                         | 26.63          |
| 90% KM Chebyshev UCL                   | 28.69          | 95% KM Chebyshev UCL                           | 32.64          |
| 97.5% KM Chebyshev UCL                 | 38.11          | 99% KM Chebyshev UCL                           | 48.87          |
| 95% KM (z) UCL<br>90% KM Chebyshev UCL | 24.76<br>28.69 | 95% KM Bootstrap t UCL<br>95% KM Chebyshev UCL | 26.63<br>32.64 |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.842 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.743 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.22  | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.204 | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

| 3.557 | k star (bias corrected MLE)     | 4.224 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 6.085 | Theta star (bias corrected MLE) | 5.124 | Theta hat (MLE) |
| 128.1 | nu star (bias corrected)        | 152.1 | nu hat (MLE)    |
|       |                                 | 21.64 | Mean (detects)  |

| User Selected Options          | 3                               |
|--------------------------------|---------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:22:44 PM   |
| From File                      | Soil, Strontium, mg_kg - dw.xls |
| Full Precision                 | OFF                             |
| Confidence Coefficient         | 95%                             |
| Number of Bootstrap Operations | 2000                            |

#### Soil, Strontium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 19.58 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 61    | Median                                      | 15    |
| SD                                              | 13.48 | CV                                          | 0.689 |
| k hat (MLE)                                     | 1.11  | k star (bias corrected MLE)                 | 0.977 |
| Theta hat (MLE)                                 | 17.63 | Theta star (bias corrected MLE)             | 20.04 |
| nu hat (MLE)                                    | 44.42 | nu star (bias corrected)                    | 39.09 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (39.09, $\alpha$ ) | 25.77 | Adjusted Chi Square Value (39.09, $\beta$ ) | 24.91 |
| 95% Gamma Approximate UCL (use when n>=50)      | 29.7  | 95% Gamma Adjusted UCL (use when n<50)      | 30.72 |

# Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 19.98 | SD (KM)                   | 12.62 |
|---------------------------|-------|---------------------------|-------|
| Variance (KM)             | 159.2 | SE of Mean (KM)           | 2.903 |
| k hat (KM)                | 2.507 | k star (KM)               | 2.165 |
| nu hat (KM)               | 100.3 | nu star (KM)              | 86.58 |
| theta hat (KM)            | 7.969 | theta star (KM)           | 9.23  |
| 80% gamma percentile (KM) | 29.63 | 90% gamma percentile (KM) | 38.15 |
| 95% gamma percentile (KM) | 46.23 | 99% gamma percentile (KM) | 64.08 |

64.72

26.73

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (86.58, $\alpha$ ) | 66.13 | Adjusted Chi Square Value (86.58, $\beta$ ) |
|-------------------------------------------------|-------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 26.16 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.912 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.897 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.2   | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.202 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

| User Selected Options          | 3                               |
|--------------------------------|---------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:22:44 PM   |
| From File                      | Soil, Strontium, mg_kg - dw.xls |
| Full Precision                 | OFF                             |
| Confidence Coefficient         | 95%                             |
| Number of Bootstrap Operations | 2000                            |

#### Soil, Strontium, mg/kg - dw

| Lognormal ROS Statistics | Using Imputed Non-Detects |
|--------------------------|---------------------------|
|--------------------------|---------------------------|

| Mean in Original Scale                    | 20.1  | Mean in Log Scale            | 2.839 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 12.8  | SD in Log Scale              | 0.577 |
| 95% t UCL (assumes normality of ROS data) | 25.05 | 95% Percentile Bootstrap UCL | 24.85 |
| 95% BCA Bootstrap UCL                     | 26.53 | 95% Bootstrap t UCL          | 26.84 |
| 95% H-UCL (Log ROS)                       | 26.65 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 2.818 | KM Geo Mean                   | 16.73 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.602 | 95% Critical H Value (KM-Log) | 2.125 |
| KM Standard Error of Mean (logged) | 0.139 | 95% H-UCL (KM -Log)           | 26.9  |
| KM SD (logged)                     | 0.602 | 95% Critical H Value (KM-Log) | 2.125 |
| KM Standard Error of Mean (logged) | 0.139 |                               |       |

# DL/2 Statistics

| DL/2 Normal DL/2 Log-Transform |       | sformed           |       |
|--------------------------------|-------|-------------------|-------|
| Mean in Original Scale         | 19.73 | Mean in Log Scale | 2.748 |
| SD in Original Scale           | 13.27 | SD in Log Scale   | 0.777 |
| 95% t UCL (Assumes normality)  | 24.86 | 95% H-Stat UCL    | 31.98 |
|                                |       |                   |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics Detected Data appear Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

| KM Student's t | 22.59 |
|----------------|-------|
|----------------|-------|

KM H-UCL 26.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:23:26 PMFrom FileSoil, Thallium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Thallium, mg/kg - dw

# General Statistics

Total Number of Observations20Number of Detects0Number of Distinct Detects0

 Number of Distinct Observations
 1

 Number of Non-Detects
 20

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Soil, Thallium, mg/kg - dw was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:24:08 PM From File Soil, Tin, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Tin, mg/kg - dw

| General Statistics |                                                                 |                                                                                                                                                                                                              |
|--------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                 | Number of Distinct Observations                                 | 5                                                                                                                                                                                                            |
| 6                  | Number of Non-Detects                                           | 14                                                                                                                                                                                                           |
| 4                  | Number of Distinct Non-Detects                                  | 1                                                                                                                                                                                                            |
| 1.1                | Minimum Non-Detect                                              | 1                                                                                                                                                                                                            |
| 1.4                | Maximum Non-Detect                                              | 1                                                                                                                                                                                                            |
| 0.0147             | Percent Non-Detects                                             | 70%                                                                                                                                                                                                          |
| 1.233              | SD Detects                                                      | 0.121                                                                                                                                                                                                        |
| 1.25               | CV Detects                                                      | 0.0982                                                                                                                                                                                                       |
| 0.0751             | Kurtosis Detects                                                | -1.55                                                                                                                                                                                                        |
| 0.206              | SD of Logged Detects                                            | 0.0984                                                                                                                                                                                                       |
|                    | 20<br>6<br>4<br>1.1<br>1.4<br>0.0147<br>1.233<br>1.25<br>0.0751 | 20Number of Distinct Observations6Number of Non-Detects4Number of Distinct Non-Detects1.1Minimum Non-Detect1.4Maximum Non-Detect0.0147Percent Non-Detects1.233SD Detects1.25CV Detects0.0751Kurtosis Detects |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.906 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.788 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.209 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.325 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| <br>                   |       |                                   |        |
|------------------------|-------|-----------------------------------|--------|
| KM Mean                | 1.07  | KM Standard Error of Mean         | 0.0301 |
| KM SD                  | 0.123 | 95% KM (BCA) UCL                  | N/A    |
| 95% KM (t) UCL         | 1.122 | 95% KM (Percentile Bootstrap) UCL | N/A    |
| 95% KM (z) UCL         | 1.12  | 95% KM Bootstrap t UCL            | N/A    |
| 90% KM Chebyshev UCL   | 1.16  | 95% KM Chebyshev UCL              | 1.201  |
| 97.5% KM Chebyshev UCL | 1.258 | 99% KM Chebyshev UCL              | 1.369  |
|                        |       |                                   |        |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic     | 0.384 | Anderson-Darling GOF Test                                       |
|------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value  | 0.696 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic     | 0.233 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value  | 0.332 | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data surround |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| 62.23  | k star (bias corrected MLE)     | 124.2   | k hat (MLE)     |
|--------|---------------------------------|---------|-----------------|
| 0.0198 | Theta star (bias corrected MLE) | 0.00993 | Theta hat (MLE) |
| 746.7  | nu star (bias corrected)        | 1491    | nu hat (MLE)    |
|        |                                 | 1.233   | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:24:08 PM From File Soil, Tin, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Tin, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.479  | Mean                                         | 0.927  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| Maximum                                          | 1.4    | Median                                       | 0.911  |
| SD                                               | 0.255  | CV                                           | 0.275  |
| k hat (MLE)                                      | 13.35  | k star (bias corrected MLE)                  | 11.38  |
| Theta hat (MLE)                                  | 0.0694 | Theta star (bias corrected MLE)              | 0.0814 |
| nu hat (MLE)                                     | 533.8  | nu star (bias corrected)                     | 455.1  |
| Adjusted Level of Significance (β)               | 0.038  |                                              |        |
| Approximate Chi Square Value (455.09, $\alpha$ ) | 406.6  | Adjusted Chi Square Value (455.09, $\beta$ ) | 403    |
| 95% Gamma Approximate UCL (use when n>=50)       | 1.037  | 95% Gamma Adjusted UCL (use when n<50)       | 1.046  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 1.07   | SD (KM)                   | 0.123  |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0151 | SE of Mean (KM)           | 0.0301 |
| k hat (KM)                | 75.82  | k star (KM)               | 64.48  |
| nu hat (KM)               | 3033   | nu star (KM)              | 2579   |
| theta hat (KM)            | 0.0141 | theta star (KM)           | 0.0166 |
| 80% gamma percentile (KM) | 1.18   | 90% gamma percentile (KM) | 1.244  |
| 95% gamma percentile (KM) | 1.298  | 99% gamma percentile (KM) | 1.404  |

Adjusted Chi Square Value (N/A,  $\beta$ ) 2453

1.125

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A,  $\alpha$ ) 2462

95% Gamma Approximate KM-UCL (use when n>=50) 1.121

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.901 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.788 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.218 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.325 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data app              |       | armal at 5% Significance Loval                          |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:24:08 PM |
| From File                      | Soil, Tin, mg_kg - dw.xls     |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Tin, mg/kg - dw

| Lognormal ROS Statistics Using Imputed Non-De | ects |
|-----------------------------------------------|------|
|-----------------------------------------------|------|

| Mean in Original Scale                    | 0.967 | Mean in Log Scale            | -0.0562 |
|-------------------------------------------|-------|------------------------------|---------|
| SD in Original Scale                      | 0.215 | SD in Log Scale              | 0.22    |
| 95% t UCL (assumes normality of ROS data) | 1.05  | 95% Percentile Bootstrap UCL | 1.047   |
| 95% BCA Bootstrap UCL                     | 1.051 | 95% Bootstrap t UCL          | 1.055   |
| 95% H-UCL (Log ROS)                       | 1.061 |                              |         |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 0.0617 | KM Geo Mean                   | 1.064 |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.106  | 95% Critical H Value (KM-Log) | 1.736 |
| KM Standard Error of Mean (logged) | 0.026  | 95% H-UCL (KM -Log)           | 1.116 |
| KM SD (logged)                     | 0.106  | 95% Critical H Value (KM-Log) | 1.736 |
| KM Standard Error of Mean (logged) | 0.026  |                               |       |

# DL/2 Statistics

| DL/2 Normal                   |                                    | DL/2 Log-Transformed        |        |
|-------------------------------|------------------------------------|-----------------------------|--------|
| Mean in Original Scale        | 0.72                               | Mean in Log Scale           | -0.423 |
| SD in Original Scale          | 0.35                               | SD in Log Scale             | 0.426  |
| 95% t UCL (Assumes normality) | 0.855                              | 95% H-Stat UCL              | 0.867  |
| DL/O is not a second address  | had an and the state of the second | wands and blatestaal second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 1.122

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:24:51 PMFrom FileSoil, Uranium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Uranium, mg/kg - dw

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 7      |
| Number of Detects            | 6                  | Number of Non-Detects           | 14     |
| Number of Distinct Detects   | 6                  | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.11               | Minimum Non-Detect              | 0.1    |
| Maximum Detect               | 0.33               | Maximum Non-Detect              | 0.1    |
| Variance Detects             | 0.00695            | Percent Non-Detects             | 70%    |
| Mean Detects                 | 0.197              | SD Detects                      | 0.0833 |
| Median Detects               | 0.185              | CV Detects                      | 0.424  |
| Skewness Detects             | 0.726              | Kurtosis Detects                | -0.221 |
| Mean of Logged Detects       | -1.701             | SD of Logged Detects            | 0.423  |
|                              |                    |                                 |        |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.939 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.788 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.155 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.325 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| • |                        | -      | •                                 |        |
|---|------------------------|--------|-----------------------------------|--------|
|   | KM Mean                | 0.129  | KM Standard Error of Mean         | 0.0149 |
|   | KM SD                  | 0.0608 | 95% KM (BCA) UCL                  | 0.154  |
|   | 95% KM (t) UCL         | 0.155  | 95% KM (Percentile Bootstrap) UCL | 0.154  |
|   | 95% KM (z) UCL         | 0.154  | 95% KM Bootstrap t UCL            | 0.162  |
|   | 90% KM Chebyshev UCL   | 0.174  | 95% KM Chebyshev UCL              | 0.194  |
|   | 97.5% KM Chebyshev UCL | 0.222  | 99% KM Chebyshev UCL              | 0.277  |
|   |                        |        |                                   |        |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.219 | Anderson-Darling GOF Test                                       |
|-----------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value | 0.698 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.19  | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value | 0.333 | Detected data appear Gamma Distributed at 5% Significance Level |
|                       |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| k hat (MLE)     | 6.883  | k star (bias corrected MLE)     | 3.552  |
|-----------------|--------|---------------------------------|--------|
| Theta hat (MLE) | 0.0286 | Theta star (bias corrected MLE) | 0.0554 |
| nu hat (MLE)    | 82.59  | nu star (bias corrected)        | 42.63  |
| Mean (detects)  | 0.197  |                                 |        |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 6:24:51 PM From File Soil, Uranium, mg\_kg - dw.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Soil, Uranium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

#### GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

#### GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01   | Mean                                        | 0.0701 |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.33   | Median                                      | 0.01   |
| SD                                              | 0.0959 | CV                                          | 1.368  |
| k hat (MLE)                                     | 0.677  | k star (bias corrected MLE)                 | 0.609  |
| Theta hat (MLE)                                 | 0.104  | Theta star (bias corrected MLE)             | 0.115  |
| nu hat (MLE)                                    | 27.09  | nu star (bias corrected)                    | 24.36  |
| Adjusted Level of Significance ( $\beta$ )      | 0.038  |                                             |        |
| Approximate Chi Square Value (24.36, $\alpha$ ) | 14.12  | Adjusted Chi Square Value (24.36, $\beta$ ) | 13.51  |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.121  | 95% Gamma Adjusted UCL (use when n<50)      | 0.126  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.129  | SD (KM)                   | 0.0608 |
|---------------------------|--------|---------------------------|--------|
| Variance (KM)             | 0.0037 | SE of Mean (KM)           | 0.0149 |
| k hat (KM)                | 4.499  | k star (KM)               | 3.857  |
| nu hat (KM)               | 180    | nu star (KM)              | 154.3  |
| theta hat (KM)            | 0.0287 | theta star (KM)           | 0.0334 |
| 80% gamma percentile (KM) | 0.179  | 90% gamma percentile (KM) | 0.217  |
| 95% gamma percentile (KM) | 0.252  | 99% gamma percentile (KM) | 0.328  |

Adjusted Chi Square Value (154.29,  $\beta$ ) 124.6

0.16

95% Gamma Adjusted KM-UCL (use when n<50)

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (154.29, $\alpha$ ) | 126.6 |  |
|--------------------------------------------------|-------|--|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.157 |  |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.959 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.788 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.173 | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.325 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Lovel |       |                                                         |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                             |
|--------------------------------|-------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:24:51 PM |
| From File                      | Soil, Uranium, mg_kg - dw.xls |
| Full Precision                 | OFF                           |
| Confidence Coefficient         | 95%                           |
| Number of Bootstrap Operations | 2000                          |

#### Soil, Uranium, mg/kg - dw

| Lognormal ROS Statistics Us | sing Imputed Non-Detects |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

| Mean in Original Scale                    | 0.0881 | Mean in Log Scale            | -2.862 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0868 | SD in Log Scale              | 0.975  |
| 95% t UCL (assumes normality of ROS data) | 0.122  | 95% Percentile Bootstrap UCL | 0.122  |
| 95% BCA Bootstrap UCL                     | 0.128  | 95% Bootstrap t UCL          | 0.141  |
| 95% H-UCL (Log ROS)                       | 0.164  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -2.122 | KM Geo Mean                   | 0.12  |
|------------------------------------|--------|-------------------------------|-------|
| KM SD (logged)                     | 0.348  | 95% Critical H Value (KM-Log) | 1.887 |
| KM Standard Error of Mean (logged) | 0.0852 | 95% H-UCL (KM -Log)           | 0.148 |
| KM SD (logged)                     | 0.348  | 95% Critical H Value (KM-Log) | 1.887 |
| KM Standard Error of Mean (logged) | 0.0852 |                               |       |

# DL/2 Statistics

| DL/2 Normal                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL/2 Log-Transformed |        |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|
| Mean in Original Scale        | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean in Log Scale    | -2.607 |
| SD in Original Scale          | 0.0811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD in Log Scale      | 0.646  |
| 95% t UCL (Assumes normality) | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% H-Stat UCL       | 0.125  |
| DL/O is not a recommended may | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | d blataslast same    |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.155

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:25:34 PMFrom FileSoil, Vanadium, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Soil, Vanadium, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 12    |
| Number of Detects            | 13                 | Number of Non-Detects           | 7     |
| Number of Distinct Detects   | 12                 | Number of Distinct Non-Detects  | 1     |
| Minimum Detect               | 2                  | Minimum Non-Detect              | 2     |
| Maximum Detect               | 44                 | Maximum Non-Detect              | 2     |
| Variance Detects             | 130.3              | Percent Non-Detects             | 35%   |
| Mean Detects                 | 9.427              | SD Detects                      | 11.41 |
| Median Detects               | 5.7                | CV Detects                      | 1.211 |
| Skewness Detects             | 2.677              | Kurtosis Detects                | 7.847 |
| Mean of Logged Detects       | 1.802              | SD of Logged Detects            | 0.916 |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.651 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.866 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.326 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.234 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 6.828 | KM Standard Error of Mean         | 2.217 |
|------------------------|-------|-----------------------------------|-------|
| KM SD                  | 9.524 | 95% KM (BCA) UCL                  | 10.85 |
| 95% KM (t) UCL         | 10.66 | 95% KM (Percentile Bootstrap) UCL | 10.8  |
| 95% KM (z) UCL         | 10.47 | 95% KM Bootstrap t UCL            | 16.99 |
| 90% KM Chebyshev UCL   | 13.48 | 95% KM Chebyshev UCL              | 16.49 |
| 97.5% KM Chebyshev UCL | 20.67 | 99% KM Chebyshev UCL              | 28.88 |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic                                        | 0.585 | Anderson-Darling GOF Test                                       |  |  |
|-----------------------------------------------------------|-------|-----------------------------------------------------------------|--|--|
| 5% A-D Critical Value                                     | 0.754 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic                                        | 0.204 | Kolmogorov-Smirnov GOF                                          |  |  |
| 5% K-S Critical Value                                     | 0.242 | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data service Distributed at 5% Obrails and Lovel |       |                                                                 |  |  |

Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| 1.032 | k star (bias corrected MLE)     | 1.274 | k hat (MLE)     |
|-------|---------------------------------|-------|-----------------|
| 9.138 | Theta star (bias corrected MLE) | 7.397 | Theta hat (MLE) |
| 26.82 | nu star (bias corrected)        | 33.14 | nu hat (MLE)    |
|       |                                 | 9.427 | Mean (detects)  |

| User Selected Options          | 3                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:25:34 PM  |
| From File                      | Soil, Vanadium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Vanadium, mg/kg - dw

#### Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01  | Mean                                        | 6.131 |
|-------------------------------------------------|-------|---------------------------------------------|-------|
| Maximum                                         | 44    | Median                                      | 2.55  |
| SD                                              | 10.17 | CV                                          | 1.659 |
| k hat (MLE)                                     | 0.305 | k star (bias corrected MLE)                 | 0.293 |
| Theta hat (MLE)                                 | 20.09 | Theta star (bias corrected MLE)             | 20.95 |
| nu hat (MLE)                                    | 12.21 | nu star (bias corrected)                    | 11.71 |
| Adjusted Level of Significance ( $\beta$ )      | 0.038 |                                             |       |
| Approximate Chi Square Value (11.71, $\alpha$ ) | 5.035 | Adjusted Chi Square Value (11.71, $\beta$ ) | 4.693 |
| 95% Gamma Approximate UCL (use when n>=50)      | 14.26 | 95% Gamma Adjusted UCL (use when n<50)      | 15.3  |

#### Estimates of Gamma Parameters using KM Estimates

| SD (K                   | 6.828 | Mean (KM)                 |
|-------------------------|-------|---------------------------|
| SE of Mean (K           | 90.71 | Variance (KM)             |
| k star (K               | 0.514 | k hat (KM)                |
| nu star (K              | 20.56 | nu hat (KM)               |
| theta star (K           | 13.29 | theta hat (KM)            |
| 90% gamma percentile (K | 11.18 | 80% gamma percentile (KM) |
| 99% gamma percentile (K | 26.81 | 95% gamma percentile (KM) |

