# **Appendix BSA-2**

**Aquatic Environment Baseline Study** 

PROJECT NUJIO'QONIK Environmental Impact Statement



PROJECT NUJIO'QONIK Aquatic Environment Baseline Study

August 2023

Prepared for:



Prepared by:

Stantec Consulting Ltd. 141 Kelsey Drive St. John's, NL A1B 0L2

File: 121417575

### **Table of Contents**

| Abbr | eviations |                                                              | i    |
|------|-----------|--------------------------------------------------------------|------|
| 1.0  | Introduc  | tion                                                         | 1-1  |
| 1.1  | Project O | Overview and Location                                        | 1-2  |
| 1.2  | Scope of  | the Study                                                    | 1-2  |
| 2.0  | Water Re  | esources and Use                                             |      |
| 2.1  | Scope Ar  | nd Objectives of the Water Resources and Use Study           |      |
| 2.2  | •         | · · · ·                                                      |      |
|      | 2.2.1     | Groundwater Resources                                        | 2-2  |
|      | 2.2.2     | Surface Water Resources                                      | 2-4  |
| 2.3  | Results   |                                                              | 2-13 |
|      | 2.3.1     | Groundwater Resources                                        | 2-13 |
|      | 2.3.2     | Surface Water Resources                                      | 2-23 |
| 2.4  | Referenc  | es                                                           | 2-45 |
| 3.0  | Wastewa   | ater Discharge                                               | 3-1  |
| 3.1  | Scope Ar  | nd Objectives of the Wastewater Discharge Study              | 3-1  |
| 3.2  | •         | , , , , , , , , , , , , , , , , , , , ,                      |      |
|      | 3.2.1     | Baseline Data Review                                         |      |
|      | 3.2.2     | Assimilative Capacity Study Planning                         | 3-2  |
| 3.3  | Results   |                                                              | 3-3  |
|      | 3.3.1     | Effluent Discharge Quality and Quantity                      | 3-3  |
|      | 3.3.2     | Existing and Proposed Infrastructure                         | 3-4  |
|      | 3.3.3     | Receiving Water Characterization                             | 3-4  |
|      | 3.3.4     | Assimilative Capacity Study                                  | 3-4  |
| 3.4  | Referenc  | es                                                           | 3-5  |
| 4.0  | Freshwa   | ter Fish and Fish Habitat                                    | 4-1  |
| 4.1  | Scope Ar  | nd Objectives of the Fish and Fish Habitat Study             | 4-1  |
| 4.2  | Regulato  | ry Framework                                                 | 4-1  |
| 4.3  | Methods   | ·                                                            |      |
|      | 4.3.1     | Spatial Boundaries                                           |      |
|      | 4.3.2     | Watercourse Crossing Identification                          | 4-4  |
|      | 4.3.3     | Fish Habitat Characterization                                | 4-4  |
|      | 4.3.4     | Fish Community                                               |      |
|      | 4.3.5     | Aquatic Species at Risk                                      | 4-5  |
| 4.4  | Results   |                                                              |      |
|      | 4.4.1     | Watercourse and Waterbody Identification                     | 4-5  |
|      | 4.4.2     | Fish Habitat Characterization                                |      |
|      | 4.4.3     | Fish Communities                                             |      |
|      | 4.4.4     | Aquatic Species at Risk and Species of Conservation Concern. |      |
| 4.5  |           | on                                                           |      |
| 4.6  | Referenc  | es                                                           | 4-18 |

| 5.0  | Freshwat   | er Fisheries                                                  | 5-1  |
|------|------------|---------------------------------------------------------------|------|
| 5.1  | Scope and  | d Objectives of the Fisheries Study                           |      |
|      | 5.1.1      | Regulatory Setting                                            |      |
| 5.2  | Methods.   |                                                               |      |
|      | 5.2.1      | Spatial Boundaries                                            |      |
|      | 5.2.2      | Data Sources                                                  |      |
| 5.3  | Results    |                                                               |      |
|      | 5.3.1      | Existing Freshwater Commercial, Recreational and Indigenous   |      |
|      |            | Fisheries                                                     | 5-2  |
|      | 5.3.2      | Current Fisheries Management                                  | 5-4  |
| 5.4  | Discussion | ٦                                                             |      |
| 5.5  | Reference  | S                                                             |      |
|      | 5.5.1      | Literature Cited                                              | 5-6  |
|      | 5.5.2      | Personal Communications                                       |      |
| 6.0  | Marine Er  | vironment and Use                                             | 6-1  |
| 6.1  |            | d Objectives of the Marine Environment and use baseline Study |      |
| •••• | 6.1.1      | Regulatory Setting                                            |      |
| 6.2  | Methods.   |                                                               |      |
| 0    | 6.2.1      | Spatial Boundaries                                            |      |
|      | 6.2.2      | Literature and Data Review                                    |      |
| 6.3  | Results    |                                                               |      |
| 0.0  | 6.3.1      | Marine Physical Environment                                   |      |
|      | 6.3.2      | Marine Biological Environment                                 |      |
|      | 6.3.3      | Marine Commercial Fisheries                                   |      |
|      | 6.3.4      | Marine Recreational Fisheries                                 |      |
|      | 6.3.5      | Aquaculture                                                   | 6-59 |
|      | 6.3.6      | Other Ocean Users                                             | 6-62 |
| 6.4  | Reference  | 9S                                                            | 6-75 |
|      | 6.4.1      | Literature Cited                                              |      |
|      | 6.4.2      | Personal Communications                                       | 6-84 |

### List of Tables

| Table 2.1  | Water Survey of Canada Stations used in Regional Regression Analysis    | 2-7  |
|------------|-------------------------------------------------------------------------|------|
| Table 2.2  | Proposed Surface Water Quality Monitoring Locations by Project Area     | 2-8  |
| Table 2.3  | Flow Metrics for Existing Catchments, Port au Port Wind Farm            | 2-26 |
| Table 2.4  | Water Quality Data for Protected Water Supply Areas on the Port Au Port |      |
|            | Peninsula (NLDECC 2023)                                                 | 2-29 |
| Table 2.5  | Flow Metrics for Existing Catchments, Codroy Wind Farm                  | 2-34 |
| Table 2.6  | Water Quality Summary for Grand Codroy River (NLDECC 2021)              | 2-36 |
| Table 2.7  | Flow Metrics for Existing Catchments, Port of Stephenville              | 2-39 |
| Table 2.8  | Gull (Mine) Pond Water Quality, Sampled September 23, 2022              | 2-43 |
| Table 2.9  | Noels Pond Water Quality Summary, Sampled September 22, 2022            | 2-43 |
| Table 2.10 | Muddy Pond Water Quality, Sampled September 25, 2022                    | 2-44 |
| Table 4.1  | Aquatic Species at Risk and/or Species of Conservation Concern that     |      |
|            | may occur in the RAA                                                    | 4-16 |

## PROJECT NUJIO'QONIK Aquatic Environment Baseline Study Table of Contents August 2023

| Table 5.1  | Salmon River Classification and Catch Limits                             | 5-5  |
|------------|--------------------------------------------------------------------------|------|
| Table 6.1  | Summary of Key Fish Species with the Potential to Occur in or Near the   |      |
|            | LAA                                                                      | 6-13 |
| Table 6.2  | Summary of Key Shellfish Species with the Potential to Occur in or Near  |      |
|            | the LAA                                                                  | 6-14 |
| Table 6.3  | Generalized Algal Communities and Associated Invertebrates in Intertidal |      |
|            | and Shallow Subtidal Areas in Western Newfoundland                       | 6-16 |
| Table 6.4  | Notable Fish and Shellfish Species Known to Spawn in Nearshore           |      |
|            | Habitats in the LAA                                                      | 6-17 |
| Table 6.5  | Aquatic Invasive Species identified in the LAA                           | 6-18 |
| Table 6.6  | Marine Mammals with the Potential to Occur in or Near the LAA            | 6-19 |
| Table 6.7  | Species at Risk with the Potential to Occur in or Near the LAA           | 6-25 |
| Table 6.8  | Details on Sensitive Areas in or near the LAA                            | 6-31 |
| Table 6.9  | Fish Harvests by Weight (kg) – NAFO 4Rcd (2011-2020)                     | 6-37 |
| Table 6.10 | Fish Harvests by Value (\$) – NAFO 4Rcd (2011 – 2020)                    |      |
| Table 6.11 | Total Weight (kg) of Composite Landings within 4Rcd for Selected         |      |
|            | Species Between 2009-2018 Atlas (Government of Canada 2023)              | 6-41 |
| Table 6.12 | Existing Aquaculture Facilities in the Vicinity of the Project           | 6-61 |
| Table 6.13 | Proximity of Project Infrastructure to Aquaculture Facilities            | 6-61 |
| Table 6.14 | Waterfowl and Murre Hunting Near the Project (2022-2023)                 | 6-63 |
| Table 6.15 | UXO Legacy Sites in the LAA                                              |      |
| Table 6.16 | Small Craft Harbours in the LAA                                          |      |

### List of Figures

| Figure 1.1  | Project Area                                                           | 1-3  |
|-------------|------------------------------------------------------------------------|------|
| Figure 2.1  | Spatial Boundaries                                                     |      |
| Figure 2.2  | Spatial Boundaries for Surface Water                                   | 2-5  |
| Figure 2.3  | Port au Port Wind Farm Surface Water Sampling Stations                 | 2-9  |
| Figure 2.4  | Port au Port Wind Farm (East) Surface Water Sampling Stations          | 2-10 |
| Figure 2.5  | Codroy Wind Farm Surface Water Sampling Stations                       | 2-11 |
| Figure 2.6  | Port of Stephenville Surface Water Sampling Stations                   | 2-12 |
| Figure 2.7  | Bedrock Geology in the Port au Port and Stephenville Regional          |      |
| C           | Assessment Areas                                                       | 2-14 |
| Figure 2.8  | Bedrock Geology in the Codroy Regional Assessment Area                 |      |
| Figure 2.9  | Surficial Geology in the Port au Port and Stephenville Regional        |      |
| •           | Assessment Area                                                        | 2-16 |
| Figure 2.10 | Surficial Geology in the Codroy Regional Assessment Area               | 2-17 |
| Figure 2.11 | Public Groundwater Supplies and Drilled Well Records                   | 2-18 |
| Figure 2.12 | Port au Port Wind Farm Surface Water Resources                         | 2-24 |
| Figure 2.13 | Port au Port Wind Farm (East) Surface Water Resources                  | 2-25 |
| Figure 2.14 | MMF for Select Watersheds, Port au Port Wind Farm                      |      |
| Figure 2.15 | Public Water Supply Areas and Water Rights, Port au Port Peninsula (NL |      |
| 0           | Water Resources Portal)                                                | 2-31 |
| Figure 2.16 | Port of Stephenville Surface Water Resources                           |      |
| Figure 2.17 | MMF for Select Watersheds, Codroy Wind Farm                            |      |
| Figure 2.18 | MMF for Rainy Brook and Grand Codroy River Watersheds,                 |      |
| U U         | Codroy Wind Farm                                                       | 2-35 |
|             |                                                                        |      |

August 2023

| Codroy Wind Farm Surface Water Resources                               |
|------------------------------------------------------------------------|
| MMF for Port of Stephenville Watersheds                                |
| Bathymetry at Noels Pond (Fracflow 2022)                               |
| Bathymetry at Muddy Pond (Fracflow 2022)                               |
| Bathymetry at Gull (Mine) Pond (Fracflow 2022)                         |
| Local and Regional Assessment Areas                                    |
| Potential Watercourse Crossings for Project Nujio'qonik GH2 – Port au  |
| Port Wind Farm                                                         |
| Potential Watercourse Crossings for Project Nujio'qonik GH2 - Codroy   |
| Wind Farm                                                              |
| Potential Watercourse Crossings for Project Nujio'qonik GH2 –          |
| Stephenville Area                                                      |
| Spatial Boundaries                                                     |
| Distribution of Sediment in St. George's Bay (Shaw and Forbes 1990)    |
| Bathymetry of the Gulf of St. Lawrence (Galbraith et al. 2022)         |
| Generalized Bathymetry of St. George's Bay (Shaw and Forbes 1990) 6-10 |
| Marine Mammal Sightings in the RAA (Ocean Biodiversity Information     |
| Systems Sightings Database 1913-2022)                                  |
| Sensitive Areas within the RAA                                         |
| Commercial Fishing of All Species, 2009-2018                           |
| Commercial Fishing of Fixed Gear Type, 2009-2018                       |
| Commercial Fishing of Mobile Gear Type, 2009-2018                      |
| Cumulative Fishing Effort Intensity within 4Rcd (2005-2019)            |
| Commercial Fishing of Atlantic Herring, 2009-2018                      |
| Commercial Fishing of Mackerel, 2009-2018                              |
| Commercial Fishing of Capelin, 2009-2018                               |
| Commercial Fishing of Queen Snow Crab, 2009-2018                       |
| Commercial Fishing of Witch Flounder, 2009-2018                        |
| Commercial Fishing of Greenland Halibut, 2009-2018                     |
| Commercial Fishing of Redfish, 2009-2018                               |
| Commercial Fishing of Atlantic Cod, 2009-2018                          |
| Commercial Fishing of Atlantic Halibut, 2009-2018                      |
| Existing Aquaculture Facilities in the Vicinity of the Project         |
| Marine Traffic Density in the Regional Assessment Area                 |
| Small Craft Harbours                                                   |
| Active and Inactive Disposal at Sea Sites in the RAA/LAA               |
|                                                                        |

#### List of Appendices

- Appendix ACommunity Water Resources ReportsAppendix BDrilled Water Well RecordsAppendix CRegional Regression RelationshipsAppendix DWatercourse Crossing Mapbook
- Appendix E Detailed Fish Habitat Information
- Appendix F Land and Resource Use Responses

### Abbreviations

| AC      | Assimilative Capacity                                    |
|---------|----------------------------------------------------------|
| AC CDC  | Atlantic Canada Conservation Data Center                 |
| ASB     | aeration stabilization basin                             |
| CCME    | Canadian Council of Ministers of the Environment         |
| COSEWIC | Committee on the Status of Endangered Wildlife in Canada |
| CPAWS   | Canadian Parks and Wilderness Society                    |
| DFO     | Fisheries and Oceans Canada                              |
| DND     | Department of National Defence                           |
| EA      | environmental assessment                                 |
| EBSAs   | Ecologically and Biologically Significant Areas          |
| ECCC    | Environment and Climate Change Canada                    |
| EDOs    | Environmental Discharge Objectives                       |
| EIS     | Environmental Impact Statement                           |
| EPA     | Environmental Protection Act                             |
| EQOs    | Environmental Quality Objectives                         |
| ERA     | Ecological Risk Assessment                               |
| ESA     | Endangered Species Act                                   |
| FAL     | Freshwater Aquatics Life                                 |
| GCDWQ   | Guidelines for Canadian Drinking Water Quality           |
| HADD    | harmful alteration, disruption or destruction            |
| kV      | kilovolt                                                 |
| LAA     | Local Assessment Area                                    |
| m       | metre                                                    |
| mbgs    | metres below ground surface                              |
| MMF     | mean monthly flow                                        |
| Mt      | megatonnes                                               |
| MW      | megawatt                                                 |

## PROJECT NUJIO'QONIK Aquatic Environment Baseline Study Abbreviations August 2023

| NL    | Newfoundland and Labrador                                 |
|-------|-----------------------------------------------------------|
| NLDMA | Newfoundland and Labrador Department of Municipal Affairs |
| PPWSA | Protected Public Water Supply Areas                       |
| psu   | practical salinity unit                                   |
| RAA   | Regional Assessment Area                                  |
| RoW   | Right of Way                                              |
| SAR   | species at risk                                           |
| SARA  | Species at Risk Act                                       |
| SiBAs | Significant Benthic Areas                                 |
| SMAs  | Special Marine Areas                                      |
| SOCC  | species of conservation concern                           |
| SSAC  | Species Status Advisory Committee                         |
| SWMP  | Surface Water Monitoring Plan                             |
| t     | Metric tonnes                                             |
| TDS   | total dissolved solids                                    |
| TPH   | total petroleum hydrocarbons                              |
| TSS   | total suspended sediment                                  |
| UXOs  | unexploded ordnances                                      |
| VEC   | valued environmental component                            |
| VOC   | volatile organic compounds                                |
| WEGH2 | World Energy GH2                                          |
| WHPA  | wellhead protection area                                  |
| WQMA  | Water Quality Monitoring Agreement                        |
| WSC   | Water Survey of Canada                                    |
| WUL   | water use license                                         |
|       |                                                           |

## 1.0 Introduction

World Energy GH2 (WEGH2) is proposing Project Nujio'qonik (the Project). The Project involves the development, construction, operation and maintenance, and eventual decommissioning and rehabilitation of one of the first Canadian, commercial-scale, "green hydrogen"<sup>1</sup> and ammonia production plants powered by renewable wind energy. Located on the western coast of the island of Newfoundland, Newfoundland and Labrador (NL), the Project will have a maximum production of up to approximately 206,000 t of green hydrogen (equivalent to approximately 1.17 megatonnes (Mt) of ammonia) per year. The hydrogen produced by the Project will be converted into ammonia and exported to international markets by ship. The hydrogen / ammonia plant and associated storage and export facilities will be located at the Port of Stephenville (in the Town of Stephenville, NL) on a privately-owned brownfield site and at an adjacent existing marine terminal, both of which are zoned for industrial purposes.

Renewable energy from two approximately 1,000 megawatt (MW) / 1 gigawatt (GW) onshore wind farms on the western coast of Newfoundland will be used to power the hydrogen and ammonia production processes. These wind farms (referred to herein as the "Port au Port area wind farm" and the "Codroy area wind farm") will include up to 328 turbines and collectively produce approximately 2,000 MW / 2 GW of renewable electricity. The Port au Port wind farm layout under consideration consists of 171 turbine locations on the Port au Port Peninsula, NL and adjacently on the Newfoundland "mainland" (i.e., northeast of the isthmus at Port au Port, on Table Mountain). The final layout of the Port au Port wind farm will ultimately consist of up to 164 turbines when constructed. The Codroy wind farm layout under consideration consists of 143 turbine locations. The final layout of the Codroy wind farm will also consist of up to 164 wind turbines located on Crown land in the Anguille Mountains of the Codrov Valley, NL, The final total nameplate capacity for each wind farm is expected to be approximately 1,000 MW / 1 GW. The modelling and assessment work is based on preliminary layouts for both wind farm sites (i.e., 171 potential turbine locations at the Port au Port wind farm and 143 potential turbine locations at Codroy wind farm). Final wind farm layouts will be dependent on results of the wind campaign and more detailed field investigations. Once the layout and number of turbines are finalized, the results of models will be reviewed and updated as required. If additional turbine locations are added to the Codroy wind farm in the future, it will be done in consideration of the mitigation measures, compliance with regulations, and such that the conclusions of the effects assessment do not change.

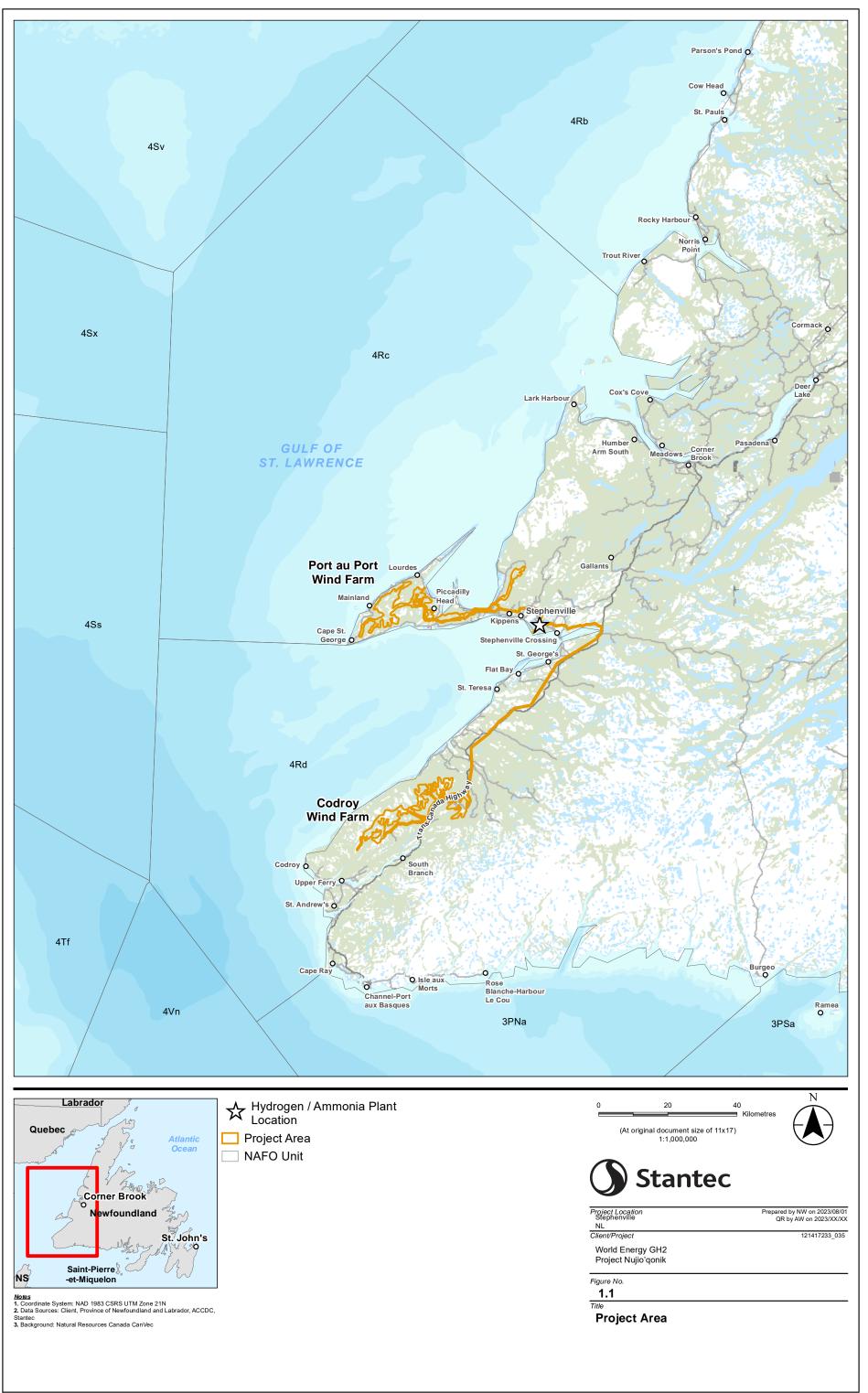
The Project is subject to provincial environmental assessment (EA) requirements under the NL *Environmental Protection Act* and associated *Environmental Assessment Regulations* (EA Regulations). This document is the Aquatic Baseline Study, prepared in support of an Environmental Impact Statement (EIS) and required under section 4.3.2 of the EIS Guidelines.

<sup>&</sup>lt;sup>1</sup> "Green hydrogen" is produced via electrolysis using renewable electricity to split water into hydrogen and oxygen. This type of hydrogen, which is referred to by the European Commission (n.d.) as "renewable fuel of non-biological origin", is often called "green hydrogen" in industry.

### 1.1 Project Overview and Location

The Project includes the construction, operation and maintenance, and decommissioning of the Port au Port wind farm, Codroy wind farm, and a hydrogen / ammonia plant in Stephenville, as well as upgrades to the existing port at Stephenville (Figure 1.1).

The Project Area shown on Figure 1.1 is a conservative representation of the spatial extent of potential Project-related direct physical disturbance (i.e., the Project footprint). In addition to encompassing the immediate area in which Project components and activities will occur, the Project Area also includes up to a 175 metre (m) buffer (350 m right-of-way [RoW]) around key Project components. This buffer allows some flexibility for the micro-siting of certain Project components (e.g., wind turbines) during detailed design, based on technical considerations as well as the avoidance of environmentally sensitive areas, where practicable.


The proposed hydrogen / ammonia plant and export facilities at the Port of Stephenville are located approximately 5 kilometres (km) west of the Town of Stephenville, Newfoundland and Labrador (NL). The Port au Port wind farm (comprised of Port au Port West and Port au Port East) is located west and north of Stephenville and the Codroy wind farm is located 75 km south of Stephenville; both are connected to the hydrogen / ammonia plant by a collector system / transmission lines.

### 1.2 Scope of the Study

The Aquatic Environment Baseline Study has been developed in consideration of the section 4.3.2 of the final EIS Guidelines. The study is focused on the following components:

- Water Resources and Use
  - Groundwater Resources
  - Surface Water Resources
- Wastewater Discharge
- Freshwater Fish and Fish Habitat
- Freshwater Fisheries
- Marine Environment

As detailed below, the approach to the baseline studies has been developed based on both field data and publicly available desktop information. Information on spatial boundaries, study scope, methods and the results are provided for each component.



i5b\_Fig\_1.1\_Marine\_Project\_Area.mxd Revised: 2023-08-01 By: NWhite

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

### 2.0 Water Resources and Use

This baseline report describes the relevant components of the water resources within the Regional Assessment Area (RAA) associated with the hydrogen / ammonia plant, wind farm locations, and transmission lines including:

- 1. Hydrological features such as watershed areas and the location of rivers and river inputs
- 2. Surface and ground water resources
- 3. Surface-water flow, groundwater movement, base flow and aquifer recharge zones
- 4. Water quality
- 5. Hydrologic/Hydrogeologic assessment of the water supply, including testing results for quantity and quality, including metals
- 6. Survey of existing public drinking water source areas that may be affected, including watershed or recharge areas and characteristics, land cover assessment, and a water quality assessment

This baseline study will inform the assessment of the effects that the Project may have on the aquatic environment.

### 2.1 Scope And Objectives of the Water Resources and Use Study

The objectives of this water resources and use baseline study are to summarize existing conditions so the effects of the Project on groundwater and surface water resources can be predicted in future studies. The scope of the baseline study includes:

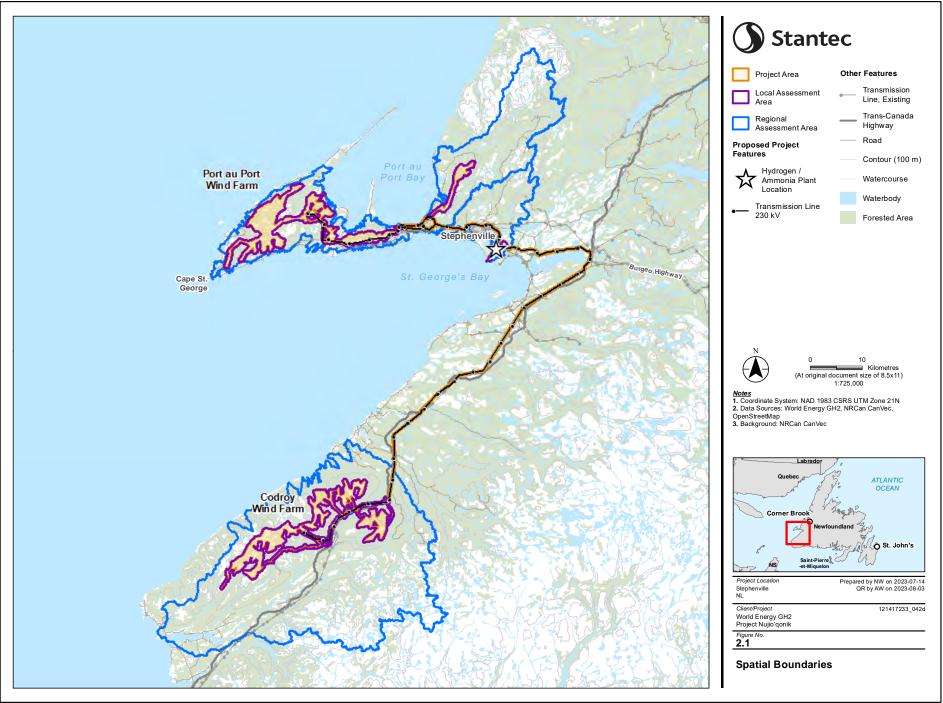
- Description of the existing groundwater conditions in the RAA including groundwater levels and background water quality.
- Description of the existing surface water quality and surface water quantity in the RAA
- Identification of existing users of both groundwater and surface water

### 2.2 Methods

This section includes the review of existing desktop information and the development of baseline datasets to support the assessment of the assimilative capacity of the receiving environment throughout the development of the project. Field work is anticipated in Summer 2023 to support the development of the EIS and future permitting.

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 2.0 Water Resources and Use August 2023

#### 2.2.1 Groundwater Resources


#### 2.2.1.1 Spatial Boundaries

The Project Area is the direct footprint of the Project and is consistent across Valued Environmental Components (VECs). The Project Area encompasses the immediate area in which Project activities and components will occur and is comprised of the following distinct areas: the Port au Port wind farm, the Codroy wind farm, the hydrogen / ammonia plant, port facilities, and the 230 kilovolt (kV) transmission lines, as well as associated infrastructure including roads, substations, and water supply(ies). The Project Area is the potential area of direct physical disturbance associated with the construction, operation, and decommissioning, rehabilitation and closure of the Project. The Project Area includes a buffer (up to 175 m) around planned infrastructure to allow for micro siting during detailed design and mitigation to avoid ecological and culturally sensitive habitats

The Local Assessment Area (LAA) is the area adjacent to the Project Area where there is the potential for direct Project-related effects on groundwater. The potential effects related to water table drawdown during construction activities were used as a basis for delineating the LAA. To estimate the potential area of influence of a dewatering well, a fixed-radius approach consistent with that used to generate wellhead protection areas (WHPAs) for small municipal supply wells in the province was used. A WHPA generated using a fixed-radius approach usually encompasses the area within 100 to 300 metres of the wellhead (NLDMAE 2017). Given that water taking(s) associated with the above activities are of shorter duration and expected to be at a lower rate than a municipal taking, a 100-m buffer was added to the Project Area to define the LAA, excluding portions which are exclusively related to transmission lines as no Project-related dewatering is expected in these areas. The LAA is divided into the Port au Port LAA, the Codroy LAA, and the Stephenville LAA and may change slightly based on the Codroy camp water supply locations/water demand.

The RAA is the area adjacent to the LAA where there is the potential for indirect and/or cumulative Project-related effects on groundwater. As the environmental effects of the Project on groundwater resources are not expected to extend to the boundaries of the RAA, the RAA for groundwater resources was chosen to match the RAA for surface water resources and is based on the watershed boundaries contributing to the Project Area. The RAA is divided into the Port au Port RAA, the Codroy RAA, and the Stephenville RAA.

The Project Area, LAA, and RAA are presented in Figure 2.1.

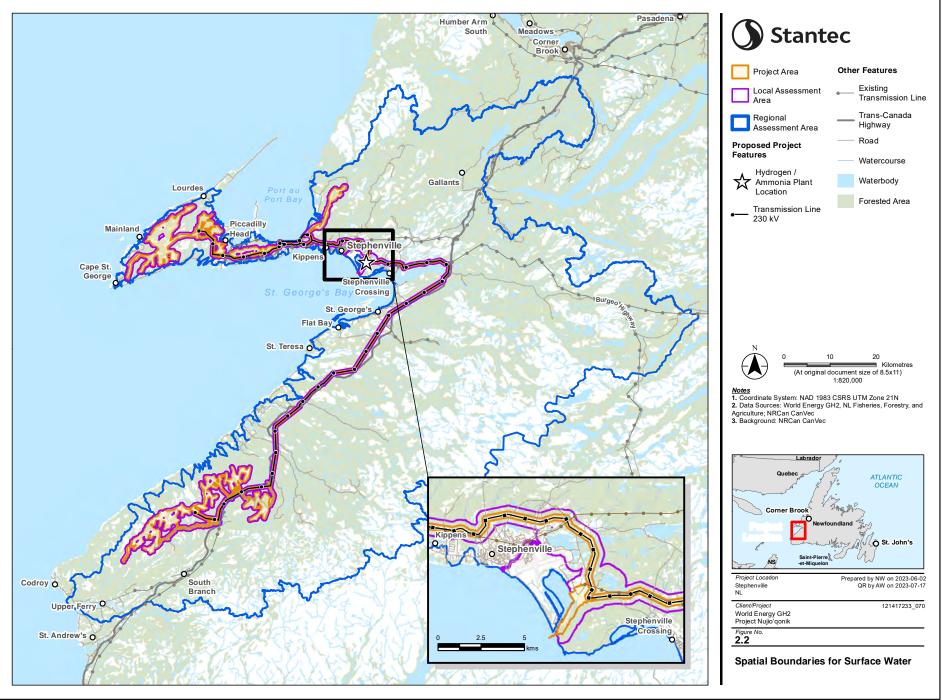


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

#### 2.2.1.2 Baseline Data Review

The baseline data review includes publicly available data and hydrogeological studies specific to the Project. The following publicly available data sources were used to support the baseline study of groundwater resources:

- Bedrock and surficial geology mapping (GeoScience OnLine Atlas; NLDIET 2023)
- Real Time Water Quality Monitoring Station Data (NLDECC 2023a)
- Protected groundwater area mapping (Water Resources Portal; NLDECC 2023b)
- Drilled Water Database (NLDECC 2023c)
- Hydrogeology of Western Newfoundland (AMEC 2008)
- Water Resources Atlas of Newfoundland (NLDEL 1992)


This report references the following supporting design and planning studies prepared for the Project:

- Fracflow (2022), Assessment of the Potential to Obtain an Industrial Water Supply, Stephenville, NL.
- Fracflow (2023a), Industrial Water Supply Infrastructure, Stephenville, NL.
- Fracflow (2023b), Geotechnical Factual Report. Former Abitibi Mill Site. Stephenville, NL.
- Fracflow (2023c), Preliminary Geotechnical Interpretive Report. Former Abitibi Mill Site. Stephenville, NL.
- Stantec (2022), Preliminary Findings of the Environmental Due Diligence Review, Port Harmon and Former Abitibi Site, Stephenville, NL.

#### 2.2.2 Surface Water Resources

#### 2.2.2.1 Spatial Boundaries

The Project Area is the direct footprint of the Project and is consistent across VECs. The Project Area encompasses the immediate area in which Project activities and components will occur and is comprised of following distinct areas: the Port au Port wind farm, the Codroy wind farm, the hydrogen / ammonia plant, port facilities, and the 230 kV transmission lines, as well as associated infrastructure including roads, substations, and water supply. The Project Area is the potential area of direct physical disturbance associated with the construction, operation and decommissioning and rehabilitation of the Project. The Project Area also includes a up to a 175 m buffer (350 m RoW) around key Project components to allow for micro-siting during detailed design and mitigation to avoid ecological and culturally sensitive habitats.



#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 2.0 Water Resources and Use August 2023

The LAA is the area adjacent to the Project Area where there is the potential for direct Project-related effects on surface water. The potential effects related to surface water quantity and surface water quality during construction activities were used as a basis for delineating the LAA. The LAA for this VEC encompasses the topographic catchment area of site watercourses and waterbodies located downstream of project infrastructure.

The RAA is the area adjacent to the LAA where there is the potential for indirect and/or cumulative Project-related effects on surface water. As the environmental effects of the Project on surface water resources are not expected to extend to the boundaries of the RAA, the RAA for this VEC is based on the delineated watershed area contributing surface flow to defined watercourses and waterbodies, from headwater to defined outlet point, in which project infrastructure is contained.

#### 2.2.2.2 Baseline Data Review

The baseline data review includes publicly available data and supporting design and planning studies specific to the Project. The following publicly available data sources were used to support the baseline study of surface water resources:

- Publicly available GIS data including hydro network and topographic contours (CANVEC 2023)
- Regional regression for the Province of Newfoundland (AMEC 2014)
- Surface water quantity data (Water Survey of Canada (WSC) hydrometric network)
- Regional surface water quality data (Water Quality Monitoring Agreement (WQMA) Sites)
- Surface source water supply mapping (Water Resources Portal)

This report references the following supporting design and planning studies prepared for the Project:

- Fracflow (2023a), Industrial Water Supply Infrastructure, Stephenville, NL
- Fracflow (2022), Active Storage and Water Quality in Water Supply Ponds, Stephenville, NL

#### 2.2.2.3 Data Analysis

#### Surface Water Quantity

Surface water quantity is estimated using regional regression relationship developed for the Province of Newfoundland and Labrador. The Project is located within Subregion D, a hydrologic zone which encompasses the southwestern region of the island of Newfoundland (AMEC 2014). The regression relationships are developed using hydrometric station data from the Water Survey of Canada (WSC) gauged watercourses located in Subregion D (Table 2.1).

| Station<br>ID | Station Name                              | Drainage Area<br>(km²) | Years of<br>Record | Range of<br>Years |
|---------------|-------------------------------------------|------------------------|--------------------|-------------------|
| 02YJ001       | Harrys River Below Highway Bridge         | 640                    | 53                 | 1968-2021         |
| 02YJ003       | Pinchgut Brook at Outlet of Pinchgut Lake | 119                    | 12                 | 1986-1997         |
| 02YK002       | Lewaseechjeech Brook at Little Grand Lake | 470                    | 66                 | 1952-2021         |
| 02YN002       | Lloyds River Below King George IV Lake    | 469                    | 41                 | 1981-2021         |
| 02ZB001       | Isle Aux Morts River Below Highway Bridge | 205                    | 58                 | 1962-2019         |
| 02ZC002       | Grandy Brook Below Top Pond Brook         | 230                    | 39                 | 1982-2020         |
| 02ZD002       | Grey River Near Grey River                | 1,340                  | 48                 | 1969-2019         |
| 02ZE001       | Salmon River at Long Pond                 | 2,640                  | 22                 | 1944-1965         |
| 02ZE004       | Conne River at Outlet of Conne River Pond | 99.5                   | 33                 | 1989-2021         |
| 02ZF001       | Bay Du Nord River at Big Falls            | 1,170                  | 72                 | 1950-2021         |
| 02ZK004       | Little Salmonier River near North Harbour | 104                    | 39                 | 1983-2021         |
| 02ZA002       | Little Barachois Brook near St. George's  | 343                    | 20                 | 1978-1997         |
| 02ZA002       | Highlands River at Trans Canada Highway   | 72                     | 39                 | 1981-2020         |
| 02ZA003       | Little Codroy River near Doyles           | 139                    | 16                 | 1982-1997         |
| 02ZK003       | Little Barachois River Near Placentia     | 37                     | 37                 | 1983-2019         |

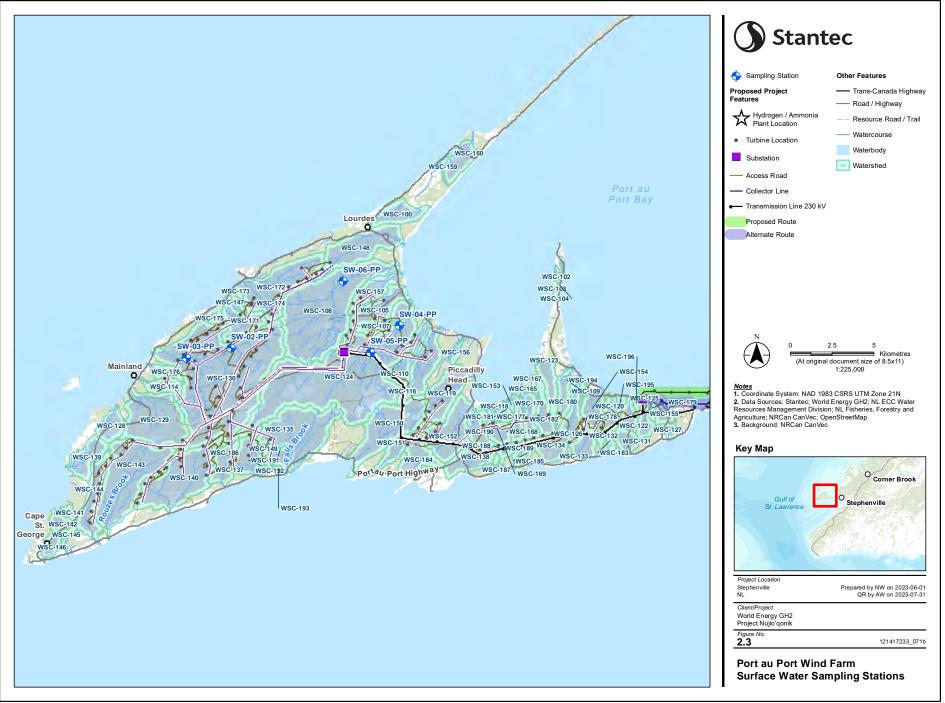
#### Table 2.1 Water Survey of Canada Stations used in Regional Regression Analysis

Estimates of mean monthly flow (MMF) and mean annual flow (MAF) are determined for each studied watershed using the Subregion D regional regression relationships. MMF is compared to a threshold value of 30% MAF per the 2013 Department of Fisheries and Oceans (DFO) Framework for Assessing the Ecological Flow Requirements to Support Fisheries in Canada. Per the framework, changes to a flow regime that result in flows <30% of MAF represent a heightened risk of effects on fisheries.

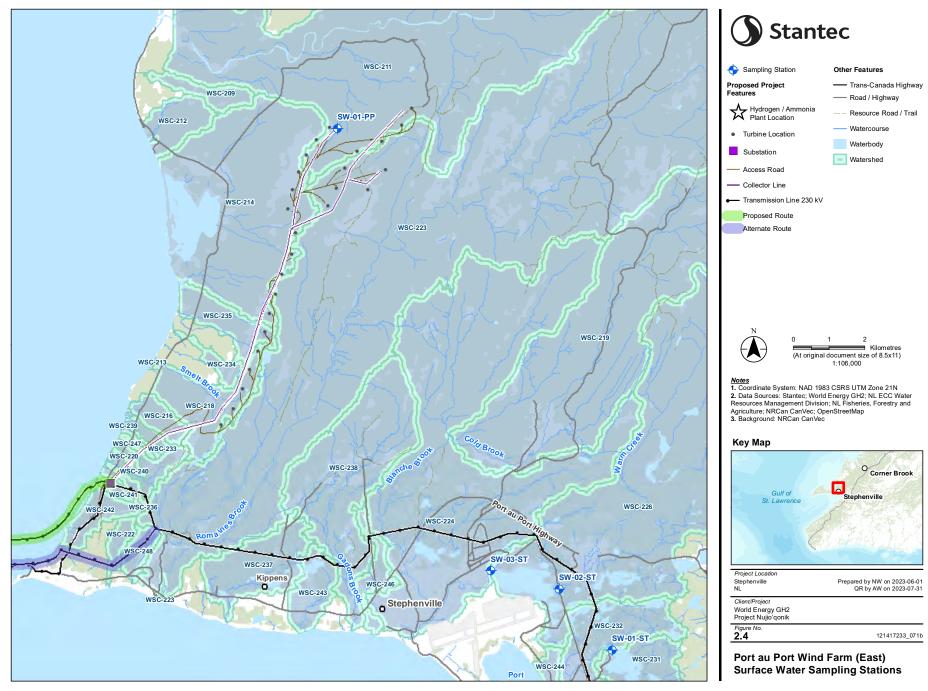
#### Surface Water Quality

Analysis of available surface water quality data includes the comparison of available data to applicable guideline values, specifically the Canadian Council of Ministers of the Environment (CCME) Guidelines for the Protection of Aquatic Life in marine and freshwater. Where surface water is used as a source of potable water supply, raw water quality is also screened using the Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ) as a metric to assess the potability of the water supply source.

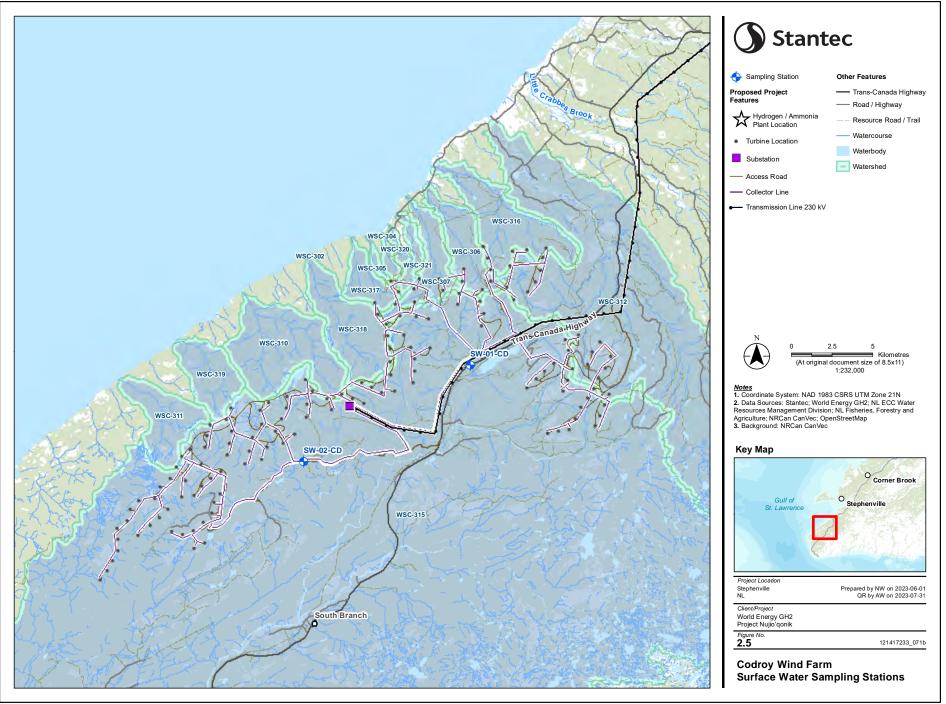
### 2.2.2.4 Surface Water Quality Monitoring Field Program


A surface water quality monitoring field program will be carried out within watersheds at the Port au Port and Codroy wind farms and associated infrastructure in conjunction with fish habitat assessment work in the Spring/Summer of 2023. Monitoring locations will include watercourses within identified Protected Public Water Supply Areas (PPWSAs) providing surface water supply and a subset of select watercourses in major catchment areas at locations upstream and downstream of proposed project infrastructure. The preliminary Surface Water Monitoring Plan (SWMP) outlined in this section will be reviewed and updated based on available information prior to undertaking sampling. Upon completion of field work and sample analysis a separate report on the results will be prepared. A high-level description of planned monitoring locations and methods are provided in the following subsections.

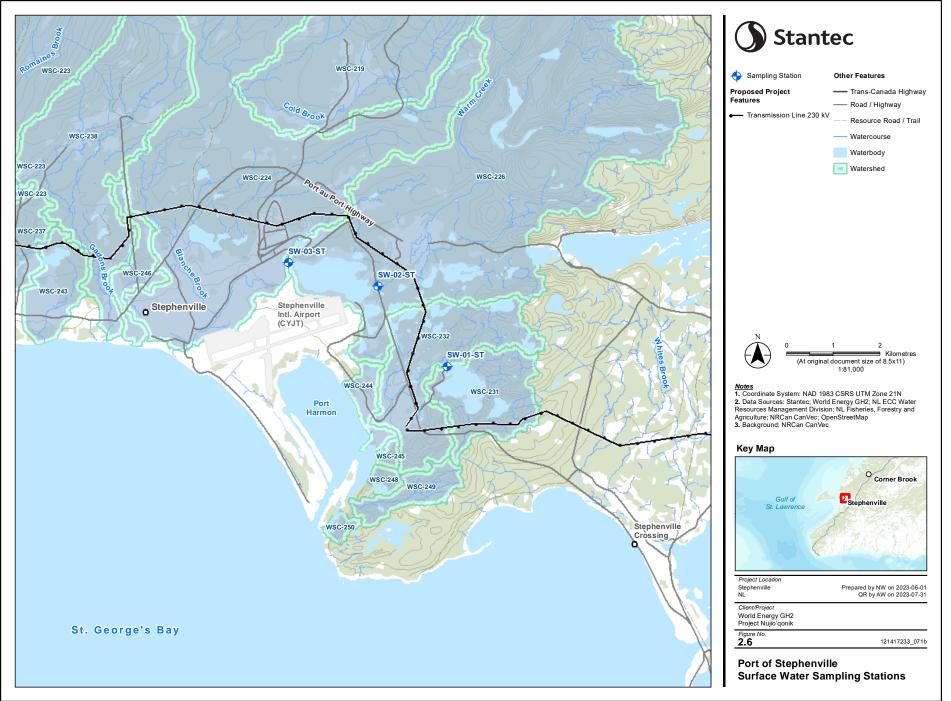
#### Surface Water Quality Monitoring Locations


Eleven distinct monitoring locations are proposed for surface water quality monitoring. Locations are selected based on proximity to project infrastructure (Table 2.2, Figures 2.3 to 2.6)

| Port au Port Peninsula Wind Farm                                                                        |                                                    |                                                           |                               |  |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------|--|
| Stream Name                                                                                             | Station ID                                         | Identifier                                                | Watershed                     |  |
| Phillips Brook                                                                                          | SW-01-PP                                           | Adjacent to Project Infrastructure, WCA-092a              | WSC-211                       |  |
| Mainland Brook                                                                                          | SW-02-PP                                           | Adjacent to Project Infrastructure, WCA-020               | WSC-130                       |  |
| Mainland Brook                                                                                          | SW-03-PP                                           | Adjacent to Project Infrastructure, WCL-713               | WSC-130                       |  |
| Harry's Brook                                                                                           | SW-04-PP                                           | Adjacent to Project Infrastructure, WCA-113               | WSC-124                       |  |
| Harry's Brook                                                                                           | SW-05-PP                                           | Adjacent to Project Infrastructure, WCA-769e              | WSC-124                       |  |
| Victor's Brook                                                                                          | SW-06-PP                                           | Adjacent to Project Infrastructure, downstream of WCA-118 | WSC-108                       |  |
|                                                                                                         | ·                                                  | Codroy Wind Farm                                          | ·                             |  |
| Stream Name                                                                                             | Station ID                                         | Identifier                                                | Watershed                     |  |
| Morris Brook                                                                                            | SW-01-CD                                           | Downstream of Project Infrastructure, at highway          | WSC-315                       |  |
| Unnamed Tributary to SW-02-CD Adjacent to Project Infrastructure, WCC-219b<br>North Branch Grand Codroy |                                                    | WSC-315                                                   |                               |  |
|                                                                                                         | ·                                                  | Port of Stephenville                                      | ·                             |  |
| Stream Name                                                                                             | Station ID                                         | Identifier                                                | Watershed                     |  |
| Unnamed                                                                                                 | named SW-01-ST Discharge point of Gull (Mine) Pond |                                                           | Gull (Mine) Pond<br>Watershed |  |
| Warm Creek                                                                                              | SW-02-ST                                           | Supply Stream to Noels Pond                               | Warm Creek<br>Watershed       |  |
| Varm Creek SW-03-ST Outlet of Noels Pond                                                                |                                                    | Warm Creek<br>Watershed                                   |                               |  |


#### Table 2.2 Proposed Surface Water Quality Monitoring Locations by Project Area




Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for eacuracy and completeness of the data.

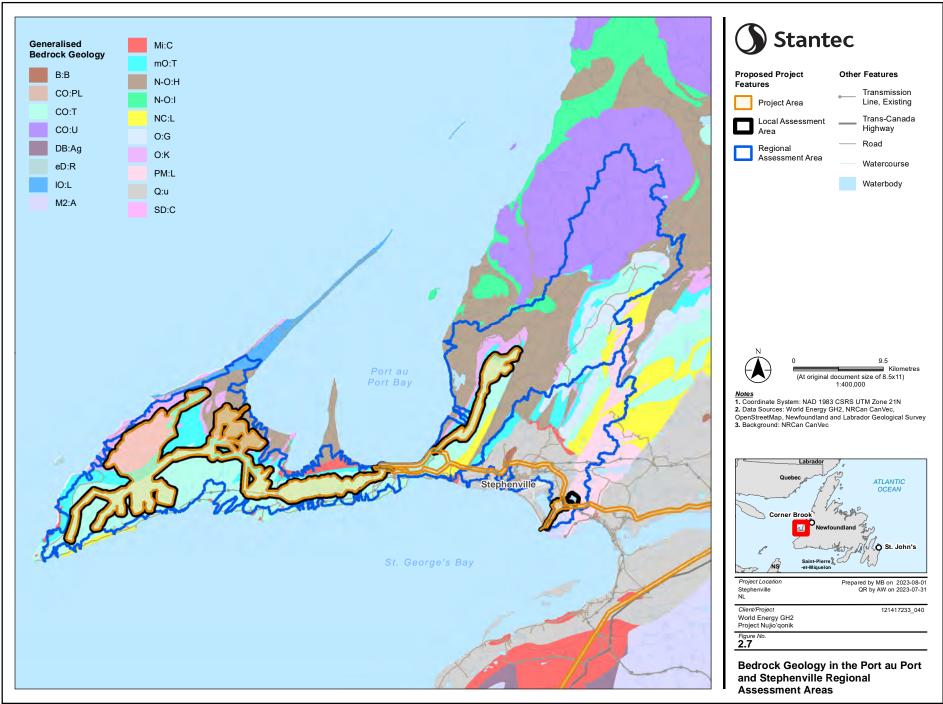


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

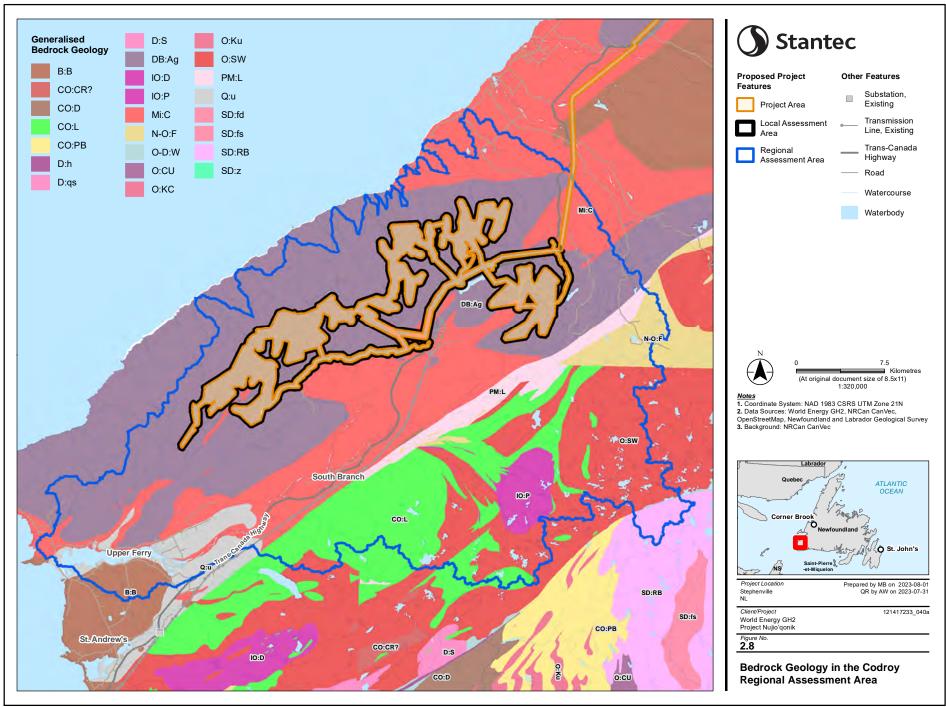
#### 2.3 Results

#### 2.3.1 Groundwater Resources

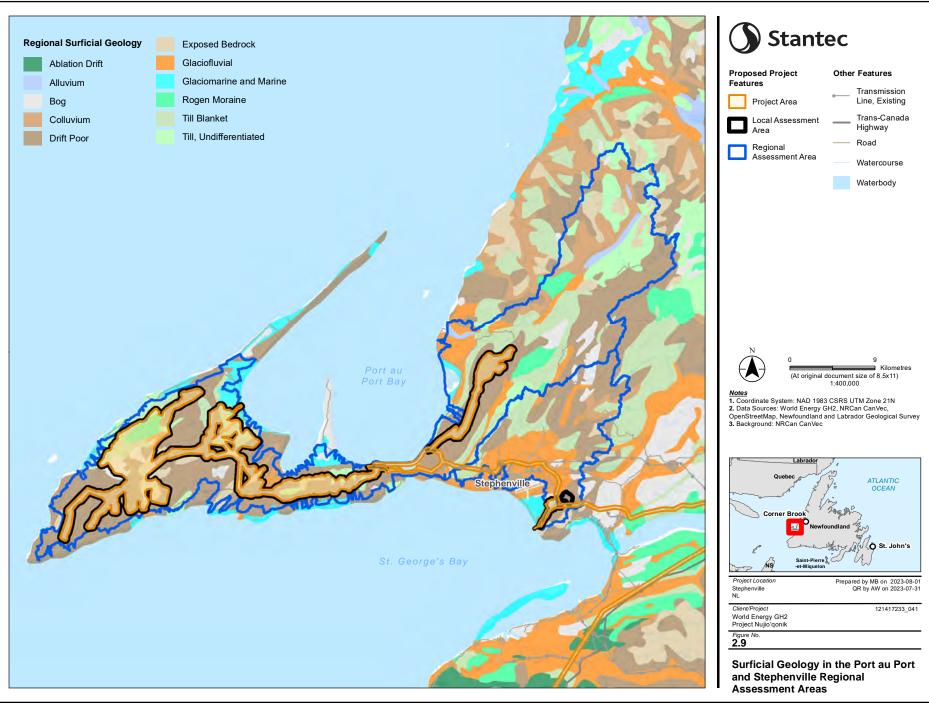
The baseline hydrogeological conditions for the Project, based on the documents listed in Section 2.2.1.1, are summarized below. Bedrock and surficial geology in the RAA are presented in Figures 2.7 to 2.10. Locations of water supply wells and PPWSAs related to groundwater are presented in Figure 2.11.


#### 2.3.1.1 Port au Port Wind Farm

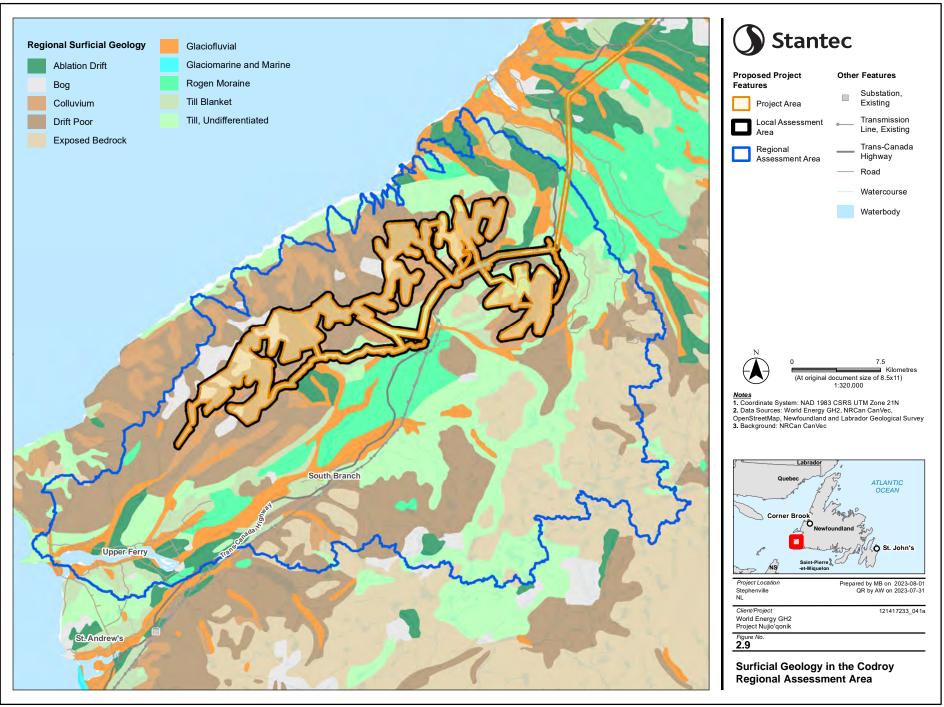
The portion of the RAA associated with the Port au Port wind farm (Port au Port RAA) is comprised of two areas – one on the Port au Port Peninsula itself (referred to as Port au Port West) and one near the communities of Port au Port East and Point au Mal (referred to as Port au Port East).


Bedrock geology underlying the Port au Port RAA consists of Paleozoic-aged rocks of the Table Point, Table Cove, and Black Cove Formations belonging to the Table Head Group, and the March Point and Petit Jardin Formations belonging to the St George Group. The Table Head and St George groups are described as mainly carbonate and clastic limestone and are indicated as mO:T and CO:T on Figure 2.7 respectively. Bedrock along the northern coast of the Port Au Port Peninsula is comprised of Paleozoicaged rocks of the Mainland Formation, belonging to the Goose Tickle Group, consisting mostly of sandstone and other siliciclastic marine rocks(O:K on Figure 2.7).Bedrock along the eastern coast of the Port Au Port Peninsula is comprised of lower-Ordovician-aged rocks of the Humber Arm Supergroup, consisting of shales and other sedimentary bedrock (N-O:H on Figure 2.7) (Williams 1985).

Surficial geology (Figure 2.9) is largely shallow bedrock concealed by vegetation, patches of till, sand and gravel, and bog. Surficial deposits of marine clay, sand, gravel, and diamicton are common near coastal areas, particularly on the northern shore of the peninsula (Liverman and Taylor 1993). Areas of till veneer and exposed bedrock are associated with poor infiltration rates; greater recharge potential is expected where sands and gravels are present at surface (Acres 1992).

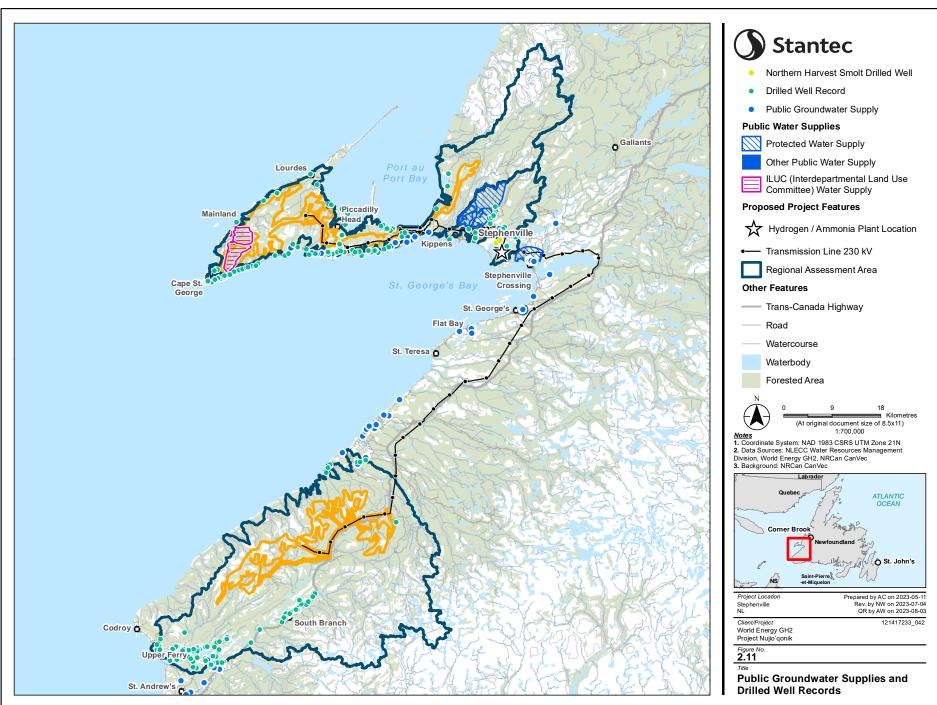

Hydrogeology of Western Newfoundland (AMEC 2008) contains records for thousands of water wells drilled on the western side of the Island of Newfoundland. Hydrostratigraphic units are defined for various surficial materials with letters (Units A and B) and for various bedrock lithologies with numbers (Units 1 through 6) based on well depths and yield.




Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for eacuracy and completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.




Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.



8

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 2.0 Water Resources and Use August 2023

The majority of drilled wells in the Port au Port RAA are located in hydrostratigraphic Unit 3, which is described as moderate yield carbonate sedimentary rock comprised of limestone and dolostone from the Port au Port, St. George, and Table Head groups (AMEC 2008). This description is consistent with the bedrock geology described above (Williams 1985). Unit 3 is described as having moderate yield with a median well depth of approximately 36 metres below ground surface (mbgs). The average estimated safe yield from 37 aquifer tests conducted on wells completed in Unit 3 is reported to be 54 litres per minute (L/min) with a range of 1 to 250 L/min (AMEC 2008). Surficial hydrostratigraphic units (i.e., Unit A and B) were not identified within the Port au Port RAA based on mapping from the Hydrogeology of Western Newfoundland (AMEC 2008) and well records for the Port au Port RAA do not indicate many shallow wells. It is noted, however, that many drilled or dug wells in the province do not have records (Acres 1992). Shallow wells in the area would lie within surficial hydrostratigraphic Unit A and B, consisting of till deposits and sand/gravel deposits with higher average yields of 48.2 and 73.9 L/min respectively (AMEC 2008).

Groundwater on the Port au Port peninsula is expected to be recharging mainly near the topographic highs inland near the center of the peninsula and discharging north or south to the coast. Groundwater near Port au Port East and Port au Mal is expected to be recharging upland to the east-northeast and discharging near the shores of Port au Port East and Port au Mal. It is expected that the shallow groundwater systems in these areas will be largely controlled by surface runoff and local recharge, while at moderate depths the flow system may be influenced by recharge at higher elevations (Tóth 2009). The movement of groundwater through the underlying bedrock can be expected to mainly occur within secondary openings, such as fractures and joints, and will be variable depending on the frequency and interconnection of these structural features. The underlying bedrock aquifer is likely to be under semi-confining conditions with recharge predominantly from lateral inflow of groundwater from adjacent upland areas.

There are 14 public groundwater supply wells along the southern coast of the Port au Port Peninsula, serving the communities of Piccadilly Slant – Abraham's Cove, Port Au Port West – Aguathuna – Felix Cove, Sheaves Cove, and Ship Cove – Lower Cove – Jerry's Nose. These public groundwater supply wells are considered PPWSAs, with the exception of the Piccadily Slant and Abraham's Cove wells. These public groundwater supply wells are located within the Port au Port RAA with the exception of those serving the community of Ship Cove – Lower Cove – Jerry's Nose. There are no public groundwater supply wells in the portion of the Port au Port RAA near Port au Port East and Point au Mal.

Source water quality for the public supply wells within the Port Au Port RAA is described in the Community Water Resources Reports available on the Water Resources Portal (NLDECC 2023b). Source water generally meets the Guidelines for Canadian Drinking Water Quality (GCDWQ; Health Canada 2022) with the occasional exceedance of criteria for the aesthetic, chemical and physical parameters of colour, turbidity, arsenic, lead, and manganese. The quality of source water for the public groundwater supply wells within the Port Au Port RAA is consistent with the general quality of groundwater in Western Newfoundland that periodically exceeds chemical/physical GCDWQs for turbidity, arsenic, lead, and manganese (AMEC 2008). Provincial water quality data for the Port au Port RAA is provided in Appendix A.

The Drilled Water Well Database (NLDECC 2023c) contains records for 87 water supply wells within the Port au Port LAA and RAA, which includes the public groundwater supplies described above (Figure 2.11). Available records for these wells are shown in Appendix B and are summarized herein. Six of the water supply wells are screened in the overburden, 53 in bedrock (dolostone, limestone, sandstone, shale, and granite), with the remainder unknown. The median well depth is approximately 45 mbgs with a median static water level of approximately 8 mbgs. The median yield of these wells is reported in the Drilled Water Well Database as 24 L/min. Four wells are located within the Port au Port LAA in the community of Piccadilly and draw water from the moderate yield carbonate sedimentary bedrock aquifer (Unit 3) with yields of between 1 and 27 L/min (AMEC 2008).

#### 2.3.1.2 Codroy Wind Farm

Bedrock geology underlying the Codroy wind farm portion of the RAA (Codroy RAA) consists of Late Devonian to Mississippian-aged rocks of the Snakes Bight and Kennels Brook Formations, belonging to the Anguille Group, consisting mostly of siliciclastic nonmarine bedrock (DB:Ag on Figure 2.8) (Knight 1982).

Surficial geology (Figure 2.10) consists mostly of shallow bedrock concealed by vegetation, patches of till, sand and gravel, and bog. Thicker colluvium deposits of coarse-grained bedrock derived surficial sediments existing in low lying areas or at the base of steep rock faces (Liverman and Taylor 1993 and Kirby et al. 2009). Exposed bedrock at surface is associated with low recharge potential (Acres 1992).

The majority of drilled wells in the Codroy RAA are located in Unit 4, which is described as moderate yield carboniferous sedimentary rock comprised of strata of the Anguille, Deer Lake, Codroy, and Barachois groups (AMEC 2008). This description is consistent with the bedrock geology described above (Knight 1982). Unit 4 is described by AMEC as having moderate yield with a median well depth of approximately 38 mbgs. The average estimated safe yield from 84 aquifer tests conducted in Unit 4 is reported to be 125.8 L/min with a range of 2 to 1530 L/min (AMEC 2008). Surficial hydrostratigraphic units (i.e., Unit A and B) were not identified within the Codroy RAA based on mapping from the Hydrogeology of Western Newfoundland (AMEC 2008) and well records for the Codroy RAA do not indicate many shallow wells. It is noted, however, that many drilled or dug wells in the province do not have records (Acres 1992). Shallow wells in the area would lie within surficial hydrostratigraphic Unit A and B, consisting of till deposits and sand/gravel deposits with higher average yields of 48.2 and 73.9 L/min respectively (AMEC 2008).

Groundwater in the Codroy RAA is expected to be recharging mainly near the topographic highs on either side of the Grand Codroy River and discharging to the Atlantic Ocean in the southwest of the RAA. Discharge areas along the west coast are also common in smaller catchments along the length of the Codroy LAA. It is expected that the shallow groundwater systems in these areas will be largely controlled by surface runoff and local recharge, while at moderate depths the flow system may be influenced by recharge at higher elevations (Tóth 2009). The movement of groundwater through the underlying bedrock can be expected to mainly occur within secondary openings, such as fractures and joints, and will be variable depending on the frequency and interconnection of these structural features. The underlying

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 2.0 Water Resources and Use August 2023

bedrock aquifer is likely to be under semi-confining conditions with recharge predominantly from lateral inflow of groundwater from adjacent upland areas.

There are no public water supply wells or groundwater PPWSAs within the Codroy RAA.

In the absence of public water supply well chemistry data from within the Codroy RAA, expected water quality in the RAA is evaluated instead from other public water supply wells outside the Codroy RAA, but within hydrostratigraphic Unit 4. Of 606 groundwater samples analyzed from 14 public water supply wells, no exceedances of GCDWQ chemical/physical parameters were noted with the exception of turbidity, arsenic, manganese, iron, total dissolved solids (TDS), and sulphate from one public water supply (AMEC 2008).

The Drilled Water Well Database (NLDECC 2023c) contains records for 203 water supply wells within the Codroy RAA (Figure 2.1). Available records for these wells are shown in Appendix B and are summarized herein. 27 of the private water supply wells are screened in the overburden, 158 in bedrock (e.g., limestone, sandstone, shale, and granite), with the remainder unknown. The median well depth is approximately 32 mbgs with a median static water level of approximately 6 mbgs. The median yield of these wells is reported in the Drilled Water Well Database as 45 L/min. There are no wells reported in the Drilled Water Well Database as 45 L/min. There are no wells reported in the Orient wells located in the community of Bay St. George South. Two of these wells are screened in the overburden, with one completed in bedrock. The three wells have reported yields of approximately 5 L/min.

#### 2.3.1.3 Port of Stephenville

The bedrock geology of the Stephenville RAA is highly variable. The portion of the Stephenville RAA adjacent to the Stephenville LAA is described mostly as Cenozoic-aged siliciclastic surficial deposits overlying carboniferous rock (Q:u on Figure 2.7) (Williams 1985). To the east of the Stephenville LAA, bedrock geology is described as Proterozoic-aged granites and anorthositic gabbro of the Indian Head Complex (M2:A on Figure 2.7) and gneiss of the Long Range gneiss complex (PM:L on Figure 2.7).

Surficial geology (Figure 2.9) in the Stephenville RAA consists of poorly to well sorted glaciofluvial gravel and sand close to the LAA with till blankets more prominent further upstream in the watershed (Liverman and Taylor 1993). The presence of these coarse-grained sediments in the Stephenville LAA suggest a higher recharge potential than in the Port au Port or Codroy RAAs.

The local hydrogeology of the Stephenville Project Area is described in the Preliminary Geotechnical Interpretive Report for the Former Abitibi Mill Site (Fracflow 2023a). Observations from test pit excavation and borehole drilling show that the native surficial geology consists mainly of sandy sediments which is consistent with the regional interpretation (Liverman and Taylor 1993). Boreholes drilled for Fracflow investigations did not encounter bedrock to the maximum investigated depth of approximately 12 mbgs. Depths to groundwater measured in wells in the Stephenville Project Area in 2007 range from -0.15 (artesian) to 10.4 mbgs. Groundwater is expected to flow towards the harbour.

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 2.0 Water Resources and Use August 2023

The majority of drilled wells in the Stephenville RAA are located in hydrostratigraphic Unit B, which is described as moderate yield sand and gravel, representing primarily outwash plain deposits (AMEC 2008). This description is consistent with bedrock geology (Williams 1985), surficial geology (Liverman and Taylor 1993), and site-specific studies (Fracflow 2023a) described above. Unit B is described as having moderate yield with a median well depth of approximately 24 mbgs. Aquifer tests conducted on wells within Unit B provide an average estimated safe yield of 131 L/min (AMEC 2008). Potable water in the town of Stephenville is supplied from the 10 wells of the Stephenville well field located north of the town (Figure 2.11) and screened in Unit B. Deeper wells intersecting bedrock in the Stephenville RAA are inferred to be part of Unit 4, which is described as moderate yield carboniferous sedimentary rock (AMEC 2008). This description is consistent with the bedrock geology described above (Williams 1985). Unit 4 is described as having moderate yield with a median well depth of approximately 38 mbgs; however, in the vicinity of the Stephenville LAA, thick deposits of outwash would indicate greater depth to bedrock. The average estimated safe yield from 84 aquifer tests conducted in Unit 4 is reported to be 125.8 L/min with a range of 2 to 1,530 L/min (AMEC 2008).

Groundwater in the Stephenville RAA is expected to be recharging mainly near the topographic highs to the north of the town and discharging south to the coast and to ponds near the coast. It is expected that the shallow groundwater systems in these areas will be largely controlled by surface runoff and local recharge, while at moderate depths the flow system may be influenced by recharge at higher elevations (Tóth 2009). The movement of groundwater through the surficial outwash aquifer is expected to be unconfined, while flow within the bedrock unit underlying the RAA is likely to be under semi-confining conditions with recharge predominantly from lateral inflow of groundwater from adjacent upland areas. Mine Pond, which is located in the RAA to the east of the Project Area and is being considered for use as the Industrial Water Supply for the Project, may interact with shallow groundwater through seeps on the steep terrain surrounding the pond (Fracflow 2022).

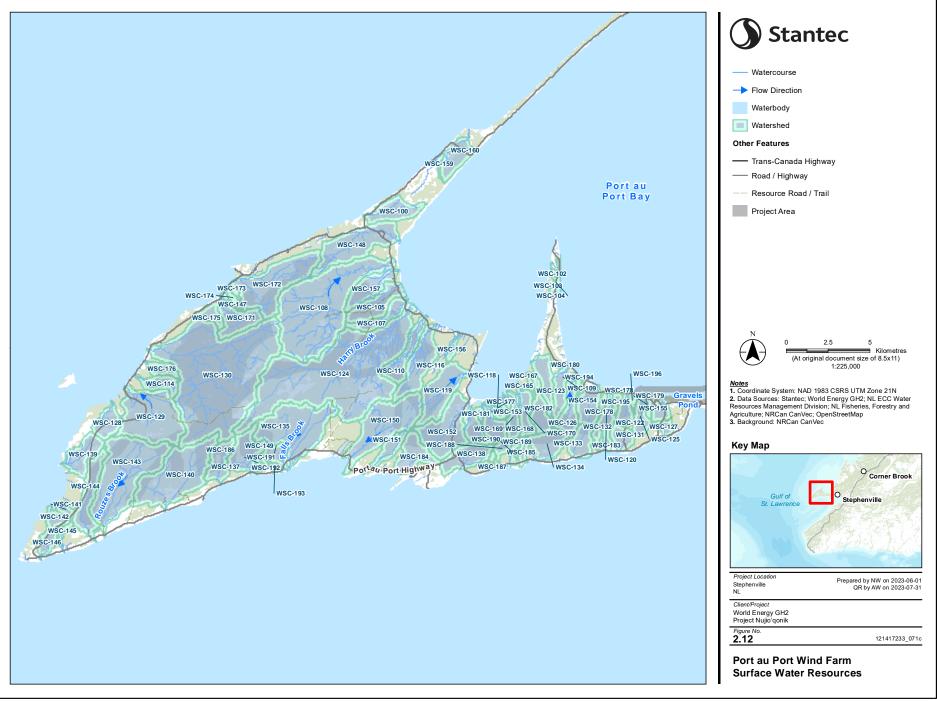
Provincial water quality data for the Stephenville RAA, including source water quality for the Stephenville well field, is provided in Appendix A. Source water meets the GCDWQ except for frequent exceedances of both the maximum allowable concentration (health based) and the aesthetic objective for manganese.

The hydrogen / ammonia plant will be constructed at the former Abitibi mill property in the Stephenville Project Area. The former mill site is a known brownfield with historical effects of total petroleum hydrocarbons (TPH) and metals exceeding provincial guidelines in groundwater, including historical presence of free-phase liquid petroleum hydrocarbons (Stantec 2022).

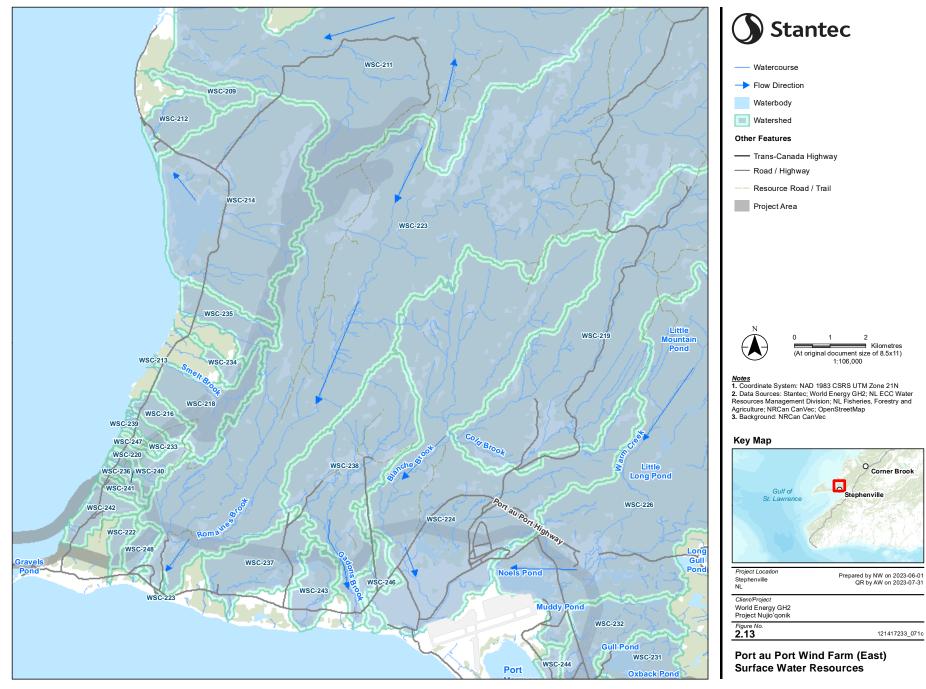
There are no public water supply wells or groundwater PPWSAs within the Stephenville LAA. Within the Stephenville RAA, Northern Harvest Smolt Ltd. holds a Water Use License (WUL) (number 18-9929) for a commercial aquaculture facility. The WUL permits withdrawal of up to 4,493,880 m<sup>3</sup>/year of groundwater from freshwater wells and 2,102,400 m<sup>3</sup>/year of groundwater from saltwater wells. The freshwater and saltwater wells are located approximately 1.5 km and 300 m north of the Stephenville LAA, respectively (Figure 2.11). Entries in the Drilled Water Well Database indicate that the freshwater and saltwater wells are screened in the overburden aquifer (Unit B).

The Drilled Water Well Database (NLDECC 2023c) contains records for 115 water supply wells within the Stephenville RAA (Figure 2.11). Available records for these wells are shown in Appendix B and are summarized herein. 66 of the water supply wells are screened in the overburden, 42 in bedrock (e.g., limestone, sandstone, shale, and granite), with the remainder unknown. The median well depth is approximately 24 mbgs with a median static water level of approximately 9 mbgs. The median yield of these wells is reported in the Drilled Water Well Database as 48 L/min. There are no wells reported in the Drilled Water Well Database as 48 L/min.

#### 2.3.2 Surface Water Resources


#### 2.3.2.1 Port au Port Wind Farm

#### Hydrological Features and Land Use


The Port au Port wind farm is located on the Port au Port Peninsula, a peninsula bounded to the west by the Gulf of St. Lawrence, to the south by Bay St. George, and the northeast by Port au Port Bay (Figures 2.12 and 2.13). There are nine primary watersheds located on the peninsula. The nine primary watersheds are comprised of seven public surface water protection areas (Rouzes Brook, Caribou Brook, Cointres Brook, Victor's Brook, Unnamed Brook, and Jim Rowe's Brook) as well as three primary watercourse watersheds (Harry's Brook, Mainland Brook, and Falls Brook). Additionally, there are roughly 115 small coastal watersheds that drain directly to the Gulf of St Lawrence on the western coast of the Port au Port peninsula; as these watersheds drain directly to the ocean, they were not considered in this analysis.

Rouzes Brook is the westernmost protected public water supply watershed on the Port au Port peninsula and drains an area of 140 km<sup>2</sup>. Caribou Brook (drainage area of 2.4 km<sup>2</sup>) and Cointres Brook (drainage area of 10.4 km<sup>2</sup>) drain directly to the Gulf of St Lawrence on the west coast of the Port au Port peninsula. Victor's Brook is located in the central region of the Port au Port peninsula and has a drainage area of 21.0 km<sup>2</sup>. Flow from Victor's Brook watershed drains into Port au Port Bay on the northeastern coast of the Port au Port peninsula. The Unnamed Brook has a watershed area of 5.3 km<sup>2</sup> and drains to the Port au Port Bay south of the Victor's Brook watershed outlet. Land use in the protected water supply watersheds (Rouzes Brook, Caribou Brook, Cointres Brook, Unnamed Brook, Victor's Brook, and Jim Rowe's Brook) are primarily forested with some developed areas in the form of roads and buildings near the shore, and areas of wetlands and shrubs.

Harry's Brook and Mainland Brook are centrally located on the Port au Port peninsula and are the two largest watersheds on the peninsula with drainage areas of 34.0 and 34.8 km<sup>2</sup>, respectively. Harry's Brook drains northeast to the Port au Port Bay, while Mainland Brook drains west to the Gulf of St Lawrence. Falls Brook is located south of Harry's Brook watershed and drains an area of 12.6 km<sup>2</sup> south to Bay St. George and the Gulf of St. Lawrence. The primary land use in Harrys Brook, Mainland Brook, and Falls Brook watersheds is forested area with wetland and marsh land in low lying areas, and shrubland in areas of higher elevations.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

#### Surface Water Quantity

Using the available regional regression relationships (Appendix C) applied to the Port au Port area, an estimate of MAF and MMF were developed for the described catchment areas (Table 2.3, Figure 2.14). The MAF values range from 1.56 m<sup>3</sup>/s at Mainland Brook to 0.09 m<sup>3</sup>/s at Jim Rowe's Brook. The difference in MAF values is attributed to the differences in drainage area size and may also vary due to local precipitation and climate in each watershed.

| Catchment ID | Catchment Name   | Area<br>(km²) | Mean Annual Flow (MAF)<br>(m <sup>3</sup> /s) | 30% MAF<br>(m³/s) |
|--------------|------------------|---------------|-----------------------------------------------|-------------------|
| WSC-143      | Rouzes Brook     | 14.0          | 0.65                                          | 0.20              |
| WSC-128      | Caribou Brook    | 2.4           | 0.12                                          | 0.04              |
| WSC-129      | Cointres Brook   | 10.4          | 0.49                                          | 0.15              |
| WSC-108      | Victor's Brook   | 21.0          | 0.96                                          | 0.29              |
| WSC-156      | Unnamed Brook    | 5.3           | 0.26                                          | 0.08              |
| WSC-127      | Jim Rowe's Brook | 1.7           | 0.09                                          | 0.03              |
| WSC-124      | Harry's Brook    | 34.0          | 1.52                                          | 0.46              |
| WSC-130      | Mainland Brook   | 34.8          | 1.56                                          | 0.47              |
| WSC-135      | Falls Brook      | 12.6          | 0.59                                          | 0.18              |

#### Table 2.3 Flow Metrics for Existing Catchments, Port au Port Wind Farm

Estimates of MMF for each catchment and sub-catchment show seasonal fluctuations in flow with peak runoff occurring during the spring and late fall months. Largest MMF values are seen in the Mainland Brook and Harry's Brook watersheds with a range in flows from 0.7 m<sup>3</sup>/s to 3.0 m<sup>3</sup>/s. Seasonal changes in flow are dampened in Jim Rowe's Brook, with a flow range of 0.04 to 0.18 m<sup>3</sup>/s. Seasonal low flows occur during the months of July and August for the subject catchments. Flows are above the 30% MAF threshold for the subject catchments, including during the low-flow period.

August 2023

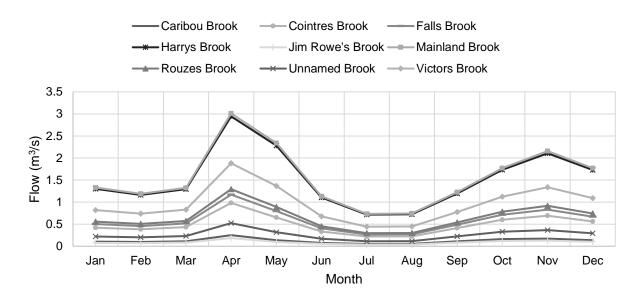



Figure 2.14 MMF for Select Watersheds, Port au Port Wind Farm

#### Surface Water Quality

Regional water quality data was obtained from surface water sourced drinking water supplies for the communities of Lourdes (Victor's Brook), Mainland (Caribou Brook), West Bay (Unnamed Brook), Port au Port/West-Aguathuna-Felix Cove (Jim Rowe's Brook) and Cape St. George (Rouzes Brook) as there are no provincial Water Resources Management Division (WRMD) -managed sites on the Port au Port peninsula. A summary of water quality statistics can be found in Table 2.4.

Values for the public water supply areas were compared to the Guidelines for Canadian Drinking Water Quality (CDWQ) as these sites are source water sites for community drinking water and the CCME Freshwater Aquatics Life (FAL) guidelines. The CDWQ guidelines differ from natural waterbody guidelines (i.e., CCME FAL guidelines) as the guidelines monitor different parameters and have more stringent limits. Maximum concentration values exceeded the CDWQ guidelines for at least one sampling event for color, pH, and turbidity. The exceedances for color occurred at least once at each public water supply area, and the public water supply areas for West Bay, Port au Port/West-Auguathuna-Felix Cove, and Lourdes consistently exceeded the CDWQ guideline for color. Similarly, values for turbidity exceeded the CDWQ guideline for at least one sampling event at the Mainland, Port au Port/West-Auguathuna-Felix Cove, Lourdes, and West Bay stations. Minimum and average pH values are within the CDWQ guidelines for pH at all stations; however, maximum pH values at the Port au Port/West-Auguathuna-Felix Cove and Cape St. George stations exceeded the upper limit of the CDWQ guideline during one sampling event.

Maximum concentration values exceeded the CCME FAL guidelines for Aluminum for at least one sampling event at the Cape St. George, Mainland, Lourdes, and West Bay public supply areas. Mean concentration values exceeded the CCME FAL guidelines for Aluminum for at least one sampling event at the West Bay public supply area. Finally, maximum concentration values exceeded the CCME FAL guidelines for fluoride at the Port au Port/West Auguathuna-Felix Cove and West Bay public supply areas for at least one sampling event.

Metals concentrations for all parameters at all stations were below the CDWQ guidelines.

There are five additional water quality monitoring stations planned within the area of the proposed Port au Port wind farm as outlined in Section 2.2.2.4.

## Table 2.4 Water Quality Data for Protected Water Supply Areas on the Port Au Port Peninsula (NLDECC 2023)

|                   |       | CDWQ      | CCME FAL                    |      | ape St. Geor<br>Rouzes Broc |        | (1   | Mainland<br>Caribou Broc | ok)    |       | Port/ West Ag<br>Felix Cove<br>n Rowe's Br | _      | ()    | Lourdes<br>/ictor's Broc | ok)    | (U    | West Bay<br>nnamed Bro | ook)   |
|-------------------|-------|-----------|-----------------------------|------|-----------------------------|--------|------|--------------------------|--------|-------|--------------------------------------------|--------|-------|--------------------------|--------|-------|------------------------|--------|
| Parameter         | Units | Guideline | Guideline                   | Min  | Max                         | Mean   | Min  | Max                      | Mean   | Min   | Max                                        | Mean   | Min   | Max                      | Mean   | Min   | Max                    | Mean   |
| Alkalinity        | mg/L  | -         | -                           | 158  | 231                         | 185.9  | 132  | 182                      | 155.8  | 92.6  | 465                                        | 161.6  | 56.6  | 137                      | 98.2   | 59    | 110                    | 95.4   |
| Color             | TCU   | 15        | -                           | 0    | 40                          | 13.4   | 0    | 55                       | 16     | 28    | 101                                        | 60.7   | 13    | 110                      | 51.2   | 47    | 109                    | 68.4   |
| Conductivity      | µS/cm | -         | -                           | 250  | 449                         | 387    | 196  | 478                      | 357    | 180   | 456                                        | 341    | 163   | 379                      | 271    | 125   | 269                    | 221    |
| Hardness          | mg/L  | -         | -                           | 163  | 227                         | 201    | 144  | 198                      | 172    | 132   | 208                                        | 159    | 93    | 140                      | 116    | 94    | 130                    | 107    |
| pН                |       | 6.5- 8.5  | 6.5 to 9.0                  | 7.9  | 8.6                         | 8.3    | 8.2  | 8.5                      | 8.3    | 6.9   | 8.6                                        | 8.10   | 7.5   | 8.3                      | 8.0    | 6.7   | 8.4                    | 7.85   |
| TDS               | mg/L  | 500       | -                           | 212  | 292                         | 247    | 178  | 265                      | 220    | 179   | 296                                        | 219    | 110   | 242                      | 172    | 117   | 186                    | 142    |
| TSS               | mg/L  | -         | -                           | 2    | 2                           | 2      | 2    | 2                        | 2      | 1     | 2                                          | 1.7    | 1     | 3                        | 1.3    | 2     | 4                      | 2.4    |
| Turbidity         | NTU   | 1         | -                           | 0.12 | 0.8                         | 0.33   | 0.18 | 3.8                      | 0.62   | 0.12  | 1.1                                        | 0.51   | 0.08  | 4                        | 0.91   | 0.17  | 3.2                    | 1.5    |
| Boron             | mg/L  | 5         | 1.5                         | 0    | 0.03                        | 0.008  | 0    | 0.03                     | 0.016  | 0     | 0.03                                       | 0.015  | 0     | 0.03                     | 0.021  | 0     | 0.03                   | 0.01   |
| Bromide           | mg/L  | -         | -                           | 0    | 0.03                        | 0.005  | 0    | 0.03                     | 0.006  | 0     | 0.16                                       | 0.026  | 0     | 0.03                     | 0.015  | 0     | 0.03                   | 0.008  |
| Calcium           | mg/L  | -         | -                           | 40   | 59                          | 50.7   | 44.9 | 61                       | 51.6   | 27.6  | 62                                         | 43.8   | 21.6  | 42                       | 33.4   | 21    | 40                     | 32.6   |
| Chloride          | mg/L  | 250       | 120                         | 11   | 20                          | 16.1   | 10   | 30                       | 17.8   | 17    | 36                                         | 23.4   | 12    | 45                       | 22.6   | 6     | 28                     | 10.7   |
| Fluoride          | mg/L  | 1.5       | 0.120                       | 0    | 0.11                        | 0.02   | 0.03 | 0.09                     | 0.05   | 0     | 0.56                                       | 0.08   | 0     | 0.1                      | 0.02   | 0.03  | 0.16                   | 0.07   |
| Potassium         | mg/L  | -         | -                           | 0    | 0.8                         | 0.34   | 0.5  | 0.7                      | 0.58   | 0     | 1                                          | 0.64   | 0     | 1.02                     | 0.45   | 0     | 0.7                    | 0.45   |
| Sodium            | mg/L  | 200       | -                           | 9    | 11                          | 10     | 11   | 14                       | 12     | 11    | 20                                         | 15     | 7     | 15                       | 12     | 5     | 10                     | 8      |
| Sulphate          | mg/L  | 500       | -                           | 4    | 8                           | 5.5    | 6    | 9                        | 7.5    | 2     | 12                                         | 5.3    | 2     | 9                        | 5.8    | 0     | 7                      | 4.2    |
| Ammonia           | mg/L  | -         | Variable <sup>2</sup>       | 0    | 0.12                        | 0.02   | 0    | 0.07                     | 0.008  | 0     | 0.07                                       | 0.018  | 0     | 0.14                     | 0.03   | 0     | 0.06                   | 0.01   |
| DOC               | mg/L  | -         | -                           | 0.7  | 5                           | 2.18   | 2.1  | 8.7                      | 3.6    | 1.1   | 10.6                                       | 5.8    | 1.7   | 12                       | 6.1    | 1.5   | 14.8                   | 7.9    |
| Nitrate           | mg/L  | 10        | 13                          | 0    | 0.23                        | 0.11   | 0    | 0.54                     | 0.24   | 0     | 0.15                                       | 0.03   | 0     | 0.16                     | 0.04   | 0     | 0.14                   | 0.05   |
| Kjeldahl Nitrogen | mg/L  | -         | -                           | 0    | 0.22                        | 0.04   | 0    | 0.35                     | 0.09   | 0     | 0.65                                       | 0.27   | 0     | 0.45                     | 0.22   | 0     | 0.97                   | 0.32   |
| Total Phosphorus  | mg/L  | -         | Trophic Status <sup>4</sup> | 0    | 0.04                        | 0.005  | 0    | 0.02                     | 0.004  | 0     | 0.04                                       | 0.008  | 0     | 0.02                     | 0.004  | 0     | 0.07                   | 0.011  |
| Aluminum          | mg/L  | -         | 0.005 / 0.11                | 0    | 0.6                         | 0.04   | 0    | 0.18                     | 0.035  | 0     | 0.09                                       | 0.038  | 0.025 | 0.13                     | 0.058  | 0.025 | 0.25                   | 0.101  |
| Antimony          | mg/L  | 0.06      | -                           | 0    | 0.0005                      | 0.0002 | 0    | 0.0005                   | 9E-05  | 0     | 0.0005                                     | 0.0001 | 0     | 0.005                    | 0.0014 | 0     | 0.0005                 | 6E-05  |
| Arsenic           | mg/L  | 0.01      | 0.005                       | 0    | 0.001                       | 0.0003 | 0    | 0.001                    | 0.0005 | 0     | 0.025                                      | 0.003  | 0     | 0.01                     | 0.0022 | 0     | 0.025                  | 0.0028 |
| Barium            | mg/L  | 2         | -                           | 0.02 | 0.03                        | 0.0238 | 0.03 | 0.04                     | 0.0372 | 0.025 | 0.06                                       | 0.0396 | 0.03  | 0.051                    | 0.0414 | 0.025 | 0.072                  | 0.0505 |
| Cadmium           | mg/L  | 0.007     | Variable <sup>3</sup>       | 0    | 0.0005                      | 0.0002 | 0    | 0.0005                   | 0.0002 | 0     | 0.001                                      | 0.0003 | 0     | 0.001                    | 0.0005 | 0     | 0.001                  | 0.0002 |
| Chromium          | mg/L  | 0.05      | -                           | 0    | 0.005                       | 0.0006 | 0    | 0.002                    | 0.0005 | 0     | 0.01                                       | 0.0022 | 0     | 0.005                    | 0.0018 | 0     | 0.005                  | 0.0013 |
| Copper            | mg/L  | 1.0/2.0   | Variable <sup>3</sup>       | 0    | 0.005                       | 0.001  | 0    | 0.005                    | 0.0021 | 0     | 0.01                                       | 0.0028 | 0     | 0.005                    | 0.0023 | 0     | 0.01                   | 0.0021 |
| Iron              | mg/L  | 0.3       | 0.3                         | 0    | 0.06                        | 0.0133 | 0    | 0.118                    | 0.0237 | 0.005 | 0.31                                       | 0.1456 | 0     | 0.27                     | 0.0691 | 0     | 0.32                   | 0.1053 |
| Lead              | mg/L  | 0.005     | Variable <sup>3</sup>       | 0    | 0.001                       | 0.0007 | 0    | 0.001                    | 0.0007 | 0     | 0.01                                       | 0.0014 | 0     | 0.001                    | 0.0006 | 0.001 | 0.007                  | 0.0023 |
| Magnesium         | mg/L  | -         | -                           | 14   | 20                          | 17     | 7    | 12                       | 9.2387 | 7     | 13                                         | 9.3424 | 4.41  | 8.81                     | 6.4856 | 3.13  | 6.3                    | 4.925  |
| Manganese         | mg/L  | 0.02/0.12 | Variable <sup>3</sup>       | 0    | 0.014                       | 0.0037 | 0    | 0.005                    | 0.0027 | 0     | 0.04                                       | 0.0154 | 0     | 0.08                     | 0.0104 | 0     | 0.03                   | 0.0071 |

#### Water Quality Data for Protected Water Supply Areas on the Port Au Port Peninsula (NLDECC 2023) Table 2.4

| CDWQ CCME FAL                                                                       |                    | CCME FAL                                            | Cape St. George<br>(Rouzes Brook)                           |     | Mainland<br>(Caribou Brook) |                 | Port au Port/ West Aguathuna-<br>Felix Cove<br>(Jim Rowe's Brook) |              | Lourdes<br>(Victor's Brook) |       | West Bay<br>(Unnamed Brook) |        |        |        |        |       |        |        |
|-------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------|-------------------------------------------------------------|-----|-----------------------------|-----------------|-------------------------------------------------------------------|--------------|-----------------------------|-------|-----------------------------|--------|--------|--------|--------|-------|--------|--------|
| Parameter                                                                           | Units              | Guideline                                           | Guideline                                                   | Min | Max                         | Mean            | Min                                                               | Max          | Mean                        | Min   | Max                         | Mean   | Min    | Max    | Mean   | Min   | Мах    | Mean   |
| Mercury                                                                             | mg/L               | 0.001                                               | 0.0026                                                      | 0   | 0                           | 0               | 0                                                                 | 0            | 0                           | 0     | 0.0005                      | 0.0001 | 0      | 0.0005 | 0.0003 | 0     | 0.0005 | 0.0002 |
| Nickel                                                                              | mg/L               |                                                     | Variable <sup>3</sup>                                       | 0   | 0.005                       | 0.0013          | 0                                                                 | 0.003        | 0.0016                      | 0     | 0.005                       | 0.0024 | 0      | 0.005  | 0.0037 | 0.003 | 0.005  | 0.0035 |
| Selenium                                                                            | mg/L               | 0.001                                               | 0.001                                                       | 0   | 0.001                       | 0.0002          | 0                                                                 | 0.001        | 0.0007                      | 0.001 | 0.005                       | 0.002  | 0      | 0.005  | 0.0013 | 0.001 | 0.005  | 0.0023 |
| Uranium                                                                             | mg/L               | 0.02                                                | 0.015                                                       | 0   | 0.0002                      | 8E-05           | 0                                                                 | 0.0002       | 7E-05                       | 0     | 0.0003                      | 0.0001 | 0.0001 | 0.0003 | 0.0002 | 0     | 0.0004 | 0.0002 |
| Zinc                                                                                | mg/L               | 5                                                   | Variable <sup>3</sup>                                       | 0   | 0.008                       | 0.0016          | 0                                                                 | 0.011        | 0.0042                      | 0     | 0.08                        | 0.0099 | 0      | 0.012  | 0.0042 | 0.003 | 0.18   | 0.0271 |
| <ul> <li>Ammonia guide</li> <li>Copper, Cadmi</li> <li>Trophic status of</li> </ul> | lassification base | on Temperature<br>nese, Nickel, an<br>ed on CCME FA | and pH.<br>Id Zinc guideline values<br>L guidance framework | •   | ent on hardne               | ess, Zinc is de | pendent on                                                        | hardness and | DOC                         |       |                             |        |        |        |        |       |        |        |
| <b>old</b> indicates the p<br>Inderlined indicates                                  |                    |                                                     |                                                             |     |                             |                 |                                                                   |              |                             |       |                             |        |        |        |        |       |        |        |

 $\bigcirc$ 

#### Surface Water Supply Resources

Public source water on the Port au Port peninsula is supplied by active public surface water supplies located in the Caribou Brook, Cointres Brook, Rouzes Brook, Victor's Brook, Unnamed Brook, and Jim Rowe's Brook watersheds. These public water supplies supply water to a population of approximately 2,500 people including the communities of Victors Brook, Port au Port West / Aguathuna / Felix Cove, Cape St. George, Mainland, and Piccadilly Head, Sheaves Cove (Stantec 2016). The quality of surface water supplies on the Port au Port Peninsula is generally considered good to excellent and is moderate to very hard, of moderate alkalinity (JWEL 2008) Domestic water supply areas are indicated in Figure 2.15, showing the protected surface water legal boundary that closely represents all or part of the catchment area for a water supply.

There are two approved industrial WULs issued by the NL Department of Municipal Affairs (NLDMA) to Atlantic Mining Ltd. The first WUL (WUL 21-11790) is for water withdrawal from Goose Pond. The second WUL issued to Atlantic Mining Ltd. (WUL 21-12062) permits the holder to dewater four quarry pits and discharge the water to Harry's Brook, Duck Pond, and Unnamed Marsh Land through a settling pond.

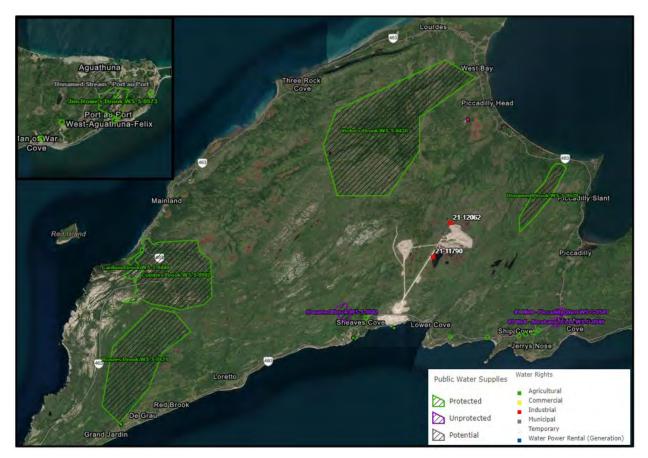
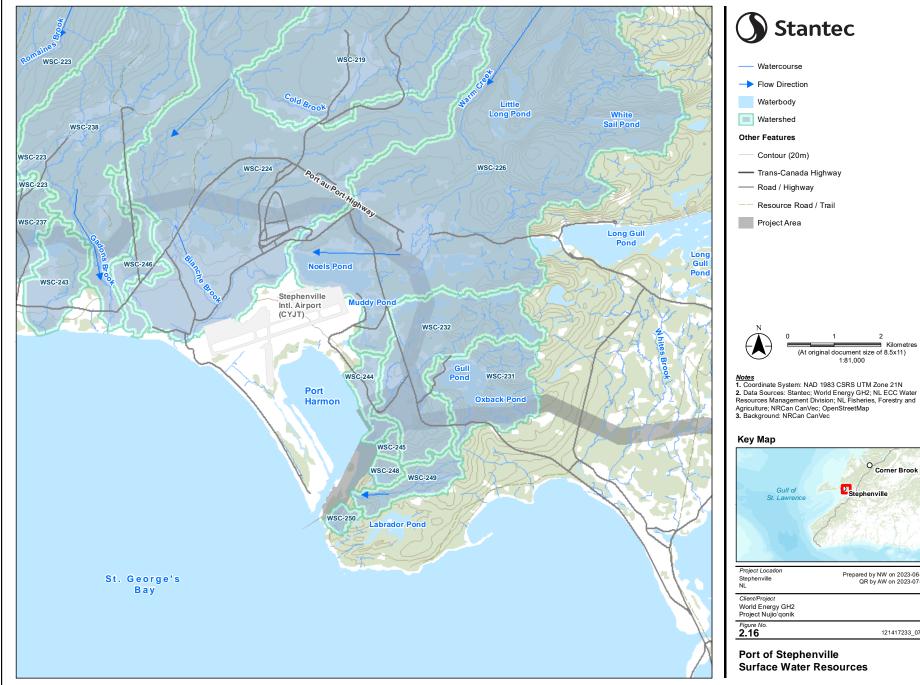



Figure 2.15 Public Water Supply Areas and Water Rights, Port au Port Peninsula (NL Water Resources Portal)

### 2.3.2.2 Codroy Wind Farm

#### Hydrological Features and Land use


The Codroy wind farm is located in the Anguille Mountain Range near the communities of Cape Anguille and Codroy. Twelve project-related watersheds have been delineated in the Codroy wind farm area. The primary watercourse flowing through this area is the Grand Codroy River that receives flow from a number of tributaries including Big Brook, Ryans Brook, Muises Brook, Muddy Hole Brook, Johns Brook, Stephen's Brook, and Broom Brook. The Grand Codroy River has a drainage area of 932 km<sup>2</sup>. Rainy Brook is the next largest watercourse located north of the Grand Codroy River watershed, and it has a watershed area of 160 km<sup>2</sup> and drains directly to the Gulf of St Lawrence on the southwest coast of Newfoundland. The remaining ten watersheds drain directly into the Gulf of St Lawrence and have drainage areas 30 km<sup>2</sup> or less. These coastal watersheds include Little Spout Brook (1.47 km<sup>2</sup>), French Brook (13.8 km<sup>2</sup>), Shoal Point Brook (13.0 km<sup>2</sup>), Butter Brook (24.4 km<sup>2</sup>), and six unnamed watercourse drainage areas; A (2.21 km<sup>2</sup>), B (30.3 km<sup>2</sup>), C, (7.9 km<sup>2</sup>), D (21.4 km<sup>2</sup>), E (15.6 km<sup>2</sup>), and F (13.3 km<sup>2</sup>).

Land in the Codroy wind farm region is primarily forested, wetland and shrubland, with little to no development. The communities of Cape Anguille, Shoal Point, Codroy, and Woodville are located approximately 12 km south and west of the wind farm. The region is mountainous with a natural watershed divide located north of the wind farm site and divides the Great Codroy River watershed from the eleven coastal watersheds.

#### Surface Water Quantity

Using the available regional regression relationships applicable to the Codroy wind farm area, an estimate of MAF and MMF were developed for the described catchment areas (Table 2.5, Figures 2.17 and 2.18). As the Grand Codroy River and Rainy Brook watersheds are an order of magnitude larger than the remaining watershed areas, the MMF values are presented in separate figures. The MAF for the larger catchments are 37.8 and 6.7 m<sup>3</sup>/s for Grand Codroy River and Rainy Brook, respectively. For the smaller catchment areas, the MAF values range between 0.08 and 1.37 m<sup>3</sup>/s for Little Spout Brook and Unnamed Brook-B, respectively. The differences in MMF and MAF values are attributed to differences in drainage areas.

Estimates of MMF for each catchment and sub-catchment show seasonal fluctuations in flow with peak runoff occurring during the spring and late fall months. The MMF values are largest in the Grand Codroy River watershed with a range in flows from 20.0 to 78.8 m<sup>3</sup>/s. Seasonal changes in flow are smallest in Little Spout Brook watershed, with a flow range of 0.03 to 0.16 m<sup>3</sup>/s. Seasonal low flows occur during the months of July and August for the subject catchments. Flows are above the 30% MAF threshold for the subject catchments, including during the low-flow period.



2 Kilometres

0

Stephenville

Corner Brook

Prepared by NW on 2023-06-01 QR by AW on 2023-07-31

121417233\_071c

1:81,000

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

| Catchment ID | Catchment Name     | Area<br>(km²) | Mean Annual Flow (MAF)<br>(m <sup>3</sup> /s) | 30% MAF<br>(m³/s) |
|--------------|--------------------|---------------|-----------------------------------------------|-------------------|
| WSC-315      | Grand Codroy River | 963.5         | 37.8                                          | 11.3              |
| WSC-312      | Rainy Brook        | 160.6         | 6.7                                           | 2.02              |
| WSC-305      | Little Spout Brook | 1.47          | 0.08                                          | 0.02              |
| WSC-306      | French Brook       | 13.8          | 0.64                                          | 0.19              |
| WSC-320      | Shoal Point Brook  | 13.0          | 0.61                                          | 0.18              |
| WSC-321      | Butter Brook       | 24.4          | 1.11                                          | 0.33              |
| WSC-304      | Unnamed Brook-A    | 2.21          | 0.11                                          | 0.03              |
| WSC-310      | Unnamed Brook-B    | 30.3          | 1.37                                          | 0.41              |
| WSC-317      | Unnamed Brook-C    | 7.85          | 0.38                                          | 0.11              |
| WSC-318      | Unnamed Brook-D    | 21.5          | 0.98                                          | 0.29              |
| WSC-311      | Unnamed Brook-E    | 15.6          | 0.72                                          | 0.22              |
| WSC-319      | Unnamed Brook-F    | 13.3          | 0.62                                          | 0.19              |

#### Table 2.5 Flow Metrics for Existing Catchments, Codroy Wind Farm

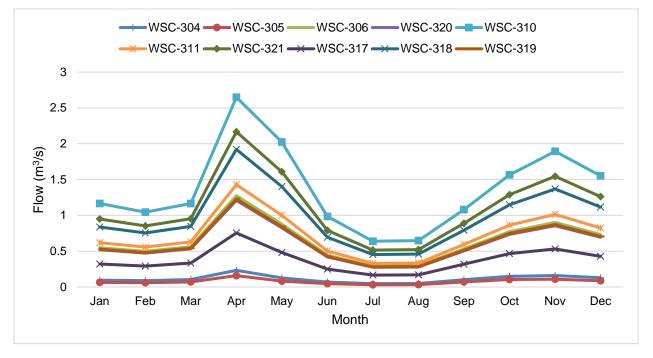
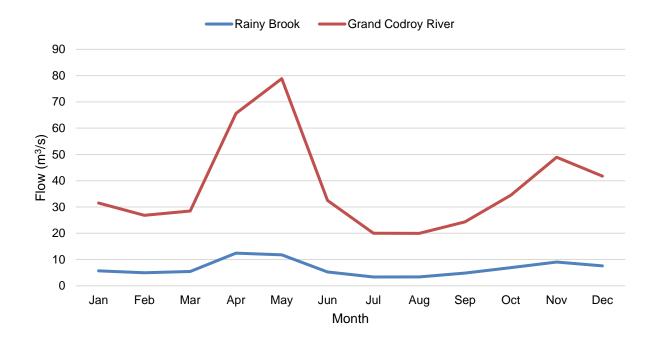




Figure 2.17 MMF for Select Watersheds, Codroy Wind Farm

August 2023



#### Figure 2.18 MMF for Rainy Brook and Grand Codroy River Watersheds, **Codroy Wind Farm**

#### Surface Water Quality

There are no PPWSAs or water use licenses identified in the area of the proposed Codroy wind farm. A single, active WQMA station is located on the Grand Codroy River below Overfall Brook (Station NF02ZA0006). The province monitors the station on a quarterly basis for a suite of physical and chemical water quality parameters. A summary of the historical station data was completed in 2021 by the Water Resources Management Division of NLDECC (NLDECC 2021) with results shown in Table 2.6.

Maximum concentration values were reported as below CCME FAL guideline detection limits for the sampled parameters. Minimum pH values are below the CCME FAL pH range; however, average and maximum concentrations are within the range. Turbidity ranges from 0.1 to 14 NTU with a mean value of 0.83 which indicates natural fluctuations occurring outside the range of CCME FAL guidelines. The phosphorus concentrations of the samples show a ranging trophic status, from ultraoligotrophic to eutrophic. Where sodium concentrations and conductivity range from 3.8 - 13.4 mg/L and 26.5 to 1,480 us/cm, respectively, it is possible that tidal flushing occurs at this WQMA location.

There are two additional water quality monitoring stations planned within the area of the proposed Codroy wind farm as outlined in Section 2.2.2.4.

| Parameter                | Unit  | CCME FAL                    | Min      | Max     | Mean     |
|--------------------------|-------|-----------------------------|----------|---------|----------|
| Turbidity                | NTU   | 2-8 <sup>1</sup>            | 0.1      | 14      | 0.832    |
| Conductivity             | us/cm | -                           | 26.5     | 1480    | 120      |
| Dissolved Calcium        | mg/L  | -                           | 2.36     | 32.4    | 11.0     |
| Dissolved Magnesium      | mg/L  | -                           | 0.4      | 2.93    | 1.55     |
| Dissolved Organic Carbon | mg/L  | -                           | 1.2      | 11.3    | 4.55     |
| рН                       | -     | 6.5 - 9.0                   | 6.17     | 8.27    | 7.10     |
| Potassium                | mg/L  | -                           | 0.25     | 0.75    | 0.47     |
| Silica                   | mg/L  | -                           | 1.38     | 5.45    | 3.14     |
| Sodium                   | mg/L  | -                           | 3.8      | 13.4    | 7.54     |
| Total Aluminum           | mg/L  | 0.005/0.1 <sup>2</sup>      | 0.0185   | 1.84    | 0.148    |
| Total Arsenic            | mg/L  | 0.005                       | 0.0001   | 0.0005  | 0.0001   |
| Total Barium             | mg/L  | -                           | 0.0055   | 0.0544  | 0.022    |
| Total Beryllium          | mg/L  | -                           | 0.000003 | 0.05    | 0.007    |
| Total Cadmium            | mg/L  | Variable <sup>3</sup>       | 0.000002 | 0.0002  | 0.00004  |
| Total Chromium           | mg/L  | -                           | 0.00019  | 0.0037  | 0.0004   |
| Total Cobalt             | mg/L  | -                           | 0.000017 | 0.0014  | 0.0001   |
| Total Colour             | TCU   | -                           | 5        | 140     | 37.8     |
| Total Copper             | mg/L  | Variable <sup>3</sup>       | 0.0002   | 0.0046  | 0.0008   |
| Total Iron               | mg/L  | 0.300                       | 0.0136   | 1       | 0.139    |
| Total Lead               | mg/L  | Variable <sup>3</sup>       | 0.000012 | 0.002   | 0.000352 |
| Total Lithium            | mg/L  | -                           | 0.0001   | 0.0025  | 0.000513 |
| Total Molybdenum         | mg/L  | 0.073                       | 0.000035 | 0.0022  | 0.000168 |
| Total Nickel             | mg/L  | Variable <sup>3</sup>       | 0.00015  | 0.0032  | 0.000401 |
| Total Nitrogen           | mg/L  | -                           | 0.12     | 0.33    | 0.222263 |
| Total Phosphorous        | mg/L  | Trophic Status <sup>4</sup> | 0.0003   | 0.0543  | 0.004584 |
| Total Selenium           | mg/L  | 0.001                       | 0.00005  | 0.00076 | 0.000117 |
| Total Strontium          | mg/L  | -                           | 0.0124   | 0.241   | 0.080432 |
| Total Sulphate           | mg/L  | -                           | 3        | 40.8    | 12.9369  |
| Total Vanadium           | mg/L  | -                           | 0.0001   | 0.0036  | 0.000336 |
| Total Zinc               | mg/L  | Variable <sup>3</sup>       | 0.0002   | 0.0152  | 0.00127  |

#### Table 2.6 Water Quality Summary for Grand Codroy River (NLDECC 2021)

Notes:

CCME FAL = CCME Guidelines for the Protection of Freshwater Aquatic Life **Bold value exceeds guideline** 

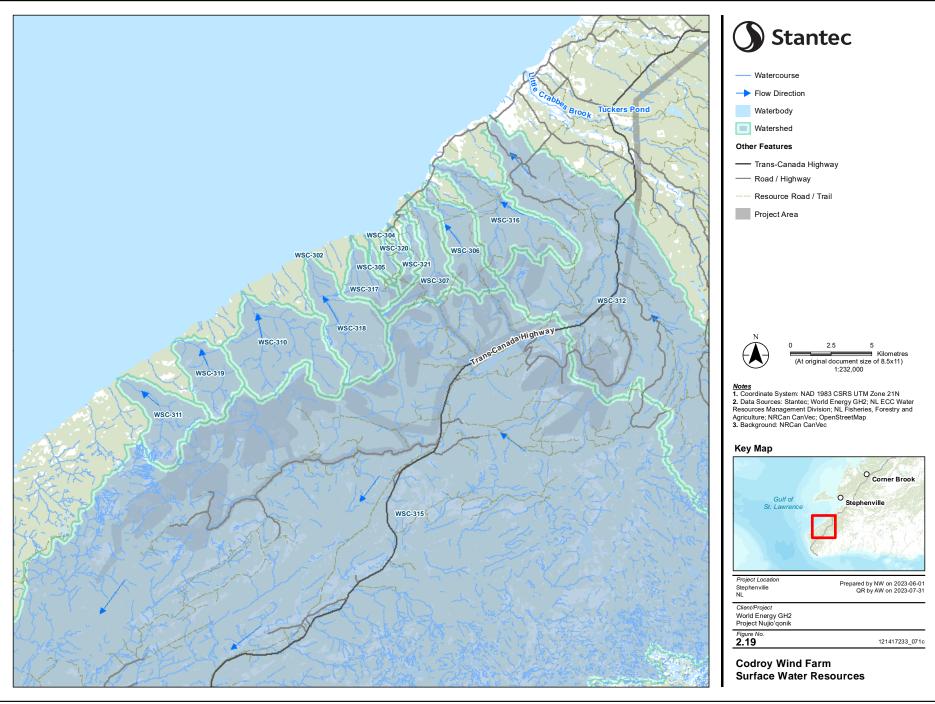
<sup>1</sup> Increase over background value of <2 NTU for long term exposure, <8 NTU for short term exposure

 $^2$  Guideline value of 0.005 mg/L if pH < 6.5, 0.10 mg/L if pH  $\geq 6.5$ 

<sup>3</sup> Copper, Cadmium, Lead and Nickel guideline values are dependent on hardness, Zinc is dependent on hardness and DOC

<sup>4</sup> Trophic status classification based on CCME FAL guidance framework

#### Surface Water Supply Resources


Development is limited in the Codroy wind farm LAA/RAA and there are no designated water supply areas. No WUL have been identified as issued by NLDMA for the area.

#### 2.3.2.3 Port of Stephenville

#### Hydrological Features and Land Use

The Port of Stephenville is located on the north shore of St. George's Bay. The bay is the receiving water for Blanche Brook, which drains the primary watersheds in the vicinity of the Project area, and Port Harmon. Blanche Brook is located to the east of the project site and drains an approximate 120 km<sup>2</sup> catchment area to the mouth of the bay. Cold Brook and Warm Creek are the two primary tributaries to Blanche Brook. Cold Brook drains a 30 km<sup>2</sup> sub-catchment area into Blanche Brook at a confluence point 8 km north of the bay. Warm Creek is located east of Blanche Brook and drains a 50 km<sup>2</sup> sub-catchment area into the brook at a confluence point 1.5 km from the mouth of the bay. Storage is provided in the Warm Creek sub-catchment within several named ponds, the largest being Noels Pond which is hydraulically connected to the adjacent Muddy Pond via culverts.

Port Harmon is a seaport located immediately east of Blanche Brook and adjacent to the Project site on the north side of the port. The southern boundary of the port is protected from St. George's Bay by partial land mass with an eastern discharge location into the bay. An unnamed watercourse drains the small catchment area (4 km<sup>2</sup>) of Oxback Pond and Gull (Mine) Pond into the port. Although this catchment is topographically separate from the adjacent Warm Creek sub-catchment, a pressurized industrial water pipeline is installed between Muddy Pond and Gull (Mine) Pond, hydraulically connecting the two catchments when pumps are operational.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

#### Surface Water Quantity

Using the developed regional regression relationships applicable to the Port of Stephenville area, an estimate of MAF and MMF were developed for the described catchment and sub-catchment areas (Table 2.7, Figure 2.20). MAF for the Warm Creek sub-catchment area is approximately 2.20 m<sup>3</sup>/s draining to Noels and Muddy Pond. Gull (Mine) Pond has a smaller drainage area and proportionally reduced MAF at approximately 0.20 m<sup>3</sup>/s.

| Catchment Name   | Area<br>(km²) | Mean Annual Flow (MAF)<br>(m³/s) | 30% MAF<br>(m³/s) |
|------------------|---------------|----------------------------------|-------------------|
| Blanche Brook    | 129.3         | 5.47                             | 1.64              |
| Cold Brook (Sub) | 30.5          | 1.37                             | 0.41              |
| Warm Creek (Sub) | 48.4          | 2.13                             | 0.64              |
| Gull (Mine) Pond | 3.8           | 0.88                             | 0.06              |

 Table 2.7
 Flow Metrics for Existing Catchments, Port of Stephenville

Estimates of MMF for each catchment and sub-catchment show seasonal fluctuations in flow with peak runoff occurring during the spring and late fall months. Seasonal fluctuations are more pronounced in the Blanche Brook watershed with a range in flows from 3.5 m<sup>3</sup>/s to 13 m<sup>3</sup>/s. Seasonal changes in flow are dampened in Gull (Mine) Pond, with a flow range of 0.15 to 0.40 m<sup>3</sup>/s. Seasonal low flows occur during the months of July and August for the subject catchments. Flows are above the 30% MAF threshold for the subject catchments, including during the low-flow period.

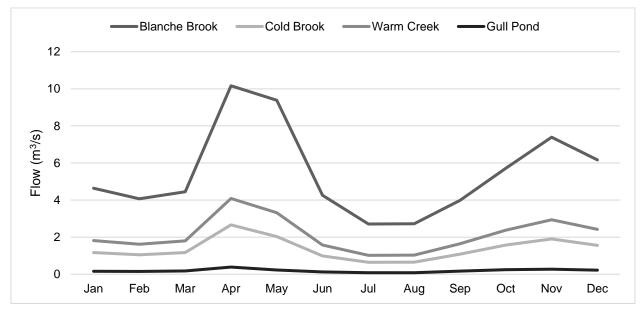



Figure 2.20 MMF for Port of Stephenville Watersheds

A bathymetric survey was completed of the three primary study waterbodies by Fracflow (Fracflow 2022) and is shown in Figures 2.21 to 2.23. Noels Pond has an approximate surface area of 105 hectare (ha) with three identified deep zones ranging from 10 to 18 m in depth. Muddy Pond, located to the immediate south of Noels Pond, has an approximate surface area of 11 ha. The northern ponded area of Muddy Pond slopes steeply to a single deep zone of 20 m. The southern ponded area remains shallow at 0 to 2 m in depth. Gull (Mine) Pond has an approximate surface area of 70 ha and two distinct deep zones at 20 and 29 m, respectively.

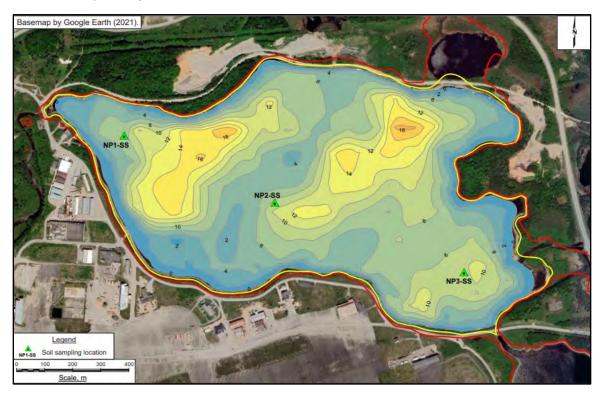



Figure 2.21 Bathymetry at Noels Pond (Fracflow 2022)




Figure 2.22 Bathymetry at Muddy Pond (Fracflow 2022)

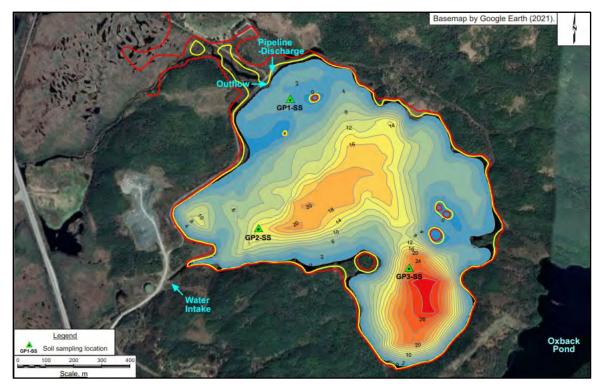



Figure 2.23 Bathymetry at Gull (Mine) Pond (Fracflow 2022)

 $\bigcirc$ 

#### Surface Water Quality

Water quality samples were taken by Fracflow in September 2022 within Noels Pond, Muddy Pond, and Gull (Mine) Pond. Samples were taken following the previous development of the site for the former paper mill and indicate current baseline concentrations in the sampled waterbodies. Three locations were sampled within each lake, linearly from inflow to outflow location. Sample locations are not associated with lake deep zones. Samples were taken at surface (WS-1) and 1.5 m above lake bottom (WS-2), where depth allowed, and analyzed for the following standard suite of water quality parameters:

- General chemistry
- Total and dissolved metals
- Total petroleum hydrocarbons
- Volatile organic compounds (VOCs)

Results of the analysis were compared to the CCME FAL guidelines and were generally reported as below guideline values. Iron and aluminum concentrations exceeded the guideline values in a single sample within Noels Pond. Total aluminum was exceeded in a single sample in Gull (Mine) Pond. Both TPH and VOC concentrations were reported as below laboratory detection limits in the sampled ponds (Fracflow 2022).

#### Gull (Mine) Pond

Select analytical results for Gull (Mine) Pond are shown in Table 2.8. The water is low in suspended solids and associated turbidity. Colour ranges from 30 to 40 TCU and is likely associated with elevated total dissolved solids. Total iron and aluminum are elevated, but do not exceed guidelines except an aluminum exceedance in a single bottom sample at GP-03. Nitrate concentrations are low to non-detect. Total phosphorous concentrations range from 20 to 30 ug/L, classifying the lake as meso-eutrophic. This trophic status is associated with moderate levels of vegetation growth and limited clarity.

#### Noels Pond

Select analytical results for Noels Pond are shown in Table 2.9. The water is low in suspended solids and associated turbidity. Colour and total dissolved solids are elevated, with colour ranging from 39 to 53 TCU. Average total dissolved solids is 76.5 mg/L, with the exception of an elevated bottom sample result of 104 mg/L at NP-01. Total iron and aluminum are elevated, but do not exceed guidelines except an exceedance in a single bottom sample at NP-01. Nitrate concentrations are low. Total phosphorous concentrations range from 20 to 30 ug/L, classifying the lake as meso-eutrophic. This trophic status is associated with moderate levels of vegetation growth and limited clarity. There is a noted concentration difference between surface and bottom samples at sample location NP-01.

|                        |            |                             | GP-01       | GP           | 9-02 | GP    | -03  |
|------------------------|------------|-----------------------------|-------------|--------------|------|-------|------|
| Parameter              | Units      | CCME FAL                    | WS-1        | WS-1         | WS-2 | WS-1  | WS-2 |
| рН                     | -          | 6.5 – 9.0                   | 6.6         | 6.59         | 6.48 | 7.32  | 6.5  |
| Nitrate                | mg/L       | 3.0                         | <0.05       | <0.05        | 0.06 | <0.05 | 0.08 |
| Colour                 | TCU        | -                           | 32.1        | 34.6         | 34.6 | 31.4  | 40.1 |
| Turbidity              | NTU        | 2 /8 <sup>1</sup>           | 1.7         | <0.5         | 1.8  | 0.7   | 0.7  |
| Total Dissolved Solids | mg/L       | -                           | 76          | 74           | 74   | 60    | 72   |
| Total Suspended Solids | mg/L       | -                           | <5          | <5           | <5   | <5    | <5   |
| Total Phosphorous      | ug/L       | Trophic Status <sup>2</sup> | 30          | 30           | 30   | 20    | 30   |
| Total Aluminum         | ug/L       | 5/100 <sup>3</sup>          | 49          | 44           | 74   | 53    | 83   |
| Total Iron             | ug/L       | 300                         | 72          | 60           | 113  | 98    | 204  |
| Notes:                 |            | •                           |             |              |      |       |      |
| CCME FAL = CCME Guid   | delines fo | r the Protection of Fi      | reshwater A | Aquatic Life |      |       |      |

#### Table 2.8 Gull (Mine) Pond Water Quality, Sampled September 23, 2022

CCME FAL = CCME Guidelines for the Protection of Freshwater Aquatic Life

<sup>1</sup> Increase over background value of <2 NTU for long term exposure, <8 NTU for short term exposure

<sup>2</sup> Trophic status classification based on CCME FAL guidance framework

<sup>3</sup> Guideline value of 5  $\mu$ g/L if pH < 6.5, 100  $\mu$ g/L if pH ≥ 6.5

#### Table 2.9 Noels Pond Water Quality Summary, Sampled September 22, 2022

|                        |       |                             | NP-01 |      | NP   | -02  | NP-03 |      |
|------------------------|-------|-----------------------------|-------|------|------|------|-------|------|
| Parameter              | Units | CCME FAL                    | WS-1  | WS-2 | WS-1 | WS-2 | WS-1  | WS-2 |
| рН                     | -     | 6.5 - 9.0                   | 7.26  | 7.26 | 7.25 | 7.25 | 7.16  | 7.26 |
| Nitrate                | mg/L  | 3                           | 0.08  | 0.07 | 0.08 | 0.08 | 0.07  | 0.08 |
| Colour                 | TCU   | -                           | 52.8  | 43.3 | 42.5 | 44.6 | 39    | 39.8 |
| Turbidity              | NTU   | 2-8 <sup>1</sup>            | 2.5   | 2.7  | 2    | 1.2  | 3     | 1.6  |
| Total Dissolved Solids | mg/L  | -                           | 78    | 104  | 78   | 78   | 76    | 74   |
| Total Suspended Solids | mg/L  | -                           | <5    | <5   | <5   | <5   | <5    | <5   |
| Total Phosphorous      | ug/L  | Trophic Status <sup>2</sup> | 30    | 30   | 30   | 20   | 20    | 30   |
| Total Aluminum         | ug/L  | 5/100 <sup>3</sup>          | 36    | 183  | 34   | 36   | 39    | 40   |
| Total Iron             | ug/L  | 300                         | 96    | 391  | 91   | 94   | 109   | 152  |

Notes:

CCME FAL = CCME Guidelines for the Protection of Freshwater Aquatic Life **Bold value exceeds guideline** 

<sup>1</sup> Increase over background value of <2 NTU for long term exposure, <8 NTU for short term exposure

<sup>2</sup> Trophic status classification based on CCME FAL guidance framework

<sup>3</sup> Guideline value of 5  $\mu$ g/L if pH < 6.5, 100  $\mu$ g/L if pH ≥ 6.5

#### Muddy Pond

Select analytical results for Muddy Pond are shown in Table 2.10. The water is low in suspended solids and associated turbidity. Colour and total dissolved solids are elevated, with colour ranging from 44 to 72 TCU. Average total dissolved solids is 52.5 mg/L. Total iron and aluminum are elevated, but do not exceed guideline values. Nitrate concentrations are low. Total phosphorous concentrations are consistently reported at 30 ug/L, classifying the lake as meso-eutrophic. This trophic status is associated with moderate levels of vegetation growth and limited clarity.

|                                                                         |       |                             | MP-01 | MF   | P-02 | MP-03 |
|-------------------------------------------------------------------------|-------|-----------------------------|-------|------|------|-------|
| Parameter                                                               | Units | CCME FAL                    | WS-1  | WS-1 | WS-2 | WS-1  |
| рН                                                                      | -     | 6.5 - 9.0                   | 6.84  | 6.91 | 6.76 | 6.83  |
| Nitrate                                                                 | mg/L  | 3                           | 0.05  | 0.06 | 0.13 | <0.05 |
| Colour                                                                  | TCU   | -                           | 51.1  | 49.1 | 71.6 | 43.7  |
| Turbidity                                                               | NTU   | 2-8 <sup>1</sup>            | <0.5  | 1.1  | 5    | 4.8   |
| Total Dissolved Solids                                                  | mg/L  | -                           | 64    | 54   | 48   | 44    |
| Total Suspended Solids                                                  | mg/L  | -                           | <5    | <5   | <5   | 10    |
| Total Phosphorous                                                       | ug/L  | Trophic Status <sup>2</sup> | 30    | 30   | 30   | 30    |
| Total Aluminum                                                          | ug/L  | 5/100 <sup>3</sup>          | 72    | 71   | 85   | 62    |
| Total Iron                                                              | ug/L  | 300                         | 118   | 111  | 119  | 124   |
| Notes:<br>CCME FAL = CCME Guidel<br><sup>1</sup> Increase over backgrou |       |                             |       |      | •    |       |

#### Table 2.10 Muddy Pond Water Quality, Sampled September 25, 2022

<sup>2</sup> Trophic status classification based on CCME FAL guidance framework

<sup>3</sup> Guideline value of 5  $\mu$ g/L if pH < 6.5, 100  $\mu$ g/L if pH ≥ 6.5

#### Surface Water Supply Resources

Public water supply in the Stephenville area is supplied by groundwater with no identified active public surface water supplies within the Blanche Brook or Gull (Mine) Pond watersheds. A single approved WUL is issued by the NL DMA for a commercial aquaculture facility adjacent to Port Harmon (WUL-18-9929). There are no surface water sources identified associated with the approval. An inactive industrial surface water supply is associated with the former paper mill at the site, with historic average withdrawal rates of approximately 16,000 L/min (Fracflow 2023b).

## 2.4 References

- Acres International Limited. (1992). Regional Water Resources Study of the Western Newfoundland Region. Government of Newfoundland and Labrador, Department of Environment and Lands, Water Resources Division.
- AMEC Earth and Environmental (AMEC). 2008. Hydrogeology of Western Newfoundland. Submitted to Water Resources Management Division, Department of Environment and Conservation, Government of Newfoundland and Labrador. May 2008.
- Canadian Council of Ministers of the Environment (CCME). Various dates. Guidelines for the Protection of Aquatic Life: Freshwater and Marine. Canadian Environmental Quality Guidelines.
- Department of Fisheries and Oceans (DFO). 2013. Framework for Assessing the Ecological Flow Requirements to Support Fisheries in Canada. Science Advisory Report 2013/017.
- Fracflow Consultants Inc. (Fracflow). 2022. Assessment of the Potential to Obtain an Industrial Water Supply, Stephenville, NL.Submitted to World Energy GH2. June 1, 2022.
- Fracflow Consultants Inc. (Fracflow). 2023a. Industrial Water Supply Infrastructure. Stephenville, NL. Submitted to World Energy GH2. January 10, 2023.
- Fracflow Consultants Inc. (Fracflow). 2023b. Geotechnical Factual Report. Former Abitibi Mill Site. Stephenville, NL. Submitted to World Energy GH2. February 27, 2023.
- Fracflow Consultants Inc. (Fracflow). 2023c. Preliminary Geotechnical Interpretive Report. Former Abitibi Mill Site. Stephenville, NL. Submitted to World Energy GH2. March 16, 2023.
- Health Canada. 2022. Guidelines for Canadian Drinking Water Quality Summary Tables. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.
- Kirby, F.T., Ricketts, R.J. and Vanderveer, D.G. 2009. Surficial Geology of the Codroy map sheet (NTS 11O/14). Geological Survey, Department of Natural Resources, Government of Newfoundland and Labrador, Map 2009-89, Open File 011O/14/0405.
- Knight, I (compiler). 1982. Geology of the Carboniferous Bay St. George Subbasin. Minerals Development Division, Department of Mines and Energy, Government of Newfoundland and Labrador, Map 82-1.
- Liverman, D.G.E, and Sheppard, K. 1999. Landforms and Surficial Geology of the St. Fintan's Map Sheet (NTS 12B/2), Newfoundland Department of Mines and Energy, Geological Survey, Map 99-05, Open File 012B/02/0413
- Liverman, D. and Taylor, D. 1993. Surficial Geology of the Stephenville and Bay of Islands Map Areas (NTS 12B and 12G), Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey Open File NFLD (2341), Map 93-80. Scale 1:250 000

August 2023

- Newfoundland and Labrador Department of Environment and Climate Change (NLDECC). 2021. Water Quality Trends in Selected Surface Water Bodies of Newfoundland & Labrador – Phase 2. Water Resources Management Division. Available online at: <u>https://www.gov.nl.ca/ecc/files/Water\_Quality\_Trend\_Report\_Part\_2\_2021.pdf</u>
- Newfoundland and Labrador Department of Environment and Climate Change (NLDECC), Water Resources Management Division. 2023a. Real Time Water Quality Monitoring Station Data. Available online at: https://www.gov.nl.ca/ecc/waterres/rti/stations/
- Newfoundland and Labrador Department of Environment and Climate Change (NLDECC). 2023b. Water Resources Portal. Water Resources Management Division. Available online at: <u>https://gnl.maps.arcgis.com/apps/webappviewer/index.html?id=8f9cddf172014b8d89eaa118bdfdf</u> <u>b40</u>
- Newfoundland and Labrador Department of Environment and Climate Change (NLDECC). 2023c. Drilled Water Well Database. Access through data request April 27, 2023 to Angela Buchanan, Manager, Groundwater, Water Resources Management Division.
- Newfoundland and Labrador Department of Environment and Lands, Water Resources Division. 1992. Water Resources Atlas of Newfoundland.
- Newfoundland and Labrador Department of Industry, Energy, and Technology (NLDIET). 2023. Geoscience Online. Available online at: <u>https://gis.geosurv.gov.nl.ca/</u>
- Newfoundland and Labrador Department of Municipal Affairs and Environment (NLDMAE), Water Resources Management Division. 2017. Guidance for Delineation of Wellhead Protection Areas (WHPAs) For Municipal Groundwater Supply Wells.
- Stantec. 2022. Preliminary Findings of the Environmental Due Diligence Review, Port Harmon and Former Abitibi Site, Stephenville, NL. Submitted to Horizon Maritime. May 6, 2022.
- Tóth, J. 2009. Gravitational Systems of Groundwater Flow. Cambridge University Press.
- Williams, H. 1985. Geology, Stephenville Map Area, Newfoundland; Geological Survey of Canada, Map 1579A, scale1:100 000.

# 3.0 Wastewater Discharge

The Project is proposing to discharge wastewater from the hydrogen / ammonia plant into the existing wastewater discharge infrastructure and the subsequent marine receiving environment. The baseline study characterizes the wastewater and estimates the annual volume of effluent discharge, describes the existing and proposed infrastructure used for effluent discharge, and describes the receiving environment for wastewater discharged during hydrogen and ammonia production. There are no planned wastewater discharges associated with wind farm or transmission line locations.

This information is needed to:

- Assess the effects of wastewater discharge and treatment needed to produce required water quality for hydrogen and ammonia production or other desired use, on the receiving environment
- Assess the capacity of the wastewater infrastructure to manage wastewater flow from the facility

## 3.1 Scope And Objectives of the Wastewater Discharge Study

The objectives of this wastewater discharge study are:

- To describe the existing and proposed infrastructure, proposed effluent discharge quality and quantity, and provide a general characterization of the receiving water in the vicinity of the Port of Stephenville site
- To describe future design and additional assessment work associated with the proposed wastewater discharge

The characterization of effluent discharge quality and quantity is subject to modifications and is anticipated to be finalized during the detailed design process. The development of an Assimilative Capacity (AC) Study for the receiving environment will be used through the approval and design process as an iterative tool to assess and mitigate effects to the receiving environment from the planned discharge.

Where the treated effluent is designed to be discharged to the ocean, specific regulatory requirements must be met. Provincial discharge limits are described under Schedule A of *NLR65/03: Environmental Control Water and Sewage Regulations* under the *Water Resource Act*. Discharges to the natural receiving environment must also meet Federal requirements of Environment and Climate Change Canada (ECCC) and its enforcement arm, DFO. Guideline and Guidance Documents from the Canadian Council of Ministers of the Environment (CCME) will be used to provide context to federal requirements for the protection of receiving water environments.

## 3.2 Methods

Methods for this study includes the review of existing desktop baseline information and the development of a comprehensive framework to support the assessment of the assimilative capacity of the receiving environment throughout the development of the project.

## 3.2.1 Baseline Data Review

The baseline data review focuses on publicly available data, guidelines and supporting design and planning studies specific to the Project.

## 3.2.2 Assimilative Capacity Study Planning

AC Study planning for the site largely follows an Ecological Risk Assessment (ERA) approach to assessing the dilution capacity of water receiving effluent discharge. The proposed ERA approach is carried out using guidance from the CCME Strategy for the Management of Municipal Wastewaters (2009) which provides two comprehensive technical supplements on ERAs in receiving waters that are applicable to various discharge streams; CCME Technical Supplement 2 and 3 (CCME 2008a,b) outlining the ERA framework and standard methods for completing effluent mixing zone studies of receiving waters. The CCME ERA approach is considered suitable for the type of water proposing to be discharged to the marine environment.

A reject process stream of concentrated source water is proposed to be discharged from the effluent treatment train to the marine environment. Reject process water is expected to be 3x to 5x the concentration of the source water; however, this will be refined during the design process. Reject process water is not anticipated to be oxygen depleting (negligible biological oxygen demand).

The AC study approach focuses on the re-dilution of source water using a limited marine mixing zone with the commitment to meet the CCME Guidelines for the Protection of Marine Aquatic Life at the extent of the mixing zone. The AC study will be used to assess the mixing zone. Parameters included in the AC study will be identified as design progresses.

The methods for the AC study includes the following tasks:

- Initial characterization
  - Background water quality of receiving waters
  - Available current profile data within the receiving waters
  - Detailed characterization of quality of reject process water
- Determine Environmental Quality Objectives (EQOs)
  - EQOs will be considered and include CCME PMAL, background concentration data, and criteria from other jurisdictions, where applicable
  - Mixing Zone Study

- Completed using CORMIX modeling software
  - Considers inputs determined in previous phases, including proposed reject process water quality, background water quality in receiving waters, and current profile of the receiving water.
- Site-Specific Environmental Discharge Objectives (EDOs)
- Develops end-of-pipe discharge criteria considering effluent quality required to meet EQOs within the mixing zone

Effluent treatment is required should EDOs be lower than anticipated reject process water quality. The AC study is anticipated to be an iterative document, updated as design progresses.

## 3.3 Results

#### 3.3.1 Effluent Discharge Quality and Quantity

Effluent discharge quantity is directly related to the proposed industrial water usage needs of the Project less losses within the system. The average weekly water demand for the three phases of the hydrogen /ammonia plant with the peak demand averaged over one week intervals is estimated at 2,381 m<sup>3</sup>/hr (Fracflow 2023). The industrial wastewater flow is estimated to be 36% percent of the water supplied (Fracflow 2023).

Effluent water quality is dependent on influent water quality which is represented by the baseline water quality of the source water. Water is currently proposed to be supplied from the Warm Creek drainage basin, specifically withdrawn from Mine Pond/Gull Pond and Noels Pond/Muddy Pond. An analysis of the raw water from the source water locations Pond indicates the waters are low in suspended solids (TSS <10 mg/L) and associated turbidity (<5 NTU) with colour ranging from 31.4 to 71.6 TCU. Total Dissolved Solids (TDS) ranged between 44 and 104 mg/L with an average concentration of 70 mg/L. Nitrate concentrations (<0.06 mg/L) and phosphorous concentrations were less than 30 µg/L which is low in comparison to seawater (Bricker et al. 1999). Total metals in the source water were below the CEQG for the Protection of Aquatic Life – Marine (CCME 1999) (Fracflow 2022 in Stantec 2023).

To achieve preferred performance and meet specifications of the reverse osmosis and deionization units, the assumed process water temperature at discharge is 15 °C (winter) and 25 °C (summer). In addition to temperature being different from ambient marine environment conditions, the effluent will have lower a lower salinity and closer similar to fresh water because of the low concentration of total dissolved solids (TDS) in the reject process effluent. The resulting effluent temperature and salinity are unlikely to meet CEQG in the marine environment at the end of pipe.

TSS discharged at the treated effluent target of 30 mg/L may periodically exceed the CEQGs, though the magnitude of the exceedance is much lower than the magnitude of the temperature and salinity exceedances. TSS will require a dilution ration of 5:1 at the end-of-pipe to meet CEQGs, for the current scenario this is instantaneous. Modelling the mixing zone for temperature and salinity will encompass the TSS mixing zone therefore, conservatively the two parameters of concern identified for the treated effluent are temperature (heated discharge) and salinity.

## 3.3.2 Existing and Proposed Infrastructure

The Facility's treated effluent is proposed to discharge via an exiting bottom-mounted pipe, extending into the harbor. The effluent pipe design is not known, but for the purposes of this assessment, it has been conservatively assumed to be a 0.15 m diameter pipe located on the riser approximately perpendicular to the shoreline and dominant tidal flow. The outfall crib was assumed to be at 1.16 m above seabed. Water depth at the outfall is 12.9 m at the chart datum.

## 3.3.3 Receiving Water Characterization

The climate in the vicinity of the outfall is classified as maritime temperate and is heavily influenced by the water in the Gulf of St. Lawrence and continental air masses. Mean air temperatures in the Gulf range from approximately -7°C in February to 18°C in August (Galbraith et al. 2022). Throughout most of the year, the prevailing winds are northwesterly, westerly, or southwesterly. Northwesterly and westerly winds are dominant during colder months, while southwesterly winds are more frequent during warmer months. Hourly wind data available within the study area were obtained from Environment and Climate Change Canada (ECCC) climate stations 8403800 and 8403801 at Stephenville Airport and MSC50 grid M6013677 located 66 km southwest of Stephenville.

Ocean currents in the region are influenced by tides, regional meteorological events, freshwater runoff from the St. Lawrence River and transport from the Strait of Belle Isle and the Cabot Strait. Prominent features of the region include coastal currents, gyres, massive eddies in the estuary, and tidal fronts. Currents within the Gulf flow counterclockwise with main currents directed towards the northeast along Western Newfoundland and to the southwest along Quebec's coast in the north (AMEC 2014). Currents are strongest near the surface (0-20 m), except in winter months and along the slopes of the deep Laurentian and Esquiman channels (Galbraith et al. 2022).

Recorded sea surface water temperature data at Stephenville crossing by the National Oceanic and Atmospheric Administration (NOAA) (seatemperature.org) which indicates a range from -1.8 °C (degrees Celsius) to 17.4 °C for near surface temperature. A review of literature indicates that depth-averaged salinity approximately varied between 30 PSU (practical salinity unit) and 33.7 PSU with an average 31.8 PSU from 0 to 50 m depth near the study area (Cyr et al. 2021).

## 3.3.4 Assimilative Capacity Study

Stantec completed a detailed mixing zone assessment of the reject process water effluent discharge from the Facility (Stantec 2023). The CCME marine water quality guidelines for the protection of aquatic life for temperature and salinity were used as water quality objectives in this assimilative capacity study. A three-dimensional model (CORMIX version 12.0) was used to derive the mixing zone for the Facility effluent. Physical and metocean characteristics of the receiving environment were modelled conservatively based on available information. The outfall configuration was conservatively assumed based on available information. The results indicate the mixing zone is less than 1 m for temperature and salinity in most scenarios. The worst-case scenario occurs during the winter period with an average current speed when the mixing zone for temperature and salinity can extend up to 3 m from the outfall

before meeting the respective CCME guidelines. Using the conservative modelling parameters, it can be concluded that no exceedances of marine water quality objectives are observed at the end of the 3 m mixing zone.

## 3.4 References

- CCME (Canadian Council of Ministers of the Environment). 2008a. Technical Supplement 2. Canadawide Strategy for the Management of Municipal Wastewater Effluent Environmental Risk Management: Framework and Guidance. Available online at: <u>https://ccme.ca/en/res/mwwe\_techsupp\_2\_e.pdf</u>
- CCME. 2008b. Technical Supplement 3 Canada-wide Strategy for the Management of Municipal Wastewater Effluent Standard Method and Contracting Provisions for the Environmental Risk Assessment. Available online at: <u>https://ccme.ca/en/res/mwwe\_techsupp\_3\_e.pdf</u>
- CCME. 2009. Canada-wide Strategy for the Management of Municipal Wastewater Effluent. February 17, 2009. Available online at: <u>https://www.ccme.ca/en/res/mwwe\_strategy\_e.pdf</u>
- Fracflow. 2022. Active Storage and Water Quality Noels Pond, Muddy Pond and Gull (Mine) Pond Stephenville, NL. December 16, 2022.

Fracflow. 2023b. Industrial Water Supply Infrastructure Stephenville, NL. January 10, 2023.

Stantec 2023. Assimilative Capacity Study - Mixing Zone Modelling for Marine Discharge Project Nujio'qonik. August 2023

PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 3.0 Wastewater Discharge August 2023

# 4.0 Freshwater Fish and Fish Habitat

The baseline freshwater fish and fish habitat study to support the EIS was conducted using available desktop information, which is a similar approach to other topics within the Aquatic Baseline Report. A field program is underway to verify the results of the desktop assessment and support future permitting.

## 4.1 Scope And Objectives of the Fish and Fish Habitat Study

The objectives of this fish and fish habitat baseline study are based on the final EIS Guidelines established for the Project and include:

- Identification of potential watercourse crossings associated with the Project Area
- Characterization fish habitat based on aerial imagery
- Use of existing available literature to characterize fish communities by species and life stage
- Identification of critical and sensitive habitats for spawning, nursery, rearing, feeding and migration
- Identification of species at risk (SAR) or species of conservation concern with potential to be found within the LAA

## 4.2 Regulatory Framework

This section identifies the primary regulatory requirements and policies which influence the scope of the assessment on fish and fish habitat and govern the management and protection of fish and fish habitat in Canada and NL.

In addition to the NL *Environmental Protection Act* (NL EPA) which guides the EA process, the Project is subject to other federal and provincial legislation, policies and guidance. This includes the federal *Fisheries Act*, the federal *Species at Risk Act* (SARA), the *NL Endangered Species Act* (NL ESA) and the NL *Water Resources Act*.

The *Fisheries Act* provides a legal basis for conserving and protecting fish and fish habitat. The Act includes prohibitions against

- the harmful alteration, disruption or destruction (HADD) of fish habitat (section 35(1))
- the death of fish, other than by fishing (section 34.4(1))
- the deposition of deleterious substances (Section 36)
- the obstruction of fish passage (Section 34.3(2)).

Works which may result in the death of fish or the HADD of fish habitat can be approved by and carried on in accordance with conditions established by the Minister of Fisheries, Oceans and the Canadian Coast Guard (Fisheries Minister) (section 35(2)(b)). This generally includes requirements to avoid, mitigate harmful effects to the extent practical, and offset remaining potential residual effects.

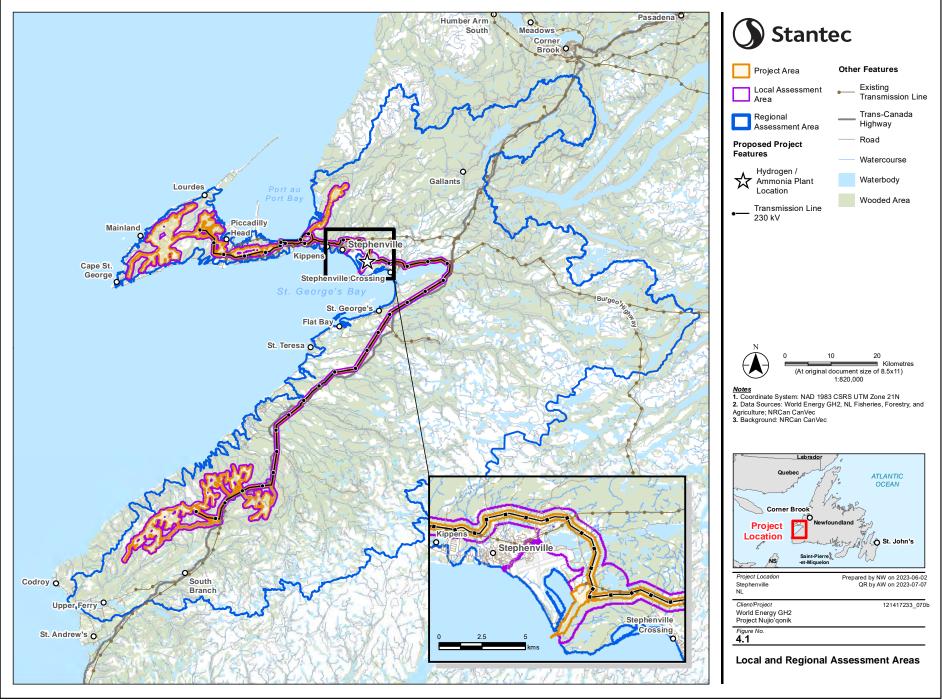
#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 4.0 Freshwater Fish and Fish Habitat August 2023

SARA provides protection for SAR in Canada. The legislation provides a framework to facilitate recovery of species listed as Threatened, Endangered or Extirpated, and to prevent species listed as special concern from becoming threatened or endangered. SAR and their habitats are protected under SARA, which prohibits: 1) the killing, harming, or harassing of endangered or threatened SAR (sections 32 and 36), and 2) the destruction of critical habitat of an endangered or threatened SAR (sections 58, 60 and 61). These species are listed in Schedule 1 of SARA.

While the primary legislation protecting fish and fish habitat is the federal *Fisheries Act*, provincial legislation is also considered in the assessment of effects on fish and fish habitat. This includes the NL EPA and the NL ESA. The NL ESA provides protection for plant and animal species considered to be Endangered, Threatened or Vulnerable.

The *NL Water Resources Act* provides legislation to manage water resources in the province, with the intent of providing clean water for environmental, social, and economic well-being. Works in freshwater waterbodies require a permit for the construction of water crossing structures (e.g., culvert, bridge, ford).

## 4.3 Methods


This baseline report was conducted using available desktop information including, the provincial 5 m digital elevation model (DEM), satellite imagery and publicly available information. Field studies to support the Project were developed in consultation with regulators and will be implemented in 2023.

## 4.3.1 Spatial Boundaries

The Project Area is the direct footprint of the Project and is consistent across VECs. The Project Area encompasses the immediate area in which Project activities and components will occur and is comprised of following distinct areas: the Port au Port wind farm, the Codroy wind farm, the hydrogen / ammonia plant, port facilities, and the 230 kV transmission lines, as well as associated infrastructure including roads, substations, and water supply. The Project Area is the potential area of direct physical disturbance associated with the construction, operation and decommissioning and rehabilitation of the Project. The Project Area also includes a up to a 175 m buffer (350 m RoW) around key Project components to allow for micro-siting during detailed design and mitigation to avoid ecological and culturally sensitive habitats.

The LAA for freshwater fish and fish habitat incorporates the Project Area and watercourses and waterbodies that intersect with the Project Area, as shown in Figure 4.1. The LAA also includes Noel Pond, Muddy Pond, Gull (Mine) Pond and their downstream tributaries, within the proposed area of the industrial water supply. A 500 m buffer has also been applied to the access roads, collector lines and transmission line RoW to capture potential upstream and downstream effects related to placement of culverts and bridges, clearing of the RoW, and operation and maintenance of the access road and RoWs.

The RAA for freshwater fish and fish habitat incorporates the Project Area and LAA, and extends from the headwaters of the watershed to the head of tide where tributaries discharge into the marine environment and potential Project interactions may be observed.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

## 4.3.2 Watercourse Crossing Identification

Potential watercourse crossings were identified within the proposed access road crossings, transmission line RoWs, collector line RoWs, and substation and turbine footprints using the 1:50,000 topographic mapping (Government of Canada n.d.) and existing satellite imagery. For the purposes of the baseline report, overprinting occurred when the area of Project disturbance was physically over a mapped or unmapped watercourse, while encroaching occurred when the area of Project disturbance was within 15 m of a mapped or unmapped watercourse.

## 4.3.3 Fish Habitat Characterization

A desktop analysis of digital satellite imagery was used to characterize fish habitat at the proposed crossing locations or potentially affected waterbodies. The fish habitat parameters assessed included channel status (visible or not visible), habitat type, estimated width, riparian vegetation, dominant substrate, slope, and adjacent relevant features.

Watercourse sizes (i.e., small, medium, large) were classified based on stream order. Small watercourses were considered those with orders of 0, 1, 2, while medium watercourses were considered those between 3 and 5.

When using satellite imagery to characterize fish habitat at watercourse crossing locations, the dominant substrate type assigned was based on substrates visible from satellite imagery (e.g., boulders or bedrock). Where substrates were not visible, substrate was assigned based on the type of riparian vegetation present at the crossing. These assumptions were based on professional experience from numerous field surveys in Atlantic Canada, where substrate type was found to be generally related to the type of riparian vegetation present or channel slope. Thus, the following assumption of substrate type was applied when characterizing fish habitat from satellite imagery where substrates were not readily visible, unless professional judgment indicated otherwise:

- Fine substrates are typically associated with wetland riparian vegetation
- Mixed substrates (i.e., fine and coarse) are associated with shrub riparian vegetation
- Coarse substrates are associated with treed riparian vegetation

Ponds associated with the hydrogen / ammonia plant were characterized based on existing available information (e.g., bathymetry) and publicly available imagery.

## 4.3.4 Fish Community

Satellite imagery, publicly available information, watercourse connectivity, and professional knowledge was used to inform the presence of fish and species potentially present in watercourses and waterbodies within the Project Area.

## 4.3.5 Aquatic Species at Risk

Publicly available literature, aquatic SAR mapping and data from Atlantic Canada Conservation Data Centre (AC CDC) were used to assess the potential for aquatic SAR. For the purposes of this baseline report, SAR are defined as species that are:

- listed on Schedule 1 of SARA as Extirpated, Endangered, Threatened or Special Concern
- listed as Extirpated, Endangered, Threatened, or Vulnerable under the NL ESA

Species of Conservation Concern (SOCC) are defined as those species that are:

- assessed as Extirpated, Endangered, Threatened, or Special Concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) but have not yet been added to Schedule 1 of SARA
- recommended for listing by the Species Status Advisory Committee (SSAC) as Endangered, Threatened or Vulnerable but are not yet listed under the NL ESA
- ranked as provincially rare by the AC CDC including species with provincial status (S-ranks) of S1 (Critically Imperiled), S2 (Imperiled) or combinations thereof (e.g., S1S2) upon review by the AC CDC (AC CDC 2023)

## 4.4 Results

## 4.4.1 Watercourse and Waterbody Identification

Watercourse and waterbody identification was conducted for the four Project components: the Port au Port wind farm; the Codroy wind farm; the 230 kV transmission line; and the hydrogen / ammonia plant. For each location watercourses which crossed access roads, transmission lines or collector lines were identified based on the proposed RoWs. The proposed watercourse crossings are shown in Figures 4.2 to 4.4. More detailed figures are shown in Appendix D.

#### 4.4.1.1 Port au Port Wind Farm

The Port au Port wind farm overlaps 44 small watersheds which drain from the Peninsula to the Atlantic Ocean. The various RoWs cross Mainland Brook, Three Rock Cove Brook, South Brook, Red Brook, Smelt Brook, Fox River and Harry Brook proper or their tributaries.

In total, 112 potential watercourses crossings associated with the proposed access road RoWs were identified through the review of existing information and satellite imagery collected for the Project (Figure 4.2). Of the watercourses identified, 86 were mapped watercourses identified through the 1:50,000 topographic mapping and 26 potential watercourses were identified through the review of satellite imagery (Figure 4.2).

In addition, 132 potential watercourse crossings associated with the proposed collector lines were identified through the review of existing information (Figure 4.2). Of the watercourses identified, 102 were mapped watercourses identified through the 1:50,000 topographic mapping and 30 potential watercourse crossings were identified through the review of satellite imagery (Figure 4.2).

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 4.0 Freshwater Fish and Fish Habitat August 2023

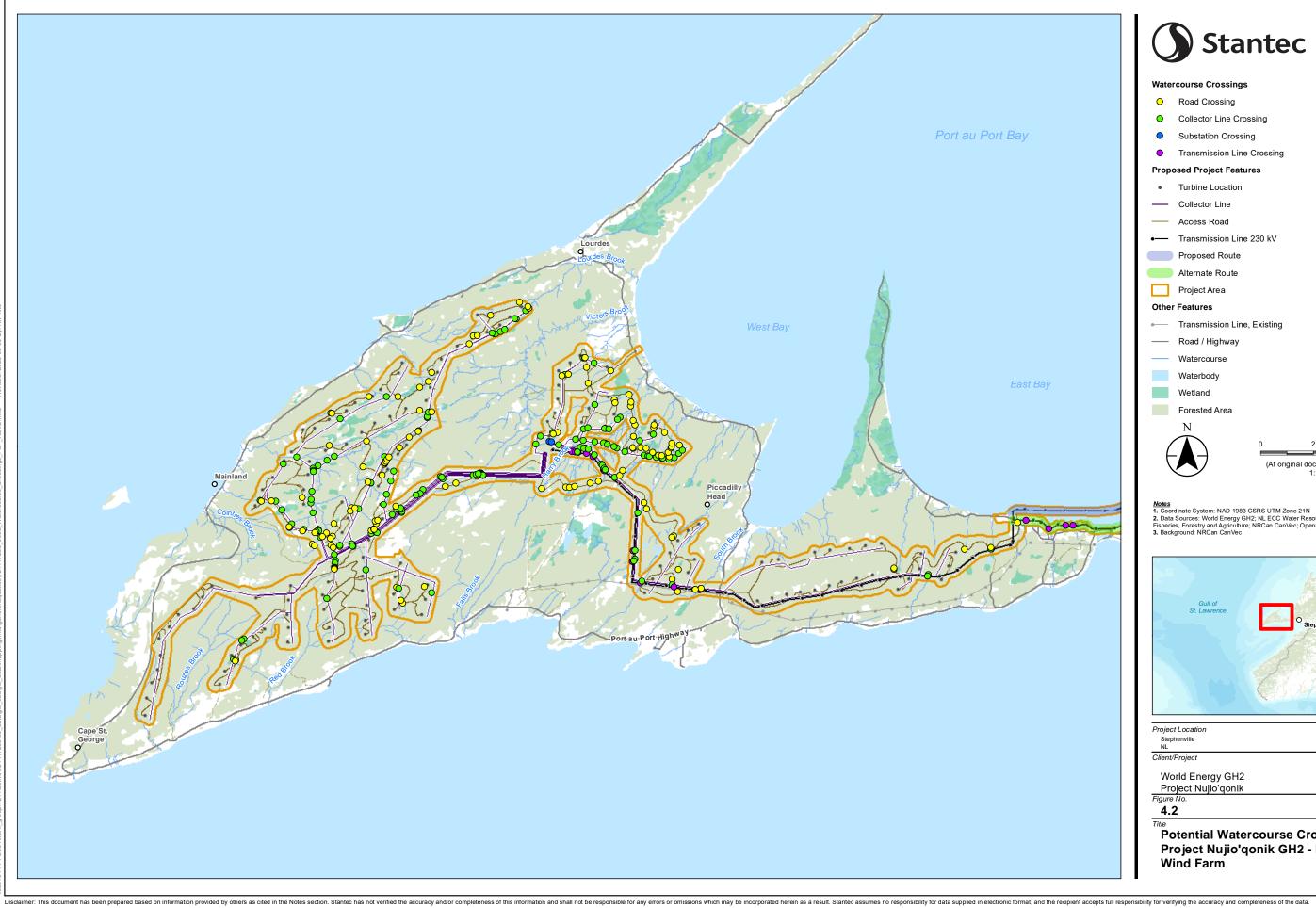
In addition, 17 potential watercourses/waterbodies associated with the wind turbine and substation footprints were identified through the review of existing information (Figure 4.2). Of the watercourses identified, 15 were mapped watercourses identified through the 1:50,000 topographic mapping and 2 potential watercourse crossings were identified through the review of satellite imagery (Figure 4.2).

### 4.4.1.2 Codroy Wind Farm

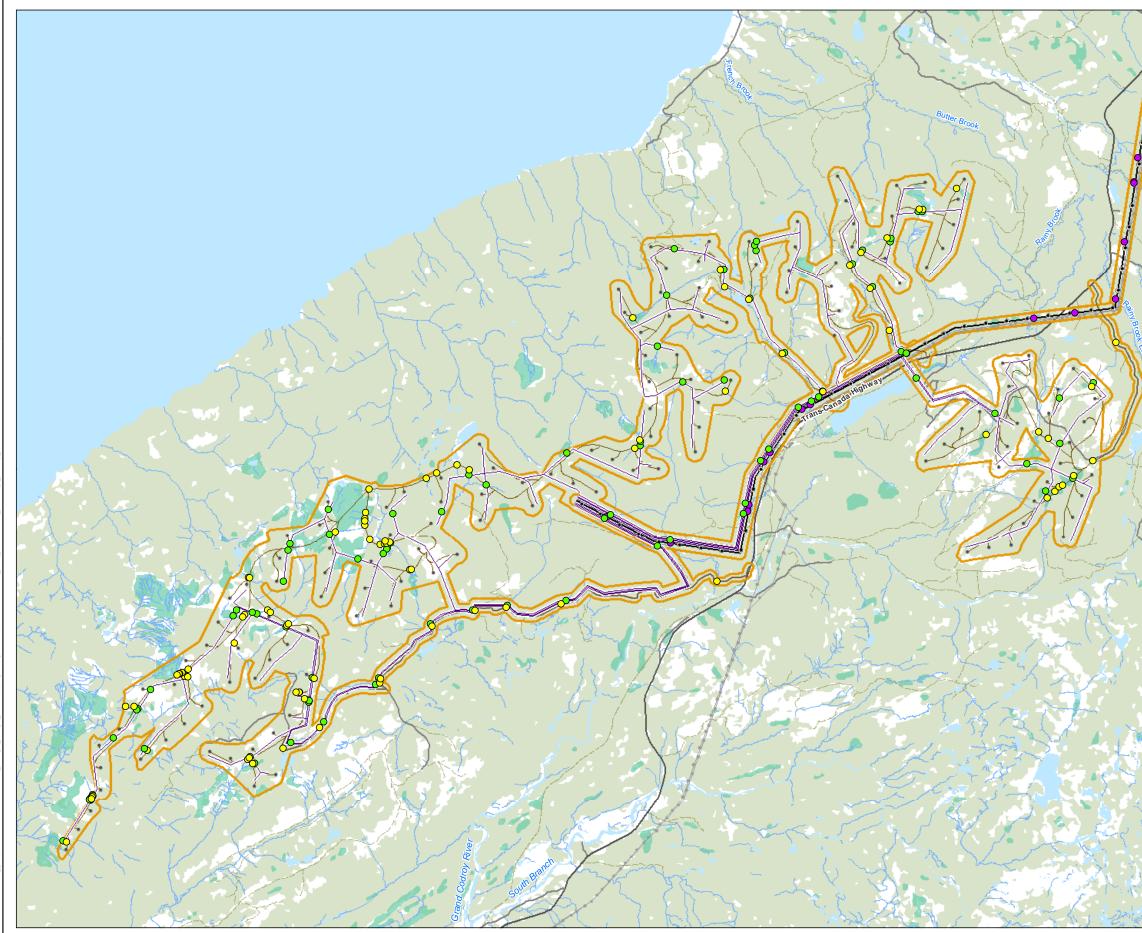
Codroy wind farm overlaps the Grand Codroy River Watershed, which is 724 km<sup>2</sup> in area, as well as twelve other smaller watersheds that drain into the Atlantic Ocean (Figure 4.3). The various RoWs cross the Grand Codroy River (including larger tributaries such as Broom's Brook, Big Brook, Crooked Brook, Morris Brook), Shoal Point Brook and Bald Mountain Brook or their tributaries. The Codroy wind farm drains the Anguille Mountains which incorporates several ecoregions including the Long Range Barrens Ecoregion, Southern Long Range Subregion and the Western Newfoundland Forest Ecoregion, Codroy Subregion (NLDECC n.d.-a).

In total, 90 potential watercourses crossings associated with the proposed access road RoWs were identified through the review of existing information and satellite imagery collected for the Project (Figure 4.3). Of the watercourses identified, 76 were mapped watercourses identified through the 1:50,000 topographic mapping and 14 potential watercourses were identified through review of satellite imagery (Figure 4.3).

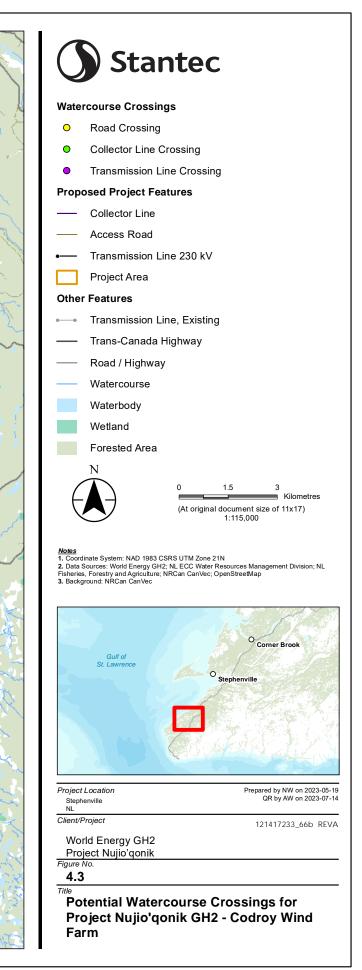
In addition, 87 potential watercourse crossings associated with the proposed collector lines were identified through the review of existing information (Figure 4.3). Of the watercourses identified, 70 were mapped watercourses identified through the 1:50,000 topographic mapping and 17 potential watercourse crossings were identified through the review of satellite imagery (Figure 4.3).

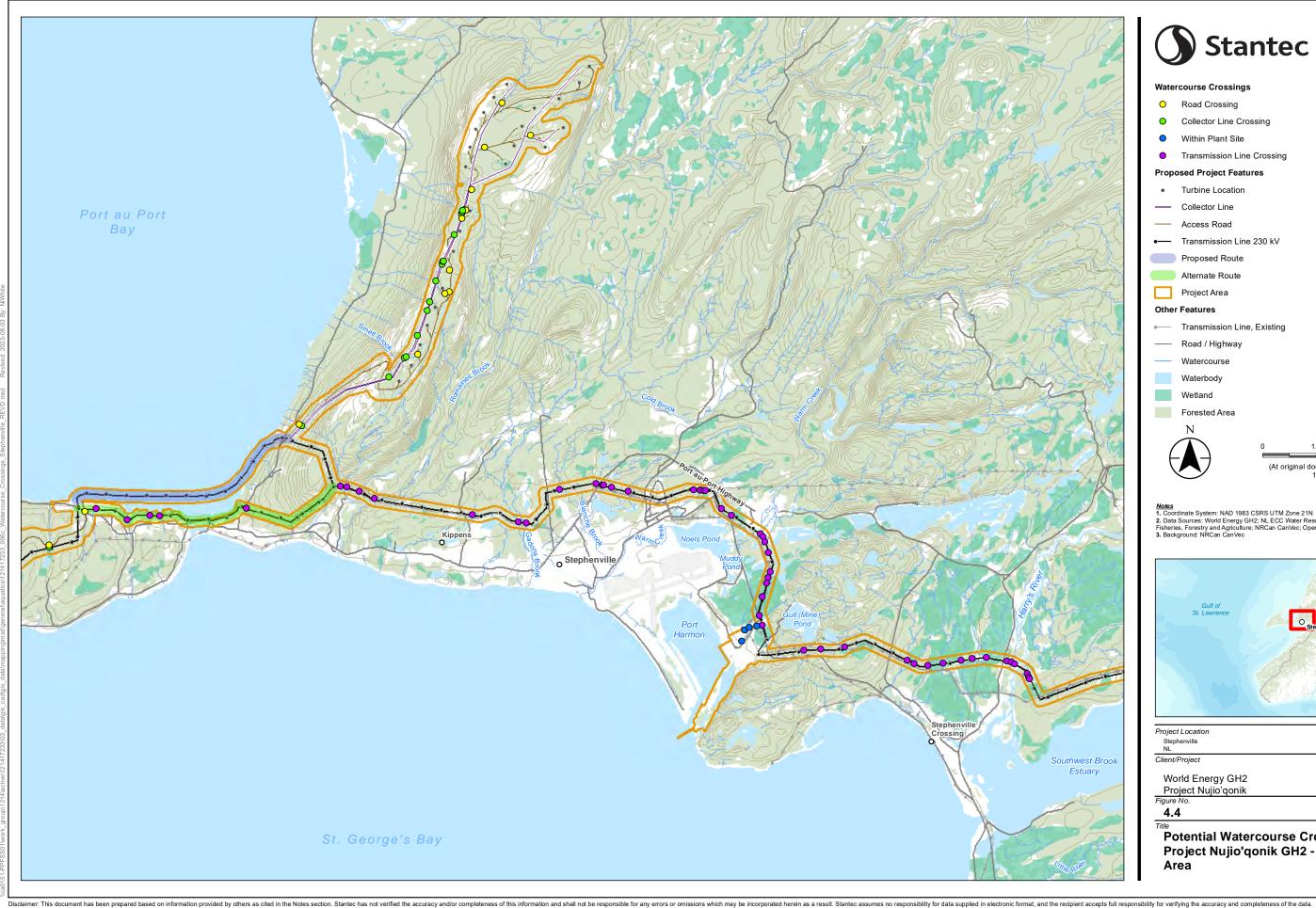

In addition, 15 potential watercourses/waterbodies associated with the wind turbine footprints were identified through the review of existing information (Figure 4.3). There were no watercourses/waterbodies associated with the substation footprints. Of the watercourses identified, 6 were mapped watercourses identified through the 1:50,000 topographic mapping and 9 potential watercourse crossings were identified through the review of satellite imagery (Figure 4.3).

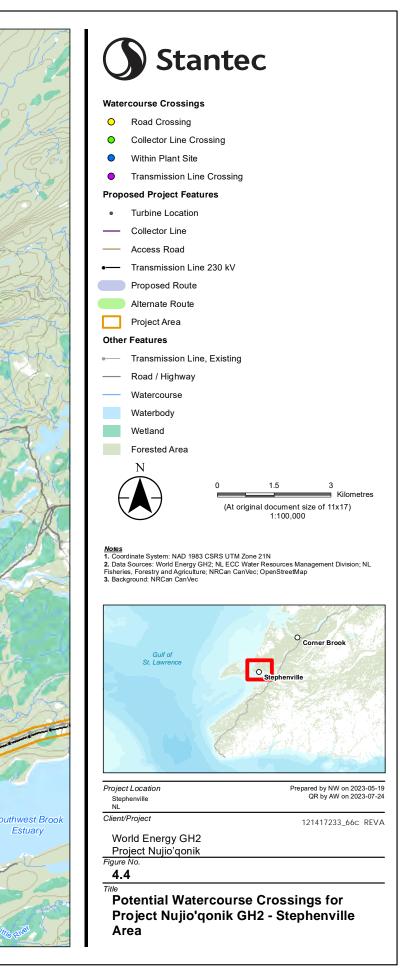
#### 4.4.1.3 230 kV Transmission Line


The 230 kV transmission line spans approximately 60 watersheds which flow towards the western side of the Island of Newfoundland to the Atlantic Ocean. The transmission line is located Western Newfoundland Forest Ecoregion, and the Codroy, St. George's Bay and Port au Port subregions (NLDECC n.d.-a).

In total, 146 potential watercourses crossings associated with the proposed transmission line RoW (associated with both Port au Port and Codroy wind farms) were identified through the review of existing information and satellite imagery collected for the Project (Figure 4.4). Of the watercourses identified, 141 were mapped watercourses identified through the 1:50,000 topographic mapping and 5 potential watercourses were identified through the review of satellite imagery (Figure 4.4).


## )





| Watercourse Crossings                                                                                                                                                                |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| O Road Crossing                                                                                                                                                                      |                                            |
| <ul> <li>Collector Line Crossing</li> </ul>                                                                                                                                          |                                            |
| Substation Crossing                                                                                                                                                                  |                                            |
| Transmission Line Crossing                                                                                                                                                           |                                            |
| Proposed Project Features                                                                                                                                                            |                                            |
| Turbine Location                                                                                                                                                                     |                                            |
| Collector Line                                                                                                                                                                       |                                            |
| — Access Road                                                                                                                                                                        |                                            |
| •— Transmission Line 230 kV                                                                                                                                                          |                                            |
| Proposed Route                                                                                                                                                                       |                                            |
| Alternate Route                                                                                                                                                                      |                                            |
| Project Area                                                                                                                                                                         |                                            |
| Other Features                                                                                                                                                                       |                                            |
| <ul> <li>Transmission Line, Existing</li> </ul>                                                                                                                                      |                                            |
| —— Road / Highway                                                                                                                                                                    |                                            |
| Watercourse                                                                                                                                                                          |                                            |
| Waterbody                                                                                                                                                                            |                                            |
| Wetland                                                                                                                                                                              |                                            |
| Forested Area                                                                                                                                                                        |                                            |
| Ν                                                                                                                                                                                    |                                            |
| 0                                                                                                                                                                                    | 2 4<br>Kilometr                            |
| Notes<br>1. Coordinate System: NAD 1983 CSRS UTM Zc<br>2. Data Sources: World Energy GH2; NL ECC W<br>Fisheries, Forestry and Agriculture; NRCan CanV<br>3. Background: NRCan CanVec | Vater Resources Management Division; N     |
| Gulf of<br>SL Lawrence                                                                                                                                                               | O Corner Brook                             |
|                                                                                                                                                                                      |                                            |
| Project Location<br>Stephenville<br>NL                                                                                                                                               | Prepared by NW on 2023<br>QR by AW on 2023 |
| Stephenville                                                                                                                                                                         |                                            |
| Stephenville<br>NL                                                                                                                                                                   | QR by AW on 2023                           |



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of the data.







#### 4.4.1.4 Hydrogen / Ammonia Plant

Muddy Pond and Noels Pond are located within the Warm Brook Watershed (48.4 km<sup>2</sup>), which flows into the Blanch Brook Watershed (129.5 km<sup>2</sup>) and into the Atlantic Ocean (Figure 4.4). Gull (Mine) Pond is located within an unnamed Watershed (WSC-232; 10.1 km<sup>2</sup>), which flows into Port Harmon within the Port of Stephenville (Figure 4.4). The hydrogen / ammonia plant is located within the Western Newfoundland Forest Ecoregion, St. George's Bay Subregion (NLDECC n.d.-a).

The outlet of Gull Pond and its associated tributaries (1,570 m of stream length) flows through the plant site into Port Harmon.

#### 4.4.2 Fish Habitat Characterization

#### 4.4.2.1 Port au Port Wind Farm

Of the 112 potential watercourse crossings associated with the proposed Port au Port wind farm access road RoWs, 40 watercourses / waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. 37 are considered small (first or second order headwater streams) and drain into larger tributaries or waterbodies and 3 are considered medium. Of those remaining, 42 crossings are likely no visible channel (based on satellite imagery), 25 are likely overland drainage channels and 5 are bog holes (i.e., have no connectivity with downstream watercourses) and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.1.

Based on the satellite imagery, small watercourses associated with the Port au Port wind farm access road RoWs were generally narrow (<3 m). Small watercourses were anticipated to have riffle/run habitats, with primarily coarse substrates, and riparian vegetation consisting of trees (Appendix E, Table E.1). The medium watercourses varied widely in width (approximately 4 to 11 m), with coarse substrates, riffle/run habitats and riparian vegetation consisting of primarily trees (Appendix E, Table E.1).

Of the 132 potential watercourse crossings associated with the proposed Port au Port collector line RoWs, 46 watercourses / waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. 30 are considered small (first or second order headwater streams) and drain into larger tributaries or waterbodies, 14 are considered medium and 2 are considered ponds. Of those remaining, 47 crossings are likely no visible channel (based on satellite imagery), 32 are likely overland drainage channels and 7 are bog holes and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.2.

Based on the satellite imagery, small watercourses associated with the Port au Port collector line RoW were generally narrow (<3 m). Small watercourses were anticipated to have riffle/run habitats, with primarily coarse substrates, and riparian vegetation consisting of trees (Appendix E, Table E.2). The medium watercourse were typically wider (approximately 3 to 13 m), with coarse substrates, riffle/run habitats and riparian vegetation consisting of primarily trees (Appendix E, Table E.2). Ponds were generally small (range 34 to 122 m in width), anticipated to have fine substrates and had riparian vegetation consisting primarily of trees (Appendix E, Table E.2).

Of the 17 potential watercourses overprinted with the proposed Port au Port wind farm substations and turbine footprints, 5 watercourses are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. These 5 watercourses are considered small (first or second order headwater streams) and drain into larger tributaries or waterbodies. Of those remaining, 8 crossings are likely no visible channel (based on satellite imagery) and 4 are likely overland drainage channels and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.3.

Based on the satellite imagery, small watercourses associated with the Port au Port wind farm substation and turbine footprints were generally narrow (approximately 1 m). Small watercourses were anticipated to have riffle/run habitats, with primarily coarse substrates, and riparian vegetation consisting of trees (Appendix E, Table E.3).

#### 4.4.2.2 Codroy Wind Farm

Of the 90 potential watercourse/waterbody crossings associated with the proposed Codroy wind farm access road RoWs, 78 watercourses/waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. 71 are considered small (first or second order headwater streams) and drain into larger tributaries or waterbodies and 6 are considered medium and one is a pond. Based on review of imagery 7 crossings are likely no visible channel and 5 are likely overland drainage channels (i.e., have no connectivity with downstream watercourses) and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.4.

Based on the satellite imagery, small watercourses associated with the proposed Codroy wind farm access road RoWs were generally narrow (<5 m). The majority of small watercourses were anticipated to have riffle/run habitats, with mixed (fine and coarse) or coarse substrates, and riparian vegetation consisting of shrubs or trees (Appendix E, Table E.4). Medium watercourses were typically wider (range 2 to 12 m). The majority of watercourses were anticipated to have coarse substrates, riffle/run habitats and riparian vegetation consisting of trees or shrubs (Appendix E, Table E.4). The pond was small (approximately 100 m in width), anticipated to have fine substrates and had wetland riparian vegetation (Appendix E, Table E.4).

Of the 87 potential watercourse crossings associated with the proposed Codroy collector line RoWs, 65 watercourses/waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. 55 are considered small (first or second order headwater streams) and drain into larger tributaries or waterbodies and 10 are considered medium. Of those remaining, 8 crossings are likely no visible channel (based on satellite imagery), 10 are likely overland drainage channels and 4 were bog holes (i.e., no visible connectivity with downstream watercourses), and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.5.

Based on the satellite imagery, small watercourses associated with the proposed Codroy collector line RoWs were generally narrow (<5 m). Approximately 40% of the watercourses were anticipated to have fine substrates and slow-flowing water velocities (e.g., glide habitats) and flow through wetlands or low-

lying areas. The remaining 60% of watercourses were anticipated to have riffle/run habitats, with mixed (fine and coarse) or coarse substrates, and riparian vegetation consisting of shrubs or trees (Appendix E, Table E.5). Larger watercourses were typically wider (range 2 to 11 m), with coarse substrates, riffle/run habitats and riparian vegetation consisting of primarily trees (Appendix E, Table E.5).

Of the 15 potential watercourses/waterbodies associated with the proposed Codroy wind farm substation and turbine footprints, 13 watercourses/waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. These 13 watercourses/waterbodies are considered small (first order headwater streams) and drain into larger tributaries or waterbodies. The two remaining watercourses are likely overland drainage channels and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.6.

Based on the satellite imagery, small watercourses associated with the proposed Codroy wind farm turbine footprints were generally narrow (<1 m). The majority of the watercourses were anticipated to have fine or mixed (fine and course) substrates and slow-flowing water velocities (e.g., glide habitats) and flow through wetlands or low-lying areas with shrubs (Appendix E, Table E.6).

#### 4.4.2.3 230 kV Transmission Line

Of the 147 potential watercourse crossings associated with the 230 kV transmission line RoW, 106 watercourses/waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies. 62 are considered small (first or second order headwater streams) and drain into larger tributaries or waterbodies, 37 are considered medium, and 7 are ponds. Of those remaining, 20 crossings are likely no visible channel (based on satellite imagery), 17 are likely overland drainage channels and 4 are bog holes (i.e., have no connectivity with downstream watercourses), and are therefore not considered fish habitat. Detailed fish habitat information based on satellite imagery is provided in Appendix E, Table E.7.

Based on the satellite imagery, small watercourses associated with the transmission line RoW were generally narrow (<3 m), with a few exceptions in steady habitats. The majority of small watercourses were anticipated to have riffle/run habitats, with primarily mixed (fine and coarse) or coarse substrates, and riparian vegetation consisting of trees or shrubs (Appendix E, Table E.7). The medium watercourses ranged widely in size (range 2 to 224 m), with coarse substrates, riffle/run habitats and riparian vegetation consisting of primarily trees (Appendix E, Table E.7). The ponds were small (approximately 16 to 260 m in width), anticipated to have fine substrates and had riparian vegetation consisting primarily of shrubs or trees (Appendix E, Table E.7).

#### 4.4.2.4 Hydrogen / Ammonia Plant

Muddy Pond is a 0.13 km<sup>2</sup> pond which is located immediately adjacent to the Stephenville Airport. It has one inflowing tributary and drains into Noels Pond by a 40 m long culvert. The maximum depth is 20 m and approximately half of fish habitat in the pond would be considered profundal (deeper water habitat) and the remaining half would be considered littoral (shallow) habitats. Substrates along the shoreline area are coarse (e.g., gravel, cobble) with substrates in the profundal zone likely being fine. Riparian vegetation along the pond is primarily forest and shrubs. Runway lighting poles span Muddy Pond. Anthropogenic activities around Muddy Pond include roads and the Stephenville Airport.

Noels Pond is a 1.03 km<sup>2</sup> pond which is located immediately adjacent to the Stephenville Airport. It has four inflowing tributaries and drains to the Atlantic Ocean via Warm Creek. The maximum depth is 18 m and the majority of the fish habitat in the pond would be considered profundal (deeper water habitat) with a smaller proportion being littoral (shallow) habitats. Substrates in the littoral area appear to be coarse (e.g., gravel, cobble) with substrates in the profundal zone likely being fine. Riparian vegetation along the northern and eastern portion of the pond is primarily forest and shrubs, with grass and shrubs being the dominant riparian vegetation along the southern and western shoreline. Anthropogenic activities around Noels Pond include roads, a quarry and the Stephenville Airport.

Gull (Mine) Pond is a 0.60 km<sup>2</sup> pond which is located immediately adjacent to the Stephenville Airport. It has no visible inflowing tributaries and drains into Port Harmon (Atlantic Ocean) via an unnamed outlet. The maximum depth is 28 m and the majority of the fish habitat in the pond would be considered profundal (deeper water habitat) with a smaller proportion being littoral (shallow) habitats. Substrates in the littoral area appear to be coarse (e.g., gravel, cobble) and fine with substrates in the profundal zone likely being fine. Riparian vegetation is primarily forest. Anthropogenic activities around Gull Pond include a road along the western side and a water intake.

The outlet of Gull Pond and its associated tributaries flows through the plant site into Port Harmon. Based on the satellite imagery, the watercourses associated with plant site were generally narrow (< 2 m) and disturbed by an existing access road, a piped stream diversion and the existing plant site. The watercourses were anticipated to have mixed substrates, swift-flowing water velocities (e.g., riffle-run habitats) and riparian vegetation consisting of shrubs.

#### 4.4.3 Fish Communities

Several fish species potentially inhabit rivers and ponds in the Western Newfoundland Forest Corner Brook, Port au Port, St. George's Bay and Codyroy subregions including Atlantic salmon (*Salmo salar*), brook trout (*Salvelinus fontinalis*), Arctic char (*Salvelinus alpinus*), American eel (*Anguilla rostrata*), ninespine stickleback (*Pungitius pungitius*), threespine stickleback (*Gasterosteus aculaeatus*), blackspotted stickleback (*Gasterosteus wheatlandi*), mummichog (*Fundulus heteroclitus*), banded killifish (*Fundulus diaphanous*) and rainbow smelt (*Osmerus mordax;* NLDECC\_2008a,b,c,d). Based on review of habitat preferences and satellite imagery, Atlantic salmon, brook trout, American eel and stickleback are most likely to be present in watercourses / waterbodies in the RAA.

Freshwater habitat within the RAA provides spawning, nursery, rearing, feeding and migratory habitats on a local scale for brook trout, threespine stickleback, ninespine stickleback, and banded killifish to carry out their life processes. Brook trout are most likely to be found in small streams with coarse substrates, while Atlantic salmon and American eel are most likely to be found in medium streams with coarse substrates (Grant and Lee 2004; Scott and Crossman 1998; Stanley and Trial 1995). Sticklebacks and banded killifish are most likely to be found in ponds or streams flowing through wetlands with fine substrates (Grant and Lee 2004; Scott and Crossman 1998). Mummichogs are found in estuarine areas close to the marine environment (Scott and Crossman 1998).

Atlantic salmon, American eel, and rainbow smelt are diadromous, meaning they require both the freshwater and marine environments to carry out their lifecycles (Scott and Crossman 1998).

Based on the habitat preferences of American eel, freshwater habitat within the RAA likely provides rearing, feeding and migratory habitats on a local scale to carry out their life processes. The Sargasso Sea in the marine environment provides spawning and nursery habitats for American eel. Habitat critical for the long-term survival of American eel is hard to define or quantify given the wide range in habitat preferences occupied by one or multiple life stages (Wildlife Division 2010).

Based on their individual habitat preferences, freshwater habitats within the RAA also provide spawning, nursery, rearing and migratory habitat on a local scale for Atlantic salmon and rainbow smelt, while the marine environment provides additional rearing, feeding and migratory habitat during maturation. Accessible migration corridors are a limiting factor for Atlantic salmon populations (COSEWIC 2010).

In Newfoundland, Arctic char may be anadromous or landlocked (Scott and Crossman 1998). Landlocked forms are typically found year-round in clear, cold deep lake habitats while anadromous forms use the shoals of lakes or quiet pools for rivers for spawning for a short duration (Bradbury et al. 1999). Based on review of satellite imagery, there appears to be little to no habitat (i.e., large deep lakes) within the RAA for land-locked Arctic char and no available information inferring habitat use by anadromous forms.

#### 4.4.4 Aquatic Species at Risk and Species of Conservation Concern

Three aquatic SAR/SOCC are known to inhabit watersheds within the RAA or have the potential to be present within the RAA: American Eel, banded killifish, and mummichog (Table 4.1; COSEWIC 2012; NLDFFA n.d.; DFO 2022, AC CDC 2023). No critical habitats (as defined by SARA or NL ESA) for these species were identified in the RAA.

4-15

## Table 4.1Aquatic Species at Risk and/or Species of Conservation Concern that<br/>may occur in the RAA

|                                                                                                                                        | Conservation Status             |                           |                       |                 |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|-----------------------|-----------------|
| Species                                                                                                                                | SARA <sup>1</sup>               | COSEWIC <sup>1</sup>      | NL ESA <sup>2,3</sup> | ACCDC<br>S-Rank |
| American Eel (Anguilla rostrata)                                                                                                       | No status (under consideration) | Threatened (2012)         | Vulnerable<br>(2006)  | S3 (Vulnerable) |
| Banded Killifish ( <i>Fundulus diaphanous</i> )<br>- Newfoundland population                                                           | Special Concern,<br>Schedule 1  | Special<br>Concern (2003) | Vulnerable<br>(2003)  | S3 (Vulnerable) |
| Mummichog (Fundulus heteroclitus) No status No status Vulnerable S3 (Vulnerable                                                        |                                 |                           | S3 (Vulnerable)       |                 |
| Notes:                                                                                                                                 |                                 |                           |                       |                 |
| Source: Government of Canada 2021.                                                                                                     |                                 |                           |                       |                 |
| Newfoundland and Laborador Fisheries, Forestry and Agriculture (no date)<br>https://www.gov.nl.ca/ffa/wildlife/endangeredspecies/fish/ |                                 |                           |                       |                 |
| SSAC 2016                                                                                                                              |                                 |                           |                       |                 |

American eel are considered as one panmictic population (Cornic et al. 2021). American eel is catadromous; adults move downstream in late summer or autumn to marine waters and migrate to the Sargasso Sea to spawn (COSEWIC 2012). As young eels grow, also known as glass eels, they drift toward the continental shelf and eventually move into inshore waters. Some eels migrate up rivers to freshwater habitats, while others remain in brackish or salt waters (COSEWIC 2012). Eels are more abundant in medium and large rivers closer to the ocean (Smith and Saunders 1955; Gray and Andrews 1971; Smogor et al. 1995). In Newfoundland, eels are found in almost all lakes and rivers that flow to the sea (NLDFFA n.d.). There has been a general decline in eel abundance over time (Veinott and Clark 2010). Based on habitat characteristics, American eel are most likely to occur at 70 potential Project crossings associated with medium watercourses.

Banded killifish occur within several locations on the Island of Newfoundland. Newfoundland is the eastern most extent of its population and is isolated from mainland populations. They are locally abundant within the areas they inhabit but the locations where they are found are widely scattered. Banded killifish prefer clear ponds with muddy/sandy substrates and submergent aquatic vegetation. Populations are distributed in the vicinity of the Project near Loch Leven (Highlands River), Flat Bay Brook, Little Barachois Brook, Bottom Brook, St. George's Bay, Harry's River and Noel's Pond (DFO 2022, AC CDC 2023). Banded killifish have the potential to occur at 23 potential crossings but based on habitat characteristics of the crossings (e.g., slow moving reaches of rivers or ponds) are most likely to occur at one proposed transmission line crossings (WCT-556; Appendix E, Table E.7). They are also present within Noel's Pond (and likely Muddy Pond based on connectivity) which is associated with the industrial water supply associated with the hydrogen/ammonia plant (AC CDC 2023).

Mummichog occur in brackish waters, usually, in saltmarsh flats, estuaries and tidal areas where there is submergent aquatic vegetation (Scott and Crossman 1998). They are tolerant of a wide range of salinities and temperatures (Scott and Crossman 1998). Populations are known to occur in White's Brook and Gravel's Pond in Port au Port (AC CDC 2023).

#### 4.5 Discussion

In total, 558 potential watercourse crossings and 37 potential areas of overprinting/encroaching were identified and characterized through the review of existing information and satellite imagery.

Of the 235 potential crossings associated with the Port au Port wind farm (103 access road and 132 collector line RoW), 83 watercourses/waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies and 152 were unlikely or not considered to be fish-bearing. The vast majority of small and medium watercourses were anticipated to have riffle/run habitats, with primarily coarse substrates, and riparian vegetation consisting of trees. Ponds were generally small (range 34 to 122 m in width), anticipated to have fine substrates and had riparian vegetation consisting primarily of trees.

Of the 17 potential areas of overprinting/encroaching associated with the Port au Port wind farm (turbine and substation footprints), 5 watercourses are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies and 12 were unlikely or not considered to be fish-bearing.

Of the 177 potential crossings associated with the Codroy wind farm (90 access road and 87 collector line RoW), 143 watercourses/waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies and 34 were unlikely or not considered to be fish-bearing The majority of small watercourses were anticipated to have riffle/run habitats, with mixed (fine and coarse) or coarse substrates, and riparian vegetation consisting of shrubs or trees. The only pond was small and anticipated to have fine substrates and riparian vegetation consisting primarily of wetland vegetation.

Of the 15 potential areas of overprinting/encroaching associated with the Codroy wind farm (turbine footprints only), 13 watercourses are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies and 2 were unlikely or not considered to be fish-bearing. There were no area of overprinting/encroaching associated with the Codroy substation locations.

Of the 146 potential crossings associated with the 230 kV transmission line, 106 potential watercourses / waterbodies are assumed to be fish-bearing as there appears to be connectivity with downstream watercourses or waterbodies and 40 were unlikely or not considered to be fish-bearing. The vast majority of small and medium watercourses were anticipated to have riffle/run habitats, with primarily coarse substrates, and riparian vegetation consisting of trees or shrubs. Ponds were small (approximately 16 to 260 m in width), were anticipated to have fine substrates and had riparian vegetation consisting primarily of shrubs or trees.

Muddy Pond, Noels Pond and Gull (Mine) Pond range in size from 0.6 to 1.0 km<sup>2</sup>. Riparian vegetation along the ponds is primarily forest and/or shrubs. Substrates in the littoral area appear to be primarily coarse (e.g., gravel, cobble) with substrates in the profundal zone likely being fine.

Based on the flowing habitat characteristics associated with the vast majority of the crossings, brook trout, Atlantic salmon, American eel, threespine and ninespine stickleback are likely to be the most common and abundant fish species to be encountered within the RoW. There is the potential for banded killfish, mummichog, and rainbow smelt. Based on habitat characteristics, American eel have the potential to occur at 70 crossings associated with medium watercourses and banded killfish have the potential to occur at one crossing.

Field surveys are being conducted prior to the initiation of Project activities to characterize fish habitat at road crossings, confirm the results of the desktop assessment by verifying the presence or absence of fish-bearing watercourses within the RoW or within Project infrastructure footprints, prior to clearing and to confirm the existing fish communities in support of subsequent permitting activities.

## 4.6 References

- AC CDC (Atlantic Canada Conservation Data Centre). 2023. GH2 Project SAR (Species At Risk) and SOCC (Species of Conservation Concern) Data from AC CDC [Shapefile]. Data request March 2, 2023.
- Bradbury, C., M.M. Roberge and C.K. Minns. 1999. Life History Characteristics of Freshwater Fishes Occurring in Newfoundland and Labrador, with Major Emphasis on Lake Habitat Requirements. Canadian Manuscript Report of Fisheries and Aquatic Sciences. No. 2485.
- CCME (Canadian Councils of Ministers of the Environment). 2014. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Available online: <u>https://wcww.ccme.ca/files/ceqg/en/backup/222-080516095450.pdf</u>. Accessed August 2020.
- Cornic, M., Zhu, X., Cairns, D.K. 2021. Stock-wide assessment framework for American eel: review of trends and approaches to assessment. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/032. x + 77 p.
- Chaput, G., J.B. Dempson, F. Caron, R. Jones and J. Gibson. 2006. A synthesis of life history characteristics and stock groupings of Atlantic salmon (*Salmo salar* L.) in eastern Canada. DFO Canadian Science Advisory Secretariat Research Documents. 2006/015.
- COSEWIC. 2010. COSEWIC assessment and status report on the Atlantic Salmon Salmo salar (Nunavik population, Labrador population, Northeast Newfoundland population, South Newfoundland population, Southwest Newfoundland population, Northwest Newfoundland population, Quebec Eastern North Shore population, Lake Ontario population, Gaspe-Southern Gulf of St. Lawrence population, Eastern Cape Breton population, Nova Scotia Southern Upland population, Inner Bay of Fundy population, Outer Bay of Fundy population) in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, ON, xlvii+136 pp.
- COSEWIC. 2012. COSEWIC assessment and status report on the American Eel Anguilla rostrata in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 109 pp.

- Fisheries and Oceans Canada (DFO). 2022. Aquatic Species at Risk Map. Available Online: <u>https://www.dfo-mpo.gc.ca/species-especes/sara-lep/map-carte/index-eng.html</u>. Accessed March 17, 2023.
- Grant, C.G.J. and E. M. Lee. 2004. Life History Characteristics of Freshwater Fishes Occurring in Newfoundland and Labrador, with Major Emphasis on Riverine Habitat Requirements. Canadian Manuscript Report of Fisheries and Aquatic Sciences. No. 2672: xii + 262p.
- Gray, R.W., and C.W. Andrews. 1971. Age and growth of the American eel (Anguilla rostrata (LeSueur)) in Newfoundland waters. Canadian Journal of Zoology 49: 121-128.

Government of Canada. 2021. Species at Risk Public Registry, Species Search. Available Online: <u>https://species-registry.canada.ca/index-</u> <u>en.html#/species?sortBy=commonNameSort&sortDirection=asc&pageSize=10</u>. Accessed March 20, 2023.

- NLDECC (Newfoundland and Labrador Department of Environment and Climate Change) 2008a. Western Newfoundland Forest Corner Brook Subregion. Available Online: <u>https://www.gov.nl.ca/ecc/files/natural-areas-pdf-island-1b-corner-brook.pdf</u>
- NLDECC (Newfoundland and Labrador Department of Environment and Climate Change) 2008b. Western Newfoundland Forest Port au Port Subregion. Available Online: <u>https://www.gov.nl.ca/ecc/files/publications-parks-ecoregions-island-1c-port-au-port.pdf</u>
- NLDECC (Newfoundland and Labrador Department of Environment and Climate Change) 2008c. Western Newfoundland Forest St. George's Bay Subregion. Available Online: <u>https://www.gov.nl.ca/ecc/files/publications-parks-ecoregions-island-1d-st-georges-bay-2007.pdf</u>
- NLDECC (Newfoundland and Labrador Department of Environment and Climate Change) 2008d. Western Newfoundland Forest Codroy Subregion. Available Online: <u>https://www.gov.nl.ca/ecc/files/publications-parks-ecoregions-island-1e-codroy.pdf</u>
- NLDFFA no date. Inland Fish American Eel. Available Online: <u>https://www.gov.nl.ca/ffa/wildlife/all-species/animals/inland-fish/american-eel/</u>. Accessed March 20, 2023.
- Scott, W.B., and E.J. Crossman. 1998. Freshwater Fishes of Canada. Galt House Publications Ltd. ISBN-0-9690653-9-6
- Smith, M.W., and J.W. Saunders. 1955. The American eel in certain freshwaters of the Maritime Provinces of Canada. Journal of the Fisheries Research Board of Canada 12:238 269.
- Smogor, R.A., P.L. Angermeier, and C.K. Gaylord. 1995. Distribution and abundance of American eels in Virginia streams: tests of null models across spatial scales. Transactions of the American Fisheries Society 124: 789-803.

- Species Status Advisory Committee (SSAC). 2016. Status Review for Mummichog [(Fundulus heteroclitus macrolepidotus)] in Newfoundland and Labrador. Wildlife Division, Department of Environment and Conservation, Government of Newfoundland and Labrador, Corner Brook, Newfoundland and Labrador, Canada.
- Stanley, J.G., and J.G. Trial. 1995. Habitat Suitability Index Models: Nonmigratory Freshwater Life Stages of Atlantic salmon. Biological Science Report 3. U.S. Department of the Interior.
- Veinott, G and Clarke, K. 2011. Status of American Eel in Newfoundland and Labrador Region: Prepared for the Pre-COSEWIC and Eel Zonal Advisory Process (ZAP), Ottawa, August 31 to Sept 3, 2010. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/138. iv + 20 p.

## 5.0 Freshwater Fisheries

## 5.1 Scope and Objectives of the Fisheries Study

The objectives of this fisheries baseline study are:

- Identify and characterize existing commercial and recreational freshwater fisheries within the Project Area
- Describe current fisheries management approaches
- Describe local enhancement initiatives and may influence fisheries

#### 5.1.1 Regulatory Setting

Freshwater fishing in Newfoundland and Labrador is governed through the federal *Fisheries Act* and its regulations (*Fishery (General) Regulations* and the *Newfoundland and Labrador Fishery Regulations*) and the NL *Wild Life Act* and its regulations. DFO is responsible for the management of Atlantic salmon fisheries in NL, while the provincial Department of Fisheries, Forestry and Agriculture (formerly Fisheries and Land Resources, Wildlife Division), is responsible for the issuance of licences for inland fisheries (DFO 2020).

The regulations govern daily and yearly quotas, possession limits, and length limit for species fished in the inland and tidal waters. The regulations focus on the management and allocation of domestic fishery resources of the region. These regulations provide for fish harvester licensing, who may hold licences, vessel registration, gear requirements, open and closed seasons, restricted areas and other conservation and management measures.

Indigenous fisheries for food, social and ceremonial purposes are regulated according to the *Aboriginal Communal Fishing Licences Regulations*. Indigenous harvesters can catch what is needed for themselves and/or their community for food, social, and ceremonial (FSC) purposes under a communal FSC licence (DFO 2022).

#### 5.2 Methods

#### 5.2.1 Spatial Boundaries

Spatial boundaries were defined to focus the collection and analysis of data for the study. These include the RAA (Figure 4.1) reflective of the potential areas used for the assessment of potential Project effects in the (EIS). The RAA for freshwater fish and fish habitat incorporates the Project Area and LAA, and extends from the headwaters of the watershed to the head of tide where tributaries discharge into the marine environment and potential Project interactions may be observed.

Local jurisdictions and management units relevant to fisheries within the RAA, include:

- Salmon Angling Zone 13
- Trout Angling Zone 1

#### 5.2.2 Data Sources

Baseline information on fisheries was gathered through a review of existing literature sources and correspondence with relevant government departments and agencies.

In addition to existing literature sources and correspondence with relevant government departments and agencies, information from a Land and Resource Use (LRU) survey was also incorporated into relevant sections of this chapter. The LRU survey was developed to engage the public, help WEGH2 learn about land/freshwater and resource use activities that occur in proposed Project locations, and to identify public perceptions around the potential risks and/or benefits of the Project.