9.469

13.56

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (18.81, $\alpha$ ) | 9.975 | Adjusted Chi Square Value (18.81, $\beta$ ) |
|-------------------------------------------------|-------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 12.87 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.939 | Shapiro Wilk GOF Test                                   |
|--------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.866 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.139 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.234 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data ann              |       | armal at 5% Significance Level                          |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | ;                              |
|--------------------------------|--------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 6:25:34 PM  |
| From File                      | Soil, Vanadium, mg_kg - dw.xls |
| Full Precision                 | OFF                            |
| Confidence Coefficient         | 95%                            |
| Number of Bootstrap Operations | 2000                           |

#### Soil, Vanadium, mg/kg - dw

| Lognormal ROS Statistics Us | sing Imputed Non-Detects |
|-----------------------------|--------------------------|
|-----------------------------|--------------------------|

| Mean in Original Scale                    | 6.362 | Mean in Log Scale            | 0.975 |
|-------------------------------------------|-------|------------------------------|-------|
| SD in Original Scale                      | 10.03 | SD in Log Scale              | 1.415 |
| 95% t UCL (assumes normality of ROS data) | 10.24 | 95% Percentile Bootstrap UCL | 10.32 |
| 95% BCA Bootstrap UCL                     | 12.29 | 95% Bootstrap t UCL          | 15.45 |
| 95% H-UCL (Log ROS)                       | 20.94 |                              |       |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | 1.414 | KM Geo Mean                   | 4.113 |
|------------------------------------|-------|-------------------------------|-------|
| KM SD (logged)                     | 0.885 | 95% Critical H Value (KM-Log) | 2.472 |
| KM Standard Error of Mean (logged) | 0.206 | 95% H-UCL (KM -Log)           | 10.06 |
| KM SD (logged)                     | 0.885 | 95% Critical H Value (KM-Log) | 2.472 |
| KM Standard Error of Mean (logged) | 0.206 |                               |       |

# DL/2 Statistics

| DL/2 Normal                   |       | DL/2 Log-Transformed |       |
|-------------------------------|-------|----------------------|-------|
| Mean in Original Scale        | 6.478 | Mean in Log Scale    | 1.172 |
| SD in Original Scale          | 9.964 | SD in Log Scale      | 1.144 |
| 95% t UCL (Assumes normality) | 10.33 | 95% H-Stat UCL       | 13.11 |
|                               |       |                      |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

rected Data appear Gamma Distributed at 5% Organicance Le

# Suggested UCL to Use

95% KM Adjusted Gamma UCL 13.56

95% GROS Adjusted Gamma UCL 15.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 6:26:16 PMFrom FileSoil, Zinc, mg\_kg - dw.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Soil, Zinc, mg/kg - dw

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 20                 | Number of Distinct Observations | 20    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 16                 | Mean                            | 46.33 |
| Maximum                      | 112                | Median                          | 33.5  |
| SD                           | 30.18              | Std. Error of Mean              | 6.749 |
| Coefficient of Variation     | 0.651              | Skewness                        | 1.108 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic    | 0.856 | Shapiro Wilk GOF Test                    |
|--------------------------------|-------|------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.905 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.209 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value   | 0.192 | Data Not Normal at 5% Significance Level |

Data Not Normal at 5% Significance Level

| Ass                            | suming Norr | nal Distribution                                          |         |
|--------------------------------|-------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 57.99       | 95% Adjusted-CLT UCL (Chen-1995)                          | 59.21   |
|                                |             | 95% Modified-t UCL (Johnson-1978)                         | 58.27   |
|                                | Gamma (     | GOF Test                                                  |         |
| A-D Test Statistic             | 0.482       | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.748       | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.164       | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.195       | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma Dis   | stributed at 5% Significance Level                        |         |
|                                | Gamma       | Statistics                                                |         |
| k hat (MLE)                    | 2.825       | k star (bias corrected MLE)                               | 2.435   |
| Theta hat (MLE)                | 16.4        | Theta star (bias corrected MLE)                           | 19.02   |
| nu hat (MLE)                   | 113         | nu star (bias corrected)                                  | 97.4    |
| MLE Mean (bias corrected)      | 46.33       | MLE Sd (bias corrected)                                   | 29.69   |
|                                |             | Approximate Chi Square Value (0.05)                       | 75.63   |
| Adjusted Level of Significance | 0.038       | Adjusted Chi Square Value                                 | 74.12   |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 60.88

95% Approximate Gamma UCL (use when n>=50) 59.66

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 6:26:16 PM

 From File
 Soil, Zinc, mg\_kg - dw.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Soil, Zinc, mg/kg - dw

|                                | Lognormal GOF Test    |                                                |
|--------------------------------|-----------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic    | 0.945                 | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk Critical Value | 0.905                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.128                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value   | 0.192                 | Data appear Lognormal at 5% Significance Level |
| Data appear                    | Lognormal at 5% Signi | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 2.773                       | Mean of logged Data | 3.648 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | 4.718                       | SD of logged Data   | 0.622 |
| Assur                  | ning Lognormal Distribution |                     |       |

| 95% H-UCL                | 63.34 | 90% Chebyshev (MVUE) UCL   | 66.39 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 75.58 | 97.5% Chebyshev (MVUE) UCL | 88.33 |
| 99% Chebyshev (MVUE) UCL | 113.4 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 57.43 | 95% Jackknife UCL            | 57.99 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 56.93 | 95% Bootstrap-t UCL          | 61.39 |
| 95% Hall's Bootstrap UCL      | 58.54 | 95% Percentile Bootstrap UCL | 57.73 |
| 95% BCA Bootstrap UCL         | 59.1  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 66.57 | 95% Chebyshev(Mean, Sd) UCL  | 75.74 |
| 97.5% Chebyshev(Mean, Sd) UCL | 88.47 | 99% Chebyshev(Mean, Sd) UCL  | 113.5 |

#### Suggested UCL to Use

95% Adjusted Gamma UCL 60.88

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

# ATTACHMENT G

**ProUCL Outputs: Brook Trout** 

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:28:05 PM From File Brook Trout, Aluminum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

5% Lilliefors Critical Value

# Brook Trout, Aluminum, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 42     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.21               | Mean                            | 0.556  |
| Maximum                      | 1.47               | Median                          | 0.47   |
| SD                           | 0.297              | Std. Error of Mean              | 0.0416 |
| Coefficient of Variation     | 0.534              | Skewness                        | 1.193  |
|                              |                    |                                 |        |

# Normal GOF Test

0.123

# Shapiro Wilk Test Statistic 0.877 Shapiro Wilk GOF Test 5% Shapiro Wilk P Value 1.7506E-5 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.144 Lilliefors GOF Test

# Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| As                                                                    | suming Norm                                     | nal Distribution                                                                                                                  |                       |
|-----------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 95% Normal UCL                                                        |                                                 | 95% UCLs (Adjusted for Skewness)                                                                                                  |                       |
| 95% Student's-t UCL                                                   | 0.626                                           | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                  | 0.632                 |
|                                                                       |                                                 | 95% Modified-t UCL (Johnson-1978)                                                                                                 | 0.627                 |
|                                                                       | Gamma G                                         | GOF Test                                                                                                                          |                       |
| A-D Test Statistic                                                    | 0.73                                            | Anderson-Darling Gamma GOF Test                                                                                                   |                       |
| 5% A-D Critical Value                                                 | 0.754                                           | Detected data appear Gamma Distributed at 5% Significanc                                                                          | e Level               |
| K-S Test Statistic                                                    | 0.0993                                          | Kolmogorov-Smirnov Gamma GOF Test                                                                                                 |                       |
| 5% K-S Critical Value                                                 | 0.125                                           | Detected data appear Gamma Distributed at 5% Significanc                                                                          | e l evel              |
|                                                                       | 0.120                                           | Detected data appear Camina Distributed at 5% Significance                                                                        |                       |
|                                                                       |                                                 | tributed at 5% Significance Level                                                                                                 |                       |
|                                                                       |                                                 | tributed at 5% Significance Level                                                                                                 |                       |
|                                                                       | r Gamma Dis                                     | tributed at 5% Significance Level                                                                                                 | 3.932                 |
| Detected data appea                                                   | r Gamma Dis<br>Gamma S                          | tributed at 5% Significance Level                                                                                                 |                       |
| Detected data appea<br>k hat (MLE)                                    | Gamma Dis<br>Gamma S<br>4.164                   | tributed at 5% Significance Level Statistics k star (bias corrected MLE)                                                          | 3.932                 |
| Detected data appea<br>k hat (MLE)<br>Theta hat (MLE)                 | Gamma Dis<br>Gamma S<br>4.164<br>0.134          | tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)                          | 3.932<br>0.142        |
| Detected data appea<br>k hat (MLE)<br>Theta hat (MLE)<br>nu hat (MLE) | Gamma Dis<br>Gamma S<br>4.164<br>0.134<br>424.7 | tributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) | 3.932<br>0.142<br>401 |

95% Adjusted Gamma UCL (use when n<50) 0.63

95% Approximate Gamma UCL (use when n>=50) 0.628

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:28:05 PM From File Brook Trout, Aluminum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Aluminum, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.962                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.183                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0746                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | -1.561                      | Mean of logged Data | -0.711 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | 0.385                       | SD of logged Data   | 0.497  |
| Accu                   | ming Lognormal Distribution |                     |        |
| A33u                   | ming Lognormal Distribution |                     |        |

| 95% H-UCL                | 0.634 | 90% Chebyshev (MVUE) UCL   | 0.676 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.731 | 97.5% Chebyshev (MVUE) UCL | 0.807 |
| 99% Chebyshev (MVUE) UCL | 0.957 |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.625 | 95% Jackknife UCL            | 0.626 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.624 | 95% Bootstrap-t UCL          | 0.642 |
| 95% Hall's Bootstrap UCL      | 0.634 | 95% Percentile Bootstrap UCL | 0.626 |
| 95% BCA Bootstrap UCL         | 0.635 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.681 | 95% Chebyshev(Mean, Sd) UCL  | 0.738 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.816 | 99% Chebyshev(Mean, Sd) UCL  | 0.97  |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Approximate Gamma UCL 0.628

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:28:47 PM From File Brook Trout, Antimony, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Antimony, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 3       |
| Number of Detects            | 2                  | Number of Non-Detects           | 49      |
| Number of Distinct Detects   | 2                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.0013             | Minimum Non-Detect              | 0.001   |
| Maximum Detect               | 0.0032             | Maximum Non-Detect              | 0.001   |
| Variance Detects             | 1.8050E-6          | Percent Non-Detects             | 96.08%  |
| Mean Detects                 | 0.00225            | SD Detects                      | 0.00134 |
| Median Detects               | 0.00225            | CV Detects                      | 0.597   |
| Skewness Detects             | N/A                | Kurtosis Detects                | N/A     |
| Mean of Logged Detects       | -6.195             | SD of Logged Detects            | 0.637   |

# Warning: Data set has only 2 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates.

# Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean 0.00                | 0105   | KM Standard Error of Mean 6.     | 0800E-5 |
|-----------------------------|--------|----------------------------------|---------|
| KM SD 3.070                 | 2E-4   | 95% KM (BCA) UCL                 | N/A     |
| 95% KM (t) UCL 0.00         | 0115 9 | 5% KM (Percentile Bootstrap) UCL | N/A     |
| 95% KM (z) UCL 0.00         | 0115   | 95% KM Bootstrap t UCL           | N/A     |
| 90% KM Chebyshev UCL 0.00   | 0123   | 95% KM Chebyshev UCL             | 0.00131 |
| 97.5% KM Chebyshev UCL 0.00 | 0143   | 99% KM Chebyshev UCL             | 0.00165 |

# Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

#### Gamma Statistics on Detected Data Only

| N/A | k star (bias corrected MLE)     | 5.254     | k hat (MLE)     |
|-----|---------------------------------|-----------|-----------------|
| N/A | Theta star (bias corrected MLE) | 1.2824E-4 | Theta hat (MLE) |
| N/A | nu star (bias corrected)        | 21.02     | nu hat (MLE)    |
|     |                                 | 0.00225   | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:28:47 PM From File Brook Trout, Antimony, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Antimony, mg/kg - ww

| Estimates of G            | amma Parameters using KM Estimates |                                   |
|---------------------------|------------------------------------|-----------------------------------|
| Mean (KM)                 | 0.00105                            | SD (KM) 3.0702E-4                 |
| Variance (KM)             | 9.4264E-8                          | SE of Mean (KM) 6.0800E-5         |
| k hat (KM)                | 11.67                              | k star (KM) 11                    |
| nu hat (KM)               | 1191                               | nu star (KM) 1122                 |
| theta hat (KM)            | 8.9859E-5                          | theta star (KM) 9.5362E-5         |
| 80% gamma percentile (KM) | 0.0013                             | 90% gamma percentile (KM) 0.00147 |
| 95% gamma percentile (KM) | 0.00162                            | 99% gamma percentile (KM) 0.00192 |

# Gamma Kaplan-Meier (KM) Statistics

| 0.0453  | Adjusted Level of Significance (β)        |         |                                               |
|---------|-------------------------------------------|---------|-----------------------------------------------|
| 1043    | Adjusted Chi Square Value (N/A, $\beta$ ) | 1045    | Approximate Chi Square Value (N/A, $\alpha$ ) |
| 0.00113 | 95% Gamma Adjusted KM-UCL (use when n<50) | 0.00113 | 95% Gamma Approximate KM-UCL (use when n>=50) |

#### Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

#### Lognormal ROS Statistics Using Imputed Non-Detects

| E-4 Mean in Log Scale            | -12.8                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------------------|
| E-4 SD in Log Scale              | 3.04                                                                                           |
| E-4 95% Percentile Bootstrap UCL | 2.3403E-4                                                                                      |
| E-4 95% Bootstrap t UCL          | 8.2608E-4                                                                                      |
| 241                              |                                                                                                |
|                                  | E-4Mean in Log ScaleE-4SD in Log ScaleE-495% Percentile Bootstrap UCLE-495% Bootstrap t UCL241 |

# Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -6.88  | KM Geo Mean                   | 0.00103 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.165  | 95% Critical H Value (KM-Log) | 1.71    |
| KM Standard Error of Mean (logged) | 0.0326 | 95% H-UCL (KM -Log)           | 0.00108 |
| KM SD (logged)                     | 0.165  | 95% Critical H Value (KM-Log) | 1.71    |
| KM Standard Error of Mean (logged) | 0.0326 |                               |         |

# **DL/2** Statistics

#### DL/2 Log-Transformed

 Mean in Log Scale
 -7.546

 SD in Log Scale
 0.29

 95% H-Stat UCL
 5.9124E-4

Mean in Original Scale 5.6863E-4 SD in Original Scale 3.9217E-4 95% t UCL (Assumes normality) 6.6066E-4

DL/2 Normal

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:28:47 PM

 From File
 Brook Trout, Antimony, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Brook Trout, Antimony, mg/kg - ww

# Suggested UCL to Use

95% KM (Chebyshev) UCL 0.00131

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:29:30 PM

 From File
 Brook Trout, Arsenic, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 6.839E-14

# Brook Trout, Arsenic, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 49     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.0256             | Mean                            | 0.305  |
| Maximum                      | 1.55               | Median                          | 0.21   |
| SD                           | 0.32               | Std. Error of Mean              | 0.0448 |
| Coefficient of Variation     | 1.05               | Skewness                        | 2.693  |
|                              |                    |                                 |        |

# Normal GOF Test

0.671

0.276

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

|                          | Assuming Normal   | Distribution                                       |       |
|--------------------------|-------------------|----------------------------------------------------|-------|
| 95% Normal UCL           |                   | 95% UCLs (Adjusted for Skewness)                   |       |
| 95% Student's-t UC       | L 0.38            | 95% Adjusted-CLT UCL (Chen-1995)                   | 0.397 |
|                          |                   | 95% Modified-t UCL (Johnson-1978)                  | 0.383 |
|                          | Gamma GO          | F Test                                             |       |
| A-D Test Statist         | ic 1.383          | Anderson-Darling Gamma GOF Test                    |       |
| 5% A-D Critical Valu     | ie 0.767          | Data Not Gamma Distributed at 5% Significance Leve | I     |
| K-S Test Statist         | ic 0.171          | Kolmogorov-Smirnov Gamma GOF Test                  |       |
| 5% K-S Critical Valu     | ie 0.126          | Data Not Gamma Distributed at 5% Significance Leve | I     |
| Data Not Ga              | mma Distributed a | at 5% Significance Level                           |       |
|                          | Gamma Sta         | tistics                                            |       |
| k hat (MLE               | E) 1.533          | k star (bias corrected MLE)                        | 1.456 |
| Theta hat (ML            | E) 0.199          | Theta star (bias corrected MLE)                    | 0.209 |
| nu hat (MLE              | E) 156.4          | nu star (bias corrected)                           | 148.5 |
| MLE Mean (bias corrected | d) 0.305          | MLE Sd (bias corrected)                            | 0.253 |
|                          |                   |                                                    | 121.3 |
|                          |                   | Approximate Chi Square Value (0.05)                | 121.5 |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.375

95% Approximate Gamma UCL (use when n>=50)) 0.373

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:29:30 PM From File Brook Trout, Arsenic, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Arsenic, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.976                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.567                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.111                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | -3.665                      | Mean of logged Data | -1.548 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | 0.438                       | SD of logged Data   | 0.834  |
| <u>.</u>               |                             |                     |        |
| Δεειι                  | ming Lognormal Distribution |                     |        |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.388 | 90% Chebyshev (MVUE) UCL   | 0.417 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.47  | 97.5% Chebyshev (MVUE) UCL | 0.544 |
| 99% Chebyshev (MVUE) UCL | 0.69  |                            |       |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.379 | 95% Jackknife UCL            | 0.38  |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.377 | 95% Bootstrap-t UCL          | 0.411 |
| 95% Hall's Bootstrap UCL      | 0.414 | 95% Percentile Bootstrap UCL | 0.381 |
| 95% BCA Bootstrap UCL         | 0.398 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.439 | 95% Chebyshev(Mean, Sd) UCL  | 0.5   |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.585 | 99% Chebyshev(Mean, Sd) UCL  | 0.751 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% H-UCL 0.388

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

#### ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:29:30 PM

 From File
 Brook Trout, Arsenic, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Brook Trout, Arsenic, mg/kg - ww

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:30:12 PM

 From File
 Brook Trout, Barium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Brook Trout, Barium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 46     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.025              | Mean                            | 0.189  |
| Maximum                      | 1.61               | Median                          | 0.069  |
| SD                           | 0.362              | Std. Error of Mean              | 0.0507 |
| Coefficient of Variation     | 1.92               | Skewness                        | 3.106  |
|                              |                    |                                 |        |

# Normal GOF Test

# Shapiro Wilk Test Statistic0.446Shapiro Wilk GOF Test5% Shapiro Wilk P Value0Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.395Lilliefors GOF Test5% Lilliefors Critical Value0.123Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| Ass                       | uming Normal Distri | pution                                              |       |
|---------------------------|---------------------|-----------------------------------------------------|-------|
| 95% Normal UCL            |                     | 95% UCLs (Adjusted for Skewness)                    |       |
| 95% Student's-t UCL       | 0.274               | 95% Adjusted-CLT UCL (Chen-1995)                    | 0.296 |
|                           |                     | 95% Modified-t UCL (Johnson-1978)                   | 0.277 |
|                           | Gamma GOF Test      |                                                     |       |
| A-D Test Statistic        | 6.598               | Anderson-Darling Gamma GOF Test                     |       |
| 5% A-D Critical Value     | 0.791               | Data Not Gamma Distributed at 5% Significance Level |       |
| K-S Test Statistic        | 0.283               | Kolmogorov-Smirnov Gamma GOF Test                   |       |
| 5% K-S Critical Value     | 0.129               | Data Not Gamma Distributed at 5% Significance Level |       |
| Data Not Gamm             | a Distributed at 5% | Significance Level                                  |       |
|                           | Gamma Statistics    |                                                     |       |
| k hat (MLE)               | 0.784               | k star (bias corrected MLE)                         | 0.751 |
| Theta hat (MLE)           | 0.241               | Theta star (bias corrected MLE)                     | 0.251 |
| nu hat (MLE)              | 79.97               | nu star (bias corrected)                            | 76.6  |
| MLE Mean (bias corrected) | 0.189               | MLE Sd (bias corrected)                             | 0.218 |
|                           |                     | Approximate Chi Square Value (0.05)                 | 57.44 |
|                           |                     |                                                     |       |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.254

95% Approximate Gamma UCL (use when n>=50)) 0.252

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:30:12 PM From File Brook Trout, Barium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Barium, mg/kg - ww

|                              | Lognorma     | al GOF Test                                 |        |
|------------------------------|--------------|---------------------------------------------|--------|
| Shapiro Wilk Test Statistic  | 0.818        | Shapiro Wilk Lognormal GOF Test             |        |
| 5% Shapiro Wilk P Value 3    | 3.8435E-8    | Data Not Lognormal at 5% Significance Level |        |
| Lilliefors Test Statistic    | 0.177        | Lilliefors Lognormal GOF Test               |        |
| 5% Lilliefors Critical Value | 0.123        | Data Not Lognormal at 5% Significance Level |        |
| Data Not Lo                  | ognormal a   | t 5% Significance Level                     |        |
|                              | Lognorma     | al Statistics                               |        |
| Minimum of Logged Data       | -3.689       | Mean of logged Data                         | -2.427 |
| Maximum of Logged Data       | 0.476        | SD of logged Data                           | 1      |
| Assu                         | ming Logn    | ormal Distribution                          |        |
| 95% H-UCL                    | 0.202        | 90% Chebyshev (MVUE) UCL                    | 0.215  |
| 95% Chebyshev (MVUE) UCL     | 0.247        | 97.5% Chebyshev (MVUE) UCL                  | 0.291  |
| 99% Chebyshev (MVUE) UCL     | 0.379        |                                             |        |
| Nonparamet                   | ric Distribu | ution Free UCL Statistics                   |        |

Data do not follow a Discernible Distribution (0.05)

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.272 | 95% Jackknife UCL            | 0.274 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.271 | 95% Bootstrap-t UCL          | 0.337 |
| 95% Hall's Bootstrap UCL      | 0.263 | 95% Percentile Bootstrap UCL | 0.277 |
| 95% BCA Bootstrap UCL         | 0.309 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.341 | 95% Chebyshev(Mean, Sd) UCL  | 0.41  |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.505 | 99% Chebyshev(Mean, Sd) UCL  | 0.693 |
|                               |       |                              |       |

#### Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 0.41

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation From File Frull Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Brook Trout, Beryllium, mg/kg - ww

#### **General Statistics**

 Total Number of Observations
 51

 Number of Detects
 0

 Number of Distinct Detects
 0

 Number of Distinct Observations
 1

 Number of Non-Detects
 51

 Number of Distinct Non-Detects
 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Brook Trout, Beryllium, mg/kg - ww was not processed!