The online LRU survey was open to the public from April 3 to April 17, 2023, and from May 17 to May 31, 2023. It was composed of 98 questions, which included multiple choice, single choice, yes/no, and openended question formats. Printed versions of the survey were made available for pick up from several locations from May 3, 2023, to May 17, 2023. Participants had the option of dropping off their completed surveys at the community office or mailing them into the office. The printed versions of the survey were composed of 36 questions specific to either the Port au Port or the Codroy areas. The questions were the same as those in the online survey. The results of the online and paper copies of the LRU survey were combined and analyzed as a single body of data. All versions of the LRU survey were anonymous, and no contact information was sought from the participants.

A copy of the online LRU survey questions is provided in Project Nujio'qonik GH2 - Land and Resource Use Survey Results Report (Stantec 2023b) along with a copy of the printed version of the survey for the Port au Port and Codroy Area.

#### 5.3 Results

#### 5.3.1 Existing Freshwater Commercial, Recreational and Indigenous Fisheries

The Land and Resource Use Study for this Project identified that the majority of freshwater fish and/or aquatic species activities in the areas are for recreational/food purposes or traditional/cultural purposes (Stantec 2023). Species fished include American eel, Arctic char, Atlantic salmon, brook trout, rainbow smelt as well as other species. Fishing activities typically take place once or twice a week when the seasons are open, and fish are consumed one or twice a week (Stantec 2023). A more detailed summary on individual freshwater fisheries and their management is provided below.

#### 5.3.1.1 Commercial Fisheries

Commercial fisheries in freshwater are limited to American eel and smelt. There have been no commercial fisheries for Atlantic salmon since 1992 (DFO 2022b).

Commercial fisheries for American eel exist in the RAA primarily for adult eels (Veinott and Clark 2011, Hawkins, L. pers. comm. July 27, 2023). Most of the commercial fishing effort is concentrated at the mouths of rivers, though some coastal harvesting does occur. In 2009, 154 commercial eel licenses were issued in Newfoundland and Labrador, however only 40 licensed fishers reported sales (DFO, pers. comm. In Wildlife Division 2010). The majority of reported landings came from the area between Cape Ray and Cape St. George (DFO, pers. comm. In Wildlife Division 2010). There are no recent data available. Commercial smelt fisheries also have the potential to occur although there has been no activity in more than a decade (L. Hawkins, pers. comm., July 27, 2023).

#### 5.3.1.2 Recreational Fisheries

Recreational fisheries occur in the RAA for Atlantic salmon, brook trout, Arctic char, rainbow smelt and other species (DFO 2022c; Stantec 2023). According to the Survey of Recreational Fishing in Canada, 2015, Newfoundland and Labrador have some of the highest percentage of active resident anglers (96%) and the highest overall proportion of fish retained (80%) in Canada (DFO 2019). The dominant species caught in freshwater in Newfoundland and Labrador was brook trout (DFO 2019). The total number of resident anglers in Newfoundland and Labrador in 2015 was 110,772 (DFO 2019).

Salmon angling effort in Zone 13 rivers ranged from 15 to 8,978 rod days, with the largest amount of effort on the Humber River, Harry's River and Southwest and Bottom Brooks (DFO 2022c). The number of salmon caught in Zone 13 rivers ranged from 9 to 7,397 fish per river in 2020, with the highest number of fish caught on the Humber River. Catch per unit effort (CPUE) ranged from 0.3 to 1.8 fish per rod day. When standardized by effort, the highest CPUE was on Middle Barachois Brook, Humber River and Serpentine River (DFO 2022c).

The recreational fishery for American eel consists mainly of spearing eel through the ice and is concentrated in the Bay St. George/Port aux Port Bay area (DFO pers. comm. In Wildlife Division 2010). There have been no new recreational fishery American eel licences granted since 1999 (Wildlife Division 2010).

#### 5.3.1.3 Indigenous Fisheries

Miawpukek First Nation hold a FSC licence for Atlantic salmon in Newfoundland (DFO 2022a). They have chosen not to harvest salmon under this licence since 1997 due to conservation concerns (DFO 2022a). The Qalipu First Nation Band also have access to salmon for FSC purposes through the recreational fishery in Newfoundland (DFO 2020).

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 5.0 Freshwater Fisheries August 2023

#### 5.3.2 Current Fisheries Management

#### 5.3.2.1 Commercial Fisheries

Current management practices related to the commercial eel fishery includes eel fishing seasons and minimum length requirements. The commercial inland season runs from July 1 (Inland eel pot fishery) or August 15 (Inland fyke net fishery) until October 31 each year (DFO 2018). The minimum retention size for eels in NAFO Division 4R is 20 cm (Wildlife Division 2010).

No new commercial eel licences are being released and there is a reduction in the overall number of licences through retirement (Veinott and Clark 2011).

#### 5.3.2.2 Recreational Fisheries

Recreational angling / fishing is regulated Federally and Provincially by DFO through the *Newfoundland and Labrador Fishery Regulations*. Licenses, issued by the Government of Newfoundland and Labrador, are required by both residents and non-residents for salmon, and non-residents only for trout and other sport fish (such as arctic char and northern pike). Newfoundland and Labrador inland waters are divided into scheduled salmon rivers; scheduled rainbow and brown trout waters; and non-scheduled inland waters (DFO 2019c). Scheduled rivers are those listed on Schedule 1 and Schedule 2 of the *Newfoundland and Labrador Fishery Regulations*.

#### Atlantic Salmon

Scheduled salmon rivers include: the main stem of a river, including tidal waters at the mouth of a river inside DFO caution signs; the waters of connected ponds or lakes within 90 m of the river's entrance and outlet, or as indicated by DFO signs; in many cases, tributary streams; in a few cases, certain lakes and ponds. There are 186 scheduled salmon rivers in Newfoundland and Labrador (DFO 2022c).

Angling occurs on a number of streams and rivers in the RAA. The Project is located in Zone 13 and includes the following scheduled rivers:

- 1. Great Codroy River and its tributaries (Class 4)
- 2. Highlands River and its tributaries (Class 2)
- 3. Crabbe's River and its tributaries (Class 2)
- 4. Middle Barachois River and its tributaries (Class 2)
- 5. Robinson's River and its tributaries (Class 2)
- 6. Fischell's Brook and its tributaries (Class 2)
- 7. Flat Bay Brook and its tributaries (Class 2)
- 8. Little Barachois Brook and its tributaries (Class 2)
- 9. Southwest and Bottom Brooks and its tributaries (Class 2)

- 10. Harry's River and its tributaries (Class 2)
- 11. Fox Island River and its tributaries (Class 2)

The salmon season for Zone 13 in 2022-2023 was from June 1 to September 7 (DFO 2022). Closed areas, where no angling is permitted in Zone 13 are:

- the section of Crabbe's River, including Twelve Mile Pool, upstream to its source
- the section of Barachois River, including Mine Pool, upstream to its source
- the section of Robinson's River, including Chatter Pool, upstream to Big Falls at Mile 18
- Highlands River, from TCH upstream to river source.

In addition, angling activities may be modified through management actions (e.g., variation orders) based on environmental conditions (e.g., water temperatures above 20°C).

Waterbodies used for salmon angling are categorized into classes which determine the daily bag limit/seasonal retention (Table 5.1). Salmon less than 63 cm can be retained based on the river class (Table 5.1). Salmon (e.g., fry, parr and smolt) less than 30 cm cannot be retained. Retention of salmon is also not permitted in non-scheduled waters (GC 2022).

#### Table 5.1 Salmon River Classification and Catch Limits

| River Classification        | Limit (Seasonal Retention)   |
|-----------------------------|------------------------------|
| Class 0                     | Catch and Release – two fish |
| Class 2                     | One fish                     |
| Class 4                     | Two fish                     |
| Class 6                     | Two fish                     |
| Unclassified (Zone 1 and 2) | Two fish                     |

A few outfitters operate within the RAA, and offer guided salmon fishing, in addition to hunting other wildlife.

#### Brook Trout and Other Species

Scheduled trout waters are those waters listed by DFO. Non-scheduled inland waters are not individually listed by name in the regulations. The RAA comprises part of Trout Angling Zone 1, which includes all of insular Newfoundland. Only non-residents are required to have a license for trout angling, however residents are required to have a Parks Canada fishing permit to catch and retain trout in a national park. The 2023 winter fishing season in Zone 1 opens February 1 and closes April 15. The summer season runs from May 15 to September 7. The daily bag limit for trout in insular Newfoundland is 12 fish, which can be a combination of any of the species (speckled, brown, rainbow, ouananiche) or 2.25 kg round weight plus one fish of any of those species, whichever is reached first. Rainbow or ouananiche less than 20 cm long cannot be retained. The daily bag limit for arctic char in insular Newfoundland is 12 fish or 2.25 kg round weight plus one fish of that species, whichever is reached first (DFO 2022c).

A few outfitters operate within the RAA, and offer guided trout fishing, in addition to hunting other wildlife.

Smelt angling in non-scheduled inland waters are subject to the same gears as trout angling. Smelt angling dates are also consistent with trout angling dates in non-scheduled inland waters, with the exception of some ponds. Smelt angling in coastal waters is permitted through the year. There is no limit for smelt (DFO 2022c).

There have been no new recreational fishery American eel licences granted since 1999 (Wildlife Division 2010), which infers the existing fishery is relatively limited.

#### 5.3.2.3 Indigenous Fisheries

Indigenous FSC fisheries are managed through an FSC communal fishing licences issued by DFO to individual Indigenous Nations. The Indigenous Nation may then designate some of its members to fish under the communal licence. The sizes and species of fish retained and locations fished are specified in the licence.

#### 5.4 Discussion

Commercial, recreational and Indigenous fisheries exist within and in proximity to the RAA. The majority of freshwater fish and/or aquatic species activities in the areas are for recreational/food purposes or traditional/cultural purposes (Stantec 2023). Commercial fishing for American eel and smelt exist in estuarine and inland waters along the coast near the Project (L. Hawkins, pers. comm., July 27, 2023).

In summary, recreational salmon fishing occurs within the RAA, with the majority of rivers being Class 2 and one river being Class 4 (Great Codroy River and its tributaries). The RAA comprises part of the Trout Angling Zone 1 and a few outfitters operate within the RAA, and offer guided, salmon and brook trout fishing, in addition to hunting other wildlife. Indigenous groups have allocations for FSC purposes in the RAA.

#### 5.5 References

#### 5.5.1 Literature Cited

- Fisheries and Oceans Canada (DFO). 2022a. Food, Social and Ceremonial Fisheries. Available Online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/aboriginal-autochtones/fsc-asr-eng.html</u>. Accessed May 30, 2023.
- Fisheries and Oceans Canada (DFO). 2022b. Stock Assessment of Newfoundland and Labrador Atlantic Salmon in 2020. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2022/031.

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 5.0 Freshwater Fisheries August 2023

- Fisheries and Oceans Canada (DFO). 2022c. Newfoundland and Labrador Angler's Guide 2022-2023.
  Published by Fisheries and Oceans Canada, Communications Branch Newfoundland and Labrador Region, St. John's, NL. DFO/22-2190.Fisheries and Oceans Canada (DFO). 2020.
  Integrated Fisheries Management Plans - Atlantic Salmon - Newfoundland and Labrador Region.
  Available Online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/ifmp-gmp/salmon-</u> saumon/2020/index-eng.html#toc6. Accessed: March 24, 2023.
- Fisheries and Oceans Canada (DFO). 2019. Survey of Recreational Fishing in Canada, 2015. Available Online: <u>https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/40753220.pdf</u>. Accessed March 9, 2023.
- Fisheries and Oceans Canada (DFO). 2018. Notice to Fish Harvesters Opening Dates for Eel Fishery in Inland Waters. Available Online: <u>https://www.inter.dfo-mpo.gc.ca/NL/CP/Orders/2018/nf18176EelOpenInland</u>. Accessed May 30, 2023.
- Stantec Consulting Ltd. (Stantec). 2023 in preparation. Project Nujio'qonik GH2 Land and Resource Use Survey. Prepared for World Energy GH2 by Stantec Consulting Ltd. St. John's, NL. May 26, 2023.
- Wildlife Division. 2010. Management Plan for the American Eel (Anguilla rostrata) in Newfoundland and Labrador. Department of Environment and Conservation, Government of Newfoundland and Labrador, Corner Brook. Canada. v + 29 pp.
- Veinott, G and Clarke, K. 2011. Status of American Eel in Newfoundland and Labrador Region: Prepared for the Pre-COSEWIC and Eel Zonal Advisory Process (ZAP), Ottawa, August 31 to Sept 3, 2010. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/138. iv + 20 p.

#### 5.5.2 Personal Communications

Hawkins, Laurie. Personal Communication July 27, 2023. Fishery Officer, Fisheries and Oceans Canada, Corner Brook, Newfoundland.

PROJECT NUJIO'QONIK Aquatic Environment Baseline Study 5.0 Freshwater Fisheries August 2023

## 6.0 Marine Environment and Use

The baseline marine environment and use study to support the EIS was conducted using available desktop information which is a similar approach to other topics within the Aquatic Baseline Report.

# 6.1 Scope And Objectives of the Marine Environment and use baseline Study

The Project is anticipated to include a number of activities in the marine environment including improvements at the port and installation of a jettyless mooring/loading system, re-activation of the existing marine wastewater outfall, arrival of supplies at the port, loading and shipment of product, barging of wind turbine components from the port to the Port au Port Peninsula, and a short subsea transmission cable in Port au Port Bay adjacent to the isthmus.

The objectives of this study are to:

- Provide an overview of the existing marine environment within the RAA, with a focus on the LAA
- Describe the physical and geophysical environment, biological environment, and the socio-economic environment
- Provide information of both offshore and nearshore environments as they relate to the Project

#### 6.1.1 Regulatory Setting

This section identifies the primary regulatory requirements and policies of the federal and provincial authorities which influence the scope of the assessment on the marine environment.

In addition to the *Newfoundland and Labrador Environmental Protection Act*, the Project is subject to other federal and provincial legislation, policies and guidance based on the proposed activities mentioned above including:

#### 6.1.1.1 Federal

*Canadian Navigable Waters Act* (CNWA) – The CNWA is overseen by Transport Canada. This Act applies to all navigable water in Canada and protects the public's right of navigation by regulating activities that could interfere with navigation. Activities that would apply to this Act include infilling, dredging, or removing materials from the bed of a navigable waters as well as installation of moorings or outfalls.

**Canadian Environment Protection Act**– This Act is overseen by ECCC. Permits or authorizations are issued under this Act for emissions of ozone-depleting substances and halocarbon alternatives, disposal at sea, permits of equivalent levels of environmental safety, and transboundary permits.

*Canada Shipping Act, 2001* – This Act and applicable regulations are overseen by Transport Canada and is the principle federal legislation governing safety of marine transportation and recreational boating, as well as the protection of the marine environment. It is linked to regulations that oversee the prevention of pollution from ships, management of ballast water, and management of hazardous chemicals.

*Fisheries Act* – The *Fisheries Act* is overseen by DFO. Undertakings or activities resulting in the death of fish or the HADD of fish habitat are prohibited under the *Fisheries Act* unless otherwise authorized by the Minister under paragraph 35 (2) (b). Before approving works, alternatives to the undertakings or activities that will result in HADD of fish habitat are considered to avoid adverse effects. If unavoidable, mitigation measures and/or offsetting may be required to minimize and/or counterbalance HADD of fish habitat.

*Species at Risk Act* – SARA is the primary federal legislation to provide protection and recovery for SAR in Canada and is overseen by ECCC. Authorization may be required if a project adversely affects Schedule 1 species or any part of its critical habitat under Canadian jurisdiction, and authorization is required for relocation or residence destruction of SAR.

*Transportation of Dangerous Goods Act* – This Act is overseen by Transport Canada and applies to all modes of transportation of dangerous goods in Canada, including transportation, importing, manufacturing, shipping, and packaging of dangerous goods. The main purpose of this Act is to maintain public safety when dangerous goods are being handled, offered for transport, or transported by road, rail, air, or water.

#### 6.1.1.2 Provincial

*NL* Endangered Species Act – At-risk species in the province are provided special protection under the NL ESA that are considered to be endangered, threatened, or vulnerable. Designation under the Act follows the recommendations of the Species Status Advisory Committee on the appropriate assessment of a species and referring concerns about the status of species to COSEWIC, where the species is of national importance. While the Act doesn't apply to marine fish, it does apply to native fish that are found in both freshwater and marine environments in the province (i.e., American Eel and Banded Killifish).

*NL Water Resources Act* – This Act provides legislation to manage water resources in the province, with the intent of providing clean water for environmental, social, and economic well-being. Water resources management regulatory permits and licences are required for activities such as constructing and operating wastewater infrastructure and altering a body of water through infilling, dredging and debris removal.

## 6.2 Methods

#### 6.2.1 Spatial Boundaries

The Project Area is the direct footprint of the Project and is consistent across VECs. The Project Area encompasses the immediate area in which Project activities and components will occur and is comprised of the following distinct areas: the Port au Port wind farm, the Codroy wind farm, the hydrogen / ammonia plant, port facilities, and the 230 kV transmission lines, as well as associated infrastructure including roads, substations, and water supply(ies). The Project Area is the potential area of direct physical disturbance associated with the construction, operation, and decommissioning, rehabilitation and closure of the Project. The Project Area includes a buffer (up to 175 m) around planned infrastructure to allow for micro siting during detailed design and mitigation to avoid ecological and culturally sensitive habitats.

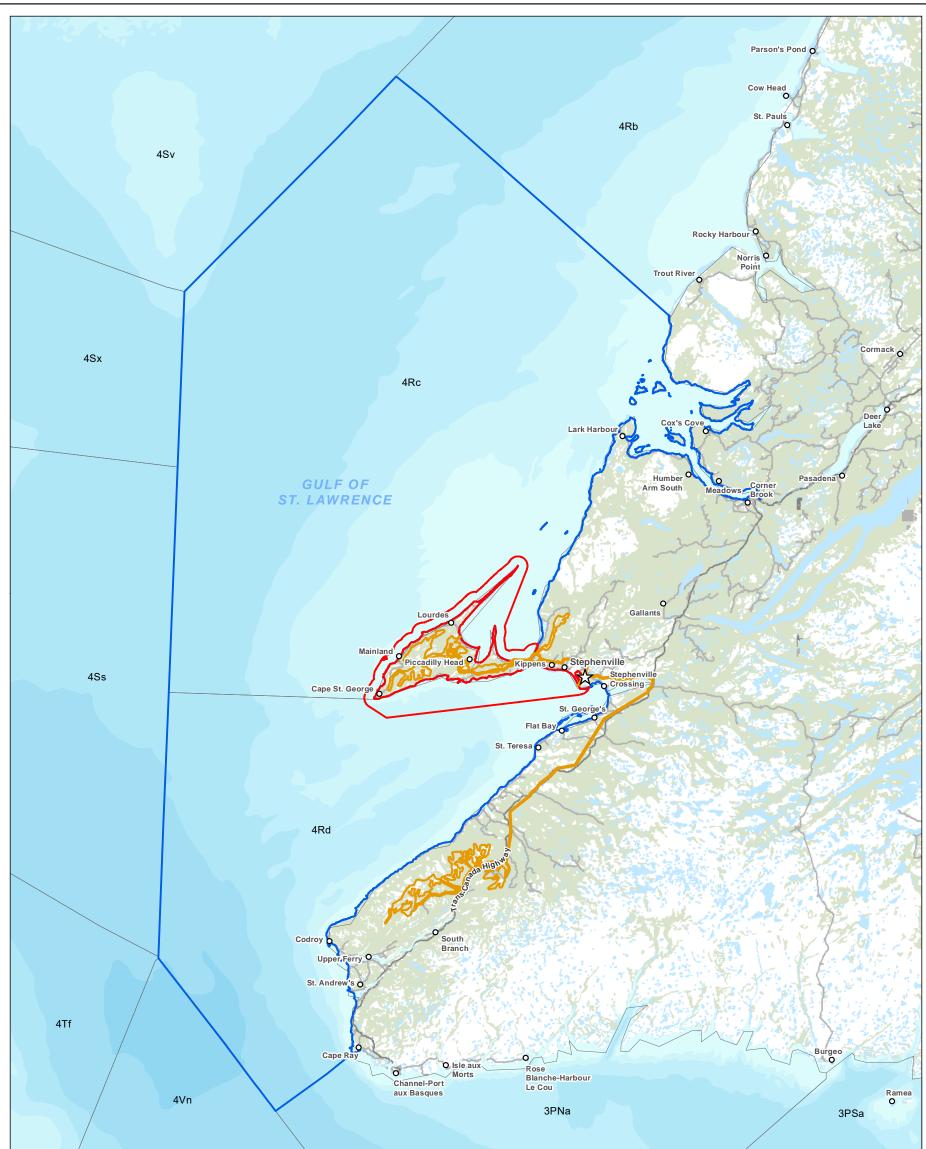
The LAA encompasses the nearshore marine environments of St. George's Bay and Port au Port Bay and was selected to capture potential Project effects of marine-based activities occurring in these areas.

The RAA for the marine environment is defined as the NAFO sub-divisions 4Rcd. The boundaries of the RAA were defined in recognition of biophysical features, including sensitive areas in the region surrounding the Project Area and to account for marine-based Project activities.

The spatial boundaries used for the baseline marine environment and use study are illustrated in Figure 6.1.

#### 6.2.2 Literature and Data Review

The description of the existing marine environment and use is mainly sourced from previous EAs, literature, government reports, and online databases.


Given that most marine-related Project activities will occur in the nearshore environment, descriptions of the existing environment are focused on areas in and near the LAA where possible and applicable.

Baseline information on marine birds is included in the description of avifauna, available in the Terrestrial Baseline Study (Stantec 2023a).

In addition to descriptions of the existing marine environment, information from a Land and Resource Use (LRU) Survey was also incorporated into relevant sections of this chapter (Stantec 2023b). The LRU survey was developed to engage the public, help WEGH2 learn about land/marine and resource use activities that occur in proposed Project locations and adjacent marine waters, and to identify public perceptions around the potential risks and/or benefits of the Project. The survey was hosted online on the Surveymonkey platform and available in printed versions. The link to the online survey was posted on WEGH2's social media site (e.g., Facebook) and was also shared with stakeholder groups and other engaged parties via email. The online LRU survey was open to the public from April 3 to April 17, 2023, and from May 17 to May 31, 2023. It was composed of 98 questions, which included multiple choice, single choice, yes/no, and open-ended question formats. Printed versions of the survey were made available for pick up at several locations from May 3, 2023, to May 17, 2023. Participants had the option

of dropping off their completed surveys at the community office or mailing them into the office. The printed versions of the survey were composed of 36 questions specific to either the Port au Port or the Codroy areas. The questions were the same as those in the online survey. The results of the online and paper copies of the LRU survey were combined and analyzed as a single body of data. All versions of the LRU survey were anonymous, and no contact information was sought from the participants.

A copy of the online LRU survey questions is provided in Project Nujio'qonik GH2 - Land and Resource Use Survey Results Report (Stantec 2023b) along with a copy of the printed version of the survey for the Port au Port and Codroy Area.



35\_MarineRAA\_LAA\_REVD.mxd Revised: 2023-08-02 By: schubbs

\\ca(

| Labrador       Atlantic         Quebec       Atlantic         Ocean       Ocean         Corner Brook       Ocean         St. John's       St. John's         Saint-Pierre       St. John's         Newfoundland       St. John's         Notes       Stata Surges: Client, Province of Newfoundland and Labrador, ACCDC         Stata       Surges: Client, Province of Newfoundland and Labrador, ACCDC         Stata       Surges: Client, Province of Newfoundland and Labrador, ACCDC         Stata       Surges: Client, Province of Newfoundland and Labrador, ACCDC         Stata       Surges: Client, Province of Newfoundland and Labrador, ACCDC         Stata       Surges: Client, Province of Newfoundland Clibrador, ACCDC         Stata       Surges: Client, Province o | Local Assessment Area<br>Regional Assessment | <ul> <li>☆ Hydrogen / Ammonia Plant<br/>Location</li> <li>Project Area</li> <li>NAFO Unit</li> </ul> | 2 2 40 kinn<br>At original document size of 11x17<br>1:1,000,000 | etres N<br>Prepared by NW on 2023/07/20<br>OR by AW on 2023-07-20<br>IR by RK on 2023-08-01<br>121417233_035 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

#### 6.3 Results

#### 6.3.1 Marine Physical Environment

The following sections provide an overview of relevant aspects of the marine physical environment in the RAA on marine geology and geomorphology, climatology, and physical oceanography.

#### 6.3.1.1 Bathymetry, Marine Geology and Geomorphology

The Gulf of St. Lawrence's marine geological features date back millions of years and are an important component of marine habitats as they influence oceanic circulation and mixing. Erosion and sediment deposition, iceberg movement, and human activities have contributed to the current state of the seafloor.

The marine environment adjacent to the Project is situated above several marine basins, notably the Anticosti Basin and Magdalen Basin. The Anticosti Basin is a relatively shallow basin that spans the onshore and offshore area between NL and the Gaspé Peninsula (Pinet and Lavoie 2015). It is characterized by a series of sandy shoals and tidal flats that provide important habitat for a variety of marine life. Its southern boundary includes the north side of the Port au Port Peninsula. The Magdalen Basin is separated from the Anticosti Basin by the Appalachian Structural Front and encompasses areas south of the Port au Port Peninsula, including St. George's Bay (Lavoie et al. 2009). This basin is characterized by numerous submarine canyons and channels, supporting important habitat for a many marine species including cold-water corals and sponges.

St. George's Bay contains sediments with considerable thickness. Overall sediment thickness of 30 m is typical with areas with as much as 180 m of sediment overlying bedrock. Eight classes of sediment were classified using a 30 kHz echo sounder as shown on Figure 6.2 and described below (Shaw and Forbes 1990).

- ice-contact sediments characterized by an irregular surface and a veneer of coarse gravel and boulders
- subaqueous outwash interbedded sand and mud, possibly with pockets of homogenous mud or icerafted debris
- draped glaciomarine sediments a draped glaciomarine mud, containing gravel
- postglacial mud predominantly muddy sediment in an environment where current energy decreases
- postglacial sand a veneer of sand overlying gravels
- postglacial fluvial delta characterized by wedge-shaped geometry and clinoform internal reflectors
- postglacial barrier-platform gravel and medium sand at the shore to fine sand at the break in slope to mud at the base
- postglacial spillover gravel, rippled in many places, and partly covered by irregular sheets of sand



Figure 6.2 Distribution of Sediment in St. George's Bay (Shaw and Forbes 1990)

#### 6.3.1.2 Climatology

The climate in the RAA is classified as maritime temperate and is heavily influenced by the water in the Gulf of St. Lawrence and continental air masses. Mean air temperatures in the Gulf range from approximately -7°C in February to 18°C in August (Galbraith et al. 2022). Extreme maximum temperatures of 27°C have been recorded in July, with extreme minimums (-26.7°C) recorded in January (AMEC 2014). On average, the highest amount of precipitation is recorded in December, with the lowest amounts recorded during March (Stantec 2011). The precipitation most observed in the Gulf are rain and snow, while other types such as mixed rain and snow, freezing rain, and hail occur at lower rates (AMEC 2014).

The frequency of precipitation, the number of daylight hours, and the occurrence of fog can play an important role in inhibiting the visibility of vessels transiting offshore. In the Gulf, visibility varies throughout the year where good (>10 km) and fair (2 - 10 km) conditions are experienced 85% of the time. Good visibility is most frequent during September and October, while poor (0.5 - 2 km) and very poor (<0.5 km) visibility are more common in January and July (AMEC 2014).

Throughout most of the year, the prevailing winds are northwesterly, westerly, or southwesterly. Westerly and northwesterly winds are dominant during colder months, while southwesterly and southerly winds are more frequent during warmer months. Mean hourly wind speeds range from 5.3 m/s to 10.1 m/s throughout the year with strongest winds (>25 m/s) occurring in December and January or during tropical storm events in the summer months. Wind speeds higher than 20 m/s are uncommon in the Gulf (AMEC 2014).

#### 6.3.1.3 Physical Oceanography

The RAA has water depths ranging from several meters along the west coast of Newfoundland near the Project with increasing depths (>100 m) further offshore (Figure 6.3).

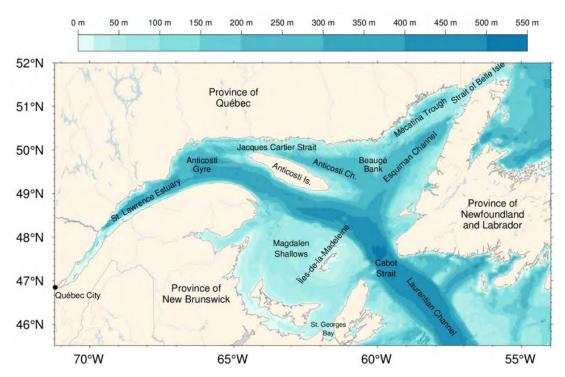



Figure 6.3 Bathymetry of the Gulf of St. Lawrence (Galbraith et al. 2022)

St. George's Bay is characterized by a central deep basin to the north of Flat Island, this is a continuation of the St. George's River Valley and a smaller basin to the north off Stephenville. The maximum depth of this St. George River basin is approximately 97 m, while the Stephenville Basin reaches a depth of 57 m (Figure 6.4). A sill extends from Bank Head to the Port-au-Port, this sill is typically less than 25 m deep. A generalized shallow-water area surrounds Flat Island creating a barrier island. To the north of Flat Island there is a pronounced break in slope as the shelf merges with the St. George River Basin.

St. George's Bay is characterized by a central deep basin to the north of Flat Island, this is a continuation of the St. George's River Valley and a smaller basin to the north off Stephenville. The maximum depth of this St. George River basin is approximately 97 m, while the Stephenville Basin reaches a depth of 57 m (Figure 6.4). A sill extends from Bank Head to the Port-au-Port, this sill is typically less than 25 m deep. A generalized shallow-water area surrounds Flat Island creating a barrier island. To the north of Flat Island there is a pronounced break in slope as the shelf merges with the St. George River Basin.

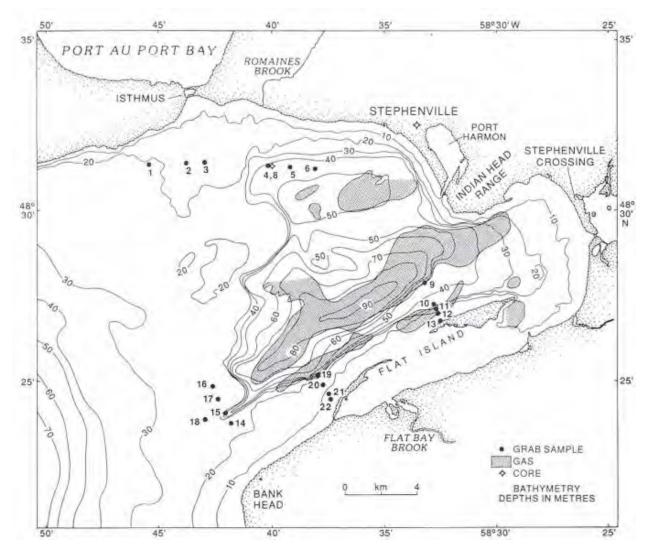



Figure 6.4 Generalized Bathymetry of St. George's Bay (Shaw and Forbes 1990)

Ocean currents in the region are influenced by tides, regional meteorological events, freshwater runoff from the St. Lawrence River and transport from the Strait of Belle Isle and the Cabot Strait. Prominent features of the region include coastal currents, gyres, massive eddies in the estuary, and tidal fronts. Currents within the Gulf flow counterclockwise with main currents directed towards the northeast along Western Newfoundland and to the southwest along Quebec's coast in the north (AMEC 2014). Currents are strongest near the surface (0-20 m), except in winter months and along the slopes of the deep Laurentian and Esquiman channels (Galbraith et al. 2022).

The water column in the Gulf of St. Lawrence consists of three separate layers: the surface layer, the cold intermediate layer, and the deeper water layer. Stratification of the water column undergoes seasonal variability due to several factors including wind-driven mixing, sea ice formation and melting, and continental runoff, which collectively influences water temperatures and salinity (Galbraith et al. 2022).

The surface layer of the Gulf of St. Lawrence is gradually warmed throughout the spring and summer season, reaching a maximum temperature of 17°C in August and remaining above 0°C in the fall (Galbraith et al. 2022). Sea surface temperatures typically drop below 0°C in the winter months, as the surface layer thickens with the coldest temperatures observed in February and March (AMEC 2014). Ocean temperatures in the Gulf indicate an overall increase from previous years with record highs (since 1915) of 4.1°C at 150 m, 6.0 °C at 200 m, 6.7°C at 250 m and 6.9°C at 300 m in 2021. Average salinities in the deeper water layer of the Gulf range from 33 practical salinity unit (psu) at 100 m depths to 35 psu at 300 m depths (Galbraith et al. 2022).

Sea ice in the Gulf of St. Lawrence initially forms in the northern area of the Gulf and gradually expands towards Îles-de-la-Madeleine and Cabot Strait starting in December, reaching its maximum spread in March (CCG 2022). By March, passageways along the west Newfoundland coast, particularly north of the Port au Port Peninsula, are closed. Ice begins to clear in April opening shipping routes in the Gulf, including the area from the Port au Port Peninsula to the Strait of Belle Isle. Sea ice is present within the LAA along the Port au Peninsula and in St. George's Bay during these months. According to the Canadian Ice Service weekly regional ice charts for 2023, sea ice was most prevalent in early March in the LAA (CIS 2023).

Both the seasonal maximum ice volume in 2021 (11 km<sup>2</sup>) and the January-April average volume was low compared to previous years (Galbraith et al. 2022). Eight of the 12 lowest seasonal maximum ice volumes have occurred since 2010. Record low ice volumes in the Gulf are indicative of climate-change warming trends occurring across the Atlantic (DFO 2021a).

During the melting of pack ice, icebergs originating from the Labrador coast become exposed and are occasionally driven through the Strait of Belle Isle (CCG 2022). Icebergs can also enter through the Cabot Strait but is less common. Icebergs passing through the Strait of Belle Isle and Cabot Strait are generally small and the probability of icebergs being present in or near the RAA in a given year is relatively low (AMEC 2014).

#### 6.3.2 Marine Biological Environment

The following sections provide an overview of relevant aspects of the marine biological environment in the RAA. Specifically, plankton, marine fish, nearshore habitats, invasive species, marine mammals and sea turtles, SAR, and sensitive areas are discussed in the following sections.

#### 6.3.2.1 Plankton

Plankton consists of small marine organisms that move passively in the marine environment where currents and turbulent mixing determine where they are distributed. Taxa in this group includes phytoplankton (microscopic marine plants), zooplankton (invertebrates), ichthyoplankton (fish larvae and eggs), bacteria, fungi, and viruses. As the foundation of most food webs, marine plankton play an important role in the marine environment (primary and secondary production). 499 species of plankton have been identified or are likely to occur in the Gulf of St. Lawrence (Dufour and Ouellet 2007).

The growth of phytoplankton in the Gulf is at its peak in the spring when nutrient concentrations, particularly nitrates, are high (Dufour et al. 2010). The west coast of Newfoundland has relatively low productivity values along the northern peninsula and Port aux Basques with areas of higher productivity occurring near Stephenville and Port au Port Peninsula (Dufour and Ouellet 2007; AMEC 2014).

In the Gulf, there are about 318 species of marine zooplankton from eight different phyla (Archambault et al 2010) and 50 species of ichthyoplankton (AMEC 2014). Zooplankton are mostly comprised of copepods, accounting for 75% of the zooplankton species richness. Icthyoplankton species of herring, capelin, snailfish, shanny, and sculpin dominate the Gulf where larvae of lobster, herring, scallop, cunner, radiating shanny, winter flounder, and capelin are most common in nearshore habitats (White and Johns 1997; AMEC 2014).

#### 6.3.2.2 Marine Fish

A diverse assemblage of marine fish are known to occur in the Gulf of St. Lawrence, including pelagic fish, which inhabit and feed at the surface and demersal or groundfish, which inhabit and feed near the bottom. The Gulf is comprised of two broad marine habitats: deep channels and shelf areas. Deepwater species live in the channels, which also provide winter home for a large number of species that spend the summer months in the shelf areas. Shelf areas are productive in the summer and are important spawning, nursery, and adult feeding grounds for both pelagic and demersal species (AMEC 2014). Demersal fish species make up almost two-thirds of marine fish species found in the Gulf (Stantec 2011).

A wide range of shellfish species are also present in the Gulf including species of shrimp, scallop, bivalves, crab, and lobster. Shellfish congregate in shallow coastal habitats and in deeper water along the continental shelf (AMEC 2014). Several of these species are known to spawn in areas within the LAA (Table 6.4).

Species of commercial importance that occur in the Gulf include Atlantic herring, capelin, snow crab, Atlantic halibut, Greenland halibut, witch flounder, and redfish. Commercial fisheries are further discussed in Section 6.3.3. Marine fish species that are at risk are discussed in Section 6.3.2.6.

Tables 6.1 and 6.2 give an overview of key marine fish and shellfish that are known to occur in the Gulf and likely to occur in or near the LAA.

| Common Name                  | Latin Name                      | Relative Level<br>of Occurrence | Timing of Presence and Spawning                                        |
|------------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------|
| Atlantic herring             | Clupea harengus                 | High                            | Year-round presence with spring and fall spawning                      |
| Atlantic mackerel            | Scomber scombrus                | Low                             | May to November (adults)                                               |
| Longfin hake                 | Urophycis chesteri              | High                            | Year-round presence and fall spawning                                  |
| Marlin-spike grenadier       | Nezumia bairdi                  | High                            | Year-round presence and fall spawning                                  |
| Thorny skate                 | Raja radiata                    | High                            | Year-round presence                                                    |
| Witch flounder<br>(greysole) | Glyptocephalus<br>cynoglossus   | High                            | Year-round presence                                                    |
| Atlantic hagfish             | Myzine glutinosa                | Moderate                        | Year-round presence                                                    |
| Atlantic halibut             | Hippoglossus hippoglossus       | Moderate                        | Migrate to shallow waters in summer, return for winter                 |
| Atlantic soft pout           | Melanostigma atlanticum         | Moderate                        | Year-round presence                                                    |
| Black dogfish                | Centroscyllium fabricii         | Moderate                        | Year-round presence                                                    |
| Greenland halibut            | Reinhardtius<br>hippoglossiodes | Moderate                        | Year-round presence                                                    |
| Lumpfish                     | Cyclopterus lumpus              | Low                             | Migrate to shallow waters to spawn, return during fall                 |
| Pollock                      | Pollachius virens               | Moderate                        | Migrate inshore during summer, winter offshore, fall spawning          |
| Smooth skate                 | Raja senta                      | Moderate                        | Year-round presence                                                    |
| Spotted barracudina          | Notolepis rissoi                | Moderate                        | Year-round presence                                                    |
| White barracudina            | Arctozenus risso                | Moderate                        | Year-round presence                                                    |
| Atlantic argentine           | Argentina silus                 | Low                             | Year-round presence                                                    |
| Northern shortfin squid      | Illex illecebrosus              | Moderate                        | Seasonal presence                                                      |
| Atlantic hookear<br>sculpin  | Artediellus atlanticus          | Low                             | Migrate inshore in the spring; occupy moderately deep waters in winter |
| Checker eelpout              | Lycodes vahilii                 | Low                             | Year-round presence                                                    |
| Capelin                      | Mallotus villosus               | Low                             | Mature fish migrate inshore in spring to spawn                         |
| Fourbeard rockling           | Enchelyopus cimbrius            | Low                             | Year-round presence                                                    |
| Greater eelpout              | Lycodes esmarki                 | Low                             | Year-round presence                                                    |
| Haddock                      | Melanogrammus aeglefinus        | Low                             | Move to deeper water in winter;<br>inhabit shallow banks in summer     |

# Table 6.1Summary of Key Fish Species with the Potential to Occur in or Near the<br/>LAA

 $\bigcirc$ 

| Table 6.1 | Summary of Key Fish Species with the Potential to Occur in or Near the |
|-----------|------------------------------------------------------------------------|
|           | LAA                                                                    |

| Common Name                                  | Latin Name                | Relative Level<br>of Occurrence | Timing of Presence and Spawning              |
|----------------------------------------------|---------------------------|---------------------------------|----------------------------------------------|
| Monkfish (goosefish)                         | Lophius americanus        | Low                             | Year-round presence                          |
| Polar sculpin                                | Coltunculus microps       | Low                             | Year-round presence                          |
| Sea raven                                    | Hemitripterus americanus  | Low                             | Year-round presence and fall spawning        |
| Silver hake                                  | Merluccius bilinearis     | Moderate                        | Year-round presence                          |
| Swordfish                                    | Xiphius gladius           | Low<br>(anticipated)            | Migrate in summer and fall                   |
| Threebeard rockling                          | Gaidropsarus ensis        | Low                             | Year-round presence                          |
| Windowpane flounder                          | Scophthalmus aquosus      | Low                             | Year-round presence                          |
| Wrymouth                                     | Cryptacanthodes maculatus | Low                             | Year-round presence                          |
| Yellowtail flounder                          | Limanda ferruginea        | Low                             | Move from shallow to deep waters in the fall |
| Sources: Bourdages et al. 2022; Stantec 2017 |                           |                                 |                                              |

# Table 6.2Summary of Key Shellfish Species with the Potential to Occur in or Near<br/>the LAA

| Common<br>Name      | Scientific Name              | Anticipated Level<br>of Occurrence | Distribution                                                                                                                   |
|---------------------|------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Northern<br>shrimp  | Pandalus borealis            | Low                                | Most abundant in waters ranging from 1 to 6°C and in soft, mud, and silt substrates.                                           |
|                     |                              |                                    | Typically found between 150-600 m in NL waters.                                                                                |
|                     |                              |                                    | Low abundance near the LAA; more commonly found near Anticosti Island.                                                         |
| American<br>lobster | Homarus<br>americanus        | Low to Moderate                    | Found in waters ranging from -1.5 to 24°C in coastal to continental shelf habitats.                                            |
|                     |                              |                                    | Occur around the island of Newfoundland and other areas of the Atlantic, including areas in the LAA.                           |
| Sea scallop         | Placopecten<br>magellanicus) | Low to Moderate                    | Distributed in shallow coastal regions of the province on sand-gravel or gravel-pebble substrates.                             |
|                     |                              |                                    | High abundance south of Magdalen islands with scallop beds in shallow areas of the LAA.                                        |
| Snow crab           | Chionoecetes                 | Low to Moderate                    | Typically occurs between 60-400 m in waters ~5°C.                                                                              |
|                     | opilio                       |                                    | Prefers mud, sand, or silt bottom substrates.                                                                                  |
|                     |                              |                                    | Widespread distribution in the Gulf and migrate into shallow waters for breeding and molting with spawning grounds in the LAA. |

# Table 6.2Summary of Key Shellfish Species with the Potential to Occur in or Near<br/>the LAA

| Scientific Name                                                                                             | Anticipated Level<br>of Occurrence                       | Distribution                                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| Cancer irroratus                                                                                            | Low to Moderate                                          | Live in intertidal and mostly subtidal habitats and are typically found in water less than 20 m deep. |  |  |  |
|                                                                                                             |                                                          | High abundance around Magdalen Islands and North and northeast of Cape Breton.                        |  |  |  |
| Strongylocentrotus<br>droebachiensis                                                                        | Low to Moderate                                          | Associated with urchin barrens and kelp bed habitats in NL.                                           |  |  |  |
| Widespread along western Newfoundland with high densities found between St. George's Bay and Port au Choix. |                                                          |                                                                                                       |  |  |  |
| _                                                                                                           | Cancer irroratus<br>Strongylocentrotus<br>droebachiensis | Cancer irroratus     Low to Moderate       Strongylocentrotus     Low to Moderate                     |  |  |  |

## 6.3.2.3 Nearshore Habitat and Shellfish

Nearshore habitat in areas within the LAA (e.g., Port au Port Bay and St. George's Bay) generally consist of sand, mud, and gravelly substrate, which is relatively unique as most of Newfoundland's coastline is made of rocky substrate (South 1983). Subtidal and intertidal algal communities are highly influenced by the western Newfoundland's warm summer seawater temperatures and as a result, certain algal species are found in greater abundance here than anywhere else on the island (e.g., *Phyllophora pseudoceranoides; Cystoclonium purpureum*) (South 1983). Algal communities within the LAA are also influenced by seasonal sea ice scouring, resulting in nearshore habitats being dominated by annual species. In non-estuarine areas along the west coast of Newfoundland, algal distribution between the high-water mark and the shallow subtidal zone can be differentiated by the degree of wave exposure (Table 6.3).

Coastal areas with fine substrates can host a variety of salt tolerant higher plants and algae (South 1983), such as eelgrass (*Zostera marina*), which have been identified in subtidal habitats along the north side of the Port au Port Peninsula and in areas between Stephenville and Port aux Basques (ECCC 2020). Eelgrass requires sunlight to grow and is typically found in shallow coastal bays in waters less than 4 m (Government of Canada 2018) but can be found at depths between 5 to 10 m in Newfoundland (LGL 2005). Eelgrass beds are classified as Ecologically Significant Areas (ESAs) due to their importance to nearshore environments; they support the physical environment (e.g., buffering shorelines, and stabilizing sediment) and the biological environment (e.g., act as nurseries and spawning grounds for several fish species). Burrowing invertebrates such as softshell clams (*Mya arenaria*), bristle worms (*polychaetes*), and sand shrimp are common in the sand surrounding eelgrass roots. Other fauna found in eelgrass habitats include hydroids, bryozoans, and serpulids that attach to seaweeds (Catto et al. 1999). Saltmarshes have also been identified in sheltered bays within St. George's Bay and Port au Port Bay (Stantec 2011). These coastal habitats support a variety of halophytic plants and organisms and are known to stabilize the shore by entrapping sediment.

| Wave                | Typical Algal/Invertebrate Species                                                                                                                                           |                                                                                                                          |                                                                                                                                              |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Exposure HW to 5 m  |                                                                                                                                                                              | 5 to 20 m                                                                                                                | >20 m¹                                                                                                                                       |  |  |  |  |
| Sheltered           | Maritime lichens<br>Cyanophyta<br>Bangia<br>Atropurpurea<br>Fucus vesiculosus<br>Balanus balanoides<br>Ascophyllum nodosum<br>Mytilus edulis<br>Bonnemaisonia hamifera       | Laminaria longicruris<br>Phyllophora sp.<br>Agarum cribosum<br>Laminaria solidungula                                     | Phyllophora sp.<br>Agarum cribosum<br>Lithothamnium tophiforme<br>Phymatolithon laevigatum<br>Laminaria longicruris<br>Laminaria solidungula |  |  |  |  |
| Moderate<br>Exposed | Maritime lichens<br>Pilayella littoralis<br>Bangia atropurpurea<br>Chordaria flagelliformis<br>Chorda filum<br>Phyllophora sp.<br>Alaria esculenta<br>Saccorhiza dermatodea  | Lithothamnium glaciale<br>Desmarestia sp.<br>Agarum cribosum<br>Laminaria longicruris<br>Phyllophora sp.                 | Phyllophora sp.<br>Lithothamnium glaciale                                                                                                    |  |  |  |  |
| Highly<br>Exposed   | Cyanophyta<br>Porphyra sp.<br>Bangia atropurpurea<br>Pilayella littoralis<br>Chordaria flagelliformis<br>Alaria esculenta<br>Saccorhiza dermatodea<br>Lithothamnium glaciale | Clathromorphum<br>circumscriptum<br>Lithothamnium glaciale<br>Laminaria longicruris<br>Agarum cribosum<br>Phyllophora sp | Ptilota serrata<br>Phyllophora sp.                                                                                                           |  |  |  |  |

# Table 6.3Generalized Algal Communities and Associated Invertebrates in Intertidal<br/>and Shallow Subtidal Areas in Western Newfoundland

20-40 m for low exposure; 20-25 m for moderate and high exposure; HW denotes high water mark

Nearshore habitats along the Port au Port Peninsula and St. George's Bay host a diverse group of marine fish and benthic invertebrates. A number of important spawning locations occur within these bays for several fish and shellfish species that are considered commercially and/or ecologically important to Newfoundland (Table 6.4). Other notable fish species that do not spawn but are present in nearshore habitats within the LAA include Atlantic mackerel, redfishes, Greenland halibut, Atlantic halibut, and Atlantic salmon. Port au Port Bay and St. George's Bay are also important nursery grounds for Atlantic herring during the spring (AMEC 2014). Several capelin spawning beaches have been reported by the public at different beaches between 2011-2020 including areas on the east coast of Port au Port Bay and various locations within St. George's Bay (eCapelin 2017).

# Table 6.4Notable Fish and Shellfish Species Known to Spawn in Nearshore<br/>Habitats in the LAA

| Species Name                                        | Timing of Spawning  | Known Spawning Locations                                             |
|-----------------------------------------------------|---------------------|----------------------------------------------------------------------|
| American lobster (Homarus americanus)               | Summer-early fall   | Throughout much of coastal region;<br>Outer Port au Port to Shag Bay |
| Atlantic cod (Gadus morhua)                         | Spring              | Deep water west-southwest of Cape St. George                         |
| Atlantic herring (Clupea harengus harengus)         | Spring-early summer | Port au Port Bay and St. George's Bay                                |
| Capelin ( <i>Mallotus villosus</i> )                | Late spring-summer  | East coast of Port au Port Bay and St. George's Bay                  |
| Sea scallop (Placopecten magellanicus)              | Late summer-fall    | In Port au Port Bay                                                  |
| Lumpfish (Cyclopterus lumpus);                      | Summer              | Throughout much of coastal region                                    |
| Snow crab (Chionoecetes opilio)                     | Spring-summer       | Off west coast of Port au Port<br>Peninsula and in Port au Port Bay  |
| Witch flounder ( <i>Glyptocephalus</i> cynoglossus) | Late spring-summer  | St. George's Bay                                                     |
| Sources: AMEC 2014; eCapelin 2017; LGL 20           | 008                 |                                                                      |

## 6.3.2.4 Aquatic Invasive Species

Aquatic invasive species (AIS) are fish, invertebrates, or plant species that have been introduced into a new habitat from their native range. Because they have no natural predators in their new habitat, AIS populations can spread quickly once introduced. Once established, AIS can outcompete and harm native species, as well as change their habitats, rendering them inhabitable. Many of the unintentional introductions of AIS are linked to local and international marine transport through ballast water and attachment to boat hulls (DFO 2019a).

The coffin box (*Membranipora membranacea*; a bryozoan) and European green crab are two aquatic invasive species that have been identified in areas within the LAA and are presented in Table 6.5. Distribution of AIS within the LAA are based off reports by DFO through a series of surveys between 2006-2010. Four other AIS have been identified along Newfoundland coastlines in other parts of the province through similar AIS surveys: golden star tunicate (*Botryllus schlosseri*), oyster thief (*Codium fragile ssp. fragile*), vase tunicate (*Ciona intestinalis*), and violet tunicate (*Botrylloides violaceus*) (DFO 2018 c,d,e,f). These four AIS are known to be disruptive to marine-based aquaculture operations.

| Species Name                                                   | Distribution in LAA                                                                                                                                                                                                               | Description                                                                                                                                                                                                                 |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coffin box <sup>1</sup>                                        | Piccadilly: Port au Port Bay                                                                                                                                                                                                      | Bryozoan species                                                                                                                                                                                                            |
| (Membranipora<br>membranacea)                                  | <ul> <li>St Georges: St. George's Bay</li> <li>Three Rock Cove: Port au Port</li> </ul>                                                                                                                                           | First observed in Newfoundland and<br>Labrador in 2002                                                                                                                                                                      |
|                                                                | Peninsula                                                                                                                                                                                                                         | Colonies can grow 10 cm or more in width<br>and form white sheets that cover surfaces<br>of rockweed, kelp, and boat hulls                                                                                                  |
|                                                                |                                                                                                                                                                                                                                   | May permanently alter kelp beds and affect biodiversity                                                                                                                                                                     |
| European green crab <sup>2</sup><br>( <i>Carcinus maenas</i> ) | <ul> <li>Flat Island: St. George's Bay</li> <li>Little Port Harmon: St. George's Bay</li> <li>Mattis Point: St. George's Bay</li> <li>Piccadilly: Port au Port Peninsula</li> <li>Point au Mal: Port au Port Peninsula</li> </ul> | Crustacean species; often confused with<br>the native rock crab (Cancer irroratus)<br>Primarily feeds on shellfish and other<br>crustaceans, but has been observed<br>eating small and juvenile finfish in<br>eelgrass beds |
|                                                                | <ul> <li>Port Harmon: St. George's Bay</li> <li>Sandy Cove: St. George's Bay</li> <li>Shallop Cove: St. George's Bay</li> <li>Stephenville Crossing: St. George's Bay</li> </ul>                                                  | Aggressive and territorial; known to<br>damage eelgrass habitat<br>Confirmed in St. George's Bay in 2008                                                                                                                    |
|                                                                | ey 2006-2010 (DFO 2018a)<br>////////////////////////////////////                                                                                                                                                                  | EO 2018b)                                                                                                                                                                                                                   |

#### Table 6.5 Aquatic Invasive Species identified in the LAA

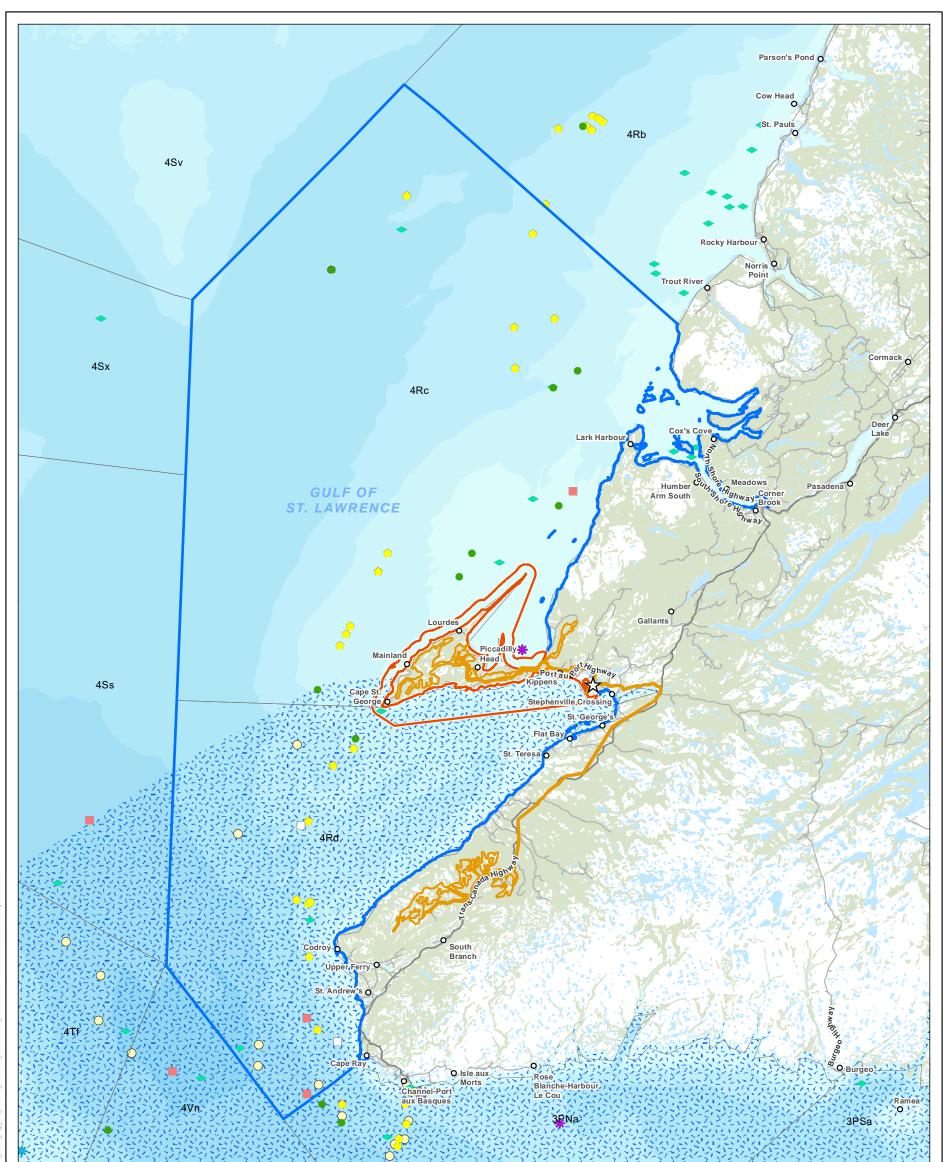
Based on AIS Survey / Stewardship Program Areas 2006-2009 (DFO 2018b)

#### 6.3.2.5 Marine Mammals and Sea Turtles

Approximately 19 marine mammals are expected to occur with some degree of frequency in the Gulf of St. Lawrence and potentially within the LAA. This includes 15 cetacean species (whales, dolphins, and porpoises) and four pinniped species (seals), however additional species may be sighted on rare occasions. Many marine mammals are often seen on a seasonal basis or year-round as the Gulf is considered important feeding grounds for several species (Stantec 2017). The western shelf of Newfoundland in particular, as well as the entrance to St. George's Bay in southwestern Newfoundland, have been identified as an important ecological area for the blue whale (Figure 6.5). Marine mammal species with the potential to occur in or near the LAA are presented in Table 6.6.

A summary of marine mammal observations in the RAA are presented in Figure 6.5 from the Ocean Biodiversity Information System sightings database 1913 to 2022. The dataset suggests that marine mammal sightings are relatively low, with more sightings occurring south of St. George's Bay. Within the LAA, only two marine mammal sightings have been recorded: both minke whales near the western end of Port au Port Peninsula. The most common marine mammal sighted throughout the RAA was the fin whale. While conclusions can be drawn on a regional scale, the dataset cannot be reliably used to make assumptions on species abundance or density due to a monitoring bias artifact of the survey effort. Additionally, areas with low numbers may be misleading, due to a lack or absence of survey effort.

Two sea turtle species are also expected to occur to some degree in the Gulf of St. Lawrence. The leatherback sea turtle (*Dermochelys coriacea*) and loggerhead sea turtle (*Caretta caretta*) are both known to visit the waters off the island of Newfoundland, however the leatherback sea turtle is more likely to occur. The presence of green turtles (*Chelonia mydas*) or Kemp's ridley turtles (*Lepidochelys kempii*) in or near the LAA would be extremely rare (Stantec 2017). There are no occurrences of sea turtle sightings within the RAA/LAA with existing datasets.


Marine mammal and sea turtle species that are considered at risk are further discussed in Section 6.3.2.6.

| Common Name                                | Latin Name                    | Potential for<br>Occurrence | Distribution and Seasonality                                                                                                                                                             |
|--------------------------------------------|-------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mysticetes (Tooth                          | hless or Baleen Whales        | )                           |                                                                                                                                                                                          |
| Minke whale                                | Balaenoptera<br>acutorostrata | High                        | Widespread throughout the Gulf, although less<br>common off the west and southwest coast of<br>Newfoundland                                                                              |
| Humpback<br>whale                          | Megaptera<br>novaeangliae     | High                        | Aggregate in Gulf of St. Lawrence in summer to feed; most sightings in the Gulf of St. Lawrence occur in the northeast including off western Newfoundland                                |
| Blue whale <sup>1</sup>                    | Balaenoptera<br>musculus      | Moderate                    | Occur in Gulf of St. Lawrence and east of Nova<br>Scotia in spring, summer and fall and off southern<br>Newfoundland in winter                                                           |
| Fin whale <sup>1</sup>                     | Balaenoptera<br>physalus      | Moderate                    | Widely distributed in the Gulf of St. Lawrence and present year-round off western Newfoundland                                                                                           |
| North Atlantic<br>right whale <sup>1</sup> | Eubalaena glacialis           | Low                         | More frequently sighted in the southern Gulf of St.<br>Lawrence; sightings in the LAA would be very rare                                                                                 |
| Sei whale                                  | Balaenoptera<br>borealis      | Low                         | Uncommon in the Gulf of St. Lawrence and western<br>Newfoundland; more concentrated off southern<br>Nova Scotia and Labrador Sea                                                         |
| Odontocetes (To                            | othed Whales)                 |                             |                                                                                                                                                                                          |
| Atlantic white-<br>sided dolphin           | Lagenorhynchus<br>acutus      | High                        | Sighted throughout the Gulf of St. Lawrence,<br>although most sightings in areas with steep bottom<br>topography along the margins, most common in<br>summer and fall                    |
| Short-beaked common dolphin                | Delphinus delphis             | High                        | Within the Gulf of St. Lawrence, species is found most often off western Newfoundland                                                                                                    |
| Long-finned pilot<br>whale                 | Globicephala melas            | High                        | Widely distributed and considered common off southwestern and western Newfoundland                                                                                                       |
| Harbour<br>porpoise <sup>1</sup>           | Phocoena phocoena             | Moderate                    | Moderately abundant in the Gulf during ice-free<br>months, including in waters off western<br>Newfoundland                                                                               |
| Sperm whale                                | Physeter<br>macrocephalus     | Moderate                    | Known to occur in deep waters off shelf edge of<br>western Newfoundland (e.g., Cabot Strait and St.<br>George's Bay) and occasionally along southwest<br>and west coasts of Newfoundland |

#### Table 6.6 Marine Mammals with the Potential to Occur in or Near the LAA

| Common Name                                                | Latin Name                        | Potential for<br>Occurrence | Distribution and Seasonality                                                                                                                     |
|------------------------------------------------------------|-----------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| White-beaked dolphin                                       | Lagenorhynchus<br>albirostris     | Low                         | Most sightings in Gulf are in shallow water (<100 m deep)                                                                                        |
| Killer whale <sup>1</sup>                                  | Orcinus orca                      | Low                         | Occur throughout the Gulf of St. Lawrence with<br>occasional sightings reported along the coast of<br>Newfoundland and the Strait of Belle Isle. |
| Beluga whale <sup>1</sup>                                  | Delphinapterus<br>leucas          | Low                         | Presence confined primarily to St. Lawrence Estuary<br>and Saguenay Fjord with some uncommon sightings<br>off western Newfoundland               |
| Northern<br>bottlenose<br>whale <sup>1</sup>               | Hyperoodon<br>ampullatus          | Low                         | Extremely uncommon in Gulf of St. Lawrence;<br>individuals (most likely from Labrador population)<br>have been sighted off western Newfoundland  |
| Pinnipeds                                                  |                                   | -                           |                                                                                                                                                  |
| Harbour seal                                               | Phoca vitulina                    | High                        | Occur commonly in the Gulf of St. Lawrence<br>including off of western Newfoundland year-round;<br>primarily coastal                             |
| Grey seal                                                  | Halichoerus grypus                | High                        | Occur commonly in the Gulf of St. Lawrence<br>including off of western Newfoundland; generally<br>summer residents but can occur year-round      |
| Harp seal                                                  | Phoca groenlandica                | High                        | Present in the Gulf of St. Lawrence December to May                                                                                              |
| Hooded seal                                                | Crystophora cristata              | High                        | Present in the Gulf of St. Lawrence December to May                                                                                              |
| Modified from: Sta<br>Note:<br><sup>1</sup> Species at Ris | ntec 2017<br>sk (Section 6.3.2.6) |                             |                                                                                                                                                  |

#### Table 6.6 Marine Mammals with the Potential to Occur in or Near the LAA



#### Ν Labrador ☆ Hydrogen / Ammonia Plant Facility (Proposed) **Mysticete Sightings** 0 20 40 ∃ km (1913 - 2022) 153 Quebec (At original document size of 11x17) Minke Whale Project Area Atlantic 1:1,000,000 Ocean Blue Whale Local Assessment Area 畿 Stantec Regional Assessment Area Fin Whale $\bigcirc$ Corner Brook North Atlantic Right Whale 📃 NAFO Unit Humpback Whale Prepared by NW on 2023-04-28 QR by AW on 2023-07-07 IR by RK on 2023-08-01 Newfoundland Steph Odontocete, Whale and NL Client/Project 121417233\_059a St. John's Dolphin Sightings (1913 -World Energy GH2 2022) Project Nujio'qonik Saint-Pierre Beluga Whale NŞ -et-Miquelon Figure No 6.5 Long-finned Pilot Whale Notes 1. Coordinate System: NAD 1983 CSRS UTM Zone 21N 2. Data Sources: Client, Province of Newfoundland and Labrador, ACCDC, Title $\diamond$ Orca Stantec Marine Mammal Sightings in the RAA Statistic 3. Background: Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community Sperm Whale \* (Ocean Biodiversity Information Systems Sightings Database 1913-2022) Important Areas for Blue 15 Whale

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

#### 6.3.2.6 Species at Risk

For the purposes of this baseline report, marine SAR include those listed as Extirpated, Endangered, Threatened, or Special Concern by SARA, NL ESA, or by COSEWIC. Species listed under SARA schedule 1 are legally protected under Section 32(1), which states that "no person shall kill, harm, harass, capture or take an individual of a wildlife species that is listed as an extirpated species, and endangered species, or a threatened species". Prohibitions of NL ESA include Section 16, which states "a person shall not disturb, harass, injure, or kill an individual of a species designated as threatened, endangered or extirpated". A summary of species that have the potential to occur in or near the LAA that are considered at risk under SARA, NL ESA, and/or COSEWIC is presented in Table 6.7.

Overall, 31 SAR have the potential to occur in or near the LAA: 22 marine fish, seven marine mammals, and two sea turtle species. Critical habitat is also protected under SARA. Protected habitat areas were identified in the RAA for the at-risk northern and spotted wolffish (discussed in Section 6.3.2.7). There were no critical habitats identified within the LAA. Two aquatic species were identified that are protected under the NL ESA; the banded killifish and the American eel, who are both listed as vulnerable.

#### Table 6.7 Species at Risk with the Potential to Occur in or Near the LAA

| Common Name                                                                    | Species Name              | COSEWIC Status  | SARA Schedule<br>Status | Potential for<br>Occurrence <sup>1</sup> | Distribution and Life Histor                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------|---------------------------|-----------------|-------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marine Fish                                                                    |                           |                 |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Atlantic cod (Laurentian<br>South population)                                  | Gadus morhua              | Endangered      | No Status               | High                                     | Cod are a groundfish species that feed on fish and shellfish, such as he larvae are planktonic until they reach a size of 25-50 mm and are prime                                                                                                                                                                                                                                                                                                    |
| Atlantic cod (Laurentian<br>North population)                                  |                           | Endangered      | No Status               | Moderate                                 | waters up to 500 m whereas juveniles are typically found in coastal was beds).                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                |                           |                 |                         |                                          | They are a benthopelagic species that overwinter off northeast Cape B<br>summer months are spent feeding and spawning before returning to de<br>2010a). The entire population is known to use two migration routes the<br>Laurentian Channel and may be in proximity to the LAA during the spri                                                                                                                                                     |
| Deepwater redfish (Gulf of<br>St. Lawrence - Laurentian<br>Channel population) | Sebastes mentella         | Endangered      | No Status               | High                                     | A slow growing, viviparous species with a lifespan of up to 75 years. Its including the Gulf of St. Lawrence and Laurentian Channel. Larvae are eggs and invertebrate eggs. Juvenile redfish are pelagic for four to five depths (350-500 m). Both juvenile and adults feed primarily on copeporareas near the bottom but are considered semi-pelagic as they venture Mating occurs in the fall with spawning occurring from April to July in the   |
|                                                                                |                           |                 |                         |                                          | near the LAA (AMEC 2014).                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Acadian redfish (Atlantic population)                                          | Sebastes fasciatus        | Threatened      | No Status               | High                                     | This slow growing, long-lived species is closely associated with the sea<br>southern Labrador Sea, including the Gulf of St. Lawrence and Laurent<br>of 150 to 300 m in depth. Juvenile and adult fish have a similar diet to d<br>euphausiids, and fish (COSEWIC 2011b).<br>Mating occurs in the fall with spawning occurring from April to July in the                                                                                            |
|                                                                                |                           |                 |                         |                                          | near the LAA (AMEC 2014).                                                                                                                                                                                                                                                                                                                                                                                                                           |
| American plaice (Maritime population)                                          | Hippoglossus platessoides | Threatened      | No Status               | High                                     | This population occurs primarily in the Gulf of St. Lawrence and Scotial observed during summer in St. George's Bay up to areas near Port au Gulf (AMEC 2014). Closely associated with the seafloor and commonly fragmented sediments are present. They overwinter in the deep waters waters off the Magdalen Islands to spawn between April-June when ne 2014). Larvae may be present in the water column between May and J                        |
| American plaice<br>(Newfoundland and<br>Labrador population)                   |                           | Threatened      | No Status               | Low                                      | American plaice are a groundfish that inhabits continental shelves in th<br>population is located south of the Hudson Strait, southeast to the Gran<br>cold-water species, preferring temperatures below -0.5 to 2.5°C and ar<br>water depths of 100 to 300 m where sandy/shell fragmented sediments                                                                                                                                                |
| Atlantic (striped) wolffish                                                    | Anarhichas lupus          | Special Concern | Special Concern         | Moderate                                 | Depending on its life stage, it inhabits different habitats: the eggs are d juveniles and adults live along the continental shelf on rocky or sandy s temperature range of -1.5 to 13°C and occur at depths less than 150 m primarily in coastal areas and on the edges of deep channels, avoiding moderate-high densities throughout the majority of the LAA (AMEC 20) waters during the fall; eggs / larvae may be present on seafloor in fall to |
| White hake (Atlantic and<br>Northern Gulf of St.<br>Lawrence population)       | Urophycis tenuis          | Threatened      | No Status               | Moderate - High                          | Slow-swimming cod-like fish that can grow up to approximately 135 cm<br>bottom over fine sediment substrates such as mud, sand, and gravel. T<br>where larger fish occur in deeper waters compared to juveniles who fre<br>(COSEWIC 2013a).                                                                                                                                                                                                         |
| White hake (Southern<br>Gulf of St. Lawrence<br>population)                    |                           | Endangered      | No Status               | Moderate - High                          | The Atlantic and Northern Gulf of St. Lawrence population occur in the Southern Newfoundland. Peak spawning for this population occurs fror (COSEWIC 2013a).                                                                                                                                                                                                                                                                                        |
|                                                                                |                           |                 |                         |                                          | The southern Gulf of St. Lawrence population is restricted to this region September, with peak spawning in mid-June in shallow inshore waters                                                                                                                                                                                                                                                                                                       |

#### ory Characteristics

herring, capelin, and crab (COSEWIC 2010a). Eggs and marily zooplankton feeders. Adults are observed in deeper vaters taking refuge in nearshore habitats (e.g., eelgrass

Breton. Cod migrate into the southern Gulf in April while deeper water off Cape Breton in November (COSEWIC he Cape Breton Trough and the southern slope of the pring and fall (Stantec 2017).

Its range extends from the Grand Banks to Baffin Bay, are found primarily in surface waters and feed mainly on fish ve months where adults are commonly found at deeper pods, euphausiids and fish species. Adults generally inhabit are vertically at night to follow prey (COSEWIC 2011b).

the Gulf. Redfish are expected to occur in high densities

seafloor. Its range extends from the Gulf of Maine to the entian Channel. They are commonly found inhabiting waters to deepwater redfish and feed mainly of copepods,

the Gulf. Redfish are expected to occur in high densities

tian Shelf (COSEWIC 2009b) where high densities are au Choix with lower densities in the offshore section of the nly found in water depths of 100 to 300 m where sandy/shell ers of the Laurentian Channel and migrate to the shallow near bottom temperatures range between 3-6°C (AMEC d June.

the North Atlantic. The Newfoundland and Labrador and Bank, and west to Cape Ray. They are considered a are closely associated with the seafloor; commonly found in nts are present (COSEWIC 2009b).

e deposited on the bottom, the larvae are pelagic, and the y substrates (COSEWIC 2012c). They tolerate a broad m in the Gulf of St. Lawrence where adults are found ng the bottoms of deep channels (Dutil et al. 2010). Occur in 2014). They undergo small migrations to spawning in shallow Il to early winter (COSEWIC 2012c).

cm in length and 22 kg in weight and are found near the . They prefer habitats with temperatures ranging from 4-8°C frequent coastal shallow waters or shallow offshore banks

ne Scotian Shelf, Northern Gulf of St. Lawrence, and rom early spring and summer in deep offshore waters

ion. Peak spawning for this population occurs from June to rs (COSEWIC 2013a).

 $\bigcirc$ 

#### Table 6.7 Species at Risk with the Potential to Occur in or Near the LAA

| Common Name                                       | Species Name            | COSEWIC Status  | SARA Schedule<br>Status | Potential for<br>Occurrence <sup>1</sup>                                                                                                                                                                                                                                                                           | Distribution and Life Histor                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------|-------------------------|-----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spotted wolffish                                  | Anarhichas minor        | Threatened      | Threatened              | Low                                                                                                                                                                                                                                                                                                                | A bottom-dwelling predatory fish that is found in cold continental shelf water depths between 200-750 m (COSEWIC 2012b). They undertake moderate densities throughout the majority of the LAA with high densit A Recovery Strategy has been completed for the spotted wolffish (DFC wolffish are within the RAA (southwest/northwest of the LAA).                                                                                    |
| Porbeagle shark                                   | Lamna nasus             | Endangered      | No Status               | Moderate                                                                                                                                                                                                                                                                                                           | A cold-temperate coastal and oceanic shark found on continental shelv<br>Migrates to Newfoundland waters, including the Gulf of St. Lawrence, I<br>in water depths of 35 to 100 m. Mating occurs in late summer to early f<br>occur at the Gulf of St. Lawrence. They feed primarily on teleost fish an                                                                                                                              |
| Atlantic bluefin tuna                             | Thunnus thynnus         | Endangered      | No Status               | Moderate                                                                                                                                                                                                                                                                                                           | Seasonal pelagic migrants: there is a commercial and hook and a relea<br>(DFO 2019b). Small schools arrive in the summer to feed and then mig<br>temperatures and depths (COSEWIC 2011a).                                                                                                                                                                                                                                            |
| Winter skate (Gulf of St.<br>Lawrence population) |                         | No Status       | Moderate                | Winter skate are endemic to the Northwest Atlantic with populations in<br>Scotian Shelf. The remainder of the Gulf of St. Lawrence is considered<br>This bottom dwelling fish prefers sand and gravel bottoms and is most<br>however winter skate in the southern Gulf may be found in coastal war<br>(ECCC 2017). |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   |                         |                 |                         |                                                                                                                                                                                                                                                                                                                    | Spawning occurs in the later summer or early fall; winter skate lay egg primarily of rock crab and squid but also prey on other shellfish, amphig generations, the abundance of mature winter skate in the Gulf of St. La Abundance of mature individuals in the southern Gulf was estimated to (COSEWIC 2015).                                                                                                                      |
| Shortfin mako (Atlantic population)               | Isurus oxyrinchus       | Endangered      | No Status               | Low                                                                                                                                                                                                                                                                                                                | A pelagic species which migrates north following food stocks (e.g., mac<br>LAA. Any occurrence would be temporary in nature. Highly migratory, of<br>it can withstand substantial changes in temperature as well as food ava<br>pupping is widespread along the continental shelf. They feed on a wide<br>and cephalopods (Government of Canada 2021b).                                                                              |
| Basking shark (Atlantic population)               | Cetorhinus maximus      | Special Concern | No Status               | Low                                                                                                                                                                                                                                                                                                                | Basking sharks are found circumglobally in temperate coastal shelf wa<br>Newfoundland waters including the Gulf of St. Lawrence, with large co<br>and Hermitage. Basking sharks are often associated with high concent<br>from approximately 5,000 to 10,000 individuals but data is limited (COS                                                                                                                                    |
| Northern wolffish                                 | Anarhichas denticulatus | Threatened      | Threatened              | Low                                                                                                                                                                                                                                                                                                                | Northern wolffish mainly occupy water between 2-5°C and are common<br>can also be found at shallower depths up to the surface (COSEWIC 20<br>Newfoundland and on the Labrador Shelf and are rarely seen in the Gu<br>wolffish (COSEWIC 2012a; DFO 2020a). This species is non-migratory<br>2012a).                                                                                                                                   |
|                                                   |                         |                 |                         |                                                                                                                                                                                                                                                                                                                    | A Recovery Strategy has been completed for the northern wolffish (DF wolffish is within the RAA (southwest of the LAA).                                                                                                                                                                                                                                                                                                              |
| White shark (Atlantic population)                 | Carcharodon carcharias  | Endangered      | Endangered              | Low                                                                                                                                                                                                                                                                                                                | White sharks inhabit waters ranging from the sub-Arctic to tropical regimigrations. They can inhabit coastal and offshore waters, can be found tolerate temperatures in the range of 1.6°C to 30.4°C (Skomal et al. 20 Canadian waters during August and September but their existence and understood. There have only been 85 recorded sightings of white sharl in the Bay of Fundy and very few in the Gulf region (COSEWIC 2021). |

#### ory Characteristics

elf waters. Most commonly found inhabiting the seafloor in ike limited movements and spawn in summer. Occur in isities observed off Port au Port Peninsula (AMEC 2014). DFO 2020a), where two critical habitat areas for spotted

nelves in water between 5-10°C and depths of 1-700 m. e, between summer and fall. This species is most often caught ly fall, and birthing occurs in late winter or spring. Mating may and cephalopod species (Government of Canada 2021a).

lease (charter) fishery within/near the Gulf of St. Lawrence nigrate south in the fall. They can withstand a wide range of

in southern Gulf of St. Lawrence, and the Eastern/Western red outside the normal range of this species (ECCC 2017). ost common at depths less than 111 m (COSEWIC 2015), varm waters at very shallow depths (30 m) in the summer

gg cases and emerge as juveniles. Their diet consists hipods, and small fish (COSEWIC 2015). Over the last three Lawrence was estimated to have declined by 99%. to be 7,000 in the 2010s compared to 580,000 in the 1970s

nackerel, herring, tuna) and may pass through or near the y, distribution pattern is dependent on water temperature, but availability. Adult females are aplacental viviparous, where ide variety of species, including teleost fish, marine mammals,

waters and coastal waters. They have been observed in concentrations found nearshore between Port au Basques entrations of zooplankton. The Canadian population ranges OSEWIC 2009a).

nonly found on the seafloor at depths of 500 to 1,000 m but 2012a). Most abundant in deep waters off northeastern Gulf of St. Lawrence, which is a fringe area for northern tory with spawning occurring late in the year (COSEWIC

DFO 2020a) where one critical habitat area for northern

egions and have been observed to undergo long distance and at the surface to depths of at least 1,128 m, and can 2017 *in* COSEWIC 2021). They are most often observed in and behavior in the North Atlantic is currently poorly ark in Atlantic Canada between 1874-2018, with most being 1).

 $\bigcirc$ 

#### Table 6.7 Species at Risk with the Potential to Occur in or Near the LAA

| Common Name                                                             | Species Name             | COSEWIC Status  | SARA Schedule<br>Status | Potential for<br>Occurrence <sup>1</sup> | Distribution and Life Histo                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------|--------------------------|-----------------|-------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atlantic salmon (Anticosti<br>Island population)                        | Salmo salar              | Endangered      | No Status               | Low                                      | Atlantic salmon are anadromous; they live in freshwater rivers for their (COSEWIC 2010b). They return to their natal river or tributary for span                                                                                                                                                                                                                        |
| Atlantic salmon (South<br>Newfoundland<br>population)                   |                          | Threatened      | No Status               | Low                                      | (e.g., euphausiids, amphipods) and fish (e.g., herring, capelin). They a<br>Spawning occurs in October and November in Canadian waters (AME<br>There are scheduled salmon rivers located in the Bay St. George Reg                                                                                                                                                      |
| Atlantic salmon (Gaspé-<br>Southern Gulf of St.<br>Lawrence population) | -                        | Special Concern | No Status               | Low                                      | juveniles from these rivers may pass through the LAA as they migrate                                                                                                                                                                                                                                                                                                    |
| Atlantic salmon (Inner St.<br>Lawrence population)                      |                          | Special Concern | No Status               | Low                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| Atlantic salmon (Quebec<br>Eastern North Shore<br>population)           |                          | Special Concern | No Status               | Low                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| Atlantic salmon (Quebec<br>Western North Shore<br>population)           |                          | Special Concern | No Status               | Low                                      |                                                                                                                                                                                                                                                                                                                                                                         |
| Banded killifish <sup>2</sup><br>(Newfoundland<br>Population)           | Fundulus<br>diaphanous   | Special Concern | Special Concern         | Low                                      | The banded killifish is considered a freshwater resident but is salinity to Lawrence salinities, but movement between the mainland and the Gull Only a few isolated populations exist on the island of Newfoundland, in the Project (Section 4.4.4). The banded killifish is also listed as vulnerative section 4.4.4.                                                  |
| Cusk                                                                    | Brosme brosme            | Endangered      | No Status               | Low                                      | A slow moving, sedentary, cod-like fish that lives in the Western Atlant<br>greater than 100 cm. They are usually located in relatively warm water<br>found between the Gulf of Maine and southern Scotian Shelf. Rare alo<br>Very rare within the Gulf (COSEWIC 2012d).                                                                                                |
| Roundnose grenadier                                                     | Coryphaenoides rupestris | Endangered      | No Status               | Low                                      | Roundnose grenadier is distributed on the Northwest Atlantic's contine<br>slow growing, deep-water marine fish that are mostly found inhabiting<br>be on a seasonal basis, primarily in the fall, feeding on a variety of spe<br>Could occur at any time of the year, however unlikely as they are gene                                                                 |
| American eel <sup>2</sup>                                               | Anguilla rostrata        | Threatened      | No Status               | Low                                      | American eel can be found in many coastal areas and adjacent access<br>They are diadromous, meaning they can be found in both freshwater a<br>streams to the Sargasso Sea to spawn may pass through the LAA. Pre<br>be temporary in nature (Wildlife Division 2010). The American eel is al                                                                             |
| Atlantic sturgeon (St.<br>Lawrence populations)                         | Ancipenser oxyrinchus    | Threatened      | No Status               | Low                                      | Large-bodied, slow-growing, late-maturing anadromous fish that occur<br>estuaries (with warm, partially saline water), nearshore marine environ                                                                                                                                                                                                                         |
| Atlantic sturgeon<br>(Maritimes populations)                            |                          | Threatened      | No Status               | Low                                      | most of its life in saltwater moving to freshwater to spawn in spring or of<br>The St. Lawrence population has an estimated 500 to 1,000 adults. Po<br>and Estuary (COSEWIC 2011c). Population could pass through the LA<br>The Maritimes population has an estimated 1,000 to 2,000 adults (min<br>River area (COSEWIC 2011c). Population could pass in or near the LA |

#### tory Characteristics

eir first one to two years before migrating to the sea bawning. While at sea, they feed on variety of invertebrates y are prey for marine mammals, birds, and other fish species. MEC 2014).

egion near the proposed project (Section 4.3.4). Migrating the to North Atlantic waters.

y tolerant. It has been shown to survive normal Gulf of St. aulf are probably infrequent (AMEC 2014; COSEWIC 2014a). , including several freshwater environments in the vicinity of erable under NL ESA.

antic. Cusks can live up to 20 years and grow to a length ter (6-10°C) at intermediate depths (150-400 m). Commonly along the continental shelf off Newfoundland and Labrador.

inental slopes and is associated with the seafloor. They are a ng waters from 400 to 1,200 m in depth. Feeding is thought to species, including copepods, amphipods, squid, and small fish. enerally found in deeper water (COSEWIC 2008a).

essible freshwater habitats on the island of Newfoundland. er and marine environments. Adults migrating from freshwater Presence in the marine environment around NL would likely also listed as vulnerable under NL ESA.

curs in rivers (with access to the sea and deep channels), ronments, and shelf regions to at least 50 m depths. Spends or early summer (AMEC 2014).

Potential spawning locations occur in the St. Lawrence River LAA but would be temporary in nature.

ninimum), spawning only occurs within the lower Saint John LAA but would be temporary in nature.

 $\bigcirc$ 

#### Table 6.7 Species at Risk with the Potential to Occur in or Near the LAA

| Common Name                                                   | Species Name                     | COSEWIC Status  | SARA Schedule<br>Status | Potential for<br>Occurrence <sup>1</sup>                                                                                                                                                                                                                                                    | Distribution and Life Histor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------|----------------------------------|-----------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Striped bass (Southern<br>Gulf of St. Lawrence<br>population) | Marone saxatilis                 | Special Concern | No Status               | Low                                                                                                                                                                                                                                                                                         | This population is widely distributed throughout estuaries and coastal a concentrations outside of NL waters (Government of Canada 2021c). S water in late May or early June. Development from egg to young-of-the Immature and adult bass feed in estuaries and coastal waters during th temperatures (COSEWIC 2004). During the summer months, migratior fall, they will migrate upstream to prepare for overwintering in brackish Scientific evidence suggests that populations currently exist in only two Bay of Fundy; and the Miramichi River, which flows into the southern G considered extirpated (COSEWIC 2004). |
| Spiny dogfish (Atlantic population)                           | Squalus acanthias                | Special Concern | No Status               | Low                                                                                                                                                                                                                                                                                         | The Atlantic population for this small shark species occurs from Labrac<br>Nova Scotia in Canada (COSEWIC 2010c). Some are observed in the<br>are observed in both coastal and offshore waters; in Newfoundland wa<br>and water depths of 100-250 m.                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | The spiny dogfish is ovoviviparous with a reproduction cycle lasting two observed. Large aggregations of mature females occur in the deep was deep basins of the Scotian Shelf in the winter months. It is believed that et al. 2007 in COSEWIC 2010c).                                                                                                                                                                                                                                                                                                                                                                     |
| Marine Mammals                                                |                                  |                 |                         |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Blue whale (Atlantic population)                              | Balaenoptera musculus Endangered | Endangered      | Moderate                | The Northwest Atlantic population of blue whales is estimated to consist<br>whales winter in southern latitudes during mating and calving season. If<br>between births. They migrate to western North Atlantic starting in the sp<br>coastal waters feeding primarily on krill (AMEC 2014). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | Blue whales can occur in the Gulf of St. Lawrence year-round but are r<br>Gulf during ice-free periods. They are most likely to occur in the Gulf be                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | The entrance to St. George's Bay Marine Mammal Significant Area (MI whales as it is one of the rare known areas where they congregate durithe LAA) and southern Newfoundland are also considered to be import                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fin whale (Atlantic population)                               | Balaenoptera physalus            | Special Concern | Special Concern         | Moderate                                                                                                                                                                                                                                                                                    | This species migrates seasonally, either alone or in small groups, from feeding areas. They primarily feed on small schooling fishes and krill. C an average of 2.7 years between births (AMEC 2014).                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | Concentrated in the Northwest Atlantic region during the summer mont<br>western Newfoundland. Within the Gulf of St. Lawrence, they are most<br>of Belle Isle and in western Newfoundland in St. George's Bay (AMEC                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | Are most common in the Gulf between July to September (COSEWIC 2 off northern Nova Scotia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Harbour porpoise<br>(Northwest Atlantic                       | Phocoena phocoena                | Special Concern | No Status               | Moderate                                                                                                                                                                                                                                                                                    | Occurs in offshore and coastal waters of the Gulf. During the summer, commonly seen alone or in small groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| population)                                                   |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | Common from July to September in the northern portion of the Gulf, wir<br>are thought to migrate out of the Gulf in the winter to avoid ice entrapm<br>gestational periods ranging from 10 to 11 months (COSEWIC 2006).                                                                                                                                                                                                                                                                                                                                                                                                     |
| North Atlantic right whale                                    | Eubalaena glacialis              | Endangered      | Endangered              | Low                                                                                                                                                                                                                                                                                         | A large baleen whale that occurs in both coastal and shelf waters along<br>Newfoundland and Labrador (DFO 2021b). Atlantic Canadian waters a<br>primarily feeds on copepods. Mean age at first reproduction is 10 years<br>period unknown; may be >12 months. The interval of births is between<br>collisions with vessels (AMEC 2014).                                                                                                                                                                                                                                                                                     |
|                                                               |                                  |                 |                         |                                                                                                                                                                                                                                                                                             | Rare to waters off western Newfoundland but have been seen in large to occur in the summer and fall (DFO 2021b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### ory Characteristics

I areas within the southern Gulf of St. Lawrence, with higher Striped bass spawn in freshwater and less often in brackish he-year corresponds to a gradual movement to salt water. The summer and overwinter in rivers to avoid cold ocean ions are associated with the availability of prey. During the sh and freshwater.

wo Canadian rivers: the Shubenacadie, which flows into the of Gulf of St. Lawrence. The St. Lawrence estuary population is

ador to Cape Hatteras and is most abundant in southwest ne Gulf of St. Lawrence and the western Grand Banks. They waters they show preference for water temperatures of  $>5^{\circ}$ C

wo years. Pupping grounds for the species have not been varm waters off the edge of the continental shelf or in the hat pupping occurs in late winter in these locations (Campana

sist of no more than 250 individuals (DFO 2020b). Blue n. Gestation period is 10 to 11 months and two to three years a spring and are frequently observed in highly productive

e more likely to occur during spring, summer, and fall in the between August and November (Jacques Whitford 2007).

MMSA) is known to be a relatively important location for blue luring winter (AMEC 2014). Southern Gulf (including part of ortant habitat areas (DFO 2020b).

om low latitude winter feeding areas to high latitude summer . Conception and calving usually take place in the winter, with

onths, including coastal and offshore waters of the Gulf and ost common in the north and northeast of the Gulf in the Strait iC 2014).

C 2019), migrating through the Laurentian Channel to winter

er, they are common in coastal bays and harbours, and are

with lower densities in the southern Gulf. Harbour porpoises oment. Every year, mature females become pregnant with

ong the eastern seaboard of North America, including are important foraging grounds for this species, who ars for female and is likely similar for males with a gestation en three to five years. This species is particularly vulnerable to

ge aggregations in the southern Gulf since 2015. More likely

#### Table 6.7 Species at Risk with the Potential to Occur in or Near the LAA

| Common Name                                                                       | Species Name          | COSEWIC Status  | SARA Schedule<br>Status | Potential for<br>Occurrence <sup>1</sup> | Distribution and Life Histor                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------|-----------------------|-----------------|-------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northern bottlenose whale (Scotian Shelf                                          | Hyperoodon ampullatus | Endangered      | Endangered              | Low                                      | A medium sized whale, with a population estimated to be approximatel (>500 m) in the continental slope off Nova Scotia and southwestern Ne                                                                                                                                                                                 |
| population)                                                                       |                       |                 |                         |                                          | Females and males reach sexual maturity at eight to 13 years and sev<br>offspring after a 12-month gestation period. It is estimated that females<br>lower in the Scotian Shelf population (COSEWIC 2011d).                                                                                                                |
|                                                                                   |                       |                 |                         |                                          | Rarely sighted as it is a pelagic, deep-water species, except that it is c<br>the Labrador Sea. Could occur rarely, and in low numbers, in the Gulf                                                                                                                                                                        |
| Northern bottlenose whale<br>(Davis Strait-Baffin Bay-<br>Labrador Sea Population |                       | Special Concern | No Status               | Low                                      | Confined to the waters of the northern Atlantic Ocean, with populations 2011d). More survey effort is needed to fully describe the distribution a particularly in the northern part of its distribution and around Newfound larger in size and may breed earlier in the year (Government of Canad                          |
| Beluga whale (St.<br>Lawrence Estuary<br>population)                              | Delphinapterus leucas | Endangered      | Endangered              | Low                                      | This population spends the summer in the St. Lawrence estuary and m<br>Lawrence in the fall and winter (COSEWIC 2014b). Mating occurs from<br>14.5 months with an average interval between calving of 3.25 years (A<br>sighted occasionally in nearshore waters in Newfoundland, most likely                               |
| Killer whale (Northwest<br>Atlantic/ Eastern Arctic<br>population)                | Orcinus orca          | Special Concern | No Status               | Low                                      | Can be found in all of Canada's oceans; however, the exact extent of t<br>uncertain. Killer whales were once considered common in the Gulf of S<br>occasions. The majority of sightings occur near the coast of Newfound                                                                                                   |
|                                                                                   |                       |                 |                         |                                          | Males acquire sexual maturity around the age of 13 and females arour through spring, with an average calving interval of about five years. Th 2014).                                                                                                                                                                       |
| Sea Turtles                                                                       | ·                     |                 |                         |                                          |                                                                                                                                                                                                                                                                                                                            |
| Leatherback sea turtle<br>(Atlantic population)                                   | Dermochelys coriacea  | Endangered      | Endangered              | Moderate                                 | A highly migratory species with a large global range and is found in the<br>Atlantic Canada are widely distributed inhabiting, coastal and offshore<br>5,033 m) between April-December. They are often sighted near the su                                                                                                 |
|                                                                                   |                       |                 |                         |                                          | They are most abundant between July and October, along the Scotian<br>along the southern coast of Newfoundland During the winter, they mign<br>Nesting is the only time that these turtles go ashore, with females laying                                                                                                  |
| Loggerhead sea turtle                                                             | Caretta caretta       | Endangered      | Endangered              | Low                                      | This species is highly migratory and are widely distributed in the Atlant<br>subpopulation nests in subtropical/tropical locations in northeastern Ur<br>season and will go two to three years between breeding seasons (AM                                                                                                |
|                                                                                   |                       |                 |                         |                                          | In Atlantic Canada, they are thought to reside in the warm offshore wat<br>on jellyfish. They are most prominent in the offshore parts of the Gulf a<br>months. Little is known about population sizes or trends for loggerhead<br>inhabit waters that are less than 15°C (COSEWIC 2010d). Sightings ne<br>COSEWIC 2010d). |

Adapted from: Stantec 2017

Notes:

<sup>1</sup> High - area overlaps with known concentrations of species (i.e., occurs frequently and in abundance relative to other areas); Moderate - species not concentrated in area but may occur regularly in low abundance or during migration; Low - species occurs infrequently and in low abundance relative to other areas (i.e., based on habitat association and distribution)

<sup>2</sup> Also listed as *vulnerable* under the Newfoundland and Labrador *Endangered Species Regulation* 

#### ory Characteristics

tely 150 individuals. This population inhabits deep waters Newfoundland (Government of Canada 2021d).

even to nine years respectively. Females give birth to a single les give birth on average every two years, but this rate may be

s common to 'The Gully' off southeastern Nova Scotia, and in If where it may feed in deep waters.

ons off the Davis Strait / northern Labrador (COSEWIC n and abundance of northern bottlenose whales in Canada, ndland. Similar to the Scotian Shelf population but tend to be ada 2021e).

I migrates eastward into the northwestern Gulf of St. om late winter to early spring and a gestation period of 13-(AMEC 2014). Small numbers of solitary belugas have been ely juveniles (COSEWIC 2014b).

f their range and distribution in the northwest Atlantic is f St. Lawrence, but they are now only sighted on rare ndland and in the Strait of Belle Isle (COSEWIC 2008b).

und the age of 14 to 15 years. Calving season runs from fall They often travel in close-knit matrilineal groups (AMEC

the Atlantic, Pacific and Indian oceans. Leatherbacks in re waters, and the Gulf of St. Lawrence (depth range of 2-surface foraging on jellyfish (COSEWIC 2012e).

an Shelf and slope, in the southern Gulf of St. Lawrence and igrate to tropical ocean beaches where they mate and nest. ying on average six clutches per season (COSEWIC 2012e).

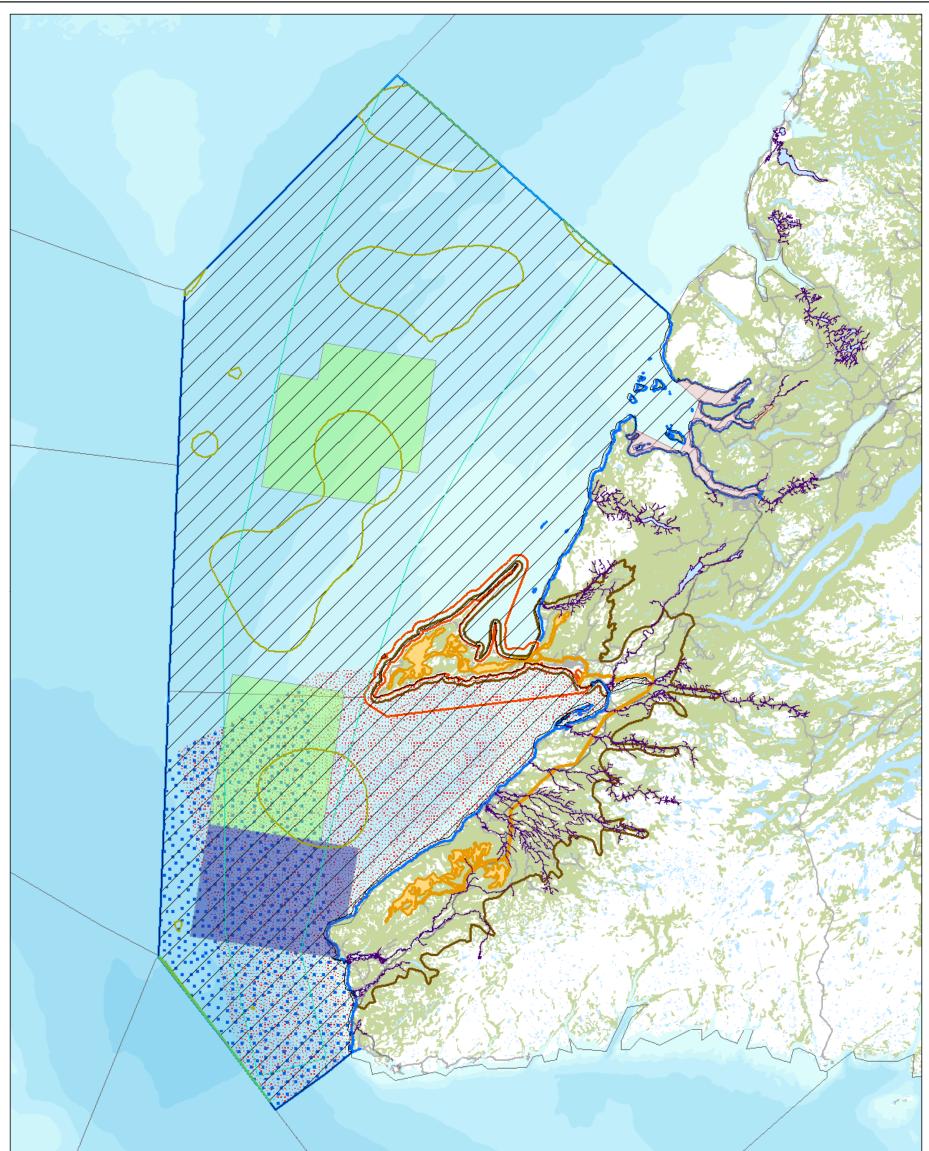
Intic, Pacific, and Indian Oceans. The Northwest Atlantic United States waters and Mexico; they lay four clutches per MEC 2014).

vaters (>20°C) near the Gulf Stream where they mainly feed f and western Newfoundland in the spring, summer and fall ead sea turtles in Canadian waters but most likely do not near the LAA are expected to be rare (AMEC 2014;

 $\bigcirc$ 

#### 6.3.2.7 Sensitive Areas

The marine RAA/LAA is in the Estuary and Gulf of St. Lawrence Marine Bioregion, which is one of the largest and most productive estuary/marine ecosystems worldwide (Government of Canada 2023). There are several sensitive areas within this bioregion that are close to or within LAA boundaries: Ecologically and Biologically Significant Areas (EBSAs), Significant Benthic Areas (SiBAs), SAR Critical Habitat for northern and spotted wolffish, DFO Shellfish Harvesting Closures, Special Marine Areas (SMAs), and Important Areas for Blue Whales. SMAs were identified by The Canadian Parks and Wilderness Society (CPAWS) using information from academic, official, and community literature as well as input from governments, indigenous groups, academics, non-governmental organizations, and community members (CPAWS 2018). Two marine refuges are present outside of the LAA but are within RAA boundaries; the Shoal Point Lobster Closure and the Bay of Islands Salmon Migration Closure, which are approximately 76 km and 45 km from the Project, respectively.