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:31:37 PM From File Brook Trout, Bismuth, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Bismuth, mg/kg - ww

#### **General Statistics**

0

0

Total Number of Observations 51 Number of Detects Number of Distinct Detects

Number of Distinct Observations 1 Number of Non-Detects 51 Number of Distinct Non-Detects 1

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDsI Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Brook Trout, Bismuth, mg/kg - ww was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 4:32:19 PMFrom FileBrook Trout, Boron, mg\_kg - ww.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Brook Trout, Boron, mg/kg - ww

#### **General Statistics**

51

1

Total Number of Observations

- Number of Detects
- Number of Distinct Detects 1

- Number of Distinct Observations 2
  - Number of Non-Detects 50
- Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Brook Trout, Boron, mg/kg - ww was not processed!

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:33:01 PM

 From File
 Brook Trout, Cadmium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Brook Trout, Cadmium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 38     |
| Number of Detects            | 48                 | Number of Non-Detects           | 3      |
| Number of Distinct Detects   | 37                 | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.0011             | Minimum Non-Detect              | 0.001  |
| Maximum Detect               | 0.0769             | Maximum Non-Detect              | 0.001  |
| Variance Detects             | 2.7306E-4          | Percent Non-Detects             | 5.882% |
| Mean Detects                 | 0.0101             | SD Detects                      | 0.0165 |
| Median Detects               | 0.00335            | CV Detects                      | 1.639  |
| Skewness Detects             | 2.892              | Kurtosis Detects                | 8.425  |
| Mean of Logged Detects       | -5.307             | SD of Logged Detects            | 1.051  |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.548 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.947 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.331 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.127 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.00955 | KM Standard Error of Mean         | 0.00227 |
|------------------------|---------|-----------------------------------|---------|
| KM SD                  | 0.016   | 95% KM (BCA) UCL                  | 0.0135  |
| 95% KM (t) UCL         | 0.0133  | 95% KM (Percentile Bootstrap) UCL | 0.0134  |
| 95% KM (z) UCL         | 0.0133  | 95% KM Bootstrap t UCL            | 0.016   |
| 90% KM Chebyshev UCL   | 0.0163  | 95% KM Chebyshev UCL              | 0.0194  |
| 97.5% KM Chebyshev UCL | 0.0237  | 99% KM Chebyshev UCL              | 0.0321  |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 4.441 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.788 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.236 | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.133 | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| k hat (MLE)     | 0.831  | k star (bias corrected MLE)     | 0.793  |
|-----------------|--------|---------------------------------|--------|
| Theta hat (MLE) | 0.0121 | Theta star (bias corrected MLE) | 0.0127 |
| nu hat (MLE)    | 79.79  | nu star (bias corrected)        | 76.14  |
| Mean (detects)  | 0.0101 |                                 |        |

| User Selected Options          | 6                                    |
|--------------------------------|--------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:33:01 PM        |
| From File                      | Brook Trout, Cadmium, mg_kg - ww.xls |
| Full Precision                 | OFF                                  |
| Confidence Coefficient         | 95%                                  |
| Number of Bootstrap Operations | 2000                                 |

#### Brook Trout, Cadmium, mg/kg - ww

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| 0.0101 | Mean                                        | 0.0011 | Minimum                                         |
|--------|---------------------------------------------|--------|-------------------------------------------------|
| 0.0036 | Median                                      | 0.0769 | Maximum                                         |
| 1.589  | CV                                          | 0.016  | SD                                              |
| 0.839  | k star (bias corrected MLE)                 | 0.877  | k hat (MLE)                                     |
| 0.012  | Theta star (bias corrected MLE)             | 0.0115 | Theta hat (MLE)                                 |
| 85.53  | nu star (bias corrected)                    | 89.46  | nu hat (MLE)                                    |
|        |                                             | 0.0453 | Adjusted Level of Significance (β)              |
| 64.7   | Adjusted Chi Square Value (85.53, $\beta$ ) | 65.21  | Approximate Chi Square Value (85.53, $\alpha$ ) |
| 0.0133 | 95% Gamma Adjusted UCL (use when n<50)      | 0.0132 | 95% Gamma Approximate UCL (use when n>=50)      |
|        |                                             |        |                                                 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM) 0.00955                | SD (KM)                   | 0.016   |
|----------------------------------|---------------------------|---------|
| Variance (KM) 2.5621E-4          | SE of Mean (KM)           | 0.00227 |
| k hat (KM) 0.356                 | k star (KM)               | 0.348   |
| nu hat (KM) 36.31                | nu star (KM)              | 35.51   |
| theta hat (KM) 0.0268            | theta star (KM)           | 0.0274  |
| 80% gamma percentile (KM) 0.0151 | 90% gamma percentile (KM) | 0.0276  |
| 95% gamma percentile (KM) 0.0416 | 99% gamma percentile (KM) | 0.0774  |

# Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (35.51, $\alpha$ ) | 22.87  | Adjusted Chi Square Value (35.51, $\beta$ ) | 22.58 |
|-------------------------------------------------|--------|---------------------------------------------|-------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0148 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.015 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                          | 0.872 | Shapiro Wilk GOF Test                                |  |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|--|
| 5% Shapiro Wilk Critical Value                       | 0.947 | Detected Data Not Lognormal at 5% Significance Level |  |  |
| Lilliefors Test Statistic                            | 0.183 | Lilliefors GOF Test                                  |  |  |
| 5% Lilliefors Critical Value                         | 0.127 | Detected Data Not Lognormal at 5% Significance Level |  |  |
| Detected Data Not Lognormal at 5% Significance Level |       |                                                      |  |  |

| User Selected Options          | 6                                    |
|--------------------------------|--------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:33:01 PM        |
| From File                      | Brook Trout, Cadmium, mg_kg - ww.xls |
| Full Precision                 | OFF                                  |
| Confidence Coefficient         | 95%                                  |
| Number of Bootstrap Operations | 2000                                 |

#### Brook Trout, Cadmium, mg/kg - ww

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.00952 | Mean in Log Scale            | -5.449 |
|-------------------------------------------|---------|------------------------------|--------|
| SD in Original Scale                      | 0.0162  | SD in Log Scale              | 1.171  |
| 95% t UCL (assumes normality of ROS data) | 0.0133  | 95% Percentile Bootstrap UCL | 0.0137 |
| 95% BCA Bootstrap UCL                     | 0.0141  | 95% Bootstrap t UCL          | 0.0157 |
| 95% H-UCL (Log ROS)                       | 0.0129  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -5.401 | KM Geo Mean                   | 0.00451 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 1.077  | 95% Critical H Value (KM-Log) | 2.387   |
| KM Standard Error of Mean (logged) | 0.152  | 95% H-UCL (KM -Log)           | 0.0116  |
| KM SD (logged)                     | 1.077  | 95% Critical H Value (KM-Log) | 2.387   |
| KM Standard Error of Mean (logged) | 0.152  |                               |         |

# DL/2 Statistics

| DL/2 Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | DL/2 Log-Transformed |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|--------|
| Mean in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00952 | Mean in Log Scale    | -5.442 |
| SD in Original Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0162  | SD in Log Scale      | 1.156  |
| 95% t UCL (Assumes normality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0133  | 95% H-Stat UCL       | 0.0127 |
| DL/0 is not a successful distant and in a still difference of the successful and the successful and the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of the successful distance of th |         |                      |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

# Suggested UCL to Use

95% KM (Chebyshev) UCL 0.0194

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:33:43 PM

 From File
 Brook Trout, Calcium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 2.0253E-5

#### Brook Trout, Calcium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 47    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 940                | Mean                            | 1619  |
| Maximum                      | 3760               | Median                          | 1400  |
| SD                           | 603.2              | Std. Error of Mean              | 84.47 |
| Coefficient of Variation     | 0.373              | Skewness                        | 1.304 |

# Normal GOF Test

0.878

0.16

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| Assuming Normal Distribution |                                        |  |
|------------------------------|----------------------------------------|--|
| 95% Normal UCL               | 95% UCLs (Adjusted for Skewness)       |  |
| 95% Student's-t UCL 1760     | 95% Adjusted-CLT UCL (Chen-1995) 1774  |  |
|                              | 95% Modified-t UCL (Johnson-1978) 1763 |  |
|                              |                                        |  |
| Gamr                         | na GOF Test                            |  |

| A-D Test Statistic    | 1.084 | Anderson-Darling Gamma GOF Test                     |
|-----------------------|-------|-----------------------------------------------------|
| 5% A-D Critical Value | 0.751 | Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.149 | Kolmogorov-Smirnov Gamma GOF Test                   |
| 5% K-S Critical Value | 0.124 | Data Not Gamma Distributed at 5% Significance Level |

Data Not Gamma Distributed at 5% Significance Level

#### Gamma Statistics

| k hat (MLE)                    | 8.599  | k star (bias corrected MLE)         | 8.106 |
|--------------------------------|--------|-------------------------------------|-------|
| Theta hat (MLE)                | 188.3  | Theta star (bias corrected MLE)     | 199.7 |
| nu hat (MLE)                   | 877.1  | nu star (bias corrected)            | 826.8 |
| MLE Mean (bias corrected)      | 1619   | MLE Sd (bias corrected)             | 568.6 |
|                                |        | Approximate Chi Square Value (0.05) | 761.1 |
| Adjusted Level of Significance | 0.0453 | Adjusted Chi Square Value           | 759.3 |

#### Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 1763

95% Approximate Gamma UCL (use when n>=50)) 1759

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:33:43 PM From File Brook Trout, Calcium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Calcium, mg/kg - ww

|                              | Lognormal     | GOF Test                                    |
|------------------------------|---------------|---------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.943         | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk P Value      | 0.0244        | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.136         | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value | 0.123         | Data Not Lognormal at 5% Significance Level |
| Data Not L                   | ognormal at { | 5% Significance Level                       |
|                              |               |                                             |
|                              | Lognormal     | Statistics                                  |

| Minimum of Logged Data | 6.846 | Mean of logged Data | 7.33  |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 8.232 | SD of logged Data   | 0.338 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 1756 | 90% Chebyshev (MVUE) UCL   |
|--------------------------|------|----------------------------|
| 95% Chebyshev (MVUE) UCL | 1955 | 97.5% Chebyshev (MVUE) UCL |
| 99% Chebyshev (MVUE) UCL | 2393 |                            |

# Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1758 | 95% Jackknife UCL            | 1760 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 1759 | 95% Bootstrap-t UCL          | 1782 |
| 95% Hall's Bootstrap UCL      | 1792 | 95% Percentile Bootstrap UCL | 1764 |
| 95% BCA Bootstrap UCL         | 1767 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 1872 | 95% Chebyshev(Mean, Sd) UCL  | 1987 |
| 97.5% Chebyshev(Mean, Sd) UCL | 2146 | 99% Chebyshev(Mean, Sd) UCL  | 2459 |
|                               |      |                              |      |

#### Suggested UCL to Use

95% Student's-t UCL 1760

or 95% Modified-t UCL 1763

1849

2103

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:34:26 PM From File Brook Trout, Chromium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Chromium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 12     |
| Number of Detects            | 14                 | Number of Non-Detects           | 37     |
| Number of Distinct Detects   | 12                 | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.01               | Minimum Non-Detect              | 0.01   |
| Maximum Detect               | 0.586              | Maximum Non-Detect              | 0.01   |
| Variance Detects             | 0.0232             | Percent Non-Detects             | 72.55% |
| Mean Detects                 | 0.0734             | SD Detects                      | 0.152  |
| Median Detects               | 0.0175             | CV Detects                      | 2.076  |
| Skewness Detects             | 3.373              | Kurtosis Detects                | 11.88  |
| Mean of Logged Detects       | -3.59              | SD of Logged Detects            | 1.225  |

#### Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                             | 0.467 | Shapiro Wilk GOF Test                             |
|---------------------------------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value                          | 0.874 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic                               | 0.344 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value                            | 0.226 | Detected Data Not Normal at 5% Significance Level |
| Date stard Date Net News et al 50% Of an IG and a start |       |                                                   |

#### Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0274 | KM Standard Error of Mean         | 0.0119 |
|------------------------|--------|-----------------------------------|--------|
| KM SD                  | 0.0819 | 95% KM (BCA) UCL                  | 0.0492 |
| 95% KM (t) UCL         | 0.0474 | 95% KM (Percentile Bootstrap) UCL | 0.0499 |
| 95% KM (z) UCL         | 0.047  | 95% KM Bootstrap t UCL            | 0.106  |
| 90% KM Chebyshev UCL   | 0.0631 | 95% KM Chebyshev UCL              | 0.0793 |
| 97.5% KM Chebyshev UCL | 0.102  | 99% KM Chebyshev UCL              | 0.146  |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 1.731 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.782 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.307 | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.24  | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| 0.541 | k star (bias corrected MLE)     | 0.628  | k hat (MLE)     |
|-------|---------------------------------|--------|-----------------|
| 0.136 | Theta star (bias corrected MLE) | 0.117  | Theta hat (MLE) |
| 15.14 | nu star (bias corrected)        | 17.58  | nu hat (MLE)    |
|       |                                 | 0.0734 | Mean (detects)  |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:34:26 PM From File Brook Trout, Chromium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Chromium, mg/kg - ww

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                         | 0.01   | Mean                                        | 0.0274 |
|-------------------------------------------------|--------|---------------------------------------------|--------|
| Maximum                                         | 0.586  | Median                                      | 0.01   |
| SD                                              | 0.0828 | CV                                          | 3.02   |
| k hat (MLE)                                     | 0.812  | k star (bias corrected MLE)                 | 0.778  |
| Theta hat (MLE)                                 | 0.0337 | Theta star (bias corrected MLE)             | 0.0352 |
| nu hat (MLE)                                    | 82.85  | nu star (bias corrected)                    | 79.31  |
| Adjusted Level of Significance ( $\beta$ )      | 0.0453 |                                             |        |
| Approximate Chi Square Value (79.31, $\alpha$ ) | 59.79  | Adjusted Chi Square Value (79.31, $\beta$ ) | 59.3   |
| 95% Gamma Approximate UCL (use when n>=50)      | 0.0363 | 95% Gamma Adjusted UCL (use when n<50)      | 0.0366 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0274  | SD (KM)                   | 0.0819 |
|---------------------------|---------|---------------------------|--------|
| Variance (KM)             | 0.00672 | SE of Mean (KM)           | 0.0119 |
| k hat (KM)                | 0.112   | k star (KM)               | 0.118  |
| nu hat (KM)               | 11.4    | nu star (KM)              | 12.07  |
| theta hat (KM)            | 0.245   | theta star (KM)           | 0.232  |
| 80% gamma percentile (KM) | 0.0236  | 90% gamma percentile (KM) | 0.0773 |
| 95% gamma percentile (KM) | 0.157   | 99% gamma percentile (KM) | 0.4    |

5.141

0.0643

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (12.07, $\alpha$ ) | 5.271  | Adjusted Chi Square Value (12.07, $\beta$ ) |
|-------------------------------------------------|--------|---------------------------------------------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.0627 | 95% Gamma Adjusted KM-UCL (use when n<50)   |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic    | 0.808     | Shapiro Wilk GOF Test                                   |
|--------------------------------|-----------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.874     | Detected Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic      | 0.222     | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value   | 0.226     | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Ap        | provimate | Lognormal at 5% Significance Level                      |

Detected Data appear Approximate Lognormal at 5% Significance Level

| User Selected Options          | 6                                     |
|--------------------------------|---------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:34:26 PM         |
| From File                      | Brook Trout, Chromium, mg_kg - ww.xls |
| Full Precision                 | OFF                                   |
| Confidence Coefficient         | 95%                                   |
| Number of Bootstrap Operations | 2000                                  |

#### Brook Trout, Chromium, mg/kg - ww

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0208 | Mean in Log Scale            | -6.852 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0843 | SD in Log Scale              | 2.646  |
| 95% t UCL (assumes normality of ROS data) | 0.0406 | 95% Percentile Bootstrap UCL | 0.0431 |
| 95% BCA Bootstrap UCL                     | 0.0568 | 95% Bootstrap t UCL          | 0.0966 |
| 95% H-UCL (Log ROS)                       | 0.184  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

|  | KM Geo Mean                   | 0.0132 |
|--|-------------------------------|--------|
|  | 95% Critical H Value (KM-Log) | 2.082  |
|  | 95% H-UCL (KM -Log)           | 0.0222 |
|  | 95% Critical H Value (KM-Log) | 2.082  |
|  |                               |        |

# DL/2 Statistics

| DL/2 Normal                   |                                  | DL/2 Log-Transformed |        |
|-------------------------------|----------------------------------|----------------------|--------|
| Mean in Original Scale        | 0.0238                           | Mean in Log Scale    | -4.829 |
| SD in Original Scale          | 0.0836                           | SD in Log Scale      | 0.992  |
| 95% t UCL (Assumes normality) | 0.0434                           | 95% H-Stat UCL       | 0.018  |
| DL /2 is not a recommended ma | had provided for comparisons and | historical research  |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

# Suggested UCL to Use

KM H-UCL 0.0222

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:35:08 PM From File Brook Trout, Cobalt, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Cobalt, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 44        |
|                              |                    | Number of Missing Observations  | 0         |
| Minimum                      | 0.0059             | Mean                            | 0.0146    |
| Maximum                      | 0.0329             | Median                          | 0.0137    |
| SD                           | 0.0067             | Std. Error of Mean S            | 9.3888E-4 |
| Coefficient of Variation     | 0.46               | Skewness                        | 0.716     |
|                              |                    |                                 |           |

# Normal GOF Test

# Shapiro Wilk GOF Test

| Shapiro Wilk Test Statistic  | 0.93   | Shapiro Wilk GOF Test                    |
|------------------------------|--------|------------------------------------------|
| 5% Shapiro Wilk P Value      | 0.0059 | Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.143  | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value | 0.123  | Data Not Normal at 5% Significance Level |

Data Not Normal at 5% Significance Level

| As                             | suming Norm | nal Distribution                                                |         |
|--------------------------------|-------------|-----------------------------------------------------------------|---------|
| 95% Normal UCL                 |             | 95% UCLs (Adjusted for Skewness)                                |         |
| 95% Student's-t UCL            | 0.0162      | 95% Adjusted-CLT UCL (Chen-1995)                                | 0.0162  |
|                                |             | 95% Modified-t UCL (Johnson-1978)                               | 0.0162  |
|                                | Gamma G     | GOF Test                                                        |         |
| A-D Test Statistic             | 0.44        | Anderson-Darling Gamma GOF Test                                 |         |
| 5% A-D Critical Value          | 0.754       | Detected data appear Gamma Distributed at 5% Significanc        | e Level |
| K-S Test Statistic             | 0.103       | Kolmogorov-Smirnov Gamma GOF Test                               |         |
| 5% K-S Critical Value          | 0.125       | Detected data appear Gamma Distributed at 5% Significance Level |         |
| Detected data appear           | Gamma Dis   | tributed at 5% Significance Level                               |         |
|                                | Gamma S     | Statistics                                                      |         |
| k hat (MLE)                    | 4.942       | k star (bias corrected MLE)                                     | 4.664   |
| Theta hat (MLE)                | 0.00295     | Theta star (bias corrected MLE)                                 | 0.00313 |
| nu hat (MLE)                   | 504.1       | nu star (bias corrected)                                        | 475.8   |
| MLE Mean (bias corrected)      | 0.0146      | MLE Sd (bias corrected)                                         | 0.00676 |
|                                |             | Approximate Chi Square Value (0.05)                             | 426.2   |
| Adjusted Level of Significance | 0.0453      | Adjusted Chi Square Value                                       | 424.8   |
|                                |             |                                                                 |         |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.0163

95% Approximate Gamma UCL (use when n>=50) 0.0163

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:35:08 PM

 From File
 Brook Trout, Cobalt, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

#### Brook Trout, Cobalt, mg/kg - ww

|                                                | Lognormal GOF Test |                                                |  |
|------------------------------------------------|--------------------|------------------------------------------------|--|
| Shapiro Wilk Test Statistic                    | 0.955              | Shapiro Wilk Lognormal GOF Test                |  |
| 5% Shapiro Wilk P Value                        | 0.0927             | Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                      | 0.0757             | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                   | 0.123              | Data appear Lognormal at 5% Significance Level |  |
| Data appear Lognormal at 5% Significance Level |                    |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | -5.133                      | Mean of logged Data | -4.332 |
|------------------------|-----------------------------|---------------------|--------|
| Maximum of Logged Data | -3.414                      | SD of logged Data   | 0.468  |
| Assu                   | ming Lognormal Distribution |                     |        |

| 95% H-UCL                | 0.0166 | 90% Chebyshev (MVUE) UCL   | 0.0176 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.019  | 97.5% Chebyshev (MVUE) UCL | 0.0209 |
| 99% Chebyshev (MVUE) UCL | 0.0246 |                            |        |

#### Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

#### Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0161 | 95% Jackknife UCL            | 0.0162 |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0161 | 95% Bootstrap-t UCL          | 0.0163 |
| 95% Hall's Bootstrap UCL      | 0.0163 | 95% Percentile Bootstrap UCL | 0.0161 |
| 95% BCA Bootstrap UCL         | 0.0162 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0174 | 95% Chebyshev(Mean, Sd) UCL  | 0.0187 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0205 | 99% Chebyshev(Mean, Sd) UCL  | 0.0239 |
|                               |        |                              |        |

# Suggested UCL to Use

95% Approximate Gamma UCL 0.0163

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:35:51 PM From File Brook Trout, Copper, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Shapiro Wilk Test Statistic

# Brook Trout, Copper, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 46     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.224              | Mean                            | 0.334  |
| Maximum                      | 1.54               | Median                          | 0.289  |
| SD                           | 0.187              | Std. Error of Mean              | 0.0261 |
| Coefficient of Variation     | 0.559              | Skewness                        | 5.639  |
|                              |                    |                                 |        |

# Normal GOF Test

0.445

# Shapiro Wilk GOF Test

| 5% Shapiro Wilk P Value      | 0     | Data Not Normal at 5% Significance Level |
|------------------------------|-------|------------------------------------------|
| Lilliefors Test Statistic    | 0.278 | Lilliefors GOF Test                      |
| 5% Lilliefors Critical Value | 0.123 | Data Not Normal at 5% Significance Level |

Data Not Normal at 5% Significance Level

| Ass                            | uming Nor    | mal Distribution                                   |       |
|--------------------------------|--------------|----------------------------------------------------|-------|
| 95% Normal UCL                 |              | 95% UCLs (Adjusted for Skewness)                   |       |
| 95% Student's-t UCL            | 0.378        | 95% Adjusted-CLT UCL (Chen-1995)                   | 0.399 |
|                                |              | 95% Modified-t UCL (Johnson-1978)                  | 0.381 |
|                                | Gamma        | GOF Test                                           |       |
| A-D Test Statistic             | 4.342        | Anderson-Darling Gamma GOF Test                    |       |
| 5% A-D Critical Value          | 0.752        | Data Not Gamma Distributed at 5% Significance Leve | I     |
| K-S Test Statistic             | 0.238        | Kolmogorov-Smirnov Gamma GOF Test                  |       |
| 5% K-S Critical Value          | 0.124        | Data Not Gamma Distributed at 5% Significance Leve | I     |
| Data Not Gamn                  | na Distribut | ed at 5% Significance Level                        |       |
|                                |              |                                                    |       |
|                                | Gamma        | Statistics                                         |       |
| k hat (MLE)                    | 7.705        | k star (bias corrected MLE)                        | 7.265 |
| Theta hat (MLE)                | 0.0434       | Theta star (bias corrected MLE)                    | 0.046 |
| nu hat (MLE)                   | 785.9        | nu star (bias corrected)                           | 741   |
| MLE Mean (bias corrected)      | 0.334        | MLE Sd (bias corrected)                            | 0.124 |
|                                |              | Approximate Chi Square Value (0.05)                | 678.8 |
| Adjusted Level of Significance | 0.0453       | Adjusted Chi Square Value                          | 677.1 |
| Δεσ                            | umina Gen    | nma Distribution                                   |       |
|                                | aning dan    |                                                    |       |

95% Adjusted Gamma UCL (use when n<50) 0.366

95% Approximate Gamma UCL (use when n>=50)) 0.365

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:35:51 PM From File Brook Trout, Copper, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Copper, mg/kg - ww

|                              | Lognormal (     | GOF Test                                    |        |
|------------------------------|-----------------|---------------------------------------------|--------|
| Shapiro Wilk Test Statistic  | 0.747           | Shapiro Wilk Lognormal GOF Test             |        |
| 5% Shapiro Wilk P Value 4    | 1.962E-11       | Data Not Lognormal at 5% Significance Level |        |
| Lilliefors Test Statistic    | 0.212           | Lilliefors Lognormal GOF Test               |        |
| 5% Lilliefors Critical Value | 0.123           | Data Not Lognormal at 5% Significance Level |        |
| Data Not Lo                  | ognormal at 5   | 5% Significance Level                       |        |
|                              |                 |                                             |        |
|                              | Lognormal       | Statistics                                  |        |
| Minimum of Logged Data       | -1.496          | Mean of logged Data                         | -1.163 |
| Maximum of Logged Data       | 0.432           | SD of logged Data                           | 0.309  |
|                              |                 |                                             |        |
| Assu                         | ming Lognor     | mal Distribution                            |        |
| 95% H-UCL                    | 0.353           | 90% Chebyshev (MVUE) UCL                    | 0.371  |
| 95% Chebyshev (MVUE) UCL     | 0.391           | 97.5% Chebyshev (MVUE) UCL                  | 0.418  |
| 99% Chebyshev (MVUE) UCL     | 0.471           |                                             |        |
|                              |                 |                                             |        |
| Nonparamet                   | ric Distributio | on Free UCL Statistics                      |        |
| Data do not fo               | llow a Disce    | mible Distribution (0.05)                   |        |
|                              |                 |                                             |        |
| Nonpara                      | ametric Distri  | ibution Free UCLs                           |        |
| 95% CLT UCL                  | 0.377           | 95% Jackknife UCL                           | 0.378  |
| 95% Standard Bootstrap UCL   | 0.376           | 95% Bootstrap-t UCL                         | 0.441  |
| 95% Hall's Bootstrap UCL     | 0.543           | 95% Percentile Bootstrap UCL                | 0.378  |

| 95% BCA Bootstrap UCL         | 0.409 |                             |       |
|-------------------------------|-------|-----------------------------|-------|
| 90% Chebyshev(Mean, Sd) UCL   | 0.412 | 95% Chebyshev(Mean, Sd) UCL | 0.448 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.497 | 99% Chebyshev(Mean, Sd) UCL | 0.594 |

# Suggested UCL to Use

95% Student's-t UCL

0.378

or 95% Modified-t UCL 0.381

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 4:36:33 PMFrom FileBrook Trout, Iron, mg\_kg - ww.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Brook Trout, Iron, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 49    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 3.62               | Mean                            | 6.218 |
| Maximum                      | 11                 | Median                          | 5.97  |
| SD                           | 1.426              | Std. Error of Mean              | 0.2   |
| Coefficient of Variation     | 0.229              | Skewness                        | 1.14  |
|                              |                    |                                 |       |

# Normal GOF Test

# Shapiro Wilk Test Statistic0.929Shapiro Wilk GOF Test5% Shapiro Wilk P Value0.00529Data Not Normal at 5% Significance LevelLilliefors Test Statistic0.11Lilliefors GOF Test5% Lilliefors Critical Value0.123Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

| As                             | suming Nor | mal Distribution                                          |         |
|--------------------------------|------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 6.552      | 95% Adjusted-CLT UCL (Chen-1995)                          | 6.58    |
|                                |            | 95% Modified-t UCL (Johnson-1978)                         | 6.557   |
|                                | Gamma      | GOF Test                                                  |         |
| A-D Test Statistic             | 0.472      | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.748      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.0862     | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.124      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | Gamma D    | stributed at 5% Significance Level                        |         |
|                                |            |                                                           |         |
|                                | Gamma      | Statistics                                                |         |
| k hat (MLE)                    | 21.03      | k star (bias corrected MLE)                               | 19.81   |
| Theta hat (MLE)                | 0.296      | Theta star (bias corrected MLE)                           | 0.314   |
| nu hat (MLE)                   | 2145       | nu star (bias corrected)                                  | 2021    |
| MLE Mean (bias corrected)      | 6.218      | MLE Sd (bias corrected)                                   | 1.397   |
|                                |            | Approximate Chi Square Value (0.05)                       | 1917    |
| Adjusted Level of Significance | 0.0453     | Adjusted Chi Square Value                                 | 1914    |
|                                |            |                                                           |         |
| Ass                            | suming Gan | nma Distribution                                          |         |

95% Adjusted Gamma UCL (use when n<50) 6.563

95% Approximate Gamma UCL (use when n>=50)) 6.553

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:36:33 PM From File Brook Trout, Iron, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Iron, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.979                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.691                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.082                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | icance Level                                   |
|                              |                        |                                                |

#### Lognormal Statistics

| Minimum of Logged Data | 1.286                       | Mean of logged Data      | 1.803 |
|------------------------|-----------------------------|--------------------------|-------|
| Maximum of Logged Data | 2.398                       | SD of logged Data        | 0.219 |
|                        |                             |                          |       |
| Assun                  | ning Lognormal Distribution |                          |       |
| 95% H-UCL              | 6.557                       | 90% Chebyshev (MVUE) UCL | 6.791 |

| 95% H-UCL                | 0.007 | 90% Chebysnev (MVUE) UCL   | 0.791 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 7.053 | 97.5% Chebyshev (MVUE) UCL | 7.416 |
| 99% Chebyshev (MVUE) UCL | 8.128 |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 6.552 | 95% Jackknife UCL            | 6.546 | 95% CLT UCL                   |
|-------|------------------------------|-------|-------------------------------|
| 6.593 | 95% Bootstrap-t UCL          | 6.539 | 95% Standard Bootstrap UCL    |
| 6.555 | 95% Percentile Bootstrap UCL | 6.628 | 95% Hall's Bootstrap UCL      |
|       |                              | 6.567 | 95% BCA Bootstrap UCL         |
| 7.088 | 95% Chebyshev(Mean, Sd) UCL  | 6.817 | 90% Chebyshev(Mean, Sd) UCL   |
| 8.204 | 99% Chebyshev(Mean, Sd) UCL  | 7.465 | 97.5% Chebyshev(Mean, Sd) UCL |
|       |                              |       |                               |

# Suggested UCL to Use

95% Student's-t UCL 6.552

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:37:15 PM From File Brook Trout, Lead, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Lead, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 46      |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.0025             | Mean                            | 0.0339  |
| Maximum                      | 0.293              | Median                          | 0.0102  |
| SD                           | 0.0644             | Std. Error of Mean              | 0.00902 |
| Coefficient of Variation     | 1.901              | Skewness                        | 2.959   |
|                              |                    |                                 |         |

# Normal GOF Test

#### Shapiro Wilk Test Statistic 0.498 Shapiro Wilk GOF Test 5% Shapiro Wilk P Value 0 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.384 Lilliefors GOF Test 5% Lilliefors Critical Value

0.123 Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

|                | Ass                             | uming Normal Dist        | ibution                                                                                    |                |
|----------------|---------------------------------|--------------------------|--------------------------------------------------------------------------------------------|----------------|
| 95% Normal UCL |                                 |                          | 95% UCLs (Adjusted for Skewness)                                                           |                |
|                | 95% Student's-t UCL             | 0.049                    | 95% Adjusted-CLT UCL (Chen-1995)                                                           | 0.0527         |
|                |                                 |                          | 95% Modified-t UCL (Johnson-1978)                                                          | 0.0496         |
|                |                                 | Gamma GOF Tes            | st                                                                                         |                |
|                | A-D Test Statistic              | 5.71                     | Anderson-Darling Gamma GOF Test                                                            |                |
|                | 5% A-D Critical Value           | 0.799                    | Data Not Gamma Distributed at 5% Significance Leve                                         |                |
|                | K-S Test Statistic              | 0.283                    | Kolmogorov-Smirnov Gamma GOF Test                                                          |                |
|                | 5% K-S Critical Value           | 0.13                     | Data Not Gamma Distributed at 5% Significance Level                                        |                |
|                | Data Not Gamm                   | a Distributed at 5%      | Significance Level                                                                         |                |
|                |                                 |                          |                                                                                            |                |
|                |                                 | Gamma Statistic          | S                                                                                          |                |
|                | k hat (MLE)                     | Gamma Statistic<br>0.678 | s<br>k star (bias corrected MLE)                                                           | 0.652          |
|                | k hat (MLE)<br>Theta hat (MLE)  |                          | -                                                                                          | 0.652<br>0.052 |
|                |                                 | 0.678                    | k star (bias corrected MLE)                                                                |                |
| Ν              | Theta hat (MLE)                 | 0.678<br>0.0499          | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                             | 0.052          |
| Μ              | Theta hat (MLE)<br>nu hat (MLE) | 0.678<br>0.0499<br>69.19 | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)<br>nu star (bias corrected) | 0.052<br>66.45 |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.0467

95% Approximate Gamma UCL (use when n>=50)) 0.0462

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:37:15 PM From File Brook Trout, Lead, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Lead, mg/kg - ww

| L                            | ognormal GOF Test      |                                             |
|------------------------------|------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.86                   | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk P Value 2.8  | 355E-6                 | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.165                  | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value | 0.123                  | Data Not Lognormal at 5% Significance Level |
| Data Not Logr                | normal at 5% Significa | nce Level                                   |
|                              |                        |                                             |

#### Lognormal Statistics

| Minimum of Logged Data | -5.991                      | Mean of logged Data | -4.28 |
|------------------------|-----------------------------|---------------------|-------|
| Maximum of Logged Data | -1.228                      | SD of logged Data   | 1.144 |
|                        |                             |                     |       |
| Accu                   | ming Lognormal Distribution |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.0397 | 90% Chebyshev (MVUE) UCL   | 0.0414 |
|--------------------------|--------|----------------------------|--------|
| 95% Chebyshev (MVUE) UCL | 0.0484 | 97.5% Chebyshev (MVUE) UCL | 0.058  |
| 99% Chebyshev (MVUE) UCL | 0.0769 |                            |        |

# Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.0487 | 95% Jackknife UCL            | 0.049  |
|-------------------------------|--------|------------------------------|--------|
| 95% Standard Bootstrap UCL    | 0.0486 | 95% Bootstrap-t UCL          | 0.0576 |
| 95% Hall's Bootstrap UCL      | 0.0528 | 95% Percentile Bootstrap UCL | 0.0501 |
| 95% BCA Bootstrap UCL         | 0.0533 |                              |        |
| 90% Chebyshev(Mean, Sd) UCL   | 0.0609 | 95% Chebyshev(Mean, Sd) UCL  | 0.0732 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.0902 | 99% Chebyshev(Mean, Sd) UCL  | 0.124  |
|                               |        |                              |        |

# Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 0.0732

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:37:58 PM

 From File
 Brook Trout, Magnesium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Brook Trout, Magnesium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 43     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 223                | Mean                            | 298.4  |
| Maximum                      | 339                | Median                          | 302    |
| SD                           | 24.18              | Std. Error of Mean              | 3.385  |
| Coefficient of Variation     | 0.081              | Skewness                        | -0.588 |
|                              |                    |                                 |        |

# Normal GOF Test

| Shapiro Wilk Test Statistic  | 0.96   | Shapiro Wilk GOF Test                       |
|------------------------------|--------|---------------------------------------------|
| 5% Shapiro Wilk P Value      | 0.15   | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0971 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value | 0.123  | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| As                             | suming Nor      | mal Distribution                                                |  |  |
|--------------------------------|-----------------|-----------------------------------------------------------------|--|--|
| 95% Normal UCL                 |                 | 95% UCLs (Adjusted for Skewness)                                |  |  |
| 95% Student's-t UCL            | 304.1           | 95% Adjusted-CLT UCL (Chen-1995) 303.7                          |  |  |
|                                |                 | 95% Modified-t UCL (Johnson-1978) 304                           |  |  |
|                                | Gamma           | GOF Test                                                        |  |  |
| A-D Test Statistic             | 0.533           | Anderson-Darling Gamma GOF Test                                 |  |  |
| 5% A-D Critical Value          | 0.748           | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| K-S Test Statistic             | 0.097           | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |
| 5% K-S Critical Value          | 0.124           | Detected data appear Gamma Distributed at 5% Significance Level |  |  |
| Detected data appear           | <b>Gamma Di</b> | stributed at 5% Significance Level                              |  |  |
|                                | Gamma           | Statistics                                                      |  |  |
| k hat (MLE)                    | 149.2           | k star (bias corrected MLE) 140.4                               |  |  |
| Theta hat (MLE)                | 2               | Theta star (bias corrected MLE) 2.125                           |  |  |
| nu hat (MLE)                   | 15216           | nu star (bias corrected) 14322                                  |  |  |
| MLE Mean (bias corrected)      | 298.4           | MLE Sd (bias corrected) 25.18                                   |  |  |
|                                |                 | Approximate Chi Square Value (0.05) 14045                       |  |  |
| Adjusted Level of Significance | 0.0453          | Adjusted Chi Square Value 14037                                 |  |  |
|                                |                 |                                                                 |  |  |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 304.5

95% Approximate Gamma UCL (use when n>=50)) 304.3

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:37:58 PM From File Brook Trout, Magnesium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Magnesium, mg/kg - ww

|                                                            | Lognormal GOF Test |                                                |  |
|------------------------------------------------------------|--------------------|------------------------------------------------|--|
| Shapiro Wilk Test Statistic                                | 0.944              | Shapiro Wilk Lognormal GOF Test                |  |
| 5% Shapiro Wilk P Value                                    | 0.0303             | Data Not Lognormal at 5% Significance Level    |  |
| Lilliefors Test Statistic                                  | 0.0931             | Lilliefors Lognormal GOF Test                  |  |
| 5% Lilliefors Critical Value                               | 0.123              | Data appear Lognormal at 5% Significance Level |  |
| Data appear Approximate Lognormal at 5% Significance Level |                    |                                                |  |

#### Lognormal Statistics

| Minimum of Logged Data | 5.407 | Mean of logged Data | 5.695  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 5.826 | SD of logged Data   | 0.0837 |
|                        |       |                     |        |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A   | 90% Chebyshev (MVUE) UCL   | 308.9 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 313.7 | 97.5% Chebyshev (MVUE) UCL | 320.3 |
| 99% Chebyshev (MVUE) UCL | 333.3 |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 304   | 95% Jackknife UCL            | 304.1 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 303.8 | 95% Bootstrap-t UCL          | 303.9 |
| 95% Hall's Bootstrap UCL      | 303.9 | 95% Percentile Bootstrap UCL | 303.8 |
| 95% BCA Bootstrap UCL         | 303.8 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 308.5 | 95% Chebyshev(Mean, Sd) UCL  | 313.1 |
| 97.5% Chebyshev(Mean, Sd) UCL | 319.5 | 99% Chebyshev(Mean, Sd) UCL  | 332.1 |
|                               |       |                              |       |