Details on the location and importance of sensitive areas in or near the LAA are presented in Table 6.8. Several of these nearshore sensitive areas overlap with potential Project activities near the Port au Port Peninsula and St. George's Bay. Baseline information on marine sensitive areas within the RAA is further discussed in the description of areas of conservation concern, available in the Terrestrial Baseline Study (Stantec 2023a).

| Sensitive Area                | Location Description                                                                                                                                          | Importance of Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBSAs                         |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| West Coast of<br>Newfoundland | <ul> <li>Covers 18,424 km<sup>2</sup> along the west coast of Newfoundland</li> <li>Excludes the majority of St. George's Bay and Port au Port Bay</li> </ul> | <ul> <li>Identified for having relatively higher ecological or<br/>biological significance than surrounding areas and<br/>are protected through DFO's Ocean Act</li> <li>Significant spawning area for the Northern Gulf cod<br/>stock</li> <li>Significant quantities of fish larvae, particularly<br/>herring and capelin near Port au Port Peninsula</li> <li>High congregations of juvenile northern Gulf cod,<br/>redfish, American plaice, and Atlantic wolffish</li> <li>Overwintering areas and migration corridors for<br/>several fish species</li> <li>Feeding area for marine mammals</li> </ul> |
| SiBAs                         |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Significant<br>Benthic Areas  | <ul> <li>Several SiBAs are outside of<br/>the LAA; 3,364 km<sup>2</sup> total</li> <li>Closest SiBA to the Project is<br/>15.1 km from the LAA</li> </ul>     | SiBAs are regional habitats that contain important<br>cold-water corals and/or sponge dominated<br>communities, which are vulnerable to proposed or<br>ongoing fishing activities                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SAR Critical Habi             | tats                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Northern Wolffish             | One critical habitat area is<br>close to the Project (35.6 km<br>from the LAA; 1,172 km <sup>2</sup> )                                                        | Critical habitat is established as part of the Northern<br>Wolffish Recovery Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Table 6.8 Details on Sensitive Areas in or near the LAA

| Sensitive Area                     | Location Description                                                                                                                                                                                                                                                               | Importance of Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Spotted Wolffish                   | Two critical habitat areas are<br>close to the Project (5.4 km to<br>the west of the LAA; 2,625<br>km <sup>2</sup> total)                                                                                                                                                          | Critical habitat is established as part of the Spotted Wolffish Recovery Strategy                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Harvesting Closu                   | res                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Bivalve Shellfish                  | <ul> <li>Port au Port Bay, Two Guts<br/>Pond, West Bay shoreline,<br/>Seal Cove, Rothesay Bay,<br/>and St. George's River</li> </ul>                                                                                                                                               | Areas are closed for shellfish harvesting of species<br>of bivalve molluscs due to poor water quality<br>conditions or nearby pollution source                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| SMAs                               |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Boswarlos                          | <ul> <li>Located at the bottom of East<br/>Bay in Port au Port Bay on<br/>the northern sheltered coast<br/>of Port au Port Peninsula</li> </ul>                                                                                                                                    | <ul> <li>Extensive eelgrass bed habitat which provides<br/>habitat for several shorebirds and songbirds</li> <li>Shallow areas contain abundant scallop beds</li> </ul>                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                    | <ul> <li>Coastal area includes rocky<br/>ledges, low cliffs, cobbles,<br/>boulders, bedrock slabs and<br/>outcrops, with large sand<br/>gravel beaches</li> </ul>                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Sandy Point                        | <ul> <li>Large 1,000 ha sand pit that<br/>extends 2 km into St.<br/>George's Bay; located near<br/>the southern boundary of the<br/>LAA</li> <li>Marine and coastal habitats<br/>include tidal sandy flats, salt<br/>marshes, eelgrass beds,<br/>beaches and sand dunes</li> </ul> | <ul> <li>Largest spartina salt marsh and one of the largest eelgrass beds in the province</li> <li>High numbers of migrating shorebirds in the summer</li> <li>Important area for piping plover (15-20% of provinces population)</li> <li>Only known location in the province for Willet (on Flat Island)</li> <li>To some extent, the site is protected by ENGOs</li> </ul>                                                                                                              |  |  |  |  |  |  |
| St. George's Bay<br>– Port au Port | <ul> <li>Large, sheltered bay with a triangular-shaped peninsula</li> <li>Bay contains glacio-marine mud and deposits of sand and gravel, with some rocky ledges</li> <li>Coastal area includes sandy shorelines and mud flats</li> </ul>                                          | <ul> <li>St. George's Bay contains many eelgrass beds and maritime New England type salt marshes that provide important habitat for birds and other animals</li> <li>Several rivers in the area are important for Atlantic salmon</li> <li>St. George's Bay contains submarine fans that have not been seen anywhere else in the region</li> <li>Important spawning grounds for herring</li> </ul>                                                                                        |  |  |  |  |  |  |
| Marine Mammal S                    | ensitive Areas                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Important Area<br>for Blue Whale   | <ul> <li>The shelf waters south and<br/>southwest of Newfoundland<br/>(Figure 6.5)</li> </ul>                                                                                                                                                                                      | <ul> <li>Considered important foraging/feeding and socializing areas for blue whales</li> <li>Other identified areas in the North Atlantic: lower St. Lawrence Estuary, northwestern Gulf of St. Lawrence, the Mecatina Trough area, including the head of the Esquiman Channel, and the continental shelf of the Grand Banks, Newfoundland, and Nova Scotia</li> <li>Habitats were identified using information on blue whale distribution and where krill aggregations occur</li> </ul> |  |  |  |  |  |  |
| Sources: AMEC 20                   | 014; CPAWS 2018; DFO 2009,2020a,                                                                                                                                                                                                                                                   | c; Lesage et al. 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

## Table 6.8 Details on Sensitive Areas in or near the LAA



59 Fig 6.6 Sensitive Areas within the RAA mxd Revised: 2023-08-02 Bv. sch

Ν Labrador Project Area 0 40 Marine Refuges (Coastal 20 ∃ km Sites) Local Assessment Area 253 Quebec (At original document size of 11x17) 1:1,000,000 Ecological and Biologically (Marine) Significant Areas **Regional Assessment** Significant Benthic Areas Area (Marine) Stantec Corner Brook Federal Marine Bioregions **Regional Assessment** Area (Terrestrial) C Scheduled Salmon Rivers Newfoundland Prepared by NW on 2023-04-28 QR by AW on 2023-07-07 IR by RK on 2023-08-01 *roject* Steph (2023-24) NL St. John's Client/Project 121417233\_058a Wolffish SAR Critical World Energy GH2 Project Nujio'qonik 20 Habitat Northern Wolffish Saint-Pierre NŞ -et-Miquelon Figure No. Spotted Wolffish 6.6 Notes 1. Coordinate System: NAD 1983 CSRS UTM Zone 21N 2. Data Sources: World Energy GH2, Province of Newfoundland and Labrador, Fisheries and Oceans Canada, Stantec 3. Background: Natural Resources Canada CanVec Important Areas for Blue Title Whale Sensitive Areas within the RAA Feeding area • Migration area

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec has not verified the accuracy and/or completeness of the data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

#### 6.3.3 Marine Commercial Fisheries

#### 6.3.3.1 Overview

Commercial fishing vessels from Québec and the four Atlantic provinces operate in the Gulf and are managed through DFO regional offices. Licenses and quotas are set by DFO for individual species management areas and NAFO divisions and subdivisions. Commercial fishing is considered an important economic contributor for communities of western Newfoundland, including those located in proximity to the Project. Weather and ice conditions, availability of resources, fisheries licencing and management, and harvesting plans and preferences influence the timing of fishing activity in the Gulf (AMEC 2014).

Commercial fishery data sets that overlapped with the RAA (NAFO sub-divisions 4Rcd) were acquired from several sources. Fish harvest data for the RAA was acquired from the Economic Analysis and Statistics DFO (2023) dataset and are presented in Tables 6.9 and 6.10. Harvest data are provided by weight and value by species between 2011 and 2020. 4Rcd covers an area substantively more expansive than the LAA. However, general information on trends associated with the fishery for this division could provide insight and knowledge for the general region in which the Project will occur.

Commercial fisheries data was also obtained through the publicly available online Canada Marine Planning Atlas (Government of Canada 2023) to give a visual representation of where fishing occurs within the RAA. This data is presented in Figures 6.7 to 6.9 and 6.11 to 6.19. These figures illustrate the distribution and composite landings (kg) for several commercially important fish and shellfish species within 4Rcd between 2009 and 2018 for Atlantic herring, Atlantic mackerel, capelin, snow crab, witch flounder, Greenland halibut, redfish, Atlantic cod, and Atlantic halibut. The total weight (kg) of composite landings within 4Rcd between this time frame are summarized in Table 6.11 per species. The combined distribution and composite landings of these selected species are illustrated in Figure 6.7 and the use of fixed and mobile gear types are illustrated in Figures 6.8 and 6.9, respectively.

While the Canada Marine Planning Atlas and Economic Analysis and Statistics DFO information provided commercial fisheries data within the RAA / LAA, several data gaps were identified. These included the exclusion of commercially fished species (i.e., lobster within the Canada Marine Planning Atlas) and privacy screening within the datasets. To supplement the information that is publicly available, a data request was submitted to DFO. However, data were not provided due to confidentiality reasons.

6-35

## Table 6.9Fish Harvests by Weight (kg) – NAFO 4Rcd (2011-2020)

| Species                     | 2011       | 2012      | 2013      | 2014      | 2015      | 2016      | 2017       | 2018      | 2019      | 2020      | Total      |
|-----------------------------|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|------------|
| American Plaice             | 37,490     | 51,006    | 26,620    | 308       | 129       | 8,124     | 40,374     | -         | 2,341     | -         | 166,392    |
| Capelin                     | 5,912,739  | 5,507,840 | -         | -         | 1,308,877 | 581,869   | 199,830    | 2,556,846 | 3,519,735 | 2,245,423 | 21,833,159 |
| Catfish (Striped /Wolffish) | 3,152      | 165       | -         | -         | -         | -         | 43         | 258       | -         | -         | 3,618      |
| Cod, Atlantic               | 213,507    | 166,710   | 247,534   | 148,284   | 139,273   | 151,812   | 30,657     | 195,330   | 66,116    | 83,498    | 1,442,721  |
| Crab, Atlantic Rock         | 60,408     | NA        | NA        | -         | NA        | NA        | NA         | -         | NA        | -         | 60,408     |
| Crab, Queen/Snow            | 348,365    | 479,296   | 543,581   | 540,579   | 495,007   | 430,524   | 13,999,426 | 169,399   | 180,338   | 166,554   | 17,353,069 |
| Cusk                        | -          | -         | -         | NA        | NA        | NA        | NA         | NA        | -         | -         | -          |
| Eels                        | -          | 14,356    | -         | -         | -         | -         | 12,201     | 4,519     | NA        | NA        | 31,076     |
| Greysole/Witch              | -          | -         | -         | -         | -         | -         | 19,832     | -         | -         | -         | 19,832     |
| Groundfish, Unspecified     | NA         | -         | NA        | NA        | NA        | NA        | NA         | NA        | NA        | NA        | -          |
| Haddock                     | -          | -         | -         | -         | -         | -         | 570        | -         | -         | -         | 570        |
| Hake, White                 | 3,734      | 4,048     | 864       | 123       | 60        | 6,318     | 42,019     | 36        | 287       | 3,753     | 61,242     |
| Halibut – Atlantic          | 50,944     | 74,263    | 71,364    | 80,295    | 83,111    | 72,443    | -          | 96,203    | 77,065    | 92,460    | 698,148    |
| Heads, Groundfish           | NA         | 825       | NA        | NA        | NA        | NA        | NA         | NA        | -         | NA        | 825        |
| Herring, Atlantic           | 11,220,139 | 7,564,442 | 8,801,881 | 2,175,504 | 618,009   | 2,103,890 | 887,925    | 1,055,237 | -         | 203,655   | 34,630,682 |
| Lobster                     | 471,899    | 500,525   | 520,386   | 553,710   | 686,284   | 722,309   | 769,732    | 1,031,571 | 900,847   | 1,388,218 | 7,545,481  |
| Lumpfish                    | -          | NA        | NA        | NA        | NA        | NA        | NA         | NA        | NA        | NA        | -          |
| Mackerel                    | 1,562,517  | -         | -         | 1,200,220 | 262,737   | 1,240,884 | 598,114    | -         | NA        | NA        | 4,864,472  |
| Monkfish (American Angler)  | 473        | -         | -         | -         | -         | -         | 19,766     | -         | 1,270     | -         | 21,509     |
| Pollock                     | -          | 148       | -         | -         | -         | -         | 13,973     | -         | -         | -         | 14,121     |
| Redfish                     | 2,208      | 8,939     | 1,117     | -         | -         | 4,436     | 3,497,272  | -         | -         | 147,288   | 3,661,260  |
| Roe, Lumpfish               | -          | -         | NA        | NA        | NA        | NA        | NA         | NA        | NA        | NA        | -          |
| Scallop, Sea                | 47,420     | 66,462    | -         | -         | -         | -         | -          | -         | -         | -         | 113,882    |
| Sculpin                     | -          | NA        | NA        | NA        | NA        | NA        | NA         | NA        | NA        | NA        | -          |
| Shark, Mako                 | NA         | NA        | NA        | NA        | NA        | NA        | NA         | NA        | NA        | -         | -          |
| Shark, Porbeagle            | NA         | -         | NA        | NA        | NA        | NA        | NA         | NA        | NA        | NA        | -          |
| Shark, Unspecified          | -          | NA        | NA        | NA        | NA        | -         | NA         | NA        | NA        | NA        | -          |
| Shrimp, Pandalus borealis   | -          | 58,640    | -         | -         | NA        | NA        | 2,243,041  | -         | NA        | NA        | 2,301,681  |
| Skate                       | 937        | -         | -         | NA        | -         | -         | -          | 390       | -         | -         | 1,327      |
| Smelts                      | NA         | NA        | -         | NA        | NA        | NA        | NA         | NA        | NA        | NA        | -          |
| Squid, Illex/Shortfin       | NA         | -         | NA        | NA        | NA        | NA        | NA         | NA        | -         | -         | -          |
| Turbot/Greenland Halibut    | 306,547    | 251,054   | 8,006     | 936       | 72        | 50,717    | 906,470    | -         | -         | -         | 1,523,802  |

#### Fish Harvests by Weight (kg) – NAFO 4Rcd (2011-2020) Table 6.9

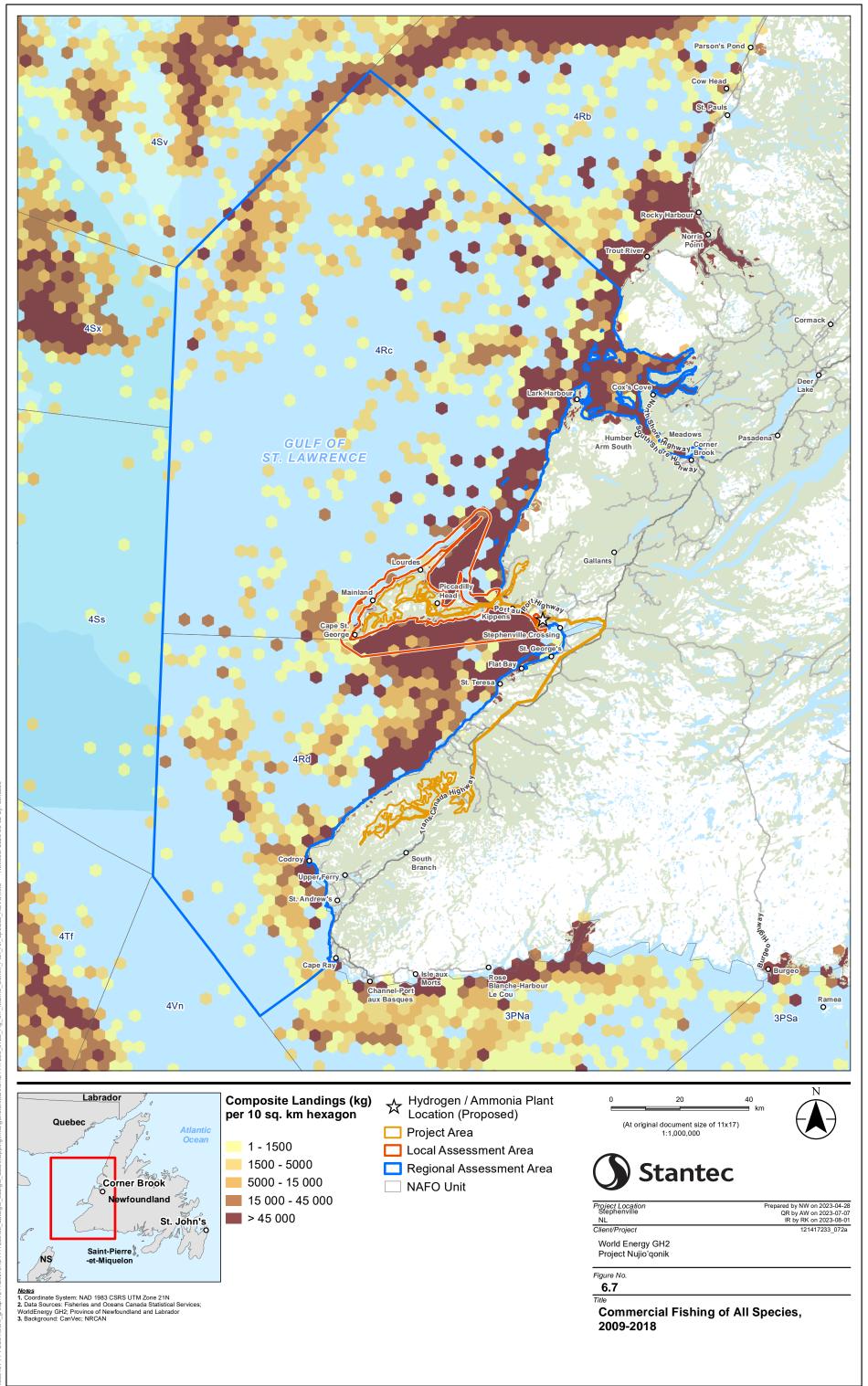
| Species                                    | 2011                  | 2012                   | 2013                   | 2014                  | 2015      | 2016      | 2017       | 2018      | 2019      | 2020      | Total      |
|--------------------------------------------|-----------------------|------------------------|------------------------|-----------------------|-----------|-----------|------------|-----------|-----------|-----------|------------|
| Whelk                                      | NA                    | NA                     | NA                     | NA                    | NA        | NA        | NA         | NA        | NA        | -         | -          |
| Winter Flounder                            | 176                   | -                      | NA                     | -                     | NA        | NA        | -          | NA        | NA        | NA        | 176        |
| Yellowtail Flounder                        | NA                    | NA                     | NA                     | -                     | -         | NA        | NA         | NA        | -         | -         | -          |
| Total                                      | 20,242,655            | 14,748,719             | 10,221,353             | 4,699,959             | 3,593,559 | 5,373,326 | 23,281,245 | 5,109,789 | 4,747,999 | 4,330,849 | 96,349,453 |
| Source: Economic Analysis and Statistics   | DFO 2023              |                        |                        |                       |           |           |            |           |           |           |            |
| Notes:                                     |                       |                        |                        |                       |           |           |            |           |           |           |            |
| NA = no data available                     |                       |                        |                        |                       |           |           |            |           |           |           |            |
| "-" = no landings that year or is suppress | ed to meet confidenti | ality requirements spe | ecified within the Sta | tistics Act and DFO p | olicies.  |           |            |           |           |           |            |

no landings that year or is suppressed to meet confidentiality requirements specified within the Statistics Act and DFO policies.

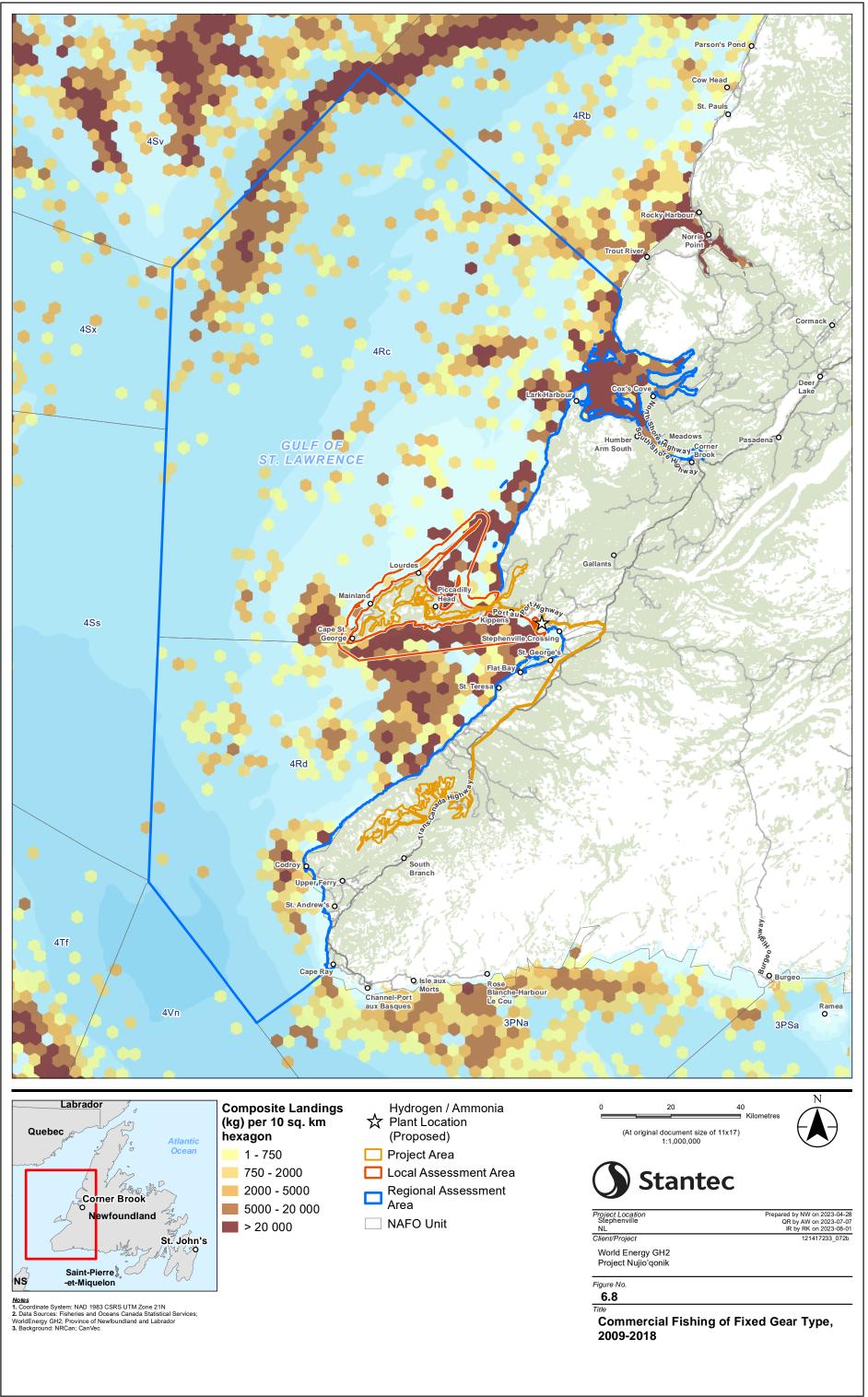
# Table 6.10Fish Harvests by Value (\$) – NAFO 4Rcd (2011 – 2020)

| Species                     | 2011      | 2012      | 2013      | 2014      | 2015      | 2016      | 2017        | 2018       | 2019      | 2020       | Total       |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|------------|-----------|------------|-------------|
| American Plaice             | 25,958    | 42,921    | 17,070    | 202       | 70        | 4,864     | 26,555      | -          | 1,804     | -          | 119,445     |
| Capelin                     | 1,055,865 | 1,177,844 | -         | -         | 366,473   | 214,228   | 62,533      | 958,269    | 3,259,074 | 1,381,138  | 8,475,424   |
| Catfish (Striped /Wolffish) | 1,369     | 58        | -         | -         | -         | -         | 9           | 69         | -         | -          | 1,505       |
| Cod, Atlantic               | 249,007   | 188,910   | 303,594   | 207,713   | 161,933   | 196,434   | 47,818      | 283,306    | 90,241    | 121,273    | 1,850,227   |
| Crab, Atlantic Rock         | 43,794    | NA        | NA        | -         | NA        | NA        | NA          | -          | NA        | -          | 43,794      |
| Crab, Queen/Snow            | 1,649,874 | 2,060,074 | 2,356,063 | 2,788,652 | 2,695,532 | 2,826,858 | 157,262,176 | 1,799,490  | 1,381,011 | 1,273,344  | 176,093,075 |
| Cusk                        | -         | -         | -         | NA        | NA        | NA        | NA          | NA         | -         | -          | -           |
| Eels                        | -         | 84,382    | -         | -         | -         | -         | 69,698      | 27,149     | NA        | NA         | 181,229     |
| Greysole/Witch              | -         | -         | -         | -         | -         | -         | 25,392      | -          | -         | -          | 25,392      |
| Groundfish, Unspecified     | NA        | -         | NA        | NA        | NA        | NA        | NA          | NA         | NA        | NA         | -           |
| Haddock                     | -         | -         | -         | -         | -         | -         | 595         | -          | -         | -          | 595         |
| Hake, White                 | 3,058     | 2,978     | 616       | 110       | 62        | 6,289     | 39,543      | 34         | 219       | 4,516      | 57,425      |
| Halibut – Atlantic          | 363,758   | 609,166   | 612,716   | 718,475   | 927,906   | 803,577   | -           | 980,866    | 793,164   | 800,161    | 6,609,789   |
| Heads, Groundfish           | NA        | 1,442     | NA        | NA        | NA        | NA        | NA          | NA         | -         | NA         | 1,442       |
| Herring, Atlantic           | 2,943,608 | 2,501,513 | 2,425,943 | 479,617   | 153,960   | 630,806   | 317,122     | 356,638    | -         | 70,939     | 9,880,147   |
| Lobster                     | 4,079,419 | 4,472,811 | 4,175,331 | 4,580,300 | 8,011,302 | 9,032,029 | 11,946,014  | 14,074,265 | 8,910,959 | 13,779,360 | 83,061,789  |
| Lumpfish                    | -         | NA        | NA        | NA        | NA        | NA        | NA          | NA         | NA        | NA         | -           |
| Mackerel                    | 1,543,222 | -         | -         | 653,570   | 123,956   | 730,427   | 394,265     | -          | NA        | NA         | 3,445,440   |
| Monkfish (American Angler)  | 275       | -         | -         | -         | -         | -         | 25,720      | -          | 1,401     | -          | 27,397      |
| Pollock                     | -         | 102       | -         | -         | -         | -         | 12,275      | -          | -         | -          | 12,377      |
| Redfish                     | 1,574     | 8,590     | 938       | -         | -         | 2,981     | 3,194,201   | -          | -         | 161,286    | 3,369,570   |
| Roe, Lumpfish               | -         | -         | NA        | NA        | NA        | NA        | NA          | NA         | NA        | NA         | -           |
| Scallop, Sea                | 88,165    | 131,783   | -         | -         | -         | -         | -           | -          | -         | -          | 219,948     |
| Sculpin                     | -         | NA        | NA        | NA        | NA        | NA        | NA          | NA         | NA        | NA         | -           |
| Shark, Mako                 | NA          | NA         | NA        | -          | -           |
| Shark, Porbeagle            | NA        | -         | NA        | NA        | NA        | NA        | NA          | NA         | NA        | NA         | -           |
| Shark, Unspecified          | -         | NA        | NA        | NA        | NA        | -         | NA          | NA         | NA        | NA         | -           |
| Shrimp, Pandalus borealis   | -         | 101,881   | -         | -         | NA        | NA        | 5,412,878   | -          | NA        | NA         | 5,514,759   |
| Skate                       | 230       | -         | -         | NA        | -         | -         | -           | 100        | -         | -          | 329         |
| Smelts                      | NA        | NA        | -         | NA        | NA        | NA        | NA          | NA         | NA        | NA         | -           |
| Squid, Illex/Shortfin       | NA        | -         | NA        | NA        | NA        | NA        | NA          | NA         | -         | -          | -           |
| Turbot/Greenland Halibut    | 740,539   | 682,604   | 24,022    | 2,938     | 276       | 192,182   | 3,406,420   | -          | -         | -          | 5,048,980   |

#### Fish Harvests by Value (\$) – NAFO 4Rcd (2011 – 2020) Table 6.10

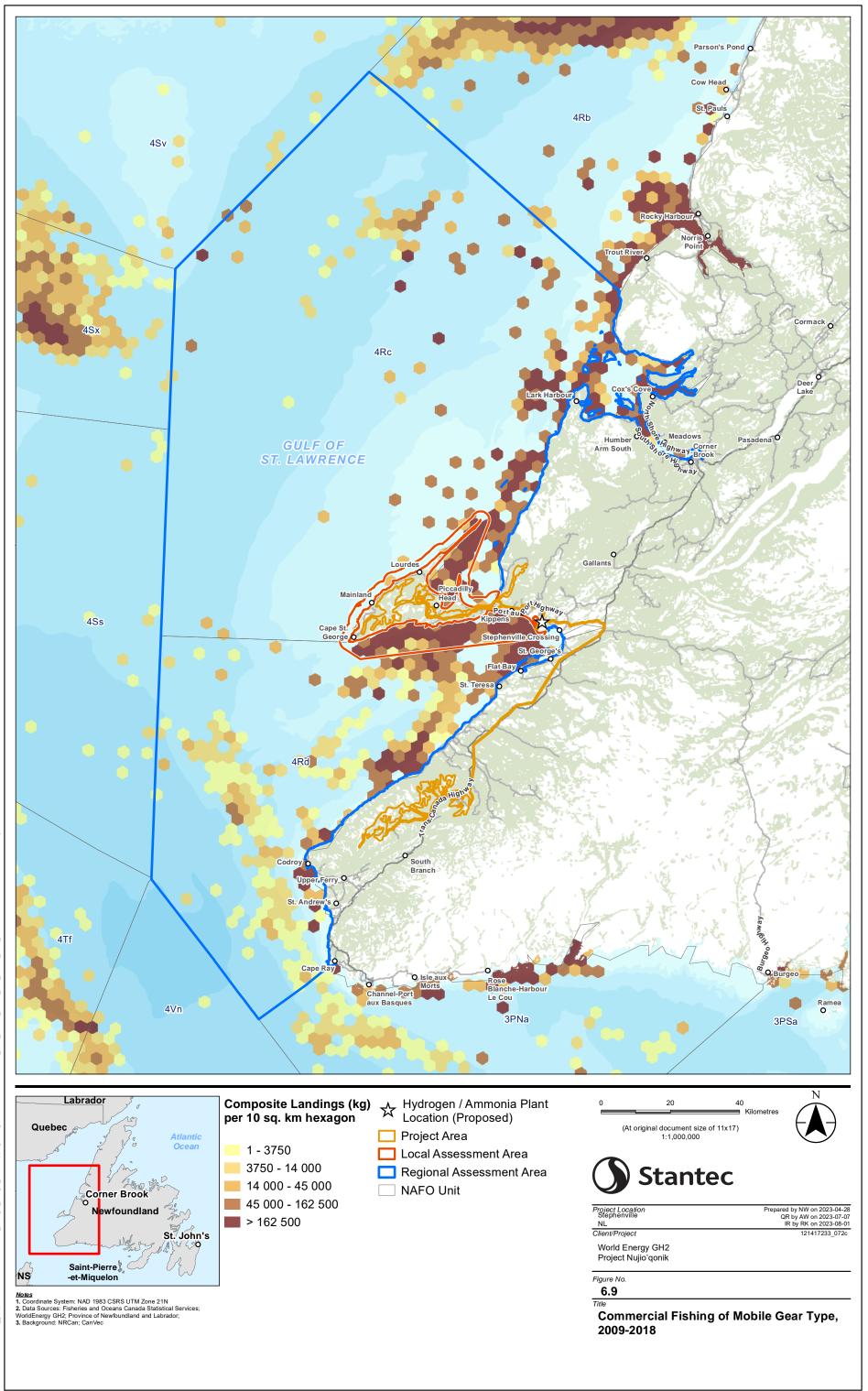

| Species                                                          | 2011                                              | 2012                  | 2013                   | 2014                  | 2015       | 2016       | 2017        | 2018       | 2019       | 2020       | Total       |
|------------------------------------------------------------------|---------------------------------------------------|-----------------------|------------------------|-----------------------|------------|------------|-------------|------------|------------|------------|-------------|
| Whelk                                                            | NA                                                | NA                    | NA                     | NA                    | NA         | NA         | NA          | NA         | NA         | -          | -           |
| Winter Flounder                                                  | 77                                                | -                     | NA                     | -                     | NA         | NA         | -           | NA         | NA         | NA         | 77          |
| Yellowtail Flounder                                              | NA                                                | NA                    | NA                     | -                     | -          | NA         | NA          | NA         | -          | -          | -           |
| Total                                                            | 12,789,792                                        | 12,067,059            | 9,916,294              | 9,431,577             | 12,441,470 | 14,640,676 | 182,243,213 | 18,480,186 | 14,437,873 | 17,592,017 | 304,040,157 |
| Source: Economic Analysis and Stat                               | Source: Economic Analysis and Statistics DFO 2023 |                       |                        |                       |            |            |             |            |            |            |             |
| Notes:                                                           |                                                   |                       |                        |                       |            |            |             |            |            |            |             |
| NA = no data available<br>"-" = no landings that year or is supp | ressed to meet confidenti                         | alitv requirements sp | ecified within the Sta | tistics Act and DFO r | olicies.   |            |             |            |            |            |             |

no landings that year or is suppressed to meet confidentiality requirements specified within the Statistics Act and DFO policies.

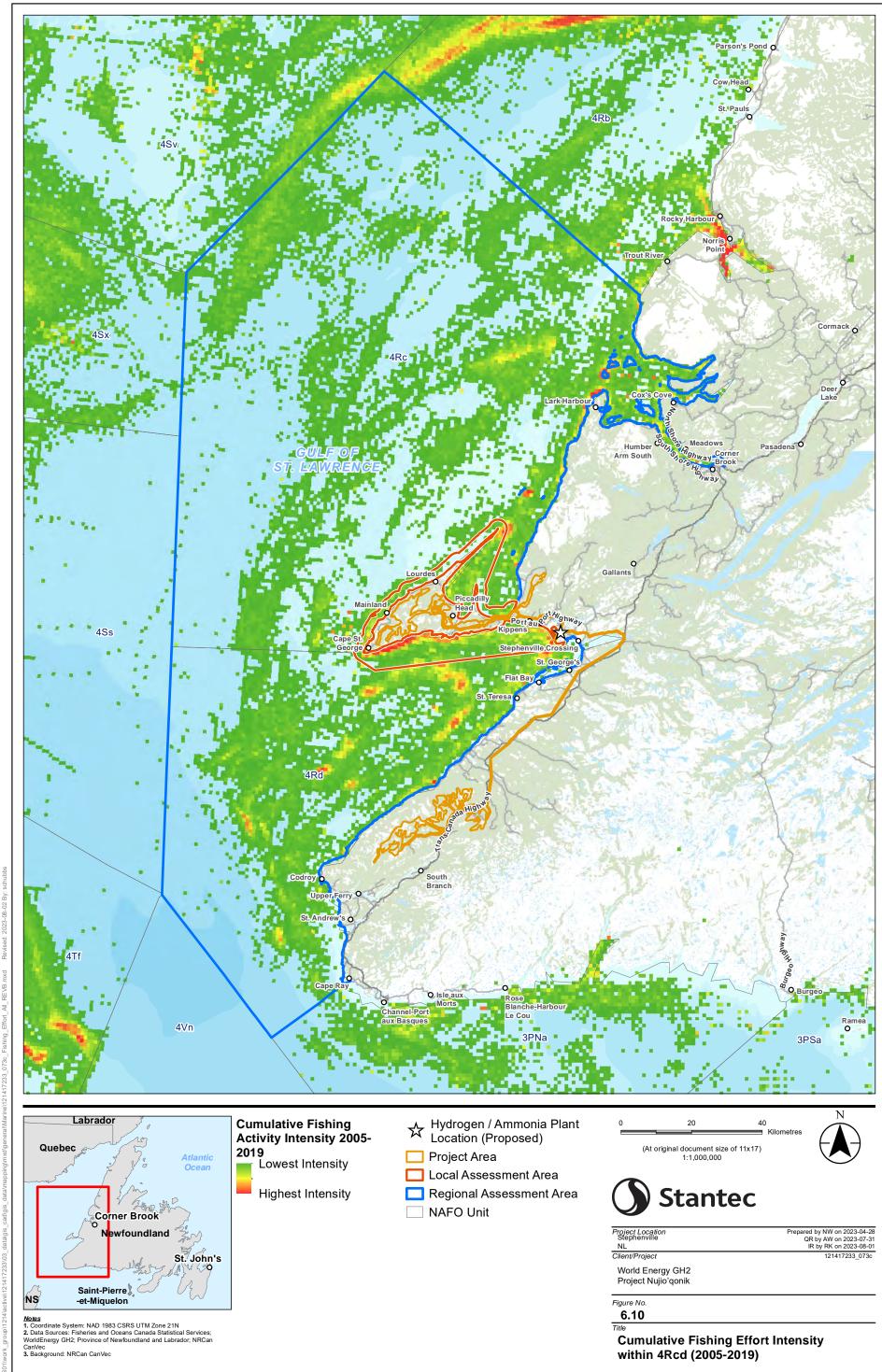

# Table 6.11Total Weight (kg) of Composite Landings within 4Rcd for Selected Species<br/>Between 2009-2018 Atlas (Government of Canada 2023)

| Species           | Total Weight<br>(kg) |
|-------------------|----------------------|
| Atlantic Herring  | 47,310,338           |
| Atlantic Mackerel | 26,516,900           |
| Capelin           | 16,731,142           |
| Snow Crab         | 2,263,440            |
| Witch Flounder    | 1,998,079            |
| Greenland Halibut | 869,427              |
| Redfish           | 635,587              |
| Atlantic Cod      | 420,446              |
| Atlantic Halibut  | 128,766              |

Additionally, data derived from the vessel monitoring system and commercial logbook data sources were used to illustrate the cumulative fishing effort intensity (all fisheries) between 2005 and 2019 within 4Rcd (Government of Canada 2022; Figure 6.10).




Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.




i3\_072b\_Marine\_Comm\_Fish\_Fixed\_Gear\_REVD.mxd Revised: 2023-08-02 By: schu

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec has under a completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec has under a completeness of the data.

#### 6.3.3.2 Atlantic Herring

The 4R herring fishery on the west coast of Newfoundland has been around for 150 years, leading to the establishment of communities in Port au Port, Bay of Islands, and Bonne Bay (DFO 2021d). The fishery is divided into spring and fall spawning areas, with commercial fleets targeting spawning concentrations. St. George's Bay is a major spawning area for spring spawning herring. The season usually begins in spring and continues until December, depending on weather, sea ice conditions, and industry recommendations to DFO. The fixed gear herring fishery is competitive and uses gill nets, traps, bar seines, and tuck seines. The mobile gear fleet is composed of <65' and >65' purse seine vessels. The 4R herring fishery is considered the most stable herring fishery in Atlantic Canada over the past 50 years (DFO 2021d).

For the 2023-2024 season, the annual total allowable catch (TAC) for 4R is maintained at 20,000 metric tonnes (t). However, to protect and rebuild spring spawning grounds, the commercial fishery inside the 50-fathom contour is limited to 2,000 t prior to July 1 (DFO 2022a). According to the Canada Marine Planning Atlas, Atlantic herring had the highest total weight (kg) of composite landings within 4Rcd between 2009 and 2018 (Table 6.9; Figure 6.11).

#### 6.3.3.3 Atlantic Mackerel

Atlantic mackerel is a transboundary marine fish species found in both the Northeast and Northwest Atlantic Oceans (DFO 2022b). The Northwest Atlantic population is composed of two spawning groups: southern (U.S.) and northern (Canadian). During June and July, the northern group spawns in the southern Gulf of St. Lawrence followed by a migration into U.S. waters to mix with the southern spawning group during late fall and winter. The northern spawning group supports commercial, bait, recreational, and Indigenous FSC fisheries in Canada, including in NAFO subregion 4Rcd.

The commercial mackerel fishery within the Gulf and surrounding areas, occurs mainly inshore with most landings occurring between June and October (DFO 2022b). Fishing gear used includes gillnets, jiggers, handlines, seines, traps, and weirs.

Newfoundland has seen a large increase in landings since the 1990s, with an average of 40,498 t from 2000 to 2010. This was followed by a large drop in landings in 2015 that was determined to be in part due to overfishing, the age structure collapsing, and fishing mortality (DFO 2022b). As a result, DFO has stopped the commercial and bait fisheries for Atlantic mackerel throughout Atlantic Canada and Quebec to allow the stock to rebuild, with an update expected following the Atlantic mackerel stock assessment in 2023 (DFO 2022c). Prior to the moratorium, mackerel landings within 4Rcd were relatively high between 2009 and 2018, compared to other commercially fished species available in the Canada Marine Planning Atlas database (Table 6.9; Figure 6.12).

#### 6.3.3.4 Capelin

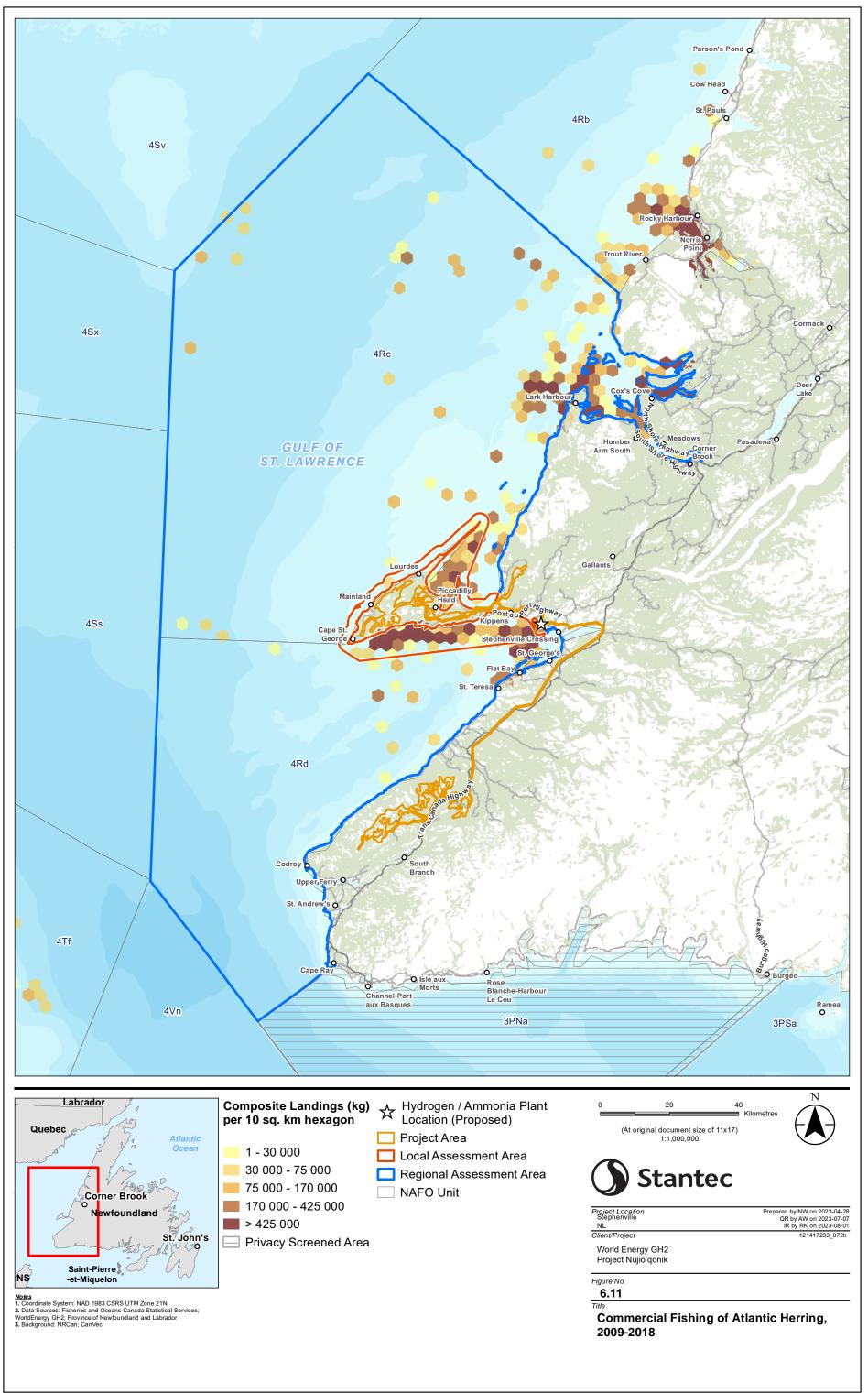
The commercial capelin fishery in 4RST dates back over 100 years ago where capelin was historically used for several purposes including agriculture fertilizer, bait, and for human and animal consumption (DFO 2021e). Today, the 4RST capelin fishery is managed through a single TAC for both mobile gear and fixed gear fisheries. Mobile gear fleet is made up of <65' and >65' purse seine vessels, with the latter being a more competitive fishery. The fixed gear fishery, which occurs in specific areas or bays, uses traps and tuck seines. The number of capelin landings in 4RST has varied over the past decade or more,

from a peak of 12,300 t in 2011 to roughly 1,965 t in 2017. Overall, higher landings are reported in the NL region compared to Quebec-based and Gulf-based fish harvesters (DFO 2021e).

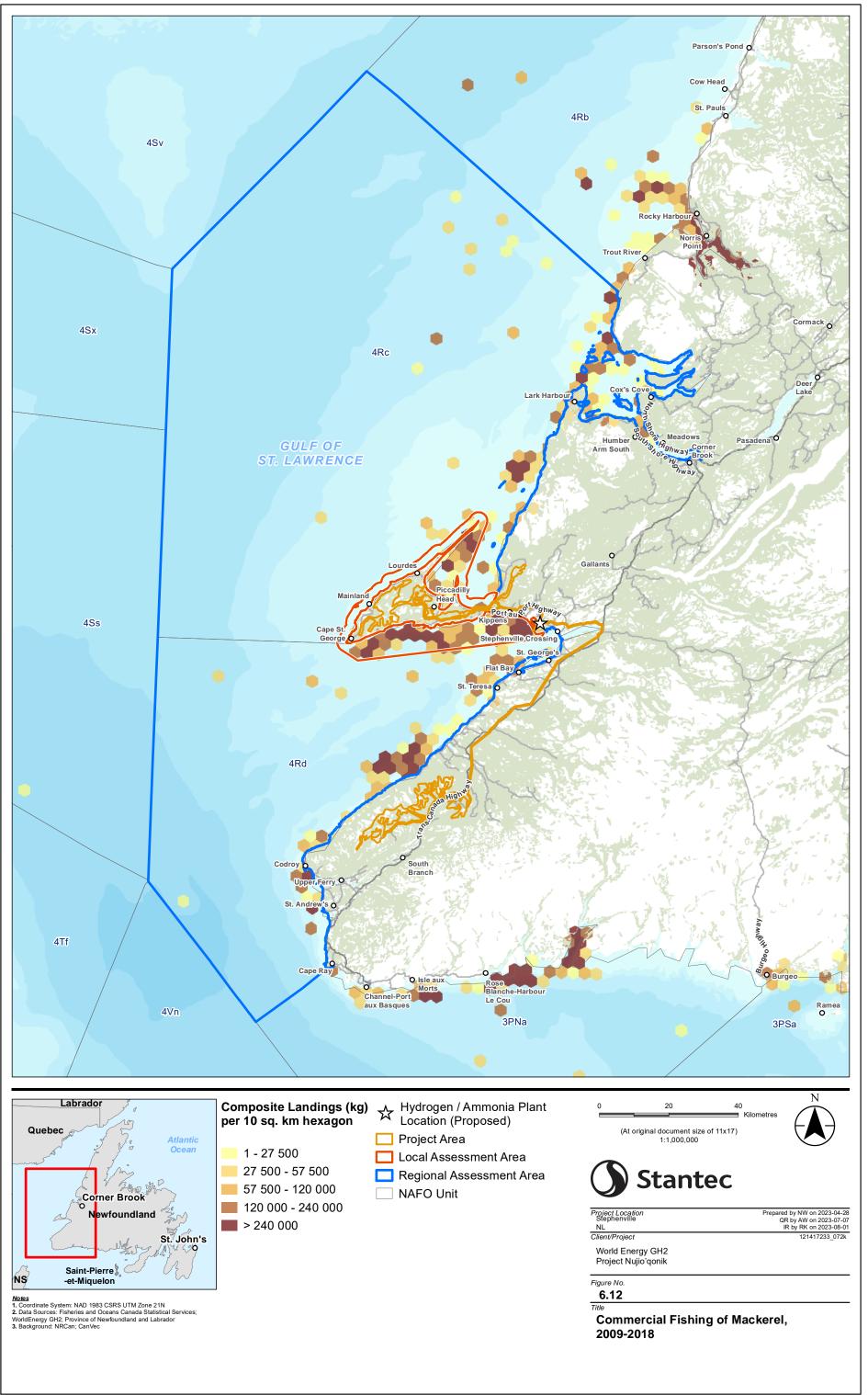
For the 2023 fishing season, the TAC for 4R was set at 8,805.37 t between mobile and fixed fisheries (DFO 2023a). The season opening dates vary by area and fleet and are determined based on industry recommendations to DFO. According to the data available in the Canada Marine Planning Atlas database, Capelin were third highest in total composite landings (kg) between 2009 and 2018 in 4Rcd (Table 6.9; Figure 6.13).

## 6.3.3.5 Snow Crab

The 4R snow crab fishery first began as a small-scale operation in Bay St. George and Bay of Islands in the late 1980s, with substantial landings taking place in the early 1990s (DFO 2019c). Today, the snow crab fishery in the province is primarily a commercial fishery with some FSC fishing. Fleets of conical baited traps with a mesh size of 65mm is used to allow undersized crab to escape. The snow crab fishing season typically runs between early April until mid-June to late July in Newfoundland, with variances among fishing areas and fleets (DFO 2019c).

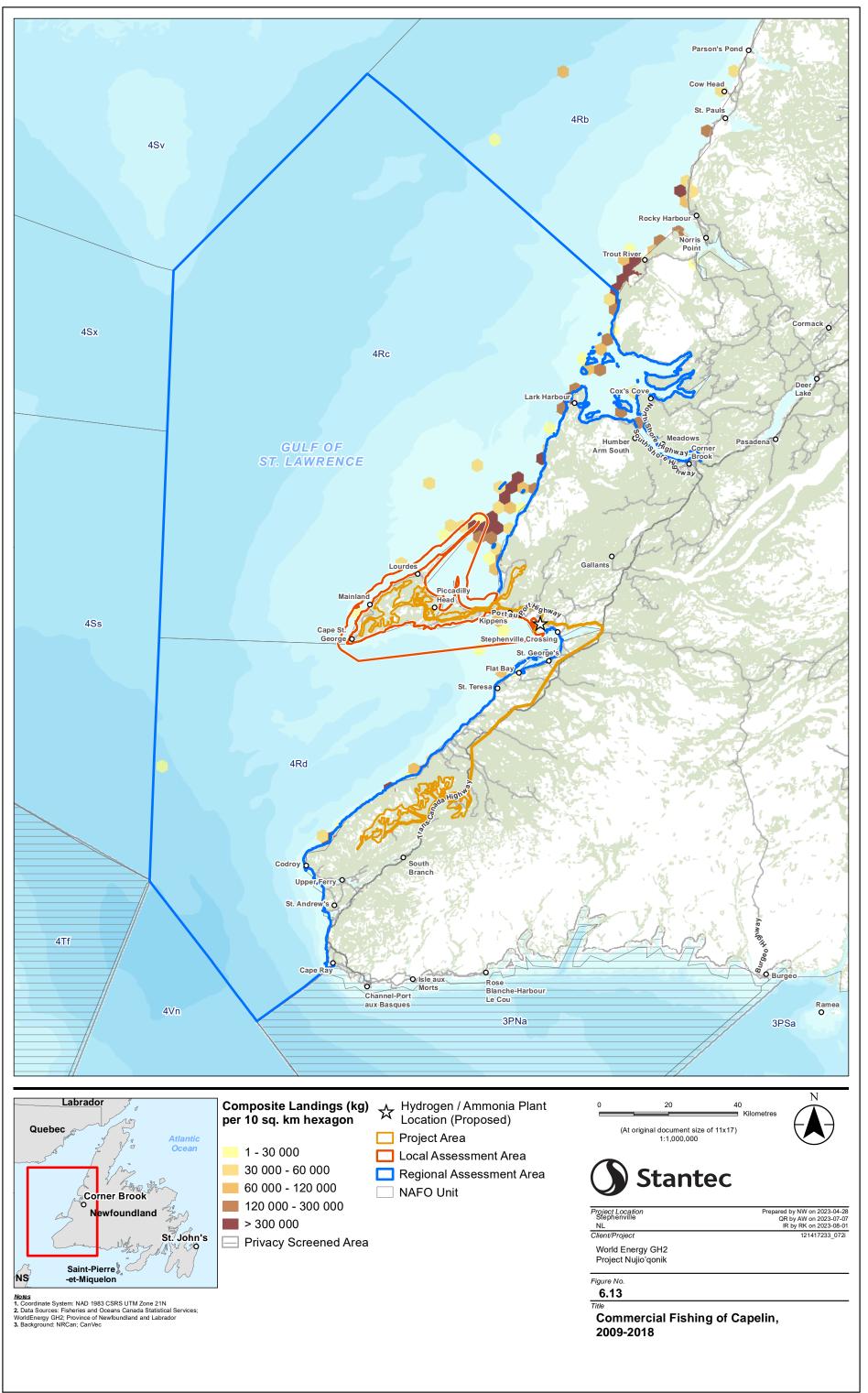

In 2023, the fishing season dates for 4R3Pn were set between April 10 and June 15 (DFO 2023b) and extended to June 30 for fishing grounds close to the Project (DFO 2023c). The TAC for the province was set at 54,727 t with 613 t being allocated to 4R3Pn for inshore and commercial quotas (DFO 2023b). Total composite landings within 4Rcd for snow crab were around 2.2 million (kg) between 2009 and 2018 (Table 6.9; Figure 6.14).

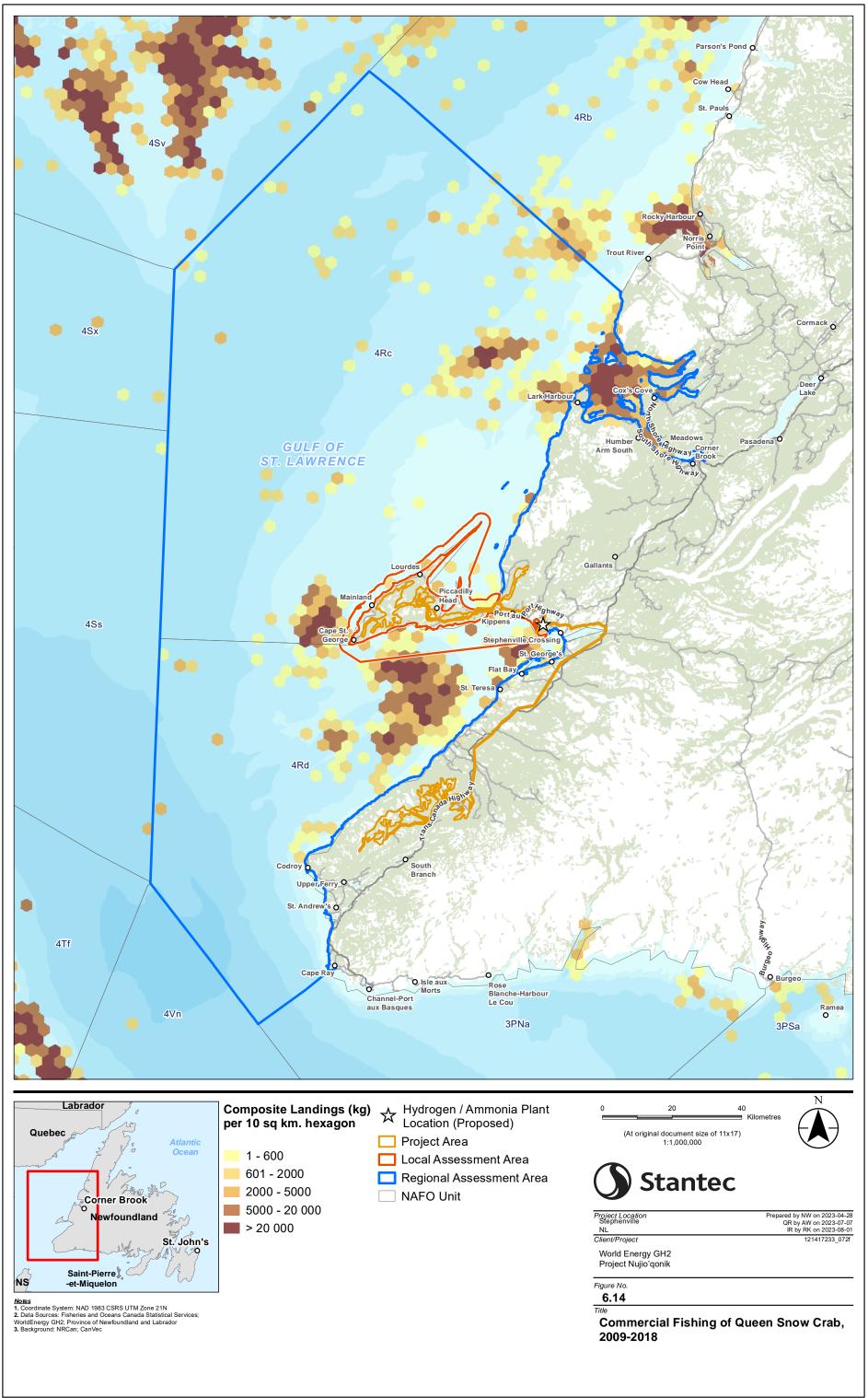
## 6.3.3.6 Groundfish

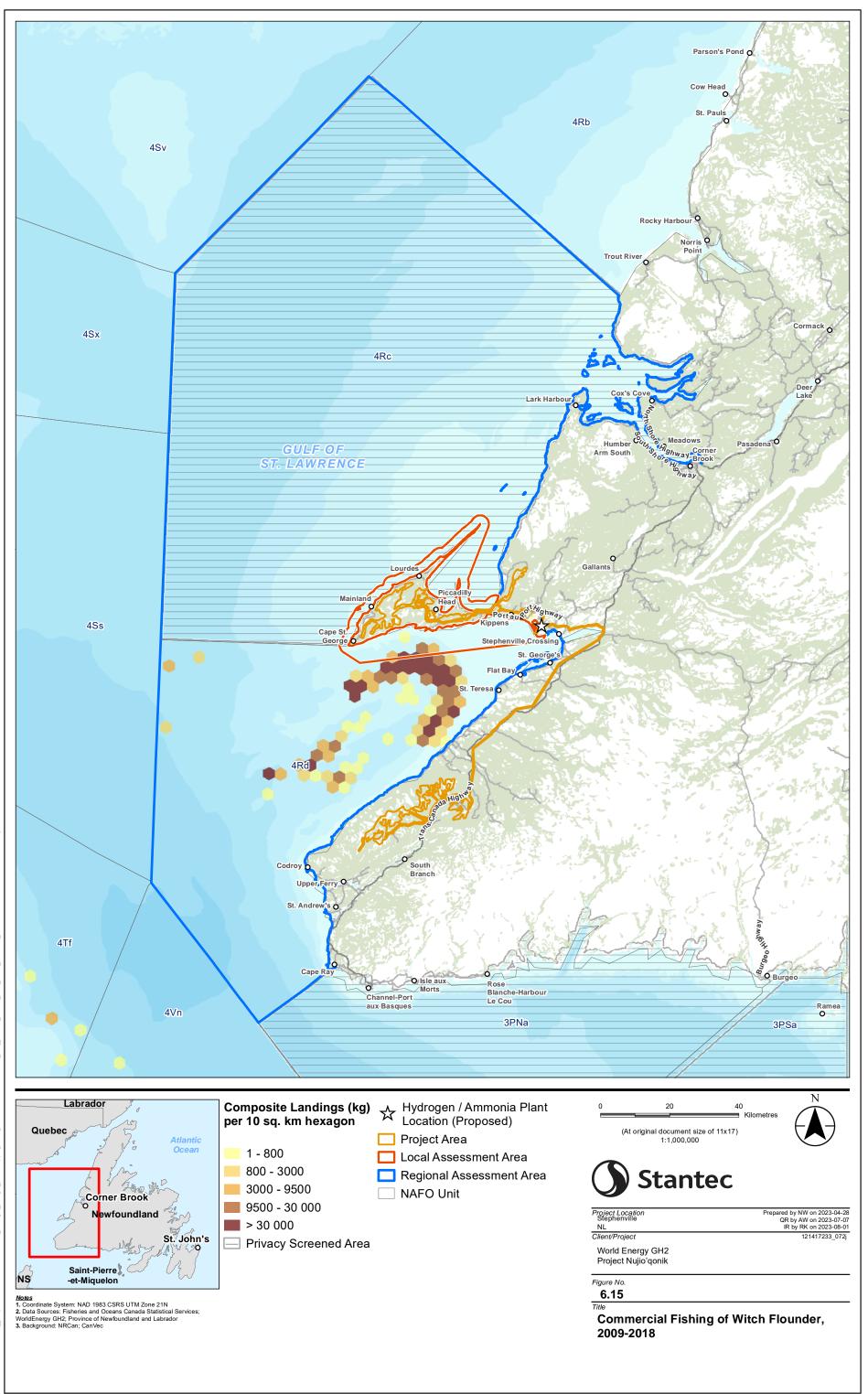

The groundfish fishery within the Gulf of St. Lawrence involves 10 groundfish stocks (DFO 2017). Several of these stocks are found within NAFO division 4R: Atlantic cod (Northern Gulf stock), Atlantic halibut, Greenland halibut (turbot), witch flounder, and redfish (deepwater and Acadian redfish species).

Historically, the groundfish fishery in Atlantic Canada has experienced major declines in stocks, most notably the cod fishery which resulted in a moratorium on the Northern cod fishery in 1992 (DFO 2017). This was followed by several closures of major stocks for several groundfish, including cod and haddock. Gulf stocks have continued to see declines in recent years, leading to reductions in TAC levels for groundfish species and fisheries moratoria including the Southern Gulf cod fishery in 2009 and the Northern Gulf cod fishery in 2022 (DFO 2017; 2022e). Several Gulf stocks have also been designated as a SAR under COSEWIC including both species of redfish, Northern and Southern Gulf cod stocks, and American Plaice (Table 6.7).

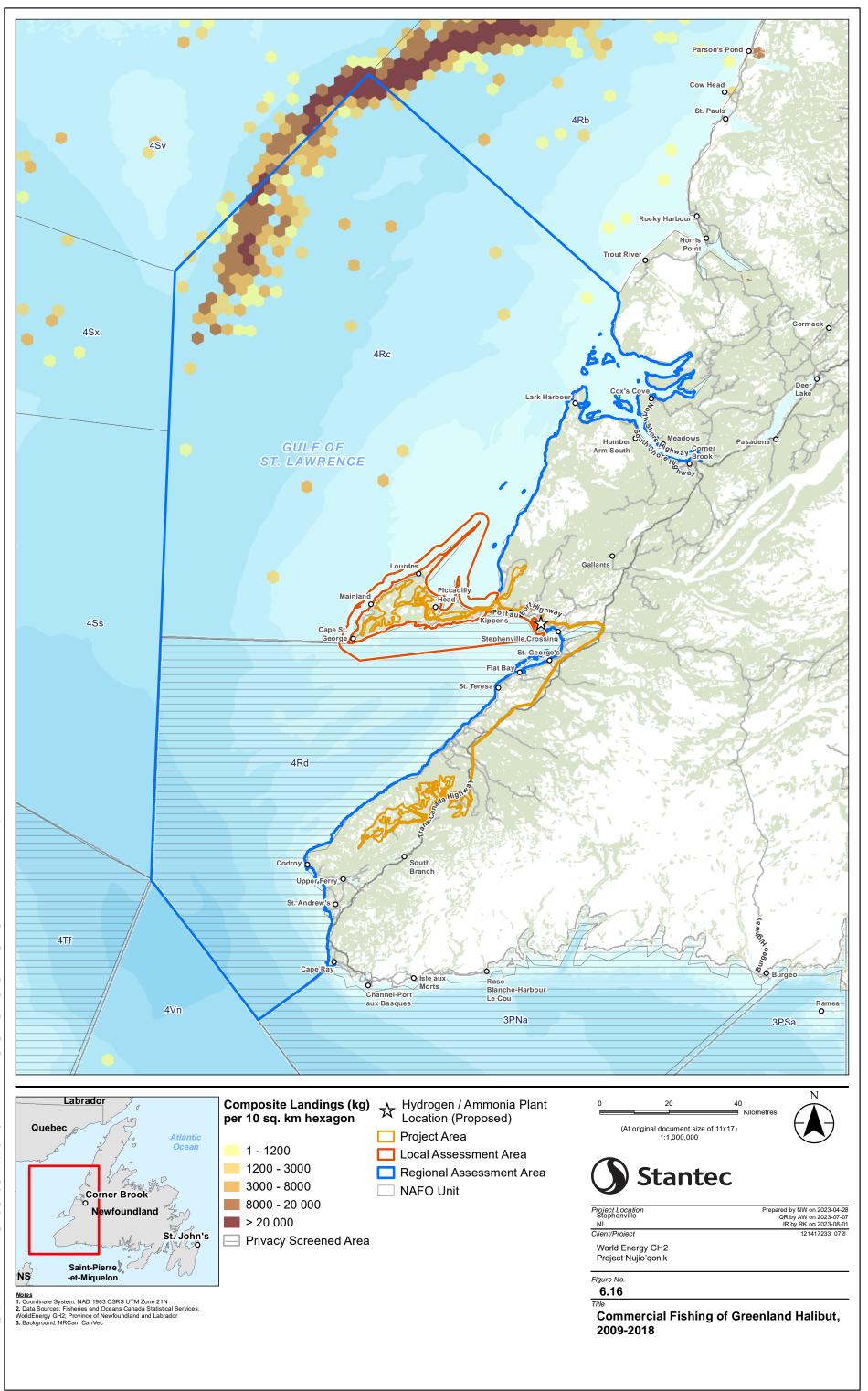
Groundfish fisheries in the Gulf use either mobile gear (otter trawls and Danish/Scottish seines) or fixed gear (gillnets, longlines, and handlines), where mobile gear is banned for fishing cod within the RAA. TACs and fishing season dates can vary by species, fishing area, and gear types (DFO 2017). To help protect cod spawning activity within 4Rcd (St. George's Bay and Port au Port Bay), groundfish fishing is closed from April 1 to June 23 each year (DFO 2023d). Groundfish fishing activity between 2009 and 2018 is illustrated in Figures 6.15-6.19. Based on data from the Canada Marine Planning Atlas, groundfish fisheries are historically lower in composite landings (kg) compared to Atlantic herring, Atlantic mackerel, capelin, and snow crab (Table 6.9).



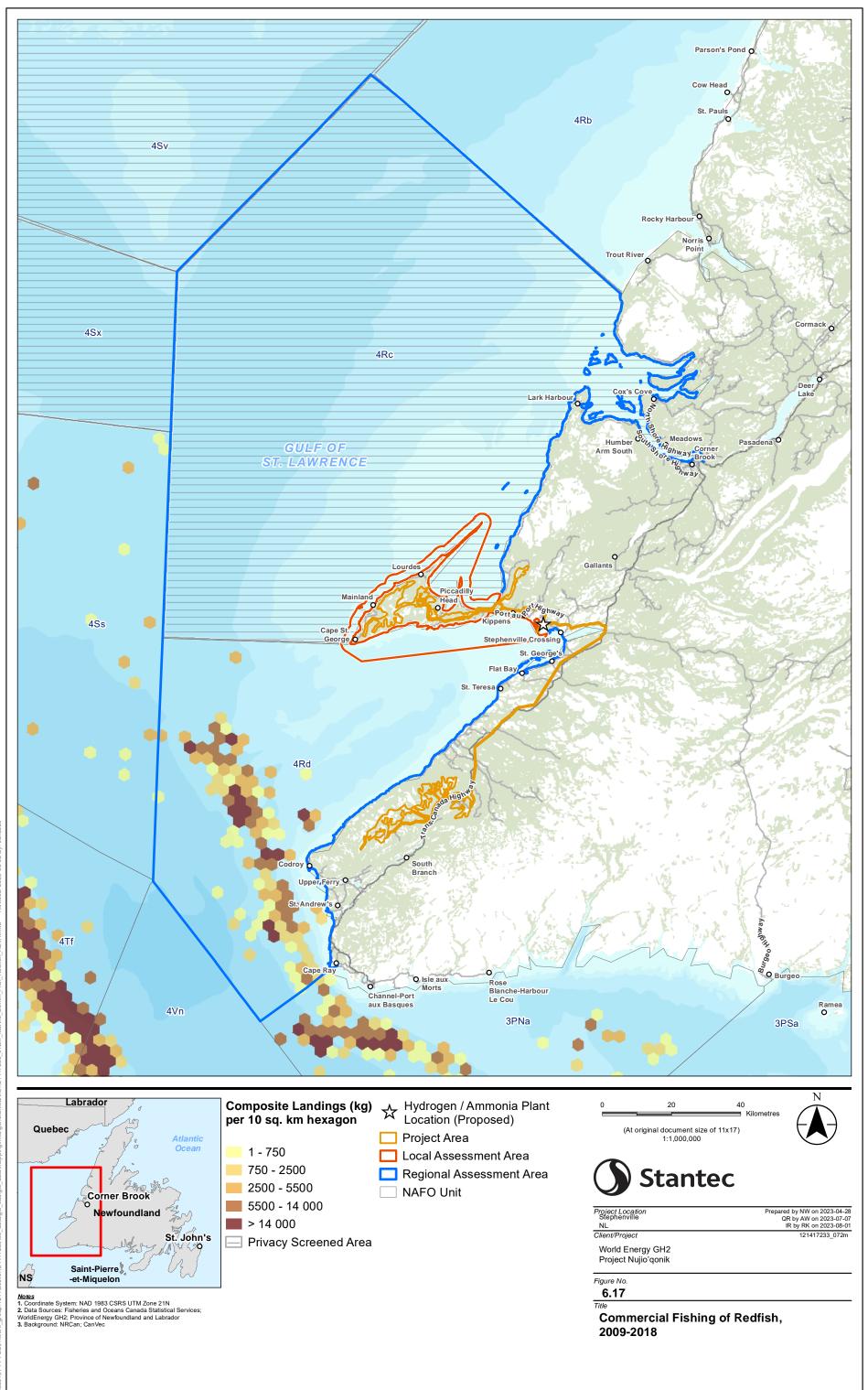


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

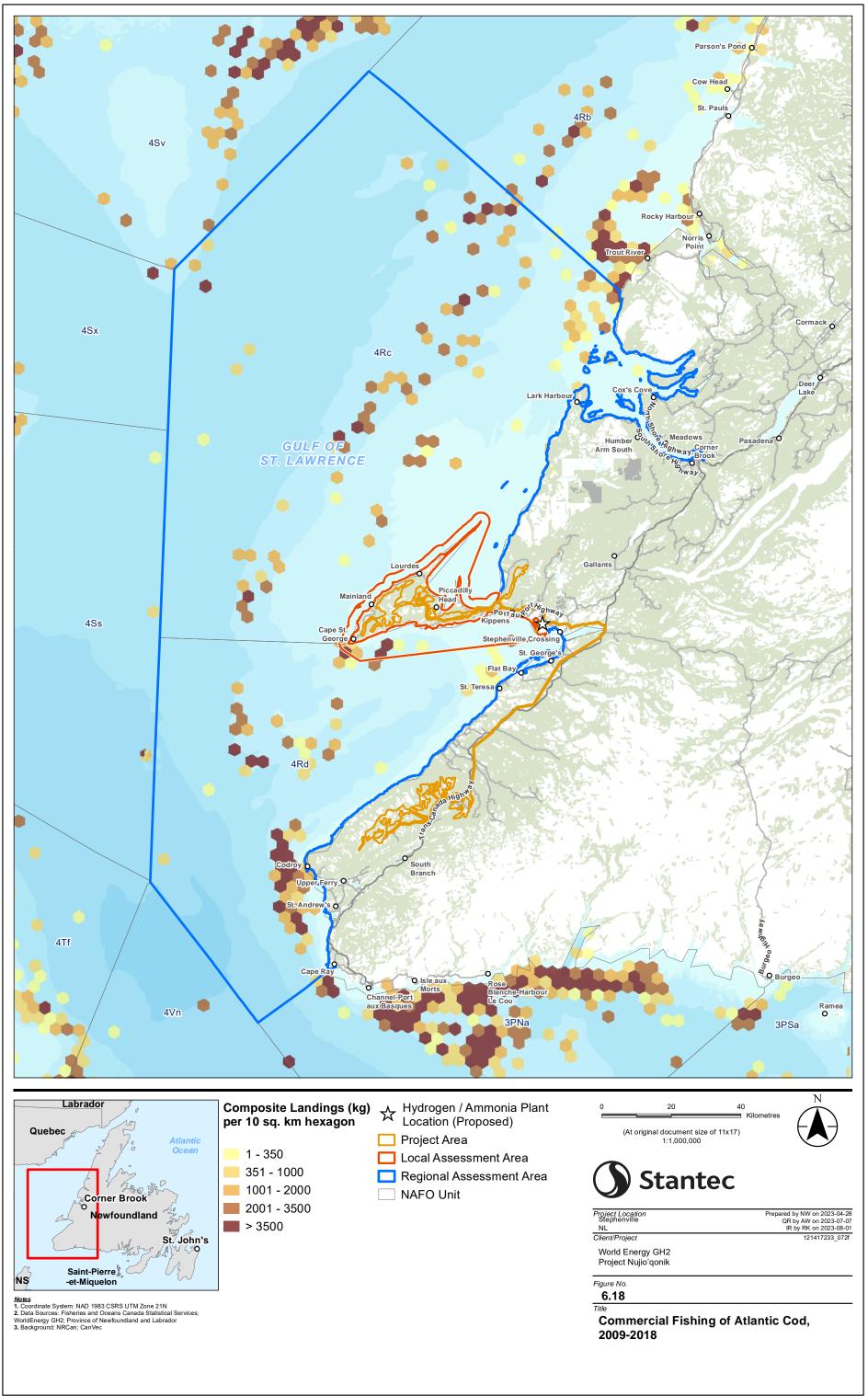


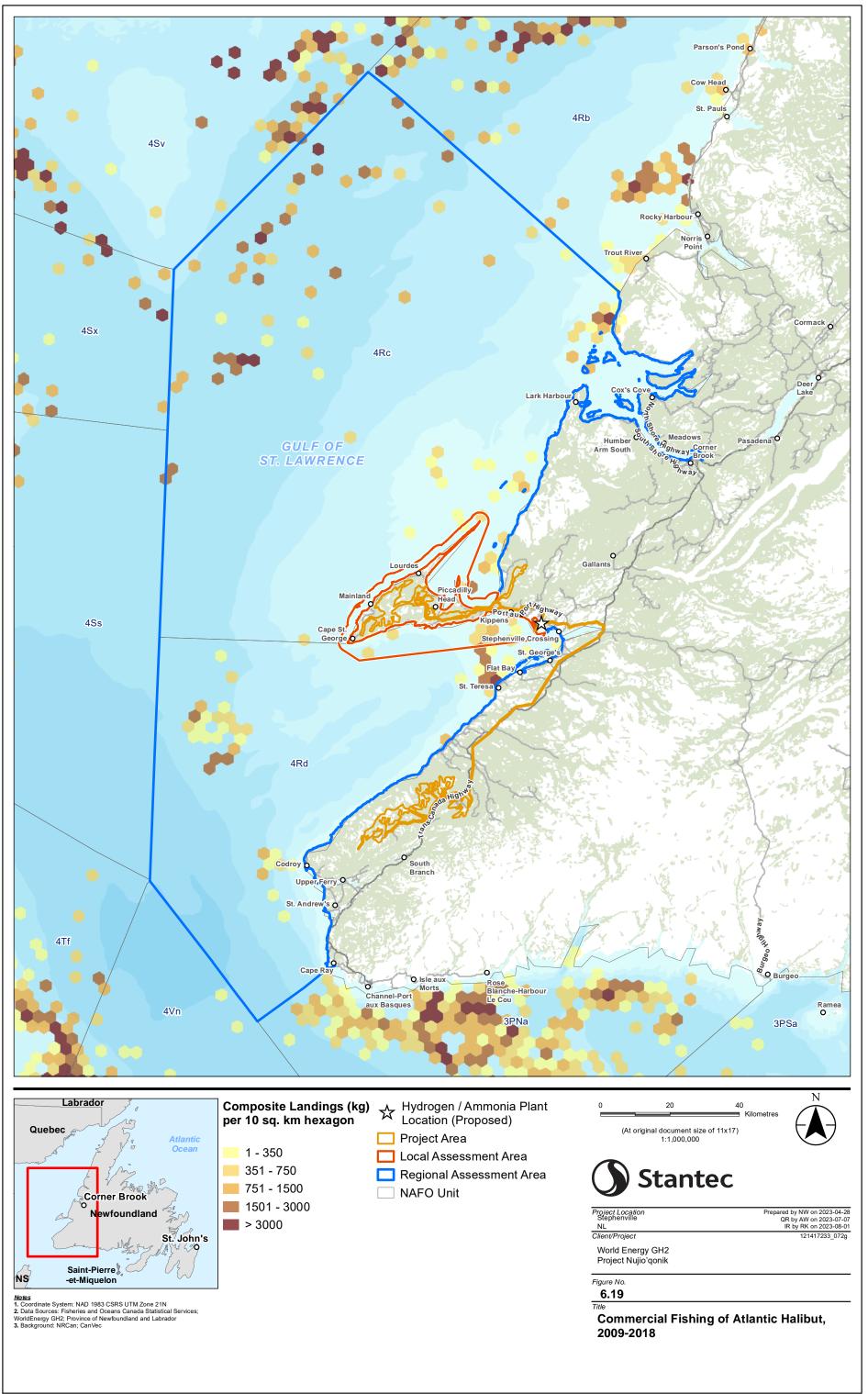

72k Marine Comm Fish Mackerel REVA.mxd Revised: 2023-08-02 Bv: schubbs


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.







72i Marine Comm Fish Witch Flounder REVA.mxd Revised: 2023-08-02 Bv: schut



0721 Marine\_Comm\_Fish\_Greenland\_Halibut\_REVA.mxd Revised: 2023-08-02 By: schub



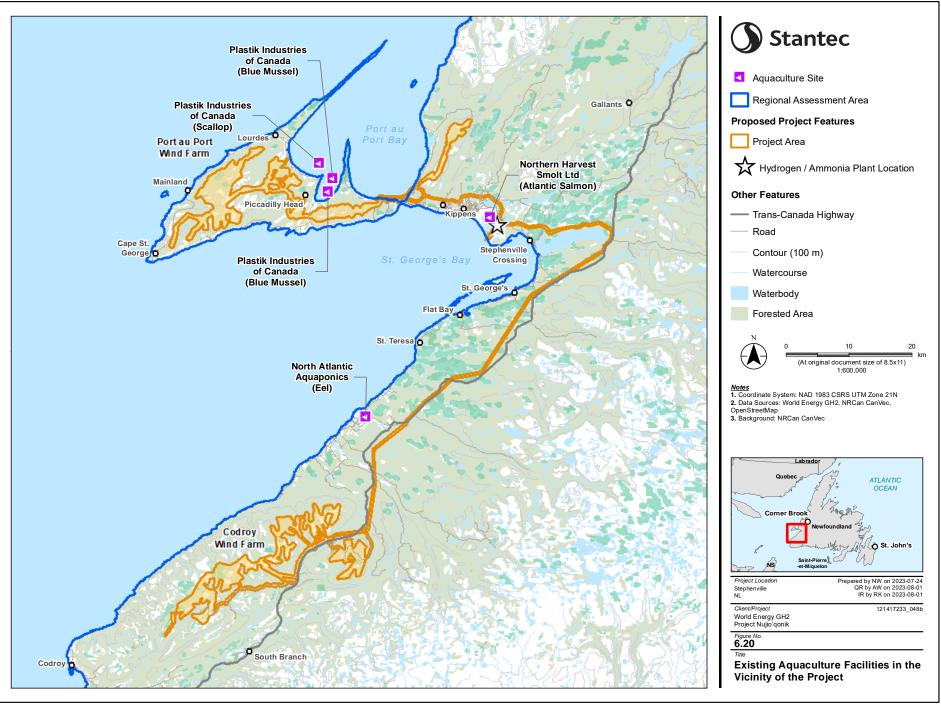




#### 6.3.4 Marine Recreational Fisheries

Marine recreational fisheries exist for groundfish species through the annual NL recreational groundfish fishery. This is regulated by DFO through the *Fisheries Act* and is only permitted in designated NAFO Divisions, including in the RAA (NAFO Subdivision 4Rcd). Residents, non-residents, and tour boat operators are permitted to participate. Recreational fishers are prohibited from keeping sharks, Atlantic halibut, spotted wolffish, and northern wolffish. Permittable fishing gear is limited to angling gear, handlines with a maximum of three hooks, and traditional jiggers that are modified with one hook. Fishing is only allowed from one hour before sunrise to one hour after sunset for safety concerns (DFO 2022d).

In 2022, the recreational groundfish fishery season was opened for a total of 39 days on specified dates in the summer and fall months (DFO 2022d). The 2022 recreational groundfish fishery season started on July 2, 2022, and ended on October 2, 2022. Licences or tags were not required and individual retention limits were set at five groundfish per day (including cod) with maximum boat limit of 15 groundfish (with three or more people). Tour boat operators were also able to apply for a licence to seek an increased trip limit.


#### 6.3.4.1 LRU Survey Results

The LRU survey included questions about marine fish and aquatic harvesting and consumption in or around Port au Port Bay, Bay St. George (a.k.a. St. George's Bay), and within or near the Port of Stephenville. Relevant survey results are summarized in Appendix F.

#### 6.3.5 Aquaculture

#### 6.3.5.1 Overview of Facilities

Aquaculture activity in western Newfoundland waters is limited compared to other parts of the Island. Three marine-based aquaculture farms are situated in Piccadilly Bay along the coast of Port au Port Peninsula (Figure 6.20). The three sites harvest shellfish (one sea scallop and two blue mussel) and are owned by the same company, Plastik Industries of Canada Ltd.





Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for errifying the accuracy and completeness of the data.

One land-based hatchery exists close to the Project in the community of Stephenville (Figure 6.20). The Indian Head facility owned by Northern Harvest Smolt Ltd. provides smolt for the Northern Harvest Sea Farms saltwater farms, with a capacity of 4.5 million fish annually from egg incubation through to smolt (Mowi Canada East 2023). In 2018, this facility registered an undertaking with the provincial government to improve efficiency of the existing facility, expansion of the hatchery, and new supporting infrastructure such as freshwater and saltwater supply and effluent treatment and discharge (Edwards and Associates Limited and Mel-Mor Science 2018). The company is currently preparing an Environmental Preview Report as part of the provincial EA process for the facility upgrades. The hatchery is located on the same road as the proposed hydrogen / ammonia plant. Table 6.12 provides details on the existing land- and marine-based aquaculture facilities in the vicinity of the Project.

| Land- or<br>Marine-<br>based | Туре                | Company                           | Site Location         | Species                 |
|------------------------------|---------------------|-----------------------------------|-----------------------|-------------------------|
| Land                         | Hatchery            | Northern Harvest Smolt Ltd.       | Stephenville, NL      | Atlantic salmon (smolt) |
| Marine                       | Shellfish Farm      | Plastik Industries of Canada Ltd. | Piccadilly Bay, NL #1 | Sea scallop             |
| Marine                       | Shellfish Farm      | Plastik Industries of Canada Ltd. | Piccadilly Bay, NL #2 | Blue mussel             |
| Marine                       | Shellfish Farm      | Plastik Industries of Canada Ltd. | Piccadilly Bay, NL #3 | Blue mussel             |
| Source: NLI                  | Source: NLDFFA 2021 |                                   |                       |                         |

| Table 6.12 | Existing Aquaculture Facilities in the Vicinity of the Project |
|------------|----------------------------------------------------------------|
|------------|----------------------------------------------------------------|

Both land- and marine-based aquaculture facilities do not overlap with proposed Project infrastructure or Project activities. Table 6.13 lists the proximity of proposed wind turbines and the Stephenville production facility to existing aquaculture facilities.

| Table 6.13 | Proximity of Project Infrastructure to Aquaculture Facilities |
|------------|---------------------------------------------------------------|
|------------|---------------------------------------------------------------|

| Туре             | Site Location         | Distance to<br>Stephenville<br>Production<br>Facility<br>(km) | Distance to<br>nearest Port au<br>Port Turbine<br>(km) | Distance to<br>nearest Codroy<br>Turbine<br>(km) |
|------------------|-----------------------|---------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|
| Smolt Hatchery   | Stephenville, NL      | 1.5                                                           | 10.8                                                   | 51.8                                             |
| Scallop Farm     | Piccadilly Bay, NL #1 | 29.8                                                          | 4.2                                                    | 54.3                                             |
| Blue Mussel Farm | Piccadilly Bay, NL #2 | 27.0                                                          | 4.5                                                    | 52.0                                             |
| Blue Mussel Farm | Piccadilly Bay, NL #3 | 27.2                                                          | 2.4                                                    | 49.8                                             |

#### 6.3.5.2 Water Usage

The Indian Head smolt hatchery acquired its Water Use Licence (Permit # WUL-18-9929) for a commercial aquaculture hatchery in 2018 (NLDMAE 2018), which is an expansion of their existing permit, WUL-15-8305. A non-exclusive water right to withdraw water from freshwater wells near Stephenville (48'32'55.02''N, 58'31'5.59''W) and saltwater wells near St. George's Bay (48'32'13.36''N, 58'33'53.11''W) was granted to Northern Harvest Smolt Ltd (Figure 2.16) to supply water to the facility. This permit is due to expire in September 2023. The maximum estimated annual water withdrawal allowed from each water source was originally set at 3,442,680 m<sup>3</sup>. However, an amendment to Permit # WUL-18-9299 in 2019 updated the maximum estimated annual withdrawal to 4,493,880 m<sup>3</sup> and 2,102,400 m<sup>3</sup> for freshwater wells and saltwater wells, respectively (NLDMAE 2019).

A potable water pipeline connected to the Stephenville's groundwater supply system runs along the south side of the paved road along the northern edge of the hatchery site. This is used for drinking water and fire protection at the facility (Edwards and Associates Limited and Mel-Mor Science 2018).

#### 6.3.6 Other Ocean Users

#### 6.3.6.1 Hunting

Seals

Commercial seal harvesting has been practiced in Atlantic Canada for over 200 years and is still an important economic and cultural practice in NL and the Gulf of St. Lawrence (DFO 2011). Historically, seals were commercially hunted primarily for seal oil but has since expanded into a bigger industry for seal products such as leather, handicrafts, seal oil, and meat. The seal harvest is managed by DFO and is regulated by *Marine Mammal Regulations* and through licencing conditions. Two seal species are harvested in the Gulf; the harvest season for harp seals is from November 15 to May 15 whereas the timing of the grey seal harvest is controlled by condition of licence. The Project is adjacent to Sealing Area #10 (DFO 2011).

#### Migratory Birds

Bird hunting occurs in coastal areas in western Newfoundland, which is permitted under the *Migratory Birds Hunting Regulations* (ECCC 2023). ECCC provides annual hunting regulations, including season dates and bag limits per location and species within the province. Various species of waterfowl and murres/turrs can be hunted, which are an important source of food in traditional diets (AMEC 2014). The Project is adjacent to two bird hunting zones; Southwestern Newfoundland Coastal Zone – bounded by a line drawn due west from Cape St. Gregory, and from there southward along the coast, ending in a boundary line drawn due west through Cape Ray and Murre Zone No. 3 – includes the Southwestern Newfoundland Coastal Zone plus southern Newfoundland and a part of the eastern Avalon. Details on the migratory bird hunting near the Project are outlined in Table 6.14.



| Species                                                                | Management Areas                             | Open Season         | Daily Bag Limit                                                                                                                              | Daily<br>Possession<br>Limit                            |
|------------------------------------------------------------------------|----------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Long-tailed ducks,<br>eiders, and scoters,<br>combined                 | Southwestern<br>Newfoundland<br>Coastal Zone | Nov. 25 to Mar. 10  | 6                                                                                                                                            | 12                                                      |
| Common and red-<br>breasted<br>mergansers,<br>combined                 | Southwestern<br>Newfoundland<br>Coastal Zone | Oct. 10 to Mar. 10  | 6                                                                                                                                            | 12                                                      |
| Ducks (other than<br>harlequin ducks,<br>common and red-<br>breasted   | Southwestern<br>Newfoundland<br>Coastal Zone | Sept. 17 to Dec. 31 | 6 (not more than 1 may<br>be Barrow's goldeneye)<br>from September 17 to<br>November 29                                                      | 18 (not more<br>than 1 may be<br>Barrow's<br>Goldeneye) |
| mergansers, long-<br>tailed ducks, eiders,<br>and scoters)<br>combined |                                              |                     | 6 (not more than 1 may<br>be Barrow's goldeneye<br>and not more than 4<br>may be American Black<br>Ducks) from November<br>30 to December 31 |                                                         |
| All geese, combined                                                    | Southwestern<br>Newfoundland<br>Coastal Zone | Sept. 17 to Dec. 31 | 5                                                                                                                                            | 10                                                      |
| Snipe                                                                  | Southwestern<br>Newfoundland<br>Coastal Zone | Sept. 17 to Dec. 31 | 10                                                                                                                                           | 20                                                      |
| Murre (Turr)                                                           | Murre Zone No. 3                             | Nov. 25 to Mar. 10  | 20                                                                                                                                           | 40                                                      |
| Source: ECCC 2023                                                      |                                              |                     |                                                                                                                                              |                                                         |

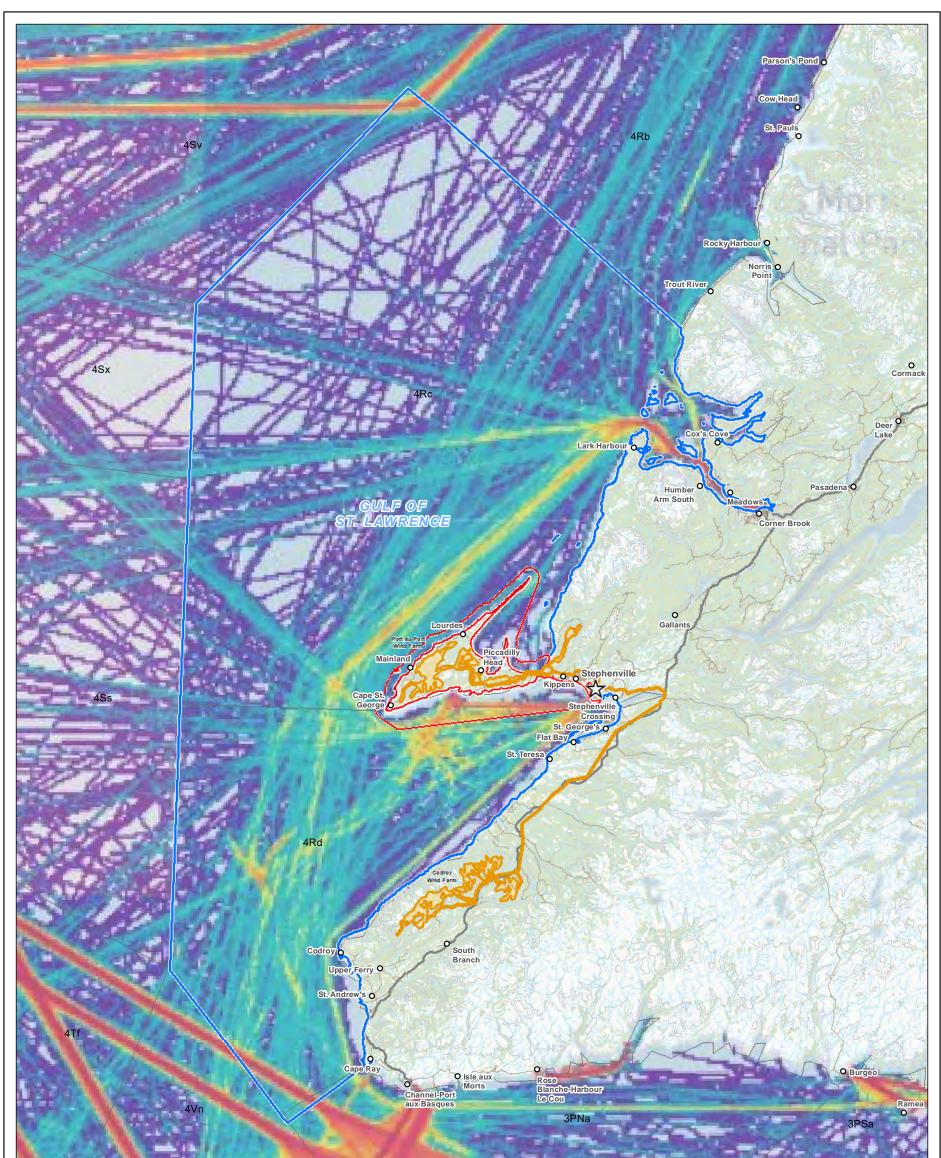
#### Table 6.14 Waterfowl and Murre Hunting Near the Project (2022-2023)

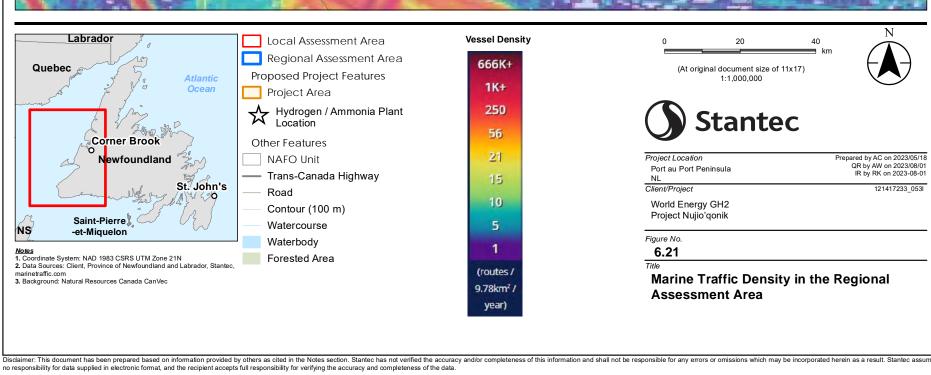
#### 6.3.6.2 Marine Shipping and Transportation

Marine shipping and transport in the Gulf of St. Lawrence is a vital part of the economy of Canada's eastern provinces. The Gulf is an important shipping channel that connects the Atlantic Ocean to areas such as the St. Lawrence River, the Great Lakes and western Newfoundland. Small to medium-sized vessels have traditionally transported goods and people between coastal communities within the Gulf but today, marine shipping is the main method of transit, primarily confined to ports with the necessary facilities and services for bigger vessels (AMEC 2014).

The Project and adjacent waters are closest to the major shipping lane between the Cabot Strait and the St. Lawrence River (Figure 6.21). Most traffic entering the Gulf enters through the Cabot Strait but other vessel traffic originating from the Atlantic Ocean may enter through the Strait of Belle Isle and the Strait of Canso (Stantec 2011). The Strait of Belle Isle is the most direct route from European ports but receives less international marine traffic due to sea ice blocking passage in the winter and spring months (AMEC 2014).

Major ports within the RAA include Corner Brook and Stephenville (Figure 6.8). Since Project shipping and transporting activities will be mainly limited to the Port of Stephenville, the Port of Corner Brook will not be discussed herein. The Port of Stephenville, also known as Port Harmon, is situated in St. George's Bay and is a deep-water port that is accessible year-round. The port was developed by the US Corps of Engineers in the early 1950s. It served as a military base during World War II and later as the shipping point for the former Abitibi-Consolidated paper mill in Stephenville which ceased operation in 2005. Today, the port of Stephenville is a privatized, multi-purpose facility that serves a variety of industries, including fishing and aquaculture (AMEC 2014; Port of Stephenville n.d.).


Under the *Pilotage Act*, the Port of Stephenville is a designated compulsory pilotage area in which vessels must have a licenced pilot or pilotage certificate holder on board for certain vessels entering and leaving the port. A full list of vessels that are subject to compulsory pilotage within compulsory areas is available on the Atlantic Pilotage Authority website (Atlantic Pilotage Authority n.d.).


Vessel traffic in the Port of Stephenville includes (D. Merkel, pers. comm, 2023):

- Coast Guard Vessels
- Year-round use by fishing vessels, including offloading of catch such as crab, shrimp, and lobster
- 7 to 10 boats annually for Northern Harvest Smolt operations (once geared up on fish)
- Large Bulk Carrier with salt once per year
- 2 to 3 loads of scrap metal (every second year)
- · As required, asphalt barges supporting local infrastructure contracts
- Vessels delivering cargo to support local construction
- Adhoc use for vessel layups and repair

A medium-sized port exists within St. George's Bay in Lower Cove, which is situated on the south coast of the Port au Port Peninsula (Figure 6.8). This port is used as an export terminal for the adjacent Atlantic Minerals' Lower Cove chemical-grade limestone and dolomite quarry. Products are shipped year-round in their natural state to global markets (Atlantic Minerals Limited n.d.).

6-64





#### 6.3.6.3 Other Marine Vessel Traffic

Apart from commercial shipping and transportation and fishing vessels, western Newfoundland waters are frequently traversed by other types of vessels for activities including scientific research, military, and marine tourism.

#### Scientific Research and Surveys

DFO routinely conducts various long-term monitoring studies in the Gulf of St. Lawrence to gather information on the marine environment, including: 1) Northern Gulf Multi-Species Survey; 2) Southern Gulf Multi-Species Survey; 3) Fixed and Mobile Gear Sentinel Surveys; 4) Snow Crab Survey; and 5) Herring Acoustic Surveys (Stantec 2017).

#### Military Use

The federal Department of National Defence (DND) is responsible for several military and civilian organizations and agencies, including the defence and protection of Canada's marine jurisdiction. The Royal Navy and Air Force operate surveillance and monitoring operations throughout Atlantic Canadian waters, and DND may operate aircraft or marine patrols in the region. Navy vessels also provide support to DFO in conducting fishery patrols in Atlantic Canada, and civilian security operations are conducted by the Canadian Coast Guard (AMEC 2014).

#### Marine Tourism

Marine tourism is a thriving industry for the province due to its scenic coastlines and rich marine ecosystems. According to the NL tourism website, there are no marine tourism businesses operating within the LAA. However, there are several located north of the Project within the Bay of Islands area as well as other parts of western Newfoundland. These businesses offer activities such as whale watching boat tours and sea kayaking (NL Tourism n.d.).

#### 6.3.6.4 Unexploded Ordnances and Shipwrecks

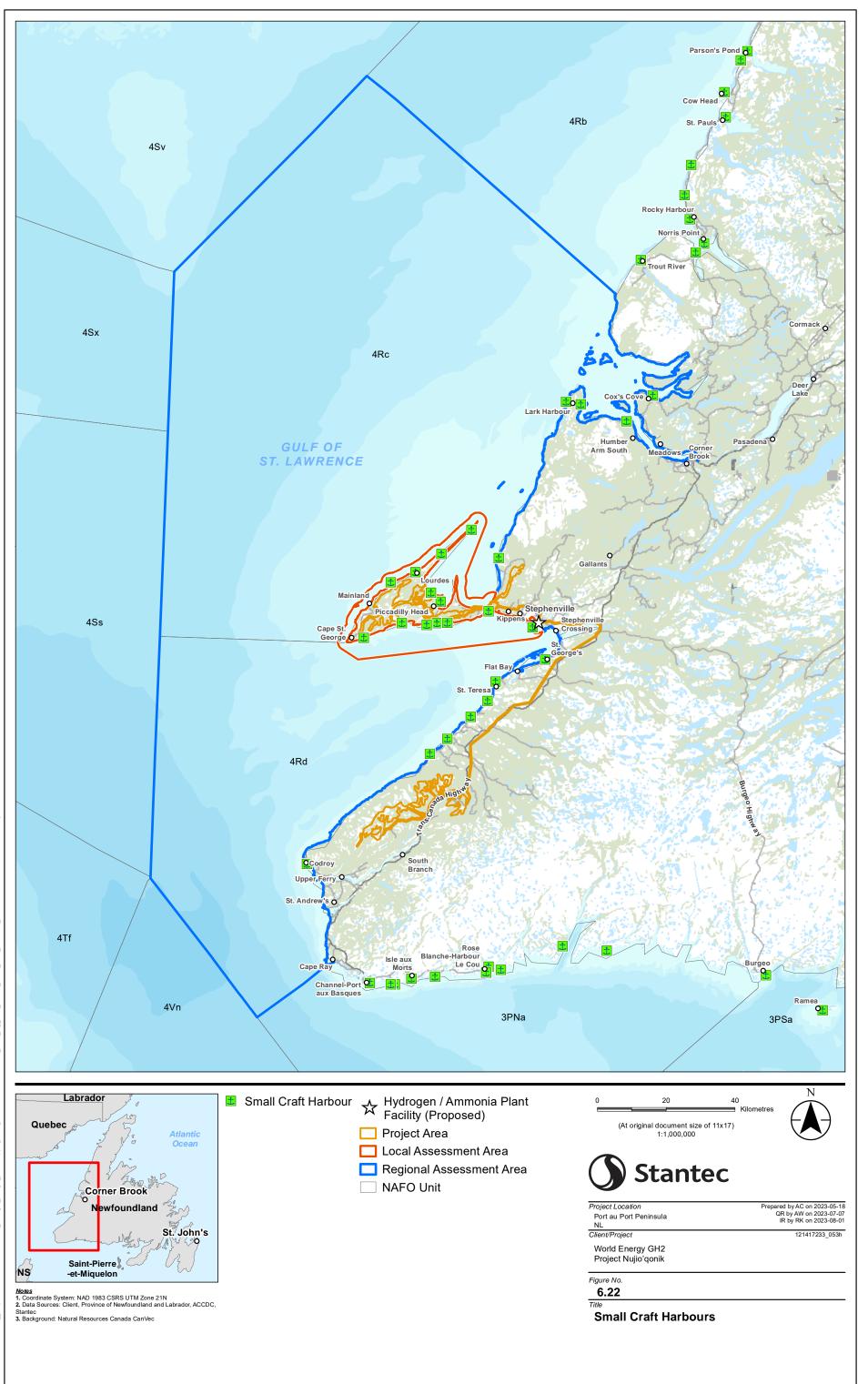
Several locations in and around Newfoundland were used historically for military activities such as training and weapons testing during conflicts such as World War I and World War II (DND 2021). These sites are now considered unexploded ordnances (UXO) legacy sites as UXOs may still exist, posing a risk to the public. These sites were originally owned, leased, or used by DND but are no longer included in their inventory. DND's UXO and Legacy Sites Program was established in 2005 to identify and catalogue sites, assesses risks, and works to reduce UXO risk through property controls, assessment surveys, UXO clearance operations, and public education (DND 2021).

Six UXO legacy sites have been identified along the coast near proposed marine-related project activities in the LAA (Table 6.15).

There are no shipwrecks documented within the LAA.

| Legacy Site Site Name |                                                        |                                   |  |
|-----------------------|--------------------------------------------------------|-----------------------------------|--|
| NL900-083             | Jerry's Nose (near Lower Cove, Port au Port Peninsula) |                                   |  |
| NL900-151             | West Bay (Port au Port Peninsula)                      | West Bay (Port au Port Peninsula) |  |
| NL900-098             | Port au Port                                           |                                   |  |
| NL900-148             | Stephenville- Harmon AF Base Guns sites                |                                   |  |
| NL900-149             | Stephenville- Pinetree Site                            |                                   |  |
| NL900-147             | Stephenville- CAS Ernest Harmon Air Force Base         |                                   |  |
| Source: AMEC 2014     |                                                        |                                   |  |

#### Table 6.15 UXO Legacy Sites in the LAA


#### 6.3.6.5 Small Craft Harbours

DFO oversees the nationwide program known as Small Craft Harbours. Annually, more than 5,000 volunteers support the program in Canada who help upkeep harbours that are important to the fishing industry. Small craft harbours are designated as either core fishing harbours (critical to fishing/aquaculture industries, managed by harbour authorities), non-core fishing harbours (support fishing and aquaculture industries, not managed by harbour authorities), and recreational harbours (support recreational community). Harbour authorities are responsible for managing day-to-day operations of core fishing harbours and represent the interests of users and communities who use the harbours (DFO 2021c).