# Suggested UCL to Use

95% Student's-t UCL 304.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:38:40 PM

 From File
 Brook Trout, Manganese, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 4.2801E-5

# Brook Trout, Manganese, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 48    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.522              | Mean                            | 2.217 |
| Maximum                      | 5.86               | Median                          | 1.92  |
| SD                           | 1.413              | Std. Error of Mean              | 0.198 |
| Coefficient of Variation     | 0.637              | Skewness                        | 0.826 |
|                              |                    |                                 |       |

# Normal GOF Test

0.885

0.157

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

|                                           | al Distribution                                                | suming Norm    | Ass                                   |
|-------------------------------------------|----------------------------------------------------------------|----------------|---------------------------------------|
|                                           | 95% UCLs (Adjusted for Skewness)                               |                | 95% Normal UCL                        |
| 2.567                                     | 95% Adjusted-CLT UCL (Chen-1995)                               | 2.548          | 95% Student's-t UCL                   |
| 2.552                                     | 95% Modified-t UCL (Johnson-1978)                              |                |                                       |
|                                           | OF Test                                                        | Gamma G        |                                       |
|                                           | Anderson-Darling Gamma GOF Test                                | 0.967          | A-D Test Statistic                    |
| əl                                        | Data Not Gamma Distributed at 5% Significance Leve             | 0.759          | 5% A-D Critical Value                 |
|                                           | Kolmogorov-Smirnov Gamma GOF Test                              | 0.124          | K-S Test Statistic                    |
| e Level                                   | Detected data appear Gamma Distributed at 5% Significance      | 0.125          | 5% K-S Critical Value                 |
|                                           | istribution at 5% Significance Level                           | or. Gamma D    | Detected data follow App              |
|                                           | tatistics                                                      | Gamma S        |                                       |
|                                           |                                                                | 2.594          |                                       |
| 2.454                                     | k star (bias corrected MLE)                                    | 2.004          | k hat (MLE)                           |
|                                           | k star (bias corrected MLE)<br>Theta star (bias corrected MLE) | 0.855          | k hat (MLE)<br>Theta hat (MLE)        |
|                                           |                                                                |                | , , , , , , , , , , , , , , , , , , , |
| 0.903<br>250.4                            | Theta star (bias corrected MLE)                                | 0.855          | Theta hat (MLE)                       |
| 2.454<br>0.903<br>250.4<br>1.415<br>214.7 | Theta star (bias corrected MLE)<br>nu star (bias corrected)    | 0.855<br>264.6 | Theta hat (MLE)<br>nu hat (MLE)       |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 2.596

95% Approximate Gamma UCL (use when n>=50) 2.585

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:38:40 PM From File Brook Trout, Manganese, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Manganese, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.937                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.0132                 | Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic    | 0.106                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear Approx           | ximate Lognormal at 5% | Significance Level                             |

#### Lognormal Statistics

| Minimum of Logged Data | -0.65                       | Mean of logged Data       | 0.591 |
|------------------------|-----------------------------|---------------------------|-------|
| Maximum of Logged Data | 1.768                       | SD of logged Data         | 0.658 |
| Assu                   | ming Lognormal Distribution |                           |       |
|                        | 2.7                         | 90% Chebyshov (MV/UE) UCI | 2 001 |

| 95% H-UCL                | 2.7   | 90% Chebyshev (MVUE) UCL   | 2.901 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 3.204 | 97.5% Chebyshev (MVUE) UCL | 3.625 |
| 99% Chebyshev (MVUE) UCL | 4.451 |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 2.542 | 95% Jackknife UCL            | 2.548 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 2.541 | 95% Bootstrap-t UCL          | 2.585 |
| 95% Hall's Bootstrap UCL      | 2.552 | 95% Percentile Bootstrap UCL | 2.523 |
| 95% BCA Bootstrap UCL         | 2.57  |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 2.81  | 95% Chebyshev(Mean, Sd) UCL  | 3.079 |
| 97.5% Chebyshev(Mean, Sd) UCL | 3.452 | 99% Chebyshev(Mean, Sd) UCL  | 4.185 |

# Suggested UCL to Use

95% Approximate Gamma UCL 2.585

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:39:22 PM

 From File
 Brook Trout, Mercury, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 8.9631E-6

# Brook Trout, Mercury, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 48     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.021              | Mean                            | 0.11   |
| Maximum                      | 0.327              | Median                          | 0.086  |
| SD                           | 0.072              | Std. Error of Mean              | 0.0101 |
| Coefficient of Variation     | 0.656              | Skewness                        | 1.234  |
|                              |                    |                                 |        |

# Normal GOF Test

0.871

0.165

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| Ass                             | uming Norm               | al Distribution                                                                            |                          |
|---------------------------------|--------------------------|--------------------------------------------------------------------------------------------|--------------------------|
| 95% Normal UCL                  |                          | 95% UCLs (Adjusted for Skewness)                                                           |                          |
| 95% Student's-t UCL             | 0.127                    | 95% Adjusted-CLT UCL (Chen-1995)                                                           | 0.128                    |
|                                 |                          | 95% Modified-t UCL (Johnson-1978)                                                          | 0.127                    |
|                                 | Gamma G                  | OF Test                                                                                    |                          |
| A-D Test Statistic              | 0.693                    | Anderson-Darling Gamma GOF Test                                                            |                          |
| 5% A-D Critical Value           | 0.759                    | Detected data appear Gamma Distributed at 5% Significanc                                   | e Level                  |
| K-S Test Statistic              | 0.122                    | Kolmogorov-Smirnov Gamma GOF Test                                                          |                          |
| 5% K-S Critical Value           | 0.125                    | Detected data appear Gamma Distributed at 5% Significanc                                   | e Level                  |
| Detected data appear            | Gamma Dist               | tributed at 5% Significance Level                                                          |                          |
|                                 |                          |                                                                                            |                          |
|                                 | Gamma S                  | tatistics                                                                                  |                          |
| k hat (MLE)                     | <b>Gamma S</b><br>2.679  | tatistics<br>k star (bias corrected MLE)                                                   | 2.535                    |
| k hat (MLE)<br>Theta hat (MLE)  |                          |                                                                                            |                          |
|                                 | 2.679                    | k star (bias corrected MLE)                                                                | 2.535<br>0.0433<br>258.6 |
| Theta hat (MLE)                 | 2.679<br>0.0409          | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                             | 0.0433                   |
| Theta hat (MLE)<br>nu hat (MLE) | 2.679<br>0.0409<br>273.3 | k star (bias corrected MLE)<br>Theta star (bias corrected MLE)<br>nu star (bias corrected) | 0.0433<br>258.6          |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.128

95% Approximate Gamma UCL (use when n>=50) 0.128

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:39:22 PM From File Brook Trout, Mercury, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Mercury, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.974                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.483                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0859                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | -3.863                      | Mean of logged Data      | -2.409 |
|------------------------|-----------------------------|--------------------------|--------|
| Maximum of Logged Data | -1.118                      | SD of logged Data        | 0.641  |
|                        |                             |                          |        |
| Assu                   | ming Lognormal Distribution |                          |        |
| 95% H-UCL              | 0.132                       | 90% Chebyshev (MVUE) UCL | 0.142  |

| 95% H-UCL                | 0.132 | 90% Chebyshev (MVUE) UCL   | 0.142 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 0.156 | 97.5% Chebyshev (MVUE) UCL | 0.176 |
| 99% Chebyshev (MVUE) UCL | 0.216 |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.126 | 95% Jackknife UCL            | 0.127 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.126 | 95% Bootstrap-t UCL          | 0.13  |
| 95% Hall's Bootstrap UCL      | 0.129 | 95% Percentile Bootstrap UCL | 0.126 |
| 95% BCA Bootstrap UCL         | 0.127 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.14  | 95% Chebyshev(Mean, Sd) UCL  | 0.154 |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.173 | 99% Chebyshev(Mean, Sd) UCL  | 0.21  |
|                               |       |                              |       |

# Suggested UCL to Use

95% Approximate Gamma UCL 0.128

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

#### Brook Trout, Molybdenum, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 15        |
| Number of Detects            | 30                 | Number of Non-Detects           | 21        |
| Number of Distinct Detects   | 14                 | Number of Distinct Non-Detects  | 1         |
| Minimum Detect               | 0.0041             | Minimum Non-Detect              | 0.004     |
| Maximum Detect               | 0.0068             | Maximum Non-Detect              | 0.004     |
| Variance Detects 3           | 3.6891E-7          | Percent Non-Detects             | 41.18%    |
| Mean Detects                 | 0.00478            | SD Detects                      | 6.0738E-4 |
| Median Detects               | 0.00468            | CV Detects                      | 0.127     |
| Skewness Detects             | 1.551              | Kurtosis Detects                | 3.126     |
| Mean of Logged Detects       | -5.351             | SD of Logged Detects            | 0.119     |

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.861 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.927 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.191 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.159 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.00446   | KM Standard Error of Mean 8       | 3.5038E-5 |
|------------------------|-----------|-----------------------------------|-----------|
| KM SD                  | 5.9708E-4 | 95% KM (BCA) UCL                  | 0.0046    |
| 95% KM (t) UCL         | 0.0046    | 95% KM (Percentile Bootstrap) UCL | 0.0046    |
| 95% KM (z) UCL         | 0.0046    | 95% KM Bootstrap t UCL            | 0.00463   |
| 90% KM Chebyshev UCL   | 0.00471   | 95% KM Chebyshev UCL              | 0.00483   |
| 97.5% KM Chebyshev UCL | 0.00499   | 99% KM Chebyshev UCL              | 0.0053    |
|                        |           |                                   |           |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 0.911 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.745 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.169 | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.16  | Detected Data Not Gamma Distributed at 5% Significance Level |
|                       |       |                                                              |

Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| k hat (MLE) 70.48         | k star (bias corrected MLE) 63.45         |
|---------------------------|-------------------------------------------|
| Theta hat (MLE) 6.7801E-5 | Theta star (bias corrected MLE) 7.5309E-5 |
| nu hat (MLE) 4229         | nu star (bias corrected) 3807             |
| Mean (detects) 0.00478    |                                           |

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:40:05 PM From File Brook Trout, Molybdenum, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Molybdenum, mg/kg - ww

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

#### This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0041    | Mean                                         | 0.00693 |
|--------------------------------------------------|-----------|----------------------------------------------|---------|
| Maximum                                          | 0.01      | Median                                       | 0.0051  |
| SD                                               | 0.00264   | CV                                           | 0.381   |
| k hat (MLE)                                      | 7.142     | k star (bias corrected MLE)                  | 6.735   |
| Theta hat (MLE)                                  | 9.7010E-4 | Theta star (bias corrected MLE)              | 0.00103 |
| nu hat (MLE)                                     | 728.5     | nu star (bias corrected)                     | 687     |
| Adjusted Level of Significance ( $\beta$ )       | 0.0453    |                                              |         |
| Approximate Chi Square Value (686.96, $\alpha$ ) | 627.2     | Adjusted Chi Square Value (686.96, $\beta$ ) | 625.5   |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.00759   | 95% Gamma Adjusted UCL (use when n<50)       | 0.00761 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.00446   | SD (KM)                   | 5.9708E-4 |
|---------------------------|-----------|---------------------------|-----------|
| Variance (KM)             | 3.5651E-7 | SE of Mean (KM)           | 8.5038E-5 |
| k hat (KM)                | 55.74     | k star (KM)               | 52.48     |
| nu hat (KM)               | 5686      | nu star (KM)              | 5353      |
| theta hat (KM)            | 7.9973E-5 | theta star (KM)           | 8.4950E-5 |
| 80% gamma percentile (KM) | 0.00497   | 90% gamma percentile (KM) | 0.00526   |
| 95% gamma percentile (KM) | 0.00552   | 99% gamma percentile (KM) | 0.00601   |

Adjusted Chi Square Value (N/A,  $\beta$ ) 5179

95% Gamma Adjusted KM-UCL (use when n<50) 0.00461

#### Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (N/A,  $\alpha$ ) 5184

95% Gamma Approximate KM-UCL (use when n>=50) 0.0046

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                          | 0.902 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.927 | Detected Data Not Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.163 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.159 | Detected Data Not Lognormal at 5% Significance Level |  |
| Detected Data Not Lognormal at 5% Significance Level |       |                                                      |  |

Detected Data Not Lognormal at 5% Significance Level

| User Selected Options          | 6                                       |
|--------------------------------|-----------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:40:05 PM           |
| From File                      | Brook Trout, Molybdenum, mg_kg - ww.xls |
| Full Precision                 | OFF                                     |
| Confidence Coefficient         | 95%                                     |
| Number of Bootstrap Operations | 2000                                    |

#### Brook Trout, Molybdenum, mg/kg - ww

| Mean in Original Scale                    | 0.00426   | Mean in Log Scale            | -5.476  |
|-------------------------------------------|-----------|------------------------------|---------|
| SD in Original Scale 8                    | 8.0720E-4 | SD in Log Scale              | 0.187   |
| 95% t UCL (assumes normality of ROS data) | 0.00445   | 95% Percentile Bootstrap UCL | 0.00443 |
| 95% BCA Bootstrap UCL                     | 0.00445   | 95% Bootstrap t UCL          | 0.00446 |
| 95% H-UCL (Log ROS)                       | 0.00446   |                              |         |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -5.421 | KM Geo Mean                   | 0.00442 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.123  | 95% Critical H Value (KM-Log) | 1.695   |
| KM Standard Error of Mean (logged) | 0.0175 | 95% H-UCL (KM -Log)           | 0.00459 |
| KM SD (logged)                     | 0.123  | 95% Critical H Value (KM-Log) | 1.695   |
| KM Standard Error of Mean (logged) | 0.0175 |                               |         |

# DL/2 Statistics

| DL/2 Normal                                                                        | DL/2 Log-Tra | nsformed          |        |  |
|------------------------------------------------------------------------------------|--------------|-------------------|--------|--|
| Mean in Original Scale                                                             | 0.00363      | Mean in Log Scale | -5.706 |  |
| SD in Original Scale                                                               | 0.00146      | SD in Log Scale   | 0.439  |  |
| 95% t UCL (Assumes normality)                                                      | 0.00398      | 95% H-Stat UCL    | 0.0041 |  |
| DI /2 is not a recommended method, provided for comparisons and historical reasons |              |                   |        |  |

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

| L to Use |
|----------|
|          |

| 95% KM (t) UCL   | 0.0046 | KM H-UCL | 0.00459 |
|------------------|--------|----------|---------|
| 95% KM (BCA) UCL | 0.0046 |          |         |

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 4:40:48 PMFrom FileBrook Trout, Nickel, mg\_kg - ww.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

#### Brook Trout, Nickel, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 18     |
| Number of Detects            | 23                 | Number of Non-Detects           | 28     |
| Number of Distinct Detects   | 18                 | Number of Distinct Non-Detects  | 1      |
| Minimum Detect               | 0.01               | Minimum Non-Detect              | 0.01   |
| Maximum Detect               | 0.053              | Maximum Non-Detect              | 0.01   |
| Variance Detects             | 1.7174E-4          | Percent Non-Detects             | 54.9%  |
| Mean Detects                 | 0.022              | SD Detects                      | 0.0131 |
| Median Detects               | 0.016              | CV Detects                      | 0.595  |
| Skewness Detects             | 1.21               | Kurtosis Detects                | 0.371  |
| Mean of Logged Detects       | -3.961             | SD of Logged Detects            | 0.532  |

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.821 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.914 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.199 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.18  | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

# Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| 0.0154 | KM Standard Error of Mean            | 0.0015                                                                                                                                                                                   |
|--------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0105 | 95% KM (BCA) UCL                     | 0.0182                                                                                                                                                                                   |
| 0.0179 | 95% KM (Percentile Bootstrap) UCL    | 0.0178                                                                                                                                                                                   |
| 0.0179 | 95% KM Bootstrap t UCL               | 0.0187                                                                                                                                                                                   |
| 0.0199 | 95% KM Chebyshev UCL                 | 0.022                                                                                                                                                                                    |
| 0.0248 | 99% KM Chebyshev UCL                 | 0.0304                                                                                                                                                                                   |
|        | 0.0105<br>0.0179<br>0.0179<br>0.0199 | 0.0105         95% KM (BCA) UCL           0.0179         95% KM (Percentile Bootstrap) UCL           0.0179         95% KM Bootstrap t UCL           0.0199         95% KM Chebyshev UCL |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic             | 1.062    | Anderson-Darling GOF Test                                       |
|--------------------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value          | 0.75     | Detected Data Not Gamma Distributed at 5% Significance Level    |
| K-S Test Statistic             | 0.175    | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value          | 0.183    | Detected data appear Gamma Distributed at 5% Significance Level |
| Barris and data follows Annual | <b>0</b> | Distribution at E% Oranificance Laws                            |

Detected data follow Appr. Gamma Distribution at 5% Significance Level

# Gamma Statistics on Detected Data Only

| 3.156   | k star (bias corrected MLE)     | 3.596   | k hat (MLE)     |
|---------|---------------------------------|---------|-----------------|
| 0.00698 | Theta star (bias corrected MLE) | 0.00612 | Theta hat (MLE) |
| 145.2   | nu star (bias corrected)        | 165.4   | nu hat (MLE)    |
|         |                                 | 0.022   | Mean (detects)  |

| User Selected Options          | 3                                   |
|--------------------------------|-------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:40:48 PM       |
| From File                      | Brook Trout, Nickel, mg_kg - ww.xls |
| Full Precision                 | OFF                                 |
| Confidence Coefficient         | 95%                                 |
| Number of Bootstrap Operations | 2000                                |

#### Brook Trout, Nickel, mg/kg - ww

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.01    | Mean                                         | 0.0154  |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| Maximum                                          | 0.053   | Median                                       | 0.01    |
| SD                                               | 0.0106  | CV                                           | 0.686   |
| k hat (MLE)                                      | 3.661   | k star (bias corrected MLE)                  | 3.459   |
| Theta hat (MLE)                                  | 0.00421 | Theta star (bias corrected MLE)              | 0.00446 |
| nu hat (MLE)                                     | 373.4   | nu star (bias corrected)                     | 352.8   |
| Adjusted Level of Significance (β)               | 0.0453  |                                              |         |
| Approximate Chi Square Value (352.77, $\alpha$ ) | 310.2   | Adjusted Chi Square Value (352.77, $\beta$ ) | 309.1   |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.0175  | 95% Gamma Adjusted UCL (use when n<50)       | 0.0176  |

# Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0154    | SD (KM)                   | 0.0105  |
|---------------------------|-----------|---------------------------|---------|
| Variance (KM)             | 1.0987E-4 | SE of Mean (KM)           | 0.0015  |
| k hat (KM)                | 2.165     | k star (KM)               | 2.05    |
| nu hat (KM)               | 220.8     | nu star (KM)              | 209.1   |
| theta hat (KM)            | 0.00712   | theta star (KM)           | 0.00752 |
| 80% gamma percentile (KM) | 0.023     | 90% gamma percentile (KM) | 0.0298  |
| 95% gamma percentile (KM) | 0.0363    | 99% gamma percentile (KM) | 0.0506  |

# Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (209.14, $\alpha$ ) | 176.7  | Adjusted Chi Square Value (209.14, $\beta$ ) | 175.8  |
|--------------------------------------------------|--------|----------------------------------------------|--------|
| 95% Gamma Approximate KM-UCL (use when n>=50)    | 0.0183 | 95% Gamma Adjusted KM-UCL (use when n<50)    | 0.0183 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                                         | 0.902 | Shapiro Wilk GOF Test                                   |
|---------------------------------------------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                                      | 0.914 | Detected Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic                                           | 0.155 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value                                        | 0.18  | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Approximate Lognormal at 5% Significance Level |       |                                                         |

Detected Data appear Approximate Lognormal at 5% Significance Level

| User Selected Options          | 6                                   |
|--------------------------------|-------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:40:48 PM       |
| From File                      | Brook Trout, Nickel, mg_kg - ww.xls |
| Full Precision                 | OFF                                 |
| Confidence Coefficient         | 95%                                 |
| Number of Bootstrap Operations | 2000                                |

#### Brook Trout, Nickel, mg/kg - ww

#### Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0125 | Mean in Log Scale            | -4.817 |
|-------------------------------------------|--------|------------------------------|--------|
| SD in Original Scale                      | 0.0124 | SD in Log Scale              | 0.958  |
| 95% t UCL (assumes normality of ROS data) | 0.0154 | 95% Percentile Bootstrap UCL | 0.0155 |
| 95% BCA Bootstrap UCL                     | 0.0158 | 95% Bootstrap t UCL          | 0.0162 |
| 95% H-UCL (Log ROS)                       | 0.0174 |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -4.315 | KM Geo Mean                   | 0.0134 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.474  | 95% Critical H Value (KM-Log) | 1.863  |
| KM Standard Error of Mean (logged) | 0.0679 | 95% H-UCL (KM -Log)           | 0.017  |
| KM SD (logged)                     | 0.474  | 95% Critical H Value (KM-Log) | 1.863  |
| KM Standard Error of Mean (logged) | 0.0679 |                               |        |

# DL/2 Statistics

| DL/2 Normal DL/2 Log-Transformed |                                      | DL/2 Log-Transformed       |        |
|----------------------------------|--------------------------------------|----------------------------|--------|
| Mean in Original Scale           | 0.0127                               | Mean in Log Scale          | -4.695 |
| SD in Original Scale             | 0.0122                               | SD in Log Scale            | 0.759  |
| 95% t UCL (Assumes normality)    | 0.0155                               | 95% H-Stat UCL             | 0.0152 |
| DL/O is not a recommended may    | had any database and a second second | I blade shared as a second |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Gamma Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM Approximate Gamma UCL 0.0183

95% GROS Approximate Gamma UCL

0.0175

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:41:31 PM

 From File
 Brook Trout, Phosphorus, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Brook Trout, Phosphorus, mg/kg - ww

| General Statistics |                                 |                                                                                                              |
|--------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------|
| 51                 | Number of Distinct Observations | 42                                                                                                           |
|                    | Number of Missing Observations  | 0                                                                                                            |
| 2810               | Mean                            | 3580                                                                                                         |
| 4190               | Median                          | 3540                                                                                                         |
| 324.8              | Std. Error of Mean              | 45.47                                                                                                        |
| 0.0907             | Skewness                        | 0.18                                                                                                         |
|                    | 51<br>2810<br>4190<br>324.8     | 51Number of Distinct Observations<br>Number of Missing Observations2810Mean4190Median324.8Std. Error of Mean |

# Normal GOF Test

| Shapiro Wilk Test Statistic  | 0.962  | Shapiro Wilk GOF Test                       |
|------------------------------|--------|---------------------------------------------|
| 5% Shapiro Wilk P Value      | 0.179  | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0876 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value | 0.123  | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| Assuming Normal Distribution   |           |                                                                 |  |  |  |
|--------------------------------|-----------|-----------------------------------------------------------------|--|--|--|
| 95% Normal UCL                 |           | 95% UCLs (Adjusted for Skewness)                                |  |  |  |
| 95% Student's-t UCL            | 3656      | 95% Adjusted-CLT UCL (Chen-1995) 3656                           |  |  |  |
|                                |           | 95% Modified-t UCL (Johnson-1978) 3656                          |  |  |  |
|                                | Gamma     | GOF Test                                                        |  |  |  |
| A-D Test Statistic             | 0.454     | Anderson-Darling Gamma GOF Test                                 |  |  |  |
| 5% A-D Critical Value          | 0.748     | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| K-S Test Statistic             | 0.0809    | Kolmogorov-Smirnov Gamma GOF Test                               |  |  |  |
| 5% K-S Critical Value          | 0.124     | Detected data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Detected data appea            | r Gamma D | istributed at 5% Significance Level                             |  |  |  |
|                                | Gamme     | a Statistics                                                    |  |  |  |
| k bet (MLE)                    | 124.2     |                                                                 |  |  |  |
| k hat (MLE)                    |           | ( , ,                                                           |  |  |  |
| Theta hat (MLE)                | 28.83     | Theta star (bias corrected MLE) 30.63                           |  |  |  |
| nu hat (MLE)                   | 12665     | nu star (bias corrected) 11922                                  |  |  |  |
| MLE Mean (bias corrected)      | 3580      | MLE Sd (bias corrected) 331.2                                   |  |  |  |
|                                |           | Approximate Chi Square Value (0.05) 11669                       |  |  |  |
| Adjusted Level of Significance | 0.0453    | Adjusted Chi Square Value 11662                                 |  |  |  |
|                                |           |                                                                 |  |  |  |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 3660

95% Approximate Gamma UCL (use when n>=50)) 3658

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:41:31 PM From File Brook Trout, Phosphorus, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Phosphorus, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.967                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.299                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0766                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| Minimum of Logged Data | 7.941 | Mean of logged Data | 8.179  |
|------------------------|-------|---------------------|--------|
| Maximum of Logged Data | 8.34  | SD of logged Data   | 0.0908 |

# Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 3717 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 3779 | 97.5% Chebyshev (MVUE) UCL | 3865 |
| 99% Chebyshev (MVUE) UCL | 4034 |                            |      |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 3655 | 95% Jackknife UCL            | 3656 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 3655 | 95% Bootstrap-t UCL          | 3658 |
| 95% Hall's Bootstrap UCL      | 3656 | 95% Percentile Bootstrap UCL | 3652 |
| 95% BCA Bootstrap UCL         | 3651 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 3717 | 95% Chebyshev(Mean, Sd) UCL  | 3778 |
| 97.5% Chebyshev(Mean, Sd) UCL | 3864 | 99% Chebyshev(Mean, Sd) UCL  | 4033 |

# Suggested UCL to Use

95% Student's-t UCL 3656

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 4:42:14 PMFrom FileBrook Trout, Potassium, mg\_kg - ww.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Brook Trout, Potassium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 42    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 3620               | Mean                            | 4229  |
| Maximum                      | 4620               | Median                          | 4230  |
| SD                           | 236.8              | Std. Error of Mean              | 33.16 |
| Coefficient of Variation     | 0.056              | Skewness                        | -0.54 |

# Normal GOF Test

| Shapiro Wilk Test Statistic  | 0.958  | Shapiro Wilk GOF Test                       |
|------------------------------|--------|---------------------------------------------|
| 5% Shapiro Wilk P Value      | 0.122  | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0878 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value | 0.123  | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| As                             | suming Nor | mal Distribution                                                |
|--------------------------------|------------|-----------------------------------------------------------------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                                |
| 95% Student's-t UCL            | 4285       | 95% Adjusted-CLT UCL (Chen-1995) 4281                           |
|                                |            | 95% Modified-t UCL (Johnson-1978) 4285                          |
|                                | Gamma      | GOF Test                                                        |
| A-D Test Statistic             | 0.59       | Anderson-Darling Gamma GOF Test                                 |
| 5% A-D Critical Value          | 0.748      | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic             | 0.0941     | Kolmogorov-Smirnov Gamma GOF Test                               |
| 5% K-S Critical Value          | 0.124      | Detected data appear Gamma Distributed at 5% Significance Level |
| Detected data appear           | Gamma Di   | stributed at 5% Significance Level                              |
|                                | Gamma      | Statistics                                                      |
| k hat (MLE)                    | 318        | k star (bias corrected MLE) 299.3                               |
| Theta hat (MLE)                | 13.3       | Theta star (bias corrected MLE) 14.13                           |
| nu hat (MLE)                   | 32436      | nu star (bias corrected) 30530                                  |
| MLE Mean (bias corrected)      | 4229       | MLE Sd (bias corrected) 244.5                                   |
|                                |            | Approximate Chi Square Value (0.05) 30124                       |
| Adjusted Level of Significance | 0.0453     | Adjusted Chi Square Value 30113                                 |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 4288

95% Approximate Gamma UCL (use when n>=50)) 4286

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:42:14 PM From File Brook Trout, Potassium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Potassium, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.95                   | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.0551                 | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0953                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | ficance Level                                  |

#### Lognormal Statistics

| Minimum of Logged Data | 8.194 | Mean of logged Data | 8.348 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 8.438 | SD of logged Data   | 0.057 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | N/A  | 90% Chebyshev (MVUE) UCL   | 4331 |
|--------------------------|------|----------------------------|------|
| 95% Chebyshev (MVUE) UCL | 4377 | 97.5% Chebyshev (MVUE) UCL | 4440 |
| 99% Chebyshev (MVUE) UCL | 4566 |                            |      |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 4284 | 95% Jackknife UCL            | 4285 |
|-------------------------------|------|------------------------------|------|
| 95% Standard Bootstrap UCL    | 4282 | 95% Bootstrap-t UCL          | 4284 |
| 95% Hall's Bootstrap UCL      | 4282 | 95% Percentile Bootstrap UCL | 4283 |
| 95% BCA Bootstrap UCL         | 4280 |                              |      |
| 90% Chebyshev(Mean, Sd) UCL   | 4329 | 95% Chebyshev(Mean, Sd) UCL  | 4374 |
| 97.5% Chebyshev(Mean, Sd) UCL | 4436 | 99% Chebyshev(Mean, Sd) UCL  | 4559 |

# Suggested UCL to Use

95% Student's-t UCL 4285

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:42:56 PM

 From File
 Brook Trout, Selenium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 2.6642E-9

# Brook Trout, Selenium, mg/kg - ww

|                              | General Statistics |                                 |        |
|------------------------------|--------------------|---------------------------------|--------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 47     |
|                              |                    | Number of Missing Observations  | 0      |
| Minimum                      | 0.22               | Mean                            | 0.373  |
| Maximum                      | 0.879              | Median                          | 0.327  |
| SD                           | 0.127              | Std. Error of Mean              | 0.0179 |
| Coefficient of Variation     | 0.342              | Skewness                        | 2.023  |

# Normal GOF Test

0.79

0.205

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

|                | Ass                                                             | suming Normal I                              | Distribution                                                                                                                                               |                         |
|----------------|-----------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 95% Normal UCL |                                                                 |                                              | 95% UCLs (Adjusted for Skewness)                                                                                                                           |                         |
|                | 95% Student's-t UCL                                             | 0.403                                        | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                           | 0.407                   |
|                |                                                                 |                                              | 95% Modified-t UCL (Johnson-1978)                                                                                                                          | 0.403                   |
|                |                                                                 | Gamma GOF                                    | - Test                                                                                                                                                     |                         |
|                | A-D Test Statistic                                              | 2.457                                        | Anderson-Darling Gamma GOF Test                                                                                                                            |                         |
|                | 5% A-D Critical Value                                           | 0.75                                         | Data Not Gamma Distributed at 5% Significance Leve                                                                                                         | əl                      |
|                | K-S Test Statistic                                              | 0.18                                         | Kolmogorov-Smirnov Gamma GOF Test                                                                                                                          |                         |
|                |                                                                 |                                              |                                                                                                                                                            |                         |
|                | 5% K-S Critical Value                                           | 0.124                                        | Data Not Gamma Distributed at 5% Significance Leve                                                                                                         | el                      |
|                |                                                                 |                                              | Data Not Gamma Distributed at 5% Significance Leve<br>t 5% Significance Level                                                                              | el                      |
|                |                                                                 |                                              | t 5% Significance Level                                                                                                                                    | 91                      |
|                |                                                                 | na Distributed a                             | t 5% Significance Level                                                                                                                                    | 10.72                   |
|                | Data Not Gamn                                                   | na Distributed an<br>Gamma Stat              | t 5% Significance Level                                                                                                                                    |                         |
|                | Data Not Gamn<br>k hat (MLE)                                    | Gamma Stat                                   | t 5% Significance Level<br>istics<br>k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                                                        | 10.72                   |
|                | Data Not Gamm<br>k hat (MLE)<br>Theta hat (MLE)                 | Gamma Stat<br>11.38<br>0.0327                | t 5% Significance Level<br>istics<br>k star (bias corrected MLE)<br>Theta star (bias corrected MLE)                                                        | 10.72<br>0.0347         |
|                | Data Not Gamm<br>k hat (MLE)<br>Theta hat (MLE)<br>nu hat (MLE) | <b>Gamma Stat</b><br>11.38<br>0.0327<br>1161 | t 5% Significance Level<br>istics<br>k star (bias corrected MLE)<br>Theta star (bias corrected MLE)<br>nu star (bias corrected)<br>MLE Sd (bias corrected) | 10.72<br>0.0347<br>1094 |

95% Adjusted Gamma UCL (use when n<50) 0.401

95% Approximate Gamma UCL (use when n>=50)) 0.4

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:42:56 PM

 From File
 Brook Trout, Selenium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

# Brook Trout, Selenium, mg/kg - ww

| Lognormal GO       | FTest                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.899              | Shapiro Wilk Lognormal GOF Test                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .9696E-4           | Data Not Lognormal at 5% Significance Level                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.166              | Lilliefors Lognormal GOF Test                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.123              | Data Not Lognormal at 5% Significance Level                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| gnormal at 5%      | Significance Level                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lognormal Sta      | tistics                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -1.514             | Mean of logged Data                                                                                                                                                                                  | -1.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -0.129             | SD of logged Data                                                                                                                                                                                    | 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ning Lognormal     | Distribution                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.398              | 90% Chebyshev (MVUE) UCL                                                                                                                                                                             | 0.416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.437              | 97.5% Chebyshev (MVUE) UCL                                                                                                                                                                           | 0.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.521              |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rie Dietrikutien I |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| llow a Discernic   | Distribution (0.05)                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ametric Distribut  | tion Free UCLs                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                      | 0.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                                                                                                                                                                                                      | 0.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | ·                                                                                                                                                                                                    | 0.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 0.899<br>.9696E-4<br>0.166<br>0.123<br>ognormal at 5%<br>Lognormal at 5%<br>Lognormal Sta<br>-1.514<br>-0.129<br>ming Lognormal<br>0.398<br>0.437<br>0.521<br>ric Distribution I<br>llow a Discernit | .9696E-4 Data Not Lognormal at 5% Significance Level<br>0.166 Lilliefors Lognormal GOF Test<br>0.123 Data Not Lognormal at 5% Significance Level<br>ognormal at 5% Significance Level<br>Lognormal Statistics<br>-1.514 Mean of logged Data<br>-0.129 SD of logged Data<br>-0.129 SD of logged Data<br>ming Lognormal Distribution<br>0.398 90% Chebyshev (MVUE) UCL<br>0.437 97.5% Chebyshev (MVUE) UCL<br>0.521<br>ric Distribution Free UCL Statistics<br>Ilow a Discernible Distribution (0.05)<br>metric Distribution Free UCLs<br>0.402 95% Jackknife UCL<br>0.402 95% Bootstrap-t UCL |

| •                             |       | •                            |       |
|-------------------------------|-------|------------------------------|-------|
| 95% Hall's Bootstrap UCL      | 0.412 | 95% Percentile Bootstrap UCL | 0.403 |
| 95% BCA Bootstrap UCL         | 0.406 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.426 | 95% Chebyshev(Mean, Sd) UCL  | 0.45  |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.484 | 99% Chebyshev(Mean, Sd) UCL  | 0.55  |
|                               |       |                              |       |

# Suggested UCL to Use

95% Student's-t UCL

0.403

or 95% Modified-t UCL 0.403

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:43:38 PM From File Brook Trout, Silver, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Silver, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 6       |
| Number of Detects            | 5                  | Number of Non-Detects           | 46      |
| Number of Distinct Detects   | 5                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.0011             | Minimum Non-Detect              | 0.001   |
| Maximum Detect               | 0.0102             | Maximum Non-Detect              | 0.001   |
| Variance Detects             | 1.2347E-5          | Percent Non-Detects             | 90.2%   |
| Mean Detects                 | 0.00418            | SD Detects                      | 0.00351 |
| Median Detects               | 0.003              | CV Detects                      | 0.841   |
| Skewness Detects             | 1.768              | Kurtosis Detects                | 3.562   |
| Mean of Logged Detects       | -5.734             | SD of Logged Detects            | 0.799   |

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic                          | 0.813 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.762 | Detected Data appear Normal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.332 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.343 | Detected Data appear Normal at 5% Significance Level |  |
| Detected Data appear Normal at 5% Significance Level |       |                                                      |  |

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.00131 | KM Standard Error of Mean 2       | 2.1366E-4 |
|------------------------|---------|-----------------------------------|-----------|
| KM SD                  | 0.00136 | 95% KM (BCA) UCL                  | 0.0017    |
| 95% KM (t) UCL         | 0.00167 | 95% KM (Percentile Bootstrap) UCL | 0.00165   |
| 95% KM (z) UCL         | 0.00166 | 95% KM Bootstrap t UCL            | 0.0018    |
| 90% KM Chebyshev UCL   | 0.00195 | 95% KM Chebyshev UCL              | 0.00224   |
| 97.5% KM Chebyshev UCL | 0.00265 | 99% KM Chebyshev UCL              | 0.00344   |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic        | 0.331 | Anderson-Darling GOF Test                                       |
|---------------------------|-------|-----------------------------------------------------------------|
| 5% A-D Critical Value     | 0.684 | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic        | 0.247 | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value     | 0.36  | Detected data appear Gamma Distributed at 5% Significance Level |
| Barrier de la companya de |       |                                                                 |

Detected data appear Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| k hat (MLE)     | 2.103   | k star (bias corrected MLE)     | 0.975   |
|-----------------|---------|---------------------------------|---------|
| Theta hat (MLE) | 0.00199 | Theta star (bias corrected MLE) | 0.00429 |
| nu hat (MLE)    | 21.03   | nu star (bias corrected)        | 9.746   |
| Mean (detects)  | 0.00418 |                                 |         |

| User Selected Options          | 3                                   |
|--------------------------------|-------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:43:38 PM       |
| From File                      | Brook Trout, Silver, mg_kg - ww.xls |
| Full Precision                 | OFF                                 |
| Confidence Coefficient         | 95%                                 |
| Number of Bootstrap Operations | 2000                                |

#### Brook Trout, Silver, mg/kg - ww

# Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.0011    | Mean                                         | 0.00943 |
|--------------------------------------------------|-----------|----------------------------------------------|---------|
| Maximum                                          | 0.0102    | Median                                       | 0.01    |
| SD                                               | 0.00201   | CV                                           | 0.213   |
| k hat (MLE)                                      | 9.801     | k star (bias corrected MLE)                  | 9.237   |
| Theta hat (MLE)                                  | 9.6212E-4 | Theta star (bias corrected MLE)              | 0.00102 |
| nu hat (MLE)                                     | 999.7     | nu star (bias corrected)                     | 942.2   |
| Adjusted Level of Significance (β)               | 0.0453    |                                              |         |
| Approximate Chi Square Value (942.20, $\alpha$ ) | 871.9     | Adjusted Chi Square Value (942.20, $\beta$ ) | 870     |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.0102    | 95% Gamma Adjusted UCL (use when n<50)       | 0.0102  |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM) 0.001                 | 31 SD (KM)                   | 0.00136   |
|---------------------------------|------------------------------|-----------|
| Variance (KM) 1.8626E           | -6 SE of Mean (KM)           | 2.1366E-4 |
| k hat (KM) 0.924                | 4 k star (KM)                | 0.883     |
| nu hat (KM) 94.23               | nu star (KM)                 | 90.02     |
| theta hat (KM) 0.001            | 42 theta star (KM)           | 0.00149   |
| 80% gamma percentile (KM) 0.002 | 13 90% gamma percentile (KM) | 0.00311   |
| 95% gamma percentile (KM) 0.004 | 11 99% gamma percentile (KM) | 0.00644   |

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (90.02, $\alpha$ ) | 69.14   | Adjusted Chi Square Value (90.02, $\beta$ ) | 68.61   |
|-------------------------------------------------|---------|---------------------------------------------|---------|
| 95% Gamma Approximate KM-UCL (use when n>=50)   | 0.00171 | 95% Gamma Adjusted KM-UCL (use when n<50)   | 0.00172 |

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.963 | Shapiro Wilk GOF Test                                   |  |
|---------------------------------------------------------|-------|---------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                          | 0.762 | Detected Data appear Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                               | 0.21  | Lilliefors GOF Test                                     |  |
| 5% Lilliefors Critical Value                            | 0.343 | Detected Data appear Lognormal at 5% Significance Level |  |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |  |

Detected Data appear Lognormal at 5% Significance Level

| User Selected Options          | 3                                   |
|--------------------------------|-------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:43:38 PM       |
| From File                      | Brook Trout, Silver, mg_kg - ww.xls |
| Full Precision                 | OFF                                 |
| Confidence Coefficient         | 95%                                 |
| Number of Bootstrap Operations | 2000                                |

## Brook Trout, Silver, mg/kg - ww

# Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale 5.0715E-4                    | Mean in Log Scale            | -10.2     |
|-----------------------------------------------------|------------------------------|-----------|
| SD in Original Scale 0.00159                        | SD in Log Scale              | 2.506     |
| 95% t UCL (assumes normality of ROS data) 8.7919E-4 | 95% Percentile Bootstrap UCL | 9.0902E-4 |
| 95% BCA Bootstrap UCL 0.00111                       | 95% Bootstrap t UCL          | 0.00141   |
| 95% H-UCL (Log ROS) 0.00387                         |                              |           |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -6.793 | KM Geo Mean                   | 0.00112 |
|------------------------------------|--------|-------------------------------|---------|
| KM SD (logged)                     | 0.415  | 95% Critical H Value (KM-Log) | 1.824   |
| KM Standard Error of Mean (logged) | 0.0649 | 95% H-UCL (KM -Log)           | 0.00136 |
| KM SD (logged)                     | 0.415  | 95% Critical H Value (KM-Log) | 1.824   |
| KM Standard Error of Mean (logged) | 0.0649 |                               |         |