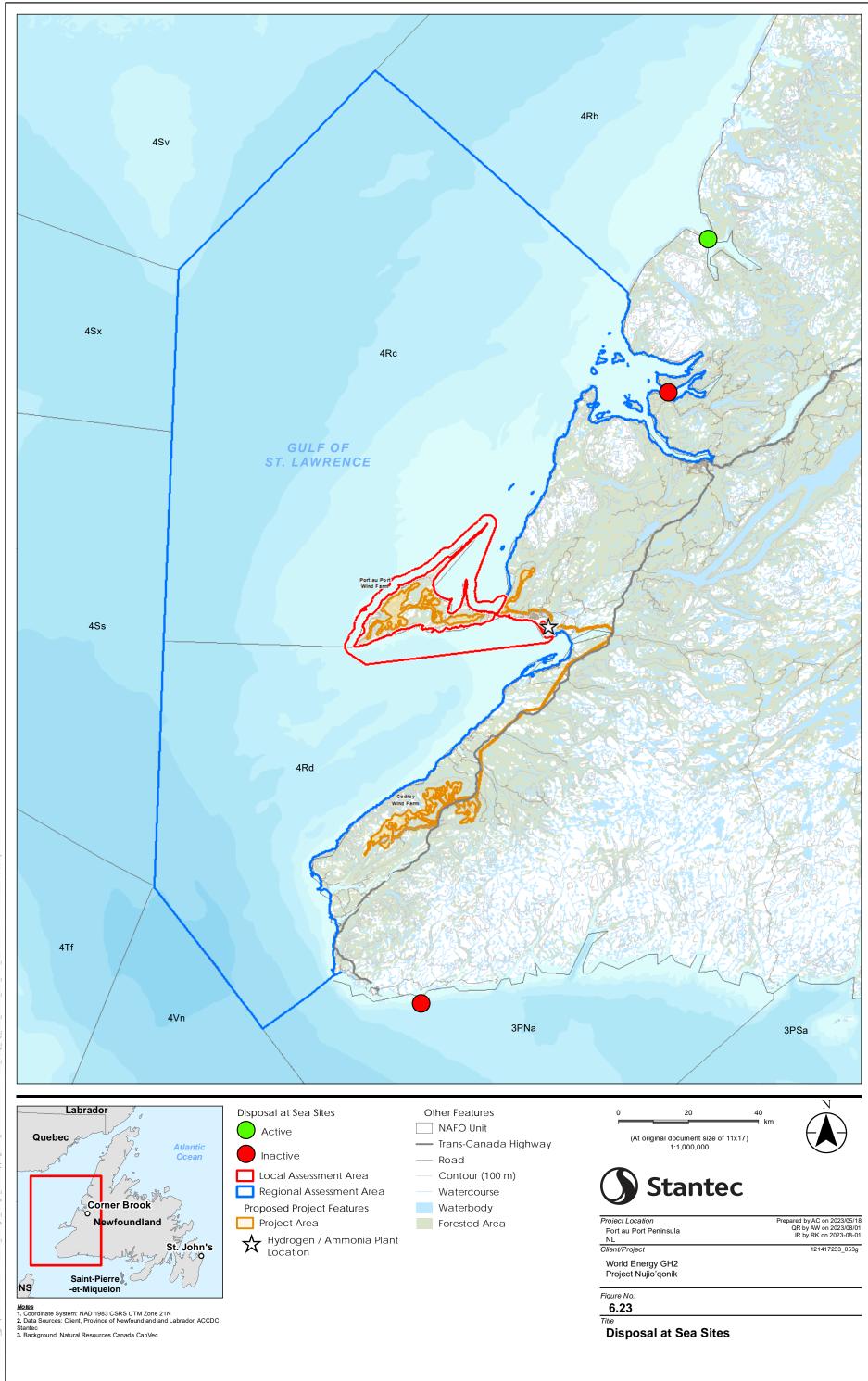
Thirteen core fishing harbours were identified in the LAA. Locations are provided in Table 6.16. Ten core fishing harbours and two non-core fishing habours exist outside of the LAA, within RAA boundaries (Figure 6.22).

| Small Craft Harbour Type | Location                     |
|--------------------------|------------------------------|
| Core Fishing             | Cape St. George              |
| Core Fishing             | Mainland                     |
| Core Fishing             | Lourdes                      |
| Core Fishing             | Black Duck Brook             |
| Core Fishing             | Blue Beach                   |
| Core Fishing             | West Bay Centre              |
| Core Fishing             | Piccadilly                   |
| Core Fishing             | Gravels (Port au Port)       |
| Core Fishing             | Port Harmon                  |
| Core Fishing             | Sheaves Cove                 |
| Core Fishing             | Ship Cove (St. George's Bay) |
| Core Fishing             | Abrahams Cove                |
| Core Fishing             | Campbells Creek              |
| Source: DFO 2021c        |                              |

#### Table 6.16 Small Craft Harbours in the LAA



053h\_Fig\_6.22\_Marine\_Small\_Craft\_Harbours\_REVA.mxd Revised: 2023-08-02 By: schubbs


#### 6.3.6.6 Disposal at Sea Sites

Under the *Canadian Environmental Protection Act, 1999*, a substance may not be disposed of at sea in Canadian territorial waters, by Canadian ships in international waters, or in waters under the control of a foreign government unless a permit has been granted by ECCC's Disposal at Sea Program. Permits for disposal at sea can be acquired for the substances under schedule 5 of the *Canadian Environmental Protection Act* at approved disposal sites. These substances are dredged material, industrial fish processing waste, ships, aircraft, platforms or other structures, inert, inorganic geological matter, uncontaminated organic matter of natural origin, and bulky substances (Government of Canada 2019).

There is one inactive disposal at sea site within the RAA and one inactive and one active site outside of the RAA boundaries (Figure 6.23). There are no active disposal at sea sites within the RAA.

#### 6.3.6.7 Petroleum Activity

Western Newfoundland is considered an area of low activity for the petroleum industry (C-NLOPB 2023). There is currently only one active exploration licence (EL-1070) in western Newfoundland, with Shoal Point Energy Ltd. being the licence representative. It is located within the LAA off the north coast of the Port au Port Peninsula.



53g\_Fig\_6.23\_Marine\_DaS\_Sites\_REVB.mxd Revised: 2023-08-02 By: schubbs

### 6.4 References

#### 6.4.1 Literature Cited

- AMEC (AMEC Environment & Infrastructure). 2014. Western Newfoundland & Labrador Offshore Area Strategic Environmental Assessment Update. 2014. Final Report. April 2014. Prepared for the Canada-newfoundland and Labrador Offshore Petroleum Board.
- Archambault, P., Snelgrove, P.V.R., Fisher, J.A.D., Gagnon, J.M., Garbary, D.J., Harvey, M., Kenchington, E.L., Lesage, V., Levesque, M., Lovejoy, C., Mackas, D.L., McKindsey, C.W., Nelson, J.R., Pepin, L. Piche, and M. Poulin. 2010. From Sea to Sea: Canada's Three Oceans of Biodiversity. *Plos One. 5*(8) e12182. <u>https://doi.org/10.1371/journal.pone.0012182</u>
- Atlantic Minerals. n.d. Company Profile. Available online: <u>https://atlanticminerals.com/sustainability-safety-and-environmental/about/company-profile/</u> (last accessed on March 30, 2023).
- Atlantic Pilotage Authority. n.d. FAQ. Available online: <u>https://www.atlanticpilotage.com/about-us/faq/#toggle-id-5</u> (last accessed on May 26, 2023).
- Bourdages, H., Brassard, C., Chamberland, J.-M., Desgagnés, M., Galbraith, P., Isabel, L. and Senay, C.
   2022. Preliminary results from the ecosystemic survey in August 2021 in the Estuary and northern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2022/011. iv + 95 p.
- Catto, N.R., R.G. Hooper, M.R. Anderson, D.A. Scruton, J.D. Meade, L.M.N. Ollerhead and UP. Williams. 1999. Biological and Geomorphological Classification of Placentia Bay: A Preliminary Assessment. *Can. Tech. Rep. Fish. Aquatic. Sci.* No. 2289: v + 35 p.
- CCG (Canadian Coast Guard). 2022. Ice Navigation in Canadian Waters. 2022. CCG/6120. Available online: <u>https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/41087380.pdf</u>
- CIS (Canadian Ice Service). 2023. Weekly Regional Ice Chart color WMO CT Eastern Coast WIS57CT 2023/03/06. Available online: <u>https://iceweb1.cis.ec.gc.ca/Archive/page3.xhtml</u>
- C-NLOPB (Canada-Newfoundland and Labrador Offshore Petroleum Board). 2023. Canada-Newfoundland & Labrador Offshore Licence Information Map. Available online: <u>https://www.cnlopb.ca/wp-content/uploads/maps/wallmap.pdf</u> (last accessed May 26, 2023).
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2004. COSEWIC assessment and status report on the Striped Bass Morone saxatilis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 43 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2006. COSEWIC assessment and update status report on the harbour porpoise Phocoena phocoena (Northwest Atlantic population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 32 pp.

- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2008a. COSEWIC assessment and status report on the Roundnose Grenadier Coryphaenoides rupestris in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 42 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2008b. COSEWIC assessment and update status report on the Killer Whale Orcinus orca, Southern Resident population, Northern Resident population, West Coast Transient population, Offshore population and Northwest Atlantic / Eastern Arctic population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. viii + 65 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2009a. COSEWIC assessment and status report on the Basking Shark Cetorhinus maximus, Atlantic population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. viii + 56 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2009b. COSEWIC assessment and status report on the American Plaice Hippoglossoides platessoides, Maritime population, Newfoundland and Labrador population and Arctic population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 74 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2010a. COSEWIC assessment and status report on the Atlantic Cod Gadus morhua in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 105pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2010b. COSEWIC assessment and status report on the Atlantic Salmon Salmo salar (Nunavik population, Labrador population, Northeast Newfoundland population, South Newfoundland population, Southwest Newfoundland population, Northwest Newfoundland population, Quebec Eastern North Shore population, Lake Ontario population, Gaspe-Southern Gulf of St. Lawrence population, Eastern Cape Breton population, Nova Scotia Southern Upland population, Inner Bay of Fundy population, Outer Bay of Fundy population) in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa, ON, xlvii+136 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2010c. COSEWIC assessment and status report on the Spiny Dogfish Squalus acanthias, Atlantic population, in Canada. Committee on the Status of Endangered Wildlife in Canada.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2010d. COSEWIC assessment and status report on the Loggerhead Sea Turtle Caretta caretta in Canada. Committee on the Status of Endangered Wildlife in Canada.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2011a. COSEWIC assessment and status report on the Atlantic Bluefin Tuna Thunnus thynnus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 30 pp.

- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2011b. COSEWIC assessment and status report on the Deepwater Redfish/Acadian Redfish complex Sebastes mentella and Sebastes fasciatus in Canada. Ottawa. x + 80 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2011c. COSEWIC assessment and status report on the Atlantic Sturgeon Acipenser oxyrinchus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 49 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2011d. COSEWIC assessment and status report on the Northern Bottlenose Whale Hyperoodon ampullatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 31 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2012a. COSEWIC assessment and status report on the Northern Wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 41 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2012b. COSEWIC assessment and status report on the Spotted Wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 44 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2012c. COSEWIC assessment and status report on the Atlantic Wolffish Anarhichas lupus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 56 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2012d. COSEWIC assessment and status report on the Cusk Brosme brosme in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 85 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2012e. COSEWIC assessment and status report on the Leatherback Sea Turtle Dermochelys coriacea in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 58 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2013a. COSEWIC assessment and status report on the White Hake Urophycis tenuis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 45 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2014a. COSEWIC assessment and status report on the Banded Killifish Fundulus diaphanus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 22 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2014b. COSEWIC assessment and status report on the Beluga Whale Delphinapterus leucas, St. Lawrence Estuary population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 64 pp.

- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2015. COSEWIC assessment and status report on the Winter Skate Leucoraja ocellata, Gulf of St. Lawrence population, Eastern Scotian Shelf - Newfoundland population and Western Scotian Shelf - Georges Bank population in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xviii + 46 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2019. COSEWIC assessment and status report on the Fin Whale Balaenoptera physalus, Atlantic population and Pacific population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 72 pp.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2021. COSEWIC assessment and status report on the White Shark Carcharodon carcharias, Atlantic population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 55 pp.
- CPAWS (Canadian Parks and Wilderness Society). 2018. Special Marine Areas in Newfoundland and Labrador, Second Edition. Available online: <u>https://cpawsnl.org/wp-</u> <u>content/uploads/2018/07/SMA-Guide-FINAL-2018-2-20-compressed-ilovepdf-compressed-1.pdf</u>.
- DFO (Fisheries and Oceans Canada). 2009. Conservation objectives for the Ecologically and Biologically Significant Areas (EBSA) of the Estuary and Gulf of St. Lawrence. DFO Can. *Sci. Advis. Sec. Sci. Advis. Rep.* 2009/049.
- DFO (Fisheries and Oceans Canada). 2011. 2011-2015 Integrated Fisheries Management Plan for Atlantic Seals. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/seals-</u> <u>phoques/reports-rapports/mgtplan-planges20112015/mgtplan-planges20112015-eng.html</u> (last accessed on March 30, 2023).
- DFO (Fisheries and Oceans Canada). 2017. Groundfish Gulf of St. Lawrence (NAFO) Subdivisions 3Pn, 4Vn and Divisions 4RST - January 2017. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/ifmp-gmp/groundfish-poisson-fond/groundfish-poisson-fond-div3pn-eng.html</u> (last accessed on June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2018a. Coffin Box in Newfoundland and Labrador Waters. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/publications/ais-eae/coffinbox-membranipore/index-eng.html</u> (last accessed on March 10, 2023).
- DFO (Fisheries and Oceans Canada). 2018b. European Green Crab in Newfoundland Waters. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/publications/ais-eae/greencrab-crabevert/index-eng.html</u>
- DFO (Fisheries and Oceans Canada). 2018c. Golden Star Tunicate in Newfoundland and Labrador Waters. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/publications/ais-</u> <u>eae/goldenstartunicate-botrylleetoile/index-eng.html#map-carte</u> (last accessed on March 10, 2023).



- DFO (Fisheries and Oceans Canada). 2018d. Oyster Thief in Newfoundland and Labrador Waters. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/publications/ais-eae/oysterthief-codiumfragile/index-eng.html#map-carte</u> (last accessed on March 10, 2023).
- DFO (Fisheries and Oceans Canada). 2018e. Vase Tunicate in Newfoundland and Labrador Waters. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/publications/ais-eae/vasetunicate-ascidiejaune/index-eng.html</u> (last accessed on March 10, 2023).
- DFO (Fisheries and Oceans Canada). 2018f. Violet Tunicate in Newfoundland and Labrador Waters. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/publications/ais-eae/violettunicate-botrylloideviolet/index-eng.html</u> (last accessed on March 10, 2023).
- DFO (Fisheries and Oceans Canada). 2019a. About aquatic invasive species. Available online: <u>https://www.dfo-mpo.gc.ca/species-especes/ais-eae/about-sur/index-eng.html</u> (last accessed on March 10, 2023).
- DFO (Fisheries and Oceans Canada). 2019b. Canadian Atlantic Bluefin Tuna (*thunnus thynnus*)- NAFO Fishing Areas 3KLNOP, 4RSTVWX and 5YZ – 2017. Available online: <u>https://www.dfompo.gc.ca/fisheries-peches/ifmp-gmp/bluefin-tuna-thon-rouge/bluefin-tuna-thonrouge2017eng.html</u> (last accessed on March 15, 2023).
- DFO (Fisheries and Oceans Canada). 2019c. Snow crab Newfoundland and Labrador Region. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/ifmp-gmp/snow-crab-neige/2019/index-eng.html</u> (last accessed June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2020a. Action Plan for the Northern Wolffish (*Anarhichas denticulatus*) and Spotted Wolffish (*Anarhichas minor*) in Canada. *Species at Risk Act* Action Plan Series. Fisheries and Oceans Canada, Ottawa. v + 25 p.
- DFO (Fisheries and Oceans Canada). 2020b. Action Plan for the Blue Whale (*Balaenoptera musculus*), Northwest Atlantic Population, in Canada. *Species at Risk Act* Action Plan Series. Fisheries and Oceans Canada, Ottawa. iv + 23 pp.
- DFO (Fisheries and Oceans Canada). 2020c. Shellfish harvesting and safety. Available online: <u>https://www.dfo-mpo.gc.ca/shellfish-mollusques/index-eng.htm</u> (last accessed March 24, 2023).
- DFO (Fisheries and Oceans Canada). 2021a. Oceanographic Conditions in the Atlantic Zone in 2020. DFO *Can. Sci. Advis. Sec. Sci. Advis. Rep.* 2021/026.
- DFO (Fisheries and Oceans Canada). 2021b. Action Plan for the North Atlantic Right Whale (*Eubalaena glacialis*) in Canada. *Species at Risk Act* Action Plan Series. Fisheries and Oceans Canada, Ottawa. v + 46 pp.
- DFO (Fisheries and Oceans Canada). 2021c. Small Craft Harbours. Available online: <u>https://www.dfo-mpo.gc.ca/sch-ppb/index-eng.html</u> (last accessed on May 26, 2023).

- DFO (Fisheries and Oceans Canada). 2021d. Herring Newfoundland and Labrador Region 4R3Pn -Effective 2017. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/ifmp-gmp/herring-hareng/herring-4r3pn-hareng-eng.html</u> (last accessed on June 19, 2023).
- DFO (Fisheries and Oceans Canada). 2021e. Capelin (*Mallotus villosus*) NAFO Divisions 4RST (Capelin Fishing Areas 12-16). Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-</u> <u>peches/ifmp-gmp/capelin-area12-16-zone-capelan/2020/index-eng.html</u> (last accessed June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2022a. NAFO Division 4R Herring Fishing Areas 13 and 14 (Western Newfoundland and Southern Labrador) 2022-2023. Available online: <u>https://www.dfompo.gc.ca/fisheries-peches/decisions/fm-2022-gp/atl-11-eng.html</u> (last accessed on June 19, 2023).
- DFO (Fisheries and Oceans Canada). 2022b. Atlantic Mackerel Effective 2022. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/ifmp-gmp/mackerel-atl-maquereau/mac-atl-maq-2022-eng.html#app5.1</u> (last accessed on June 19, 2023).
- DFO (Fisheries and Oceans Canada). 2022c. Atlantic mackerel NAFO subareas 3 and 4 (2022). Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/decisions/fm-2022-gp/atl-34-eng.html</u> (last accessed on June 19, 2023).
- DFO (Fisheries and Oceans Canada). 2022d. 2022 Newfoundland and Labrador recreational Groundfish fishery. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/decisions/fm-2022-gp/atl-19-eng.html</u> (last accessed on March 29, 2023).
- DFO (Fisheries and Oceans Canada. 2022e. 3Pn4RS Cod management approach for 2022-2023. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/decisions/fm-2022-gp/atl-27-eng.html</u> (last accessed on June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2023a. 4RST Capelin Management Plan 2023. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/decisions/fm-2023-gp/atl-28-eng.html</u> (last accessed on June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2023b. 2023 Snow crab fishery, Newfoundland and Labrador. Available online: <u>https://www.dfo-mpo.gc.ca/fisheries-peches/decisions/fm-2023-gp/atl-14-eng.html</u> (last accessed on June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2023c. Notice to Fish Harvesters: Snow Crab Season Extension for Crab Fishing Area 12. Available online: <u>https://www.nfl.dfo-mpo.gc.ca/en/node/1570</u> (last accessed on June 20, 2023).
- DFO (Fisheries and Oceans Canada). 2023d. Notice to Fish Harvesters: Cod Spawning Closure in NAFO Division 4R. Available online: <u>https://www.nfl.dfo-mpo.gc.ca/en/node/1453</u> (last accessed on June 20, 2023).

- DND (Department of National Defence). 2021. How we protect Canadians from UXO. Available online: <u>https://www.canada.ca/en/department-national-defence/services/uxo/uxo-program.html</u> (last accessed on March 30, 2023).
- Dufour, R., H.P. Benoît, M. Castonguay, J. Chassé, L. Devine, P.S. Galbraith, M. Harvey, P. Larouche, S. Lessard, B.D. Petrie, L. Savard, C. Savenkoff, L. St-Amand and M. Starr. 2010. Ecosystem status and trends report: Estuary and Gulf of St. Lawrence ecozone. *DFO Can. Sci. Advis. Sec. Res. Doc.*, 2010/030: v + 187 pp.
- Dufour, R. and P. Ouellet. 2007. Estuary and Gulf of St. Lawrence marine ecosystem overview and assessment report. *Can. Tech. Rep. Fish. Aquat. Sci.*, 2744E: vii + 112 p. Available online: <u>https://publications.gc.ca/collections/collection\_2012/mpo-dfo/Fs97-6-2744-eng.pdf</u>
- Dutil, J.-D., Proulx, S., Hurtubise, S., and J. Gauthier 2010. Recent findings on the life history and catches of wolffish (Anarhichas sp.) in research surveys and in the Sentinel Fisheries and Observer Program for the Estuary and Gulf of St-Lawrence. *DFO Can. Sci. Advis. Sec. Res. Doc.*, 2010/126: viii + 71 p.
- eCapelin. 2017. eCapelin: An online observation tool of capelin and capelin spawn distribution along East Canadian coasts [web application]. eCapelin, Saint-Lawrence Global Observatory, Rimouski, Québec, Canada. Available online: <u>https://ecapelan.ca/?lg=en</u> (last accessed on March 10, 2023).
- ECCC (Environment and Climate Change Canada). 2017. Addendum to COSEWIC 2015 Status Report for the Winter Skate Leucoraje ocellata – 2017. Available online: <u>https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/addendum-winter-skate-2017.html</u> (last accessed on March 15, 2023).
- ECCC (Environment and Climate Change Canada). 2020. Canadian Environmental Sustainability Indicators: Eelgrass in Canada. Available online: <u>https://publications.gc.ca/collections/collection\_2021/eccc/en4-144/En4-144-95-2020-eng.pdf</u> (last accessed on March 10, 2023).
- ECCC (Environment and Climate Change Canada). 2023. Summary of Migratory Birds Hunting Regulations: Newfoundland and Labrador, August 2022 to July 2023. Available online: <u>https://www.canada.ca/en/environment-climate-change/services/migratory-game-bird-hunting/regulations-provincial-territorial-summaries/newfoundland-labrador.html</u> (last accessed on March 30, 2023).
- Economic Analysis and Statics, Fisheries and Oceans Canada. 2023. Integrated Catch and Effort System [database]. Ottawa. Access March 3, 2022.
- Edwards and Associates Limited and Mel-Mor Science. 2018. Environmental Registration for Northern Harvest Smolt Ltd., Stephenville, NL. Prepared for Northern Harvest Smolt Ltd.



- Galbraith, P.S., Chassé, J., Dumas, J., Shaw, J.-L., Caverhill, C., Lefaivre, D. and Lafleur, C. 2022. Physical Oceanographic Conditions in the Gulf of St. Lawrence during 2021. DFO *Can. Sci. Advis. Sec. Res. Doc.* 2022/034. iv + 83 p.
- Government of Canada. 2018. Eelgrass: The Underwater Lawn. Available online: https://www.dfompo.gc.ca/science/organization/sec-ces/atlantic-atlantique/blog/2018-08-08/index-eng.html (last accessed on March 20, 2023).
- Government of Canada. 2019. Disposal at sea legislation and regulations. Available online: <u>https://www.canada.ca/en/environment-climate-change/services/disposal-at-sea/legislation-regulations.html</u> (last accessed on May 26, 2023).
- Government of Canada. 2021a. Porbeagle (Lamna nasus). Available online: <u>https://species-</u> <u>registry.canada.ca/index-en.html#/species/810-368</u> (last accessed on March 14, 2023).
- Government of Canada. 2021b. Shortfin Mako (Isurus oxyrinchus), Atlantic population. Available online: <u>https://species-registry.canada.ca/index-en.html#/species/909-636</u> (last accessed on March 14, 2023).
- Government of Canada. 2021c. Striped Bass (*Morone saxatilis*), Southern Gulf of St. Lawrence population. Available online: <u>https://species-registry.canada.ca/index-en.html#/species/829-552</u> (last accessed on March 15, 2023).
- Government of Canada. 2021d. Northern Bottlenose Whale (*Hyperoodon ampullatus*), Scotian Shelf population. Available online: <u>https://species-registry.canada.ca/index-en.html#/species/162-299</u> (last accessed on March 20, 2023).
- Government of Canada. 2021e. Northern Bottlenose Whale (*Hyperoodon ampullatus*), Davis Strait-Baffin Bay-Labrador Sea population. Available online: <u>https://species-registry.canada.ca/index-en.html#/species/782-801</u> (last accessed on March 20, 2023).
- Government of Canada. 2022. Fishing effort within Significant Benthic Areas in Canada's Atlantic and Eastern Arctic marine waters. Available online: <u>https://open.canada.ca/data/en/dataset/273df20a-47ae-42c0-bc58-01e451d4897a</u> (last accessed on June 20, 2023).
- Government of Canada. 2023. Canada Marine Planning Atlas. Online Resource. Available online: <u>https://www.dfo-mpo.gc.ca/oceans/planning-planification/atlas/index-eng.html</u> (last accessed March 2023).
- Jacques Whitford. 2007. *Port au Port Seismic Program Screening Report*. Prepared for Tekoil and Gas Corporation.
- Lavoie, D., N. Pinet, J. Dietrich, P. Hannigan, S. Castonguay, A.P. Hamblin and P. Giles. 2009. *Petroleum Resource Assessment, Paleozoic Successions of the St. Lawrence Platform and Appalachians of Eastern Canada*. Geological Survey of Canada, Open File Report 6174, 273 pp



- Lesage, V., Gosselin, J.-F., Lawson, J.W., McQuinn, I., Moors-Murphy, H., Plourde, S., Sears, R., Simard, Y. 2018. Habitats important to blue whales (Balaenoptera musculus) in the western North Atlantic. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/080. iv + 50 p. ii
- LGL (LGL Limited). 2005. Western Newfoundland and Labrador Offshore Area Strategic Environmental Assessment. LGL Rep. SA8858. Rep. by LGL Limited, St. John's, NL, Oceans Limited, St. John's, NL, Canning & Pitt Associates, Inc., St. John's, NL, and PAL Environmental Services, St. John's, NL, for Canada-Newfoundland and Labrador Offshore Petroleum Board, St. John's, NL. 335 pp. + Appendices.
- LGL (LGL Limited). 2008. Environmental Assessment of the PDI Production Inc. Port-au-Port Peninsula Ocean Bottom Cable Seismic/VSP Program 2009-2014. Prepared for PDI Production Inc.
- Mowi Canada East. 2023. Indian Head Hatchery Expansion Project. Available online: <u>https://indianheadproject.ca/</u>. Last accessed May 15, 2023.
- NLDFFA (NL Department of Fisheries, Forestry and Agriculture). 2021. Fisheries and Aquaculture Licensed Fish Processors and Aquaculture Sites. Available online: <u>https://geohub-gnl.hub.arcgis.com/apps/fisheries-and-aquaculture-licensed-fish-processors-and-aquaculture-sites/explore</u> (last accessed on February 23, 2023).
- NLDMAE (NL Department of Municipal Affairs and Environment). 2018. Water Use Licence Commercial (Aquaculture/Hatchery) No: WUL-18-9929. Available online: https://www.gov.nl.ca/ecc/files/waterres-permits-water-use-2018-wul-18-9929.pdf
- NLDMAE (NL Department of Municipal Affairs and Environment). 2019. Amendment to Water Use Licence No: WUL-19-9929. Available online: <u>https://www.gov.nl.ca/ecc/files/waterres-permits-</u> <u>water-use-2019-wul-18-9929-amended-water-withdrawal-and-use-from-freshwater-and-saltwater-</u> <u>wells-for-on-land-aquaculture-hatchery-near-stephenville-signed.pdf</u>
- NL Tourism. n.d. Experience Boat Tours. Available online: <u>https://www.newfoundlandlabrador.com/things-to-do/boat-tours</u> (last accessed April, 22, 2023).
- Pinet N. and D. Lavoie. 2015. The Offshore Part of the Anticosti Basin: A major Gap in the Understanding of Early to Middle Paleozoic Basins of Eastern Canada in a Promising Hydrocarbon Setting. Search and Discovery Article #10722. Available online: <u>https://www.searchanddiscovery.com/pdfz/documents/2015/10722pinet/ndx\_pinet.pdf.html</u>
- Port of Stephenville. n.d. Port of Stephenville. Available online: <u>https://portofstephenville.ca/index.html</u> (last accessed on March 30, 2023).
- Shaw, John & Forbes, Donald. (1990). Late Quaternary sedimentation in St. George's Bay, southwest
   Newfoundland: acoustic stratigraphy and seabed deposits. Canadian Journal of Earth Sciences.
   27. 964-983. 10.1139/e90-099. Stantec (Stantec Consulting Ltd.).

- Stantec (Stantec Consulting Ltd.) 2011. Environmental Assessment Old Harry Prospect Exploration Drilling Program. Prepared for Corridor Resources Inc.
- Stantec (Stantec Consulting Ltd.). 2017. Western Newfoundland 2017 Controlled Source Electromagnetic (CSEM) Survey– Environmental Assessment. Prepared for Electromagnetic Geoservices Canada, Inc.
- Stantec (Stantec Consulting Ltd.) 2023a in preparation. Project Nujio'qonik GH2 Environmental Assessment – Terrestrial Baseline Study. Prepared for World Energy GH2 by Stantec Consulting Ltd.
- Stantec (Stantec Consulting Ltd). 2023b in preparation. Project Nujio'qonik GH2 Land and Resource Use Survey. Prepared for World Energy GH2 by Stantec Consulting Ltd. St. John's, NL. May 26, 2023.
- South G.R. 1983. Biogeography and Ecology of the Island of Newfoundland. Dr. W. Junk Publishers, The Hague.
- White, L. and F. Johns. 1997. Marine Environmental Assessment of the Estuary and Gulf of St. Lawrence. Fisheries and Oceans Canada, Dartmouth, Nova Scotia and Mont-Joli, Québec. Available online: <u>https://publications.gc.ca/collections/collection\_2014/mpo-dfo/Fs23-292-1997eng.pdf</u>
- Wildlife Division. 2010. Management Plan for the American Eel (*Anguilla rostrata*) in Newfoundland and Labrador. Department of Environment and Conservation, Government of Newfoundland and Labrador, Corner Brook. Canada. v + 29 pp.

#### 6.4.2 Personal Communications

2023. Merkel, D., President of Operations, Port of Stephenville. E-mail communication to WEGH2, May 26, 2023.

# Appendix A

## **Community Water Resources Reports**



#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023



|                                                  | Sample Date                                                           | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony | Arsenic | Barium | Cadmium | Chromium | Copper    | Iron Lead   | Magnesium | Manganese   | Mercury | Nickel S | Selenium | Uranium | Zinc  |
|--------------------------------------------------|-----------------------------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|----------|---------|--------|---------|----------|-----------|-------------|-----------|-------------|---------|----------|----------|---------|-------|
|                                                  | Units                                                                 | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L     | mg/L    | mg/L   | mg/L    | mg/L     | mg/L      | mg/L mg/L   | mg/L      | mg/L        | mg/L    | mg/L     | mg/L     | mg/L    | mg/L  |
| Guidelines for Canadian                          | Drinking Water Quality                                                |         |      | 10           |                      |                     |          | 0.006    | 0.01    | 2.0    | 0.007   | 0.05     | 1.0 / 2.0 | 0.3 0.005   |           | 0.02 / 0.12 | 0.001   |          | 0.01     | 0.02    | 5.0   |
| Aesthetic(A) Paramet                             | ter or Contaminant (C)                                                |         |      | С            |                      |                     |          | С        | С       | С      | С       | С        | A / C     | A C         |           | A / C       | С       |          | С        | С       | Α     |
| Community Name:<br>Service Area:<br>Source Name: | Piccadilly Slant-Abrahan<br>Abraham's Cove<br>#2 Well - Abraham's Cov |         |      |              |                      |                     |          |          |         |        |         |          |           |             |           |             |         |          |          |         |       |
|                                                  | Sep 12, 2022                                                          | በ 19በ   | 2.7  | 2.200        | 0.230                | 0.078               | 0.037    | 0.00000  | 0.000   | 0.049  | 0.00005 | 0.00000  | 0.009     | 0.000 0.001 | 9.400     | 0.009       | ).0000  | 0.000    | 0.000    | 0.0004  | 0.009 |
|                                                  | Sep 25, 2020                                                          | 0 000   | 3.3  | 3.390        | 0.328                | 0.078               | 0.040    | 0.00000  | 0.000   | 0.060  | 0.00000 | 0.00000  | 0.006     | 0.000 0.000 | 7.000     | 0.000       | ).0000  | 0.000    | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 14, 2020                                                          | 0 000   | 1.4  | 0.210        | 0.000                | 0.004               | 0.000    | 0.00000  | 0.000   | 0.140  | 0.00000 | 0.00000  | 0.011     | 0.000 0.009 | 16.000    | 0.000       | ).0000  | 0.000    | 0.000    | 0.0000  | 0.040 |
|                                                  | Aug 15, 2017                                                          | 0 250   | 2.6  | 2.200        | 0.480                | 0.090               | 0.009    | 0.00000  | 0.000   | 0.056  | 0.00003 | 0.00000  | 0.059     | 0.000 0.001 | 10.000    | 0.000       | ).0000  | 0.000    | 0.000    | 0.0005  | 0.012 |
|                                                  | Jun 01, 2011                                                          | 0 000   | 4.0  | 1.200        | 0.130                | 0.090               | 0.030    | 0.00000  | 0.000   | 0.030  | 0.00000 | 0.00100  | 0.004     | 0.000 0.000 | 6.000     | 0.020       | ).0000  | 0.000    | 0.000    | 0.0000  | 0.000 |
|                                                  | Jun 22, 2010                                                          | 0 000   | 4.0  | 0.790        | 0.120                | 0.050               | 0.030    | 0.00000  | 0.000   | 0.040  | 0.00000 | 0.00100  | 0.004     | 0.030 0.001 | 8.000     | 0.020       | ).0000  | 0.000    | 0.000    | 0.0000  | 0.000 |
|                                                  | Jun 02, 2008                                                          | 0 000   | 2.3  | 2.700        | 0.200                | 0.100               | 0.030    | 0.00000  | 0.000   | 0.036  | 0.00000 | 0.00000  | 0.003     | 0.000 0.001 | 7.000     | 0.012       | ).0000  | 0.000    | 0.000    | 0.0002  | 0.006 |
|                                                  | Sep 11, 2007                                                          | 0 100   | 3.0  | 2.200        | 0.400                | 0.200               | 0.020    | 0.00000  | 0.000   | 0.034  | 0.00000 | 0.00000  | 0.006     | 0.000 0.001 | 7.700     | 0.008       | ).0000  | 0.000    | 0.000    | 0.0002  | 0.007 |

|                               | Sample Date                                    | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br><sub>mg/L</sub> | Cadmium | Chromium<br>mg/L | Copper<br>mg/L | Iron Lead   | Magnesium<br><sub>mg/L</sub> | Manganese   | Mercury | Nickel | Selenium<br>mg/L | Uranium<br><sub>mg/L</sub> | Zinc  |
|-------------------------------|------------------------------------------------|----------------------------|-------------|--------------|-----------------------------------------|----------------------------------------|------------------|------------------|-----------------|---------------------------|---------|------------------|----------------|-------------|------------------------------|-------------|---------|--------|------------------|----------------------------|-------|
| Guidelines for Canadian       |                                                |                            |             | 10           |                                         |                                        |                  | 0.006            | 0.01            | 2.0                       | 0.007   | 0.05             | 1.0 / 2.0      | 0.3 0.005   | g. =                         | 0.02 / 0.12 | 0.001   |        | 0.01             | 0.02                       | 5.0   |
|                               | eter or Contaminant (C)                        |                            |             | С            |                                         |                                        |                  | С                | С               | С                         | С       | С                |                | A C         |                              | A / C       | С       |        | С                | С                          | А     |
|                               | Feb 05, 2007                                   | 0 000                      | 2.9         | 1.370        | 0.120                                   | 0.050                                  | 0.010            | 0.00000          | 0.000           | 0.030                     | 0.00000 | 0.00200          | 0.003          | 0.000 0.001 | 6.000                        | 0.000       | ).0000  | 0.000  | 0.000            | 0.0000                     | 0.000 |
|                               | Sep 18, 2006                                   | 0 000                      | 4.6         | 1.920        | 0.440                                   | 0.060                                  | 0.030            | 0.00000          | 0.000           | 0.040                     | 0.00000 | 0.00100          | 0.004          | 0.000 0.002 | 7.000                        | 0.000       | ).0000  | 0.000  | 0.000            | 0.0000                     | 0.000 |
|                               | Jan 16, 2006                                   | 0 000                      | 3.0         | 0.790        | 0.420                                   | 0.080                                  | 0.170            | 0.00000          | 0.000           | 0.030                     | 0.00000 | 0.00200          | 0.005          | 0.520 0.006 | 7.000                        | 0.170       | ).0000  | 0.000  | 0.000            | 0.0000                     | 0.000 |
|                               | Sep 20, 2005                                   | N N2N                      | 5.1         | 2.260        | 0.340                                   | 0.100                                  | 0.040            | 0.00000          | 0.000           | 0.040                     | 0.00000 | 0.00200          | 0.004          | 0.000 0.001 | 7.000                        | 0.000       | ).0000  | 0.000  | 0.000            | 0.0000                     | 0.000 |
|                               | Nov 08, 2004                                   | 0 050                      | 2.9         | 1.780        | 0.330                                   | 0.090                                  | 0.020            | 0.00000          | 0.000           | 0.050                     | 0.00000 | 0.00000          | 0.003          | 0.030 0.002 | 10.000                       | 0.020       | ).0000  | 0.000  | 0.000            | 0.0000                     | 0.000 |
|                               | Jun 16, 2004                                   | 0 050                      | 3.8         | 2.150        | 0.910                                   | 0.230                                  | 0.070            | 0.00000          | 0.000           | 0.030                     | 0.00000 | 0.00200          | 0.004          | 0.130 0.009 | 6.000                        | 0.210       | ).0000  | 0.000  | 0.000            | 0.0000                     | 0.000 |
|                               | Nov 19, 2003                                   | በ በዓበ                      | 3.3         | 2.510        | 0.390                                   | 0.210                                  | 0.090            | 0.00050          | 0.001           | 0.040                     | 0.00005 | 0.00400          | 0.003          | 0.030 0.001 | 6.000                        | 0.020       | ).0000  | 0.003  | 0.001            | 0.0005                     | 0.005 |
|                               | Apr 29, 2003                                   | 0 010                      | 1.6         | 1.720        | 0.240                                   | 0.080                                  | 0.050            | 0.00050          | 0.001           | 0.050                     | 0.00005 | 0.00050          | 0.013          | 0.030 0.003 | 9.000                        | 0.031       | ).0000  | 0.003  | 0.001            | 0.0005                     | 0.003 |
| Service Area:<br>Source Name: | Piccadilly Slant<br>#1 Well - Piccadilly Slant |                            |             |              |                                         |                                        |                  |                  |                 |                           |         |                  |                |             |                              |             |         |        |                  |                            |       |
|                               | Mar 03, 2022                                   | 0 000                      | 1.2         | 0.230        | 0.000                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.110                     | 0.00004 | 0.00000          | 0.007          | 0.000 0.007 | 15.000                       | 0.000       | ).0000  | 0.000  | 0.000            | 0.0008                     | 0.033 |

| Sample Da<br>Units                                                                          | nte Ammonia<br>mg/L | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br><sub>mg/L</sub> | mg/L       | mg/L      | mg/L      | mg/L mg/L        | Magnesium<br>mg/L | mg/L                 | mg/L          | Nickel S | mg/L      | mg/L             | Zinc<br>mg/L |
|---------------------------------------------------------------------------------------------|---------------------|-------------|--------------|-----------------------------------------|----------------------------------------|------------------|------------------|-----------------|---------------------------|------------|-----------|-----------|------------------|-------------------|----------------------|---------------|----------|-----------|------------------|--------------|
| Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) |                     |             | 10<br>C      |                                         |                                        |                  | 0.006<br>C       | 0.01<br>C       | 2.0<br>C                  | 0.007<br>C | 0.05<br>C | 1.0 / 2.0 | 0.3 0.005<br>A C |                   | 0.02 / 0.12<br>A / C | 0.001<br>C    |          | 0.01<br>C | 0.02<br>C        | 5.0<br>A     |
| Nov 16, 202                                                                                 | 1 0 000             | 1.5         | 0.220        | 0.000                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.110                     | 0.00003    | 0.00000   |           | 0.000 0.007      | 15.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0008           | 0.028        |
| Sep 14, 202                                                                                 | 20 N N N N          | 4.0         | 2.310        | 0.000                                   | 0.061                                  | 0.030            | 0.00000          | 0.000           | 0.050                     | 0.00000    | 0.00000   | 0.029     | 0.040 0.001      | 7.000             | 0.030                | ).0000        | 0.000    | 0.000     | 0.0000           | 0.010        |
| Aug 15, 20 <sup>.</sup>                                                                     |                     | 1.0         | 0.200        | 0.100                                   | 0.006                                  | 0.081            | 0.00000          | 0.000           | 0.120                     | 0.00003    | 0.00000   |           | 0.000 0.004      | 16.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0008           | 0.037        |
| Jun 01, 20<br>Jun 22, 201                                                                   |                     | 1.3         | 0.170        | 0.120                                   | 0.040                                  | 0.000            | 0.00000          | 0.000           | 0.110                     | 0.00000    | 0.00000   |           | 0.000 0.006      | 16.000            | 0.000                | ).0000)).0000 | 0.000    | 0.000     | 0.0000           | 0.020        |
| Jun 02, 200                                                                                 |                     | 0.0         | 0.170        | 0.100                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.120                     | 0.00000    | 0.00000   |           | 0.000 0.005      | 17.000            | 0.000                | ).0000        | 0.000    | 0.000     |                  | 0.028        |
| Sep 11, 200                                                                                 | 7 Ი ᲘᲘᲘ             | 0.8         | 0.210        | 0.000                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.110                     | 0.00000    | 0.00000   | 0.005     | 0.000 0.005      | 17.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0009           | 0.026        |
| Feb 05, 200                                                                                 | 7 0 000             | 1.2         | 0.150        | 0.180                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.110                     | 0.00000    | 0.00100   | 0.005     | 0.000 0.004      | 15.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0000           | 0.020        |
| Sep 18, 200                                                                                 | 16 N N N N          | 1.1         | 0.200        | 0.110                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.120                     | 0.00000    | 0.00000   | 0.002     | 0.000 0.004      | 15.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0000           | 0.020        |
| Jan 16, 200                                                                                 | 6 N NNN             | 1.1         | 0.190        | 0.110                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.100                     | 0.00000    | 0.00000   | 0.002     | 0.000 0.006      | 15.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0000           | 0.020        |
| Sep 20, 20(                                                                                 | 15 N NNN            | 0.0         | 0.160        | 0.130                                   | 0.000                                  | 0.000            | 0.00000          | 0.000           | 0.110<br>3                | 0.00000    | 0.00000   | 0.002     | 0.000 0.005      | 16.000            | 0.000                | ).0000        | 0.000    | 0.000     | 0.0000<br>May 04 |              |

May 04, 2023

|                                                  | Sample Date                               | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony      | Arsenic      | Barium      | Cadmium       | Chromium     | Copper            | Iron Lead                | Magnesium | Manganese           | Mercury       | Nickel | Selenium     | Uranium   | Zinc        |
|--------------------------------------------------|-------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|---------------|--------------|-------------|---------------|--------------|-------------------|--------------------------|-----------|---------------------|---------------|--------|--------------|-----------|-------------|
| Guidelines for Canadian I                        | Units                                     | mg/L    | mg/L | mg/L<br>10   | mg/L                 | mg/L                | mg/L     | mg/L<br>0.006 | mg/L<br>0.01 | mg/L<br>2.0 | mg/L<br>0.007 | mg/L<br>0.05 | mg/L<br>1.0 / 2.0 | mg/L mg/L<br>0.3 0.005   | mg/L      | mg/L<br>0.02 / 0.12 | mg/L<br>0.001 | mg/L   | mg/L<br>0.01 | mg/L      | mg/L<br>5.0 |
| Aesthetic(A) Paramet                             |                                           |         |      | C            |                      |                     |          | C             | C            | 2.0<br>C    | C             | C            | A / C             |                          |           | A / C               | C             |        | C            | 0.02<br>C | A           |
|                                                  |                                           |         |      |              |                      |                     |          |               |              |             |               |              |                   |                          |           |                     |               |        |              |           |             |
|                                                  | Nov 08, 2004                              | 0 030   | 0.7  | 0.170        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.110       | 0.00000       | 0.00000      | 0.005             | 0.000 0.005              | 16.000    | 0.000               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.020       |
|                                                  | Jun 16, 2004                              | 0 000   | 0.8  | 0.150        | 0.200                | 0.020               | 0.000    | 0.00000       | 0.000        | 0.110       | 0.00000       | 0.00000      | 0.003             | 0.000 0.005              | 16.000    | 0.000               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.020       |
|                                                  | Nov 19, 2003                              | 0 010   | 0.8  | 0.140        | 0.025                | 0.005               | 0.080    | 0.00050       | 0.001        | 0.110       | 0.00005       | 0.00300      | 0.012             | 0.020 0.005              | 16.000    | 0.010               | ).0000        | 0.003  | 0.001        | 0.0010    | 0.030       |
|                                                  | Apr 29, 2003                              | በ በ1በ   | 0.9  | 0.250        | 0.060                | 0.005               | 0.030    | 0.00050       | 0.001        | 0.100       | 0.00005       | 0.00050      | 0.004             | 0.020 0.008              | 15.000    | 0.016               | ).0000        | 0.003  | 0.001        | 0.0005    | 0.011       |
| Community Name:<br>Service Area:<br>Source Name: | St. George's<br>St. George's<br>Wellfield |         |      |              |                      |                     |          |               |              |             |               |              |                   |                          |           |                     |               |        |              |           |             |
|                                                  | Sep 16, 2020                              | 0 000   | 0.6  | 0.110        | 0.000                | 0.004               | 0.000    | 0.00000       | 0.000        | 0.010       | 0.00000       | 0.00000      | 0.008             | 0.160 0.000              | 4.000     | 0.040               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.020       |
|                                                  | Sep 16, 2020                              | 0 000   | 1.4  | 0.620        | 0.000                | 0.005               | 0.020    | 0.00000       | 0.000        | 0.010       | 0.00000       | 0.00000      | 0.007             | 0.350 0.000              | 4.000     | 0.000               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.010       |
|                                                  | Sep 16, 2020                              | 0 000   | 1.3  | 0.000        | 0.000                | 0.007               | 0.000    | 0.00000       | 0.000        | 0.020       | 0.00000       | 0.00000      | 0.006             | 0.180 0.001              | 6.000     | 0.020               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.020       |
|                                                  | Aug 16, 2017                              | 0 000   | 1.0  | 0.070        | 0.000                | 0.007               | 0.000    | 0.00000       | 0.000        | 0.009       | 0.00000       | 0.00000      | 0.014             | 0.350 0.002              | 4.500     | 0.051               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.110       |
|                                                  | Aug 16, 2017                              | 0 000   | 1.0  | 0.750        | 0.000                | 0.006               | 0.008    | 0.00000       | 0.000        | 0.012       | 0.00000       | 0.00500      | 0.140             | 0.096 <mark>0.022</mark> | 4.300     | 0.000               | ).0000        | 0.000  | 0.000        | 0.0000    | 0.100       |

| Sample Date Ammo<br>Units mg/<br>Guidelines for Canadian Drinking Water Quality |     | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10 | Kjeldahl<br>Nitrogen<br>mg/L | Total<br>Phosphorus<br>mg/L | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006 | Arsenic<br>mg/L<br>0.01 | Barium<br>mg/L<br>2.0 | mg/L<br>0.007 | Chromium<br>mg/L<br>0.05 | mg/L<br>1.0 / 2.0 | mg/L mg/L<br>0.3 0.005 | Magnesium<br>mg/L | mg/L<br>0.02 / 0.12 | Mercury<br>mg/L<br>0.001 | Nickel S | Selenium<br>mg/L<br>0.01 | Uranium<br>mg/L<br>0.02 | Zinc<br>mg/L<br>5.0 |
|---------------------------------------------------------------------------------|-----|-------------|---------------------------------------|------------------------------|-----------------------------|------------------|---------------------------|-------------------------|-----------------------|---------------|--------------------------|-------------------|------------------------|-------------------|---------------------|--------------------------|----------|--------------------------|-------------------------|---------------------|
| Aesthetic(A) Parameter or Contaminant (C)                                       |     |             | С                                     |                              |                             |                  | С                         | С                       | С                     | С             | С                        | A / C             | A C                    |                   | A / C               | С                        |          | С                        | С                       | Α                   |
| Aug 16, 2017 ი ი                                                                | nnn | 1.2         | 0.000                                 | 0.000                        | 0.012                       | 0.011            | 0.00000                   | 0.000                   | 0.016                 | 0.00000       | 0.00000                  | 0.004             | 0.340 0.005            | 5.000             | 0.036               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.053               |
| May 19, 2011 በ በ                                                                | nn  | 0.9         | 0.000                                 | 0.000                        | 0.000                       | 0.000            | 0.00000                   | 0.000                   | 0.000                 | 0.00000       | 0.00100                  | 0.001             | 0.070 0.001            | 3.000             | 0.010               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.020               |
| May 19, 2011 በ በ                                                                | INN | 1.5         | 0.000                                 | 0.160                        | 0.000                       | 0.050            | 0.00000                   | 0.000                   | 0.060                 | 0.00000       | 0.00200                  | 0.004             | 0.440 0.002            | 9.000             | 0.100               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.020               |
| May 19, 2011 በ በ                                                                | INN | 2.8         | 0.290                                 | 0.000                        | 0.000                       | 0.020            | 0.00000                   | 0.000                   | 0.000                 | 0.00000       | 0.00000                  | 0.003             | 0.040 0.000            | 0.000             | 0.000               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.000               |
| May 19, 2011 በ በ                                                                | nn  | 1.3         | 0.000                                 | 0.000                        | 0.000                       | 0.000            | 0.00000                   | 0.000                   | 0.020                 | 0.00000       | 0.00100                  | 0.000             | 0.590 0.002            | 5.000             | 0.060               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.000               |
| May 20, 2010 በ በ                                                                | IUU | 0.6         | 0.000                                 | 0.000                        | 0.000                       | 0.000            | 0.00000                   | 0.000                   | 0.040                 | 0.00000       | 0.00000                  | 0.001             | 0.050 0.000            | 6.000             | 0.050               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.000               |
| May 20, 2010 ດ ດ                                                                | INN | 1.2         | 0.000                                 | 0.000                        | 0.000                       | 0.000            | 0.00000                   | 0.000                   | 0.000                 | 0.00000       | 0.00000                  | 0.002             | 0.470 0.002            | 2.000             | 0.030               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.000               |
| May 20, 2010 ດ ດ                                                                | 000 | 0.8         | 0.000                                 | 0.000                        | 0.000                       | 0.000            | 0.00000                   | 0.000                   | 0.000                 | 0.00000       | 0.00000                  | 0.001             | 0.040 0.000            | 3.000             | 0.010               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.020               |
| May 20, 2010 ೧ ೧                                                                | nn  | 0.8         | 0.290                                 | 0.000                        | 0.000                       | 0.000            | 0.00000                   | 0.000                   | 0.020                 | 0.00000       | 0.00000                  | 0.004             | 0.190 0.002            | 3.000             | 0.000               | ).0000                   | 0.000    | 0.000                    | 0.0000                  | 0.000               |
|                                                                                 |     |             |                                       |                              |                             |                  |                           |                         |                       |               |                          |                   |                        |                   |                     |                          |          |                          |                         |                     |

|                                        | Sample Date | Ammonia | DOC  | Nitrate(ite) | Kjeldahl | Total      | Aluminum | Antimony | Arsenic | Barium | Cadmium C | hromium | Copper    | Iron Lead | Magnesium | Manganese   | Mercury | Nickel S | Selenium | Uranium | Zinc |
|----------------------------------------|-------------|---------|------|--------------|----------|------------|----------|----------|---------|--------|-----------|---------|-----------|-----------|-----------|-------------|---------|----------|----------|---------|------|
|                                        |             |         |      |              | Nitrogen | Phosphorus |          |          |         |        |           |         |           |           |           |             |         |          |          |         |      |
|                                        | Units       | mg/L    | mg/L | mg/L         | mg/L     | mg/L       | mg/L     | mg/L     | mg/L    | mg/L   | mg/L      | mg/L    | mg/L      | mg/L mg/L | mg/L      | mg/L        | mg/L    | mg/L     | mg/L     | mg/L    | mg/L |
| Guidelines for Canadian Drinking Water | Quality     |         |      | 10           |          |            |          | 0.006    | 0.01    | 2.0    | 0.007     | 0.05    | 1.0 / 2.0 | 0.3 0.005 |           | 0.02 / 0.12 | 0.001   |          | 0.01     | 0.02    | 5.0  |
| Aesthetic(A) Parameter or Contamir     | nant (C)    |         |      | С            |          |            |          | С        | С       | С      | С         | С       | A / C     | A C       |           | A / C       | С       |          | С        | С       | Α    |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data.

LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects .

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the health aspects of contaminants.

### Contaminant and Aesthetic Exceedances

Nitrate(ite) - The maximum acceptable concentration for nitrate(ite) in drinking water is 10 mgL expressed as nitrate-nitrogen. Nitrate and nitrite are naturally occurring ions that are widespread in the environment. High levels of this contaminant can cause adverse health effects for some people

Arsenic - The interim maximum acceptable concentration for arsenic in drinking water is 0.01 mg/L. Arsenic is introduced into water through the dissolution of minerals and ores, from industrial effluents and via atmospheric deposition. High levels of this contaminant can cause adverse health effects for some people.

Barium - The maximum acceptable concentration for barium in drinking water is 2.0 mg/L. Barium is not found free in nature but occurs as in a number of compounds. High levels of this contaminant can cause adverse health effects for some people.

Cadmium - The maximum acceptable concentration for cadmium in drinking water is 0.007 mg/L. Cadmium that is present as an impurity in galvanized pipes, a constituent of solders used in fitting water heaters or incorporated into stabilizers in black polyethylene pipes may contaminate water supplies during their distribution. High levels of this contaminant can cause adverse health effects for some people.

Chromium - The maximum acceptable concentration for chromium in drinking water is 0.05 mg/L. High levels of this contaminant can cause adverse health effects for some people

Lead - The maximum acceptable concentration for lead in drinking water is 0.005 mg/l. Lead is present in tap water as a result of dissolution from natural sources or from the distribution systems and olumbing containing lead in pipes, solder or service connections. High levels of this contaminant can cause adverse health effects for some people

Mercury - The maximum acceptable concentration for mercury in drinking water is 0.001 mg/L. High levels of this contaminant can cause adverse health effects for some people

Selenium - The maximum acceptable concentration for selenium in drinking water is 0.01 mg/L. High levels of this contaminant can cause adverse health effects for some people

Uranium - The interim maximum acceptable concentration for uranium in drinking water is 0.02 mg/L. Uranium may enter drinking water from naturally occurring deposits or as a result of human activity, such as mill tailings and phosphate fertilizers. High levels of this contaminant can cause adverse health effects for some people

Antimony - The interim maximum acceptable concentration (IMAC) for antimony in drinking water is 0.006 mg/L. It is a naturally occurring metal that is introduced into water through the natural weathering of rocks, runoff from soils, effluents from mining and manufacturing operations, industrial and municipal leachate discharges and from household piping and possibly non-leaded solders. High levels of this contaminant can cause adverse health effects for some people Copper - The maximum acceptable concentration for copper in dinking water is 2.0 mgL and the assthetic objective for copper in dinking water is 1.0 mgL. Copper is widely distributed in nature and is found frequently in surface water and in some groundwater. Usally, copper in tap water is the result of dissolution of copper piping within the distribution system. The aesthetic objective was set to ensure palatability and to minimize staining of laundry and plumbing fixtures. Copper is an essential element in human metabolism and copper deficiency results in a variety of clinical disorders. At extremely high doese copper intake can result in adverse health effects. High levels of copper in tap water may result in blue-green staining on some fixtures.

Iron - The aesthetic objective for iron in drinking water is 0.3 mg/L. Usually, iron in tap water is the result of high iron content in the raw water and dissolution of iron piping within the distribution system. Iron is an essential element in nutrition. High levels of iron in tap water can cause staining of laundry and plumbing fixtures, unpleasant taste, colour and promote biological growths in the distribution system.

Manganese - The maximum acceptable concentration for manganese in drinking water is 0.12 mgL and the aesthetic objective for manganese in drinking water is 0.02 mg/L. Usually, manganese in drinking water is the result of high amounts of manganese in the source water supply's bedrock Levels above the maximum acceptable concentration can cause adverse health effects for some people Levels above the aesthetic objective may cause staining of plumbing and laundry and undesirable tastes in beverages.

Zinc - The aesthetic objective for zinc in drinking water is 5.0 mg/L. Zinc in water can be naturally occurring or due to zinc in plumbing materials. Zinc is an essential element for human nutrition. Long term ingestion of zinc has not resulted in adverse effects. Water with zinc concentrations higher than the aesthetic objective has an astringent taste and may be opalescent and develop a greasy film on boiling.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units



|                                                  | Sample Date                                                    | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony | Arsenic | Barium | Cadmium | Chromium | Copper    | Iron Lead   | Magnesium | Manganese   | Mercury | Nickel | Selenium | Uranium | Zinc  |
|--------------------------------------------------|----------------------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|----------|---------|--------|---------|----------|-----------|-------------|-----------|-------------|---------|--------|----------|---------|-------|
|                                                  | Units                                                          | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L     | mg/L    | mg/L   | mg/L    | mg/L     | mg/L      | mg/L mg/L   | mg/L      | mg/L        | mg/L    | mg/L   | mg/L     | mg/L    | mg/L  |
| Guidelines for Canadian E                        | Drinking Water Quality                                         |         |      | 10           |                      |                     |          | 0.006    | 0.01    | 2.0    | 0.007   | 0.05     | 1.0 / 2.0 | 0.3 0.005   |           | 0.02 / 0.12 | 0.001   |        | 0.01     | 0.02    | 5.0   |
| Aesthetic(A) Paramete                            | er or Contaminant (C)                                          |         |      | С            |                      |                     |          | С        | С       | С      | С       | С        | A / C     | A C         |           | A / C       | С       |        | С        | С       | Α     |
| Community Name:<br>Service Area:<br>Source Name: | Port au Port West-Aguat<br>Felix Cove<br>#4-Goose Pond Road We |         |      |              |                      |                     |          |          |         |        |         |          |           |             |           |             |         |        |          |         |       |
|                                                  | Sep 15, 2020                                                   | 0 000   | 0.9  | 0.140        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.150  | 0.00000 | 0.00000  | 0.003     | 0.000 0.000 | 21.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Aug 15, 2017                                                   | 0 000   | 1.3  | 0.140        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00000  | 0.000     | 0.000 0.000 | 22.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0005  | 0.014 |
|                                                  | Jun 01, 2011                                                   | 0 000   | 1.2  | 0.140        | 0.260                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.140  | 0.00000 | 0.00200  | 0.002     | 0.000 0.000 | 20.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.010 |
|                                                  | Jun 22, 2010                                                   | 0 000   | 1.3  | 0.170        | 0.000                | 0.010               | 0.000    | 0.00000  | 0.000   | 0.140  | 0.00000 | 0.00000  | 0.001     | 0.000 0.000 | 22.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.010 |
|                                                  | Jun 05, 2008                                                   | 0 000   | 0.7  | 0.150        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00000  | 0.003     | 0.000 0.001 | 20.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0005  | 0.027 |
|                                                  | Sep 19, 2006                                                   | 0 000   | 0.9  | 0.130        | 0.090                | 0.010               | 0.000    | 0.00000  | 0.000   | 0.150  | 0.00000 | 0.00000  | 0.001     | 0.000 0.000 | 20.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.010 |
|                                                  | Jan 17, 2006                                                   | 0 000   | 0.7  | 0.120        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.140  | 0.00000 | 0.00000  | 0.005     | 0.000 0.000 | 20.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.020 |
|                                                  | Nov 09, 2004                                                   | 0.030   | 0.6  | 0.150        | 0.000                | 0.020               | 0.000    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00500  | 0.002     | 0.000 0.000 | 20.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |

|                         | Sample Date                     | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony      | Arsenic      | Barium      | Cadmium       | Chromium     | Copper            | Iron Lead              | Magnesium | Manganese           | Mercury       | Nickel S | Selenium     | Uranium      | Zinc        |
|-------------------------|---------------------------------|---------|------|--------------|----------------------|---------------------|----------|---------------|--------------|-------------|---------------|--------------|-------------------|------------------------|-----------|---------------------|---------------|----------|--------------|--------------|-------------|
| Guidelines for Canadian | Units<br>Drinking Water Quality | mg/L    | mg/L | mg/L<br>10   | mg/L                 | mg/L                | mg/L     | mg/L<br>0.006 | mg/L<br>0.01 | mg/L<br>2.0 | mg/L<br>0.007 | mg/L<br>0.05 | mg/L<br>1.0 / 2.0 | mg/L mg/L<br>0.3 0.005 | mg/L      | mg/L<br>0.02 / 0.12 | mg/L<br>0.001 | mg/L     | mg/L<br>0.01 | mg/L<br>0.02 | mg/L<br>5.0 |
| Aesthetic(A) Parame     | ter or Contaminant (C)          |         |      | С            |                      |                     |          | С             | С            | С           | С             | С            | A / C             | A C                    |           | A / C               | С             |          | С            | С            | A           |
|                         | Jun 16, 2004                    | 0 000   | 0.9  | 0.120        | 0.290                | 0.020               | 0.000    | 0.00000       | 0.000        | 0.140       | 0.00000       | 0.00100      | 0.007             | 0.000 0.000            | 19.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0000       | 0.010       |
|                         | Nov 19, 2003                    | 0 030   | 1.2  | 0.140        | 0.025                | 0.010               | 0.005    | 0.00050       | 0.001        | 0.140       | 0.00005       | 0.00300      | 0.010             | 0.005 0.001            | 19.000    | 0.005               | ).0000        | 0.003    | 0.001        | 0.0005       | 0.010       |
|                         | Apr 30, 2003                    | 0 010   | 1.0  | 0.130        | 0.025                | 0.030               | 0.010    | 0.00050       | 0.001        | 0.130       | 0.00005       | 0.00050      | 0.004             | 0.005 0.001            | 20.000    | 0.006               | ).0000        | 0.003    | 0.001        | 0.0005       | 0.003       |
| Source Name:            | #5 Ocean View Drive We          | ell     |      |              |                      |                     |          |               |              |             |               |              |                   |                        |           |                     |               |          |              |              |             |
|                         | Sep 15, 2020                    | 0 000   | 0.9  | 0.180        | 0.000                | 0.005               | 0.000    | 0.00000       | 0.000        | 0.070       | 0.00000       | 0.00000      | 0.009             | 0.000 0.003            | 24.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0000       | 0.010       |
|                         | Aug 15, 2017                    | 0 000   | 1.1  | 0.370        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.059       | 0.00000       | 0.00000      | 0.000             | 0.000 0.001            | 25.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0004       | 0.009       |
|                         | Jun 01, 2011                    | 0 000   | 1.2  | 0.950        | 0.280                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.070       | 0.00000       | 0.00200      | 0.003             | 0.000 0.003            | 25.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0000       | 0.000       |
|                         | Jul 05, 2010                    | 0 000   | 1.4  | 0.580        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.060       | 0.00000       | 0.00100      | 0.005             | 0.000 0.000            | 24.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0000       | 0.000       |
|                         | Jun 05, 2008                    | 0 000   | 0.8  | 0.920        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.062       | 0.00000       | 0.00000      | 0.003             | 0.000 0.003            | 24.000    | 0.002               | ).0000        | 0.000    | 0.000        | 0.0004       | 0.015       |
|                         | Sep 11, 2007                    | 0 000   | 0.7  | 0.790        | 0.500                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.064       | 0.00000       | 0.00000      | 0.002             | 0.000 0.001            | 25.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0004       | 0.018       |
|                         | Sep 19, 2006                    | 0 000   | 0.9  | 0.660        | 0.120                | 0.020               | 0.000    | 0.00000       | 0.000        | 0.070       | 0.00000       | 0.00100      | 0.002             | 0.000 0.000            | 22.000    | 0.000               | ).0000        | 0.000    | 0.000        | 0.0000       | 0.010       |

|                                                    | Sample Date                                              | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony   | Arsenic   | Barium   | Cadmium    | Chromium  | Copper    | Iron Lead        | Magnesium | Manganese            | Mercury    | Nickel | Selenium  | Uranium   | Zinc     |
|----------------------------------------------------|----------------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|------------|-----------|----------|------------|-----------|-----------|------------------|-----------|----------------------|------------|--------|-----------|-----------|----------|
|                                                    | Units                                                    | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L       | mg/L      | mg/L     | mg/L       | mg/L      | mg/L      | mg/L mg/L        | mg/L      | mg/L                 | mg/L       | mg/L   | mg/L      | mg/L      | mg/L     |
| Guidelines for Canadian D<br>Aesthetic(A) Paramete |                                                          |         |      | 10<br>C      |                      |                     |          | 0.006<br>C | 0.01<br>C | 2.0<br>C | 0.007<br>C | 0.05<br>C | 1.0 / 2.0 | 0.3 0.005<br>A C |           | 0.02 / 0.12<br>A / C | 0.001<br>C |        | 0.01<br>C | 0.02<br>C | 5.0<br>A |
|                                                    |                                                          |         |      | C            |                      |                     |          | C          | C         | C        | C          | C         | A / C     | A C              |           | A / C                | C          |        | C         | C         | ~        |
|                                                    | Jan 17, 2006                                             | 0 000   | 0.9  | 1.240        | 0.060                | 0.030               | 0.000    | 0.00000    | 0.000     | 0.070    | 0.00000    | 0.00000   | 0.003     | 0.030 0.003      | 22.000    | 0.000                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.010    |
|                                                    | Nov 09, 2004                                             | 0 030   | 0.0  | 0.220        | 0.070                | 0.020               | 0.000    | 0.00000    | 0.000     | 0.050    | 0.00000    | 0.00400   | 0.004     | 0.000 0.000      | 33.000    | 0.000                | ).0000     | 0.000  | 0.003     | 0.0000    | 0.010    |
|                                                    | Jun 16, 2004                                             | N N2N   | 0.8  | 0.720        | 0.400                | 0.030               | 0.000    | 0.00000    | 0.000     | 0.060    | 0.00000    | 0.00200   | 0.006     | 0.020 0.003      | 29.000    | 0.000                | ).0000     | 0.000  | 0.003     | 0.0000    | 0.020    |
|                                                    | Nov 19, 2003                                             | 0 060   |      | 1.160        | 0.180                | 0.040               | 0.090    | 0.00050    | 0.001     | 0.070    | 0.00020    | 0.00400   | 0.115     | 0.020 0.005      | 24.000    | 0.010                | ).0000     | 0.003  | 0.001     | 0.0005    | 0.080    |
|                                                    | Apr 30, 2003                                             | 0 010   | 0.6  | 0.630        | 0.080                | 0.030               | 0.100    | 0.00050    | 0.001     | 0.060    | 0.00005    | 0.00050   | 0.009     | 0.060 0.001      | 31.000    | 0.051                | ).0000     | 0.003  | 0.003     | 0.0010    | 0.012    |
| Service Area:<br>Source Name:                      | Port au Port West, Agu<br>#1 & #3 & #6 FatherJoy<br>Well |         |      |              |                      |                     |          |            |           |          |            |           |           |                  |           |                      |            |        |           |           |          |
|                                                    | Sep 15, 2020                                             | 0 000   | 1.4  | 0.000        | 0.121                | 0.005               | 0.000    | 0.00000    | 0.003     | 0.200    | 0.00000    | 0.00000   | 0.008     | 0.030 0.000      | 21.000    | 0.020                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.000    |
|                                                    | Sep 15, 2020                                             | 0 000   | 0.8  | 0.000        | 0.000                | 0.003               | 0.000    | 0.00000    | 0.001     | 0.130    | 0.00000    | 0.00000   | 0.006     | 0.000 0.000      | 19.000    | 0.000                | ).0001     | 0.000  | 0.000     | 0.0020    | 0.000    |
|                                                    | Aug 15, 2017                                             | 0 000   | 3.4  | 0.077        | 0.000                | 0.000               | 0.009    | 0.00000    | 0.000     | 0.120    | 0.00004    | 0.00000   | 0.003     | 0.000 0.017      | 12.000    | 0.007                | ).0000     | 0.000  | 0.000     | 0.0007    | 0.036    |
|                                                    | Aug 15, 2017                                             | 0 000   | 0.8  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.001     | 0.110    | 0.00000    | 0.00000   | 0.002     | 0.000 0.000      | 19.000    | 0.000                | ).0000     | 0.000  | 0.000     | 0.0019    | 0.006    |

| Sample Date<br>Units<br>Guidelines for Canadian Drinking Water Quality | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10 | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006 | Arsenic<br>mg/L<br>0.01 | Barium<br>mg/L<br>2.0 | Cadmium<br>mg/L<br>0.007 | Chromium<br>mg/L<br>0.05 | Copper<br>mg/L<br>1.0 / 2.0 | Iron Lead<br>mg/L mg/L<br>0.3 0.005 | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12 | Mercury<br>mg/L<br>0.001 | Nickel | Selenium<br>mg/L<br>0.01 | Uranium<br>mg/L<br>0.02 | Zinc<br>mg/L<br>5.0 |
|------------------------------------------------------------------------|----------------------------|-------------|---------------------------------------|-----------------------------------------|----------------------------------------|------------------|---------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------------|-------------------------------------|------------------------------|----------------------------------|--------------------------|--------|--------------------------|-------------------------|---------------------|
| Aesthetic(A) Parameter or Contaminant (C)                              |                            |             | C                                     |                                         |                                        |                  | C                         | C                       | C                     | C                        | C                        |                             | A C                                 |                              | A / C                            | C                        |        | C                        | C                       | A                   |
| <br>Aug 15, 2017                                                       | 0 000                      | 1.5         | 0.000                                 | 0.000                                   | 0.004                                  | 0.000            | 0.00000                   | 0.003                   | 0.180                 | 0.00000                  | 0.00000                  | 0.000                       | 0.000 0.000                         | 22.000                       | 0.015                            | ).0000                   | 0.000  | 0.000                    | 0.0011                  | 0.007               |
| Jun 01, 2011                                                           | 0 000                      | 0.7         | 0.180                                 | 0.250                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.110                 | 0.00000                  | 0.00200                  | 0.002                       | 0.000 0.000                         | 19.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0020                  | 0.000               |
| Jun 01, 2011                                                           | 0 000                      | 1.4         | 0.000                                 | 0.210                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.170                 | 0.00000                  | 0.00200                  | 0.001                       | 0.000 0.000                         | 20.000                       | 0.010                            | ).0000                   | 0.000  | 0.000                    | 0.0010                  | 0.010               |
| Jun 01, 2011                                                           | 0 000                      | 3.2         | 0.000                                 | 0.250                                   | 0.000                                  | 0.010            | 0.00000                   | 0.000                   | 0.110                 | 0.00000                  | 0.00100                  | 0.003                       | 0.000 0.023                         | 11.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.030               |
| Jul 15, 2010                                                           | 0 000                      | 1.6         | 0.000                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.003                   | 0.180                 | 0.00000                  | 0.00200                  |                             | 0.000 0.000                         | 19.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    |                         | 0.000               |
| Jul 05, 2010<br>Jun 23, 2010                                           | 0 000                      | 3.0<br>1.8  | 0.000                                 | 0.180                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.120                 | 0.00000                  | 0.00000                  |                             | 0.000 0.026                         | 12.000                       | 0.000                            | ).0000)).0000            | 0.000  | 0.000                    | 0.0000                  | 0.030               |
| Jun 22, 2010                                                           | 0 000                      | 3.6         | 0.120                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.110                 | 0.00000                  | 0.00000                  | 0.003                       | 0.000 <mark>0.028</mark>            | 10.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.030               |
| Jun 22, 2010                                                           | 0 000                      | 0.9         | 0.000                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.001                   | 0.110                 | 0.00000                  | 0.00100                  | 0.003                       | 0.000 0.000                         | 18.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0020                  | 0.000               |
| Jun 05, 2008                                                           | 0 000                      | 0.5         | 0.000                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.110                 | 0.00000                  | 0.00000                  | 0.002                       | 0.000 0.000                         | 18.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0019                  | 0.018               |
| Jun 05, 2008                                                           | 0 000                      | 1.3         | 0.000                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.004                   | 0.170                 | 0.00000                  | 0.00000                  | 0.040                       | 0.130 0.002                         | 20.000                       | 0.014                            | ).0000                   | 0.000  | 0.000                    | 0.0013                  |                     |
|                                                                        |                            |             |                                       |                                         |                                        |                  |                           |                         | 4                     |                          |                          |                             |                                     |                              |                                  |                          |        |                          | May 04,                 | 2023                |

| Sample Date<br>Units<br>Guidelines for Canadian Drinking Water Quality | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10 | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br><sub>mg/L</sub> | Antimony<br>mg/L<br>0.006 | Arsenic<br>mg/L<br>0.01 | Barium<br>mg/L<br>2.0 | Cadmium<br>mg/L<br>0.007 | Chromium<br>mg/L<br>0.05 | Copper<br>mg/L<br>1.0 / 2.0 | Iron Lead<br>mg/L mg/L<br>0.3 0.005 | Magnesium<br><sub>mg/L</sub> | Manganese<br>mg/L<br>0.02 / 0.12 | Mercury<br>mg/L<br>0.001 | Nickel | Selenium<br><sup>mg/L</sup><br>0.01 | Uranium<br>mg/L<br>0.02 | Zinc<br>mg/L<br>5.0 |
|------------------------------------------------------------------------|----------------------------|-------------|---------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------|---------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------------|-------------------------------------|------------------------------|----------------------------------|--------------------------|--------|-------------------------------------|-------------------------|---------------------|
| Aesthetic(A) Parameter or Contaminant (C)                              |                            |             | C                                     |                                         |                                        |                             | 0.000<br>C                | C                       | 2.0<br>C              | C.007                    | C                        | A / C                       |                                     |                              | A / C                            | C                        |        | C                                   | 0.02<br>C               | A.                  |
| <br>Feb 05, 2007                                                       | 0 020                      | 1.4         | 0.000                                 | 0.130                                   | 0.010                                  | 0.000                       | 0.00000                   | 0.003                   | 0.170                 | 0.00000                  | 0.00200                  | 0.001                       | 0.000 0.000                         | 20.000                       | 0.010                            | ).0000                   | 0.000  | 0.000                               | 0.0010                  | 0.000               |
| Feb 05, 2007                                                           | 0 000                      | 0.9         | 0.000                                 | 0.000                                   | 0.000                                  | 0.000                       | 0.00000                   | 0.001                   | 0.110                 | 0.00000                  | 0.00200                  | 0.003                       | 0.000 0.000                         | 17.000                       | 0.000                            | ).0000                   | 0.000  | 0.001                               | 0.0010                  | 0.000               |
| Sep 19, 2006                                                           | 0 000                      | 1.4         | 0.000                                 | 0.080                                   | 0.030                                  | 0.000                       | 0.00000                   | 0.003                   | 0.180                 | 0.00000                  | 0.00200                  | 0.001                       | 0.000 0.000                         | 19.000                       | 0.010                            | ).0000                   | 0.000  | 0.001                               | 0.0010                  | 0.000               |
| Sep 19, 2006                                                           | 0 000                      | 0.5         | 0.000                                 | 0.000                                   | 0.050                                  | 0.000                       | 0.00000                   | 0.001                   | 0.110                 | 0.00000                  | 0.00100                  |                             | 0.000 0.000                         | 17.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                               | 0.0020                  | 0.000               |
| Jan 17, 2006<br>Jan 17, 2006                                           | 0 000                      | 0.0         | 0.000                                 | 0.000                                   | 0.090                                  | 0.000                       | 0.00000                   | 0.003                   | 0.180                 | 0.00000                  | 0.00100                  |                             | 0.050 0.000                         | 20.000                       | 0.010                            | ).0000)).0000            | 0.000  | 0.000                               |                         | 0.000               |
| Sep 20, 2005                                                           | 0 000                      | 0.0         | 0.000                                 | 0.180                                   | 0.020                                  | 0.000                       | 0.00000                   | 0.002                   | 0.110                 | 0.00000                  | 0.00100                  | 0.002                       | 0.000 0.000                         | 17.000                       | 0.000                            | ).0000                   | 0.000  | 0.001                               | 0.0020                  | 0.000               |
| Sep 20, 2005                                                           | 0 000                      | 0.9         | 0.000                                 | 0.130                                   | 0.000                                  | 0.000                       | 0.00000                   | 0.003                   | 0.170                 | 0.00000                  | 0.00200                  | 0.002                       | 0.000 0.000                         | 19.000                       | 0.010                            | ).0000                   | 0.000  | 0.001                               | 0.0010                  | 0.000               |
| Nov 09, 2004                                                           | 0 000                      | 4.2         | 0.000                                 | 0.070                                   | 0.000                                  | 0.010                       | 0.00000                   | 0.000                   | 0.090                 | 0.00000                  | 0.00200                  | 0.008                       | 0.140 0.000                         | 13.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                               | 0.0010                  | 0.020               |
| Nov 09, 2004                                                           | 0 030                      | 1.2         | 0.000                                 | 0.080                                   | 0.050                                  | 0.000                       | 0.00000                   | 0.003                   | 0.180                 | 0.00000                  | 0.00500                  | 0.007                       | 0.020 0.003                         | 21.000                       | 0.020                            | ).0000                   | 0.000  | 0.000                               | 0.0010                  | 0.000               |
| Jun 16, 2004                                                           | 0 130                      | 1.1         | 0.000                                 | 0.420                                   | 0.030                                  | 0.000                       | 0.00000                   | 0.003                   | 0.190                 | 0.00000                  | 0.00200                  | 0.008                       | 0.060 0.000                         | 19.000                       | 0.020                            | ).0000                   | 0.000  | 0.001                               | 0.0010                  |                     |
|                                                                        |                            |             |                                       |                                         |                                        |                             |                           |                         | 5                     |                          |                          |                             |                                     |                              |                                  |                          |        |                                     | May 04,                 | 2023                |

|                                                    | Sample Date                               | Ammonia<br>mg/L | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br><sub>mg/L</sub> | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br><sub>mg/L</sub> | Cadmium<br><sub>mg/L</sub> | Chromium<br>mg/L | Copper<br>mg/L | Iron Lead   | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L    | Mercury<br>mg/L | Nickel | Selenium<br><sub>mg/L</sub> | Uranium<br><sub>mg/L</sub> | Zinc<br>mg/L |
|----------------------------------------------------|-------------------------------------------|-----------------|-------------|--------------|-----------------------------------------|----------------------------------------|-----------------------------|------------------|-----------------|---------------------------|----------------------------|------------------|----------------|-------------|------------------------------|----------------------|-----------------|--------|-----------------------------|----------------------------|--------------|
| Guidelines for Canadian E<br>Aesthetic(A) Paramete |                                           |                 |             | 10<br>C      |                                         |                                        |                             | 0.006<br>C       | 0.01            | 2.0<br>C                  | 0.007                      | 0.05             | 1.0 / 2.0      | 0.3 0.005   |                              | 0.02 / 0.12<br>A / C | 0.001<br>C      |        | 0.01<br>C                   | 0.02                       | 5.0          |
|                                                    | er of Contaminant (C)                     |                 |             | C            |                                         |                                        |                             | U                | С               | C                         | С                          | C                | A/C            | A C         |                              | ATC                  | C               |        | U                           | С                          | A            |
|                                                    | Jun 16, 2004                              | 0 000           | 0.9         | 0.000        | 0.330                                   | 0.020                                  | 0.000                       | 0.00000          | 0.001           | 0.110                     | 0.00000                    | 0.00200          | 0.105          | 0.080 0.003 | 18.000                       | 0.000                | ).0000          | 0.000  | 0.002                       | 0.0020                     | 0.050        |
|                                                    | Nov 19, 2003                              | N N1N           | 0.6         | 0.050        | 0.025                                   | 0.005                                  | 0.005                       | 0.00050          | 0.001           | 0.110                     | 0.00005                    | 0.00200          | 0.020          | 0.420 0.001 | 17.000                       | 0.005                | ).0000          | 0.003  | 0.001                       | 0.0020                     | 0.030        |
|                                                    | Nov 19, 2003                              | 0 030           | 1.4         | 0.050        | 0.025                                   | 0.010                                  | 0.030                       | 0.00050          | 0.003           | 0.180                     | 0.00005                    | 0.00300          | 0.005          | 0.020 0.001 | 19.000                       | 0.010                | ).0000          | 0.003  | 0.001                       | 0.0010                     | 0.005        |
|                                                    | Apr 30, 2003                              | N N1N           | 0.5         | 0.050        | 0.060                                   | 0.010                                  | 0.150                       | 0.00050          | 0.002           | 0.120                     | 0.00010                    | 0.00050          | 0.030          | 0.150 0.002 | 19.000                       | 0.039                | ).0000          | 0.003  | 0.001                       | 0.0020                     | 0.003        |
|                                                    | Apr 30, 2003                              | N N1N           | 1.0         | 0.290        | 0.080                                   | 0.040                                  | 0.020                       | 0.00050          | 0.003           | 0.180                     | 0.00005                    | 0.00050          | 0.003          | 0.060 0.001 | 21.000                       | 0.023                | ).0000          | 0.003  | 0.001                       | 0.0020                     | 0.003        |
| Community Name:<br>Service Area:<br>Source Name:   | St. George's<br>St. George's<br>Wellfield |                 |             |              |                                         |                                        |                             |                  |                 |                           |                            |                  |                |             |                              |                      |                 |        |                             |                            |              |
|                                                    | Sep 16, 2020                              | 0 000           | 1.4         | 0.620        | 0.000                                   | 0.005                                  | 0.020                       | 0.00000          | 0.000           | 0.010                     | 0.00000                    | 0.00000          | 0.007          | 0.350 0.000 | 4.000                        | 0.000                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.010        |
|                                                    | Sep 16, 2020                              | 0 000           | 1.3         | 0.000        | 0.000                                   | 0.007                                  | 0.000                       | 0.00000          | 0.000           | 0.020                     | 0.00000                    | 0.00000          | 0.006          | 0.180 0.001 | 6.000                        | 0.020                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.020        |
|                                                    | Sep 16, 2020                              | 0 000           | 0.6         | 0.110        | 0.000                                   | 0.004                                  | 0.000                       | 0.00000          | 0.000           | 0.010                     | 0.00000                    | 0.00000          | 0.008          | 0.160 0.000 | 4.000                        | 0.040                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.020        |
|                                                    | Aug 16, 2017                              | 0 000           | 1.0         | 0.070        | 0.000                                   | 0.007                                  | 0.000                       | 0.00000          | 0.000           | 0.009                     | 0.00000                    | 0.00000          | 0.014          | 0.350 0.002 | 4.500                        | 0.051                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.110        |

| Sample Dat                                                                                           | e Ammonia | DOC  | Nitrate(ite)    | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony           | Arsenic           | Barium           | Cadmium            | Chromium                       | Copper Iron Lead                                   | Magnesium | Manganese                    | Mercury            | Nickel | Selenium          | Uranium           | Zinc             |
|------------------------------------------------------------------------------------------------------|-----------|------|-----------------|----------------------|---------------------|----------|--------------------|-------------------|------------------|--------------------|--------------------------------|----------------------------------------------------|-----------|------------------------------|--------------------|--------|-------------------|-------------------|------------------|
| Units<br>Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) | mg/L      | mg/L | mg/L<br>10<br>C | mg/L                 | mg/L                | mg/L     | mg/L<br>0.006<br>C | mg/L<br>0.01<br>C | mg/L<br>2.0<br>C | mg/L<br>0.007<br>C | mg/L<br>0.05<br><mark>C</mark> | mg/L mg/L mg/L<br>1.0 / 2.0 0.3 0.005<br>A / C A C | mg/L      | mg/L<br>0.02 / 0.12<br>A / C | mg/L<br>0.001<br>C | mg/L   | mg/L<br>0.01<br>C | mg/L<br>0.02<br>C | mg/L<br>5.0<br>A |
| Aug 16, 2017                                                                                         | 0 000     | 1.2  | 0.000           | 0.000                | 0.012               | 0.011    | 0.00000            | 0.000             | 0.016            | 0.00000            | 0.00000                        | 0.004 0.340 0.005                                  | 5.000     | 0.036                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.053            |
| Aug 16, 2017                                                                                         | n 000     | 1.0  | 0.750           | 0.000                | 0.006               | 0.008    | 0.00000            | 0.000             | 0.012            | 0.00000            | 0.00500                        | 0.140 0.096 0.022                                  | 4.300     | 0.000                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.100            |
| May 19, 2011                                                                                         | 0 000     | 2.8  | 0.290           | 0.000                | 0.000               | 0.020    | 0.00000            | 0.000             | 0.000            | 0.00000            | 0.00000                        | 0.003 0.040 0.000                                  | 0.000     | 0.000                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.000            |
| May 19, 2011                                                                                         | 0 000     | 1.5  | 0.000           | 0.160                | 0.000               | 0.050    | 0.00000            | 0.000             | 0.060            | 0.00000            | 0.00200                        | 0.004 0.440 0.002                                  | 9.000     | 0.100                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.020            |
| May 19, 2011                                                                                         | 0 000     | 0.9  | 0.000           | 0.000                | 0.000               | 0.000    | 0.00000            | 0.000             | 0.000            | 0.00000            | 0.00100                        | 0.001 0.070 0.001                                  | 3.000     | 0.010                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.020            |
| May 19, 2011                                                                                         | 0 000     | 1.3  | 0.000           | 0.000                | 0.000               | 0.000    | 0.00000            | 0.000             | 0.020            | 0.00000            | 0.00100                        | 0.000 0.590 0.002                                  | 5.000     | 0.060                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.000            |
| May 20, 2010                                                                                         | ) ೧ ೧೧೧   | 0.6  | 0.000           | 0.000                | 0.000               | 0.000    | 0.00000            | 0.000             | 0.040            | 0.00000            | 0.00000                        | 0.001 0.050 0.000                                  | 6.000     | 0.050                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.000            |
| May 20, 2010                                                                                         | 0 000     | 0.8  | 0.290           | 0.000                | 0.000               | 0.000    | 0.00000            | 0.000             | 0.020            | 0.00000            | 0.00000                        | 0.004 0.190 0.002                                  | 3.000     | 0.000                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.000            |
| May 20, 2010                                                                                         | ) ೧ ೧೧೧   | 1.2  | 0.000           | 0.000                | 0.000               | 0.000    | 0.00000            | 0.000             | 0.000            | 0.00000            | 0.00000                        | 0.002 0.470 0.002                                  | 2.000     | 0.030                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.000            |
| May 20, 2010                                                                                         | ) ೧ ೧೧೧   | 0.8  | 0.000           | 0.000                | 0.000               | 0.000    | 0.00000            | 0.000             | 0.000            | 0.00000            | 0.00000                        | 0.001 0.040 0.000                                  | 3.000     | 0.010                        | ).0000             | 0.000  | 0.000             | 0.0000            | 0.020            |
|                                                                                                      |           |      |                 |                      |                     |          |                    |                   |                  |                    |                                |                                                    |           |                              |                    |        |                   |                   |                  |

|                                        | Sample Date | Ammonia | DOC  | Nitrate(ite) | Kjeldahl | Total      | Aluminum | Antimony | Arsenic | Barium | Cadmium C | hromium | Copper    | Iron Lead | Magnesium | Manganese   | Mercury | Nickel S | Selenium | Uranium | Zinc |
|----------------------------------------|-------------|---------|------|--------------|----------|------------|----------|----------|---------|--------|-----------|---------|-----------|-----------|-----------|-------------|---------|----------|----------|---------|------|
|                                        |             |         |      |              | Nitrogen | Phosphorus |          |          |         |        |           |         |           |           |           |             |         |          |          |         |      |
|                                        | Units       | mg/L    | mg/L | mg/L         | mg/L     | mg/L       | mg/L     | mg/L     | mg/L    | mg/L   | mg/L      | mg/L    | mg/L      | mg/L mg/L | mg/L      | mg/L        | mg/L    | mg/L     | mg/L     | mg/L    | mg/L |
| Guidelines for Canadian Drinking Water | Quality     |         |      | 10           |          |            |          | 0.006    | 0.01    | 2.0    | 0.007     | 0.05    | 1.0 / 2.0 | 0.3 0.005 |           | 0.02 / 0.12 | 0.001   |          | 0.01     | 0.02    | 5.0  |
| Aesthetic(A) Parameter or Contamir     | nant (C)    |         |      | С            |          |            |          | С        | С       | С      | С         | С       | A / C     | A C       |           | A / C       | С       |          | С        | С       | Α    |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data.

LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects .

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the health aspects of contaminants.

### Contaminant and Aesthetic Exceedances

Nitrate(ite) - The maximum acceptable concentration for nitrate(ite) in drinking water is 10 mgL expressed as nitrate-nitrogen. Nitrate and nitrite are naturally occurring ions that are widespread in the environment. High levels of this contaminant can cause adverse health effects for some people

Arsenic - The interim maximum acceptable concentration for arsenic in drinking water is 0.01 mg/L. Arsenic is introduced into water through the dissolution of minerals and ores, from industrial effluents and via atmospheric deposition. High levels of this contaminant can cause adverse health effects for some people.

Barium - The maximum acceptable concentration for barium in drinking water is 2.0 mg/L. Barium is not found free in nature but occurs as in a number of compounds. High levels of this contaminant can cause adverse health effects for some people.

Cadmium - The maximum acceptable concentration for cadmium in drinking water is 0.007 mg/L. Cadmium that is present as an impurity in galvanized pipes, a constituent of solders used in fitting water heaters or incorporated into stabilizers in black polyethylene pipes may contaminate water supplies during their distribution. High levels of this contaminant can cause adverse health effects for some people.

Chromium - The maximum acceptable concentration for chromium in drinking water is 0.05 mg/L. High levels of this contaminant can cause adverse health effects for some people

Lead - The maximum acceptable concentration for lead in drinking water is 0.005 mg/l. Lead is present in tap water as a result of dissolution from natural sources or from the distribution systems and olumbing containing lead in pipes, solder or service connections. High levels of this contaminant can cause adverse health effects for some people

Mercury - The maximum acceptable concentration for mercury in drinking water is 0.001 mg/L. High levels of this contaminant can cause adverse health effects for some people

Selenium - The maximum acceptable concentration for selenium in drinking water is 0.01 mg/L. High levels of this contaminant can cause adverse health effects for some people

Uranium - The interim maximum acceptable concentration for uranium in drinking water is 0.02 mg/L. Uranium may enter drinking water from naturally occurring deposits or as a result of human activity, such as mill tailings and phosphate fertilizers. High levels of this contaminant can cause adverse health effects for some people

Antimony - The interim maximum acceptable concentration (IMAC) for antimony in drinking water is 0.006 mg/L. It is a naturally occurring metal that is introduced into water through the natural weathering of rocks, runoff from soils, effluents from mining and manufacturing operations, industrial and municipal leachate discharges and from household piping and possibly non-leaded solders. High levels of this contaminant can cause adverse health effects for some people Copper - The maximum acceptable concentration for copper in dinking water is 2.0 mgL and the assthetic objective for copper in dinking water is 1.0 mgL. Copper is widely distributed in nature and is found frequently in surface water and in some groundwater. Usally, copper in tap water is the result of dissolution of copper piping within the distribution system. The aesthetic objective was set to ensure palatability and to minimize staining of laundry and plumbing fixtures. Copper is an essential element in human metabolism and copper deficiency results in a variety of clinical disorders. At extremely high doese copper intake can result in adverse health effects. High levels of copper in tap water may result in blue-green staining on some fixtures.

Iron - The aesthetic objective for iron in drinking water is 0.3 mg/L. Usually, iron in tap water is the result of high iron content in the raw water and dissolution of iron piping within the distribution system. Iron is an essential element in nutrition. High levels of iron in tap water can cause staining of laundry and plumbing fixtures, unpleasant taste, colour and promote biological growths in the distribution system.

Manganese - The maximum acceptable concentration for manganese in drinking water is 0.12 mgL and the aesthetic objective for manganese in drinking water is 0.02 mg/L. Usually, manganese in drinking water is the result of high amounts of manganese in the source water supply's bedrock Levels above the maximum acceptable concentration can cause adverse health effects for some people Levels above the aesthetic objective may cause staining of plumbing and laundry and undesirable tastes in beverages.

Zinc - The aesthetic objective for zinc in drinking water is 5.0 mg/L. Zinc in water can be naturally occurring or due to zinc in plumbing materials. Zinc is an essential element for human nutrition. Long term ingestion of zinc has not resulted in adverse effects. Water with zinc concentrations higher than the aesthetic objective has an astringent taste and may be opalescent and develop a greasy film on boiling.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units



|                                                  | Sample Date                             | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony | Arsenic | Barium | Cadmium | Chromium | Copper    | Iron Lead   | Magnesium | Manganese   | Mercury | Nickel | Selenium | Uranium | Zinc  |
|--------------------------------------------------|-----------------------------------------|---------|------|--------------|----------------------|---------------------|----------|----------|---------|--------|---------|----------|-----------|-------------|-----------|-------------|---------|--------|----------|---------|-------|
|                                                  | Units                                   | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L     | mg/L    | mg/L   | mg/L    | mg/L     | mg/L      | mg/L mg/L   | mg/L      | mg/L        | mg/L    | mg/L   | mg/L     | mg/L    | mg/L  |
| Guidelines for Canadian                          | Drinking Water Quality                  |         |      | 10           |                      |                     |          | 0.006    | 0.01    | 2.0    | 0.007   | 0.05     | 1.0 / 2.0 | 0.3 0.005   |           | 0.02 / 0.12 | 0.001   |        | 0.01     | 0.02    | 5.0   |
| Aesthetic(A) Parame                              | ter or Contaminant (C)                  |         |      | С            |                      |                     |          | С        | С       | С      | С       | С        | A / C     | A C         |           | A / C       | С       |        | С        | С       | Α     |
| Community Name:<br>Service Area:<br>Source Name: | Sheaves Cove<br>Sheaves Cove<br>Drilled |         |      |              |                      |                     |          |          |         |        |         |          |           |             |           |             |         |        |          |         |       |
|                                                  | Sep 15, 2020                            | 0 000   | 1.3  | 0.310        | 0.000                | 0.002               | 0.000    | 0.00000  | 0.000   | 0.060  | 0.00000 | 0.00000  | 0.105     | 0.000 0.000 | 15.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.020 |
|                                                  | Aug 15, 2017                            | 0 000   | 1.6  | 0.220        | 0.000                | 0.004               | 0.011    | 0.00000  | 0.000   | 0.057  | 0.00003 | 0.00000  | 0.000     | 0.000 0.000 | 15.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0004  | 0.026 |
|                                                  | Jun 01, 2011                            | 0 000   | 1.7  | 0.110        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.050  | 0.00000 | 0.00100  | 0.000     | 0.000 0.000 | 14.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Jun 04, 2010                            | 0 000   | 4.3  | 0.110        | 0.000                | 0.030               | 0.220    | 0.00000  | 0.000   | 0.020  | 0.00000 | 0.00200  | 0.002     | 0.170 0.000 | 7.000     | 0.010       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Jun 02, 2008                            | 0 000   | 2.2  | 0.240        | 0.000                | 0.000               | 0.070    | 0.00000  | 0.000   | 0.030  | 0.00000 | 0.00000  | 0.003     | 0.060 0.001 | 7.400     | 0.008       | ).0000  | 0.000  | 0.000    | 0.0002  | 0.006 |
|                                                  | Sep 18, 2006                            | 0 000   | 1.7  | 0.200        | 0.000                | 0.010               | 0.040    | 0.00000  | 0.000   | 0.070  | 0.00000 | 0.00200  | 0.003     | 0.050 0.001 | 14.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.020 |
|                                                  | Jan 16, 2006                            | 0 000   | 2.8  | 0.110        | 0.360                | 0.010               | 0.110    | 0.00000  | 0.000   | 0.020  | 0.00000 | 0.00300  | 0.001     | 0.090 0.001 | 5.000     | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Nov 09, 2004                            | በ በፈበ   | 2.3  | 0.240        | 0.120                | 0.000               | 0.010    | 0.00000  | 0.000   | 0.030  | 0.00000 | 0.00400  | 0.001     | 0.020 0.000 | 10.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |

|                                                  | Sample Date                                     | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony   | Arsenic   | Barium   | Cadmium    | Chromium  | Copper    | Iron Lead        | Magnesium | Manganese            | Mercury    | Nickel | Selenium  | Uranium   | Zinc     |
|--------------------------------------------------|-------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|------------|-----------|----------|------------|-----------|-----------|------------------|-----------|----------------------|------------|--------|-----------|-----------|----------|
|                                                  | Units                                           | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L       | mg/L      | mg/L     | mg/L       | mg/L      | mg/L      | mg/L mg/L        | mg/L      | mg/L                 | mg/L       | mg/L   | mg/L      | mg/L      | mg/L     |
| Guidelines for Canadian I                        | Drinking Water Quality<br>er or Contaminant (C) |         |      | 10<br>C      |                      |                     |          | 0.006<br>C | 0.01<br>C | 2.0<br>C | 0.007<br>C | 0.05<br>C | 1.0 / 2.0 | 0.3 0.005<br>A C |           | 0.02 / 0.12<br>A / C | 0.001<br>C |        | 0.01<br>C | 0.02<br>C | 5.0<br>A |
|                                                  |                                                 |         |      | 0            |                      |                     |          | 0          | 0         | 0        | Ŭ          | 0         | A / 0     | A 0              |           | A / C                | 0          |        | U         | 0         |          |
|                                                  | Jun 16, 2004                                    | 0 000   | 3.6  | 0.130        | 0.260                | 0.030               | 0.080    | 0.00000    | 0.000     | 0.020    | 0.00000    | 0.00000   | 0.002     | 0.080 0.002      | 6.000     | 0.000                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.000    |
|                                                  | Nov 17, 2003                                    | 0 010   | 4.7  | 0.120        | 0.050                | 0.030               | 0.040    | 0.00050    | 0.001     | 0.060    | 0.00005    | 0.00400   | 0.005     | 0.020 0.001      | 15.000    | 0.005                | ).0000     | 0.003  | 0.001     | 0.0005    | 0.020    |
|                                                  | Apr 29, 2003                                    | 0 010   | 2.7  | 0.320        | 0.100                | 0.005               | 0.070    | 0.00050    | 0.001     | 0.020    | 0.00005    | 0.00050   | 0.007     | 0.130 0.002      | 5.000     | 0.005                | ).0000     | 0.003  | 0.001     | 0.0005    | 0.003    |
|                                                  | Nov 23, 2001                                    | 0 010   | 19.1 | 0.150        | 0.025                | 0.005               | 0.025    |            | 0.001     | 0.050    | 0.00005    | 0.00050   | 0.008     | 0.020 0.002      | 15.000    | 0.005                | ).0000     | 0.005  | 0.001     |           | 0.010    |
| Community Name:<br>Service Area:<br>Source Name: | St. George's<br>St. George's<br>Wellfield       |         |      |              |                      |                     |          |            |           |          |            |           |           |                  |           |                      |            |        |           |           |          |
|                                                  | Sep 16, 2020                                    | 0 000   | 1.3  | 0.000        | 0.000                | 0.007               | 0.000    | 0.00000    | 0.000     | 0.020    | 0.00000    | 0.00000   | 0.006     | 0.180 0.001      | 6.000     | 0.020                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.020    |
|                                                  | Sep 16, 2020                                    | 0 000   | 1.4  | 0.620        | 0.000                | 0.005               | 0.020    | 0.00000    | 0.000     | 0.010    | 0.00000    | 0.00000   | 0.007     | 0.350 0.000      | 4.000     | 0.000                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.010    |
|                                                  | Sep 16, 2020                                    | 0 000   | 0.6  | 0.110        | 0.000                | 0.004               | 0.000    | 0.00000    | 0.000     | 0.010    | 0.00000    | 0.00000   | 0.008     | 0.160 0.000      | 4.000     | 0.040                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.020    |
|                                                  | Aug 16, 2017                                    | 0 000   | 1.2  | 0.000        | 0.000                | 0.012               | 0.011    | 0.00000    | 0.000     | 0.016    | 0.00000    | 0.00000   | 0.004     | 0.340 0.005      | 5.000     | 0.036                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.053    |
|                                                  | Aug 16, 2017                                    | 0 000   | 1.0  | 0.750        | 0.000                | 0.006               | 0.008    | 0.00000    | 0.000     | 0.012    | 0.00000    | 0.00500   | 0.140     | 0.096 0.022      | 4.300     | 0.000                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.100    |

| Sample Date<br>Units<br>Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite)<br>mg/L<br>10<br>C | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006<br>C | Arsenic<br>mg/L<br>0.01<br>C | Barium<br><sup>mg/L</sup><br>2.0<br>C | Cadmium<br>mg/L<br>0.007<br>C | Chromium<br>mg/L<br>0.05<br>C | Copper<br>mg/L<br>1.0 / 2.0<br>A / C | Iron Lead<br>mg/L mg/L<br>0.3 0.005<br>A C | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C | Mercury<br>mg/L<br>0.001<br>C | Nickel S | Selenium<br>mg/L<br>0.01<br>C | Uranium<br>mg/L<br>0.02<br>C | Zinc<br>mg/L<br>5.0<br>A |
|---------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------------------------|-----------------------------------------|----------------------------------------|------------------|--------------------------------|------------------------------|---------------------------------------|-------------------------------|-------------------------------|--------------------------------------|--------------------------------------------|------------------------------|-------------------------------------------|-------------------------------|----------|-------------------------------|------------------------------|--------------------------|
|                                                                                                                     |                            |             |                                 |                                         |                                        |                  |                                |                              |                                       |                               |                               |                                      |                                            |                              |                                           |                               |          | _                             |                              |                          |
| Aug 16, 2017                                                                                                        | 0 000                      | 1.0         | 0.070                           | 0.000                                   | 0.007                                  | 0.000            | 0.00000                        | 0.000                        | 0.009                                 | 0.00000                       | 0.00000                       | 0.014                                | 0.350 0.002                                | 4.500                        | 0.051                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.110                    |
| May 19, 2011                                                                                                        | 0 000                      | 1.3         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.020                                 | 0.00000                       | 0.00100                       | 0.000                                | 0.590 0.002                                | 5.000                        | 0.060                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 19, 2011                                                                                                        | 0 000                      | 0.9         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.000                                 | 0.00000                       | 0.00100                       | 0.001                                | 0.070 0.001                                | 3.000                        | 0.010                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.020                    |
| May 19, 2011                                                                                                        | 0 000                      | 2.8         | 0.290                           | 0.000                                   | 0.000                                  | 0.020            | 0.00000                        | 0.000                        | 0.000                                 | 0.00000                       | 0.00000                       | 0.003                                | 0.040 0.000                                | 0.000                        | 0.000                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 19, 2011                                                                                                        | 0 000                      | 1.5         | 0.000                           | 0.160                                   | 0.000                                  | 0.050            | 0.00000                        | 0.000                        | 0.060                                 | 0.00000                       | 0.00200                       | 0.004                                | 0.440 0.002                                | 9.000                        | 0.100                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.020                    |
| May 20, 2010                                                                                                        | 0 000                      | 0.8         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.000                                 | 0.00000                       | 0.00000                       | 0.001                                | 0.040 0.000                                | 3.000                        | 0.010                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.020                    |
| May 20, 2010                                                                                                        | 0 000                      | 0.8         | 0.290                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.020                                 | 0.00000                       | 0.00000                       | 0.004                                | 0.190 0.002                                | 3.000                        | 0.000                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 20, 2010                                                                                                        | 0 000                      | 0.6         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.040                                 | 0.00000                       | 0.00000                       | 0.001                                | 0.050 0.000                                | 6.000                        | 0.050                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 20, 2010                                                                                                        | 0 000                      | 1.2         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.000                                 | 0.00000                       | 0.00000                       | 0.002                                | 0.470 0.002                                | 2.000                        | 0.030                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
|                                                                                                                     |                            |             |                                 |                                         |                                        |                  |                                |                              |                                       |                               |                               |                                      |                                            |                              |                                           |                               |          |                               |                              |                          |

|                                        | Sample Date | Ammonia | DOC  | Nitrate(ite) | Kjeldahl | Total      | Aluminum | Antimony | Arsenic | Barium | Cadmium C | hromium | Copper    | Iron Lead | Magnesium | Manganese   | Mercury | Nickel S | Selenium | Uranium | Zinc |
|----------------------------------------|-------------|---------|------|--------------|----------|------------|----------|----------|---------|--------|-----------|---------|-----------|-----------|-----------|-------------|---------|----------|----------|---------|------|
|                                        |             |         |      |              | Nitrogen | Phosphorus |          |          |         |        |           |         |           |           |           |             |         |          |          |         |      |
|                                        | Units       | mg/L    | mg/L | mg/L         | mg/L     | mg/L       | mg/L     | mg/L     | mg/L    | mg/L   | mg/L      | mg/L    | mg/L      | mg/L mg/L | mg/L      | mg/L        | mg/L    | mg/L     | mg/L     | mg/L    | mg/L |
| Guidelines for Canadian Drinking Water | Quality     |         |      | 10           |          |            |          | 0.006    | 0.01    | 2.0    | 0.007     | 0.05    | 1.0 / 2.0 | 0.3 0.005 |           | 0.02 / 0.12 | 0.001   |          | 0.01     | 0.02    | 5.0  |
| Aesthetic(A) Parameter or Contamir     | nant (C)    |         |      | С            |          |            |          | С        | С       | С      | С         | С       | A / C     | A C       |           | A / C       | С       |          | С        | С       | Α    |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data.

LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects .

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the health aspects of contaminants.

### Contaminant and Aesthetic Exceedances

Nitrate(ite) - The maximum acceptable concentration for nitrate(ite) in drinking water is 10 mgL expressed as nitrate-nitrogen. Nitrate and nitrite are naturally occurring ions that are widespread in the environment. High levels of this contaminant can cause adverse health effects for some people

Arsenic - The interim maximum acceptable concentration for arsenic in drinking water is 0.01 mg/L. Arsenic is introduced into water through the dissolution of minerals and ores, from industrial effluents and via atmospheric deposition. High levels of this contaminant can cause adverse health effects for some people.

Barium - The maximum acceptable concentration for barium in drinking water is 2.0 mg/L. Barium is not found free in nature but occurs as in a number of compounds. High levels of this contaminant can cause adverse health effects for some people.

Cadmium - The maximum acceptable concentration for cadmium in drinking water is 0.007 mg/L. Cadmium that is present as an impurity in galvanized pipes, a constituent of solders used in fitting water heaters or incorporated into stabilizers in black polyethylene pipes may contaminate water supplies during their distribution. High levels of this contaminant can cause adverse health effects for some people.

Chromium - The maximum acceptable concentration for chromium in drinking water is 0.05 mg/L. High levels of this contaminant can cause adverse health effects for some people

Lead - The maximum acceptable concentration for lead in drinking water is 0.005 mg/l. Lead is present in tap water as a result of dissolution from natural sources or from the distribution systems and olumbing containing lead in pipes, solder or service connections. High levels of this contaminant can cause adverse health effects for some people

Mercury - The maximum acceptable concentration for mercury in drinking water is 0.001 mg/L. High levels of this contaminant can cause adverse health effects for some people

Selenium - The maximum acceptable concentration for selenium in drinking water is 0.01 mg/L. High levels of this contaminant can cause adverse health effects for some people

Uranium - The interim maximum acceptable concentration for uranium in drinking water is 0.02 mg/L. Uranium may enter drinking water from naturally occurring deposits or as a result of human activity, such as mill tailings and phosphate fertilizers. High levels of this contaminant can cause adverse health effects for some people

Antimony - The interim maximum acceptable concentration (IMAC) for antimony in drinking water is 0.006 mg/L. It is a naturally occurring metal that is introduced into water through the natural weathering of rocks, runoff from soils, effluents from mining and manufacturing operations, industrial and municipal leachate discharges and from household piping and possibly non-leaded solders. High levels of this contaminant can cause adverse health effects for some people Copper - The maximum acceptable concentration for copper in dinking water is 2.0 mgL and the assthetic objective for copper in dinking water is 1.0 mgL. Copper is widely distributed in nature and is found frequently in surface water and in some groundwater. Usally, copper in tap water is the result of dissolution of copper piping within the distribution system. The aesthetic objective was set to ensure palatability and to minimize staining of laundry and plumbing fixtures. Copper is an essential element in human metabolism and copper deficiency results in a variety of clinical disorders. At extremely high doese copper intake can result in adverse health effects. High levels of copper in tap water may result in blue-green staining on some fixtures.

Iron - The aesthetic objective for iron in drinking water is 0.3 mg/L. Usually, iron in tap water is the result of high iron content in the raw water and dissolution of iron piping within the distribution system. Iron is an essential element in nutrition. High levels of iron in tap water can cause staining of laundry and plumbing fixtures, unpleasant taste, colour and promote biological growths in the distribution system.

Manganese - The maximum acceptable concentration for manganese in drinking water is 0.12 mgL and the aesthetic objective for manganese in drinking water is 0.02 mg/L. Usually, manganese in drinking water is the result of high amounts of manganese in the source water supply's bedrock Levels above the maximum acceptable concentration can cause adverse health effects for some people Levels above the aesthetic objective may cause staining of plumbing and laundry and undesirable tastes in beverages.

Zinc - The aesthetic objective for zinc in drinking water is 5.0 mg/L. Zinc in water can be naturally occurring or due to zinc in plumbing materials. Zinc is an essential element for human nutrition. Long term ingestion of zinc has not resulted in adverse effects. Water with zinc concentrations higher than the aesthetic objective has an astringent taste and may be opalescent and develop a greasy film on boiling.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units



|                                                  | Sample Date                                                   | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony | Arsenic | Barium | Cadmium | Chromium | Copper    | Iron Lead   | Magnesium | Manganese   | Mercury | Nickel | Selenium | Uranium | Zinc  |
|--------------------------------------------------|---------------------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|----------|---------|--------|---------|----------|-----------|-------------|-----------|-------------|---------|--------|----------|---------|-------|
|                                                  | Units                                                         | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L     | mg/L    | mg/L   | mg/L    | mg/L     | mg/L      | mg/L mg/L   | mg/L      | mg/L        | mg/L    | mg/L   | mg/L     | mg/L    | mg/L  |
| Guidelines for Canadian I                        | Drinking Water Quality                                        |         |      | 10           |                      |                     |          | 0.006    | 0.01    | 2.0    | 0.007   | 0.05     | 1.0 / 2.0 | 0.3 0.005   |           | 0.02 / 0.12 | 0.001   |        | 0.01     | 0.02    | 5.0   |
| Aesthetic(A) Paramet                             | ter or Contaminant (C)                                        |         |      | С            |                      |                     |          | С        | С       | С      | С       | С        | A / C     | A C         |           | A / C       | С       |        | С        | С       | Α     |
| Community Name:<br>Service Area:<br>Source Name: | Ship Cove-Lower Cove-<br>Lower Cove<br>#6 Well - Lower Cove W | -       |      |              |                      |                     |          |          |         |        |         |          |           |             |           |             |         |        |          |         |       |
|                                                  | Sep 15, 2020                                                  | 0 000   | 0.7  | 0.520        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.090  | 0.00000 | 0.00000  | 0.003     | 0.000 0.000 | 18.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Jun 01, 2011                                                  | 0 000   | 0.8  | 0.390        | 0.000                | 0.030               | 0.000    | 0.00000  | 0.000   | 0.080  | 0.00000 | 0.00200  | 0.000     | 0.000 0.000 | 22.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | May 18, 2010                                                  | 0 000   | 0.8  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.080  | 0.00000 | 0.00200  | 0.008     | 0.000 0.002 | 17.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.010 |
|                                                  | Jun 02, 2008                                                  | 0 000   | 0.0  | 0.320        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.095  | 0.00000 | 0.00000  | 0.000     | 0.000 0.001 | 18.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0005  | 0.012 |
|                                                  | Sep 11, 2007                                                  | 0 000   | 0.8  | 0.350        | 0.000                | 0.000               | 0.010    | 0.00000  | 0.000   | 0.092  | 0.00000 | 0.00000  | 0.000     | 0.000 0.001 | 19.000    | 0.002       | ).0000  | 0.000  | 0.000    | 0.0006  | 0.011 |
|                                                  | Sep 18, 2006                                                  | 0 000   | 0.6  | 0.420        | 0.000                | 0.000               | 0.010    | 0.00000  | 0.000   | 0.090  | 0.00000 | 0.00100  | 0.000     | 0.000 0.000 | 16.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Jan 16, 2006                                                  | 0 000   | 0.0  | 0.380        | 0.170                | 0.010               | 0.000    | 0.00000  | 0.000   | 0.090  | 0.00000 | 0.00000  | 0.000     | 0.000 0.000 | 16.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Nov 08, 2004                                                  | 0 000   | 0.0  | 0.450        | 0.100                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.090  | 0.00000 | 0.00000  | 0.000     | 0.000 0.000 | 17.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |

|                                                    | Sample Date                                       | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony   | Arsenic   | Barium   | Cadmium    | Chromium  | Copper    | Iron Lead                | Magnesium | Manganese            | Mercury    | Nickel | Selenium  | Uranium   | Zinc     |
|----------------------------------------------------|---------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|------------|-----------|----------|------------|-----------|-----------|--------------------------|-----------|----------------------|------------|--------|-----------|-----------|----------|
|                                                    | Units                                             | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L       | mg/L      | mg/L     | mg/L       | mg/L      | mg/L      | mg/L mg/L                | mg/L      | mg/L                 | mg/L       | mg/L   | mg/L      | mg/L      | mg/L     |
| Guidelines for Canadian D<br>Aesthetic(A) Paramete |                                                   |         |      | 10<br>C      |                      |                     |          | 0.006<br>C | 0.01<br>C | 2.0<br>C | 0.007<br>C | 0.05<br>C | 1.0 / 2.0 | 0.3 0.005<br>A C         |           | 0.02 / 0.12<br>A / C | 0.001<br>C |        | 0.01<br>C | 0.02<br>C | 5.0<br>A |
| Aesthetic(A) Paramete                              | or contaminant (C)                                |         |      | C            |                      |                     |          | C          | C         | C        | C          | C         | A/C       | A C                      |           | A / C                | C          |        | C         | C         | A        |
|                                                    | Jun 16, 2004                                      | 0 000   | 0.0  | 0.430        | 0.130                | 0.020               | 0.000    | 0.00000    | 0.000     | 0.080    | 0.00000    | 0.00000   | 0.000     | 0.000 0.000              | 16.000    | 0.000                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.000    |
|                                                    | Nov 17, 2003                                      | 0 010   | 0.6  | 0.360        | 0.025                | 0.010               | 0.005    | 0.00050    | 0.001     | 0.090    | 0.00005    | 0.00300   | 0.001     | 0.005 0.001              | 16.000    | 0.005                | ).0000     | 0.003  | 0.001     | 0.0005    | 0.005    |
|                                                    | Apr 29, 2003                                      | 0 010   | 0.6  | 0.330        | 0.060                | 0.020               | 0.040    | 0.00050    | 0.001     | 0.090    | 0.00005    | 0.00100   | 0.039     | 0.060 0.006              | 17.000    | 0.025                | ).0000     | 0.003  | 0.001     | 0.0005    | 0.003    |
|                                                    | Nov 23, 2001                                      | 0 010   | 3.7  | 0.270        | 0.300                | 0.020               | 0.025    |            | 0.001     | 0.070    | 0.00005    | 0.00050   | 0.003     | 0.005 0.001              | 18.000    | 0.005                | ).0000     | 0.005  | 0.001     |           | 0.005    |
| Service Area:<br>Source Name:                      | Ship Cove East<br>#3 Well - Bernard Brake<br>Well |         |      |              |                      |                     |          |            |           |          |            |           |           |                          |           |                      |            |        |           |           |          |
|                                                    | Sep 15, 2020                                      | 0 000   | 2.2  | 0.290        | 0.000                | 0.003               | 0.000    | 0.00000    | 0.000     | 0.140    | 0.00000    | 0.00000   | 0.009     | 0.000 0.025              | 11.000    | 0.020                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.040    |
|                                                    | Jun 01, 2011                                      | 0 000   | 2.4  | 0.200        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.000     | 0.120    | 0.00010    | 0.00100   | 0.006     | 0.000 0.046              | 10.000    | 0.050                | ).0000     | 0.000  | 0.000     | 0.0010    | 0.070    |
|                                                    | May 18, 2010                                      | 0 000   | 2.2  | 0.000        | 0.130                | 0.050               | 0.000    | 0.00000    | 0.000     | 0.110    | 0.00020    | 0.00200   | 0.005     | 0.000 0.062              | 8.000     | 0.060                | ).0000     | 0.000  | 0.000     | 0.0000    | 0.070    |
|                                                    | Jun 05, 2008                                      | 0 000   | 1.9  | 0.140        | 0.100                | 0.000               | 0.000    | 0.00000    | 0.000     | 0.130    | 0.00000    | 0.00000   | 0.005     | 0.000 <mark>0.045</mark> | 9.700     | 0.043                | ).0000     | 0.000  | 0.000     | 0.0009    | 0.085    |
|                                                    | Sep 11, 2007                                      | 0 000   | 1.6  | 0.110        | 0.300                | 0.000               | 0.000    | 0.00000    | 0.000     | 0.130    | 0.00000    | 0.00000   | 0.007     | 0.090 <mark>0.067</mark> | 11.000    | 0.067                | ).0000     | 0.000  | 0.000     | 0.0011    | 0.110    |

| Ammonia<br><sup>mg/L</sup> | DOC<br>mg/L                                                         | Nitrate(ite)<br><sup>mg/L</sup><br>10<br>C                                                                                                                                    | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total<br>Phosphorus<br><sup>mg/L</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aluminum<br>mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antimony<br>mg/L<br>0.006<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Arsenic<br>mg/L<br>0.01<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barium<br>mg/L<br>2.0<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cadmium<br>mg/L<br>0.007<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chromium<br>mg/L<br>0.05<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L<br>1.0 / 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/L mg/L<br>0.3 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Magnesium<br><sup>mg/L</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mercury<br>mg/L<br>0.001<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nickel S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Selenium<br><sup>mg/L</sup><br>0.01<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Uranium<br>mg/L<br>0.02<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zinc<br>mg/L<br>5.0<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 000                      | 3.2                                                                 | 0.000                                                                                                                                                                         | 0.220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000 <mark>0.068</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 000                      | 3.0                                                                 | 0.000                                                                                                                                                                         | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000 <mark>0.074</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 030                      | 2.8                                                                 | 0.000                                                                                                                                                                         | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010 <mark>0.064</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 000                      | 2.7                                                                 | 0.000                                                                                                                                                                         | 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010 <mark>0.066</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 010                      | 3.1                                                                 | 0.050                                                                                                                                                                         | 0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020 <mark>0.063</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 010                      | 2.9                                                                 | 0.050                                                                                                                                                                         | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.070 <mark>0.071</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 010                      | 3.6                                                                 | 0.050                                                                                                                                                                         | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050 <mark>0.056</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 010                      | 2.1                                                                 | 0.110                                                                                                                                                                         | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005 <mark>0.048</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 010                      | 2.4                                                                 | 0.050                                                                                                                                                                         | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020 <mark>0.044</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0 030                      | 3.9                                                                 | 0.050                                                                                                                                                                         | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.010 <mark>0.045</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ).0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                            | mg/L<br>∩ ∩∩∩<br>∩ ∩∩∩<br>∩ ∩1∩<br>∩ ∩1∩<br>∩ ∩1∩<br>∩ ∩1∩<br>∩ ∩1∩ | mg/L     mg/L       n nnn     3.2       n nnn     3.0       n nnn     3.0       n nnn     2.8       n nnn     2.7       n n1n     3.1       n n1n     2.9       n n1n     3.6 | mg/L         mg/L         mg/L         mg/L         10         C           n nnn         3.2         0.000         0         0         0         0           n nnn         3.0         0.000         0         0         0         0           n nnn         2.8         0.000         0         0         0         0           n nnn         2.7         0.000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | mg/L         mg/L <th< td=""><td>mg/L         mg/L         mg/L         Nirogen<br/>mg/L         Phosphorus<br/>mg/L           n nnn         3.2         0.000         0.220         0.000           n nnn         3.0         0.000         0.150         0.020           n nnn         2.8         0.000         0.110         0.020           n nnn         2.7         0.000         0.150         0.030           n n1n         3.1         0.050         0.140         0.005           n n1n         2.9         0.050         0.100         0.005           n n1n         3.6         0.050         0.130         0.005           n n1n         2.1         0.110         0.130         0.005           n 011         2.4         0.050         0.100         0.010</td><td>mg/L         mg/L         mg/L         Nitrogen<br/>mg/L         Phosphorus<br/>mg/L         mg/L         m</td><td>mgL         mgL         mgL</td></th<> <td>mgL         mgL         mgL<td>mgL         mgL         mgL<td>mgl.         mgl.         <th< td=""><td>Mitrocen         Phosoborus         mgL         mgL</td><td>mail         mail         <th< td=""><td>mgl.         mgl.         <th< td=""><td>mgk         mgk         mgk</td></th<><td>mgk         mgk         mgk</td></td></th<><td>Minocen         Processor         mgt         &lt;</td><td>mgL         mgL         mgL</td></td></th<><td>met         met         met<td>mat         map         map</td></td></td></td></td> | mg/L         mg/L         mg/L         Nirogen<br>mg/L         Phosphorus<br>mg/L           n nnn         3.2         0.000         0.220         0.000           n nnn         3.0         0.000         0.150         0.020           n nnn         2.8         0.000         0.110         0.020           n nnn         2.7         0.000         0.150         0.030           n n1n         3.1         0.050         0.140         0.005           n n1n         2.9         0.050         0.100         0.005           n n1n         3.6         0.050         0.130         0.005           n n1n         2.1         0.110         0.130         0.005           n 011         2.4         0.050         0.100         0.010 | mg/L         mg/L         mg/L         Nitrogen<br>mg/L         Phosphorus<br>mg/L         mg/L         m | mgL         mgL | mgL         mgL <td>mgL         mgL         mgL<td>mgl.         mgl.         <th< td=""><td>Mitrocen         Phosoborus         mgL         mgL</td><td>mail         mail         <th< td=""><td>mgl.         mgl.         <th< td=""><td>mgk         mgk         mgk</td></th<><td>mgk         mgk         mgk</td></td></th<><td>Minocen         Processor         mgt         &lt;</td><td>mgL         mgL         mgL</td></td></th<><td>met         met         met<td>mat         map         map</td></td></td></td> | mgL         mgL <td>mgl.         mgl.         <th< td=""><td>Mitrocen         Phosoborus         mgL         mgL</td><td>mail         mail         <th< td=""><td>mgl.         mgl.         <th< td=""><td>mgk         mgk         mgk</td></th<><td>mgk         mgk         mgk</td></td></th<><td>Minocen         Processor         mgt         &lt;</td><td>mgL         mgL         mgL</td></td></th<><td>met         met         met<td>mat         map         map</td></td></td> | mgl.         mgl. <th< td=""><td>Mitrocen         Phosoborus         mgL         mgL</td><td>mail         mail         <th< td=""><td>mgl.         mgl.         <th< td=""><td>mgk         mgk         mgk</td></th<><td>mgk         mgk         mgk</td></td></th<><td>Minocen         Processor         mgt         &lt;</td><td>mgL         mgL         mgL</td></td></th<> <td>met         met         met<td>mat         map         map</td></td> | Mitrocen         Phosoborus         mgL         mgL | mail         mail <th< td=""><td>mgl.         mgl.         <th< td=""><td>mgk         mgk         mgk</td></th<><td>mgk         mgk         mgk</td></td></th<> <td>Minocen         Processor         mgt         &lt;</td> <td>mgL         mgL         mgL</td> | mgl.         mgl. <th< td=""><td>mgk         mgk         mgk</td></th<> <td>mgk         mgk         mgk</td> | mgk         mgk | mgk         mgk | Minocen         Processor         mgt         < | mgL         mgL | met         met <td>mat         map         map</td> | mat         map         map |

|              | Sample Date               | Ammonia       | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony | Arsenic | Barium | Cadmium | Chromium | Copper Iron Le | ad Magnesium | Manganese   | Mercury | Nickel | Selenium | Uranium | Zinc  |
|--------------|---------------------------|---------------|------|--------------|----------------------|---------------------|----------|----------|---------|--------|---------|----------|----------------|--------------|-------------|---------|--------|----------|---------|-------|
|              | Units                     | mg/L          | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L     | mg/L    | mg/L   | mg/L    | mg/L     | mg/L mg/L m    | J/L mg/L     | mg/L        | mg/L    | mg/L   | mg/L     | mg/L    | mg/L  |
|              | n Drinking Water Quality  |               |      | 10           |                      |                     |          | 0.006    | 0.01    | 2.0    | 0.007   | 0.05     | 1.0/2.0 0.3 0. |              | 0.02 / 0.12 | 0.001   |        | 0.01     | 0.02    | 5.0   |
|              | neter or Contaminant (C)  |               |      | С            |                      |                     |          | С        | С       | С      | С       | С        | A/CA           | ;            | A / C       | С       |        | С        | С       | A     |
| Source Name: | #1 Well - PJ's Variety We | ell           |      |              |                      |                     |          |          |         |        |         |          |                |              |             |         |        |          |         |       |
|              | Sep 15, 2020              | 0 000         | 1.5  | 0.000        | 0.000                | 0.010               | 0.010    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00000  | 0.006 0.060 0. | 000 16.000   | 0.080       | ).0000  | 0.000  | 0.000    | 0.0010  | 0.000 |
|              | Jun 01, 2011              | 0 060         | 1.6  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.120  | 0.00000 | 0.00200  | 0.000 0.090 0. | 000 17.000   | 0.150       | ).0000  | 0.000  | 0.000    | 0.0020  | 0.000 |
|              | May 18, 2010              | <u>೧ ೧4</u> ೧ | 2.3  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.110  | 0.00000 | 0.00300  | 0.000 0.060 0. | 000 13.000   | 0.120       | ).0000  | 0.000  | 0.000    | 0.0020  | 0.000 |
|              | Jun 05, 2008              | 0 000         | 1.0  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00000  | 0.006 0.000 0. | 001 17.000   | 0.110       | ).0000  | 0.000  | 0.000    | 0.0014  | 0.017 |
|              | Sep 11, 2007              | 0 050         | 0.9  | 0.000        | 0.100                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00000  | 0.003 0.000 0. | 001 19.000   | 0.084       | ).0000  | 0.000  | 0.000    | 0.0019  | 0.016 |
|              | Sep 18, 2006              | 0.030         | 1.5  | 0.000        | 0.000                | 0.030               | 0.000    | 0.00000  | 0.000   | 0.130  | 0.00000 | 0.00200  | 0.002 0.050 0. | 000 16.000   | 0.140       | ).0000  | 0.000  | 0.000    | 0.0020  | 0.010 |
|              | Jan 16, 2006              | 0 050         | 1.5  | 0.000        | 0.100                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.120  | 0.00000 | 0.00000  | 0.002 0.120 0. | 001 16.000   | 0.160       | ).0000  | 0.000  | 0.000    | 0.0010  | 0.010 |
|              | Nov 08, 2004              | 0 050         | 0.9  | 0.000        | 0.000                | 0.030               | 0.000    | 0.00000  | 0.000   | 0.120  | 0.00000 | 0.00000  | 0.003 0.080 0. | 001 17.000   | 0.160       | ).0000  | 0.000  | 0.000    | 0.0020  | 0.010 |
|              | Jun 16, 2004              | 0 070         | 1.1  | 0.000        | 0.470                | 0.020               | 0.000    | 0.00000  | 0.001   | 0.110  | 0.00000 | 0.00000  | 0.002 0.130 0. | 002 18.000   | 0.200       | ).0000  | 0.000  | 0.000    | 0.0020  | 0.000 |
|              | Nov 17, 2003              | 0 050         | 1.4  | 0.050        | 0.110                | 0.005               | 0.005    | 0.00050  | 0.001   | 0.120  | 0.00005 | 0.00300  | 0.026 0.110 0. | 004 17.000   | 0.200       | ).0000  | 0.003  | 0.001    | 0.0020  | 0.030 |

|                         | Sample Date                             | Ammonia       | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony   | Arsenic      | Barium   | Cadmium    | Chromium  | Copper            | Iron Lead        | Magnesium | Manganese            | Mercury       | Nickel | Selenium     | Uranium   | Zinc     |
|-------------------------|-----------------------------------------|---------------|------|--------------|----------------------|---------------------|----------|------------|--------------|----------|------------|-----------|-------------------|------------------|-----------|----------------------|---------------|--------|--------------|-----------|----------|
| Cuidelines for Conselis | Units<br>In Drinking Water Quality      | mg/L          | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L       | mg/L<br>0.01 | mg/L     | mg/L       | mg/L      | mg/L<br>1.0 / 2.0 | mg/L mg/L        | mg/L      | mg/L                 | mg/L<br>0.001 | mg/L   | mg/L<br>0.01 | mg/L      | mg/L     |
|                         | neter or Contaminant (C)                |               |      | 10<br>C      |                      |                     |          | 0.006<br>C | 0.01<br>C    | 2.0<br>C | 0.007<br>C | 0.05<br>C |                   | 0.3 0.005<br>A C |           | 0.02 / 0.12<br>A / C | 0.001         |        | C C          | 0.02<br>C | 5.0<br>A |
|                         |                                         |               |      |              |                      |                     |          |            |              |          |            |           |                   |                  |           |                      |               |        |              |           |          |
|                         | Aug 12, 2003                            | 0 060         | 1.3  | 0.050        | 0.150                | 0.010               | 0.010    | 0.00050    | 0.002        | 0.140    | 0.00005    | 0.01100   | 0.002             | 0.620 0.009      | 16.000    | 0.215                | ).0000        | 0.001  | 0.001        | 0.0030    | 0.015    |
|                         | Nov 23, 2001                            | <u>೧ ೧4</u> ೧ | 2.4  | 0.050        | 0.025                | 0.005               | 0.025    |            | 0.001        | 0.100    | 0.00005    | 0.00050   | 0.062             | 0.180 0.004      | 19.000    | 0.170                | ).0000        | 0.005  | 0.001        |           | 0.040    |
| Source Name:            | #2 Well - Howard &<br>Rodney Jesso Well |               |      |              |                      |                     |          |            |              |          |            |           |                   |                  |           |                      |               |        |              |           |          |
|                         | Sep 15, 2020                            | 0 000         | 1.6  | 0.130        | 0.000                | 0.005               | 0.000    | 0.00000    | 0.000        | 0.130    | 0.00000    | 0.00000   | 0.005             | 0.000 0.000      | 14.000    | 0.000                | ).0000        | 0.000  | 0.000        | 0.0000    | 0.000    |
|                         | Jun 01, 2011                            | 0 000         | 1.5  | 0.000        | 0.000                | 0.000               | 0.050    | 0.00000    | 0.000        | 0.120    | 0.00000    | 0.00200   | 0.003             | 0.060 0.003      | 15.000    | 0.010                | ).0000        | 0.000  | 0.000        | 0.0010    | 0.000    |
|                         | May 18, 2010                            | 0 020         | 1.4  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.000        | 0.110    | 0.00000    | 0.00300   | 0.002             | 0.000 0.002      | 15.000    | 0.000                | ).0000        | 0.000  | 0.000        | 0.0000    | 0.000    |
|                         | Jun 05, 2008                            | 0 000         | 1.1  | 0.120        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.000        | 0.130    | 0.00000    | 0.00000   | 0.003             | 0.000 0.000      | 15.000    | 0.008                | ).0000        | 0.000  | 0.000        | 0.0008    | 0.007    |
|                         | Sep 11, 2007                            | 0 000         | 0.9  | 0.090        | 0.100                | 0.000               | 0.040    | 0.00000    | 0.000        | 0.110    | 0.00000    | 0.00000   | 0.002             | 0.000 0.001      | 19.000    | 0.005                | ).0000        | 0.000  | 0.000        | 0.0017    | 0.008    |
|                         | Sep 18, 2006                            | 0 000         | 1.7  | 0.140        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.000        | 0.140    | 0.00000    | 0.00200   | 0.003             | 0.000 0.000      | 16.000    | 0.020                | ).0000        | 0.000  | 0.000        | 0.0000    | 0.020    |
|                         | Jan 16, 2006                            | 0 000         | 1.7  | 0.120        | 0.000                | 0.020               | 0.020    | 0.00000    | 0.000        | 0.120    | 0.00000    | 0.00000   | 0.002             | 0.000 0.002      | 16.000    | 0.000                | ).0000        | 0.000  | 0.000        | 0.0010    | 0.000    |
|                         | Nov 08, 2004                            | 0 000         | 0.8  | 0.150        | 0.000                | 0.000               | 0.010    | 0.00000    | 0.000        | 0.120    | 0.00000    | 0.00000   | 0.002             | 0.010 0.001      | 18.000    | 0.010                | ).0000        | 0.000  | 0.000        | 0.0010    | 0.000    |

|                           | Sample Date                       | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony      | Arsenic      | Barium      | Cadmium    | Chromium     | Copper             | Iron Lead        | Magnesium | Manganese           | Mercury    | Nickel | Selenium     | Uranium   | Zinc     |
|---------------------------|-----------------------------------|---------|------|--------------|----------------------|---------------------|----------|---------------|--------------|-------------|------------|--------------|--------------------|------------------|-----------|---------------------|------------|--------|--------------|-----------|----------|
| Guidelines for Canadian E | Units                             | mg/L    | mg/L | mg/L<br>10   | mg/L                 | mg/L                | mg/L     | mg/L<br>0.006 | mg/L<br>0.01 | mg/L<br>2.0 | mg/L       | mg/L<br>0.05 | mg/L               | mg/L mg/L        | mg/L      | mg/L<br>0.02 / 0.12 | mg/L       | mg/L   | mg/L<br>0.01 | mg/L      | mg/L     |
| Aesthetic(A) Paramete     |                                   |         |      | C            |                      |                     |          | C.000         | C            | C           | 0.007<br>C | 0.05<br>C    | 1.0 / 2.0<br>A / C | 0.3 0.005<br>A C |           | A / C               | 0.001<br>C |        | C            | 0.02<br>C | 5.0<br>A |
|                           |                                   |         |      |              |                      |                     |          |               |              |             |            |              |                    |                  |           |                     |            |        |              |           |          |
|                           | Jun 16, 2004                      | 0 000   | 1.3  | 0.000        | 0.150                | 0.000               | 0.040    | 0.00000       | 0.000        | 0.110       | 0.00000    | 0.00100      | 0.013              | 0.040 0.003      | 14.000    | 0.010               | ).0000     | 0.000  | 0.000        | 0.0010    | 0.010    |
|                           | Nov 17, 2003                      | 0 010   | 0.5  | 0.250        | 0.070                | 0.030               | 0.030    | 0.00050       | 0.001        | 0.120       | 0.00005    | 0.00400      | 0.005              | 0.030 0.006      | 15.000    | 0.210               | ).0000     | 0.003  | 0.001        | 0.0005    | 0.010    |
|                           | Apr 29, 2003                      | N N1N   | 1.4  | 0.310        | 0.100                | 0.010               | 0.020    | 0.00050       | 0.001        | 0.100       | 0.00005    | 0.00100      | 0.004              | 0.020 0.002      | 12.000    | 0.032               | ).0000     | 0.003  | 0.001        | 0.0010    | 0.015    |
|                           | Nov 23, 2001                      | N N1N   | 1.9  | 0.310        | 0.025                | 0.005               | 0.025    |               | 0.001        | 0.100       | 0.00005    | 0.00050      | 0.002              | 0.005 0.001      | 15.000    | 0.005               | ).0000     | 0.005  | 0.001        |           | 0.005    |
| Source Name:              | #4B Well - Nancy Rowe<br>Well     |         |      |              |                      |                     |          |               |              |             |            |              |                    |                  |           |                     |            |        |              |           |          |
|                           | Sep 15, 2020                      | 0 000   | 3.4  | 0.270        | 0.000                | 0.010               | 0.020    | 0.00000       | 0.000        | 0.100       | 0.00000    | 0.00000      | 0.006              | 0.070 0.003      | 11.000    | 0.070               | ).0000     | 0.000  | 0.000        | 0.0000    | 0.000    |
| Source Name:              | #5 Well - Murdock<br>Wheeler Well |         |      |              |                      |                     |          |               |              |             |            |              |                    |                  |           |                     |            |        |              |           |          |
|                           | Sep 15, 2020                      | 0 000   | 0.7  | 0.270        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.050       | 0.00000    | 0.00000      | 0.003              | 0.000 0.000      | 23.000    | 0.000               | ).0000     | 0.000  | 0.000        | 0.0000    | 0.000    |
|                           | Jun 01, 2011                      | 0 000   | 1.1  | 0.190        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.040       | 0.00000    | 0.00200      | 0.000              | 0.000 0.000      | 15.000    | 0.000               | ).0000     | 0.000  | 0.000        | 0.0000    | 0.000    |
|                           | May 18, 2010                      | 0 000   | 0.9  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.040       | 0.00000    | 0.00100      | 0.000              | 0.000 0.000      | 19.000    | 0.000               | ).0000     | 0.000  | 0.000        | 0.0000    | 0.000    |
|                           | Jun 02, 2008                      | 0 000   | 0.0  | 0.200        | 0.000                | 0.000               | 0.000    | 0.00000       | 0.000        | 0.052       | 0.00000    | 0.00000      | 0.004              | 0.000 0.000      | 22.000    | 0.000               | ).0000     | 0.000  | 0.000        | 0.0007    | 0.010    |

| Sample Date                                                                                 | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony   | Arsenic   | Barium   | Cadmium    | Chromium  | Copper             | Iron Lead        | Magnesium | Manganese            | Mercury       | Nickel | Selenium  | Uranium   | Zinc     |
|---------------------------------------------------------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|------------|-----------|----------|------------|-----------|--------------------|------------------|-----------|----------------------|---------------|--------|-----------|-----------|----------|
| Units                                                                                       | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L       | mg/L      | mg/L     | mg/L       | mg/L      | mg/L               | mg/L mg/L        | mg/L      | mg/L                 | mg/L          | mg/L   | mg/L      | mg/L      | mg/L     |
| Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) |         |      | 10<br>C      |                      |                     |          | 0.006<br>C | 0.01<br>C | 2.0<br>C | 0.007<br>C | 0.05<br>C | 1.0 / 2.0<br>A / C | 0.3 0.005<br>A C |           | 0.02 / 0.12<br>A / C | 0.001<br>C    |        | 0.01<br>C | 0.02<br>C | 5.0<br>A |
| Sep 11, 2007                                                                                | 0 000   | 0.7  | 0.160        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.000     | 0.047    | 0.00000    | 0.00000   |                    | 0.000 0.000      | 24.000    | 0.000                | ).0000        | 0.000  | 0.000     | 0.0005    | 0.011    |
| Sep 18, 2006                                                                                | 0 000   | 0.6  | 0.220        | 0.000                | 0.000               | 0.000    | 0.00000    | 0.000     | 0.050    | 0.00000    | 0.00000   | 0.003              | 0.000 0.000      | 22.000    | 0.000                | ).0000        | 0.000  | 0.000     | 0.0000    | 0.000    |
| Jan 16, 2006                                                                                | 0 000   | 1.0  | 0.160        | 0.080                | 0.020               | 0.000    | 0.00000    | 0.000     | 0.040    | 0.00000    | 0.00000   | 0.002              | 0.000 0.000      | 20.000    | 0.000                | ).0000        | 0.000  | 0.000     | 0.0000    | 0.000    |
| Nov 08, 2004                                                                                | 0 080 0 | 0.0  | 0.200        | 0.000                | 0.020               | 0.000    | 0.00000    | 0.000     | 0.040    | 0.00000    | 0.00000   |                    | 0.000 0.000      | 22.000    | 0.000                | ).0000        | 0.000  | 0.000     | 0.0000    | 0.080    |
| Jun 16, 2004<br>Nov 17, 2003                                                                | 0 000   | 0.5  | 0.170        | 0.110                | 0.010               | 0.000    | 0.00000    | 0.000     | 0.040    | 0.00000    | 0.00000   |                    | 0.000 0.000      | 20.000    | 0.000                | ).0000)).0000 | 0.000  | 0.000     | 0.0000    | 0.000    |
| Apr 29, 2003                                                                                | 0 020   | 0.7  | 0.180        | 0.025                | 0.010               | 0.030    | 0.00050    | 0.001     | 0.050    | 0.00005    | 0.00050   |                    | 0.010 0.001      | 21.000    | 0.007                | ).0000        |        | 0.001     |           | 0.003    |
| Oct 24, 2002                                                                                | 0 010   | 0.9  | 0.150        | 0.025                | 0.005               | 0.200    | 0.00050    | 0.001     | 0.050    | 0.00005    | 0.00500   | 0.009              | 0.040 0.003      | 22.000    | 0.031                | ).0000        | 0.003  | 0.001     | 0.0005    | 0.003    |
| May 14, 2002                                                                                | ስ በ4በ   | 0.3  | 0.180        | 0.060                | 0.005               | 0.210    | 0.00050    | 0.001     | 0.050    | 0.00005    | 0.00050   | 0.004              | 0.005 0.001      | 23.000    | 0.005                | ).0000        | 0.005  | 0.001     | 0.0005    | 0.005    |
| Feb 15, 2002                                                                                | 0 010   | 2.5  | 0.050        | 0.080                | 0.005               | 0.025    | 0.00050    | 0.001     | 0.140    | 0.00005    | 0.00800   | 0.004              | 0.120 0.006      | 10.000    | 0.060                | ).0000        | 0.005  | 0.001     | 0.0005    | 0.100    |
| Feb 04, 2002                                                                                |         |      |              |                      |                     |          |            | 0.001     |          |            |           |                    | 0.044            |           |                      |               |        |           |           |          |

May 04, 2023

|                                                  | Sample Date<br>Units                              | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br>mg/L | Aluminum<br>mg/L | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br>mg/L | Cadmium<br><sub>mg/L</sub> | Chromium<br>mg/L | Copper<br>mg/L     | Iron Lead        | Magnesium<br><sub>mg/L</sub> | Manganese<br>mg/L    | Mercury<br>mg/L | Nickel | Selenium<br><sub>mg/L</sub> | Uranium<br><sub>mg/L</sub> | Zinc<br>mg/L |
|--------------------------------------------------|---------------------------------------------------|----------------------------|-------------|--------------|-----------------------------------------|-----------------------------|------------------|------------------|-----------------|----------------|----------------------------|------------------|--------------------|------------------|------------------------------|----------------------|-----------------|--------|-----------------------------|----------------------------|--------------|
| Guidelines for Canadian<br>Aesthetic(A) Parame   | Drinking Water Quality<br>eter or Contaminant (C) |                            |             | 10<br>C      |                                         |                             |                  | 0.006<br>C       | 0.01<br>C       | 2.0<br>C       | 0.007<br>C                 | 0.05<br>C        | 1.0 / 2.0<br>A / C | 0.3 0.005<br>A C |                              | 0.02 / 0.12<br>A / C | 0.001<br>C      |        | 0.01<br>C                   | 0.02<br>C                  | 5.0<br>A     |
|                                                  | Nov 23, 2001                                      | 0 010                      | 1.7         | 0.210        | 0.025                                   | 0.005                       | 0.025            |                  | 0.001           | 0.040          | 0.00005                    | 0.00050          | 0.007              | 0.005 0.001      | 23.000                       | 0.005                | ).0000          | 0.005  | 0.001                       |                            | 0.005        |
| Community Name:<br>Service Area:<br>Source Name: | St. George's<br>St. George's<br>Wellfield         |                            |             |              |                                         |                             |                  |                  |                 |                |                            |                  |                    |                  |                              |                      |                 |        |                             |                            |              |
|                                                  | Sep 16, 2020                                      | 0 000                      | 1.4         | 0.620        | 0.000                                   | 0.005                       | 0.020            | 0.00000          | 0.000           | 0.010          | 0.00000                    | 0.00000          | 0.007              | 0.350 0.000      | 4.000                        | 0.000                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.010        |
|                                                  | Sep 16, 2020                                      | 0 000                      | 0.6         | 0.110        | 0.000                                   | 0.004                       | 0.000            | 0.00000          | 0.000           | 0.010          | 0.00000                    | 0.00000          | 0.008              | 0.160 0.000      | 4.000                        | 0.040                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.020        |
|                                                  | Sep 16, 2020                                      | 0 000                      | 1.3         | 0.000        | 0.000                                   | 0.007                       | 0.000            | 0.00000          | 0.000           | 0.020          | 0.00000                    | 0.00000          | 0.006              | 0.180 0.001      | 6.000                        | 0.020                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.020        |
|                                                  | Aug 16, 2017                                      | 0 000                      | 1.2         | 0.000        | 0.000                                   | 0.012                       | 0.011            | 0.00000          | 0.000           | 0.016          | 0.00000                    | 0.00000          | 0.004              | 0.340 0.005      | 5.000                        | 0.036                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.053        |
|                                                  | Aug 16, 2017                                      | 0 000                      | 1.0         | 0.070        | 0.000                                   | 0.007                       | 0.000            | 0.00000          | 0.000           | 0.009          | 0.00000                    | 0.00000          | 0.014              | 0.350 0.002      | 4.500                        | 0.051                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.110        |
|                                                  | Aug 16, 2017                                      | 0 000                      | 1.0         | 0.750        | 0.000                                   | 0.006                       | 0.008            | 0.00000          | 0.000           | 0.012          | 0.00000                    | 0.00500          | 0.140              | 0.096 0.022      | 4.300                        | 0.000                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.100        |
|                                                  | May 19, 2011                                      | 0 000                      | 1.5         | 0.000        | 0.160                                   | 0.000                       | 0.050            | 0.00000          | 0.000           | 0.060          | 0.00000                    | 0.00200          | 0.004              | 0.440 0.002      | 9.000                        | 0.100                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.020        |
|                                                  | May 19, 2011                                      | 0 000                      | 0.9         | 0.000        | 0.000                                   | 0.000                       | 0.000            | 0.00000          | 0.000           | 0.000          | 0.00000                    | 0.00100          | 0.001              | 0.070 0.001      | 3.000                        | 0.010                | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.020        |

| Sample Date<br>Units<br>Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite)<br>mg/L<br>10<br>C | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br>mg/L | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006<br>C | Arsenic<br>mg/L<br>0.01<br>C | Barium<br>mg/L<br>2.0<br>C | Cadmium<br>mg/L<br>0.007<br>C | Chromium<br>mg/L<br>0.05<br>C | Copper<br>mg/L<br>1.0 / 2.0<br>A / C | mg/L mg/L<br>0.3 0.005 | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C | Mercury<br>mg/L<br>0.001<br>C | Nickel s | Selenium<br>mg/L<br>0.01<br>C | Uranium<br>mg/L<br>0.02<br>C | Zinc<br>mg/L<br>5.0<br>A |
|---------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------------------------|-----------------------------------------|-----------------------------|------------------|--------------------------------|------------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------------------|------------------------|------------------------------|-------------------------------------------|-------------------------------|----------|-------------------------------|------------------------------|--------------------------|
| May 19, 2011                                                                                                        | 0 000                      | 2.8         | 0.290                           | 0.000                                   | 0.000                       | 0.020            | 0.00000                        | 0.000                        | 0.000                      | 0.00000                       | 0.00000                       | 0.003                                | 0.040 0.000            | 0.000                        | 0.000                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 19, 2011                                                                                                        | 0 000                      | 1.3         | 0.000                           | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.020                      | 0.00000                       | 0.00100                       | 0.000                                | 0.590 0.002            | 5.000                        | 0.060                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 20, 2010                                                                                                        | 0 000                      | 0.6         | 0.000                           | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.040                      | 0.00000                       | 0.00000                       | 0.001                                | 0.050 0.000            | 6.000                        | 0.050                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 20, 2010                                                                                                        | 0 000                      | 0.8         | 0.290                           | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.020                      | 0.00000                       | 0.00000                       | 0.004                                | 0.190 0.002            | 3.000                        | 0.000                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 20, 2010                                                                                                        | 0 000                      | 1.2         | 0.000                           | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.000                      | 0.00000                       | 0.00000                       | 0.002                                | 0.470 0.002            | 2.000                        | 0.030                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.000                    |
| May 20, 2010                                                                                                        | 0 000                      | 0.8         | 0.000                           | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.000                      | 0.00000                       | 0.00000                       | 0.001                                | 0.040 0.000            | 3.000                        | 0.010                                     | ).0000                        | 0.000    | 0.000                         | 0.0000                       | 0.020                    |

|                                        | Sample Date | Ammonia | DOC  | Nitrate(ite) | Kjeldahl | Total      | Aluminum | Antimony | Arsenic | Barium | Cadmium C | hromium | Copper    | Iron Lead | Magnesium | Manganese   | Mercury | Nickel S | Selenium | Uranium | Zinc |
|----------------------------------------|-------------|---------|------|--------------|----------|------------|----------|----------|---------|--------|-----------|---------|-----------|-----------|-----------|-------------|---------|----------|----------|---------|------|
|                                        |             |         |      |              | Nitrogen | Phosphorus |          |          |         |        |           |         |           |           |           |             |         |          |          |         |      |
|                                        | Units       | mg/L    | mg/L | mg/L         | mg/L     | mg/L       | mg/L     | mg/L     | mg/L    | mg/L   | mg/L      | mg/L    | mg/L      | mg/L mg/L | mg/L      | mg/L        | mg/L    | mg/L     | mg/L     | mg/L    | mg/L |
| Guidelines for Canadian Drinking Water | Quality     |         |      | 10           |          |            |          | 0.006    | 0.01    | 2.0    | 0.007     | 0.05    | 1.0 / 2.0 | 0.3 0.005 |           | 0.02 / 0.12 | 0.001   |          | 0.01     | 0.02    | 5.0  |
| Aesthetic(A) Parameter or Contamir     | nant (C)    |         |      | С            |          |            |          | С        | С       | С      | С         | С       | A / C     | A C       |           | A / C       | С       |          | С        | С       | Α    |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data.

LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects .

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the health aspects of contaminants.

### Contaminant and Aesthetic Exceedances

Nitrate(ite) - The maximum acceptable concentration for nitrate(ite) in drinking water is 10 mgL expressed as nitrate-nitrogen. Nitrate and nitrite are naturally occurring ions that are widespread in the environment. High levels of this contaminant can cause adverse health effects for some people

Arsenic - The interim maximum acceptable concentration for arsenic in drinking water is 0.01 mg/L. Arsenic is introduced into water through the dissolution of minerals and ores, from industrial effluents and via atmospheric deposition. High levels of this contaminant can cause adverse health effects for some people.

Barium - The maximum acceptable concentration for barium in drinking water is 2.0 mg/L. Barium is not found free in nature but occurs as in a number of compounds. High levels of this contaminant can cause adverse health effects for some people.

Cadmium - The maximum acceptable concentration for cadmium in drinking water is 0.007 mg/L. Cadmium that is present as an impurity in galvanized pipes, a constituent of solders used in fitting water heaters or incorporated into stabilizers in black polyethylene pipes may contaminate water supplies during their distribution. High levels of this contaminant can cause adverse health effects for some people.

Chromium - The maximum acceptable concentration for chromium in drinking water is 0.05 mg/L. High levels of this contaminant can cause adverse health effects for some people

Lead - The maximum acceptable concentration for lead in drinking water is 0.005 mg/l. Lead is present in tap water as a result of dissolution from natural sources or from the distribution systems and olumbing containing lead in pipes, solder or service connections. High levels of this contaminant can cause adverse health effects for some people

Mercury - The maximum acceptable concentration for mercury in drinking water is 0.001 mg/L. High levels of this contaminant can cause adverse health effects for some people

Selenium - The maximum acceptable concentration for selenium in drinking water is 0.01 mg/L. High levels of this contaminant can cause adverse health effects for some people

Uranium - The interim maximum acceptable concentration for uranium in drinking water is 0.02 mg/L. Uranium may enter drinking water from naturally occurring deposits or as a result of human activity, such as mill tailings and phosphate fertilizers. High levels of this contaminant can cause adverse health effects for some people

Antimony - The interim maximum acceptable concentration (IMAC) for antimony in drinking water is 0.006 mg/L. It is a naturally occurring metal that is introduced into water through the natural weathering of rocks, runoff from soils, effluents from mining and manufacturing operations, industrial and municipal leachate discharges and from household piping and possibly non-leaded solders. High levels of this contaminant can cause adverse health effects for some people Copper - The maximum acceptable concentration for copper in drinking water is 2.0 mgL and the assthetic objective for copper in drinking water is 1.0 mg/L. Copper is widely distributed in nature and is found frequently in surface water and in some groundwater. Usally, copper in tap water is the result of dissolution of copper piping within the distribution system. The aesthetic objective was set to ensure palatability and to minimize staining of laundry and plumbing fixtures. Copper is an essential element in human metabolism and copper deficiency results in a variety of clinical disorders. At extremely high doese copper intake can result in adverse health effects. High levels of copper in tap water may result in blue-green staining on some fixtures.

Iron - The aesthetic objective for iron in drinking water is 0.3 mg/L. Usually, iron in tap water is the result of high iron content in the raw water and dissolution of iron piping within the distribution system. Iron is an essential element in nutrition. High levels of iron in tap water can cause staining of laundry and plumbing fixtures, unpleasant taste, colour and promote biological growths in the distribution system.

Manganese - The maximum acceptable concentration for manganese in drinking water is 0.12 mgL and the aesthetic objective for manganese in drinking water is 0.02 mg/L. Usually, manganese in drinking water is the result of high amounts of manganese in the source water supply's bedrock Levels above the maximum acceptable concentration can cause adverse health effects for some people Levels above the aesthetic objective may cause staining of plumbing and laundry and undesirable tastes in beverages.

Zinc - The aesthetic objective for zinc in drinking water is 5.0 mg/L. Zinc in water can be naturally occurring or due to zinc in plumbing materials. Zinc is an essential element for human nutrition. Long term ingestion of zinc has not resulted in adverse effects. Water with zinc concentrations higher than the aesthetic objective has an astringent taste and may be opalescent and develop a greasy film on boiling.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units



|                                                  | Sample Date                                | Ammonia | DOC  | Nitrate(ite) | Kjeldahl<br>Nitrogen | Total<br>Phosphorus | Aluminum | Antimony | Arsenic | Barium | Cadmium | Chromium | Copper    | Iron Lead   | Magnesium | Manganese   | Mercury | Nickel | Selenium | Uranium | Zinc  |
|--------------------------------------------------|--------------------------------------------|---------|------|--------------|----------------------|---------------------|----------|----------|---------|--------|---------|----------|-----------|-------------|-----------|-------------|---------|--------|----------|---------|-------|
|                                                  | Units                                      | mg/L    | mg/L | mg/L         | mg/L                 | mg/L                | mg/L     | mg/L     | mg/L    | mg/L   | mg/L    | mg/L     | mg/L      | mg/L mg/L   | mg/L      | mg/L        | mg/L    | mg/L   | mg/L     | mg/L    | mg/L  |
| Guidelines for Canadian                          | Drinking Water Quality                     |         |      | 10           |                      |                     |          | 0.006    | 0.01    | 2.0    | 0.007   | 0.05     | 1.0 / 2.0 | 0.3 0.005   |           | 0.02 / 0.12 | 0.001   |        | 0.01     | 0.02    | 5.0   |
| Aesthetic(A) Paramet                             | ter or Contaminant (C)                     |         |      | С            |                      |                     |          | С        | С       | С      | С       | С        | A / C     | A C         |           | A / C       | С       |        | С        | С       | Α     |
| Community Name:<br>Service Area:<br>Source Name: | Stephenville<br>Stephenville<br>Well Field |         |      |              |                      |                     |          |          |         |        |         |          |           |             |           |             |         |        |          |         |       |
|                                                  | Sep 16, 2020                               | 0 000   | 0.6  | 0.000        | 0.000                | 0.006               | 0.000    | 0.00000  | 0.000   | 0.120  | 0.00000 | 0.00000  | 0.002     | 0.050 0.000 | 9.000     | 0.200       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 000   | 2.5  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.020  | 0.00000 | 0.00000  | 0.005     | 0.090 0.000 | 9.000     | 0.240       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 000   | 1.1  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.010  | 0.00000 | 0.00000  | 0.011     | 0.000 0.001 | 11.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 070   | 0.9  | 0.000        | 0.000                | 0.007               | 0.000    | 0.00000  | 0.000   | 0.080  | 0.00000 | 0.00000  | 0.005     | 0.260 0.000 | 12.000    | 0.280       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 000   | 0.0  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.060  | 0.00000 | 0.00000  | 0.000     | 0.000 0.000 | 11.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 000   | 0.0  | 0.480        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.040  | 0.00000 | 0.00000  | 0.000     | 0.000 0.000 | 10.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 000   | 0.0  | 0.480        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.030  | 0.00000 | 0.00000  | 0.001     | 0.000 0.000 | 10.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |
|                                                  | Sep 16, 2020                               | 0 000   | 0.0  | 0.000        | 0.000                | 0.000               | 0.000    | 0.00000  | 0.000   | 0.060  | 0.00000 | 0.00000  | 0.001     | 0.000 0.000 | 11.000    | 0.000       | ).0000  | 0.000  | 0.000    | 0.0000  | 0.000 |

| Sample Date<br>Units<br>Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) | Ammonia<br><sup>mg/L</sup> | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10<br>C | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006<br>C | Arsenic<br>mg/L<br>0.01<br>C | Barium<br><sup>mg/L</sup><br>2.0<br>C | Cadmium<br>mg/L<br>0.007<br>C | Chromium<br>mg/L<br>0.05<br>C | Copper         Iron           mg/L         mg/           1.0 / 2.0         0.3           A         /         C | 'L mg/L<br>3 0.005 | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C | Mercury<br>mg/L<br>0.001<br>C | Nickel<br>mg/L | Selenium<br>mg/L<br>0.01<br>C | Uranium<br>mg/L<br>0.02<br>C | Zinc<br>mg/L<br>5.0<br>A |
|---------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|--------------------------------------------|-----------------------------------------|----------------------------------------|------------------|--------------------------------|------------------------------|---------------------------------------|-------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|-------------------------------------------|-------------------------------|----------------|-------------------------------|------------------------------|--------------------------|
| Sep 16, 2020                                                                                                        | 0 023                      | 0.5         | 0.000                                      | 0.000                                   | 0.007                                  | 0.000            | 0.00000                        | 0.000                        | 0.090                                 | 0.00000                       | 0.00000                       | 0.002 0.24                                                                                                     | 40 0.000           | 13.000                       | 0.170                                     | ).0000                        | 0.000          | 0.000                         | 0.0000                       | 0.000                    |
| Aug 16, 2017                                                                                                        | 0 000                      | 0.0         | 0.450                                      | 0.000                                   | 0.006                                  | 0.000            | 0.00000                        | 0.000                        | 0.036                                 | 0.00000                       | 0.00000                       | 0.000 0.00                                                                                                     | 00 0.000           | 11.000                       | 0.000                                     | ).0000                        | 0.000          | 0.000                         | 0.0003                       | 0.000                    |
| Aug 16, 2017                                                                                                        | 0 000                      | 0.5         | 0.000                                      | 0.000                                   | 0.007                                  | 0.000            | 0.00000                        | 0.000                        | 0.054                                 | 0.00000                       | 0.00000                       | 0.000 0.00                                                                                                     | 00 0.000           | 11.000                       | 0.000                                     | ).0000                        | 0.000          | 0.000                         | 0.0008                       | 0.000                    |
| Aug 16, 2017                                                                                                        | 0 000                      | 0.5         | 0.000                                      | 0.000                                   | 0.005                                  | 0.000            | 0.00000                        | 0.000                        | 0.059                                 | 0.00000                       | 0.00000                       | 0.000 0.00                                                                                                     | 00 0.000           | 11.000                       | 0.004                                     | ).0000                        | 0.000          | 0.000                         | 0.0008                       | 0.000                    |
| Aug 16, 2017                                                                                                        | 0 050                      | 0.8         | 0.000                                      | 0.000                                   | 0.007                                  | 0.000            | 0.00000                        | 0.000                        | 0.120                                 | 0.00000                       | 0.00000                       | 0.004 0.00                                                                                                     | 00 0.000           | 8.500                        | 0.190                                     | ).0000                        | 0.000          | 0.000                         | 0.0002                       | 0.000                    |
| Aug 16, 2017                                                                                                        | በ በዓ1                      | 1.1         | 0.000                                      | 0.000                                   | 0.008                                  | 0.000            | 0.00000                        | 0.000                        | 0.074                                 | 0.00000                       | 0.00000                       | 0.000 0.26                                                                                                     | 60 0.000           | 12.000                       | 0.250                                     | ).0000                        | 0.000          | 0.000                         | 0.0002                       | 0.000                    |
| Aug 16, 2017                                                                                                        | 0 000                      | 1.1         | 0.140                                      | 0.000                                   | 0.000                                  | 0.010            | 0.00000                        | 0.000                        | 0.013                                 | 0.00000                       | 0.00000                       | 0.008 0.00                                                                                                     | 00 0.002           | 12.000                       | 0.011                                     | ).0000                        | 0.000          | 0.000                         | 0.0004                       | 0.012                    |
| Aug 16, 2017                                                                                                        | 0 000                      | 0.7         | 0.430                                      | 0.000                                   | 0.006                                  | 0.012            | 0.00000                        | 0.000                        | 0.033                                 | 0.00000                       | 0.00000                       | 0.000 0.00                                                                                                     | 00 0.000           | 11.000                       | 0.000                                     | ).0000                        | 0.000          | 0.000                         | 0.0003                       | 0.000                    |
| Aug 16, 2017                                                                                                        | 0 061                      | 0.7         | 0.000                                      | 0.000                                   | 0.008                                  | 0.000            | 0.00000                        | 0.000                        | 0.080                                 | 0.00000                       | 0.00000                       | 0.000 0.08                                                                                                     | 80 0.000           | 13.000                       | 0.160                                     | ).0000                        | 0.000          | 0.000                         | 0.0005                       | 0.000                    |
| May 31, 2011                                                                                                        | 0 000                      | 0.5         | 0.000                                      | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.050                                 | 0.00000                       | 0.00100                       | 0.000 0.00                                                                                                     | 00 0.000           | 10.000                       | 0.000                                     | ).0000                        | 0.000          | 0.000                         | 0.0000                       | 0.000                    |
| May 31, 2011                                                                                                        | 0 000                      | 0.6         | 0.440                                      | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.040                                 | 0.00000                       | 0.00000                       | 0.000 0.00                                                                                                     | 00 0.000           | 10.000                       | 0.000                                     | ).0000                        | 0.000          | 0.000                         | 0.0000                       | 0.000                    |
|                                                                                                                     |                            |             |                                            |                                         |                                        |                  |                                |                              | 2                                     |                               |                               |                                                                                                                |                    |                              |                                           |                               |                |                               | May 04,                      | 2023                     |

| Un<br>Guidelines for Canadian Drinking Water Qual<br>Aesthetic(A) Parameter or Contaminant ( | its<br>lity           | nmonia<br><sup>mg/L</sup> | DOC<br>mg/L | Nitrate(ite)<br>mg/L<br>10<br>C | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006<br>C | Arsenic<br>mg/L<br>0.01<br>C | Barium<br>mg/L<br>2.0<br>C | Cadmium<br>mg/L<br>0.007<br>C | Chromium<br>mg/L<br>0.05<br>C | mg/L<br>1.0 / 2.0 | IronLeadmg/Lmg/L0.30.005AC | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C | Mercury<br>mg/L<br>0.001<br>C | Nickel | Selenium<br>mg/L<br>0.01<br>C | Uranium<br>mg/L<br>0.02<br>C | Zinc<br>mg/L<br>5.0<br>A |
|----------------------------------------------------------------------------------------------|-----------------------|---------------------------|-------------|---------------------------------|-----------------------------------------|----------------------------------------|------------------|--------------------------------|------------------------------|----------------------------|-------------------------------|-------------------------------|-------------------|----------------------------|------------------------------|-------------------------------------------|-------------------------------|--------|-------------------------------|------------------------------|--------------------------|
| Λ                                                                                            | <i>l</i> lay 31, 2011 | 0 000                     | 2.2         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.020                      | 0.00000                       | 0.00100                       | 0.002             | 0.000 0.000                | 10.000                       | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| ٨                                                                                            | <i>l</i> lay 31, 2011 | 0 050                     | 1.0         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.110                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                | 9.000                        | 0.180                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | <i>l</i> lay 31, 2011 | n n4n                     | 0.6         | 0.000                           | 0.000                                   | 0.190                                  | 0.000            | 0.00000                        | 0.000                        | 0.060                      | 0.00000                       | 0.00100                       | 0.000             | 0.000 0.000                | 11.000                       | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | <i>l</i> lay 31, 2011 | በ በ4በ                     | 1.0         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.060                      | 0.00000                       | 0.00000                       | 0.000             | 0.220 0.000                | 11.000                       | 0.200                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| ٨                                                                                            | <i>l</i> lay 31, 2011 | 0 000                     | 1.0         | 0.130                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.010                      | 0.00000                       | 0.00000                       | 0.003             | 0.000 0.000                | 10.000                       | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| ٨                                                                                            | <i>l</i> lay 31, 2011 | 0 000                     | 0.6         | 0.420                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.040                      | 0.00000                       | 0.00200                       | 0.000             | 0.000 0.000                | 10.000                       | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | <i>l</i> lay 31, 2011 | 0 050                     | 0.7         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.070                      | 0.00000                       | 0.00000                       | 0.000             | 0.050 0.000                | 12.000                       | 0.160                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | /lay 19, 2010         | 0 000                     | 0.0         | 0.440                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.030                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                | 9.000                        | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | /lay 19, 2010         | 0 000                     | 1.1         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.010                      | 0.00000                       | 0.00100                       | 0.002             | 0.000 0.000                | 10.000                       | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | <i>l</i> lay 19, 2010 | 0 000                     | 0.0         | 0.000                           | 0.000                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.050                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                | 9.000                        | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       | 0.000                    |
| Ν                                                                                            | /lay 19, 2010         | 0 000                     | 1.9         | 0.000                           | 0.130                                   | 0.000                                  | 0.000            | 0.00000                        | 0.000                        | 0.020                      | 0.00000                       | 0.00100                       | 0.002             | 0.000 0.000                | 8.000                        | 0.000                                     | ).0000                        | 0.000  | 0.000                         | 0.0000                       |                          |
|                                                                                              |                       |                           |             |                                 |                                         |                                        |                  |                                |                              | 3                          |                               |                               |                   |                            |                              |                                           |                               |        |                               | May 04,                      | 2023                     |

| Sample D<br>Units<br>Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) | ate Ammonia<br>mg/L                      | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10<br>C | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br>mg/L | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006<br>C | Arsenic<br>mg/L<br>0.01<br>C | Barium<br>mg/L<br>2.0<br>C | Cadmium<br>mg/L<br>0.007<br>C | Chromium<br>mg/L<br>0.05<br>C | mg/L<br>1.0 / 2.0 | Iron Lead<br>mg/L mg/L<br>0.3 0.005<br>A C | Magnesium<br>mg/L | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C | Mercury<br>mg/L<br>0.001<br>C | Nickel mg/L | Selenium<br>mg/L<br>0.01<br>C | Uranium<br><sup>mg/L</sup><br>0.02<br>C | Zinc<br>mg/L<br>5.0<br>A |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|--------------------------------------------|-----------------------------------------|-----------------------------|------------------|--------------------------------|------------------------------|----------------------------|-------------------------------|-------------------------------|-------------------|--------------------------------------------|-------------------|-------------------------------------------|-------------------------------|-------------|-------------------------------|-----------------------------------------|--------------------------|
|                                                                                                                  | 10 Ი ᲘᲘᲘ                                 | 0.7         | 0.440                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.030                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                                | 9.000             | 0.000                                     | ).0000                        | 0.000       | 0.000                         | 0.0000                                  | 0.000                    |
| May 19, 20                                                                                                       | 10 n n2n                                 | 0.9         | 0.000                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.100                      | 0.00000                       | 0.00000                       | 0.000             | 0.040 0.000                                | 7.000             | 0.180                                     | ).0000                        | 0.000       | 0.000                         | 0.0000                                  | 0.000                    |
| May 19, 20                                                                                                       | 10 n nnn                                 | 0.0         | 0.000                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.050                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                                | 10.000            | 0.000                                     | ).0000                        | 0.000       | 0.000                         | 0.0000                                  | 0.000                    |
| May 19, 20                                                                                                       | 10 Ი ᲘᲙᲘ                                 | 1.0         | 0.000                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.050                      | 0.00000                       | 0.00000                       | 0.000             | 0.210 0.000                                | 10.000            | 0.190                                     | ).0000                        | 0.000       | 0.000                         | 0.0000                                  | 0.000                    |
| May 19, 20                                                                                                       | 10 Ი Ი4Ი                                 | 0.7         | 0.000                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.060                      | 0.00000                       | 0.00000                       | 0.000             | 0.050 0.000                                | 11.000            | 0.140                                     | ).0000                        | 0.000       | 0.000                         | 0.0000                                  | 0.000                    |
| May 29, 20                                                                                                       | 08 n nnn                                 | 0.0         | 0.000                                      | 0.000                                   | 0.000                       | 0.010            | 0.00000                        | 0.000                        | 0.053                      | 0.00000                       | 0.00000                       | 0.010             | 0.000 0.000                                | 9.800             | 0.000                                     | ).0000                        | 0.000       | 0.000                         | 0.0008                                  | 0.006                    |
| May 29, 20                                                                                                       | 08 n nen                                 | 0.0         | 0.000                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.066                      | 0.00000                       | 0.00000                       | 0.000             | 0.080 0.000                                | 11.000            | 0.150                                     | ).0000                        | 0.000       | 0.000                         | 0.0005                                  | 0.007                    |
| May 29, 20                                                                                                       | 0.060 0.060                              | 0.6         | 0.000                                      | 0.100                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.069                      | 0.00000                       | 0.00000                       | 0.000             | 0.130 0.000                                | 11.000            | 0.210                                     | ).0000                        | 0.000       | 0.000                         | 0.0003                                  | 0.007                    |
| May 29, 20                                                                                                       | 0AN 0 0AN                                | 0.6         | 0.000                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.100                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                                | 7.600             | 0.180                                     | ).0000                        | 0.000       | 0.000                         | 0.0002                                  | 0.007                    |
| May 29, 20                                                                                                       | 08 N N N N N N N N N N N N N N N N N N N | 0.0         | 0.070                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.063                      | 0.00000                       | 0.00000                       | 0.000             | 0.000 0.000                                | 11.000            | 0.005                                     | ).0000                        | 0.000       | 0.000                         | 0.0008                                  | 0.008                    |
| May 29, 20                                                                                                       | )8 n nnn                                 | 0.6         | 0.160                                      | 0.000                                   | 0.000                       | 0.000            | 0.00000                        | 0.000                        | 0.011                      | 0.00000                       | 0.00000                       | 0.004             | 0.000 0.000                                | 11.000            | 0.000                                     | ).0000                        | 0.000       | 0.000                         | 0.0004                                  |                          |
|                                                                                                                  |                                          |             |                                            |                                         |                             |                  |                                |                              | 4                          |                               |                               |                   |                                            |                   |                                           |                               |             |                               | May 04,                                 | 2023                     |

| Guidelines for Canadian Drinking Water | Sample Date<br>Units<br>Quality | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10 | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006 | Arsenic<br>mg/L<br>0.01 | Barium<br>mg/L<br>2.0 | Cadmium<br>mg/L<br>0.007 | Chromium<br>mg/L<br>0.05 | Copper<br>mg/L<br>1.0 / 2.0 | Iron Lead<br>mg/L mg/L<br>0.3 0.005 | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12 | Mercury<br>mg/L<br>0.001 | Nickel | Selenium<br>mg/L<br>0.01 | Uranium<br>mg/L<br>0.02 | Zinc<br>mg/L<br>5.0 |
|----------------------------------------|---------------------------------|----------------------------|-------------|---------------------------------------|-----------------------------------------|----------------------------------------|------------------|---------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------------|-------------------------------------|------------------------------|----------------------------------|--------------------------|--------|--------------------------|-------------------------|---------------------|
| Aesthetic(A) Parameter or Contamir     | nant (C)                        |                            |             | С                                     |                                         |                                        |                  | С                         | С                       | С                     | С                        | С                        | A / C                       | A C                                 |                              | A / C                            | С                        |        | С                        | С                       | Α                   |
|                                        | May 29, 2008                    | በ በ5በ                      | 1.7         | 0.130                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.019                 | 0.00000                  | 0.00000                  | 0.003                       | 0.000 0.000                         | 8.400                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0003                  | 0.007               |
|                                        | May 29, 2008                    | 0 000                      | 0.0         | 0.540                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.035                 | 0.00000                  | 0.00000                  | 0.000                       | 0.000 0.000                         | 9.500                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0003                  | 0.008               |
|                                        | Sep 11, 2007                    | 0 000                      | 0.0         | 0.000                                 | 0.100                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.052                 | 0.00000                  | 0.00000                  | 0.000                       | 0.000 0.000                         | 11.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0008                  | 0.009               |
|                                        | Feb 05, 2007                    | 0 000                      | 0.0         | 0.480                                 | 0.110                                   | 0.010                                  | 0.000            | 0.00000                   | 0.000                   | 0.040                 | 0.00000                  | 0.00000                  | 0.001                       | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | 0 000                      | 0.8         | 0.000                                 | 0.110                                   | 0.020                                  | 0.000            | 0.00000                   | 0.000                   | 0.100                 | 0.00000                  | 0.00100                  | 0.000                       | 0.000 0.000                         | 7.000                        | 0.170                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | N N4N                      | 0.5         | 0.000                                 | 0.090                                   | 0.030                                  | 0.000            | 0.00000                   | 0.000                   | 0.060                 | 0.00000                  | 0.00000                  | 0.000                       | 0.070 0.000                         | 11.000                       | 0.150                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | 0 000                      | 2.2         | 0.170                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.020                 | 0.00000                  | 0.00000                  | 0.003                       | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | 0 000                      | 0.0         | 0.000                                 | 0.000                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.050                 | 0.00000                  | 0.00000                  | 0.000                       | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | N N4N                      | 0.0         | 0.000                                 | 0.140                                   | 0.020                                  | 0.000            | 0.00000                   | 0.000                   | 0.070                 | 0.00000                  | 0.00000                  | 0.022                       | 0.050 0.003                         | 11.000                       | 0.150                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | 0 000                      | 1.0         | 0.000                                 | 0.060                                   | 0.010                                  | 0.000            | 0.00000                   | 0.000                   | 0.010                 | 0.00000                  | 0.00000                  | 0.001                       | 0.000 0.000                         | 10.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        | Feb 05, 2007                    | 0 000                      | 0.0         | 0.500                                 | 0.080                                   | 0.000                                  | 0.000            | 0.00000                   | 0.000                   | 0.030                 | 0.00000                  | 0.00000                  | 0.000                       | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|                                        |                                 |                            |             |                                       |                                         |                                        |                  |                           |                         | 5                     |                          |                          |                             |                                     |                              |                                  |                          |        |                          | May 04,                 | 2023                |

| Guidelines for Canadian Drinking Water Quality       10       0.006       0.01       2.0       0.007       0.05       1.0 / 2.0       0.3       0.002 / 0.12       0.001       0.01         Aesthetic(A) Parameter or Contaminant (C)       C       C       C       C       C       C       A / C       A / C       C       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02 5.0<br>C A<br>0.0000 0.000<br>0.0000 0.000 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000 0.000                                    |
| Feb 05, 2007 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.001 0.000 10.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0000 0.000                                    |
| Feb 05, 2007 0 000 0.7 0.190 0.050 0.020 0.000 0.0000 0.000 0.050 0.00000 0.00100 0.000 0.000 9.000 0.020 ).0000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |
| Sep 19, 2006 0.000 2.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.0000 0.000                                    |
| Sep 19, 2006 0.000 2.9 0.000 0.120 0.010 0.000 0.0000 0.000 0.020 0.00000 0.002 0.000 0.000 8.000 0.090 ).0000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000 0.000                                    |
| Sep 19, 2006 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.00100 0.000 0.000 10.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000 0.000                                    |
| Sep 19, 2006 0 000 0.460 0.000 0.000 0.000 0.000 0.000 0.040 0.00000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000 0.000                                    |
| Sep 19, 2006 0 000 0.7 0.000 0.000 0.020 0.000 0.000 0.000 0.100 0.00100 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0000 0.000                                    |
| Sep 19, 2006 0 000 0.480 0.000 0.000 0.000 0.000 0.000 0.040 0.00000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000 0.000                                    |
| Sep 19, 2006 0 040 0.6 0.000 0.000 0.050 0.000 0.000 0.000 0.080 0.00000 0.0000 0.000 0.000 0.000 0.150 ).0000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000 0.000                                    |
| Sep 19, 2006 0 000 1.0 0.000 0.000 0.020 0.000 0.000 0.000 0.010 0.00000 0.002 0.000 0.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000 0.000<br>May 04, 2023                    |

| Guidelin | Sample Date<br>Units<br>nes for Canadian Drinking Water Quality | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite)<br><sup>mg/L</sup><br>10 | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br><sub>mg/L</sub> | Antimony<br>mg/L<br>0.006 | Arsenic<br>mg/L<br>0.01 | Barium<br><sup>mg/L</sup><br>2.0 | Cadmium<br>mg/L<br>0.007 | Chromium<br>mg/L<br>0.05 | Copper<br>mg/L<br>1.0 / 2.0 | Iron Lead<br>mg/L mg/L<br>0.3 0.005 | Magnesium<br><sub>mg/L</sub> | Manganese<br>mg/L<br>0.02 / 0.12 | Mercury<br>mg/L<br>0.001 | Nickel | Selenium<br>mg/L<br>0.01 | Uranium<br>mg/L<br>0.02 | Zinc<br>mg/L<br>5.0 |
|----------|-----------------------------------------------------------------|----------------------------|-------------|---------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------|---------------------------|-------------------------|----------------------------------|--------------------------|--------------------------|-----------------------------|-------------------------------------|------------------------------|----------------------------------|--------------------------|--------|--------------------------|-------------------------|---------------------|
|          | sthetic(A) Parameter or Contaminant (C)                         |                            |             | C                                     |                                         |                                        |                             | C                         | C                       | C                                | C.007                    | 0.00                     |                             | A C                                 |                              | A / C                            | C                        |        | C                        | 0.02<br>C               | A.                  |
|          | Jan 17, 2006                                                    | 0 000                      | 0.5         | 0.450                                 | 0.070                                   | 0.000                                  | 0.000                       | 0.00000                   | 0.000                   | 0.030                            | 0.00000                  | 0.00000                  | 0.001                       | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006                                                    | 0 000                      | 0.0         | 0.430                                 | 0.000                                   | 0.000                                  | 0.000                       | 0.00000                   | 0.000                   | 0.040                            | 0.00000                  | 0.00000                  | 0.000                       | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006                                                    | በ በፈበ                      | 1.0         | 0.000                                 | 0.060                                   | 0.020                                  | 0.000                       | 0.00000                   | 0.000                   | 0.060                            | 0.00000                  | 0.00000                  | 0.000                       | 0.210 0.000                         | 12.000                       | 0.220                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006                                                    | 0 000                      | 0.0         | 0.000                                 | 0.000                                   | 0.020                                  | 0.000                       | 0.00000                   | 0.000                   | 0.050                            | 0.00000                  | 0.00000                  |                             | 0.000 0.000                         | 9.000                        | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006<br>Jan 17, 2006                                    | 0 020                      | 1.2<br>2.4  | 0.000                                 | 0.060                                   | 0.030                                  | 0.000                       | 0.00000                   | 0.000                   | 0.090                            | 0.00000                  | 0.00000                  |                             | 0.030 0.000                         | 7.000                        | 0.170                            | ).0000)).0000            | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006                                                    | 0 000                      | 0.0         | 0.000                                 | 0.140                                   | 0.000                                  | 0.000                       | 0.00000                   | 0.000                   | 0.060                            | 0.00000                  | 0.00000                  |                             | 0.000 0.000                         | 10.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006                                                    | 0 050                      | 1.0         | 0.000                                 | 0.070                                   | 0.020                                  | 0.000                       | 0.00000                   | 0.000                   | 0.070                            | 0.00000                  | 0.00000                  | 0.000                       | 0.080 0.000                         | 11.000                       | 0.170                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Jan 17, 2006                                                    | 0 000                      | 1.4         | 0.000                                 | 0.070                                   | 0.010                                  | 0.000                       | 0.00000                   | 0.000                   | 0.000                            | 0.00000                  | 0.00000                  | 0.002                       | 0.000 0.000                         | 11.000                       | 0.000                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Sep 20, 2005                                                    | 0 060                      | 0.0         | 0.000                                 | 0.070                                   | 0.030                                  | 0.000                       | 0.00000                   | 0.000                   | 0.070                            | 0.00000                  | 0.00000                  | 0.001                       | 0.060 0.000                         | 11.000                       | 0.160                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  | 0.000               |
|          | Sep 20, 2005                                                    | 0 060                      | 0.0         | 0.000                                 | 0.000                                   | 0.020                                  | 0.000                       | 0.00000                   | 0.000                   | 0.090                            | 0.00000                  | 0.00000                  | 0.000                       | 0.030 0.000                         | 7.000                        | 0.160                            | ).0000                   | 0.000  | 0.000                    | 0.0000                  |                     |
|          |                                                                 |                            |             |                                       |                                         |                                        |                             |                           |                         | 7                                |                          |                          |                             |                                     |                              |                                  |                          |        |                          | May 04,                 | 2023                |

| Units n                                                                                     |       | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitrogen<br><sub>mg/L</sub> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony   | Arsenic<br>mg/L | mg/L       | mg/L       | mg/L      | mg/L      | mg/L mg/L   | Magnesium<br><sub>mg/L</sub> | mg/L        | Mercury<br>mg/L | Nickel | Selenium<br>mg/L | Uranium<br>mg/L   | Zinc<br>mg/L |
|---------------------------------------------------------------------------------------------|-------|-------------|--------------|-----------------------------------------|----------------------------------------|------------------|------------|-----------------|------------|------------|-----------|-----------|-------------|------------------------------|-------------|-----------------|--------|------------------|-------------------|--------------|
| Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) |       |             | 10<br>C      |                                         |                                        |                  | 0.006<br>C | 0.01<br>C       | 2.0<br>C   | 0.007<br>C | 0.05<br>C | 1.0 / 2.0 | 0.3 0.005   |                              | 0.02 / 0.12 | 0.001<br>C      |        | 0.01<br>C        | 0.02<br>C         | 5.0<br>A     |
|                                                                                             | 000   | 0.0         | 0.440        | 0.000                                   | 0.000                                  | 0.000            | 0.00000    | 0.000           | 0.040      | 0.00000    | 0.00000   |           | 0.000 0.000 | 9.000                        | 0.000       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
| Sep 20, 2005 0                                                                              | 000   | 0.0         | 0.490        | 0.070                                   | 0.000                                  | 0.000            | 0.00000    | 0.000           | 0.030      | 0.00000    | 0.00000   | 0.001     | 0.000 0.000 | 9.000                        | 0.000       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
|                                                                                             |       | 0.0         | 0.000        | 0.000                                   | 0.000                                  | 0.000            | 0.00000    | 0.000           | 0.060      | 0.00000    | 0.00000   |           | 0.000 0.000 | 8.000                        | 0.000       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
|                                                                                             | 0.000 | 0.6         | 0.000        | 0.000                                   | 0.020                                  | 0.000            | 0.00000    | 0.000           | 0.020      | 0.00000    | 0.00000   |           | 0.000 0.000 | 10.000                       | 0.070       | ).0000)).0000   | 0.000  | 0.000            | 0.0000            | 0.000        |
| Sep 20, 2005 ი                                                                              | 000   | 0.0         | 0.000        | 0.060                                   | 0.010                                  | 0.000            | 0.00000    | 0.000           | 0.050      | 0.00000    | 0.00000   | 0.000     | 0.000 0.000 | 9.000                        | 0.000       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
| Sep 20, 2005 0                                                                              | 030   | 0.0         | 0.000        | 0.000                                   | 0.000                                  | 0.000            | 0.00000    | 0.000           | 0.050      | 0.00000    | 0.00100   | 0.000     | 0.280 0.000 | 10.000                       | 0.180       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
| Nov 09, 2004 0                                                                              | 030   | 0.0         | 0.110        | 0.000                                   | 0.020                                  | 0.050            | 0.00000    | 0.000           | 0.060      | 0.00000    | 0.00000   | 0.000     | 0.030 0.000 | 9.000                        | 0.050       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
| Nov 09, 2004 n                                                                              | 030   | 0.0         | 0.400        | 0.000                                   | 0.030                                  | 0.000            | 0.00000    | 0.000           | 0.040      | 0.00000    | 0.00000   | 0.000     | 0.000 0.000 | 10.000                       | 0.000       | ).0000          | 0.000  | 0.000            | 0.0000            | 0.000        |
|                                                                                             | 030   | 0.0         | 0.000        | 0.000                                   | 0.030                                  | 0.050            | 0.00000    | 0.000           | 0.060      | 0.00000    | 0.00000   | 0.000     | 0.360 0.000 | 11.000                       | 0.220       | ).0000          | 0.000  | 0.000            |                   | 0.000        |
| Nov 09, 2004 O                                                                              | 080   | 0.0         | 0.000        | 0.160                                   | 0.030                                  | 0.050            | 0.00000    | 0.000           | 0.070<br>8 | 0.00000    | 0.00000   | 0.001     | 0.010 0.000 | 11.000                       | 0.000       | ).0000          | 0.000  | 0.000            | 0.0000<br>May 04, |              |

|      | Sample Date<br>Units                       | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitroqen<br><sub>mg/L</sub> | Total<br>Phosphorus<br><sub>mg/L</sub> | Aluminum<br><sub>mg/L</sub> | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br><sub>mg/L</sub> | Cadmium<br><sub>mg/L</sub> | Chromium<br><sub>mg/L</sub> | Copper<br>mg/L | Iron Lead   | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L | Mercury<br>mg/L | Nickel | Selenium<br><sub>mg/L</sub> | Uranium<br><sub>mg/L</sub> | Zinc<br>mg/L |
|------|--------------------------------------------|----------------------------|-------------|--------------|-----------------------------------------|----------------------------------------|-----------------------------|------------------|-----------------|---------------------------|----------------------------|-----------------------------|----------------|-------------|------------------------------|-------------------|-----------------|--------|-----------------------------|----------------------------|--------------|
| Guid | elines for Canadian Drinking Water Quality |                            |             | 10           |                                         |                                        |                             | 0.006            | 0.01            | 2.0                       | 0.007                      | 0.05                        | 1.0 / 2.0      | 0.3 0.005   |                              | 0.02 / 0.12       | 0.001           |        | 0.01                        | 0.02                       | 5.0          |
| 4    | Aesthetic(A) Parameter or Contaminant (C)  |                            |             | С            |                                         |                                        |                             | С                | С               | С                         | С                          | С                           | A / C          | A C         |                              | A / C             | С               |        | С                           | С                          | Α            |
|      | Nov 09, 2004                               | 0 030                      | 0.8         | 0.000        | 0.000                                   | 0.040                                  | 0.050                       | 0.00000          | 0.000           | 0.010                     | 0.00000                    | 0.00000                     | 0.001          | 0.000 0.000 | 10.000                       | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Nov 09, 2004                               | በ በጸበ                      | 0.0         | 0.000        | 0.130                                   | 0.040                                  | 0.050                       | 0.00000          | 0.000           | 0.080                     | 0.00000                    | 0.00000                     | 0.000          | 0.060 0.000 | 13.000                       | 0.180             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Nov 09, 2004                               | 0 060                      | 2.4         | 0.150        | 0.110                                   | 0.010                                  | 0.050                       | 0.00000          | 0.000           | 0.020                     | 0.00000                    | 0.00000                     | 0.002          | 0.000 0.002 | 8.000                        | 0.030             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Nov 09, 2004                               | 0 000                      | 0.0         | 0.000        | 0.000                                   | 0.020                                  | 0.050                       | 0.00000          | 0.000           | 0.050                     | 0.00000                    | 0.00000                     | 0.000          | 0.000 0.000 | 9.000                        | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Nov 09, 2004                               | 0 0.30                     | 0.0         | 0.000        | 0.000                                   | 0.050                                  | 0.050                       | 0.00000          | 0.000           | 0.100                     | 0.00000                    | 0.00000                     | 0.000          | 0.050 0.000 | 7.000                        | 0.160             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Jun 16, 2004                               | 0 000                      | 2.7         | 0.270        | 0.340                                   | 0.010                                  | 0.010                       | 0.00000          | 0.000           | 0.050                     | 0.00000                    | 0.00200                     | 0.000          | 0.020 0.000 | 9.000                        | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Jun 16, 2004                               | 0 000                      | 0.6         | 0.000        | 0.100                                   | 0.040                                  | 0.000                       | 0.00000          | 0.000           | 0.060                     | 0.00000                    | 0.00100                     | 0.000          | 0.000 0.000 | 10.000                       | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Jun 16, 2004                               | 0 000                      | 0.7         | 0.380        | 0.220                                   | 0.010                                  | 0.000                       | 0.00000          | 0.000           | 0.040                     | 0.00000                    | 0.00100                     | 0.000          | 0.000 0.000 | 9.000                        | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Jun 16, 2004                               | 0 000                      | 0.6         | 0.430        | 0.050                                   | 0.040                                  | 0.000                       | 0.00000          | 0.000           | 0.040                     | 0.00000                    | 0.00100                     | 0.000          | 0.000 0.000 | 9.000                        | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Jun 16, 2004                               | 0 000                      | 0.0         | 0.000        | 0.200                                   | 0.020                                  | 0.000                       | 0.00000          | 0.000           | 0.050                     | 0.00000                    | 0.00000                     | 0.000          | 0.000 0.000 | 8.000                        | 0.000             | ).0010          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      | Jun 15, 2004                               | በ በጸበ                      | 0.7         | 0.000        | 0.100                                   | 0.070                                  | 0.000                       | 0.00000          | 0.000           | 0.080                     | 0.00000                    | 0.00000                     | 0.000          | 0.070 0.000 | 13.000                       | 0.170             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
|      |                                            |                            |             |              |                                         |                                        |                             |                  |                 | 9                         |                            |                             |                |             |                              |                   |                 |        |                             | May 04,                    | 2023         |

| Sample Da<br>Units                             | te Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br><sub>mg/L</sub> | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br>mg/L | Cadmium<br><sub>mg/L</sub> | Chromium<br>mg/L | Copper<br>mg/L | Iron Lead   | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L | Mercury<br>mg/L | Nickel | Selenium<br><sub>mg/L</sub> | Uranium<br><sub>mg/L</sub> | Zinc<br>mg/L |
|------------------------------------------------|-------------------------------|-------------|--------------|-----------------------------------------|----------------------------------------|-----------------------------|------------------|-----------------|----------------|----------------------------|------------------|----------------|-------------|------------------------------|-------------------|-----------------|--------|-----------------------------|----------------------------|--------------|
| Guidelines for Canadian Drinking Water Quality |                               |             | 10           |                                         |                                        |                             | 0.006            | 0.01            | 2.0            | 0.007                      | 0.05             | 1.0 / 2.0      | 0.3 0.005   |                              | 0.02 / 0.12       | 0.001           |        | 0.01                        | 0.02                       | 5.0          |
| Aesthetic(A) Parameter or Contaminant (C)      |                               |             | С            |                                         |                                        |                             | С                | С               | С              | С                          | С                | A / C          | A C         |                              | A / C             | С               |        | С                           | С                          | Α            |
| Jun 15, 200                                    | 4 n nen                       | 0.8         | 0.000        | 0.060                                   | 0.080                                  | 0.000                       | 0.00000          | 0.000           | 0.060          | 0.00000                    | 0.00000          | 0.000          | 0.220 0.000 | 11.000                       | 0.210             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
| Jun 15, 200                                    | 4 0 000                       | 1.1         | 0.140        | 0.000                                   | 0.040                                  | 0.000                       | 0.00000          | 0.000           | 0.000          | 0.00000                    | 0.00000          | 0.000          | 0.000 0.000 | 10.000                       | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
| Jun 15, 200                                    | 4 Ი Ი2Ი                       | 0.5         | 0.000        | 0.000                                   | 0.050                                  | 0.000                       | 0.00000          | 0.000           | 0.100          | 0.00000                    | 0.00000          | 0.000          | 0.020 0.000 | 6.000                        | 0.130             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
| Jun 15, 200                                    | 4 0.060                       | 2.2         | 0.150        | 0.150                                   | 0.000                                  | 0.000                       | 0.00000          | 0.000           | 0.020          | 0.00000                    | 0.00000          | 0.002          | 0.000 0.000 | 7.000                        | 0.000             | ).0000          | 0.000  | 0.000                       | 0.0000                     | 0.000        |
| Oct 01, 200                                    | 3 Ი ᲘᲜᲘ                       | 0.3         | 0.050        | 0.090                                   | 0.040                                  | 0.120                       | 0.00050          | 0.001           | 0.070          | 0.00020                    | 0.00050          | 0.001          | 0.080 0.001 | 11.000                       | 0.161             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
| Oct 01, 200                                    | 3 0.010                       | 0.3         | 0.050        | 0.050                                   | 0.050                                  | 0.040                       | 0.00050          | 0.001           | 0.050          | 0.00005                    | 0.00050          | 0.001          | 0.440 0.001 | 10.000                       | 0.173             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
| Oct 01, 200                                    | 3 0.010                       | 0.3         | 0.410        | 0.025                                   | 0.030                                  | 0.070                       | 0.00050          | 0.001           | 0.040          | 0.00005                    | 0.00050          | 0.001          | 0.010 0.001 | 9.000                        | 0.012             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
| Oct 01, 200                                    | 3 ೧ ೧೫೧                       |             | 0.360        | 0.120                                   | 0.040                                  | 0.110                       | 0.00050          | 0.001           | 0.040          | 0.00005                    | 0.00050          | 0.001          | 0.020 0.001 | 9.000                        | 0.018             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
| Oct 01, 200                                    | 3 0.010                       | 1.3         | 0.120        | 0.070                                   | 0.030                                  | 0.080                       | 0.00050          | 0.001           | 0.020          | 0.00005                    | 0.00050          | 0.003          | 0.020 0.001 | 9.000                        | 0.024             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
| Oct 01, 200                                    | 3 0 0 10                      | 0.3         | 0.050        | 0.025                                   | 0.010                                  | 0.005                       | 0.00050          | 0.001           | 0.050          | 0.00005                    | 0.00050          | 0.001          | 0.005 0.001 | 8.000                        | 0.003             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
| Oct 01, 200                                    | 3 0.010                       | 0.3         | 0.210        | 0.025                                   | 0.010                                  | 0.005                       | 0.00050          | 0.001           | 0.050          | 0.00005                    | 0.00050          | 0.001          | 0.060 0.001 | 9.000                        | 0.028             | ).0000          | 0.003  | 0.001                       | 0.0005                     | 0.005        |
|                                                |                               |             |              |                                         |                                        |                             |                  |                 | 10             |                            |                  |                |             |                              |                   |                 |        |                             | May 04,                    | 2023         |

| Sample Date Amm<br>Units mg                                                                 |                    | mg/L    | Kjeldahl<br>Nitrogen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L | Arsenic<br>mg/L | mg/L        | mg/L       | mg/L      | mg/L      | mg/L mg/L        | Magnesium<br><sup>mg/L</sup> | mg/L        | mg/L          | Nickel | Selenium<br>mg/L | Uranium<br>mg/L   | Zinc<br>mg/L |
|---------------------------------------------------------------------------------------------|--------------------|---------|-----------------------------------------|----------------------------------------|------------------|------------------|-----------------|-------------|------------|-----------|-----------|------------------|------------------------------|-------------|---------------|--------|------------------|-------------------|--------------|
| Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) |                    | 10<br>C |                                         |                                        |                  | 0.006<br>C       | 0.01<br>C       | 2.0<br>C    | 0.007<br>C | 0.05<br>C | 1.0 / 2.0 | 0.3 0.005<br>A C |                              | 0.02 / 0.12 | 0.001<br>C    |        | 0.01<br>C        | 0.02<br>C         | 5.0<br>A     |
|                                                                                             | 010 0.3            |         | 0.025                                   | 0.050                                  | 0.030            | 0.00050          | 0.001           | 0.080       | 0.00005    | 0.00050   |           | 0.030 0.001      | 6.000                        | 0.132       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.005        |
| Oct 01, 2003 0 0                                                                            | 010 0.3            | 0.110   | 0.025                                   | 0.040                                  | 0.090            | 0.00050          | 0.001           | 0.010       | 0.00005    | 0.00050   | 0.012     | 0.020 0.001      | 11.000                       | 0.014       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.005        |
|                                                                                             | 110 0.3<br>110 0.7 |         | 0.025                                   | 0.005                                  | 0.210            | 0.00050          | 0.001           | 0.070       | 0.00005    | 0.00050   |           | 0.030 0.001      | 9.000                        | 0.045       | ).0000)).0000 | 0.003  | 0.001            | 0.0005            | 0.005        |
|                                                                                             | 110 0.3            |         | 0.025                                   | 0.050                                  | 0.005            | 0.00050          | 0.001           | 0.060       | 0.00005    | 0.00050   |           | 0.005 0.001      | 8.000                        | 0.031       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.003        |
| Apr 29, 2003 ი ი                                                                            | 010 0.3            | 0.050   | 0.025                                   | 0.005                                  | 0.005            | 0.00050          | 0.001           | 0.070       | 0.00005    | 0.00050   | 0.001     | 0.005 0.001      | 9.000                        | 0.003       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.003        |
| Apr 29, 2003 0 0                                                                            | 110 0.3            | 0.420   | 0.025                                   | 0.005                                  | 0.005            | 0.00050          | 0.001           | 0.040       | 0.00005    | 0.00050   | 0.001     | 0.005 0.001      | 9.000                        | 0.003       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.003        |
| Apr 29, 2003 0 0                                                                            | 010 0.3            | 0.420   | 0.025                                   | 0.020                                  | 0.005            | 0.00050          | 0.001           | 0.040       | 0.00005    | 0.00050   | 0.001     | 0.005 0.001      | 10.000                       | 0.003       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.003        |
| Apr 29, 2003 n n                                                                            | 0.3                | 0.050   | 0.100                                   | 0.020                                  | 0.005            | 0.00050          | 0.001           | 0.070       | 0.00005    | 0.00050   | 0.001     | 0.080 0.001      | 10.000                       | 0.159       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.003        |
| Apr 29, 2003 n r                                                                            | 0.30 0.3           | 0.050   | 0.025                                   | 0.040                                  | 0.050            | 0.00050          | 0.001           | 0.060       | 0.00005    | 0.00050   | 0.001     | 0.220 0.001      | 12.000                       | 0.219       | ).0000        | 0.003  | 0.001            | 0.0005            | 0.003        |
| Apr 29, 2003 n r                                                                            | 120 0.3            | 0.050   | 0.025                                   | 0.040                                  | 0.005            | 0.00050          | 0.001           | 0.090<br>11 | 0.00005    | 0.00050   | 0.001     | 0.010 0.001      | 7.000                        | 0.158       | ).0000        | 0.003  | 0.001            | 0.0005<br>May 04, |              |

| Sample Date Ammo<br>Units mg                   |     | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitrogen<br><sub>mg/L</sub> | Total<br>Phosphorus<br>mg/L | Aluminum<br>mg/L | Antimony<br>mg/L | Arsenic<br>mg/L | mg/L  | Cadmium<br><sub>mg/L</sub> | mg/L    | mg/L      | mg/L mg/L   | Magnesium<br>mg/L | mg/L        | Mercury<br>mg/L | Nickel S | Selenium<br><sub>mg/L</sub> | Uranium<br><sub>mg/L</sub> | Zinc<br>mg/L |
|------------------------------------------------|-----|-------------|--------------|-----------------------------------------|-----------------------------|------------------|------------------|-----------------|-------|----------------------------|---------|-----------|-------------|-------------------|-------------|-----------------|----------|-----------------------------|----------------------------|--------------|
| Guidelines for Canadian Drinking Water Quality |     |             | 10           |                                         |                             |                  | 0.006            | 0.01            | 2.0   | 0.007                      | 0.05    | 1.0 / 2.0 | 0.3 0.005   |                   | 0.02 / 0.12 | 0.001           |          | 0.01                        | 0.02                       | 5.0          |
| Aesthetic(A) Parameter or Contaminant (C)      |     |             | С            |                                         |                             |                  | С                | C               | С     | С                          | С       | A / C     | A C         |                   | A / C       | С               |          | С                           | С                          | A            |
|                                                |     |             |              |                                         |                             |                  |                  |                 |       |                            |         |           |             |                   |             |                 |          |                             |                            |              |
| Apr 29, 2003 0 0                               | 110 | 1.9         | 0.200        | 0.025                                   | 0.020                       | 0.020            | 0.00050          | 0.001           | 0.020 | 0.00005                    | 0.00050 | 0.002     | 0.010 0.001 | 6.000             | 0.011       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Apr 29, 2003 n n                               | 110 | 0.5         | 0.110        | 0.025                                   | 0.030                       | 0.040            | 0.00050          | 0.001           | 0.010 | 0.00005                    | 0.00050 | 0.002     | 0.005 0.001 | 9.000             | 0.009       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 0 0                               | 110 | 2.9         | 0.140        | 0.170                                   | 0.020                       | 0.200            | 0.00050          | 0.001           | 0.020 | 0.00005                    | 0.00100 | 0.003     | 0.040 0.001 | 8.000             | 0.029       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 n n                               | 110 | 1.2         | 0.050        | 0.025                                   | 0.005                       | 0.200            | 0.00050          | 0.001           | 0.010 | 0.00005                    | 0.00100 | 0.001     | 0.040 0.001 | 11.000            | 0.033       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 n n                               | 110 | 0.5         | 0.050        | 0.090                                   | 0.020                       | 0.210            | 0.00050          | 0.001           | 0.080 | 0.00005                    | 0.00050 | 0.001     | 0.050 0.001 | 6.000             | 0.162       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 0 0                               | 110 | 0.3         | 0.050        | 0.025                                   | 0.020                       | 0.210            | 0.00050          | 0.001           | 0.070 | 0.00005                    | 0.00100 | 0.002     | 0.040 0.001 | 10.000            | 0.034       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 n n                               | າጸበ | 0.7         | 0.050        | 0.080                                   | 0.050                       | 0.210            | 0.00050          | 0.001           | 0.070 | 0.00005                    | 0.00100 | 0.002     | 0.120 0.001 | 11.000            | 0.175       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 0 0                               | )10 | 0.3         | 0.410        | 0.025                                   | 0.005                       | 0.150            | 0.00050          | 0.001           | 0.040 | 0.00005                    | 0.00100 | 0.002     | 0.030 0.001 | 10.000            | 0.022       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 0 0                               | 110 | 0.3         | 0.050        | 0.025                                   | 0.040                       | 0.130            | 0.00050          | 0.001           | 0.050 | 0.00005                    | 0.00100 | 0.001     | 0.020 0.001 | 9.000             | 0.019       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| Oct 24, 2002 0 0                               | 170 | 0.6         | 0.050        | 0.070                                   | 0.050                       | 0.130            | 0.00050          | 0.001           | 0.070 | 0.00005                    | 0.00100 | 0.002     | 0.100 0.001 | 11.000            | 0.162       | ).0000          | 0.003    | 0.001                       | 0.0005                     | 0.003        |
| May 14, 2002 0 0                               | 150 | 0.3         | 0.150        | 0.080                                   | 0.020                       | 0.210            | 0.00050          | 0.001           | 0.050 | 0.00005                    | 0.00050 | 0.001     | 0.030 0.001 | 10.000            | 0.040       | ).0000          | 0.005    | 0.001                       | 0.0005<br>May 04           |              |

May 04, 2023

| San<br>Units<br>Guidelines for Canadian Drinking Water Quality<br>Aesthetic(A) Parameter or Contaminant (C) |            | monia<br>mg/L | DOC<br>mg/L | Nitrate(ite)<br>mg/L<br>10<br>C | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L<br>0.006<br>C | Arsenic<br>mg/L<br>0.01<br>C | Barium<br>mg/L<br>2.0<br>C | Cadmium<br>mg/L<br>0.007<br>C | Chromium<br>mg/L<br>0.05<br>C | Copper<br>mg/L<br>1.0 / 2.0<br>A / C | mg/L mg/L<br>0.3 0.005 | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L<br>0.02 / 0.12<br>A / C | Mercury<br>mg/L<br>0.001<br>C | Nickel So | elenium<br>mg/L<br>0.01<br>C | Uranium<br>mg/L<br>0.02<br>C | Zinc<br>mg/L<br>5.0<br>A |
|-------------------------------------------------------------------------------------------------------------|------------|---------------|-------------|---------------------------------|-----------------------------------------|----------------------------------------|------------------|--------------------------------|------------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------------------|------------------------|------------------------------|-------------------------------------------|-------------------------------|-----------|------------------------------|------------------------------|--------------------------|
| Мау                                                                                                         | 14, 2002 0 | 0 010         | 0.3         | 0.050                           | 0.025                                   | 0.005                                  | 0.025            | 0.00050                        | 0.001                        | 0.050                      | 0.00005                       | 0.00050                       | 0.001                                | 0.005 0.001            | 10.000                       | 0.005                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002 0 | N N1N         | 0.3         | 0.050                           | 0.025                                   | 0.080                                  | 0.150            | 0.00050                        | 0.001                        | 0.070                      | 0.00020                       | 0.00050                       | 0.001                                | 0.005 0.001            | 11.000                       | 0.005                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002   | N N1N         | 0.3         | 0.420                           | 0.025                                   | 0.010                                  | 0.070            | 0.00050                        | 0.001                        | 0.030                      | 0.00005                       | 0.00050                       | 0.001                                | 0.005 0.001            | 10.000                       | 0.005                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002   | 0 010         | 0.3         | 0.390                           | 0.060                                   | 0.005                                  | 0.320            | 0.00050                        | 0.001                        | 0.040                      | 0.00005                       | 0.00050                       | 0.002                                | 0.020 0.001            | 11.000                       | 0.005                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002   | 0 010         | 0.3         | 0.050                           | 0.025                                   | 0.020                                  | 0.025            | 0.00050                        | 0.001                        | 0.050                      | 0.00005                       | 0.00050                       | 0.002                                | 0.190 0.001            | 13.000                       | 0.180                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002   | 0 060         | 0.3         | 0.050                           | 0.080                                   | 0.030                                  | 0.710            | 0.00050                        | 0.001                        | 0.070                      | 0.00005                       | 0.00050                       | 0.001                                | 0.130 0.001            | 13.000                       | 0.150                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002   | 0 010         | 0.3         | 0.130                           | 0.025                                   | 0.020                                  | 0.390            | 0.00050                        | 0.001                        | 0.010                      | 0.00005                       | 0.00050                       | 0.001                                | 0.010 0.001            | 11.000                       | 0.005                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002 0 | N N2N         | 0.3         | 0.050                           | 0.080                                   | 0.030                                  | 0.120            | 0.00050                        | 0.001                        | 0.080                      | 0.00005                       | 0.00050                       | 0.002                                | 0.005 0.001            | 6.000                        | 0.130                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Мау                                                                                                         | 14, 2002 0 | n n4n         | 1.9         | 0.120                           | 0.025                                   | 0.005                                  | 0.025            | 0.00050                        | 0.001                        | 0.010                      | 0.00005                       | 0.00050                       | 0.002                                | 0.005 0.001            | 8.000                        | 0.005                                     | ).0000                        | 0.005     | 0.001                        | 0.0005                       | 0.005                    |
| Nov                                                                                                         | 23, 2001   | 0 050         | 3.1         | 0.170                           | 0.070                                   | 0.020                                  | 0.025            |                                | 0.001                        | 0.010                      | 0.00005                       | 0.00050                       | 0.002                                | 0.005 0.001            | 7.000                        | 0.005                                     | ).0000                        | 0.005     | 0.001                        |                              | 0.005                    |
| Nov                                                                                                         | 23, 2001   | 0 030         | 0.3         | 0.050                           | 0.025                                   | 0.005                                  | 0.025            |                                | 0.001                        | 0.005                      | 0.00005                       | 0.00050                       | 0.001                                | 0.005 0.001            | 12.000                       | 0.005                                     | ).0000                        | 0.005     | 0.001                        |                              | 0.005                    |
|                                                                                                             |            |               |             |                                 |                                         |                                        |                  |                                |                              | 13                         |                               |                               |                                      |                        |                              |                                           |                               |           |                              | May 04,                      | 2023                     |

| Sample Date<br>Units                           | Ammonia<br><sub>mg/L</sub> | DOC<br>mg/L | Nitrate(ite) | Kjeldahl<br>Nitroqen<br><sup>mg/L</sup> | Total<br>Phosphorus<br><sup>mg/L</sup> | Aluminum<br>mg/L | Antimony<br>mg/L | Arsenic<br>mg/L | Barium<br><sup>mg/L</sup> | Cadmium<br><sub>mg/L</sub> | Chromium<br>mg/L | Copper<br>mg/L | Iron Lead   | Magnesium<br><sup>mg/L</sup> | Manganese<br>mg/L | Mercury | Nickel | Selenium<br><sub>mg/L</sub> | Uranium<br><sub>mg/L</sub> | Zinc<br>mg/L |
|------------------------------------------------|----------------------------|-------------|--------------|-----------------------------------------|----------------------------------------|------------------|------------------|-----------------|---------------------------|----------------------------|------------------|----------------|-------------|------------------------------|-------------------|---------|--------|-----------------------------|----------------------------|--------------|
| Guidelines for Canadian Drinking Water Quality |                            |             | 10           |                                         |                                        |                  | 0.006            | 0.01            | 2.0                       | 0.007                      | 0.05             | 1.0 / 2.0      | 0.3 0.005   |                              | 0.02 / 0.12       | 0.001   |        | 0.01                        | 0.02                       | 5.0          |
| Aesthetic(A) Parameter or Contaminant (C)      |                            |             | С            |                                         |                                        |                  | С                | С               | С                         | С                          | С                | A / C          | A C         |                              | A / C             | С       |        | С                           | С                          | Α            |
| Nov 23, 2001                                   | 0 010                      | 0.3         | 0.400        | 0.025                                   | 0.005                                  | 0.025            |                  | 0.001           | 0.030                     | 0.00005                    | 0.00050          | 0.001          | 0.005 0.001 | 10.000                       | 0.005             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | 0 030                      | 0.3         | 0.400        | 0.025                                   | 0.005                                  | 0.025            |                  | 0.001           | 0.030                     | 0.00005                    | 0.00050          | 0.001          | 0.010 0.001 | 10.000                       | 0.005             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | 0 010                      | 0.3         | 0.170        | 0.025                                   | 0.005                                  | 0.025            |                  | 0.001           | 0.040                     | 0.00005                    | 0.00050          | 0.001          | 0.020 0.001 | 9.000                        | 0.040             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | 0 050                      | 2.5         | 0.050        | 0.025                                   | 0.020                                  | 0.025            |                  | 0.001           | 0.060                     | 0.00005                    | 0.00050          | 0.001          | 0.005 0.001 | 11.000                       | 0.005             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | 0 070                      | 0.3         | 0.050        | 0.070                                   | 0.005                                  | 0.025            |                  | 0.001           | 0.050                     | 0.00005                    | 0.00050          | 0.001          | 0.180 0.001 | 12.000                       | 0.180             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | 0 100                      | 0.3         | 0.050        | 0.100                                   | 0.040                                  | 0.025            |                  | 0.001           | 0.060                     | 0.00005                    | 0.00050          | 0.001          | 0.080 0.001 | 11.000                       | 0.130             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | N N1N                      | 0.3         | 0.050        | 0.025                                   | 0.005                                  | 0.025            |                  | 0.001           | 0.060                     | 0.00005                    | 0.00050          | 0.001          | 0.005 0.001 | 6.000                        | 0.130             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |
| Nov 23, 2001                                   | 0 070                      | 0.3         | 0.050        | 0.070                                   | 0.005                                  | 0.025            |                  | 0.001           | 0.050                     | 0.00005                    | 0.00050          | 0.001          | 0.005 0.001 | 10.000                       | 0.005             | ).0000  | 0.005  | 0.001                       |                            | 0.005        |

|                                        | Sample Date | Ammonia | DOC  | Nitrate(ite) | Kjeldahl | Total      | Aluminum | Antimony | Arsenic | Barium | Cadmium C | hromium | Copper    | Iron Lead | Magnesium | Manganese   | Mercury | Nickel S | Selenium | Uranium | Zinc |
|----------------------------------------|-------------|---------|------|--------------|----------|------------|----------|----------|---------|--------|-----------|---------|-----------|-----------|-----------|-------------|---------|----------|----------|---------|------|
|                                        |             |         |      |              | Nitrogen | Phosphorus |          |          |         |        |           |         |           |           |           |             |         |          |          |         |      |
|                                        | Units       | mg/L    | mg/L | mg/L         | mg/L     | mg/L       | mg/L     | mg/L     | mg/L    | mg/L   | mg/L      | mg/L    | mg/L      | mg/L mg/L | mg/L      | mg/L        | mg/L    | mg/L     | mg/L     | mg/L    | mg/L |
| Guidelines for Canadian Drinking Water | Quality     |         |      | 10           |          |            |          | 0.006    | 0.01    | 2.0    | 0.007     | 0.05    | 1.0 / 2.0 | 0.3 0.005 |           | 0.02 / 0.12 | 0.001   |          | 0.01     | 0.02    | 5.0  |
| Aesthetic(A) Parameter or Contamir     | nant (C)    |         |      | С            |          |            |          | С        | С       | С      | С         | С       | A / C     | A C       |           | A / C       | С       |          | С        | С       | Α    |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data.

LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects .

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the health aspects of contaminants.

#### Contaminant and Aesthetic Exceedances

Nitrate(ite) - The maximum acceptable concentration for nitrate(ite) in drinking water is 10 mgL expressed as nitrate-nitrogen. Nitrate and nitrite are naturally occurring ions that are widespread in the environment. High levels of this contaminant can cause adverse health effects for some people

Arsenic - The interim maximum acceptable concentration for arsenic in drinking water is 0.01 mg/L. Arsenic is introduced into water through the dissolution of minerals and ores, from industrial effluents and via atmospheric deposition. High levels of this contaminant can cause adverse health effects for some people.

Barium - The maximum acceptable concentration for barium in drinking water is 2.0 mg/L. Barium is not found free in nature but occurs as in a number of compounds. High levels of this contaminant can cause adverse health effects for some people.

Cadmium - The maximum acceptable concentration for cadmium in drinking water is 0.007 mg/L. Cadmium that is present as an impurity in galvanized pipes, a constituent of solders used in fitting water heaters or incorporated into stabilizers in black polyethylene pipes may contaminate water supplies during their distribution. High levels of this contaminant can cause adverse health effects for some people.

Chromium - The maximum acceptable concentration for chromium in drinking water is 0.05 mg/L. High levels of this contaminant can cause adverse health effects for some people

Lead - The maximum acceptable concentration for lead in drinking water is 0.005 mg/l. Lead is present in tap water as a result of dissolution from natural sources or from the distribution systems and olumbing containing lead in pipes, solder or service connections. High levels of this contaminant can cause adverse health effects for some people

Mercury - The maximum acceptable concentration for mercury in drinking water is 0.001 mg/L. High levels of this contaminant can cause adverse health effects for some people

Selenium - The maximum acceptable concentration for selenium in drinking water is 0.01 mg/L. High levels of this contaminant can cause adverse health effects for some people

Uranium - The interim maximum acceptable concentration for uranium in drinking water is 0.02 mg/L. Uranium may enter drinking water from naturally occurring deposits or as a result of human activity, such as mill tailings and phosphate fertilizers. High levels of this contaminant can cause adverse health effects for some people

Antimony - The interim maximum acceptable concentration (IMAC) for antimony in drinking water is 0.006 mg/L. It is a naturally occurring metal that is introduced into water through the natural weathering of rocks, runoff from soils, effluents from mining and manufacturing operations, industrial and municipal leachate discharges and from household piping and possibly non-leaded solders. High levels of this contaminant can cause adverse health effects for some people Copper - The maximum acceptable concentration for copper in dinking water is 2.0 mgL and the assthetic objective for copper in dinking water is 1.0 mgL. Copper is widely distributed in nature and is found frequently in surface water and in some groundwater. Usally, copper in tap water is the result of dissolution of copper piping within the distribution system. The aesthetic objective was set to ensure palatability and to minimize staining of laundry and plumbing fixtures. Copper is an essential element in human metabolism and copper deficiency results in a variety of clinical disorders. At extremely high doese copper intake can result in adverse health effects. High levels of copper in tap water may result in blue-green staining on some fixtures.

Iron - The aesthetic objective for iron in drinking water is 0.3 mg/L. Usually, iron in tap water is the result of high iron content in the raw water and dissolution of iron piping within the distribution system. Iron is an essential element in nutrition. High levels of iron in tap water can cause staining of laundry and plumbing fixtures, unpleasant taste, colour and promote biological growths in the distribution system.

Manganese - The maximum acceptable concentration for manganese in drinking water is 0.12 mgL and the aesthetic objective for manganese in drinking water is 0.02 mg/L. Usually, manganese in drinking water is the result of high amounts of manganese in the source water supply's bedrock Levels above the maximum acceptable concentration can cause adverse health effects for some people Levels above the aesthetic objective may cause staining of plumbing and laundry and undesirable tastes in beverages.

Zinc - The aesthetic objective for zinc in drinking water is 5.0 mg/L. Zinc in water can be naturally occurring or due to zinc in plumbing materials. Zinc is an essential element for human nutrition. Long term ingestion of zinc has not resulted in adverse effects. Water with zinc concentrations higher than the aesthetic objective has an astringent taste and may be opalescent and develop a greasy film on boiling.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units

DOC = dissolved organic carbon Nitrate(ite) = Nitrate + Nitrite WS # = water supply number SA# = serviced area number GCDWQ = Guidelines for Canadian Drinking Water Quality Notes : Guidelines for Canadian Drinking Water Quality have not been developed for all the parameters listed in this report of has no units



|                               |                                            | Sample Date   | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------|--------------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                               |                                            | Units         | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                               | Guidelines for Canadian Drinking W         | later Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                               | Aesthetic(A) Parameter or Con              | ntaminant (C) |            | Α     |             |          | А         | Α    |      | С         | С     |         |         | А        | С        |           | А      | А        |
| Community Name:               | Piccadilly Slant-Abraham's<br>Cove         |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:<br>Source Name: | Abraham's Cove<br>#2 Well - Abraham's Cove |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                               |                                            | Sep 12, 2022  | 250.00     | 9     | 660.0       | 270.00   | 7.7       | 370  |      | 2.00      | 0.00  | 0.00    | 93.00   | 40       | 0.000    | 1.800     | 25     | 7        |
|                               |                                            | Sep 25, 2020  | 222.00     | 8     | 559.0       | 249.00   | 7.8       | 363  |      | 0.80      | 0.02  | 0.00    | 88.00   | 36       | 0.000    | 2.000     | 28     | 7        |
|                               |                                            | Sep 14, 2020  | 231.00     | 0     | 533.0       | 238.00   | 8.1       | 346  |      | 0.40      | 0.03  | 0.00    | 69.00   | 30       | 0.000    | 1.000     | 18     | 15       |
|                               |                                            | Aug 15, 2017  | 250.00     | 14    | 610.0       | 260.00   | 7.8       | 340  |      | 0.30      | 0.00  | 0.00    | 88.00   | 52       | 0.000    | 2.000     | 27     | 7        |
|                               |                                            | Jun 01, 2011  | 201.00     | 19    | 467.0       | 197.00   | 8.4       | 304  |      | 0.80      | 0.02  | 0.00    | 69.00   | 28       | 0.000    | 1.000     | 17     | 6        |
|                               |                                            | Jun 22, 2010  | 231.00     | 14    | 520.0       | 240.00   | 7.9       | 338  |      | 1.30      | 0.02  | 0.00    | 83.00   | 21       | 0.000    | 1.000     | 18     | 6        |
|                               |                                            | Jun 02, 2008  | 200.00     | 16    | 520.0       | 220.00   | 7.8       | 284  |      | 0.30      | 0.02  | 0.00    | 76.00   | 32       | 0.000    | 2.000     | 23     | 7        |
|                               |                                            | Sep 11, 2007  | 230.00     | 11    | 530.0       | 270.00   | 7.6       | 303  |      | 0.40      | 0.03  | 0.00    | 94.00   | 22       | 0.000    | 2.100     | 21     | 6        |
|                               |                                            | Feb 05, 2007  | 195.00     | 5     | 519.0       | 214.00   | 7.8       | 337  |      | 0.60      | 0.02  | 0.00    | 76.00   | 40       | 0.000    | 1.000     | 21     | 8        |

|                               |                                                | Sample Date   | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------|------------------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                               |                                                | Units         | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                               | Guidelines for Canadian Drinking W             | later Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                               | Aesthetic(A) Parameter or Con                  | ntaminant (C) |            | Α     |             |          | Α         | Α    |      | С         | С     |         |         | Α        | С        |           | A      | Α        |
|                               |                                                | Sep 18, 2006  | 245.00     | 10    | 565.0       | 256.00   | 7.6       | 367  |      | 1.10      | 0.03  | 0.06    | 91.00   | 24       | 0.000    | 2.000     | 20     | 7        |
|                               |                                                | Jan 16, 2006  | 196.00     | 7     | 501.0       | 206.00   | 7.4       | 326  |      | 9.70      | 0.04  | 0.00    | 71.00   | 44       | 0.000    | 1.000     | 20     | 7        |
|                               |                                                | Sep 20, 2005  | 251.00     | 13    | 533.0       | 241.00   | 7.5       | 346  |      | 1.10      | 0.03  | 0.07    | 85.00   | 25       | 0.140    | 2.000     | 19     | 8        |
|                               |                                                | Nov 08, 2004  | 260.00     | 5     | 554.0       | 283.00   | 7.3       | 360  |      | 1.10      | 0.04  | 0.00    | 97.00   | 21       | 0.000    | 2.000     | 20     | 6        |
|                               |                                                | Jun 16, 2004  | 176.00     | 10    | 421.0       | 185.00   | 7.1       | 274  |      | 7.20      | 0.02  | 0.00    | 64.00   | 24       | 0.000    | 2.000     | 17     | 7        |
|                               |                                                | Nov 19, 2003  | 206.00     | 9     | 469.0       | 209.00   | 7.3       | 305  |      | 0.50      | 0.02  | 0.11    | 74.00   | 23       | 0.110    | 3.000     | 20     | 8        |
|                               |                                                | Apr 29, 2003  | 205.00     | 3     | 599.0       | 224.00   | 7.6       | 389  |      | 1.30      | 0.03  | 0.03    | 75.00   | 58       | 0.100    | 3.000     | 35     | 8        |
|                               |                                                |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:<br>Source Name: | Piccadilly Slant<br>#1 Well - Piccadilly Slant |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                               | -                                              | Mar 03, 2022  | 200.00     | 0     | 480.0       | 230.00   | 7.9       | 270  |      | 0.16      | 0.00  | 0.00    | 66.00   | 26       | 0.100    | 1.200     | 15     | 18       |
|                               |                                                | Nov 16, 2021  | 220.00     | 0     | 500.0       | 230.00   | 7.8       | 280  |      | 0.12      | 0.00  | 0.00    | 68.00   | 27       | 0.000    | 1.300     | 14     | 16       |
|                               |                                                | Sep 14, 2020  | 223.00     | 15    | 555.0       | 234.00   | 8.0       | 361  |      | 1.60      | 0.02  | 0.00    | 82.00   | 35       | 0.000    | 1.000     | 24     | 8        |
|                               |                                                | Aug 15, 2017  | 230.00     | 0     | 490.0       | 240.00   | 8.0       | 290  |      | 0.29      | 0.00  | 0.00    | 69.00   | 28       | 0.130    | 1.300     | 15     | 18       |

|                                        | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                        | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water | r Quality    |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contam       | inant (C)    |            | Α     |             |          | Α         | A    |      | С         | С     |         |         | Α        | С        |           | A      | Α        |
|                                        | Jun 01, 2011 | 215.00     | 4     | 491.0       | 236.00   | 8.4       | 319  |      | 0.20      | 0.03  | 0.00    | 68.00   | 23       | 0.140    | 1.000     | 15     | 17       |
|                                        | Jun 22, 2010 | 211.00     | 2     | 504.0       | 238.00   | 8.1       | 328  |      | 0.00      | 0.03  | 0.00    | 69.00   | 22       | 0.150    | 1.000     | 16     | 16       |
|                                        | Jun 02, 2008 | 210.00     | 0     | 500.0       | 240.00   | 8.0       | 277  |      | 0.00      | 0.03  | 0.00    | 69.00   | 20       | 0.000    | 1.500     | 15     | 22       |
|                                        | Sep 11, 2007 | 220.00     | 0     | 520.0       | 270.00   | 8.0       | 293  |      | 0.00      | 0.03  | 0.00    | 81.00   | 27       | 0.000    | 1.400     | 18     | 13       |
|                                        | Feb 05, 2007 | 218.00     | 0     | 514.0       | 232.00   | 8.0       | 334  |      | 0.20      | 0.03  | 0.57    | 68.00   | 24       | 0.140    | 1.000     | 15     | 19       |
|                                        | Sep 18, 2006 | 218.00     | 0     | 517.0       | 237.00   | 8.0       | 336  |      | 0.20      | 0.03  | 0.05    | 70.00   | 25       | 0.130    | 1.000     | 15     | 15       |
|                                        | Jan 16, 2006 | 219.00     | 0     | 485.0       | 227.00   | 7.7       | 315  |      | 0.70      | 0.03  | 0.00    | 66.00   | 23       | 0.160    | 1.000     | 14     | 16       |
|                                        | Sep 20, 2005 | 224.00     | 0     | 487.0       | 233.00   | 7.9       | 317  |      | 0.30      | 0.04  | 0.00    | 67.00   | 23       | 0.220    | 1.000     | 14     | 20       |
|                                        | Nov 08, 2004 | 217.00     | 0     | 494.0       | 248.00   | 7.7       | 321  |      | 0.00      | 0.03  | 0.00    | 73.00   | 22       | 0.180    | 1.000     | 15     | 16       |
|                                        | Jun 16, 2004 | 213.00     | 0     | 482.0       | 213.00   | 7.5       | 313  |      | 0.20      | 0.03  | 0.13    | 59.00   | 23       | 0.210    | 1.000     | 14     | 18       |
|                                        | Nov 19, 2003 | 218.00     | 1     | 485.0       | 231.00   | 7.7       | 315  |      | 0.10      | 0.04  | 0.03    | 66.00   | 21       | 0.220    | 2.000     | 15     | 20       |
|                                        | Apr 29, 2003 | 209.00     | 2     | 492.0       | 214.00   | 7.9       | 320  |      | 0.10      | 0.03  | 0.03    | 61.00   | 25       | 0.130    | 1.000     | 20     | 11       |

\_\_\_\_

|                                                  |                                           | Sample Date                 | Alkalinity | Color   | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------------------------------------------|-------------------------------------------|-----------------------------|------------|---------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                                  |                                           | Units                       | mg/L       | TCU     | µS/cm       | mg/L     | 05.05     | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                                                  |                                           | dian Drinking Water Quality |            | 15<br>A |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                                                  | Aesthetic(A) Pa                           | arameter or Contaminant (C) |            | ~       |             |          | А         | Α    |      | С         | С     |         |         | Α        | С        |           | Α      | Α        |
| Community Name:<br>Service Area:<br>Source Name: | St. George's<br>St. George's<br>Wellfield |                             |            |         |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                                  |                                           | Sep 16, 2020                | 53.00      | 0       | 252.0       | 49.00    | 7.4       | 164  |      | 0.40      | 0.00  | 0.00    | 13.00   | 41       | 0.000    | 0.000     | 30     | 5        |
|                                                  |                                           | Sep 16, 2020                | 26.00      | 2       | 281.0       | 51.00    | 7.2       | 183  |      | 1.20      | 0.00  | 0.00    | 14.00   | 62       | 0.000    | 0.000     | 31     | 7        |
|                                                  |                                           | Sep 16, 2020                | 65.00      | 2       | 361.0       | 62.00    | 7.2       | 235  |      | 0.40      | 0.00  | 0.00    | 15.00   | 69       | 0.000    | 1.000     | 46     | 11       |
|                                                  |                                           |                             |            |         |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                                  |                                           | Aug 16, 2017                | 58.00      | 0       | 230.0       | 49.00    | 7.3       | 150  |      | 0.26      | 0.00  | 0.00    | 12.00   | 39       | 0.000    | 0.910     | 31     | 7        |
|                                                  |                                           | Aug 16, 2017                | 28.00      | 0       | 310.0       | 60.00    | 6.8       | 170  |      | 0.16      | 0.00  | 0.00    | 17.00   | 76       | 0.000    | 0.770     | 35     | 7        |
|                                                  |                                           | <b>3</b> • 7 • 1            |            |         |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                                  |                                           | Aug 16, 2017                | 55.00      | 0       | 310.0       | 53.00    | 7.3       | 190  |      | 0.52      | 0.00  | 0.00    | 13.00   | 60       | 0.000    | 0.960     | 45     | 14       |
|                                                  |                                           | May 19, 2011                | 46.00      | 2       | 202.0       | 35.00    | 7.7       | 131  |      | 0.50      | 0.00  | 0.00    | 9.00    | 32       | 0.000    | 0.000     | 27     | 7        |
|                                                  |                                           |                             |            |         |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                                  |                                           | May 19, 2011                | 57.00      | 5       | 705.0       | 112.00   | 7.9       | 458  |      | 1.90      | 0.00  | 0.93    | 30.00   | 164      | 0.200    | 1.000     | 77     | 9        |
|                                                  |                                           | May 19, 2011                | 29.00      | 2       | 149.0       | 15.00    | 7.5       | 97   |      | 0.40      | 0.00  | 0.00    | 6.00    | 26       | 0.000    | 0.000     | 21     | 6        |
|                                                  |                                           | way 13, 2011                | 20.00      | 2       | 0.571       | 10.00    | 1.0       | 51   |      | 0.40      | 0.00  | 0.00    | 0.00    | 20       | 0.000    | 0.000     | 21     | v        |
|                                                  |                                           | May 19, 2011                | 50.00      | 3       | 279.0       | 60.00    | 7.6       | 181  |      | 1.10      | 0.00  | 0.00    | 16.00   | 46       | 0.000    | 0.000     | 30     | 19       |
|                                                  |                                           | May 20, 2010                | 49.00      | 0       | 517.0       | 97.00    | 7.7       | 336  |      | 0.20      | 0.01  | 0.49    | 29.00   | 111      | 0.100    | 1.000     | 52     | 10       |

| S                                         | ample Date   | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                           | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qu | uality       |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contamina       | unt (C)      |            | A     |             |          | А         | А    |      | С         | С     |         |         | A        | С        |           | А      | А        |
| M                                         | 1ay 20, 2010 | 41.00      | 6     | 166.0       | 26.00    | 7.4       | 108  |      | 1.00      | 0.00  | 0.00    | 7.00    | 16       | 0.000    | 0.000     | 18     | 13       |
| М                                         | 1ay 20, 2010 | 39.00      | 0     | 175.0       | 27.00    | 7.6       | 114  |      | 0.30      | 0.00  | 0.00    | 6.00    | 24       | 0.000    | 0.000     | 19     | 7        |
| М                                         | łay 20, 2010 | 40.00      | 0     | 489.0       | 70.00    | 7.6       | 318  |      | 1.30      | 0.00  | 0.40    | 23.00   | 105      | 0.000    | 0.000     | 57     | 12       |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data. LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no quidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these quidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the

#### **Contaminant and Aesthetic Exceedances**

Turbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Boron - The interim maximum acceptable concentration for boron in drinking water is 5.0 mg/L. Boron is widespread in the environment, occurring naturally in over 80 minerals and in the earth's crust. Levels in well water have been reported to be more variable and often higher than those in surface waters, most likely due to erosion from natural resources. High levels of this contaminant can cause adverse health effects for some peopleTurbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbidir aw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less asethetically pleasing, and may interfere with the disinfection process.

Fluoride - The maximum acceptable concentration for fluoride in drinking water is 1.5mg/L. The fluoride concentration in natural water varies widely as it depends on such factors as the source of the water and the geological formations present. Trace amounts of fluoride may be essential for human nutrition and the presence of small quantities leads to a reduction of dental caries. High levels of this contaminant can cause adverse health effects for some people.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units DDC = dissolved organic carbon Nitrate(ite) = Nitrate + Nitrite WS # = water supply number SA# = serviced area number GCDWQ = Guidelines for Canadian Drinking Water Quality

DOC = dissolved organic carbon Nutrate(ite) = Nutrate + Nutrie wo # = water supply number SA# = serviced area number GCDVQ = Guidelines for Canadian Drinking Water Quali Notes : Guidelines for Canadian Drinking Water Quality have not been developed for all the parameters listed in this report pH has no units Colour - An aesthetic objective of 15 true colour units (TCU) has been established for colour in drinking water. Colour in drinking water may be due to the presence of coloured organic substances or metals such as iron, manganese and copper. Highly coloured industrial wastes also contribute to colour. The presence of colour is not directly linked to health but it can be aesthetically displeasing.

pH -The acceptable range for drinking water pH is 6.5 - 8.5. The control of pH is primarily based on minimizing corrosion and encrustration in the distribution system. Tap water with low pH may accelerate the corrosion process in the distribution system, and contribute to increased levels of copper, lead and possibly other metals. Incrustation and scaling problems may become more frequent above pH 8.5

TDS - The aesthetic objective for TDS in drinking water is 500 mg/L. The term "total dissolved solids" (TDS) refers mainly to the inorganic substances that are dissolved in water. At low levels TDS contributes to the palatability of water. At high levels it may cause excessive hardness, taste, mineral deposition and corrosion.

Chloride - The aesthetic objective for chloride in drinking water is 250 mg/L. Chloride can be in water from a variety of sources, including the dissolution of salt deposits and salting of roads for ice control. No evidence has been found suggesting that ingestion of chloride is harmful to humans. However, high levels of chloride in water can impart undesirable tastes to water and beverages prepared from water.

Sodium - The aesthetic objective for sodium in drinking water is 200 mg/L. Since the body has very effective means to control levels of sodium, sodium is not an acutely toxic element in the normal range of environmental or dietary concentrations. At extremely high dosages it has adverse health effects. Sodium levels may be of interest to authorities who wish to prescribe sodium restricted diets for their patients..



|                                  |                                                            | Sample Date    | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------|------------------------------------------------------------|----------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                  |                                                            | Units          | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                                  | Guidelines for Canadian Drinking                           | Water Quality  |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                                  | Aesthetic(A) Parameter or Co                               | ontaminant (C) |            | Α     |             |          | А         | Α    |      | С         | С     |         |         | Α        | С        |           | Α      | A        |
| Community Name:<br>Service Area: | Port au Port<br>West-Aguathuna-Felix<br>Cove<br>Felix Cove |                |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:<br>Source Name:    | #4-Goose Pond Road Well                                    |                |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                  |                                                            | Sep 15, 2020   | 236.00     | 0     | 536.0       | 259.00   | 8.0       | 348  |      | 0.10      | 0.03  | 0.00    | 69.00   | 29       | 0.170    | 1.000     | 16     | 7        |
|                                  |                                                            | Aug 15, 2017   | 270.00     | 0     | 530.0       | 270.00   | 7.8       | 310  |      | 0.19      | 0.00  | 0.00    | 70.00   | 28       | 0.150    | 1.100     | 16     | 7        |
|                                  |                                                            | Jun 01, 2011   | 252.00     | 2     | 524.0       | 242.00   | 8.4       | 341  |      | 0.10      | 0.02  | 0.00    | 64.00   | 23       | 0.160    | 1.000     | 16     | 7        |
|                                  |                                                            | Jun 22, 2010   | 240.00     | 2     | 532.0       | 258.00   | 8.0       | 346  |      | 0.00      | 0.02  | 0.00    | 67.00   | 22       | 0.160    | 1.000     | 15     | 7        |
|                                  |                                                            | Jun 05, 2008   | 240.00     | 0     | 520.0       | 240.00   | 7.8       | 275  |      | 0.00      | 0.02  | 0.00    | 61.00   | 22       | 0.000    | 1.100     | 15     | 7        |
|                                  |                                                            | Sep 19, 2006   | 235.00     | 0     | 538.0       | 255.00   | 8.0       | 350  |      | 0.20      | 0.02  | 0.06    | 69.00   | 28       | 0.170    | 1.000     | 16     | 8        |
|                                  |                                                            | Jan 17, 2006   | 246.00     | 0     | 515.0       | 242.00   | 7.8       | 335  |      | 0.20      | 0.03  | 0.05    | 64.00   | 22       | 0.200    | 1.000     | 14     | 8        |
|                                  |                                                            | Nov 09, 2004   | 233.00     | 0     | 496.0       | 245.00   | 7.7       | 322  |      | 0.20      | 0.03  | 0.00    | 65.00   | 20       | 0.210    | 1.000     | 14     | 8        |

|              |                                    | Sample Date   | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------|------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|              |                                    | Units         | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|              | Guidelines for Canadian Drinking V | Nater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|              | Aesthetic(A) Parameter or Cor      | ntaminant (C) |            | Α     |             |          | A         | Α    |      | С         | С     |         |         | А        | С        |           | Α      | А        |
|              |                                    | Jun 16, 2004  | 230.00     | 0     | 487.0       | 228.00   | 7.5       | 317  |      | 0.10      | 0.03  | 0.00    | 60.00   | 21       | 0.220    | 1.000     | 13     | 8        |
|              |                                    | Nov 19, 2003  | 235.00     | 1     | 493.0       | 233.00   | 7.7       | 320  |      | 0.20      | 0.03  | 0.03    | 62.00   | 22       | 0.240    | 2.000     | 16     | 8        |
|              |                                    | Apr 30, 2003  | 232.00     | 1     | 497.0       | 227.00   | 7.8       | 323  |      | 0.05      | 0.03  | 0.03    | 58.00   | 19       | 0.200    | 1.000     | 19     | 8        |
| Source Name: | #5 Ocean View Drive Well           |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|              |                                    | Sep 15, 2020  | 248.00     | 0     | 573.0       | 264.00   | 8.0       | 372  |      | 0.10      | 0.06  | 0.00    | 66.00   | 42       | 0.210    | 2.000     | 20     | 9        |
|              |                                    | Aug 15, 2017  | 260.00     | 0     | 580.0       | 260.00   | 7.9       | 340  |      | 0.17      | 0.07  | 0.00    | 65.00   | 46       | 0.250    | 2.100     | 22     | 10       |
|              |                                    | Jun 01, 2011  | 242.00     | 5     | 640.0       | 265.00   | 8.4       | 416  |      | 0.60      | 0.10  | 0.81    | 65.00   | 57       | 0.340    | 3.000     | 28     | 14       |
|              |                                    | Jul 05, 2010  | 239.00     | 0     | 549.0       | 254.00   | 7.9       | 357  |      | 0.20      | 0.05  | 0.00    | 62.00   | 33       | 0.240    | 2.000     | 19     | 9        |
|              |                                    | Jun 05, 2008  | 220.00     | 0     | 570.0       | 250.00   | 8.1       | 289  |      | 0.00      | 0.06  | 0.00    | 62.00   | 32       | 0.000    | 2.400     | 20     | 10       |
|              |                                    | Sep 11, 2007  | 240.00     | 0     | 560.0       | 270.00   | 8.0       | 307  |      | 0.00      | 0.06  | 0.00    | 68.00   | 34       | 0.000    | 2.600     | 19     | 9        |
|              |                                    | Sep 19, 2006  | 239.00     | 0     | 571.0       | 250.00   | 8.0       | 371  |      | 0.10      | 0.06  | 0.14    | 64.00   | 34       | 0.230    | 2.000     | 18     | 9        |
|              |                                    | Jan 17, 2006  | 245.00     | 0     | 565.0       | 243.00   | 7.9       | 367  |      | 0.10      | 0.07  | 0.17    | 61.00   | 34       | 0.260    | 2.000     | 18     | 10       |
|              |                                    | Nov 09, 2004  | 189.00     | 0     | 1,170.0     | 321.00   | 7.7       | 761  |      | 0.20      | 0.26  | 1.69    | 74.00   | 242      | 1.000    | 5.000     | 105    | 48       |

|                               |                                                                  | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------|------------------------------------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                               |                                                                  | Units        | mg/L       | тси   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                               | Guidelines for Canadian Drinking Wa                              | ater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                               | Aesthetic(A) Parameter or Cont                                   | aminant (C)  |            | Α     |             |          | Α         | Α    |      | С         | С     |         |         | Α        | С        |           | А      | Α        |
|                               |                                                                  | Jun 16, 2004 | 201.00     | 0     | 919.0       | 289.00   | 7.3       | 597  |      | 0.20      | 0.22  | 1.25    | 68.00   | 158      | 0.730    | 4.000     | 74     | 39       |
|                               |                                                                  | Nov 19, 2003 | 239.00     | 1     | 582.0       | 254.00   | 7.5       | 378  |      | 0.10      | 0.09  | 0.25    | 62.00   | 44       | 0.370    | 4.000     | 24     | 13       |
|                               |                                                                  | Apr 30, 2003 | 209.00     | 1     | 881.0       | 277.00   | 7.7       | 573  |      | 0.40      | 0.22  | 1.18    | 60.00   | 133      | 0.810    | 5.000     | 72     | 34       |
|                               |                                                                  |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:<br>Source Name: | Port au Port West, Aguathuna<br>#1 & #3 & #6 FatherJoy's<br>Well |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                               |                                                                  | Sep 15, 2020 | 200.00     | 0     | 592.0       | 231.00   | 8.1       | 385  |      | 0.20      | 0.09  | 0.00    | 58.00   | 61       | 0.430    | 3.000     | 30     | 16       |
|                               |                                                                  | Sep 15, 2020 | 200.00     | 0     | 529.0       | 223.00   | 8.1       | 344  |      | 0.10      | 0.06  | 0.00    | 58.00   | 39       | 0.280    | 2.000     | 25     | 12       |
|                               |                                                                  | Aug 15, 2017 | 210.00     | 16    | 450.0       | 220.00   | 7.8       | 260  |      | 0.15      | 0.00  | 0.00    | 66.00   | 27       | 0.130    | 1.000     | 16     | 10       |
|                               |                                                                  | Aug 15, 2017 | 210.00     | 0     | 510.0       | 220.00   | 8.1       | 290  |      | 0.18      | 0.05  | 0.00    | 55.00   | 43       | 0.440    | 2.500     | 23     | 13       |
|                               |                                                                  | Aug 15, 2017 | 220.00     | 0     | 600.0       | 240.00   | 8.0       | 350  |      | 0.10      | 0.09  | 0.00    | 58.00   | 70       | 0.520    | 3.200     | 39     | 17       |
|                               |                                                                  | Jun 01, 2011 | 204.00     | 2     | 510.0       | 213.00   | 8.3       | 332  |      | 0.10      | 0.04  | 0.34    | 54.00   | 37       | 0.450    | 2.000     | 22     | 12       |
|                               |                                                                  | Jun 01, 2011 | 204.00     | 2     | 609.0       | 210.00   | 8.3       | 396  |      | 0.40      | 0.08  | 0.31    | 51.00   | 65       | 0.560    | 3.000     | 35     | 17       |
|                               |                                                                  | Jun 01, 2011 | 185.00     | 16    | 429.0       | 188.00   | 8.3       | 279  |      | 0.20      | 0.02  | 0.00    | 57.00   | 24       | 0.160    | 1.000     | 14     | 9        |

| Sa                                        | ample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------------------|-------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                           | Units       | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qu | uality      |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contamina       | nt (C)      |            | Α     |             |          | Α         | Α    |      | С         | С     |         |         | А        | С        |           | Α      | A        |
| L                                         | ul 15, 2010 | 200.00     | 0     | 616.0       | 213.00   | 8.0       | 400  |      | 0.10      | 0.08  | 0.30    | 54.00   | 66       | 0.560    | 3.000     | 36     | 16       |
| L                                         | ul 05, 2010 | 189.00     | 7     | 434.0       | 197.00   | 7.9       | 282  |      | 0.20      | 0.02  | 0.00    | 59.00   | 22       | 0.170    | 1.000     | 13     | 9        |
| Jı                                        | un 23, 2010 | 195.00     | 2     | 616.0       | 217.00   | 8.2       | 400  |      | 2.60      | 0.08  | 0.00    | 54.00   | 66       | 0.600    | 3.000     | 37     | 16       |
| ıt                                        | un 22, 2010 | 177.00     | 17    | 418.0       | 184.00   | 8.0       | 272  |      | 0.20      | 0.03  | 0.00    | 57.00   | 19       | 0.180    | 0.000     | 13     | 9        |
| JI                                        | un 22, 2010 | 193.00     | 0     | 515.0       | 209.00   | 8.1       | 335  |      | 0.00      | 0.05  | 0.00    | 54.00   | 39       | 0.490    | 2.000     | 22     | 13       |
| Ji                                        | un 05, 2008 | 190.00     | 0     | 520.0       | 200.00   | 8.0       | 265  |      | 0.10      | 0.05  | 0.00    | 52.00   | 32       | 0.000    | 2.600     | 25     | 14       |
| JI                                        | un 05, 2008 | 190.00     | 0     | 610.0       | 210.00   | 8.0       | 340  |      | 0.20      | 0.08  | 0.60    | 52.00   | 81       | 0.700    | 3.300     | 41     | 19       |
| F                                         | eb 05, 2007 | 206.00     | 2     | 615.0       | 217.00   | 8.1       | 400  |      | 0.50      | 0.09  | 0.33    | 54.00   | 64       | 0.580    | 3.000     | 36     | 18       |
| F                                         | eb 05, 2007 | 196.00     | 0     | 514.0       | 202.00   | 8.0       | 334  |      | 0.20      | 0.05  | 0.00    | 53.00   | 41       | 0.410    | 2.000     | 24     | 13       |
| S                                         | ep 19, 2006 | 202.00     | 0     | 620.0       | 216.00   | 8.1       | 403  |      | 0.10      | 0.09  | 0.26    | 55.00   | 66       | 0.610    | 3.000     | 38     | 17       |
| S                                         | ep 19, 2006 | 196.00     | 0     | 507.0       | 202.00   | 8.1       | 330  |      | 0.20      | 0.05  | 0.16    | 53.00   | 36       | 0.460    | 2.000     | 20     | 12       |
| Ja                                        | an 17, 2006 | 208.00     | 2     | 610.0       | 215.00   | 7.9       | 397  |      | 0.60      | 0.10  | 0.23    | 53.00   | 62       | 0.580    | 3.000     | 37     | 18       |

| Sample D<br>Units                              | Date Alkalinity<br>mg/L | Color<br>TCU | Conductivit<br>µS/cm | Hardness<br>mg/L | рН        | TDS<br>mg/L | TSS<br>mg/L | Turbidity<br>NTU | Boron<br>mg/L | Bromide<br>mg/L | Calcium<br><sub>mg/L</sub> | Chloride<br>mg/L | Fluoride<br>mg/L | Potassium<br><sub>mg/L</sub> | Sodium<br><sub>mg/L</sub> | Sulphate<br><sub>mg/L</sub> |
|------------------------------------------------|-------------------------|--------------|----------------------|------------------|-----------|-------------|-------------|------------------|---------------|-----------------|----------------------------|------------------|------------------|------------------------------|---------------------------|-----------------------------|
| Guidelines for Canadian Drinking Water Quality |                         | 15           |                      |                  | 6.5 - 8.5 | 500         |             | 1.0              | 5.0           |                 |                            | 250              | 1.5              |                              | 200                       | 500                         |
| Aesthetic(A) Parameter or Contaminant (C)      |                         | Α            |                      |                  | A         | A           |             | С                | С             |                 |                            | Α                | С                |                              | A                         | A                           |
| Jan 17, 20                                     | 06 184.00               | 4            | 477.0                | 188.00           | 7.9       | 310         |             | 0.20             | 0.05          | 0.00            | 49.00                      | 39               | 0.390            | 2.000                        | 21                        | 12                          |
| Sep 20, 20                                     | 005 199.00              | 0            | 473.0                | 200.00           | 7.8       | 307         |             | 0.10             | 0.06          | 0.16            | 52.00                      | 39               | 0.470            | 2.000                        | 20                        | 13                          |
| Sep 20, 20                                     | 005 206.00              | 3            | 582.0                | 208.00           | 7.8       | 378         |             | 0.10             | 0.11          | 0.27            | 52.00                      | 69               | 0.620            | 3.000                        | 36                        | 18                          |
| Nov 09, 20                                     | 004 166.00              | 3            | 453.0                | 176.00           | 7.9       | 294         |             | 2.20             | 0.04          | 0.00            | 49.00                      | 40               | 0.290            | 2.000                        | 25                        | 9                           |
| Nov 09, 20                                     | 004 202.00              | 0            | 615.0                | 226.00           | 7.7       | 400         |             | 0.20             | 0.09          | 0.36            | 56.00                      | 67               | 0.610            | 3.000                        | 39                        | 17                          |
| Jun 16, 20                                     | 04 198.00               | 2            | 593.0                | 206.00           | 7.5       | 385         |             | 0.20             | 0.09          | 0.43            | 51.00                      | 62               | 0.580            | 3.000                        | 35                        | 15                          |
| Jun 16, 20                                     | 04 192.00               | 2            | 487.0                | 199.00           | 7.3       | 317         |             | 1.50             | 0.06          | 0.00            | 50.00                      | 39               | 0.490            | 3.000                        | 22                        | 13                          |
| Nov 19, 20                                     | 003 202.00              | 1            | 523.0                | 195.00           | 7.9       | 340         |             | 3.20             | 0.05          | 0.03            | 50.00                      | 45               | 0.490            | 4.000                        | 29                        | 13                          |
| Nov 19, 20                                     | 003 207.00              | 2            | 618.0                | 211.00           | 7.8       | 402         |             | 0.30             | 0.10          | 0.28            | 53.00                      | 68               | 0.590            | 5.000                        | 41                        | 17                          |
| Apr 30, 20                                     | 03 196.00               | 1            | 502.0                | 201.00           | 7.9       | 326         |             | 1.40             | 0.06          | 0.03            | 49.00                      | 37               | 0.410            | 3.000                        | 28                        | 12                          |
| Apr 30, 20                                     | 03 201.00               | 2            | 625.0                | 241.00           | 7.8       | 406         |             | 0.50             | 0.10          | 0.31            | 62.00                      | 69               | 0.540            | 4.000                        | 44                        | 17                          |

|              |                                    | Sample Date  | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------|------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|              |                                    | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|              | Guidelines for Canadian Drinking W | ater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|              | Aesthetic(A) Parameter or Cont     | taminant (C) |            | A     |             |          | А         | A    |      | С         | С     |         |         | Α        | С        |           | Α      | А        |
| Source Name: | Wellfield                          |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|              |                                    | Sep 16, 2020 | 26.00      | 2     | 281.0       | 51.00    | 7.2       | 183  |      | 1.20      | 0.00  | 0.00    | 14.00   | 62       | 0.000    | 0.000     | 31     | 7        |
|              |                                    | Sep 16, 2020 | 65.00      | 2     | 361.0       | 62.00    | 7.2       | 235  |      | 0.40      | 0.00  | 0.00    | 15.00   | 69       | 0.000    | 1.000     | 46     | 11       |
|              |                                    | Sep 16, 2020 | 53.00      | 0     | 252.0       | 49.00    | 7.4       | 164  |      | 0.40      | 0.00  | 0.00    | 13.00   | 41       | 0.000    | 0.000     | 30     | 5        |
|              |                                    | Aug 16, 2017 | 58.00      | 0     | 230.0       | 49.00    | 7.3       | 150  |      | 0.26      | 0.00  | 0.00    | 12.00   | 39       | 0.000    | 0.910     | 31     | 7        |
|              |                                    | Aug 16, 2017 | 55.00      | 0     | 310.0       | 53.00    | 7.3       | 190  |      | 0.52      | 0.00  | 0.00    | 13.00   | 60       | 0.000    | 0.960     | 45     | 14       |
|              |                                    | Aug 16, 2017 | 28.00      | 0     | 310.0       | 60.00    | 6.8       | 170  |      | 0.16      | 0.00  | 0.00    | 17.00   | 76       | 0.000    | 0.770     | 35     | 7        |
|              |                                    | May 19, 2011 | 29.00      | 2     | 149.0       | 15.00    | 7.5       | 97   |      | 0.40      | 0.00  | 0.00    | 6.00    | 26       | 0.000    | 0.000     | 21     | 6        |
|              |                                    | May 19, 2011 | 57.00      | 5     | 705.0       | 112.00   | 7.9       | 458  |      | 1.90      | 0.00  | 0.93    | 30.00   | 164      | 0.200    | 1.000     | 77     | 9        |
|              |                                    | May 19, 2011 | 46.00      | 2     | 202.0       | 35.00    | 7.7       | 131  |      | 0.50      | 0.00  | 0.00    | 9.00    | 32       | 0.000    | 0.000     | 27     | 7        |
|              |                                    | May 19, 2011 | 50.00      | 3     | 279.0       | 60.00    | 7.6       | 181  |      | 1.10      | 0.00  | 0.00    | 16.00   | 46       | 0.000    | 0.000     | 30     | 19       |
|              |                                    | May 20, 2010 | 49.00      | 0     | 517.0       | 97.00    | 7.7       | 336  |      | 0.20      | 0.01  | 0.49    | 29.00   | 111      | 0.100    | 1.000     | 52     | 10       |
|              |                                    | May 20, 2010 | 40.00      | 0     | 489.0       | 70.00    | 7.6       | 318  |      | 1.30      | 0.00  | 0.40    | 23.00   | 105      | 0.000    | 0.000     | 57     | 12       |

| Sample Date                                    | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|------------------------------------------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Units                                          | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant (C)      |            | А     |             |          | A         | Α    |      | С         | С     |         |         | Α        | С        |           | А      | А        |
| May 20, 2010                                   | 41.00      | 6     | 166.0       | 26.00    | 7.4       | 108  |      | 1.00      | 0.00  | 0.00    | 7.00    | 16       | 0.000    | 0.000     | 18     | 13       |
| May 20, 2010                                   | 39.00      | 0     | 175.0       | 27.00    | 7.6       | 114  |      | 0.30      | 0.00  | 0.00    | 6.00    | 24       | 0.000    | 0.000     | 19     | 7        |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data. LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects .

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the

#### **Contaminant and Aesthetic Exceedances**

Turbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Boron - The interim maximum acceptable concentration for boron in drinking water is 5.0 mg/L. Boron is widespread in the environment, occurring naturally in over 80 minerals and in the earth's crust. Levels in well water have been reported to be more variable and often higher than those in surface waters, most likely due to erosion from natural resources. High levels of this contaminant can cause adverse health effects for some peopleTurbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbidir aw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Fluoride - The maximum acceptable concentration for fluoride in drinking water is 1.5mg/L. The fluoride concentration in natural water varies widely as it depends on such factors as the source of the water and the geological formations present. Trace amounts of fluoride may be essential for human nutrition and the presence of small quantities leads to a reduction of dental caries. High levels of this contaminant can cause adverse health effects for some people.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units DDC = dissolved organic carbon Nitrate(ite) = Nitrate + Nitrite WS # = water supply number SA# = serviced area number GCDWQ = Guidelines for Canadian Drinking Water Quality Notes : Guidelines for Canadian Drinking Water Quality have not been developed for all the parameters listed in this report of the norts

Colour - An aesthetic objective of 15 true colour units (TCU) has been established for colour in drinking water. Colour in drinking water may be due to the presence of coloured organic substances or metals such as iron, manganese and copper. Highly coloured industrial wastes also contribute to colour. The presence of colour is not directly linked to health but it can be aesthetically displeasing.

pH -The acceptable range for drinking water pH is 6.5 - 8.5. The control of pH is primarily based on minimizing corrosion and encrustration in the distribution system. Tap water with low pH may accelerate the corrosion process in the distribution system, and contribute to increased levels of copper, lead and possibly other metals. Incrustation and scaling problems may become more frequent above pH 8.5

TDS - The aesthetic objective for TDS in drinking water is 500 mg/L. The term "total dissolved solids" (TDS) refers mainly to the inorganic substances that are dissolved in water. At low levels TDS contributes to the palatability of water. At high levels it may cause excessive hardness, taste, mineral deposition and corrosion.

Chloride - The aesthetic objective for chloride in drinking water is 250 mg/L. Chloride can be in water from a variety of sources, including the dissolution of salt deposits and salting of roads for ice control. No evidence has been found suggesting that ingestion of chloride is harmful to humans. However, high levels of chloride in water can impart undesirable tastes to water and beverages prepared from water.

Sodium - The aesthetic objective for sodium in drinking water is 200 mg/L. Since the body has very effective means to control levels of sodium, sodium is not an acutely toxic element in the normal range of environmental or dietary concentrations. At extremely high dosages it has adverse health effects. Sodium levels may be of interest to authorities who wish to prescribe sodium restricted diets for their patients..



|                                                  |                                         | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------------------------------------------|-----------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                                  |                                         | Units        | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                                                  | Guidelines for Canadian Drinking Wa     | ater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                                                  | Aesthetic(A) Parameter or Cont          | aminant (C)  |            | A     |             |          | A         | A    |      | С         | С     |         |         | A        | С        |           | A      | А        |
| Community Name:<br>Service Area:<br>Source Name: | Sheaves Cove<br>Sheaves Cove<br>Drilled |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                                  |                                         | Sep 15, 2020 | 198.00     | 0     | 622.0       | 259.00   | 8.1       | 404  |      | 0.20      | 0.02  | 0.00    | 79.00   | 50       | 0.000    | 0.000     | 33     | 55       |
|                                                  |                                         | Aug 15, 2017 | 210.00     | 6     | 580.0       | 250.00   | 8.0       | 350  |      | 1.10      | 0.00  | 0.00    | 76.00   | 45       | 0.000    | 1.000     | 31     | 52       |
|                                                  |                                         | Jun 01, 2011 | 190.00     | 6     | 597.0       | 242.00   | 8.3       | 388  |      | 0.20      | 0.01  | 0.00    | 74.00   | 46       | 0.000    | 0.000     | 26     | 54       |
|                                                  |                                         | Jun 04, 2010 | 162.00     | 26    | 450.0       | 159.00   | 7.8       | 293  |      | 5.40      | 0.00  | 0.00    | 52.00   | 42       | 0.000    | 0.000     | 29     | 7        |
|                                                  |                                         | Jun 02, 2008 | 160.00     | 18    | 570.0       | 190.00   | 7.8       | 294  |      | 1.10      | 0.00  | 0.00    | 62.00   | 63       | 0.000    | 0.700     | 52     | 8        |
|                                                  |                                         | Sep 18, 2006 | 214.00     | 7     | 684.0       | 257.00   | 7.9       | 445  |      | 1.20      | 0.02  | 0.00    | 80.00   | 58       | 0.000    | 0.000     | 39     | 49       |
|                                                  |                                         | Jan 16, 2006 | 145.00     | 13    | 621.0       | 158.00   | 7.5       | 404  |      | 3.10      | 0.00  | 0.00    | 55.00   | 99       | 0.000    | 0.000     | 56     | 9        |
|                                                  |                                         | Nov 09, 2004 | 209.00     | 8     | 518.0       | 226.00   | 7.6       | 337  |      | 1.10      | 0.01  | 0.00    | 74.00   | 32       | 0.130    | 0.000     | 26     | 15       |
|                                                  |                                         | Jun 16, 2004 |            | 20    |             | 137.00   |           | 0    |      | 6.50      | 0.00  | 0.00    | 45.00   | 29       | 0.000    | 0.000     | 27     | 6        |

|                                                  | Guidelines for Canadian Drinking Wa<br>Aesthetic(A) Parameter or Conta | -            | Alkalinity<br>mg/L | Color<br>TCU<br>15<br>A | Conductivit<br>µS/cm | Hardness<br>mg/L | рН<br>6.5 - 8.5<br>А | TDS<br>mg/L<br>500<br>A | TSS<br>mg/L | Turbidity<br>NTU<br>1.0<br>C | Boron<br>mg/L<br>5.0<br>C | Bromide<br>mg/L | Calcium<br><sub>mg/L</sub> | Chloride<br>mg/L<br>250<br>A | Fluoride<br>mg/L<br>1.5<br>C | Potassium<br><sub>mg/L</sub> | Sodium<br>mg/L<br>200<br>A | Sulphate<br>mg/L<br>500<br>A |
|--------------------------------------------------|------------------------------------------------------------------------|--------------|--------------------|-------------------------|----------------------|------------------|----------------------|-------------------------|-------------|------------------------------|---------------------------|-----------------|----------------------------|------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|
|                                                  |                                                                        | Nov 17, 2003 | 201.00             | 3                       | 570.0                | 259.00           | 7.5                  | 370                     |             | 0.50                         | 0.02                      | 0.03            | 79.00                      | 33                           | 0.190                        | 1.000                        | 24                         | 64                           |
|                                                  |                                                                        | Apr 29, 2003 | 119.00             | 13                      | 375.0                | 128.00           | 7.5                  | 244                     |             | 3.30                         | 0.03                      | 0.03            | 43.00                      | 40                           | 0.050                        | 0.500                        | 28                         | 8                            |
|                                                  |                                                                        | Nov 23, 2001 | 205.00             | 4                       | 606.0                | 252.00           | 7.8                  | 460                     |             | 1.80                         | 0.03                      | 0.11            | 76.00                      | 45                           | 0.130                        | 0.500                        | 26                         | 44                           |
| Community Name:<br>Service Area:<br>Source Name: | St. George's<br>St. George's<br>Wellfield                              |              |                    |                         |                      |                  |                      |                         |             |                              |                           |                 |                            |                              |                              |                              |                            |                              |
|                                                  |                                                                        | Sep 16, 2020 | 65.00              | 2                       | 361.0                | 62.00            | 7.2                  | 235                     |             | 0.40                         | 0.00                      | 0.00            | 15.00                      | 69                           | 0.000                        | 1.000                        | 46                         | 11                           |
|                                                  |                                                                        | Sep 16, 2020 | 26.00              | 2                       | 281.0                | 51.00            | 7.2                  | 183                     |             | 1.20                         | 0.00                      | 0.00            | 14.00                      | 62                           | 0.000                        | 0.000                        | 31                         | 7                            |
|                                                  |                                                                        | Sep 16, 2020 | 53.00              | 0                       | 252.0                | 49.00            | 7.4                  | 164                     |             | 0.40                         | 0.00                      | 0.00            | 13.00                      | 41                           | 0.000                        | 0.000                        | 30                         | 5                            |
|                                                  |                                                                        | Aug 16, 2017 | 55.00              | 0                       | 310.0                | 53.00            | 7.3                  | 190                     |             | 0.52                         | 0.00                      | 0.00            | 13.00                      | 60                           | 0.000                        | 0.960                        | 45                         | 14                           |
|                                                  |                                                                        | Aug 16, 2017 | 28.00              | 0                       | 310.0                | 60.00            | 6.8                  | 170                     |             | 0.16                         | 0.00                      | 0.00            | 17.00                      | 76                           | 0.000                        | 0.770                        | 35                         | 7                            |
|                                                  |                                                                        | Aug 16, 2017 | 58.00              | 0                       | 230.0                | 49.00            | 7.3                  | 150                     |             | 0.26                         | 0.00                      | 0.00            | 12.00                      | 39                           | 0.000                        | 0.910                        | 31                         | 7                            |
|                                                  |                                                                        | May 19, 2011 | 50.00              | 3                       | 279.0                | 60.00            | 7.6                  | 181                     |             | 1.10                         | 0.00                      | 0.00            | 16.00                      | 46                           | 0.000                        | 0.000                        | 30                         | 19                           |

|                                                         |            | alinity | Color<br>TCU | Conductivit<br>µS/cm | Hardness | рН        | TDS         | TSS  | Turbidity |             | Bromide | Calcium | Chloride    |             | Potassium | Sodium      | Sulphate    |
|---------------------------------------------------------|------------|---------|--------------|----------------------|----------|-----------|-------------|------|-----------|-------------|---------|---------|-------------|-------------|-----------|-------------|-------------|
| Units<br>Guidelines for Canadian Drinking Water Quality | mg         | y/L     | 15           | µS/cm                | mg/L     | 6.5 - 8.5 | mg/L<br>500 | mg/L | 1.0       | mg/L<br>5.0 | mg/L    | mg/L    | mg/L<br>250 | mg/L<br>1.5 | mg/L      | mg/L<br>200 | mg/L<br>500 |
| Aesthetic(A) Parameter or Contaminant (C)               |            |         | A            |                      |          | A         | Α           |      | С         | С           |         |         | А           | С           |           | A           | А           |
| <br>May 15                                              | , 2011 46. | .00     | 2            | 202.0                | 35.00    | 7.7       | 131         |      | 0.50      | 0.00        | 0.00    | 9.00    | 32          | 0.000       | 0.000     | 27          | 7           |
| May 15                                                  | , 2011 29. | .00     | 2            | 149.0                | 15.00    | 7.5       | 97          |      | 0.40      | 0.00        | 0.00    | 6.00    | 26          | 0.000       | 0.000     | 21          | 6           |
| May 15                                                  | , 2011 57. | .00     | 5            | 705.0                | 112.00   | 7.9       | 458         |      | 1.90      | 0.00        | 0.93    | 30.00   | 164         | 0.200       | 1.000     | 77          | 9           |
| May 20                                                  | , 2010 39. | .00     | 0            | 175.0                | 27.00    | 7.6       | 114         |      | 0.30      | 0.00        | 0.00    | 6.00    | 24          | 0.000       | 0.000     | 19          | 7           |
| May 20                                                  | , 2010 40. | .00     | 0            | 489.0                | 70.00    | 7.6       | 318         |      | 1.30      | 0.00        | 0.40    | 23.00   | 105         | 0.000       | 0.000     | 57          | 12          |
| May 20                                                  | , 2010 49. | 00      | 0            | 517.0                | 97.00    | 7.7       | 336         |      | 0.20      | 0.01        | 0.49    | 29.00   | 111         | 0.100       | 1.000     | 52          | 10          |
| May 20                                                  | , 2010 41. | .00     | 6            | 166.0                | 26.00    | 7.4       | 108         |      | 1.00      | 0.00        | 0.00    | 7.00    | 16          | 0.000       | 0.000     | 18          | 13          |

|                                        | Sample Date | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------------|-------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                        | Units       | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water | r Quality   |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contam       | inant (C)   |            | Α     |             |          | А         | A    |      | С         | С     |         |         | Α        | С        |           | Α      | А        |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data. LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no guidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these guidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the

#### Contaminant and Aesthetic Exceedances

Turbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Boron - The interim maximum acceptable concentration for boron in drinking water is 5.0 mg/L. Boron is widespread in the environment, occurring naturally in over 80 minerals and in the earth's crust. Levels in well water have been reported to be more variable and often higher than those in surface waters, most likely due to erosion from natural resources. High levels of this contaminant can cause adverse health effects for some peopleTurbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Fluoride - The maximum acceptable concentration for fluoride in drinking water is 1.5mg/L. The fluoride concentration in natural water varies widely as it depends on such factors as the source of the water and the geological formations present. Trace amounts of fluoride may be essential for human nutrition and the presence of small quantities leads to a reduction of dental caries. High levels of this contaminant can cause adverse health effects for some people.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units DCC = dissolved organic carbon Nitrate(ite) = Nitrate + Nitrite WS # = water supply number SA# = serviced area number GCDWQ = Guidelines for Canadian Drinking Water Quality Notes : Guidelines for Canadian Drinking Water Quality have not been developed for all the parameters listed in this report PH has no units Colour - An aesthetic objective of 15 true colour units (TCU) has been established for colour in drinking water. Colour in drinking water may be due to the presence of coloured organic substances or metals such as iron, manganese and copper. Highly coloured industrial wastes also contribute to colour. The presence of colour is not directly linked to health but it can be aesthetically displeasing.

pH -The acceptable range for drinking water pH is 6.5 - 8.5. The control of pH is primarily based on minimizing corrosion and encrustration in the distribution system. Tap water with low pH may accelerate the corrosion process in the distribution system, and contribute to increased levels of copper, lead and possibly other metals. Incrustation and scaling problems may become more frequent above pH 8.5

TDS - The aesthetic objective for TDS in drinking water is 500 mg/L. The term "total dissolved solids" (TDS) refers mainly to the inorganic substances that are dissolved in water. At low levels TDS contributes to the palatability of water. At high levels it may cause excessive hardness, taste, mineral deposition and corrosion.

Chloride - The aesthetic objective for chloride in drinking water is 250 mg/L. Chloride can be in water from a variety of sources, including the dissolution of salt deposits and salting of roads for ice control. No evidence has been found suggesting that ingestion of chloride is harmful to humans. However, high levels of chloride in water can impart undesirable tastes to water and beverages prepared from water.

Sodium - The aesthetic objective for sodium in drinking water is 200 mg/L. Since the body has very effective means to control levels of sodium, sodium is not an acutely toxic element in the normal range of environmental or dietary concentrations. At extremely high dosages it has adverse health effects. Sodium levels may be of interest to authorities who wish to prescribe sodium restricted diets for their patients..



|                 |                                      | Sample Date   | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-----------------|--------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                 |                                      | Units         | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                 | Guidelines for Canadian Drinking W   | Vater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                 | Aesthetic(A) Parameter or Con        | ntaminant (C) |            | Α     |             |          | Α         | А    |      | С         | С     |         |         | А        | С        |           | A      | А        |
| Community Name: | Ship Cove-Lower<br>Cove-Jerry's Nose |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:   | Lower Cove                           |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Source Name:    | #6 Well - Lower Cove Well            |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                 |                                      | Sep 15, 2020  | 210.00     | 0     | 659.0       | 254.00   | 8.0       | 428  |      | 0.00      | 0.01  | 0.00    | 72.00   | 79       | 0.000    | 1.000     | 37     | 10       |
|                 |                                      | Jun 01, 2011  | 217.00     | 5     | 578.0       | 245.00   | 8.3       | 376  |      | 0.20      | 0.01  | 0.00    | 62.00   | 54       | 0.000    | 1.000     | 23     | 10       |
|                 |                                      | May 18, 2010  | 205.00     | 0     | 547.0       | 227.00   | 8.2       | 356  |      | 0.40      | 0.01  | 0.00    | 63.00   | 49       | 0.000    | 1.000     | 23     | 11       |
|                 |                                      | Jun 02, 2008  | 200.00     | 0     | 540.0       | 230.00   | 8.0       | 279  |      | 0.00      | 0.01  | 0.00    | 63.00   | 36       | 0.000    | 1.100     | 23     | 11       |
|                 |                                      | Sep 11, 2007  | 210.00     | 0     | 570.0       | 250.00   | 8.1       | 305  |      | 0.10      | 0.01  | 0.00    | 70.00   | 52       | 0.000    | 1.100     | 23     | 9        |
|                 |                                      | Sep 18, 2006  | 207.00     | 0     | 607.0       | 221.00   | 8.0       | 395  |      | 0.10      | 0.00  | 0.08    | 62.00   | 63       | 0.000    | 0.000     | 28     | 9        |
|                 |                                      | Jan 16, 2006  | 210.00     | 0     | 564.0       | 218.00   | 7.7       | 367  |      | 0.20      | 0.01  | 0.08    | 61.00   | 56       | 0.100    | 0.000     | 26     | 11       |
|                 |                                      | Nov 08, 2004  | 206.00     | 0     | 543.0       | 235.00   | 7.7       | 353  |      | 0.10      | 0.01  | 0.17    | 66.00   | 48       | 0.130    | 0.000     | 26     | 9        |
|                 |                                      | Jun 16, 2004  | 200.00     | 11    | 530.0       | 216.00   | 7.4       | 345  |      | 0.20      | 0.01  | 0.24    | 60.00   | 49       | 0.120    | 0.000     | 24     | 9        |

|                               |                                                   | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------|---------------------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                               |                                                   | Units        | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                               | Guidelines for Canadian Drinking Wa               | ater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                               | Aesthetic(A) Parameter or Conta                   | aminant (C)  |            | A     |             |          | Α         | Α    |      | С         | С     |         |         | А        | С        |           | А      | Α        |
|                               |                                                   | Nov 17, 2003 | 207.00     | 1     | 514.0       | 221.00   | 7.6       | 334  |      | 0.10      | 0.01  | 0.12    | 62.00   | 45       | 0.150    | 1.000     | 24     | 11       |
|                               |                                                   | Apr 29, 2003 | 203.00     | 1     | 523.0       | 215.00   | 7.8       | 340  |      | 1.20      | 0.03  | 0.03    | 58.00   | 41       | 0.100    | 1.000     | 25     | 10       |
|                               |                                                   | Nov 23, 2001 | 207.00     | 1     | 524.0       | 237.00   | 7.9       | 368  |      | 0.20      | 0.03  | 0.17    | 65.00   | 39       | 0.120    | 0.500     | 25     | 11       |
|                               |                                                   |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:<br>Source Name: | Ship Cove East<br>#3 Well - Bernard Brake<br>Well |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                               | Weil                                              | Sep 15, 2020 | 215.00     | 4     | 607.0       | 240.00   | 8.0       | 395  |      | 0.10      | 0.03  | 0.00    | 78.00   | 59       | 0.100    | 1.000     | 33     | 12       |
|                               |                                                   | Jun 01, 2011 | 225.00     | 6     | 565.0       | 226.00   | 8.4       | 367  |      | 0.00      | 0.02  | 0.00    | 74.00   | 46       | 0.000    | 1.000     | 24     | 10       |
|                               |                                                   | May 18, 2010 | 201.00     | 6     | 534.0       | 208.00   | 8.1       | 347  |      | 0.20      | 0.02  | 0.00    | 70.00   | 45       | 0.000    | 1.000     | 22     | 11       |
|                               |                                                   | Jun 05, 2008 | 190.00     | 8     | 530.0       | 220.00   | 7.9       | 270  |      | 0.00      | 0.02  | 0.00    | 72.00   | 34       | 0.000    | 1.400     | 25     | 11       |
|                               |                                                   | Sep 11, 2007 | 200.00     | 9     | 540.0       | 250.00   | 7.9       | 300  |      | 0.60      | 0.02  | 0.00    | 82.00   | 42       | 0.000    | 1.500     | 27     | 10       |
|                               |                                                   | Sep 18, 2006 | 209.00     | 9     | 537.0       | 222.00   | 7.9       | 349  |      | 0.20      | 0.02  | 0.00    | 74.00   | 39       | 0.000    | 1.000     | 23     | 10       |
|                               |                                                   | Jan 16, 2006 | 215.00     | 10    | 508.0       | 214.00   | 7.5       | 330  |      | 0.30      | 0.03  | 0.00    | 71.00   | 35       | 0.110    | 1.000     | 21     | 11       |
|                               |                                                   | Nov 08, 2004 | 208.00     | 11    | 488.0       | 227.00   | 7.5       | 317  |      | 0.10      | 0.03  | 0.00    | 76.00   | 32       | 0.140    | 1.000     | 22     | 10       |

|                               |                                                        | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|-------------------------------|--------------------------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                               |                                                        | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                               | Guidelines for Canadian Drinking W                     | ater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                               | Aesthetic(A) Parameter or Cont                         | taminant (C) |            | A     |             |          | A         | А    |      | С         | С     |         |         | Α        | С        |           | Α      | А        |
|                               |                                                        | Jun 16, 2004 | 186.00     | 10    | 455.0       | 193.00   | 7.3       | 296  |      | 0.10      | 0.02  | 0.00    | 64.00   | 31       | 0.140    | 1.000     | 20     | 11       |
|                               |                                                        | Nov 17, 2003 | 206.00     | 12    | 478.0       | 208.00   | 7.5       | 311  |      | 0.20      | 0.02  | 0.03    | 70.00   | 32       | 0.150    | 2.000     | 21     | 10       |
|                               |                                                        | Apr 29, 2003 | 186.00     | 10    | 469.0       | 192.00   | 7.6       | 305  |      | 0.60      | 0.03  | 0.03    | 62.00   | 32       | 0.110    | 1.000     | 26     | 11       |
|                               |                                                        | Oct 24, 2002 | 207.00     | 13    | 492.0       | 237.00   | 7.6       | 320  |      | 0.20      | 0.03  | 0.03    | 80.00   | 32       | 0.120    | 2.000     | 20     | 9        |
|                               |                                                        | May 14, 2002 | 193.00     | 9     | 503.0       | 216.00   | 7.8       | 327  |      | 0.05      | 0.03  | 0.19    | 70.00   | 39       | 0.120    | 1.000     | 23     | 12       |
|                               |                                                        | Apr 24, 2002 | 193.00     | 9     | 505.0       | 197.00   | 8.1       | 328  |      | 0.10      | 0.03  | 0.03    | 64.00   | 40       | 0.160    | 0.500     | 20     | 12       |
|                               |                                                        | Nov 23, 2001 | 217.00     | 8     | 553.0       | 233.00   | 7.8       | 408  |      | 0.10      | 0.03  | 0.03    | 75.00   | 42       | 0.130    | 1.000     | 25     | 14       |
|                               |                                                        |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
| Service Area:<br>Source Name: | Ship Cove, Jerry's Nose<br>#1 Well - PJ's Variety Well |              |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                               |                                                        | Sep 15, 2020 | 242.00     | 0     | 738.0       | 276.00   | 7.9       | 480  |      | 0.60      | 0.05  | 0.00    | 84.00   | 80       | 0.000    | 2.000     | 49     | 12       |
|                               |                                                        | Jun 01, 2011 | 252.00     | 4     | 638.0       | 252.00   | 8.3       | 415  |      | 0.60      | 0.06  | 0.00    | 73.00   | 54       | 0.130    | 2.000     | 29     | 11       |
|                               |                                                        | May 18, 2010 | 238.00     | 2     | 655.0       | 243.00   | 8.1       | 426  |      | 0.30      | 0.06  | 0.00    | 76.00   | 65       | 0.140    | 2.000     | 31     | 12       |
|                               |                                                        | Jun 05, 2008 | 220.00     | 7     | 660.0       | 260.00   | 8.1       | 340  |      | 0.30      | 0.04  | 0.00    | 78.00   | 53       | 0.000    | 2.000     | 39     | 11       |

|              |                                         | Sample Date   | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------|-----------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|              |                                         | Units         | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|              | Guidelines for Canadian Drinking V      | Vater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|              | Aesthetic(A) Parameter or Cor           | ntaminant (C) |            | A     |             |          | A         | Α    |      | С         | С     |         |         | А        | С        |           | Α      | А        |
|              |                                         | Sep 11, 2007  | 250.00     | 0     | 650.0       | 310.00   | 8.0       | 372  |      | 0.30      | 0.05  | 0.00    | 91.00   | 56       | 0.000    | 2.200     | 39     | 11       |
|              |                                         | Sep 18, 2006  | 246.00     | 0     | 676.0       | 253.00   | 8.0       | 439  |      | 0.40      | 0.05  | 0.00    | 75.00   | 63       | 0.120    | 2.000     | 33     | 11       |
|              |                                         | Jan 16, 2006  | 245.00     | 3     | 630.0       | 248.00   | 7.6       | 410  |      | 0.50      | 0.06  | 0.00    | 73.00   | 57       | 0.170    | 2.000     | 30     | 12       |
|              |                                         | Nov 08, 2004  | 239.00     | 0     | 607.0       | 265.00   | 7.6       | 395  |      | 0.60      | 0.06  | 0.00    | 78.00   | 50       | 0.240    | 2.000     | 30     | 12       |
|              |                                         | Jun 16, 2004  | 237.00     | 0     | 599.0       | 241.00   | 7.5       | 389  |      | 0.60      | 0.07  | 0.23    | 67.00   | 50       | 0.240    | 2.000     | 27     | 13       |
|              |                                         | Nov 17, 2003  | 239.00     | 2     | 594.0       | 247.00   | 7.7       | 386  |      | 0.60      | 0.07  | 0.03    | 71.00   | 51       | 0.210    | 3.000     | 30     | 13       |
|              |                                         | Aug 12, 2003  | 231.00     | 2     | 616.0       | 256.00   | 8.0       | 400  |      | 2.90      | 0.08  | 0.15    | 76.00   | 61       | 0.210    | 2.000     | 33     | 12       |
|              |                                         | Nov 23, 2001  | 242.00     | 2     | 607.0       | 258.00   | 7.9       | 436  |      | 0.70      | 0.06  | 0.03    | 72.00   | 48       | 0.180    | 2.000     | 27     | 13       |
| Source Name: | #2 Well - Howard &<br>Rodney Jesso Well |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|              |                                         | Sep 15, 2020  | 243.00     | 0     | 759.0       | 272.00   | 8.0       | 493  |      | 0.20      | 0.02  | 0.00    | 86.00   | 88       | 0.000    | 1.000     | 54     | 11       |
|              |                                         | Jun 01, 2011  | 231.00     | 3     | 670.0       | 257.00   | 8.3       | 436  |      | 3.30      | 0.03  | 0.00    | 78.00   | 74       | 0.110    | 1.000     | 40     | 10       |
|              |                                         | May 18, 2010  | 232.00     | 5     | 672.0       | 247.00   | 8.2       | 437  |      | 5.20      | 0.03  | 0.00    | 74.00   | 77       | 0.150    | 2.000     | 35     | 11       |

|              |                                    | Sample Date<br><sup>Units</sup> | Alkalinity<br>mg/L | Color<br>TCU | Conductivit | Hardness<br>mg/L | рН        | TDS<br>mg/L | TSS<br>mg/L | Turbidity<br>NTU | Boron<br>mg/L | Bromide<br>mg/L | Calcium<br><sub>mg/L</sub> | Chloride<br>mg/L | Fluoride<br>mg/L | Potassium<br><sub>mg/L</sub> | Sodium<br><sub>mg/L</sub> | Sulphate<br><sub>mg/L</sub> |
|--------------|------------------------------------|---------------------------------|--------------------|--------------|-------------|------------------|-----------|-------------|-------------|------------------|---------------|-----------------|----------------------------|------------------|------------------|------------------------------|---------------------------|-----------------------------|
|              | Guidelines for Canadian Drinking V |                                 | IIIg/L             | 15           | μο/οπ       | mg/L             | 6.5 - 8.5 | 500         | mg/L        | 1.0              | 5.0           | mg/L            | ing/L                      | 250              | 1.5              | IIIg/L                       | 200                       | 500                         |
|              |                                    |                                 |                    | A            |             |                  |           |             |             |                  |               |                 |                            |                  |                  |                              |                           |                             |
|              | Aesthetic(A) Parameter or Cor      | ntaminant (C)                   |                    |              |             |                  | Α         | Α           |             | С                | С             |                 |                            | Α                | С                |                              | A                         | A                           |
|              |                                    | Jun 05, 2008                    | 220.00             | 5            | 690.0       | 270.00           | 8.0       | 353         |             | 0.30             | 0.02          | 0.00            | 83.00                      | 63               | 0.000            | 1.500                        | 46                        | 9                           |
|              |                                    | Sep 11, 2007                    | 240.00             | 0            | 620.0       | 270.00           | 8.0       | 337         |             | 0.60             | 0.05          | 0.00            | 76.00                      | 50               | 0.000            | 1.900                        | 31                        | 11                          |
|              |                                    | Sep 18, 2006                    | 247.00             | 0            | 665.0       | 246.00           | 7.9       | 432         |             | 0.40             | 0.02          | 0.00            | 72.00                      | 59               | 0.140            | 1.000                        | 34                        | 11                          |
|              |                                    | Jan 16, 2006                    | 255.00             | 3            | 598.0       | 243.00           | 7.7       | 389         |             | 0.60             | 0.05          | 0.10            | 71.00                      | 45               | 0.170            | 2.000                        | 29                        | 11                          |
|              |                                    | Nov 08, 2004                    | 248.00             | 0            | 581.0       | 261.00           | 7.6       | 378         |             | 0.90             | 0.05          | 0.00            | 75.00                      | 40               | 0.230            | 2.000                        | 30                        | 11                          |
|              |                                    | Jun 16, 2004                    | 223.00             | 4            | 593.0       | 232.00           | 7.4       | 385         |             | 3.00             | 0.03          | 0.00            | 70.00                      | 56               | 0.190            | 1.000                        | 31                        | 10                          |
|              |                                    | Nov 17, 2003                    | 252.00             | 2            | 610.0       | 249.00           | 7.7       | 397         |             | 1.20             | 0.03          | 0.09            | 75.00                      | 49               | 0.210            | 2.000                        | 33                        | 11                          |
|              |                                    | Apr 29, 2003                    | 202.00             | 4            | 558.0       | 214.00           | 7.7       | 363         |             | 0.30             | 0.03          | 0.03            | 66.00                      | 52               | 0.130            | 2.000                        | 33                        | 10                          |
|              |                                    | Nov 23, 2001                    | 251.00             | 3            | 642.0       | 262.00           | 7.9       | 424         |             | 1.00             | 0.03          | 0.03            | 80.00                      | 54               | 0.150            | 1.000                        | 35                        | 11                          |
| Source Name: | #4B Well - Nancy Rowe<br>Well      | Sep 15, 2020                    | 189.00             | 5            | 556.0       | 225.00           | 7.9       | 361         |             | 0.90             | 0.04          | 0.00            | 72.00                      | 51               | 0.140            | 2.000                        | 30                        | 30                          |

Source Name: #5 Well - Murdock

Wheeler Well

| S                                        | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|------------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                          | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Q | Quality      |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contamina      | ant (C)      |            | Α     |             |          | A         | А    |      | С         | С     |         |         | Α        | С        |           | А      | А        |
| S                                        | Sep 15, 2020 | 228.00     | 0     | 517.0       | 255.00   | 8.0       | 336  |      | 0.20      | 0.01  | 0.00    | 64.00   | 28       | 0.000    | 0.000     | 15     | 4        |
|                                          | Jun 01, 2011 | 232.00     | 3     | 500.0       | 227.00   | 8.3       | 325  |      | 0.20      | 0.00  | 0.00    | 66.00   | 26       | 0.000    | 1.000     | 15     | 6        |
| Ν                                        | Иау 18, 2010 | 224.00     | 2     | 491.0       | 211.00   | 8.2       | 319  |      | 0.10      | 0.01  | 0.00    | 53.00   | 23       | 0.000    | 0.000     | 12     | 6        |
| J                                        | Jun 02, 2008 | 220.00     | 0     | 530.0       | 230.00   | 7.9       | 274  |      | 0.20      | 0.03  | 0.00    | 57.00   | 28       | 0.000    | 1.800     | 18     | 8        |
| s                                        | Sep 11, 2007 | 230.00     | 0     | 500.0       | 250.00   | 8.0       | 269  |      | 0.00      | 0.03  | 0.00    | 61.00   | 23       | 0.000    | 1.500     | 13     | 6        |
| S                                        | Sep 18, 2006 | 228.00     | 0     | 506.0       | 238.00   | 8.0       | 329  |      | 0.20      | 0.02  | 0.08    | 59.00   | 23       | 0.110    | 1.000     | 13     | 7        |
| J                                        | Jan 16, 2006 | 227.00     | 2     | 515.0       | 222.00   | 7.7       | 335  |      | 0.10      | 0.02  | 0.06    | 56.00   | 34       | 0.120    | 1.000     | 17     | 8        |
| Ν                                        | Nov 08, 2004 | 228.00     | 0     | 472.0       | 245.00   | 7.6       | 307  |      | 0.10      | 0.01  | 0.00    | 62.00   | 19       | 0.130    | 0.000     | 13     | 6        |
| J                                        | Jun 16, 2004 | 214.00     | 3     | 453.0       | 217.00   | 7.4       | 294  |      | 0.30      | 0.02  | 0.00    | 54.00   | 21       | 0.130    | 0.000     | 12     | 6        |
| Ν                                        | Nov 17, 2003 | 229.00     | 1     | 459.0       | 225.00   | 7.6       | 298  |      | 0.20      | 0.01  | 0.03    | 57.00   | 19       | 0.140    | 1.000     | 14     | 7        |
| <i>,</i>                                 | Apr 29, 2003 | 221.00     | 1     | 475.0       | 221.00   | 7.8       | 309  |      | 0.10      | 0.03  | 0.03    | 54.00   | 21       | 0.100    | 1.000     | 18     | 7        |
| C                                        | Oct 24, 2002 | 231.00     | 1     | 490.0       | 263.00   | 7.9       | 319  |      | 0.30      | 0.03  | 0.03    | 69.00   | 21       | 0.120    | 2.000     | 12     | 7        |

|                                                  |                                           | Sample Date   | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride |       | Potassium | Sodium | Sulphate |
|--------------------------------------------------|-------------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|-------|-----------|--------|----------|
|                                                  |                                           | Units         | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L  | mg/L      | mg/L   | mg/L     |
|                                                  | Guidelines for Canadian Drinking V        | Vater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5   |           | 200    | 500      |
|                                                  | Aesthetic(A) Parameter or Cor             | ntaminant (C) |            | A     |             |          | А         | Α    |      | С         | С     |         |         | А        | С     |           | А      | Α        |
|                                                  |                                           | May 14, 2002  | 218.00     | 1     | 477.0       | 252.00   | 8.0       | 310  |      | 0.20      | 0.03  | 0.07    | 63.00   | 23       | 0.110 | 1.000     | 12     | 7        |
|                                                  |                                           | Feb 15, 2002  | 210.00     | 8     | 529.0       | 209.00   | 7.5       | 344  |      | 0.05      | 0.03  | 0.03    | 67.00   | 39       | 0.140 | 1.000     | 21     | 12       |
|                                                  |                                           | Feb 04, 2002  |            |       |             |          |           |      |      |           |       |         |         |          |       |           |        |          |
|                                                  |                                           | Nov 23, 2001  | 235.00     | 1     | 535.0       | 240.00   | 7.9       | 400  |      | 0.20      | 0.03  | 0.03    | 58.00   | 31       | 0.100 | 0.500     | 18     | 7        |
|                                                  |                                           |               |            |       |             |          |           |      |      |           |       |         |         |          |       |           |        |          |
| Community Name:<br>Service Area:<br>Source Name: | St. George's<br>St. George's<br>Wellfield |               |            |       |             |          |           |      |      |           |       |         |         |          |       |           |        |          |
| Source Name.                                     | Weineiu                                   | Sep 16, 2020  | 26.00      | 2     | 281.0       | 51.00    | 7.2       | 183  |      | 1.20      | 0.00  | 0.00    | 14.00   | 62       | 0.000 | 0.000     | 31     | 7        |
|                                                  |                                           | Sep 16, 2020  | 53.00      | 0     | 252.0       | 49.00    | 7.4       | 164  |      | 0.40      | 0.00  | 0.00    | 13.00   | 41       | 0.000 | 0.000     | 30     | 5        |
|                                                  |                                           | Sep 16, 2020  | 65.00      | 2     | 361.0       | 62.00    | 7.2       | 235  |      | 0.40      | 0.00  | 0.00    | 15.00   | 69       | 0.000 | 1.000     | 46     | 11       |
|                                                  |                                           | Aug 16, 2017  | 55.00      | 0     | 310.0       | 53.00    | 7.3       | 190  |      | 0.52      | 0.00  | 0.00    | 13.00   | 60       | 0.000 | 0.960     | 45     | 14       |
|                                                  |                                           | Aug 16, 2017  | 58.00      | 0     | 230.0       | 49.00    | 7.3       | 150  |      | 0.26      | 0.00  | 0.00    | 12.00   | 39       | 0.000 | 0.910     | 31     | 7        |
|                                                  |                                           | Aug 16, 2017  | 28.00      | 0     | 310.0       | 60.00    | 6.8       | 170  |      | 0.16      | 0.00  | 0.00    | 17.00   | 76       | 0.000 | 0.770     | 35     | 7        |

| Sample Date                                    | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|------------------------------------------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Units                                          | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant (C)      |            | A     |             |          | А         | А    |      | С         | С     |         |         | Α        | С        |           | Α      | Α        |
| <br>May 19, 2011                               | 57.00      | 5     | 705.0       | 112.00   | 7.9       | 458  |      | 1.90      | 0.00  | 0.93    | 30.00   | 164      | 0.200    | 1.000     | 77     | 9        |
| May 19, 2011                                   | 46.00      | 2     | 202.0       | 35.00    | 7.7       | 131  |      | 0.50      | 0.00  | 0.00    | 9.00    | 32       | 0.000    | 0.000     | 27     | 7        |
| May 19, 2011                                   | 29.00      | 2     | 149.0       | 15.00    | 7.5       | 97   |      | 0.40      | 0.00  | 0.00    | 6.00    | 26       | 0.000    | 0.000     | 21     | 6        |
| May 19, 2011                                   | 50.00      | 3     | 279.0       | 60.00    | 7.6       | 181  |      | 1.10      | 0.00  | 0.00    | 16.00   | 46       | 0.000    | 0.000     | 30     | 19       |
| May 20, 2010                                   | 49.00      | 0     | 517.0       | 97.00    | 7.7       | 336  |      | 0.20      | 0.01  | 0.49    | 29.00   | 111      | 0.100    | 1.000     | 52     | 10       |
| May 20, 2010                                   | 40.00      | 0     | 489.0       | 70.00    | 7.6       | 318  |      | 1.30      | 0.00  | 0.40    | 23.00   | 105      | 0.000    | 0.000     | 57     | 12       |
| May 20, 2010                                   | 41.00      | 6     | 166.0       | 26.00    | 7.4       | 108  |      | 1.00      | 0.00  | 0.00    | 7.00    | 16       | 0.000    | 0.000     | 18     | 13       |
| May 20, 2010                                   | 39.00      | 0     | 175.0       | 27.00    | 7.6       | 114  |      | 0.30      | 0.00  | 0.00    | 6.00    | 24       | 0.000    | 0.000     | 19     | 7        |
|                                                |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |

|                                        | Sample Date | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------------|-------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                        | Units       | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water | r Quality   |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contam       | inant (C)   |            | Α     |             |          | А         | A    |      | С         | С     |         |         | Α        | С        |           | А      | А        |

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data. LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no quidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these quidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the

#### Contaminant and Aesthetic Exceedances

Turbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Boron - The interim maximum acceptable concentration for boron in drinking water is 5.0 mg/L. Boron is widespread in the environment, occurring naturally in over 80 minerals and in the earth's crust. Levels in well water have been reported to be more variable and often higher than those in surface waters, most likely due to erosion from natural resources. High levels of this contaminant can cause adverse health effects for some peopleTurbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Fluoride - The maximum acceptable concentration for fluoride in drinking water is 1.5mg/L. The fluoride concentration in natural water varies widely as it depends on such factors as the source of the water and the geological formations present. Trace amounts of fluoride may be essential for human nutrition and the presence of small quantities leads to a reduction of dental caries. High levels of this contaminant can cause adverse health effects for some people.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units DCC = dissolved organic carbon Nitrate(ite) = Nitrate + Nitrite WS # = water supply number SA# = serviced area number GCDWQ = Guidelines for Canadian Drinking Water Quality Notes : Guidelines for Canadian Drinking Water Quality have not been developed for all the parameters listed in this report PH has no units Colour - An aesthetic objective of 15 true colour units (TCU) has been established for colour in drinking water. Colour in drinking water may be due to the presence of coloured organic substances or metals such as iron, manganese and copper. Highly coloured industrial wastes also contribute to colour. The presence of colour is not directly linked to health but it can be aesthetically displeasing.

pH -The acceptable range for drinking water pH is 6.5 - 8.5. The control of pH is primarily based on minimizing corrosion and encrustration in the distribution system. Tap water with low pH may accelerate the corrosion process in the distribution system, and contribute to increased levels of copper, lead and possibly other metals. Incrustation and scaling problems may become more frequent above pH 8.5

TDS - The aesthetic objective for TDS in drinking water is 500 mg/L. The term "total dissolved solids" (TDS) refers mainly to the inorganic substances that are dissolved in water. At low levels TDS contributes to the palatability of water. At high levels it may cause excessive hardness, taste, mineral deposition and corrosion.

Chloride - The aesthetic objective for chloride in drinking water is 250 mg/L. Chloride can be in water from a variety of sources, including the dissolution of salt deposits and salting of roads for ice control. No evidence has been found suggesting that ingestion of chloride is harmful to humans. However, high levels of chloride in water can impart undesirable tastes to water and beverages prepared from water.