# **DL/2 Statistics**

| DL/2 Normal                   |                   | DL/2 Log-Transfo                    | rmed              |           |
|-------------------------------|-------------------|-------------------------------------|-------------------|-----------|
| Mean in Original Scale 8      | 3.6078E-4         |                                     | Mean in Log Scale | -7.418    |
| SD in Original Scale          | 0.00149           |                                     | SD in Log Scale   | 0.605     |
| 95% t UCL (Assumes normality) | 0.00121           |                                     | 95% H-Stat UCL 8  | 3.5164E-4 |
| DL /2 is not a recommended me | thed provided for | comparisons and historical research |                   |           |

DL/2 is not a recommended method, provided for comparisons and historical reasons

# Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM (t) UCL 0.00167

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:44:21 PM From File Brook Trout, Sodium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

# Brook Trout, Sodium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 45    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 362                | Mean                            | 494.7 |
| Maximum                      | 748                | Median                          | 485   |
| SD                           | 82.68              | Std. Error of Mean              | 11.58 |
| Coefficient of Variation     | 0.167              | Skewness                        | 1.394 |

# Normal GOF Test

0.138

0.123

#### 0.878 Shapiro Wilk GOF Test 5% Shapiro Wilk P Value 1.9803E-5 Data Not Normal at 5% Significance Level

## Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| Assuming Normal Distribution   |           |                                                           |         |
|--------------------------------|-----------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |           | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 514.1     | 95% Adjusted-CLT UCL (Chen-1995)                          | 516.2   |
|                                |           | 95% Modified-t UCL (Johnson-1978)                         | 514.5   |
|                                | Gamma     | GOF Test                                                  |         |
| A-D Test Statistic             | 1.117     | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.748     | Data Not Gamma Distributed at 5% Significance Leve        | el      |
| K-S Test Statistic             | 0.115     | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.124     | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data follow Ap        | pr. Gamma | Distribution at 5% Significance Level                     |         |
|                                | Gamma     | I Statistics                                              |         |
| k hat (MLE)                    | 40.58     | k star (bias corrected MLE)                               | 38.2    |
| Theta hat (MLE)                | 12.19     | Theta star (bias corrected MLE)                           | 12.95   |
| nu hat (MLE)                   | 4139      | nu star (bias corrected)                                  | 3897    |
| MLE Mean (bias corrected)      | 494.7     | MLE Sd (bias corrected)                                   | 80.04   |
|                                |           | Approximate Chi Square Value (0.05)                       | 3753    |
| Adjusted Level of Significance | 0.0453    | Adjusted Chi Square Value                                 | 3748    |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 514.3

95% Approximate Gamma UCL (use when n>=50) 513.7

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:44:21 PM From File Brook Trout, Sodium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Sodium, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.934                  | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.00948                | Data Not Lognormal at 5% Significance Level    |
| Lilliefors Test Statistic    | 0.108                  | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear Approx           | kimate Lognormal at 5% | Significance Level                             |

#### Lognormal Statistics

| Minimum of Logged Data | 5.892 | Mean of logged Data | 6.192 |
|------------------------|-------|---------------------|-------|
| Maximum of Logged Data | 6.617 | SD of logged Data   | 0.155 |
|                        |       |                     |       |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 513.5 | 90% Chebyshev (MVUE) UCL   | 526.9 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 541.6 | 97.5% Chebyshev (MVUE) UCL | 562   |
| 99% Chebyshev (MVUE) UCL | 602   |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 513.8 | 95% Jackknife UCL            | 514.1 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 514   | 95% Bootstrap-t UCL          | 517.9 |
| 95% Hall's Bootstrap UCL      | 517.5 | 95% Percentile Bootstrap UCL | 513.9 |
| 95% BCA Bootstrap UCL         | 516   |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 529.4 | 95% Chebyshev(Mean, Sd) UCL  | 545.2 |
| 97.5% Chebyshev(Mean, Sd) UCL | 567   | 99% Chebyshev(Mean, Sd) UCL  | 609.9 |
|                               |       |                              |       |

# Suggested UCL to Use

95% Approximate Gamma UCL 513.7

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:45:03 PM

 From File
 Brook Trout, Strontium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 1.0318E-9

# Brook Trout, Strontium, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 43    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 0.756              | Mean                            | 1.545 |
| Maximum                      | 4.52               | Median                          | 1.23  |
| SD                           | 0.795              | Std. Error of Mean              | 0.111 |
| Coefficient of Variation     | 0.515              | Skewness                        | 2.01  |
|                              |                    |                                 |       |

# Normal GOF Test

0.78

0.2

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

# Data Not Normal at 5% Significance Level

| Assuming Normal Distribution   |              |                                                    |       |
|--------------------------------|--------------|----------------------------------------------------|-------|
| 95% Normal UCL                 |              | 95% UCLs (Adjusted for Skewness)                   |       |
| 95% Student's-t UCL            | 1.731        | 95% Adjusted-CLT UCL (Chen-1995)                   | 1.761 |
|                                |              | 95% Modified-t UCL (Johnson-1978)                  | 1.737 |
|                                | Gamma        | GOF Test                                           |       |
| A-D Test Statistic             | 1.845        | Anderson-Darling Gamma GOF Test                    |       |
| 5% A-D Critical Value          | 0.753        | Data Not Gamma Distributed at 5% Significance Leve | 1     |
| K-S Test Statistic             | 0.158        | Kolmogorov-Smirnov Gamma GOF Test                  |       |
| 5% K-S Critical Value          | 0.124        | Data Not Gamma Distributed at 5% Significance Leve | 1     |
| Data Not Gamn                  | na Distribut | ed at 5% Significance Level                        |       |
|                                |              |                                                    |       |
|                                | Gamma        | Statistics                                         |       |
| k hat (MLE)                    | 5.334        | k star (bias corrected MLE)                        | 5.033 |
| Theta hat (MLE)                | 0.29         | Theta star (bias corrected MLE)                    | 0.307 |
| nu hat (MLE)                   | 544.1        | nu star (bias corrected)                           | 513.4 |
| MLE Mean (bias corrected)      | 1.545        | MLE Sd (bias corrected)                            | 0.689 |
|                                |              | Approximate Chi Square Value (0.05)                | 461.9 |
| Adjusted Level of Significance | 0.0453       | Adjusted Chi Square Value                          | 460.4 |
|                                |              |                                                    |       |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 1.723

95% Approximate Gamma UCL (use when n>=50)) 1.717

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:45:03 PM From File Brook Trout, Strontium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Strontium, mg/kg - ww

|                              | Lognormal GOF Test      |                                             |       |
|------------------------------|-------------------------|---------------------------------------------|-------|
| Shapiro Wilk Test Statistic  | 0.922                   | Shapiro Wilk Lognormal GOF Test             |       |
| 5% Shapiro Wilk P Value      | 0.0024                  | Data Not Lognormal at 5% Significance Level |       |
| Lilliefors Test Statistic    | 0.133                   | Lilliefors Lognormal GOF Test               |       |
| 5% Lilliefors Critical Value | 0.123                   | Data Not Lognormal at 5% Significance Level |       |
| Data Not Lo                  | ognormal at 5% Signific | ance Level                                  |       |
|                              |                         |                                             |       |
|                              | Lognormal Statistics    |                                             |       |
| Minimum of Logged Data       | -0.28                   | Mean of logged Data                         | 0.338 |
| Maximum of Logged Data       | 1.509                   | SD of logged Data                           | 0.418 |
|                              |                         |                                             |       |
| Assu                         | ming Lognormal Distrib  | oution                                      |       |
|                              | 1 705                   | 90% Chabyshay (MV/LE) LICI                  | 1 806 |

| 95% H-UCL                | 1.705 | 90% Chebyshev (MVUE) UCL   | 1.806 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 1.932 | 97.5% Chebyshev (MVUE) UCL | 2.107 |
| 99% Chebyshev (MVUE) UCL | 2.45  |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 1.728 | 95% Jackknife UCL            | 1.731 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 1.726 | 95% Bootstrap-t UCL          | 1.781 |
| 95% Hall's Bootstrap UCL      | 1.786 | 95% Percentile Bootstrap UCL | 1.733 |
| 95% BCA Bootstrap UCL         | 1.753 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 1.879 | 95% Chebyshev(Mean, Sd) UCL  | 2.03  |
| 97.5% Chebyshev(Mean, Sd) UCL | 2.24  | 99% Chebyshev(Mean, Sd) UCL  | 2.652 |
|                               |       |                              |       |

# Suggested UCL to Use

95% Student's-t UCL 1.731

or 95% Modified-t UCL 1.737

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:45:46 PM From File Brook Trout, Thallium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Thallium, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 47        |
|                              |                    | Number of Missing Observations  | 0         |
| Minimum 9                    | 9.7000E-4          | Mean                            | 0.00455   |
| Maximum                      | 0.0346             | Median                          | 0.00215   |
| SD                           | 0.0071             | Std. Error of Mean 9            | 9.9360E-4 |
| Coefficient of Variation     | 1.56               | Skewness                        | 3.258     |
|                              |                    |                                 |           |

# Normal GOF Test

#### Shapiro Wilk Test Statistic 0.471 Shapiro Wilk GOF Test 5% Shapiro Wilk P Value 0 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.378 Lilliefors GOF Test 5% Lilliefors Critical Value 0.123

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| Ass                            | uming Normal Distri | pution                                             |         |
|--------------------------------|---------------------|----------------------------------------------------|---------|
| 95% Normal UCL                 |                     | 95% UCLs (Adjusted for Skewness)                   |         |
| 95% Student's-t UCL            | 0.00621             | 95% Adjusted-CLT UCL (Chen-1995)                   | 0.00667 |
|                                |                     | 95% Modified-t UCL (Johnson-1978)                  | 0.00629 |
|                                | Gamma GOF Test      |                                                    |         |
| A-D Test Statistic             | 6.483               | Anderson-Darling Gamma GOF Test                    |         |
| 5% A-D Critical Value          | 0.776               | Data Not Gamma Distributed at 5% Significance Leve | I       |
| K-S Test Statistic             | 0.264               | Kolmogorov-Smirnov Gamma GOF Test                  |         |
| 5% K-S Critical Value          | 0.127               | Data Not Gamma Distributed at 5% Significance Leve | I       |
| Data Not Gamm                  | a Distributed at 5% | Significance Level                                 |         |
|                                |                     |                                                    |         |
|                                | Gamma Statistics    |                                                    |         |
| k hat (MLE)                    | 1.155               | k star (bias corrected MLE)                        | 1.1     |
| Theta hat (MLE)                | 0.00394             | Theta star (bias corrected MLE)                    | 0.00413 |
| nu hat (MLE)                   | 117.8               | nu star (bias corrected)                           | 112.2   |
| MLE Mean (bias corrected)      | 0.00455             | MLE Sd (bias corrected)                            | 0.00434 |
|                                |                     | Approximate Chi Square Value (0.05)                | 88.76   |
| Adjusted Level of Significance | 0.0453              | Adjusted Chi Square Value                          | 88.16   |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.00579

95% Approximate Gamma UCL (use when n>=50)) 0.00575

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

# Brook Trout, Thallium, mg/kg - ww

|                              | Lognormal GOF Test       |                                             |
|------------------------------|--------------------------|---------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.794                    | Shapiro Wilk Lognormal GOF Test             |
| 5% Shapiro Wilk P Value      | 3.9927E-9                | Data Not Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.2                      | Lilliefors Lognormal GOF Test               |
| 5% Lilliefors Critical Value | 0.123                    | Data Not Lognormal at 5% Significance Level |
| Data Not L                   | ognormal at 5% Significa | ance Level                                  |
|                              | Lognormal Statistics     |                                             |
|                              | Lognomial otationoo      |                                             |
| Minimum of Logged Data       | -6.938                   | Mean of logged Data                         |
| Maximum of Logged Data       | -3.364                   | SD of logged Data                           |
|                              |                          |                                             |

#### Assuming Lognormal Distribution

| 95% H-UCL                | 0.00491 | 90% Chebyshev (MVUE) UCL   | 0.00528 |
|--------------------------|---------|----------------------------|---------|
| 95% Chebyshev (MVUE) UCL | 0.00594 | 97.5% Chebyshev (MVUE) UCL | 0.00686 |
| 99% Chebyshev (MVUE) UCL | 0.00866 |                            |         |

-5.885

0.808

# Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                 | 0.00618 | 95% Jackknife UCL            | 0.00621 |
|-----------------------------|---------|------------------------------|---------|
| 95% Standard Bootstrap UCL  | 0.00618 | 95% Bootstrap-t UCL          | 0.00697 |
| 95% Hall's Bootstrap UCL    | 0.0063  | 95% Percentile Bootstrap UCL | 0.0063  |
| 95% BCA Bootstrap UCL       | 0.00659 |                              |         |
| 00% Chebyshev(Mean, Sd) UCL | 0.00753 | 95% Chebyshev(Mean, Sd) UCL  | 0.00888 |
| .5% Chebyshev(Mean, Sd) UCL | 0.0108  | 99% Chebyshev(Mean, Sd) UCL  | 0.0144  |
|                             |         |                              |         |

# Suggested UCL to Use

95% Chebyshev (Mean, Sd) UCL 0.00888

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 4:46:28 PMFrom FileBrook Trout, Tin, mg\_kg - ww.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

## Brook Trout, Tin, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 9       |
| Number of Detects            | 13                 | Number of Non-Detects           | 38      |
| Number of Distinct Detects   | 8                  | Number of Distinct Non-Detects  | 1       |
| Minimum Detect               | 0.021              | Minimum Non-Detect              | 0.02    |
| Maximum Detect               | 0.039              | Maximum Non-Detect              | 0.02    |
| Variance Detects 3           | 3.5910E-5          | Percent Non-Detects             | 74.51%  |
| Mean Detects                 | 0.0261             | SD Detects                      | 0.00599 |
| Median Detects               | 0.025              | CV Detects                      | 0.23    |
| Skewness Detects             | 1.548              | Kurtosis Detects                | 1.464   |
| Mean of Logged Detects       | -3.668             | SD of Logged Detects            | 0.206   |

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.77  | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.866 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.274 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.234 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

# Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean                | 0.0215  | KM Standard Error of Mean 5       | .7312E-4 |
|------------------------|---------|-----------------------------------|----------|
| KM SD                  | 0.00393 | 95% KM (BCA) UCL                  | 0.0226   |
| 95% KM (t) UCL         | 0.0225  | 95% KM (Percentile Bootstrap) UCL | 0.0225   |
| 95% KM (z) UCL         | 0.0225  | 95% KM Bootstrap t UCL            | 0.0232   |
| 90% KM Chebyshev UCL   | 0.0233  | 95% KM Chebyshev UCL              | 0.024    |
| 97.5% KM Chebyshev UCL | 0.0251  | 99% KM Chebyshev UCL              | 0.0273   |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic    | 1.025 | Anderson-Darling GOF Test                                    |
|-----------------------|-------|--------------------------------------------------------------|
| 5% A-D Critical Value | 0.733 | Detected Data Not Gamma Distributed at 5% Significance Level |
| K-S Test Statistic    | 0.248 | Kolmogorov-Smirnov GOF                                       |
| 5% K-S Critical Value | 0.236 | Detected Data Not Gamma Distributed at 5% Significance Level |
| Data da Data Nacio    |       | diverse di en 50%. Otras la secola di                        |

Detected Data Not Gamma Distributed at 5% Significance Level

# Gamma Statistics on Detected Data Only

| 18.45   | k star (bias corrected MLE)     | 23.9  | k hat (MLE)     |
|---------|---------------------------------|-------|-----------------|
| 0.00141 | Theta star (bias corrected MLE) | 0.001 | Theta hat (MLE) |
| 479.8   | nu star (bias corrected)        | 622   | nu hat (MLE)    |
|         |                                 | 0.02  | Mean (detects)  |

| User Selected Options          | 5                                |
|--------------------------------|----------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:46:28 PM    |
| From File                      | Brook Trout, Tin, mg_kg - ww.xls |
| Full Precision                 | OFF                              |
| Confidence Coefficient         | 95%                              |
| Number of Bootstrap Operations | 2000                             |

#### Brook Trout, Tin, mg/kg - ww

# Gamma ROS Statistics using Imputed Non-Detects

# GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

# For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum                                          | 0.01    | Mean                                         | 0.0151  |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| Maximum                                          | 0.039   | Median                                       | 0.0106  |
| SD                                               | 0.00738 | CV                                           | 0.487   |
| k hat (MLE)                                      | 5.616   | k star (bias corrected MLE)                  | 5.298   |
| Theta hat (MLE)                                  | 0.0027  | Theta star (bias corrected MLE)              | 0.00286 |
| nu hat (MLE)                                     | 572.8   | nu star (bias corrected)                     | 540.4   |
| Adjusted Level of Significance (β)               | 0.0453  |                                              |         |
| Approximate Chi Square Value (540.43, $\alpha$ ) | 487.5   | Adjusted Chi Square Value (540.43, $\beta$ ) | 486.1   |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.0168  | 95% Gamma Adjusted UCL (use when n<50)       | 0.0168  |

# Estimates of Gamma Parameters using KM Estimates

| Mean (KM)                 | 0.0215  | SD (KM)                   | 0.00393   |
|---------------------------|---------|---------------------------|-----------|
| Variance (KM) 1.5         | 5463E-5 | SE of Mean (KM)           | 5.7312E-4 |
| k hat (KM)                | 30.03   | k star (KM)               | 28.28     |
| nu hat (KM) 30            | 063     | nu star (KM)              | 2884      |
| theta hat (KM) 7.1        | 1759E-4 | theta star (KM)           | 7.6208E-4 |
| 80% gamma percentile (KM) | 0.0249  | 90% gamma percentile (KM) | 0.0269    |
| 95% gamma percentile (KM) | 0.0286  | 99% gamma percentile (KM) | 0.0321    |

Adjusted Chi Square Value (N/A,  $\beta$ ) 2757

95% Gamma Adjusted KM-UCL (use when n<50) 0.0225

#### Gamma Kaplan-Meier (KM) Statistics

| Approximate Chi Square Value (N/A, $\alpha$ ) | 2760 |
|-----------------------------------------------|------|
|-----------------------------------------------|------|

95% Gamma Approximate KM-UCL (use when n>=50) 0.0225

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                          | 0.822 | Shapiro Wilk GOF Test                                |  |
|------------------------------------------------------|-------|------------------------------------------------------|--|
| 5% Shapiro Wilk Critical Value                       | 0.866 | Detected Data Not Lognormal at 5% Significance Level |  |
| Lilliefors Test Statistic                            | 0.234 | Lilliefors GOF Test                                  |  |
| 5% Lilliefors Critical Value                         | 0.234 | Detected Data Not Lognormal at 5% Significance Level |  |
| Detected Data Not Lognormal at 5% Significance Level |       |                                                      |  |

Page 2 of 3

| User Selected Options          | ;                                |
|--------------------------------|----------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:46:28 PM    |
| From File                      | Brook Trout, Tin, mg_kg - ww.xls |
| Full Precision                 | OFF                              |
| Confidence Coefficient         | 95%                              |
| Number of Bootstrap Operations | 2000                             |

# Brook Trout, Tin, mg/kg - ww

# Lognormal ROS Statistics Using Imputed Non-Detects

| Mean in Original Scale                    | 0.0158  | Mean in Log Scale            | -4.25  |
|-------------------------------------------|---------|------------------------------|--------|
| SD in Original Scale                      | 0.00746 | SD in Log Scale              | 0.456  |
| 95% t UCL (assumes normality of ROS data) | 0.0175  | 95% Percentile Bootstrap UCL | 0.0177 |
| 95% BCA Bootstrap UCL                     | 0.0176  | 95% Bootstrap t UCL          | 0.0178 |
| 95% H-UCL (Log ROS)                       | 0.0178  |                              |        |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -3.85  | KM Geo Mean                   | 0.0213 |
|------------------------------------|--------|-------------------------------|--------|
| KM SD (logged)                     | 0.146  | 95% Critical H Value (KM-Log) | 1.704  |
| KM Standard Error of Mean (logged) | 0.0213 | 95% H-UCL (KM -Log)           | 0.0223 |
| KM SD (logged)                     | 0.146  | 95% Critical H Value (KM-Log) | 1.704  |
| KM Standard Error of Mean (logged) | 0.0213 |                               |        |

# DL/2 Statistics

| DL/2 Normal                   | DL/2 Log-1                                       | Fransformed       |        |
|-------------------------------|--------------------------------------------------|-------------------|--------|
| Mean in Original Scale        | 0.0141                                           | Mean in Log Scale | -4.366 |
| SD in Original Scale          | 0.00766                                          | SD in Log Scale   | 0.425  |
| 95% t UCL (Assumes normality) | 0.0159                                           | 95% H-Stat UCL    | 0.0155 |
| DL/2 is not a recommanded ma  | thed provided for comparisons and historical re- |                   |        |

DL/2 is not a recommended method, provided for comparisons and historical reasons

#### Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

| Suggested | UCL to Use |
|-----------|------------|
|-----------|------------|

| 95% KM (t) UCL   | 0.0225 | KM H-UCL | 0.0223 |
|------------------|--------|----------|--------|
| 95% KM (BCA) UCL | 0.0226 |          |        |

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:47:11 PM

 From File
 Brook Trout, Titanium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Lilliefors Test Statistic

5% Shapiro Wilk P Value 5.923E-10

# Brook Trout, Titanium, mg/kg - ww

|                              | General Statistics |                                 |         |
|------------------------------|--------------------|---------------------------------|---------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 40      |
|                              |                    | Number of Missing Observations  | 0       |
| Minimum                      | 0.148              | Mean                            | 0.186   |
| Maximum                      | 0.345              | Median                          | 0.181   |
| SD                           | 0.0385             | Std. Error of Mean              | 0.00539 |
| Coefficient of Variation     | 0.207              | Skewness                        | 2.36    |
|                              |                    |                                 |         |

# Normal GOF Test

0.774

0.161

0.123

# Shapiro Wilk GOF Test

Data Not Normal at 5% Significance Level

#### Lilliefors GOF Test

Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

| As                        | suming Normal    | Distribution                                       |         |
|---------------------------|------------------|----------------------------------------------------|---------|
| 95% Normal UCL            |                  | 95% UCLs (Adjusted for Skewness)                   |         |
| 95% Student's-t UCL       | 0.195            | 95% Adjusted-CLT UCL (Chen-1995)                   | 0.197   |
|                           |                  | 95% Modified-t UCL (Johnson-1978)                  | 0.195   |
|                           | Gamma GOI        | - Test                                             |         |
| A-D Test Statistic        | 1.738            | Anderson-Darling Gamma GOF Test                    |         |
| 5% A-D Critical Value     | 0.748            | Data Not Gamma Distributed at 5% Significance Leve | el      |
| K-S Test Statistic        | 0.127            | Kolmogorov-Smirnov Gamma GOF Test                  |         |
| 5% K-S Critical Value     | 0.124            | Data Not Gamma Distributed at 5% Significance Leve | el      |
| Data Not Gamr             | na Distributed a | t 5% Significance Level                            |         |
|                           | Gamma Stat       | tistics                                            |         |
| k hat (MLE)               | 29.55            | k star (bias corrected MLE)                        | 27.83   |
| Theta hat (MLE)           | 0.0063           | Theta star (bias corrected MLE)                    | 0.00669 |
| nu hat (MLE)              | 3015             | nu star (bias corrected)                           | 2839    |
| MLE Mean (bias corrected) | 0.186            | MLE Sd (bias corrected)                            | 0.0353  |
|                           |                  | Approximate Chi Square Value (0.05)                | 2716    |
|                           |                  |                                                    |         |

# Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 0.195

95% Approximate Gamma UCL (use when n>=50)) 0.195

User Selected Options Date/Time of Computation From File From File Full Precision Confidence Coefficient Number of Bootstrap Operations 2000

# Brook Trout, Titanium, mg/kg - ww

|                              | Lognorma      | I GOF Test                                     |        |
|------------------------------|---------------|------------------------------------------------|--------|
| Shapiro Wilk Test Statistic  | 0.868         | Shapiro Wilk Lognormal GOF Test                |        |
| 5% Shapiro Wilk P Value      | 6.8800E-6     | Data Not Lognormal at 5% Significance Level    |        |
| Lilliefors Test Statistic    | 0.116         | Lilliefors Lognormal GOF Test                  |        |
| 5% Lilliefors Critical Value | 0.123         | Data appear Lognormal at 5% Significance Level |        |
| Data appear Approx           | kimate Logr   | normal at 5% Significance Level                |        |
|                              |               |                                                |        |
|                              | Lognorma      | al Statistics                                  |        |
| Minimum of Logged Data       | -1.911        | Mean of logged Data                            | -1.698 |
| Maximum of Logged Data       | -1.064        | SD of logged Data                              | 0.178  |
|                              |               |                                                |        |
| Assu                         | ming Logno    | ormal Distribution                             |        |
| 95% H-UCL                    | 0.194         | 90% Chebyshev (MVUE) UCL                       | 0.2    |
| 95% Chebyshev (MVUE) UCL     | 0.206         | 97.5% Chebyshev (MVUE) UCL                     | 0.215  |
| 99% Chebyshev (MVUE) UCL     | 0.232         |                                                |        |
|                              |               |                                                |        |
| Nonparame                    | tric Distribu | tion Free UCL Statistics                       |        |
| Data appear to follow o F    | Viecomible    | Distribution at 5% Significance Loval          |        |

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 0.195 | 95% Jackknife UCL            | 0.195 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 0.195 | 95% Bootstrap-t UCL          | 0.198 |
| 95% Hall's Bootstrap UCL      | 0.202 | 95% Percentile Bootstrap UCL | 0.195 |
| 95% BCA Bootstrap UCL         | 0.196 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 0.202 | 95% Chebyshev(Mean, Sd) UCL  | 0.21  |
| 97.5% Chebyshev(Mean, Sd) UCL | 0.22  | 99% Chebyshev(Mean, Sd) UCL  | 0.24  |
|                               |       |                              |       |

# Suggested UCL to Use

| 95% Student's-t UCL | 0.195 | or 95% Modified-t UCL | 0.195 |
|---------------------|-------|-----------------------|-------|
| or 95% H-UCL        | 0.194 |                       |       |

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:47:11 PM

 From File
 Brook Trout, Titanium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

Brook Trout, Titanium, mg/kg - ww

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

 User Selected Options

 Date/Time of Computation
 ProUCL 5.12/1/2021 4:47:54 PM

 From File
 Brook Trout, Uranium, mg\_kg - ww.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

## Brook Trout, Uranium, mg/kg - ww

|                              | General Statistics |                                 |           |
|------------------------------|--------------------|---------------------------------|-----------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 11        |
| Number of Detects            | 10                 | Number of Non-Detects           | 41        |
| Number of Distinct Detects   | 10                 | Number of Distinct Non-Detects  | 1         |
| Minimum Detect               | 4.5000E-4          | Minimum Non-Detect              | 4.0000E-4 |
| Maximum Detect               | 0.00123            | Maximum Non-Detect              | 4.0000E-4 |
| Variance Detects             | 6.9094E-8          | Percent Non-Detects             | 80.39%    |
| Mean Detects                 | 7.0500E-4          | SD Detects                      | 2.6286E-4 |
| Median Detects               | 6.0000E-4          | CV Detects                      | 0.373     |
| Skewness Detects             | 1.155              | Kurtosis Detects                | 0.0898    |
| Mean of Logged Detects       | -7.312             | SD of Logged Detects            | 0.339     |
|                              |                    |                                 |           |

# Normal GOF Test on Detects Only

| Shapiro Wilk Test Statistic    | 0.835 | Shapiro Wilk GOF Test                             |
|--------------------------------|-------|---------------------------------------------------|
| 5% Shapiro Wilk Critical Value | 0.842 | Detected Data Not Normal at 5% Significance Level |
| Lilliefors Test Statistic      | 0.298 | Lilliefors GOF Test                               |
| 5% Lilliefors Critical Value   | 0.262 | Detected Data Not Normal at 5% Significance Level |
|                                |       |                                                   |

Detected Data Not Normal at 5% Significance Level

# Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

| KM Mean 4.5980E-4                | KM Standard Error of Mean 2.4189E-5         |
|----------------------------------|---------------------------------------------|
| KM SD 1.6388E-4                  | 95% KM (BCA) UCL 5.0490E-4                  |
| 95% KM (t) UCL 5.0034E-4         | 95% KM (Percentile Bootstrap) UCL 5.0039E-4 |
| 95% KM (z) UCL 4.9959E-4         | 95% KM Bootstrap t UCL 5.2375E-4            |
| 90% KM Chebyshev UCL 5.3237E-4   | 95% KM Chebyshev UCL 5.6524E-4              |
| 97.5% KM Chebyshev UCL 6.1087E-4 | 99% KM Chebyshev UCL 7.0048E-4              |

# Gamma GOF Tests on Detected Observations Only

| A-D Test Statistic           | 0.675    | Anderson-Darling GOF Test                                       |
|------------------------------|----------|-----------------------------------------------------------------|
| 5% A-D Critical Value        | 0.726    | Detected data appear Gamma Distributed at 5% Significance Level |
| K-S Test Statistic           | 0.271    | Kolmogorov-Smirnov GOF                                          |
| 5% K-S Critical Value        | 0.267    | Detected Data Not Gamma Distributed at 5% Significance Level    |
| Barris and data dallars date | <b>•</b> | Distribution of DV Olympic and a local                          |

Detected data follow Appr. Gamma Distribution at 5% Significance Level

# Gamma Statistics on Detected Data Only

| k hat (MLE) 9.236         | k star (bias corrected MLE) 6.532         |
|---------------------------|-------------------------------------------|
| Theta hat (MLE) 7.6332E-5 | Theta star (bias corrected MLE) 1.0793E-4 |
| nu hat (MLE) 184.7        | nu star (bias corrected) 130.6            |
| Mean (detects) 7.0500E-4  |                                           |

| User Selected Options          | 6                                    |
|--------------------------------|--------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:47:54 PM        |
| From File                      | Brook Trout, Uranium, mg_kg - ww.xls |
| Full Precision                 | OFF                                  |
| Confidence Coefficient         | 95%                                  |
| Number of Bootstrap Operations | 2000                                 |

#### Brook Trout, Uranium, mg/kg - ww

#### Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

# This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

| Minimum 4.5000E-4                                |         | Mean                                         | 0.00818 |
|--------------------------------------------------|---------|----------------------------------------------|---------|
| Maximum                                          | 0.01    | Median                                       | 0.01    |
| SD                                               | 0.00373 | CV                                           | 0.456   |
| k hat (MLE)                                      | 1.664   | k star (bias corrected MLE)                  | 1.579   |
| Theta hat (MLE)                                  | 0.00491 | Theta star (bias corrected MLE)              | 0.00518 |
| nu hat (MLE)                                     | 169.7   | nu star (bias corrected)                     | 161.1   |
| Adjusted Level of Significance ( $\beta$ )       | 0.0453  |                                              |         |
| Approximate Chi Square Value (161.08, $\alpha$ ) | 132.7   | Adjusted Chi Square Value (161.08, $\beta$ ) | 132     |
| 95% Gamma Approximate UCL (use when n>=50)       | 0.00992 | 95% Gamma Adjusted UCL (use when n<50)       | 0.00998 |

#### Estimates of Gamma Parameters using KM Estimates

| Mean (KM) 4.5980E-4                 | SD (KM) 1.6388E-4                   |
|-------------------------------------|-------------------------------------|
| Variance (KM) 2.6857E-8             | SE of Mean (KM) 2.4189E-5           |
| k hat (KM) 7.872                    | k star (KM) 7.422                   |
| nu hat (KM) 803                     | nu star (KM) 757.1                  |
| theta hat (KM) 5.8409E-5            | theta star (KM) 6.1951E-5           |
| 80% gamma percentile (KM) 5.9257E-4 | 90% gamma percentile (KM) 6.8499E-4 |
| 95% gamma percentile (KM) 7.6795E-4 | 99% gamma percentile (KM) 9.4026E-4 |

#### Gamma Kaplan-Meier (KM) Statistics

 Approximate Chi Square Value (757.06, α)
 694.2
 Adjusted Chi Square Value (757.06, β)
 692.5

 95% Gamma Approximate KM-UCL (use when n>=50)
 5.0143E-4
 95% Gamma Adjusted KM-UCL (use when n<50)</td>
 5.0269E-4

#### Lognormal GOF Test on Detected Observations Only

| Shapiro Wilk Test Statistic                             | 0.888 | Shapiro Wilk GOF Test                                   |
|---------------------------------------------------------|-------|---------------------------------------------------------|
| 5% Shapiro Wilk Critical Value                          | 0.842 | Detected Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic                               | 0.249 | Lilliefors GOF Test                                     |
| 5% Lilliefors Critical Value                            | 0.262 | Detected Data appear Lognormal at 5% Significance Level |
| Detected Data appear Lognormal at 5% Significance Level |       |                                                         |

Page 2 of 3

| User Selected Options          | 6                                    |
|--------------------------------|--------------------------------------|
| Date/Time of Computation       | ProUCL 5.12/1/2021 4:47:54 PM        |
| From File                      | Brook Trout, Uranium, mg_kg - ww.xls |
| Full Precision                 | OFF                                  |
| Confidence Coefficient         | 95%                                  |
| Number of Bootstrap Operations | 2000                                 |

# Brook Trout, Uranium, mg/kg - ww

| Lognormal ROS Statistics | Using Imputed Non-D | etects |
|--------------------------|---------------------|--------|
|--------------------------|---------------------|--------|

| Mean in Original Scale 2.8217E-4                    | Mean in Log Scale            | -8.512    |
|-----------------------------------------------------|------------------------------|-----------|
| SD in Original Scale 2.5481E-4                      | SD in Log Scale              | 0.838     |
| 95% t UCL (assumes normality of ROS data) 3.4197E-4 | 95% Percentile Bootstrap UCL | 3.4144E-4 |
| 95% BCA Bootstrap UCL 3.4888E-4                     | 95% Bootstrap t UCL          | 3.6109E-4 |
| 95% H-UCL (Log ROS) 3.6863E-4                       |                              |           |

#### Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

| KM Mean (logged)                   | -7.724 | KM Geo Mean 4.4221E-4               |
|------------------------------------|--------|-------------------------------------|
| KM SD (logged)                     | 0.248  | 95% Critical H Value (KM-Log) 1.722 |
| KM Standard Error of Mean (logged) | 0.0366 | 95% H-UCL (KM -Log) 4.8442E-4       |
| KM SD (logged)                     | 0.248  | 95% Critical H Value (KM-Log) 1.722 |
| KM Standard Error of Mean (logged) | 0.0366 |                                     |

# **DL/2 Statistics**

| DL/2 Normal                                                      | DL/2 Log-Transformed  |       |
|------------------------------------------------------------------|-----------------------|-------|
| Mean in Original Scale 2.9902E-4                                 | Mean in Log Scale -8. | .281  |
| SD in Original Scale 2.3117E-4                                   | SD in Log Scale 0     | .504  |
| 95% t UCL (Assumes normality) 3.5327E-4                          | 95% H-Stat UCL 3.28   | 82E-4 |
| DL/2 is not a recommanded method, provided for comparisons and b |                       |       |

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Gamma Distributed at 5% Significance Level

# Suggested UCL to Use

95% KM Approximate Gamma UCL 5.0143E-4

95% GROS Approximate Gamma UCL 0.00992

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:48:37 PM From File Brook Trout, Vanadium, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

#### Brook Trout, Vanadium, mg/kg - ww

# **General Statistics**

51

Total Number of Observations

- Number of Detects 1
- Number of Distinct Detects 1

- Number of Distinct Observations
   2

   Number of Non-Detects
   50
  - Number of Non-Detects 0

Number of Distinct Non-Detects 1

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Brook Trout, Vanadium, mg/kg - ww was not processed!

User Selected OptionsDate/Time of ComputationProUCL 5.12/1/2021 4:49:19 PMFrom FileBrook Trout, Zinc, mg\_kg - ww.xlsFull PrecisionOFFConfidence Coefficient95%Number of Bootstrap Operations2000

# Brook Trout, Zinc, mg/kg - ww

|                              | General Statistics |                                 |       |
|------------------------------|--------------------|---------------------------------|-------|
| Total Number of Observations | 51                 | Number of Distinct Observations | 41    |
|                              |                    | Number of Missing Observations  | 0     |
| Minimum                      | 8.97               | Mean                            | 14.16 |
| Maximum                      | 22.3               | Median                          | 13.7  |
| SD                           | 2.558              | Std. Error of Mean              | 0.358 |
| Coefficient of Variation     | 0.181              | Skewness                        | 0.758 |
|                              |                    |                                 |       |

# Normal GOF Test

| Shapiro Wilk Test Statistic  | 0.966 | Shapiro Wilk GOF Test                       |
|------------------------------|-------|---------------------------------------------|
| 5% Shapiro Wilk P Value      | 0.267 | Data appear Normal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.118 | Lilliefors GOF Test                         |
| 5% Lilliefors Critical Value | 0.123 | Data appear Normal at 5% Significance Level |

Data appear Normal at 5% Significance Level

| As                             | suming Nor | mal Distribution                                          |         |
|--------------------------------|------------|-----------------------------------------------------------|---------|
| 95% Normal UCL                 |            | 95% UCLs (Adjusted for Skewness)                          |         |
| 95% Student's-t UCL            | 14.76      | 95% Adjusted-CLT UCL (Chen-1995)                          | 14.79   |
|                                |            | 95% Modified-t UCL (Johnson-1978)                         | 14.77   |
|                                | Gamma      | GOF Test                                                  |         |
| A-D Test Statistic             | 0.278      | Anderson-Darling Gamma GOF Test                           |         |
| 5% A-D Critical Value          | 0.748      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| K-S Test Statistic             | 0.0948     | Kolmogorov-Smirnov Gamma GOF Test                         |         |
| 5% K-S Critical Value          | 0.124      | Detected data appear Gamma Distributed at 5% Significance | e Level |
| Detected data appear           | r Gamma D  | istributed at 5% Significance Level                       |         |
|                                |            |                                                           |         |
|                                |            | Statistics                                                |         |
| k hat (MLE)                    | 32.52      | k star (bias corrected MLE)                               | 30.62   |
| Theta hat (MLE)                | 0.436      | Theta star (bias corrected MLE)                           | 0.463   |
| nu hat (MLE)                   | 3317       | nu star (bias corrected)                                  | 3123    |
| MLE Mean (bias corrected)      | 14.16      | MLE Sd (bias corrected)                                   | 2.56    |
|                                |            | Approximate Chi Square Value (0.05)                       | 2994    |
| Adjusted Level of Significance | 0.0453     | Adjusted Chi Square Value                                 | 2991    |
| Ass                            | suming Gar | nma Distribution                                          |         |
|                                | •          |                                                           |         |

95% Adjusted Gamma UCL (use when n<50) 14.79

95% Approximate Gamma UCL (use when n>=50)) 14.77

User Selected Options Date/Time of Computation ProUCL 5.12/1/2021 4:49:19 PM From File Brook Trout, Zinc, mg\_kg - ww.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

# Brook Trout, Zinc, mg/kg - ww

|                              | Lognormal GOF Test     |                                                |
|------------------------------|------------------------|------------------------------------------------|
| Shapiro Wilk Test Statistic  | 0.99                   | Shapiro Wilk Lognormal GOF Test                |
| 5% Shapiro Wilk P Value      | 0.978                  | Data appear Lognormal at 5% Significance Level |
| Lilliefors Test Statistic    | 0.0833                 | Lilliefors Lognormal GOF Test                  |
| 5% Lilliefors Critical Value | 0.123                  | Data appear Lognormal at 5% Significance Level |
| Data appear                  | Lognormal at 5% Signif | icance Level                                   |

#### Lognormal Statistics

| of logged Data 2. | 635 |
|-------------------|-----|
| of logged Data 0. | 177 |
|                   |     |
|                   |     |

| 95% H-UCL                | 14.79 | 90% Chebyshev (MVUE) UCL   | 15.22 |
|--------------------------|-------|----------------------------|-------|
| 95% Chebyshev (MVUE) UCL | 15.7  | 97.5% Chebyshev (MVUE) UCL | 16.37 |
| 99% Chebyshev (MVUE) UCL | 17.68 |                            |       |

# Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

# Nonparametric Distribution Free UCLs

| 95% CLT UCL                   | 14.75 | 95% Jackknife UCL            | 14.76 |
|-------------------------------|-------|------------------------------|-------|
| 95% Standard Bootstrap UCL    | 14.75 | 95% Bootstrap-t UCL          | 14.81 |
| 95% Hall's Bootstrap UCL      | 14.83 | 95% Percentile Bootstrap UCL | 14.78 |
| 95% BCA Bootstrap UCL         | 14.83 |                              |       |
| 90% Chebyshev(Mean, Sd) UCL   | 15.24 | 95% Chebyshev(Mean, Sd) UCL  | 15.73 |
| 97.5% Chebyshev(Mean, Sd) UCL | 16.4  | 99% Chebyshev(Mean, Sd) UCL  | 17.73 |
|                               |       |                              |       |

# Suggested UCL to Use

95% Student's-t UCL 14.76

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.