Sodium - The aesthetic objective for sodium in drinking water is 200 mg/L. Since the body has very effective means to control levels of sodium, sodium is not an acutely toxic element in the normal range of environmental or dietary concentrations. At extremely high dosages it has adverse health effects. Sodium levels may be of interest to authorities who wish to prescribe sodium restricted diets for their patients..



|                                                  |                                            | Sample Date   | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------------------------------------------|--------------------------------------------|---------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                                  |                                            | Units         | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
|                                                  | Guidelines for Canadian Drinking W         | /ater Quality |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
|                                                  | Aesthetic(A) Parameter or Con              | taminant (C)  |            | A     |             |          | А         | А    |      | С         | С     |         |         | А        | С        |           | Α      | Α        |
| Community Name:<br>Service Area:<br>Source Name: | Stephenville<br>Stephenville<br>Well Field |               |            |       |             |          |           |      |      |           |       |         |         |          |          |           |        |          |
|                                                  |                                            | Sep 16, 2020  | 156.00     | 0     | 357.0       | 132.00   | 8.2       | 232  |      | 0.10      | 0.03  | 0.00    | 38.00   | 16       | 0.000    | 1.000     | 28     | 10       |
|                                                  |                                            | Sep 16, 2020  | 171.00     | 10    | 388.0       | 182.00   | 8.0       | 252  |      | 0.10      | 0.00  | 0.00    | 58.00   | 20       | 0.000    | 0.000     | 14     | 3        |
|                                                  |                                            | Sep 16, 2020  | 175.00     | 0     | 425.0       | 190.00   | 8.1       | 276  |      | 0.10      | 0.00  | 0.00    | 58.00   | 29       | 0.000    | 0.000     | 17     | 6        |
|                                                  |                                            | Sep 16, 2020  | 166.00     | 0     | 384.0       | 192.00   | 8.1       | 250  |      | 0.50      | 0.00  | 0.00    | 57.00   | 13       | 0.000    | 1.000     | 10     | 18       |
|                                                  |                                            | Sep 16, 2020  | 145.00     | 0     | 322.0       | 135.00   | 8.2       | 209  |      | 0.00      | 0.03  | 0.00    | 36.00   | 12       | 0.000    | 0.000     | 19     | 8        |
|                                                  |                                            | Sep 16, 2020  | 171.00     | 0     | 356.0       | 171.00   | 8.2       | 231  |      | 0.20      | 0.00  | 0.00    | 52.00   | 16       | 0.000    | 0.000     | 10     | 4        |
|                                                  |                                            | Sep 16, 2020  | 158.00     | 0     | 349.0       | 174.00   | 8.1       | 227  |      | 0.10      | 0.00  | 0.00    | 53.00   | 15       | 0.000    | 0.000     | 8      | 3        |
|                                                  |                                            | Sep 16, 2020  | 147.00     | 0     | 320.0       | 145.00   | 8.2       | 208  |      | 0.00      | 0.02  | 0.00    | 40.00   | 11       | 0.000    | 0.000     | 15     | 6        |
|                                                  |                                            | Sep 16, 2020  | 184.00     | 0     | 408.0       | 203.00   | 8.1       | 265  |      | 0.80      | 0.01  | 0.00    | 60.00   | 13       | 0.000    | 1.000     | 10     | 18       |

| Sa                                         | mple Date  | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|--------------------------------------------|------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                            | nits       | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qua | ality      |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant      | t (C)      |            | Α     |             |          | А         | А    |      | С         | С     |         |         | А        | С        |           | А      | А        |
| Aug                                        | g 16, 2017 | 170.00     | 0     | 340.0       | 170.00   | 8.0       | 200  |      | 0.18      | 0.00  | 0.00    | 50.00   | 16       | 0.000    | 0.790     | 10     | 4        |
| Aug                                        | g 16, 2017 | 150.00     | 0     | 310.0       | 130.00   | 8.0       | 190  |      | 0.28      | 0.00  | 0.00    | 34.00   | 13       | 0.000    | 0.740     | 20     | 9        |
| Aug                                        | g 16, 2017 | 150.00     | 0     | 310.0       | 140.00   | 8.0       | 180  |      | 0.00      | 0.00  | 0.00    | 37.00   | 11       | 0.000    | 0.740     | 16     | 7        |
| Aug                                        | g 16, 2017 | 170.00     | 0     | 350.0       | 130.00   | 8.0       | 210  |      | 0.22      | 0.00  | 0.00    | 37.00   | 15       | 0.000    | 1.200     | 29     | 10       |
| Aug                                        | g 16, 2017 | 180.00     | 13    | 390.0       | 200.00   | 7.9       | 250  |      | 0.77      | 0.00  | 0.00    | 58.00   | 13       | 0.000    | 1.300     | 11     | 28       |
| Au                                         | g 16, 2017 | 180.00     | 0     | 440.0       | 190.00   | 8.1       | 250  |      | 0.23      | 0.00  | 0.00    | 58.00   | 35       | 0.000    | 1.100     | 19     | 8        |
| Aug                                        | g 16, 2017 | 170.00     | 0     | 330.0       | 170.00   | 7.8       | 200  |      | 0.00      | 0.00  | 0.00    | 52.00   | 14       | 0.000    | 0.780     | 9      | 4        |
| Aug                                        | g 16, 2017 | 190.00     | 0     | 390.0       | 190.00   | 8.1       | 240  |      | 0.37      | 0.00  | 0.00    | 56.00   | 13       | 0.000    | 1.500     | 11     | 18       |
| Ма                                         | y 31, 2011 | 151.00     | 0     | 314.0       | 126.00   | 8.3       | 204  |      | 0.20      | 0.03  | 0.00    | 34.00   | 12       | 0.000    | 0.000     | 21     | 9        |
| Ма                                         | y 31, 2011 | 169.00     | 0     | 348.0       | 159.00   | 8.3       | 226  |      | 0.10      | 0.00  | 0.00    | 47.00   | 16       | 0.000    | 0.000     | 10     | 6        |
| Ма                                         | y 31, 2011 | 154.00     | 8     | 391.0       | 179.00   | 8.2       | 254  |      | 0.20      | 0.00  | 0.00    | 55.00   | 28       | 0.000    | 0.000     | 15     | 8        |
| Ма                                         | y 31, 2011 | 155.00     | 2     | 359.0       | 132.00   | 8.3       | 233  |      | 0.20      | 0.02  | 0.00    | 38.00   | 15       | 0.000    | 1.000     | 29     | 13       |

| Sample [                                       | Date Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|------------------------------------------------|-----------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Units                                          | mg/L            | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Quality |                 | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant (C)      |                 | A     |             |          | A         | Α    |      | С         | С     |         |         | А        | С        |           | Α      | А        |
| May 31, 2                                      | 011 146.00      | 2     | 319.0       | 138.00   | 8.3       | 207  |      | 0.30      | 0.02  | 0.00    | 37.00   | 11       | 0.000    | 0.000     | 16     | 8        |
| May 31, 2                                      | 011 168.00      | 0     | 376.0       | 170.00   | 8.2       | 244  |      | 0.60      | 0.00  | 0.00    | 50.00   | 11       | 0.000    | 1.000     | 11     | 20       |
| May 31, 2                                      | 011 156.00      | 0     | 410.0       | 164.00   | 8.3       | 266  |      | 0.50      | 0.00  | 0.00    | 49.00   | 29       | 0.000    | 0.000     | 16     | 9        |
| May 31, 2                                      | 011 149.00      | 0     | 343.0       | 171.00   | 8.3       | 223  |      | 0.20      | 0.00  | 0.00    | 52.00   | 14       | 0.000    | 0.000     | 9      | 6        |
| May 31, 2                                      | 011 172.00      | 0     | 390.0       | 179.00   | 8.3       | 254  |      | 0.30      | 0.00  | 0.00    | 52.00   | 11       | 0.000    | 1.000     | 12     | 18       |
| May 19, 2                                      | 010 153.00      | 0     | 352.0       | 147.00   | 8.3       | 229  |      | 0.40      | 0.00  | 0.00    | 44.00   | 16       | 0.000    | 0.000     | 9      | 6        |
| May 19, 2                                      | 010 169.00      | 2     | 410.0       | 169.00   | 8.2       | 267  |      | 0.30      | 0.00  | 0.00    | 51.00   | 24       | 0.000    | 0.000     | 16     | 9        |
| May 19, 2                                      | 010 140.00      | 2     | 318.0       | 107.00   | 8.3       | 207  |      | 0.20      | 0.03  | 0.00    | 28.00   | 11       | 0.000    | 0.000     | 20     | 9        |
| May 19, 2                                      | 010 159.00      | 6     | 385.0       | 158.00   | 8.1       | 250  |      | 0.10      | 0.00  | 0.00    | 50.00   | 23       | 0.000    | 0.000     | 14     | 6        |
| May 19, 2                                      | 010 153.00      | 2     | 343.0       | 149.00   | 8.2       | 223  |      | 0.00      | 0.00  | 0.00    | 45.00   | 13       | 0.000    | 0.000     | 8      | 6        |
| May 19, 2                                      | 010 153.00      | 2     | 359.0       | 106.00   | 8.3       | 233  |      | 0.10      | 0.03  | 0.00    | 31.00   | 15       | 0.000    | 1.000     | 28     | 12       |
| May 19, 2                                      | 010 144.00      | 0     | 321.0       | 131.00   | 8.3       | 209  |      | 0.00      | 0.02  | 0.00    | 36.00   | 11       | 0.000    | 0.000     | 16     | 9        |

| San                                         | nple Date         | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|---------------------------------------------|-------------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Ur                                          | nits              | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qual | lity              |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant       | (C)               |            | А     |             |          | Α         | Α    |      | С         | С     |         |         | A        | С        |           | Α      | A        |
| Мау                                         | / 19, 2010        | 160.00     | 3     | 375.0       | 161.00   | 8.2       | 244  |      | 0.60      | 0.00  | 0.00    | 48.00   | 11       | 0.000    | 1.000     | 10     | 19       |
| Мау                                         | / 19, 2010        | 169.00     | 2     | 389.0       | 165.00   | 8.2       | 253  |      | 0.40      | 0.00  | 0.00    | 48.00   | 12       | 0.000    | 1.000     | 11     | 18       |
| Мау                                         | / 29, 2008        | 140.00     | 0     | 320.0       | 120.00   | 8.3       | 179  |      | 0.20      | 0.04  | 0.00    | 32.00   | 11       | 0.000    | 0.800     | 26     | 9        |
| Мау                                         | <i>ı</i> 29, 2008 | 160.00     | 0     | 370.0       | 170.00   | 8.1       | 210  |      | 0.20      | 0.01  | 0.00    | 50.00   | 9        | 0.000    | 1.400     | 13     | 16       |
| Мау                                         | / 29, 2008        | 160.00     | 0     | 370.0       | 170.00   | 8.1       | 211  |      | 0.40      | 0.01  | 0.00    | 49.00   | 9        | 0.000    | 1.300     | 12     | 19       |
| Мау                                         | / 29, 2008        | 150.00     | 0     | 360.0       | 110.00   | 8.2       | 206  |      | 0.20      | 0.03  | 0.00    | 33.00   | 12       | 0.000    | 1.200     | 33     | 14       |
| Мау                                         | / 29, 2008        | 140.00     | 0     | 320.0       | 130.00   | 8.2       | 178  |      | 0.00      | 0.02  | 0.00    | 36.00   | 10       | 0.000    | 0.800     | 19     | 8        |
| Мау                                         | / 29, 2008        | 160.00     | 0     | 400.0       | 170.00   | 8.2       | 219  |      | 0.00      | 0.01  | 0.00    | 52.00   | 26       | 0.000    | 1.000     | 16     | 9        |
| Мау                                         | / 29, 2008        | 150.00     | 8     | 350.0       | 150.00   | 8.1       | 185  |      | 0.00      | 0.00  | 0.00    | 47.00   | 18       | 0.000    | 0.700     | 12     | 5        |
| Мау                                         | / 29, 2008        | 140.00     | 0     | 340.0       | 160.00   | 8.2       | 181  |      | 0.00      | 0.01  | 0.00    | 47.00   | 16       | 0.000    | 0.800     | 10     | 5        |
| Sep                                         | 9 11, 2007        | 140.00     | 0     | 310.0       | 140.00   | 8.1       | 180  |      | 0.00      | 0.04  | 0.00    | 35.00   | 8        | 0.000    | 0.900     | 25     | 9        |
| Feb                                         | 05, 2007          | 156.00     | 0     | 342.0       | 152.00   | 8.2       | 222  |      | 0.80      | 0.00  | 0.46    | 46.00   | 12       | 0.000    | 0.000     | 8      | 6        |

| San                                         | nple Date | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|---------------------------------------------|-----------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Un                                          | its       | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qual | ity       |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant       | (C)       |            | Α     |             |          | A         | Α    |      | С         | С     |         |         | Α        | С        |           | A      | Α        |
| Feb                                         | 05, 2007  | 156.00     | 0     | 359.0       | 109.00   | 8.2       | 233  |      | 0.30      | 0.03  | 0.00    | 32.00   | 13       | 0.000    | 1.000     | 30     | 14       |
| Feb                                         | 05, 2007  | 172.00     | 0     | 386.0       | 173.00   | 8.2       | 251  |      | 0.50      | 0.00  | 0.52    | 51.00   | 11       | 0.000    | 1.000     | 12     | 17       |
| Feb                                         | 05, 2007  | 159.00     | 8     | 377.0       | 164.00   | 8.0       | 245  |      | 0.20      | 0.00  | 0.00    | 51.00   | 22       | 0.000    | 0.000     | 12     | 7        |
| Feb                                         | 05, 2007  | 143.00     | 0     | 316.0       | 109.00   | 8.0       | 205  |      | 0.20      | 0.04  | 0.00    | 29.00   | 11       | 0.000    | 0.000     | 22     | 10       |
| Feb                                         | 05, 2007  | 174.00     | 0     | 388.0       | 170.00   | 8.2       | 252  |      | 0.70      | 0.00  | 0.51    | 50.00   | 12       | 0.000    | 1.000     | 12     | 16       |
| Feb                                         | 05, 2007  | 170.00     | 0     | 396.0       | 171.00   | 8.1       | 257  |      | 0.50      | 0.00  | 0.44    | 52.00   | 22       | 0.000    | 0.000     | 13     | 8        |
| Feb                                         | 05, 2007  | 156.00     | 2     | 345.0       | 152.00   | 8.3       | 224  |      | 0.50      | 0.00  | 0.46    | 46.00   | 13       | 0.000    | 0.000     | 9      | 5        |
| Feb                                         | 05, 2007  | 150.00     | 0     | 327.0       | 126.00   | 8.3       | 213  |      | 0.50      | 0.03  | 0.00    | 34.00   | 10       | 0.000    | 0.000     | 17     | 9        |
| Feb                                         | 05, 2007  | 159.00     | 0     | 359.0       | 144.00   | 8.2       | 233  |      | 0.60      | 0.04  | 0.44    | 43.00   | 14       | 0.000    | 0.000     | 17     | 9        |
| Sep                                         | 19, 2006  | 142.00     | 0     | 317.0       | 112.00   | 8.1       | 206  |      | 0.00      | 0.03  | 0.00    | 30.00   | 11       | 0.000    | 0.000     | 23     | 9        |
| Sep                                         | 19, 2006  | 164.00     | 2     | 377.0       | 164.00   | 8.1       | 245  |      | 0.50      | 0.00  | 0.00    | 49.00   | 12       | 0.000    | 1.000     | 12     | 17       |
| Sep                                         | 19, 2006  | 157.00     | 9     | 356.0       | 153.00   | 8.0       | 231  |      | 0.10      | 0.00  | 0.00    | 48.00   | 17       | 0.000    | 0.000     | 10     | 5        |

|                                        | Sample Date  | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                        | Units        | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water | Quality      |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contami      | nant (C)     |            | A     |             |          | Α         | Α    |      | С         | С     |         |         | Α        | С        |           | Α      | Α        |
|                                        | Sep 19, 2006 | 145.00     | 0     | 319.0       | 126.00   | 8.1       | 207  |      | 0.20      | 0.02  | 0.00    | 34.00   | 10       | 0.000    | 0.000     | 16     | 8        |
|                                        | Sep 19, 2006 | 152.00     | 0     | 336.0       | 154.00   | 8.1       | 218  |      | 0.30      | 0.00  | 0.08    | 47.00   | 12       | 0.000    | 0.000     | 8      | 7        |
|                                        | Sep 19, 2006 | 145.00     | 2     | 333.0       | 95.00    | 8.1       | 216  |      | 0.10      | 0.03  | 0.00    | 28.00   | 13       | 0.000    | 0.000     | 30     | 11       |
|                                        | Sep 19, 2006 | 151.00     | 0     | 341.0       | 152.00   | 8.1       | 222  |      | 0.10      | 0.00  | 0.00    | 46.00   | 13       | 0.000    | 0.000     | 9      | 6        |
|                                        | Sep 19, 2006 | 168.00     | 0     | 385.0       | 173.00   | 8.1       | 250  |      | 0.30      | 0.00  | 0.00    | 51.00   | 12       | 0.000    | 1.000     | 12     | 15       |
|                                        | Sep 19, 2006 | 168.00     | 0     | 409.0       | 174.00   | 8.1       | 266  |      | 0.10      | 0.00  | 0.00    | 53.00   | 24       | 0.000    | 0.000     | 14     | 8        |
|                                        | Jan 17, 2006 | 156.00     | 0     | 334.0       | 152.00   | 7.9       | 217  |      | 0.10      | 0.00  | 0.00    | 46.00   | 14       | 0.000    | 0.000     | 10     | 7        |
|                                        | Jan 17, 2006 | 156.00     | 0     | 330.0       | 149.00   | 7.9       | 215  |      | 0.20      | 0.00  | 0.00    | 45.00   | 13       | 0.000    | 0.000     | 8      | 7        |
|                                        | Jan 17, 2006 | 170.00     | 2     | 390.0       | 177.00   | 7.9       | 254  |      | 0.60      | 0.00  | 0.00    | 51.00   | 13       | 0.000    | 1.000     | 12     | 22       |
|                                        | Jan 17, 2006 | 146.00     | 0     | 311.0       | 109.00   | 8.0       | 202  |      | 0.00      | 0.04  | 0.00    | 29.00   | 11       | 0.110    | 0.000     | 21     | 9        |
|                                        | Jan 17, 2006 | 154.00     | 0     | 338.0       | 104.00   | 8.0       | 220  |      | 0.10      | 0.03  | 0.00    | 30.00   | 13       | 0.110    | 1.000     | 29     | 13       |
|                                        | Jan 17, 2006 | 146.00     | 8     | 325.0       | 143.00   | 7.6       | 211  |      | 0.30      | 0.00  | 0.00    | 44.00   | 17       | 0.000    | 0.000     | 9      | 6        |

| Sample                                         | e Date Alkalinity | / Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|------------------------------------------------|-------------------|---------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Units                                          | mg/L              | TCU     | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Quality |                   | 15      |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant (C)      |                   | A       |             |          | Α         | Α    |      | С         | С     |         |         | Α        | С        |           | Α      | А        |
| Jan 17,                                        | 2006 149.00       | 0       | 312.0       | 126.00   | 7.9       | 203  |      | 0.10      | 0.02  | 0.00    | 34.00   | 10       | 0.100    | 0.000     | 16     | 9        |
| Jan 17,                                        | 2006 177.00       | 0       | 393.0       | 173.00   | 7.9       | 255  |      | 0.30      | 0.00  | 0.00    | 51.00   | 13       | 0.000    | 1.000     | 12     | 18       |
| Jan 17,                                        | 2006 170.00       | 0       | 377.0       | 170.00   | 7.9       | 245  |      | 0.20      | 0.00  | 0.00    | 50.00   | 19       | 0.000    | 0.000     | 12     | 9        |
| Sep 20                                         | 2005 174.00       | 0       | 365.0       | 170.00   | 8.0       | 237  |      | 0.30      | 0.01  | 0.00    | 50.00   | 14       | 0.120    | 1.000     | 12     | 20       |
| Sep 20                                         | 2005 145.00       | 0       | 302.0       | 99.00    | 8.1       | 196  |      | 0.10      | 0.03  | 0.00    | 28.00   | 13       | 0.140    | 0.000     | 30     | 11       |
| Sep 20                                         | 2005 154.00       | 0       | 315.0       | 147.00   | 8.0       | 205  |      | 0.00      | 0.00  | 0.00    | 44.00   | 13       | 0.120    | 0.000     | 8      | 6        |
| Sep 20                                         | 2005 155.00       | 0       | 316.0       | 147.00   | 8.0       | 205  |      | 0.00      | 0.00  | 0.00    | 44.00   | 15       | 0.110    | 0.000     | 9      | 6        |
| Sep 20                                         | 2005 148.00       | 0       | 305.0       | 121.00   | 8.1       | 198  |      | 0.00      | 0.03  | 0.00    | 32.00   | 11       | 0.140    | 0.000     | 16     | 9        |
| Sep 20                                         | 2005 160.00       | 10      | 340.0       | 150.00   | 7.8       | 221  |      | 0.00      | 0.00  | 0.00    | 47.00   | 18       | 0.130    | 0.000     | 10     | 6        |
| Sep 20                                         | 2005 166.00       | 0       | 361.0       | 161.00   | 8.0       | 235  |      | 0.00      | 0.00  | 0.08    | 48.00   | 21       | 0.130    | 0.000     | 11     | 9        |
| Sep 20                                         | 2005 145.00       | 0       | 296.0       | 109.00   | 8.1       | 192  |      | 0.10      | 0.04  | 0.00    | 29.00   | 11       | 0.160    | 0.000     | 22     | 10       |
| Sep 20                                         | 2005 161.00       | 0       | 334.0       | 154.00   | 7.9       | 217  |      | 1.00      | 0.00  | 0.00    | 45.00   | 12       | 0.120    | 1.000     | 11     | 16       |

|                                        | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                        | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water | Quality      |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contami      | nant (C)     |            | A     |             |          | А         | Α    |      | С         | С     |         |         | А        | С        |           | А      | А        |
|                                        | Nov 09, 2004 | 152.00     | 0     | 340.0       | 147.00   | 7.9       | 221  |      | 0.10      | 0.02  | 0.00    | 44.00   | 14       | 0.000    | 0.000     | 19     | 11       |
|                                        | Nov 09, 2004 | 151.00     | 0     | 321.0       | 166.00   | 7.8       | 209  |      | 0.00      | 0.00  | 0.00    | 50.00   | 13       | 0.000    | 0.000     | 9      | 6        |
|                                        | Nov 09, 2004 | 163.00     | 0     | 369.0       | 178.00   | 7.8       | 240  |      | 1.00      | 0.01  | 0.00    | 53.00   | 15       | 0.000    | 1.000     | 13     | 15       |
|                                        | Nov 09, 2004 | 144.00     | 0     | 305.0       | 138.00   | 7.8       | 198  |      | 0.10      | 0.03  | 0.00    | 37.00   | 10       | 0.130    | 0.000     | 18     | 9        |
|                                        | Nov 09, 2004 | 162.00     | 0     | 365.0       | 159.00   | 7.9       | 237  |      | 0.40      | 0.01  | 0.00    | 47.00   | 17       | 0.000    | 1.000     | 11     | 11       |
|                                        | Nov 09, 2004 | 175.00     | 0     | 417.0       | 201.00   | 7.8       | 271  |      | 0.20      | 0.01  | 0.10    | 59.00   | 16       | 0.000    | 1.000     | 14     | 22       |
|                                        | Nov 09, 2004 | 141.00     | 12    | 321.0       | 158.00   | 7.8       | 209  |      | 0.30      | 0.01  | 0.00    | 50.00   | 17       | 0.000    | 0.000     | 9      | 6        |
|                                        | Nov 09, 2004 | 142.00     | 0     | 305.0       | 114.00   | 7.9       | 198  |      | 0.00      | 0.04  | 0.00    | 31.00   | 11       | 0.140    | 0.000     | 25     | 9        |
|                                        | Nov 09, 2004 | 143.00     | 0     | 322.0       | 106.00   | 7.9       | 209  |      | 0.10      | 0.03  | 0.00    | 31.00   | 13       | 0.130    | 1.000     | 33     | 13       |
|                                        | Jun 16, 2004 | 149.00     | 0     | 324.0       | 134.00   | 7.7       | 211  |      | 0.20      | 0.04  | 0.00    | 39.00   | 12       | 0.100    | 0.000     | 13     | 7        |
|                                        | Jun 16, 2004 | 145.00     | 0     | 312.0       | 121.00   | 7.7       | 203  |      | 0.00      | 0.02  | 0.00    | 32.00   | 10       | 0.120    | 0.000     | 17     | 8        |
|                                        | Jun 16, 2004 | 151.00     | 0     | 328.0       | 147.00   | 7.7       | 213  |      | 0.00      | 0.00  | 0.00    | 44.00   | 12       | 0.000    | 0.000     | 8      | 6        |

|                                       | Sample Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|---------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                       | Units        | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Wate | r Quality    |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contam      | ninant (C)   |            | A     |             |          | A         | A    |      | С         | С     |         |         | Α        | С        |           | Α      | Α        |
|                                       | Jun 16, 2004 | 151.00     | 3     | 336.0       | 149.00   | 7.7       | 218  |      | 0.20      | 0.00  | 0.00    | 45.00   | 14       | 0.100    | 0.000     | 10     | 6        |
|                                       | Jun 16, 2004 | 141.00     | 0     | 309.0       | 100.00   | 7.8       | 201  |      | 0.10      | 0.03  | 0.00    | 27.00   | 11       | 0.130    | 0.000     | 24     | 9        |
|                                       | Jun 15, 2004 | 180.00     | 0     | 440.0       | 196.00   | 7.7       | 286  |      | 0.30      | 0.00  | 0.00    | 57.00   | 19       | 0.170    | 1.000     | 13     | 24       |
|                                       | Jun 15, 2004 | 166.00     | 0     | 412.0       | 175.00   | 7.6       | 268  |      | 0.80      | 0.00  | 0.00    | 52.00   | 19       | 0.170    | 1.000     | 12     | 21       |
|                                       | Jun 15, 2004 | 147.00     | 2     | 361.0       | 156.00   | 7.7       | 235  |      | 0.20      | 0.00  | 0.00    | 46.00   | 18       | 0.160    | 0.000     | 11     | 14       |
|                                       | Jun 15, 2004 | 132.00     | 0     | 290.0       | 80.00    | 7.8       | 189  |      | 0.30      | 0.02  | 0.00    | 22.00   | 11       | 0.180    | 1.000     | 29     | 8        |
|                                       | Jun 15, 2004 | 129.00     | 11    | 302.0       | 126.00   | 7.7       | 196  |      | 0.10      | 0.00  | 0.00    | 39.00   | 16       | 0.150    | 0.000     | 10     | 6        |
|                                       | Oct 01, 2003 | 170.00     | 1     | 394.0       | 163.00   | 8.1       | 256  |      | 0.20      | 0.01  | 0.03    | 47.00   | 16       | 0.130    | 2.000     | 14     | 17       |
|                                       | Oct 01, 2003 | 160.00     | 1     | 361.0       | 146.00   | 8.0       | 235  |      | 1.40      | 0.01  | 0.03    | 42.00   | 13       | 0.140    | 1.000     | 13     | 14       |
|                                       | Oct 01, 2003 | 153.00     | 1     | 333.0       | 139.00   | 8.1       | 216  |      | 0.20      | 0.01  | 0.03    | 41.00   | 14       | 0.120    | 1.000     | 10     | 7        |
|                                       | Oct 01, 2003 | 155.00     | 1     | 331.0       | 142.00   | 8.1       | 215  |      | 0.05      | 0.01  | 0.03    | 42.00   | 12       | 0.120    | 1.000     | 9      | 7        |
|                                       | Oct 01, 2003 | 161.00     | 8     | 361.0       | 152.00   | 8.0       | 235  |      | 0.10      | 0.01  | 0.03    | 46.00   | 18       | 0.160    | 1.000     | 11     | 3        |

| S                                        | Sample Date  | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|------------------------------------------|--------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                          | Units        | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water C | Quality      |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contamin       | ant (C)      |            | Α     |             |          | A         | Α    |      | С         | С     |         |         | Α        | С        |           | A      | A        |
|                                          | Oct 01, 2003 | 139.00     | 1     | 312.0       | 93.00    | 8.1       | 203  |      | 0.10      | 0.03  | 0.03    | 24.00   | 11       | 0.150    | 1.000     | 26     | 9        |
|                                          | Oct 01, 2003 | 155.00     | 1     | 342.0       | 127.00   | 8.1       | 222  |      | 0.30      | 0.02  | 0.14    | 36.00   | 15       | 0.140    | 1.000     | 19     | 9        |
|                                          | Oct 01, 2003 | 144.00     | 1     | 319.0       | 82.00    | 8.2       | 207  |      | 0.10      | 0.03  | 0.03    | 23.00   | 12       | 0.180    | 1.000     | 35     | 11       |
|                                          | Oct 01, 2003 | 164.00     | 1     | 398.0       | 163.00   | 8.1       | 259  |      | 0.20      | 0.01  | 0.03    | 47.00   | 25       | 0.130    | 1.000     | 14     | 10       |
|                                          | Oct 01, 2003 | 141.00     | 1     | 313.0       | 109.00   | 8.1       | 203  |      | 0.10      | 0.03  | 0.12    | 29.00   | 10       | 0.140    | 1.000     | 18     | 9        |
| ·                                        | Apr 29, 2003 | 147.00     | 1     | 336.0       | 148.00   | 7.8       | 218  |      | 0.10      | 0.03  | 0.03    | 46.00   | 15       | 0.100    | 0.500     | 16     | 10       |
|                                          | Apr 29, 2003 | 144.00     | 1     | 315.0       | 125.00   | 7.9       | 205  |      | 0.05      | 0.03  | 0.03    | 37.00   | 11       | 0.110    | 0.500     | 20     | 9        |
|                                          | Apr 29, 2003 | 146.00     | 1     | 319.0       | 132.00   | 7.8       | 207  |      | 0.10      | 0.03  | 0.03    | 38.00   | 10       | 0.100    | 0.500     | 16     | 8        |
|                                          | Apr 29, 2003 | 154.00     | 1     | 333.0       | 167.00   | 7.8       | 216  |      | 0.05      | 0.03  | 0.03    | 52.00   | 12       | 0.050    | 0.500     | 8      | 6        |
|                                          | Apr 29, 2003 | 153.00     | 1     | 336.0       | 166.00   | 7.8       | 218  |      | 0.05      | 0.03  | 0.03    | 50.00   | 14       | 0.050    | 0.500     | 14     | 6        |
|                                          | Apr 29, 2003 | 166.00     | 1     | 383.0       | 179.00   | 7.8       | 249  |      | 0.20      | 0.03  | 0.03    | 55.00   | 15       | 0.050    | 0.500     | 11     | 15       |
|                                          | Apr 29, 2003 | 162.00     | 1     | 365.0       | 157.00   | 7.8       | 237  |      | 0.50      | 0.03  | 0.03    | 43.00   | 13       | 0.050    | 0.500     | 17     | 14       |

| San                                         | nple Date Al | kalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|---------------------------------------------|--------------|----------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Un                                          | its r        | ng/L     | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qual | ity          |          | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant       | (C)          |          | Α     |             |          | Α         | A    |      | С         | С     |         |         | A        | С        |           | Α      | A        |
| Apr                                         | 29, 2003 14  | 15.00    | 2     | 334.0       | 111.00   | 7.9       | 217  |      | 0.20      | 0.03  | 0.03    | 33.00   | 12       | 0.100    | 0.500     | 30     | 15       |
| Apr                                         | 29, 2003 10  | 08.00    | 10    | 278.0       | 127.00   | 7.4       | 181  |      | 0.30      | 0.03  | 0.03    | 41.00   | 20       | 0.050    | 0.500     | 9      | 5        |
| Apr                                         | 29, 2003 15  | 53.00    | 2     | 368.0       | 174.00   | 7.8       | 239  |      | 0.05      | 0.03  | 0.03    | 55.00   | 21       | 0.100    | 0.500     | 11     | 9        |
| Oct                                         | 24, 2002 13  | 34.00    | 11    | 304.0       | 133.00   | 7.5       | 198  |      | 0.20      | 0.03  | 0.03    | 40.00   | 15       | 0.100    | 1.000     | 8      | 6        |
| Oct                                         | 24, 2002 16  | 33.00    | 1     | 372.0       | 190.00   | 7.8       | 242  |      | 0.10      | 0.03  | 0.03    | 58.00   | 18       | 0.110    | 1.000     | 11     | 10       |
| Oct                                         | 24, 2002 14  | 7.00     | 1     | 322.0       | 112.00   | 8.0       | 209  |      | 0.10      | 0.03  | 0.03    | 35.00   | 11       | 0.130    | 2.000     | 33     | 12       |
| Oct                                         | 24, 2002 15  | 51.00    | 1     | 316.0       | 154.00   | 7.8       | 205  |      | 0.10      | 0.03  | 0.03    | 45.00   | 10       | 0.110    | 1.000     | 16     | 8        |
| Oct                                         | 24, 2002 16  | 8.00     | 1     | 382.0       | 198.00   | 7.8       | 248  |      | 0.20      | 0.03  | 0.03    | 61.00   | 15       | 0.050    | 2.000     | 12     | 15       |
| Oct                                         | 24, 2002 15  | 57.00    | 1     | 339.0       | 176.00   | 7.8       | 220  |      | 0.05      | 0.03  | 0.03    | 54.00   | 13       | 0.100    | 1.000     | 9      | 6        |
| Oct                                         | 24, 2002 15  | 51.00    | 1     | 318.0       | 129.00   | 7.8       | 207  |      | 0.05      | 0.03  | 0.03    | 37.00   | 11       | 0.120    | 1.000     | 22     | 8        |
| Oct                                         | 24, 2002 16  | \$8.00   | 1     | 380.0       | 188.00   | 7.9       | 247  |      | 0.20      | 0.03  | 0.03    | 57.00   | 16       | 0.050    | 2.000     | 12     | 15       |
| Мау                                         | 14, 2002 14  | 14.00    | 2     | 335.0       | 154.00   | 8.1       | 218  |      | 0.10      | 0.03  | 0.03    | 45.00   | 13       | 0.100    | 0.500     | 17     | 10       |

| San                                         | nple Date  | Alkalinity | Color | Conductivit | Hardness | pН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|---------------------------------------------|------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
| Ur                                          | nits       | mg/L       | TCU   | μS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water Qual | lity       |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contaminant       | (C)        |            | Α     |             |          | A         | A    |      | С         | С     |         |         | A        | С        |           | Α      | A        |
| Мау                                         | / 14, 2002 | 145.00     | 1     | 319.0       | 121.00   | 8.2       | 207  |      | 0.05      | 0.03  | 0.03    | 32.00   | 11       | 0.110    | 0.500     | 22     | 8        |
| Мау                                         | / 14, 2002 | 146.00     | 1     | 318.0       | 143.00   | 8.2       | 207  |      | 0.05      | 0.03  | 0.03    | 39.00   | 10       | 0.110    | 0.500     | 17     | 8        |
| Мау                                         | / 14, 2002 | 153.00     | 1     | 331.0       | 166.00   | 8.2       | 215  |      | 0.05      | 0.03  | 0.03    | 50.00   | 12       | 0.050    | 0.500     | 9      | 6        |
| Мау                                         | / 14, 2002 | 151.00     | 1     | 335.0       | 150.00   | 8.2       | 218  |      | 0.10      | 0.03  | 0.03    | 42.00   | 14       | 0.050    | 0.500     | 11     | 6        |
| Мау                                         | / 14, 2002 | 164.00     | 1     | 378.0       | 181.00   | 8.1       | 246  |      | 0.80      | 0.03  | 0.03    | 51.00   | 16       | 0.100    | 1.000     | 12     | 12       |
| Мау                                         | / 14, 2002 | 164.00     | 1     | 380.0       | 171.00   | 8.1       | 247  |      | 0.30      | 0.03  | 0.03    | 47.00   | 16       | 0.050    | 1.000     | 13     | 14       |
| Мау                                         | / 14, 2002 | 148.00     | 1     | 347.0       | 153.00   | 8.1       | 226  |      | 0.10      | 0.03  | 0.03    | 43.00   | 15       | 0.050    | 0.500     | 11     | 11       |
| Мау                                         | / 14, 2002 | 136.00     | 1     | 305.0       | 95.00    | 8.3       | 198  |      | 0.20      | 0.03  | 0.03    | 28.00   | 10       | 0.120    | 1.000     | 32     | 12       |
| Мау                                         | / 14, 2002 | 127.00     | 10    | 317.0       | 128.00   | 8.1       | 206  |      | 0.20      | 0.03  | 0.03    | 38.00   | 16       | 0.050    | 0.500     | 10     | 7        |
| Νον                                         | 23, 2001   | 114.00     | 9     | 274.0       | 121.00   | 7.9       | 196  |      | 0.10      | 0.03  | 0.03    | 37.00   | 14       | 0.050    | 0.500     | 9      | 8        |
| Νον                                         | v 23, 2001 | 161.00     | 1     | 372.0       | 172.00   | 8.0       | 256  |      | 0.05      | 0.03  | 0.03    | 49.00   | 15       | 0.050    | 0.500     | 12     | 13       |
| Νον                                         | v 23, 2001 | 154.00     | 1     | 330.0       | 156.00   | 8.1       | 215  |      | 0.05      | 0.03  | 0.03    | 46.00   | 12       | 0.050    | 0.500     | 10     | 6        |

| Sample Date                                             | Alkalinity | Color     | Conductivit | Hardness | рН        | TDS         | TSS  | Turbidity  |             | Bromide | Calcium | Chloride    |             | Potassium | Sodium      | Sulphate    |
|---------------------------------------------------------|------------|-----------|-------------|----------|-----------|-------------|------|------------|-------------|---------|---------|-------------|-------------|-----------|-------------|-------------|
| Units<br>Guidelines for Canadian Drinking Water Quality | mg/L       | TCU<br>15 | μS/cm       | mg/L     | 6.5 - 8.5 | mg/L<br>500 | mg/L | NTU<br>1.0 | mg/L<br>5.0 | mg/L    | mg/L    | mg/L<br>250 | mg/L<br>1.5 | mg/L      | mg/L<br>200 | mg/L<br>500 |
| Aesthetic(A) Parameter or Contaminant (C)               |            | A         |             |          | A         | A           |      | С          | С           |         |         | А           | С           |           | A           | A           |
| Nov 23, 2001                                            | 152.00     | 1         | 329.0       | 151.00   | 8.1       | 214         |      | 0.30       | 0.03        | 0.03    | 44.00   | 13          | 0.050       | 0.500     | 11          | 6           |
| Nov 23, 2001                                            | 146.00     | 1         | 326.0       | 130.00   | 8.1       | 212         |      | 0.20       | 0.03        | 0.03    | 37.00   | 12          | 0.100       | 0.500     | 17          | 8           |
| Nov 23, 2001                                            | 147.00     | 1         | 311.0       | 130.00   | 8.1       | 202         |      | 0.10       | 0.03        | 0.06    | 34.00   | 10          | 0.120       | 0.500     | 17          | 8           |
| Nov 23, 2001                                            | 168.00     | 1         | 379.0       | 174.00   | 8.0       | 246         |      | 0.70       | 0.03        | 0.03    | 50.00   | 14          | 0.050       | 1.000     | 13          | 16          |
| Nov 23, 2001                                            | 162.00     | 1         | 357.0       | 163.00   | 8.1       | 232         |      | 0.40       | 0.03        | 0.03    | 47.00   | 13          | 0.100       | 1.000     | 13          | 12          |
| Nov 23, 2001                                            | 137.00     | 1         | 301.0       | 82.00    | 8.1       | 196         |      | 0.30       | 0.03        | 0.03    | 23.00   | 11          | 0.130       | 0.500     | 31          | 8           |
| Nov 23, 2001                                            | 146.00     | 1         | 311.0       | 116.00   | 8.2       | 202         |      | 0.10       | 0.03        | 0.03    | 30.00   | 11          | 0.120       | 0.500     | 22          | 8           |
|                                                         |            |           |             |          |           |             |      |            |             |         |         |             |             |           |             |             |

|                                        | Sample Date | Alkalinity | Color | Conductivit | Hardness | рН        | TDS  | TSS  | Turbidity | Boron | Bromide | Calcium | Chloride | Fluoride | Potassium | Sodium | Sulphate |
|----------------------------------------|-------------|------------|-------|-------------|----------|-----------|------|------|-----------|-------|---------|---------|----------|----------|-----------|--------|----------|
|                                        | Units       | mg/L       | TCU   | µS/cm       | mg/L     |           | mg/L | mg/L | NTU       | mg/L  | mg/L    | mg/L    | mg/L     | mg/L     | mg/L      | mg/L   | mg/L     |
| Guidelines for Canadian Drinking Water | Quality     |            | 15    |             |          | 6.5 - 8.5 | 500  |      | 1.0       | 5.0   |         |         | 250      | 1.5      |           | 200    | 500      |
| Aesthetic(A) Parameter or Contam       | nant (C)    |            | Α     |             |          | Α         | Α    |      | С         | С     |         |         | Α        | С        |           | А      | А        |

Source water samples are collected directly from the source such as a groundwater well, lake, pond, or stream prior to disinfection or other treatment. The source water quality is analyzed to determine the quality of water that flows into your water treatment and distribution system. The quality of the water this water is a direct indicator of the health of the ecosystem that makes up the natural drainage basin, well head recharge area or watershed area. Monitoring of source water quality is the most important tool to assess the impact of land use changes on source water quality, the presence of disinfection by-product (DBP) pre-cursors and to ensure the integrity of a public water supply. The values for each parameter are as reported by the lap and verified by the department.

Quality Assurace / Quality Control (QA/QC) - The department is striving to improve the quality of the data using standard QA/QC protocols. This is an evolving process which many result in minor changes to the reported data. LTD - Less Than Detection Limit - The detection limit is the lowest concentration of a substance that can be determined using a particular test method and instrument. Detection limits vary from parameter to parameter and change from time to time due to improvements in analytical procedures and equipment.

The exceedence report for source water provides a brief discussion and interpretation of health related water quality parameters, if any, that exceed the acceptable limits as set out in the Guidelines for Canadian Drinking Water Quality, Sixth Edition (GCDWQ). This comparison is only for screening purposes since at present there are no quidelines for untreated source water. The GCDWQ applies to water at the consumers tap. However in the absence of water treatment these quidelines could be applicable to source water quality.

Aesthetic (A) Parameters - Aesthetic parameters reflect substances or characteristics of drinking water that can affect its acceptance by consumers but which usually do not pose any health effects

Contaminants (C) - Contaminants are substances that are known or suspected to cause adverse effects on the health of some people when present in concentrations greater than the established Maximum Acceptable Concentrations (MACs) or the Interim Maximum Acceptable Concentrations (IMACs) of the GCDWQ. Each MAC has been derived to safeguard health assuming lifelong consumption of drinking water containing the substance at that concentration. IMACs are reviewed periodically as new information becomes available. Please consult your Medical Officer of Health for additional information on the

#### Contaminant and Aesthetic Exceedances

Turbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Boron - The interim maximum acceptable concentration for boron in drinking water is 5.0 mg/L. Boron is widespread in the environment, occurring naturally in over 80 minerals and in the earth's crust. Levels in well water have been reported to be more variable and often higher than those in surface waters, most likely due to erosion from natural resources. High levels of this contaminant can cause adverse health effects for some peopleTurbidity - The maximum acceptable concentration for turbidity is 1 NTU. Turbidity refers to the water's ability to transmit light or the cloudiness of the water. Turbidity in tap water can be the result of turbid raw water and influences within the distribution system. Turbidity is usually the result of fine organic and inorganic particles which do not settle out. Increased turbidity of drinking water results in it being less aesthetically pleasing, and may interfere with the disinfection process.

Fluoride - The maximum acceptable concentration for fluoride in drinking water is 1.5mg/L. The fluoride concentration in natural water varies widely as it depends on such factors as the source of the water and the geological formations present. Trace amounts of fluoride may be essential for human nutrition and the presence of small quantities leads to a reduction of dental caries. High levels of this contaminant can cause adverse health effects for some people.

mg/L = milligrams per litre or parts per million µS/cm = micro Siemens per centimeter NTU = nephelometric turbidity units TDS = total dissolved solids TSS = total suspended solids TCU = true colour units DCC = dissolved organic carbon Nitrate(ite) = Nitrate + Nitrite WS # = water supply number SA# = serviced area number GCDWQ = Guidelines for Canadian Drinking Water Quality Notes : Guidelines for Canadian Drinking Water Quality have not been developed for all the parameters listed in this report PH has no units Colour - An aesthetic objective of 15 true colour units (TCU) has been established for colour in drinking water. Colour in drinking water may be due to the presence of coloured organic substances or metals such as iron, manganese and copper. Highly coloured industrial wastes also contribute to colour. The presence of colour is not directly linked to health but it can be aesthetically displeasing.

pH -The acceptable range for drinking water pH is 6.5 - 8.5. The control of pH is primarily based on minimizing corrosion and encrustration in the distribution system. Tap water with low pH may accelerate the corrosion process in the distribution system, and contribute to increased levels of copper, lead and possibly other metals. Incrustation and scaling problems may become more frequent above pH 8.5

TDS - The aesthetic objective for TDS in drinking water is 500 mg/L. The term "total dissolved solids" (TDS) refers mainly to the inorganic substances that are dissolved in water. At low levels TDS contributes to the palatability of water. At high levels it may cause excessive hardness, taste, mineral deposition and corrosion.

Chloride - The aesthetic objective for chloride in drinking water is 250 mg/L. Chloride can be in water from a variety of sources, including the dissolution of salt deposits and salting of roads for ice control. No evidence has been found suggesting that ingestion of chloride is harmful to humans. However, high levels of chloride in water can impart undesirable tastes to water and beverages prepared from water.

Sodium - The aesthetic objective for sodium in drinking water is 200 mg/L. Since the body has very effective means to control levels of sodium, sodium is not an acutely toxic element in the normal range of environmental or dietary concentrations. At extremely high dosages it has adverse health effects. Sodium levels may be of interest to authorities who wish to prescribe sodium restricted diets for their patients..

Sulphate - The aesthetic objective for sulphate in drinking water is 500 mg/L. Sulphates, which occur naturally in numerous minerals, are used in the mining and pulping industries and in wood preservation. Large quantities of sulphate can result in catharsis and gastrointestinal irritation. The presence of sulphate above

# **Appendix B**

**Drilled Water Well Records** 

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023

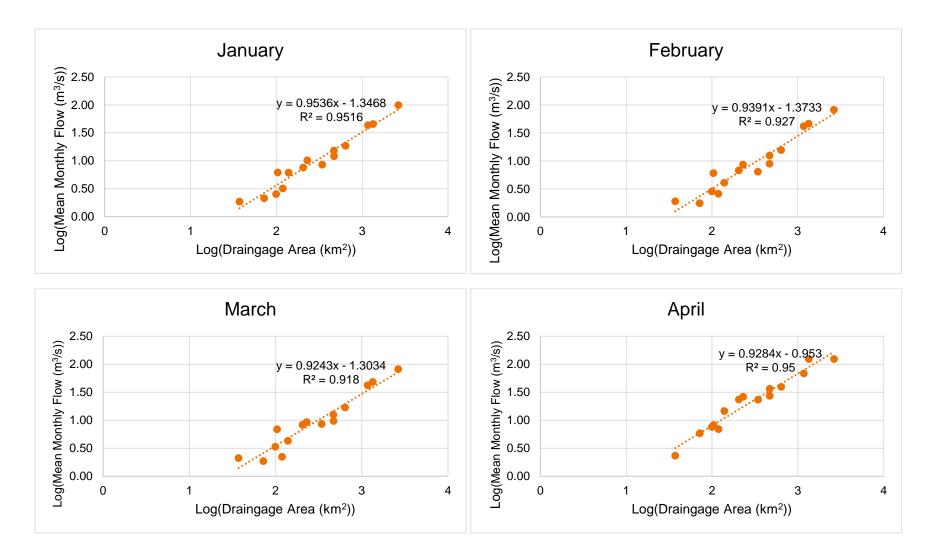
| Project Location | Well<br>Number | Lat.      | Long.      | Well Town    | Depth to<br>Bedrock (m) | Static water<br>level (m) | Well Depth<br>(m) | Casing length<br>(m) | Lithology                                                                                             | Water Use        | Water<br>Type | Date Drilled                     | Casing Diameter<br>(mm) | Yield<br>(L/min) | Depth water<br>found (m) |
|------------------|----------------|-----------|------------|--------------|-------------------------|---------------------------|-------------------|----------------------|-------------------------------------------------------------------------------------------------------|------------------|---------------|----------------------------------|-------------------------|------------------|--------------------------|
| Stephenville RAA | 8927           | 48.55     | -58.58306  | STEPHENVILLE |                         |                           | 91.4              |                      | OBDN 013 ROCK 091                                                                                     |                  |               | 6/15/1976 0:00                   |                         |                  |                          |
| Stephenville RAA | 18916          | 48.56694  | -58.51694  | NOELS POND   | 23.1                    |                           | 74.3              | 23.1                 | GREY GRVL 23 GREY GRNT 74                                                                             | DOMESTIC         |               | 6/17/1998 0:00                   | 150                     | 2                |                          |
|                  |                |           |            |              |                         |                           |                   |                      |                                                                                                       |                  |               |                                  |                         |                  |                          |
| Stephenville RAA | 29068          | 48.546667 | -58.520944 | STEPHENVILLE | 71.64634146             | 18.29268293               | 66.768293         | 50                   |                                                                                                       | NON-<br>DOMESTIC | FRESH         | 2/11/2018 0:00                   | 150                     | 1514             | 30.48780488              |
| Stephenville RAA | 24219          | 48.542306 | -58.528583 | STEPHENVILLE |                         | 22.9                      | 60.9              | 47.5                 |                                                                                                       | DOMESTIC         | FRESH         | 5/21/2012 0:00                   | 152                     |                  |                          |
| Stephenville RAA | 24164          | 48.5415   | -58.528278 | STEPHENVILLE |                         | 21.87                     | 60.9              | 46.9                 |                                                                                                       | NON-<br>DOMESTIC | FRESH         | 11/23/2010 0:00                  | 152                     |                  | 21.87                    |
|                  |                |           |            |              |                         |                           |                   |                      |                                                                                                       |                  |               |                                  |                         |                  |                          |
| Stephenville RAA | 23794          | 48.542583 | -58.529361 | STEPHENVILLE |                         |                           | 50.59             | 40.53                |                                                                                                       | DOMESTIC         | FRESH         | 8/7/2009 0:00                    | 150                     | 337.5            | 40.53                    |
| Stephenville RAA | 10469          | 48.54833  | -58.64556  | KIPPENS      |                         |                           | 49.9              | 13.4                 | RED CLAY 011 RED SNDS 050                                                                             | DOMESTIC         | FRESH         | 11/25/1982 0:00                  |                         | 36               | 30                       |
| Stephenville RAA | 22094          | 48.537472 | -58.503746 | GULL POND    | 10.7                    |                           | 49.9              | 13.4                 | 49.7                                                                                                  | DOMESTIC         | FRESH         | 5/19/2005 0:00                   | 150                     | 30               | 30                       |
| Stephenville RAA | 17847          | 48.537472 | -58.503746 | GULL POND    |                         | 1                         | 49                | 17                   | SAND GRVL 17 GRNT 50                                                                                  | DOMESTIC         | FRESH         | 7/20/1995 0:00                   |                         | 9                | 45.4                     |
|                  |                |           |            |              |                         |                           |                   |                      |                                                                                                       |                  |               |                                  |                         |                  |                          |
| Stephenville RAA | 19034          | 48.55     | -58.58306  | STEPHENVILLE | 8.8                     |                           | 45.1              | 10                   | REAMED FR 200MM DIA TO<br>438MM DIA                                                                   | MUNICIPAL        |               | 11/28/1998 0:00                  | 457                     | 1462             |                          |
| Stephenville RAA | 15593          | 48.55     | -58.58306  | STEPHENVILLE |                         | 3                         | 43.8              | 31                   | BRWN GRVL 006 BRWN<br>GRVL/SILT/CLAY 044                                                              | MUNICIPAL        | FRESH         | 11/21/1989 0:00                  |                         | 113              | 26                       |
| Stephenville RAA | 25760          | 48.602861 | -58.534417 | COLDBROOK    | 25.9                    | 12                        | 42.6              | 26.8                 |                                                                                                       | DOMESTIC         | FRESH         | 11/22/2012 0:00                  | 152                     | 35               | 38                       |
| Stephenville RAA | 14840          | 48.55     | -58.58306  | STEPHENVILLE |                         |                           | 38                | 10                   | GREY GRNT 038                                                                                         |                  | FRESH         | 8/4/1989 0:00                    |                         | 15               | 35                       |
| Stephenville RAA | 24127          | 48.566472 | -58.520611 | NOELS POND   | 8.8                     | 11                        | 37.8              | 9.4                  |                                                                                                       | DOMESTIC         | FRESH         | 7/8/2010 0:00                    | 152                     | 175              | 11.5                     |
| Stephenville RAA | 24126          | 48.568667 | -58.510806 | NOELS POND   | 17.3                    | 10.3                      | 37.8              | 18.2                 |                                                                                                       | DOMESTIC         | FRESH         | 7/7/2010 0:00                    | 152                     | 80               | 20                       |
| Stephenville RAA | 24128          | 48.567889 | -58.522611 | NOELS POND   | 12.1                    | 10                        | 37.8              | 14.9                 |                                                                                                       | DOMESTIC         | FRESH         | 7/9/2010 0:00                    | 152                     | 45               |                          |
| Stephenville RAA | 10514          | 48.54611  | -58.64694  | KIPPENS      |                         | 7                         | 37.8              | 22.8                 | GRVL CLAY 023 GREY CONG 038                                                                           | DOMESTIC         | FRESH         | 9/4/1983 0:00                    |                         | 50               | 36                       |
| Stephenville RAA | 20224          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 37.8              | 28.6                 | GRVL SAND BRWN 25.6 GRVL<br>BRWN 28.6 CONG GREY 37.8                                                  | DOMESTIC         |               | 8/23/2001 0:00                   | 150                     | 27               |                          |
| Stephenville RAA | 18915          | 48.55     | -58.58306  | STEPHENVILLE | 10.9                    |                           | 37.7              | 11.2                 | OBDN 11 GREY GRNT 38                                                                                  | DOMESTIC         |               | 7/30/1998 0:00                   | 150                     | 22               |                          |
| Stephenville RAA | 19260          | 48.537472 | -58.503746 | GULL POND    | 4.5                     |                           | 37.7              | 5                    | GRVL BLDR 5 GREY ROCK 38                                                                              | DOMESTIC         |               | 10/22/1999 0:00                  | 150                     | 25               |                          |
| Stephenville RAA | 23209          | 48,56403  | -58,59953  | STEPHENVILLE | 88                      | 7                         | 37.7              | 13.3                 | BRWN UNCONSOLIDATED<br>GRAVEL 36; BRWN SOME SNDS<br>MIXED WITH MUDSTONE 43.6';<br>BRWN GREY SNDS 37.8 | DOMESTIC         | FRESH         | 4/25/2008 0:00                   | 150                     | 13               |                          |
| Stephenville RAA | 23209          | 48.56725  | -58.52225  | NOELS POND   | 13.7                    | 6                         | 36.6              | 13.3                 | BRWN GRET SNDS 37.8<br>BRWN UNCONSOLIDATED - 13.7;<br>GRY BDRCK 36.6                                  | DOMESTIC         | FRESH         | 4/23/2008 0:00<br>5/31/2007 0:00 | 150                     | 40               |                          |
| Stephenville RAA | 11877          | 48.58333  | -58.54917  | STEPHENVILLE | 10.1                    | ÿ                         | 35                | 27.4                 | RED SNDS 035                                                                                          | DOMEOTIC         | . REON        | 7/29/1985 0:00                   | 100                     |                  |                          |
| Stephenville RAA | 22082          | 48.58606  | -58.54219  | COLD BROOK   | 1                       |                           | 35                | 35                   | BRWN GRVL & BLDR 35                                                                                   | DOMESTIC         | FRESH         | 7/21/2005 0:00                   | 150                     | 50               |                          |
| Stephenville RAA | 20396          | 48.537472 | -58.503746 | GULL POND    |                         |                           | 34.7              | 34.7                 | GRVL BLDR GREY 3 SAND GREY<br>33.5 GRVL BRWN 34.7                                                     | DOMESTIC         |               | 5/23/2002 0:00                   | 150                     | 100              |                          |
|                  |                |           |            |              |                         |                           |                   |                      |                                                                                                       |                  |               |                                  |                         |                  |                          |
| Stephenville RAA | 19032          | 48.55     | -58.58306  | STEPHENVILLE | 29                      |                           | 33                | 23.9                 | SAND GRVL CLAY 28 SNDS 33                                                                             |                  |               | 12/11/1998 0:00                  | 200                     | 227              |                          |
| Stephenville RAA | 19033          | 48.55     | -58.58306  | STEPHENVILLE | 27.3                    |                           | 33                | 27.3                 | SAND GRVL CLAY 28 SAND GRVL<br>30 SNDS 33                                                             |                  |               | 12/5/1998 0:00                   | 200                     |                  |                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Well          | [                 |            |              | Depth to    | Static water |              | Casing length |                                                          |                      | Water |                 | Casing Diameter | Yield      | Depth water |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|------------|--------------|-------------|--------------|--------------|---------------|----------------------------------------------------------|----------------------|-------|-----------------|-----------------|------------|-------------|
| Project Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number        | Lat.              | Long.      | Well Town    | Bedrock (m) | level (m)    | (m)          | (m)           | Lithology                                                | Water Use            | Туре  | Date Drilled    | (mm)            | (L/min)    | found (m)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               |                                                          |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19025         | 48.6              | -58.53306  | COLD BROOK   |             |              | 33           | 25.1          | SAND GRVL CLAY 20 CLAY 24<br>SAND GRVL 33                | MUNICIPAL            |       | 3/7/1999 0:00   | 200             | 1793       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13023         | 40.0              | -30.33300  | COLD BROOK   |             |              | 55           | 23.1          | SAND GIVE 33                                             | WONICH AL            |       | 3/1/1999 0.00   | 200             | 1735       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | SAND GRVL CLAY 14 CLAY 18                                |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19027         | 48.6              | -58.53306  | COLD BROOK   |             |              | 32.1         | 25.3          | SAND GRVE CLAT 14 CLAT 18<br>SAND GRVL CLAY              | MUNICIPAL            |       | 2/17/1999 0:00  | 200             | 1788       |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24165         | 48.584667         | -58.543056 | COLD BROOK   |             | 24.3         | 32           | 32            |                                                          | DOMESTIC             | FRESH | 12/4/2010 0:00  | 152             | 100        | 32          |
| Ohenham IIIa DAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00004         | 40.55             | 50 50000   |              |             |              | 04.7         | 40.0          | 9.14 BRWN SAND, CLAY &                                   | DOMENTIO             | FREQU | 44/4/0000 0.00  | 450             | 00.0       |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20964         | 48.55             | -58.58306  | STEPHENVILLE | 9.1         |              | 31.7         | 19.2          | GRAVEL; 31.7 BRWN MUD STONE                              | DOMESTIC             | FRESH | 11/4/2003 0:00  | 150             | 22.8       |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20223         | 48.6              | -58.53306  | COLD BROOK   |             |              | 31.7         | 30            | UNCONSOLIDATED                                           | DOMESTIC             |       | 8/21/2001 0:00  | 150             | 50         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | BRWN BLDR, SAND & GRVL 5.2;                              |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21448         | 48.6              | -58.53306  | COLD BROOK   |             |              | 31.7         | 31.7          | BRWN SAND 8.5; 31.7<br>GREY/BRWN GRVL                    | DOMESTIC             | FRESH | 4/14/2004 0:00  | 155             | 43         | 31.7        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | SILT SAND GREY 3 BLDR GREY 6                             |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20218         | 48.6              | -58.53306  | COLD BROOK   |             |              | 31.3         | 31.3          | GRVL BLDR GREY 17.6                                      | DOMESTIC             |       | 7/27/2001 0:00  | 150             | 50         |             |
| On the second seco | 0044-         | 40 50760          | 50 50 405  |              | 10.5        | -            |              | 47.0          | 5 BRWN SAND, GRVL, BLDR 16.5                             | DOMENTIC             | FREQU | 44/5/0000 0 00  | 450             | 10         |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22415<br>8929 | 48.56789<br>48.55 | -58.52439  | STEPHENVILLE | 16.5        | 7            | 30.6<br>30.5 | 17.6<br>26.2  | GREY CLAY; 30.6 GREY SNDS                                | DOMESTIC<br>DOMESTIC | FRESH | 11/5/2006 0:00  | 150             | 16<br>68.2 |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6929          | 40.55             | -58.58306  | STEPHENVILLE |             |              | 30.5         | 20.2          | GRVL 024 LMSN 030<br>5 BRWN BLDR & GRVL; 12.1            | DOMESTIC             |       | 11/23/1978 0:00 |                 | 00.2       |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22566         | 48.56714          | -58.5225   | NOELS POND   | 12.1        | 12           | 30.5         | 13.4          | GREY CLAY; 30.5 GREY SNDS                                | DOMESTIC             | FRESH | 11/10/2006 0:00 | 150             | 20         |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24109         | 48.56925          | -58.509639 | NOELS POND   | 17.3        | 3            | 30.4         | 17.3          |                                                          | DOMESTIC             | FRESH | 10/30/2009 0:00 | 152             | 18         |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               |                                                          |                      |       |                 |                 |            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               |                                                          |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12656         | 48.55             | -58.58306  | STEPHENVILLE |             | 2            | 30           | 6.1           | GREY CLAY 003 RED CONG 030                               | INDUSTRIAL           | FRESH | 7/28/1987 0:00  |                 | 100        | 12          |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8924          | 48.6              | -58.53306  | COLD BROOK   |             |              | 29.9         | 12.2          |                                                          |                      |       | 5/15/1974 0:00  |                 | 68.2       |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13236         | 48.56472          | -58.52     | NOELS POND   |             |              | 28.9         | 28.9          | SAND 028                                                 | DOMESTIC             | FRESH | 12/20/1987 0:00 |                 | 23         | 29          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | GRVL BLDR BRWN 15.2 SILT                                 |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20217         | 48.6              | -58.53306  | COLD BROOK   | 29.5        |              | 28.9         | 28.9          | SAND GRVL BRWN 28.9<br>GRVL BLDR BRWN 15.3 SAND          | DOMESTIC             |       | 9/14/2001 0:00  | 150             | 20         |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20233         | 48.6              | -58.53306  | COLD BROOK   |             |              | 28.9         | 28.9          | BRWN 27.4 GRVL BRWN 28.9                                 | DOMESTIC             |       | 8/10/2001 0:00  | 150             | 50         |             |
| o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 10.0              |            |              |             |              |              |               | GRVL BLDR BRWN 10 SAND                                   | DOMESTIC             |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20232         | 48.6              | -58.53306  | COLD BROOK   |             |              | 27.4         | 27.4          | GRVL SILT BRWN 27.4                                      | DOMESTIC             |       | 8/12/2001 0:00  | 150             | 45         |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10587         | 48.55306          | -58.48194  | KIPPENS      |             | 12           | 26.4         | 23.1          | RED GRVL 007 GREY CLAY 026                               | DOMESTIC             | FRESH | 7/7/1984 0:00   |                 | 7          | 23          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10007         | 40.00000          | 00.40104   | INIT ENO     |             | 12           | 20.4         | 20.1          |                                                          | DOMEOTIO             | TREON | 1111304 0.00    |                 | ,          | 20          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               |                                                          |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19035         | 48.6              | -58.53306  | COLD BROOK   | 24          |              | 26           | 15.3          | SAND GRVL CLAY 24 SNDS 26                                | MUNICIPAL            |       | 3/26/1999 0:00  | 200             | 910        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               |                                                          |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8928          | 48.55             | -58.58306  | STEPHENVILLE |             |              | 25.6         |               | GRVL 018 ROCK 026                                        |                      |       | 9/15/1976 0:00  |                 | 90.9       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | 6M ;BRWN AND GREY<br>CONSOLIDATED ROCK 6M TO             |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23793         | 48.56661          | -58.52111  | NOELS POND   | 8.2         | 5            | 25.6         | 8.2           | 25.6M                                                    | DOMESTIC             | FRESH | 9/22/2009 0:00  | 15              | 38         |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26117         | 48.567528         | -58.523306 | NOELS POND   | 15          | 12           | 25.6         | 15.2          |                                                          | DOMESTIC             | FRESH | 8/20/2013 0:00  | 152             | 80         |             |
| Stophopyillo BAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14836         | 49 56604          | E9 E1604   |              |             |              | 25           | 25            | RED SAND 025                                             | DOMESTIC             | FRESH | 7/27/1989 0:00  |                 | 30         | 25          |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14030         | 48.56694          | -58.51694  | NOELS POND   |             |              | 20           | 20            | BRWN CLAY, BLDR 6; BRWN                                  | DOMESTIC             | PRESH | 1/2//1969 0:00  |                 | 30         | 20          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | BLDR, GRVL 12; MULTI-SAND &                              |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22995         | 48.56758          | -58.51258  | NOELS POND   |             |              | 25           | 25            | GRVL 22; MULTI GRVL 25                                   | DOMESTIC             | FRESH | 11/22/2007 0:00 | 150             | 113        |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20720         | 48.56694          | -58.51694  | NOELS POND   |             | 12           | 24.5         | 24.5          | GRVL MULTI 24.5                                          | DOMESTIC             | FRESH | 6/7/2003 0:00   | 150             | 182        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              | İ           |              |              | -             |                                                          |                      |       |                 |                 |            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |            |              |             |              |              |               | SAND GRVL CLAY 17 SAND GRVL                              |                      |       |                 |                 |            |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19026         | 48.6              | -58.53306  | COLD BROOK   | 21          |              | 24.3         | 15.9          | 21 SNDS 24                                               | MUNICIPAL            |       | 3/21/1999 0:00  | 200             | 1240       |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22080         | 48.56761          | -58.52353  | NOELS POND   | 16.7        |              | 24.3         | 17            | GREY TILL & BLDR 13.4 ;GREY<br>CLAY 16.7 ;GREY SNDS CONG | DOMESTIC             | FRESH | 7/27/2005 0:00  | 150             | 40         |             |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22080         | 48.56761          | -58.52353  | COLD BROOK   | 10.7        | 12.4         | 24.3         | 24.3          | ULAT 10.7, GRET SINDS CONG                               | DOMESTIC             | FRESH | 12/8/2010 0:00  | 150             | 40<br>80   | 24.3        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24100         | 10.000020         | 00.00LLLL  | SOLD BROOM   |             |              | 24.0         | 21.0          | GRVL BLDR BRWN SAND GRVL                                 | 2020110              |       | 12.0,2010 0.00  | .02             |            | 2.00        |
| Stephenville RAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20231         | 48.6              | -58.53306  | COLD BROOK   |             |              | 24.3         | 24.3          | BRWN 24.3                                                | DOMESTIC             |       | 8/11/2001 0:00  | 150             | 100        |             |

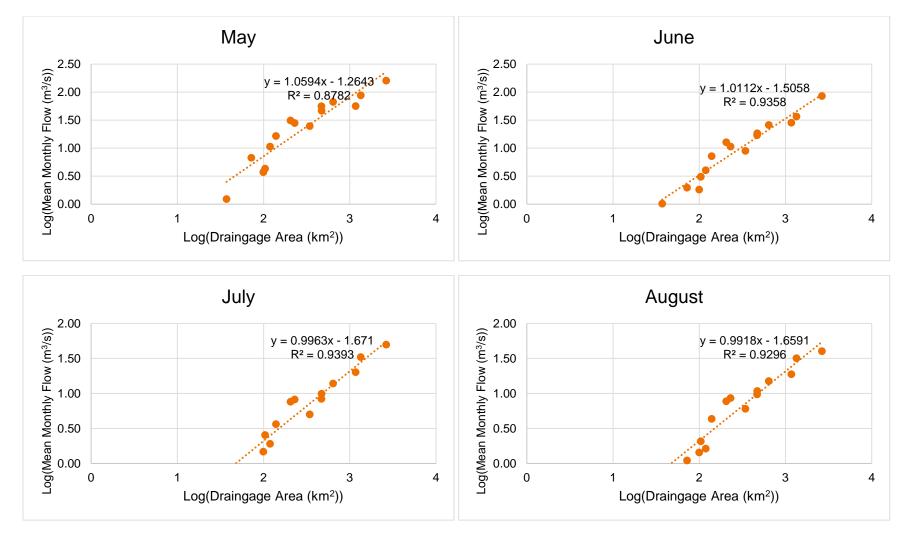
| Project Location | Well<br>Number | Lat.      | Long.      | Well Town    | Depth to<br>Bedrock (m) | Static water<br>level (m) | Well Depth<br>(m) | Casing length<br>(m) | Lithology                                       | Water Use  | Water<br>Type | Date Drilled    | Casing Diameter<br>(mm) | Yield<br>(L/min) | Depth water<br>found (m) |
|------------------|----------------|-----------|------------|--------------|-------------------------|---------------------------|-------------------|----------------------|-------------------------------------------------|------------|---------------|-----------------|-------------------------|------------------|--------------------------|
| Stephenville RAA | 20222          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 24.3              | 24.3                 | GRVL BLDR BRWN 18 SAND<br>GRVL BRWN 24.3        | DOMESTIC   |               | 8/24/2001 0:00  | 150                     | 130              |                          |
| Stephenville RAA | 21095          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 24.3              | 24.3                 | 12 BRWN GRVL; 21.3 BRWN<br>SAND; 24.3 BRWN GRVL | DOMESTIC   | FRESH         | 12/20/2003 0:00 | 150                     | 22.8             | 24.3                     |
|                  | 21095          | 40.0      | -36.33300  | COLD BROOK   |                         |                           | 24.3              | 24.3                 | BRWN GRVL & SAND 6.0 ;RED                       | DOIVIESTIC | FRESH         | 12/20/2003 0.00 | 150                     | 22.0             | 24.3                     |
| Stephenville RAA | 22083          | 48.56372  | -58.60047  | STEPHENVILLE | 7                       |                           | 24                | 12                   | SNDS CONG 24.3                                  | DOMESTIC   | FRESH         | 7/18/2005 0:00  | 150                     | 45               |                          |
|                  |                |           |            |              |                         |                           |                   |                      |                                                 |            |               |                 |                         |                  |                          |
|                  |                |           |            |              |                         |                           |                   |                      | SAND GRVL 4 SAND 5 SAND                         |            |               |                 |                         |                  |                          |
| Stephenville RAA | 19028          | 48.55     | -58.58306  | STEPHENVILLE |                         |                           | 24                | 17                   | GRVL CLAY 24                                    | MUNICIPAL  |               | 2/20/1998 0:00  | 200                     | 318              |                          |
| Stephenville RAA | 16705          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 22.9              | 22.9                 | RED GRVL                                        | DOMESTIC   | FRESH         | 11/20/1992 0:00 |                         | 9.1              | 22.9                     |
| Stephenville RAA | 16735          | 48.537472 | -58.503746 | GULL POND    |                         |                           | 22.9              | 12.2                 | RED SHLE                                        | DOMESTIC   | FRESH         | 9/1/1992 0:00   |                         | 9                | 19.8                     |
| Stephenville RAA | 17796          | 48.55     | -58.58306  | STEPHENVILLE |                         |                           | 21.3              | 12.2                 | GRVL 12 SNDS 21                                 | DOMESTIC   | FRESH         | 8/28/1995 0:00  |                         | 9                | 18.3                     |
| Stephenville RAA | 17797          | 48.55     | -58.58306  | STEPHENVILLE |                         |                           | 21.3              | 12.2                 | GRVL 12 SNDS 21                                 | DOMESTIC   | FRESH         | 8/29/1995 0:00  |                         | 9                | 18.3                     |
| Stephenville RAA | 17024          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 21.3              |                      | RED GRVL 21                                     | DOMESTIC   | FRESH         | 8/24/1993 0:00  |                         | 9.1              | 18.3                     |
| Stephenville RAA | 16217          | 48.56694  | -58.51694  | NOELS POND   |                         |                           | 21.3              | 21.3                 | GREY SAND/CLAY 021                              | DOMESTIC   | FRESH         | 5/9/1991 0:00   |                         | 4.5              | 18                       |
| Stephenville RAA | 21669          | 48.537472 | -58.503746 | GULL POND    |                         |                           | 21.3              | 21.3                 | GREY BLDR & GRVL 6; GREY<br>SAND & GRVL 21.3    | DOMESTIC   | FRESH         | 12/16/2004 0:00 | 150                     | 45               |                          |
| Stephenville RAA | 11874          | 48.56361  | -58.51694  | NOELS POND   |                         |                           | 21                | 21.3                 | SAND 021                                        | DOMESTIC   | FRESH         | 4/30/1985 0:00  |                         | 23               |                          |
|                  |                |           |            |              |                         |                           |                   |                      | BRWN SILT 3 GREY GRVL BLDR                      |            |               |                 |                         |                  |                          |
| Stephenville RAA | 19874          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 21                | 21                   | 23<br>BRWN GRVL 17 BRWN SAND 21                 | DOMESTIC   |               | 6/13/2001 0:00  | 150                     | 160              |                          |
| Stephenville RAA | 19873          | 48.6      | -58.53306  | COLD BROOK   | 20.7                    |                           | 20.7              | 21                   | BRWN SNDS 23                                    | DOMESTIC   |               | 6/13/2001 0:00  | 150                     | 31.8             |                          |
|                  |                |           |            |              |                         |                           |                   |                      |                                                 |            |               |                 |                         |                  |                          |
| Stephenville RAA | 19031          | 48.55     | -58.58306  | STEPHENVILLE | 14.6                    |                           | 20.7              | 8.7                  | BOG 4 SAND GRVL 15 SNDS 21                      | MUNICIPAL  |               | 12/19/1998 0:00 | 200                     | 1156             |                          |
| Stephenville RAA | 18930          | 48.6      | -58.53306  | COLD BROOK   | 0                       |                           | 20.1              | 20.1                 | SAND GRVL BLDR 20                               | DOMESTIC   |               | 10/25/1998 0:00 | 150                     | 37               |                          |
| Stephenville RAA | 14834          | 48.56694  | -58.51694  | NOELS POND   |                         | 2                         | 20                | 20                   | GREY SAND 020                                   | DOMESTIC   | FRESH         | 7/25/1989 0:00  |                         | 5                | 20                       |
| Stephenville RAA | 14835          | 48.56694  | -58.51694  | NOELS POND   |                         |                           | 20                | 20                   | GREY SAND 020                                   | DOMESTIC   | FRESH         | 7/26/1989 0:00  |                         | 16               |                          |
| Stephenville RAA | 13237          | 48.56306  | -58.51944  | NOELS POND   |                         |                           | 19.8              | 19.8                 | SAND 020                                        | DOMESTIC   | FRESH         | 12/21/1987 0:00 |                         | 14               | 20                       |
| Stephenville RAA | 13238          | 48.56361  | -58.51944  | NOELS POND   |                         |                           | 19.8              | 19.8                 | SAND 020                                        | DOMESTIC   | FRESH         | 12/22/1987 0:00 |                         | 9                | 20                       |
| Stephenville KAA | 13238          | 46.56361  | -58.51944  | NOELS POND   |                         |                           | 19.6              | 19.6                 | SAND 020                                        | DOMESTIC   | FRESH         | 12/22/1987 0:00 |                         | 9                | 20                       |
|                  |                |           |            |              |                         |                           |                   |                      |                                                 |            |               |                 |                         |                  |                          |
| Stephenville RAA | 24177          | 48.574472 | -58.545833 | COLDBROOK    | 14.3                    | 9.2                       | 19.5              | 15.8                 |                                                 | DOMESTIC   | FRESH         | 4/5/2011 0:00   | 152                     | 65               | 16.4                     |
| Stephenville RAA | 20579          | 48.6      | -58.53306  | COLD BROOK   | -                       |                           | 19.5              |                      | GRVL SAND GREY BRWN 19.5                        | DOMESTIC   |               | 12/14/2002 0:00 | 150                     | 45.5             |                          |
| Stephenville RAA | 12560          | 48.55944  | -58.51806  | NOELS POND   |                         | 5                         | 19.3              | 18.3                 | RED BRWN 007 RED GRVL 020                       | DOMESTIC   | FRESH         | 11/2/1986 0:00  | 100                     | 45               | 19                       |
|                  | 12000          | 40.00944  | -30.31000  |              |                         | 3                         | 18.0              | 10.3                 | NED BRWIN OUT RED GRVE 020                      | DOWEOTIC   | T NEOFI       | 11/2/1300 0.00  |                         | +0               | 19                       |
| Stephenville RAA | 13814          | 48.56694  | -58.51694  | NOELS POND   |                         | 10                        | 19.2              | 18.2                 | BRWN GRVL 020                                   | DOMESTIC   | FRESH         | 8/31/1988 0:00  |                         | 43               | 18                       |
| Stephenville RAA | 27768          | 48.586    | -58.537528 | COLD BROOK   |                         | 19.05                     | 19.05             | 19                   |                                                 | DOMESTIC   | FRESH         | 7/8/2015 0:00   | 6                       | 40               | 19.05                    |
| Stephenville RAA | 20225          | 48.6      | -58.53306  | COLD BROOK   |                         |                           | 19                | 19.5                 | UNCONSOLIDATED BRWN 19.5                        | DOMESTIC   |               | 8/19/2001 0:00  | 150                     | 54               |                          |
| Stephenville RAA | 8926           | 48.56694  | -58.51694  | NOELS POND   |                         | 12                        | 18.3              |                      | TPSL/GRVL/CLAY 018 ROCK 000                     |            |               |                 |                         |                  |                          |
| Stephenville RAA | 24212          | 48.591556 | -58.534833 | COLDBROOK    |                         | 12                        | 18.2              | 0                    |                                                 | DOMESTIC   | FRESH         | 10/17/2011 0:00 | 152                     | 80               | 18.2                     |
| Stephenville RAA | 24163          | 48.564528 | -58.513444 | NOELS POND   |                         | 3                         | 18.2              | 18.2                 |                                                 | DOMESTIC   | FRESH         | 11/5/2010 0:00  | 152                     | 30               | 18.2                     |
| Stephenville RAA | 24129          | 48.568111 | -58.512222 | NOELS POND   |                         | 10                        | 18.2              | 18.2                 |                                                 | DOMESTIC   | FRESH         | 7/13/2010 0:00  | 152                     | 182              | 18.2                     |
| Stephenville RAA | 29299          | 48.537733 | -58.503574 | STEPHENVILLE |                         | 5                         | 18.2              | 17.6                 |                                                 | DOMESTIC   | FRESH         | 11/13/2018 0:00 | 150                     | 40               | 18.2                     |
| Stephenville RAA | 13844          | 48.56694  | -58.51694  | NOELS POND   |                         | 5                         | 18.1              | 18.2                 | BRWN GRVL 020                                   | DOMESTIC   | FRESH         | 11/25/1988 0:00 |                         | 273              | 19                       |

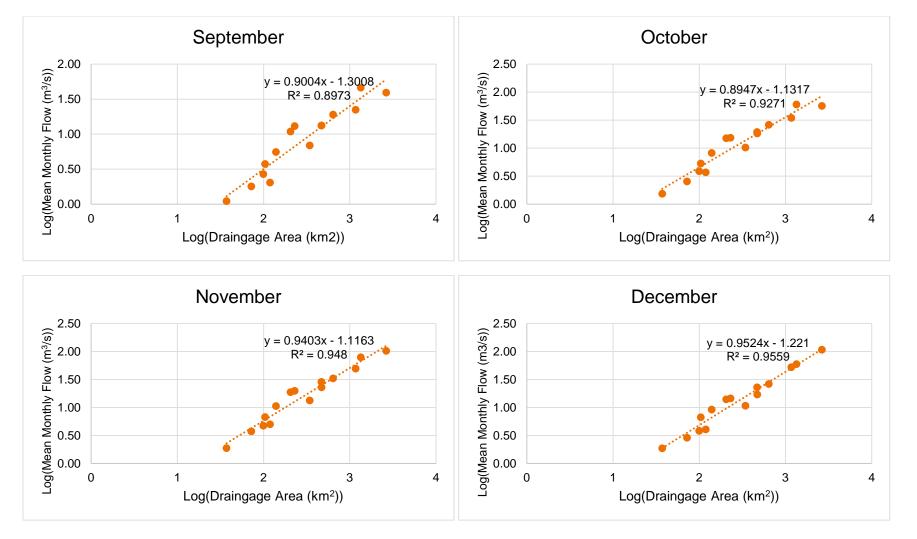
|                  | Well   |           |            |              | Depth to    | Static water | Well Depth | Casing length |                                               |           | Water |                 | Casing Diameter | Yield   | Depth water |
|------------------|--------|-----------|------------|--------------|-------------|--------------|------------|---------------|-----------------------------------------------|-----------|-------|-----------------|-----------------|---------|-------------|
| Project Location | Number | Lat.      | Long.      | Well Town    | Bedrock (m) | level (m)    | (m)        | (m)           | Lithology                                     | Water Use | Туре  | Date Drilled    | (mm)            | (L/min) | found (m)   |
| Stephenville RAA | 20202  | 48.537472 | -58.503746 | GULL POND    |             |              | 18         | 18            | GRVL BRWN 3 SAND BRWN 15<br>SAND GRVL BRWN 18 | DOMESTIC  |       | 10/22/2001 0:00 | 150             | 180     |             |
| Stephenville RAA | 11849  | 48.56444  | -58.51889  | NOELS POND   |             |              | 17         | 15.8          | RED SNDS 016                                  | DOMESTIC  | FRESH | 4/30/1985 0:00  |                 |         | 15          |
| Stephenville RAA | 19029  | 48.55     | -58.58306  | STEPHENVILLE | 16          |              | 17         | 10.8          | SAND GRVL 13 SAND GRVL CLAY<br>16 SNDS 17     | MUNICIPAL |       | 1/18/1999 0:00  | 200             | 1530    |             |
| Stephenville RAA | 19030  | 48.55     | -58.58306  | STEPHENVILLE | 15          |              | 17         | 13.1          | SAND GRVL 6 SAND GRVL CLAY<br>13 SNDS 17      | MUNICIPAL |       | 1/16/1999 0:00  | 200             | 1156    |             |
| Stephenville RAA | 24233  | 48.565944 | -58.513111 | NOELS POND   |             | 7.6          | 16.7       | 16.7          |                                               | DOMESTIC  | FRESH | 6/27/2012 0:00  | 152             | 90      | 16.7        |

|                  | Well   |           |            |              | Depth to    | Static water | Well Depth | Casing length |                                           |           | Water |                 | Casing Diameter | Yield   | Depth water |
|------------------|--------|-----------|------------|--------------|-------------|--------------|------------|---------------|-------------------------------------------|-----------|-------|-----------------|-----------------|---------|-------------|
| Project Location | Number | Lat.      | Long.      | Well Town    | Bedrock (m) | level (m)    | (m)        | (m)           | Lithology                                 | Water Use | Туре  | Date Drilled    | (mm)            | (L/min) | found (m)   |
| Stephenville RAA | 17052  | 48.56694  | -58.51694  | NOELS POND   |             |              | 16.7       | 16.7          | GREY SAND 17                              | DOMESTIC  | FRESH | 10/13/1993 0:00 |                 | 9.1     | 13.7        |
| Stephenville RAA | 20221  | 48.6      | -58.53306  | COLD BROOK   |             |              | 15.8       | 15.8          | GRVL SAND BRWN 15.8                       | DOMESTIC  |       | 8/23/2001 0:00  | 150             | 45      |             |
| Stephenville RAA | 8925   | 48.6      | -58.53306  | COLD BROOK   |             |              | 15.2       | 15.2          | OBDN 015 ROCK 000                         |           |       | 5/15/1974 0:00  |                 | 54.6    |             |
| Stephenville RAA | 19547  | 48.56694  | -58.51694  | NOELS POND   | 0           |              | 15.2       |               | BRWN GRVL BLDR CLAY 17                    | DOMESTIC  |       | 9/4/2000 0:00   | 150             | 45.5    |             |
| Stephenville RAA | 27760  | 48.568083 | -58.512083 | NOELS POND   |             | 15.2         | 15.2       | 15.2          |                                           | DOMESTIC  | FRESH | 6/26/2015 0:00  | 6               | 80      | 15.2        |
| Stephenville RAA | 22567  | 48.56908  | -58.51022  | NOELS POND   | 16.4        | 10           | 15.2       | 15.2          | BRWN GRVL & SAND; 16.4 BRWN<br>TILL       | DOMESTIC  | FRESH | 11/10/2006 0:00 | 150             | 90      |             |
| Stephenville RAA | 10039  | 48.54694  | -58.64556  | KIPPENS      |             |              | 14.9       | 13.3          | 015                                       | DOMESTIC  | FRESH | 6/25/1980 0:00  |                 | 14      | 13          |
| Stephenville RAA | 28123  | 48.566222 | -58.513083 | NOELS POND   |             |              | 14.9       | 14.9          |                                           | DOMESTIC  | FRESH | 9/16/2015 0:00  | 152             | 40      | 14.9        |
| Stephenville RAA | 28557  | 48.58825  | -58.537667 | COLDBROOK    | 11.5        |              | 13.4       | 11.8          |                                           | DOMESTIC  | FRESH | 7/30/2017 0:00  | 150             | 80      | 12.2        |
| Stephenville RAA | 20258  | 48.6      | -58.53306  | COLD BROOK   |             |              | 13.1       | 13.1          | GRVL GREY 13.1                            | DOMESTIC  |       | 9/18/2002 0:00  | 150             | 300     |             |
| Stephenville RAA | 28678  | 48.5695   | -58.508944 | NOELS POND   |             | 6            | 13         | 13            |                                           | DOMESTIC  | FRESH | 11/15/2017 0:00 | 150             | 40      | 13.4        |
| Stephenville RAA | 25517  | 48.588278 | -58.536667 | COLDBROOK    | 19.5        | 3            | 12.8       | 13.4          |                                           | DOMESTIC  | FRESH | 9/13/2012 0:00  | 152             | 80      |             |
| Stephenville RAA | 26900  | 48.563194 | -58.515944 | NOELS POND   |             | 5            | 12.4       | 12.4          |                                           | DOMESTIC  | FRESH | 8/25/2014 0:00  | 152             | 240     | 12.4        |
| Stephenville RAA | 20257  | 48.6      | -58.53306  | COLD BROOK   |             |              | 12.1       | 12            | GRVL SAND GREY 12.1                       | DOMESTIC  |       | 9/18/2001 0:00  | 150             | 150     |             |
| Stephenville RAA | 21671  | 48.537472 | -58.503746 | GULL POND    |             |              | 12.1       | 12.1          | BRWN GRVL & SAND 12.1                     | DOMESTIC  | FRESH | 12/3/2004 0:00  | 150             | 30      |             |
| Stephenville RAA | 29511  | 48.564177 | -58.514206 | NOELS POND   |             | 8            | 12         | 12            |                                           | DOMESTIC  | FRESH | 8/23/2019 0:00  | 150             | 80      | 12.4        |
| Stephenville RAA | 22095  | 48.55     | -58.58306  | STEPHENVILLE |             |              | 8.5        | 5.4           | GREY GRVL & SAND                          | DOMESTIC  |       | 4/12/2005 0:00  | 150             |         |             |
| Stephenville RAA | 15569  | 48.55     | -58.58306  | STEPHENVILLE |             | 3            | 8.2        | 8.2           | GREY GRVL 008 (S 02.1 03)                 |           | FRESH | 10/26/1990 0:00 |                 | 168     | 3           |
| Stephenville RAA | 15568  | 48.54472  | -58.58556  | STEPHENVILLE |             | 3            | 7.6        | 7.6           | GREY GRVL 008 (S 02.1 03)                 |           | FRESH | 10/24/1990 0:00 |                 | 141     | 3           |
| Stephenville RAA | 29653  | 48.565444 | -58.513611 | Noel's Pond  | 0           |              | 4.63296    | 4.63296       |                                           | DOMESTIC  | FRESH | 11/26/2019 0:00 | 150             | 454.609 | 4.63296     |
| Stephenville RAA | 19559  | 48.6      | -58.53306  | COLD BROOK   |             | 17           |            | 26.8          | BRWN GRVL 18 BRWN SAND<br>SILT 26 GRVL 27 | DOMESTIC  | FRESH | 6/12/2000 0:00  |                 | 90      | 26.5        |
| Stephenville RAA | 10337  | 48.55944  | -58.58333  | STEPHENVILLE |             |              |            |               |                                           | DOMESTIC  | FRESH |                 |                 |         |             |

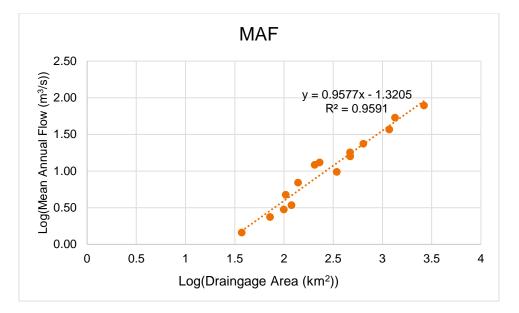

#### Summary:

|                           |        | Port au |              |
|---------------------------|--------|---------|--------------|
|                           | Codroy | Port    | Stephenville |
|                           |        | RAA/    |              |
|                           | RAA    | LAA     | RAA          |
| Number of Wells           |        |         |              |
| Total                     | 203    | 83 / 4  | 115          |
| Bedrock                   | 158    | 49 / 4  | 42           |
| Overburden                | 27     | 6/0     | 66           |
| Unknown                   | 18     | 28 / 0  | 7            |
| Median Depth (m)          | 32     | 44 / 34 | 24           |
| Static Water Level (mbgs) | 6      | 5.5 / 8 | 9            |
| Median Well Yield (L/min) | 45     | 25 / 5  | 48           |
|                           |        |         |              |


# Appendix C


## **Regional Regression Relationships**

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023




### Appendix C – Regional Regression Equations

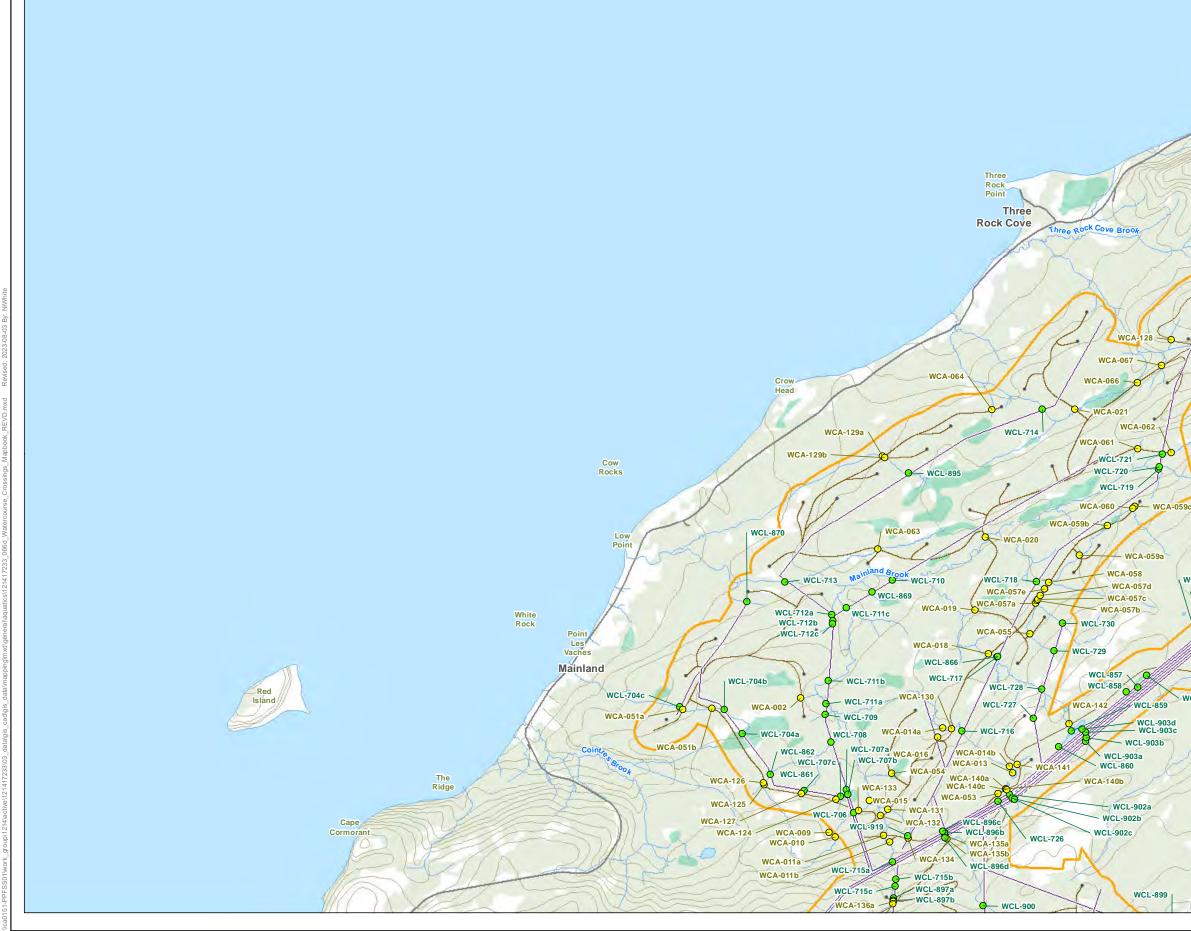




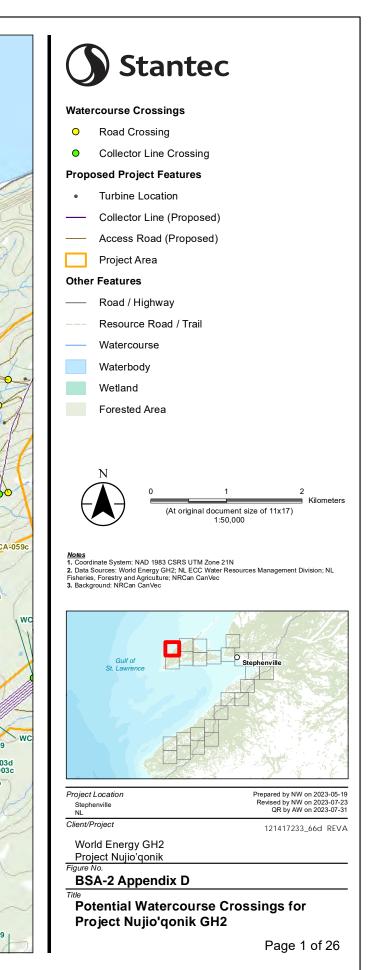
 $\bigcirc$ 

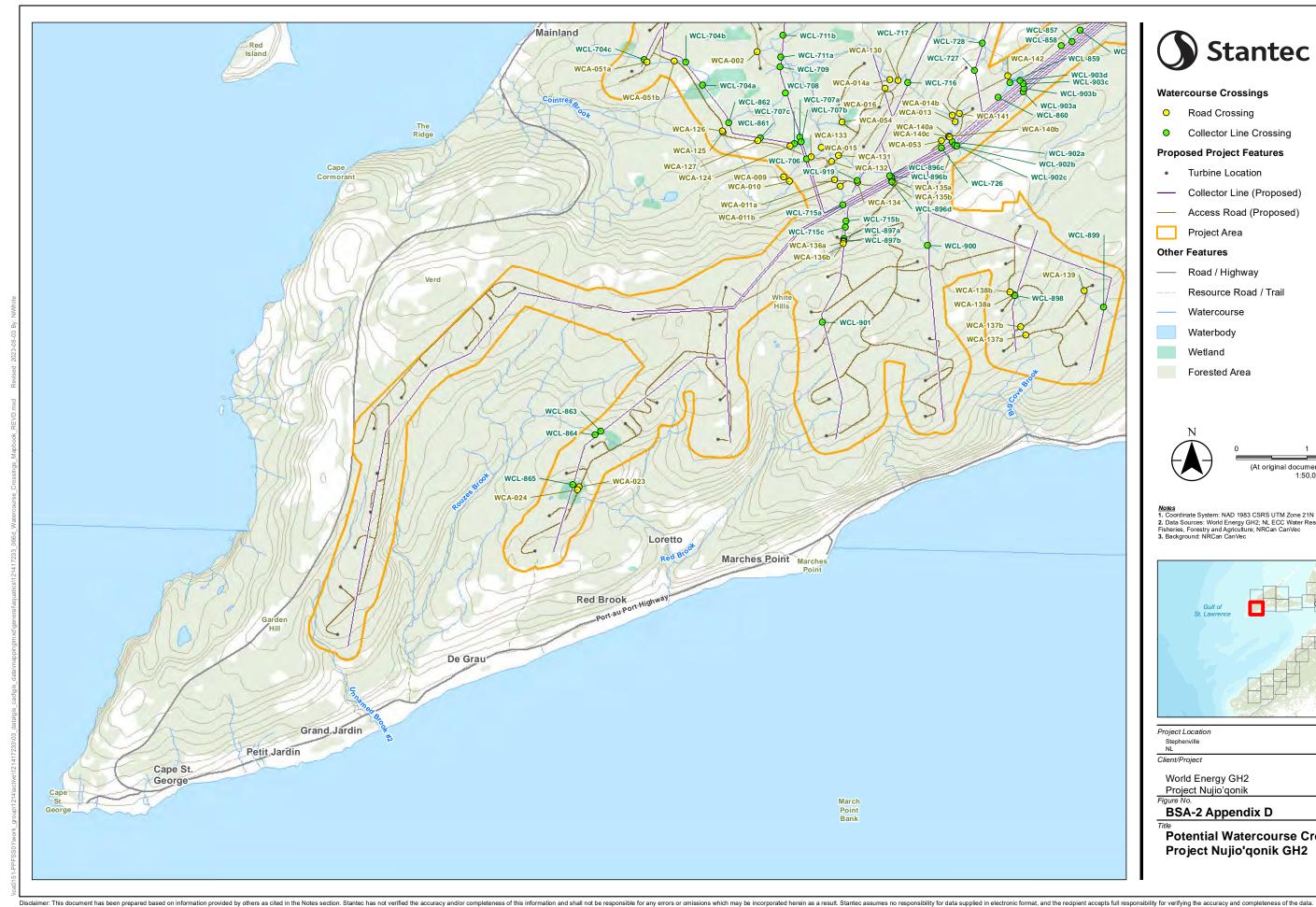


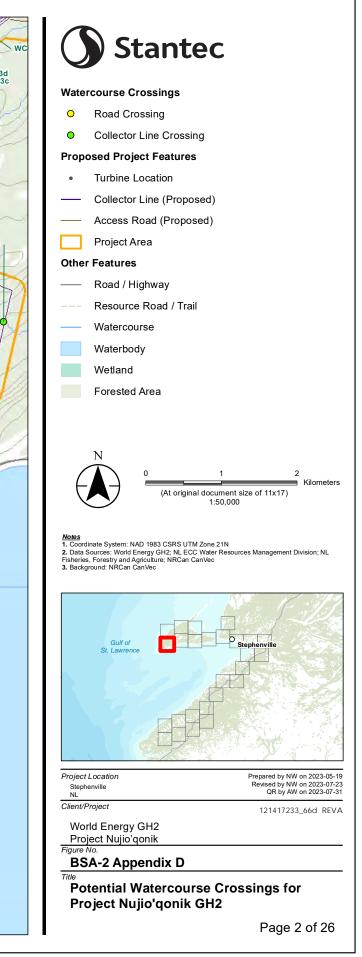


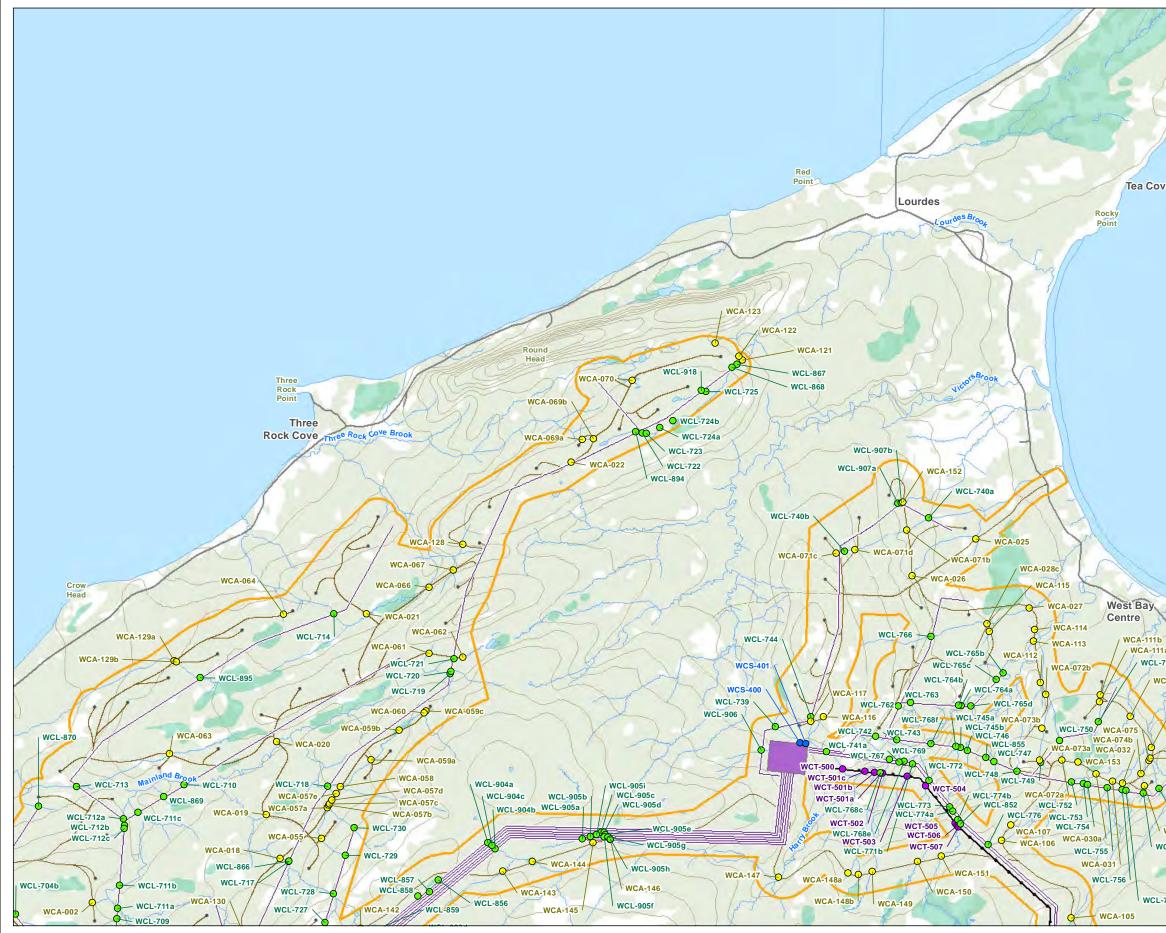

#### Table C.1 – Regional Regression Data

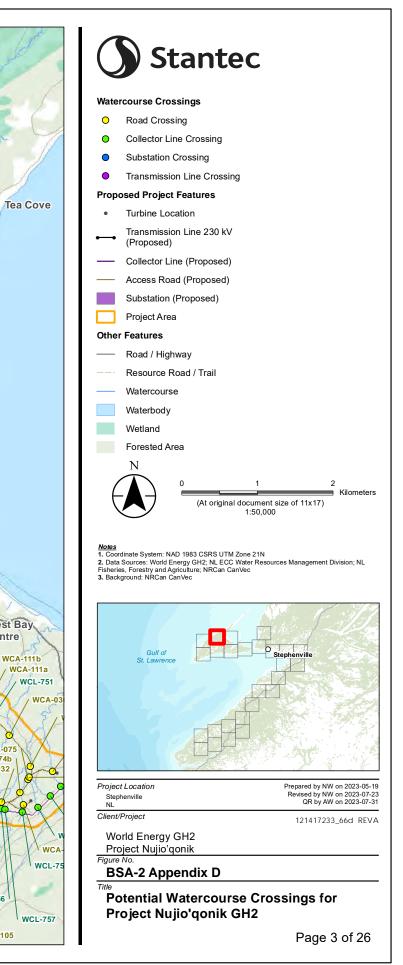
| Station<br>ID | Station Name                              | DA (km²) | Regulation | Years     | Number of<br>Years | Jan   | Feb   | Mar   | Apr    | Мау    | Jun   | Jul   | Aug   | Sep   | Oct   | Nov    | Dec    | MAF   |
|---------------|-------------------------------------------|----------|------------|-----------|--------------------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|--------|--------|-------|
| 02YJ001       | HARRYS RIVER BELOW HIGHWAY BRIDGE         | 640      | NATURAL    | 1968-2020 | 53                 | 18.58 | 15.68 | 16.96 | 39.45  | 67.01  | 25.91 | 13.84 | 14.98 | 19.02 | 26.12 | 32.97  | 26.26  | 26.40 |
| 02YJ003       | PINCHGUT BROOK AT OUTLET OF PINCHGUT LAKE | 119      | NATURAL    | 1986-1997 | 12                 | 3.21  | 2.60  | 2.22  | 6.94   | 10.67  | 4.02  | 1.91  | 1.63  | 2.04  | 3.69  | 4.99   | 4.05   | 4.00  |
| 02YK002       | LEWASEE BROOK AT LITTLE GRAND LAKE        | 470      | NATURAL    | 1952-2021 | 66                 | 12.09 | 8.92  | 9.75  | 27.40  | 46.47  | 18.46 | 9.89  | 10.86 | 13.32 | 18.30 | 22.92  | 17.04  | 17.95 |
| 02YN002       | LLYODS RIVER BELOW KING GEORGE IV LAKE    | 469      | NATURAL    | 1981-2021 | 41                 | 15.22 | 12.49 | 12.64 | 36.57  | 56.14  | 16.99 | 8.35  | 9.72  | 13.23 | 19.46 | 28.55  | 22.87  | 21.02 |
| 02ZB001       | ISLE AUX MORTS RIVER BELOW HIGHWAY BRIDGE | 205      | NATURAL    | 1962-2019 | 58                 | 7.58  | 6.78  | 8.29  | 23.50  | 31.28  | 12.78 | 7.62  | 7.75  | 10.92 | 15.03 | 18.83  | 13.96  | 13.69 |
| 02ZC002       | GRANDY BROOK BELOW TOP POND BROOK         | 230      | NATURAL    | 1982-2020 | 39                 | 10.17 | 8.60  | 9.30  | 26.30  | 28.14  | 10.67 | 8.22  | 8.59  | 13.07 | 15.32 | 19.83  | 14.57  | 14.40 |
| 02ZD002       | GREY RIVER NEAR GREY RIVER                | 1340     | NATURAL    | 1969-2019 | 48                 | 45.51 | 46.18 | 48.54 | 123.93 | 87.55  | 36.82 | 33.14 | 31.80 | 46.05 | 60.31 | 78.83  | 59.25  | 58.16 |
| 02ZE001       | SALMON RIVER AT LONG POND                 | 2640     | NATURAL    | 1944-1965 | 22                 | 98.84 | 82.00 | 81.85 | 123.72 | 160.37 | 85.14 | 49.76 | 40.24 | 39.12 | 56.82 | 102.46 | 106.98 | 85.61 |
| 02ZE004       | CONNE RIVER AT OUTLET OF CONNE RIVER POND | 99.5     | NATURAL    | 1989-2021 | 33                 | 2.54  | 2.86  | 3.37  | 7.57   | 3.72   | 1.82  | 1.48  | 1.44  | 2.69  | 3.88  | 4.72   | 3.83   | 3.33  |
| 02ZF001       | BAY DU NORD RIVER AT BIG FALLS            | 1170     | NATURAL    | 1950-2021 | 72                 | 43.47 | 41.66 | 42.11 | 68.67  | 56.21  | 28.39 | 20.14 | 18.83 | 22.34 | 34.60 | 49.33  | 52.49  | 39.85 |
| 02ZK004       | LITTLE SALMONIER RIVER NEAR NORTH HARBOUR | 104      | NATURAL    | 1983-2021 | 39                 | 6.19  | 6.09  | 6.91  | 8.28   | 4.31   | 3.08  | 2.55  | 2.08  | 3.74  | 5.30  | 6.74   | 6.70   | 5.17  |
| 02ZA001       | LITTLE BARACHOIS BROOK NEAR ST. GEORGE'S  | 343      | NATURAL    | 1978-1997 | 20                 | 8.56  | 6.44  | 8.58  | 23.30  | 24.80  | 8.92  | 5.03  | 6.04  | 6.89  | 10.29 | 13.36  | 10.72  | 11.08 |
| 02ZA002       | HIGHLANDS RIVER AT TRANS CANADA HIGHWAY   | 72       | NATURAL    | 1981-2020 | 39                 | 2.14  | 1.76  | 1.87  | 5.88   | 6.73   | 1.97  | 1.00  | 1.11  | 1.80  | 2.54  | 3.76   | 2.88   | 2.79  |
| 02ZA003       | LITTLE CODROY RIVER NEAR DOYLES           | 139      | NATURAL    | 1982-1997 | 16                 | 6.14  | 4.09  | 4.31  | 14.61  | 16.46  | 7.18  | 3.64  | 4.35  | 5.56  | 8.21  | 10.58  | 9.16   | 7.86  |
| 02ZK003       | LITTLE BARACHOIS RIVER NEAR PLACENTIA     | 37.2     | NATURAL    | 1983-2019 | 37                 | 1.86  | 1.90  | 2.11  | 2.34   | 1.23   | 1.02  | 0.88  | 0.78  | 1.11  | 1.53  | 1.88   | 1.86   | 1.54  |

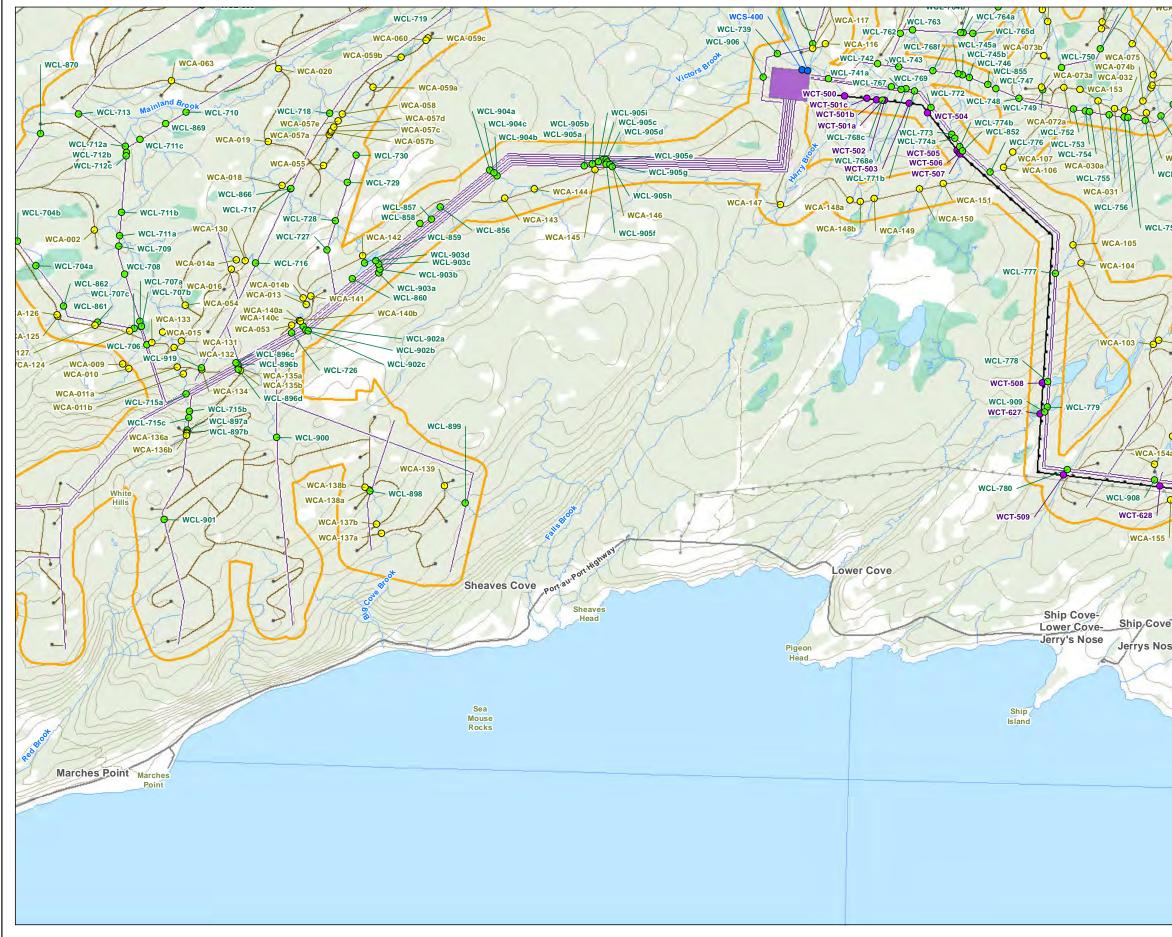

# **Appendix D**

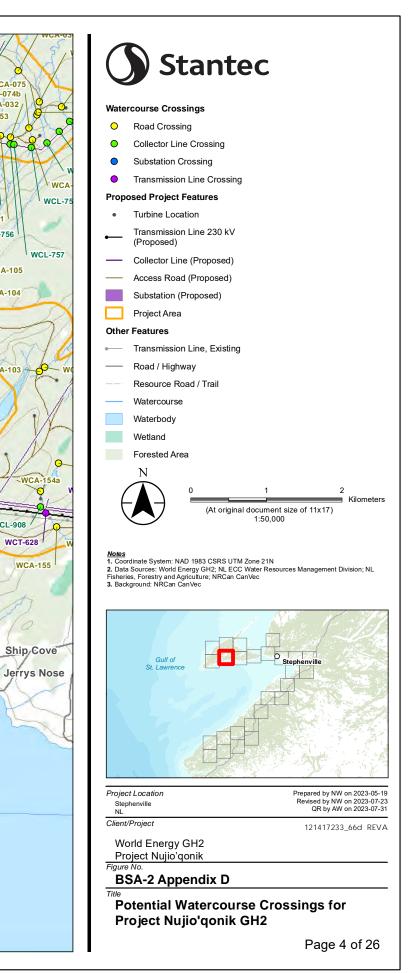

Watercourse Crossing Mapbook

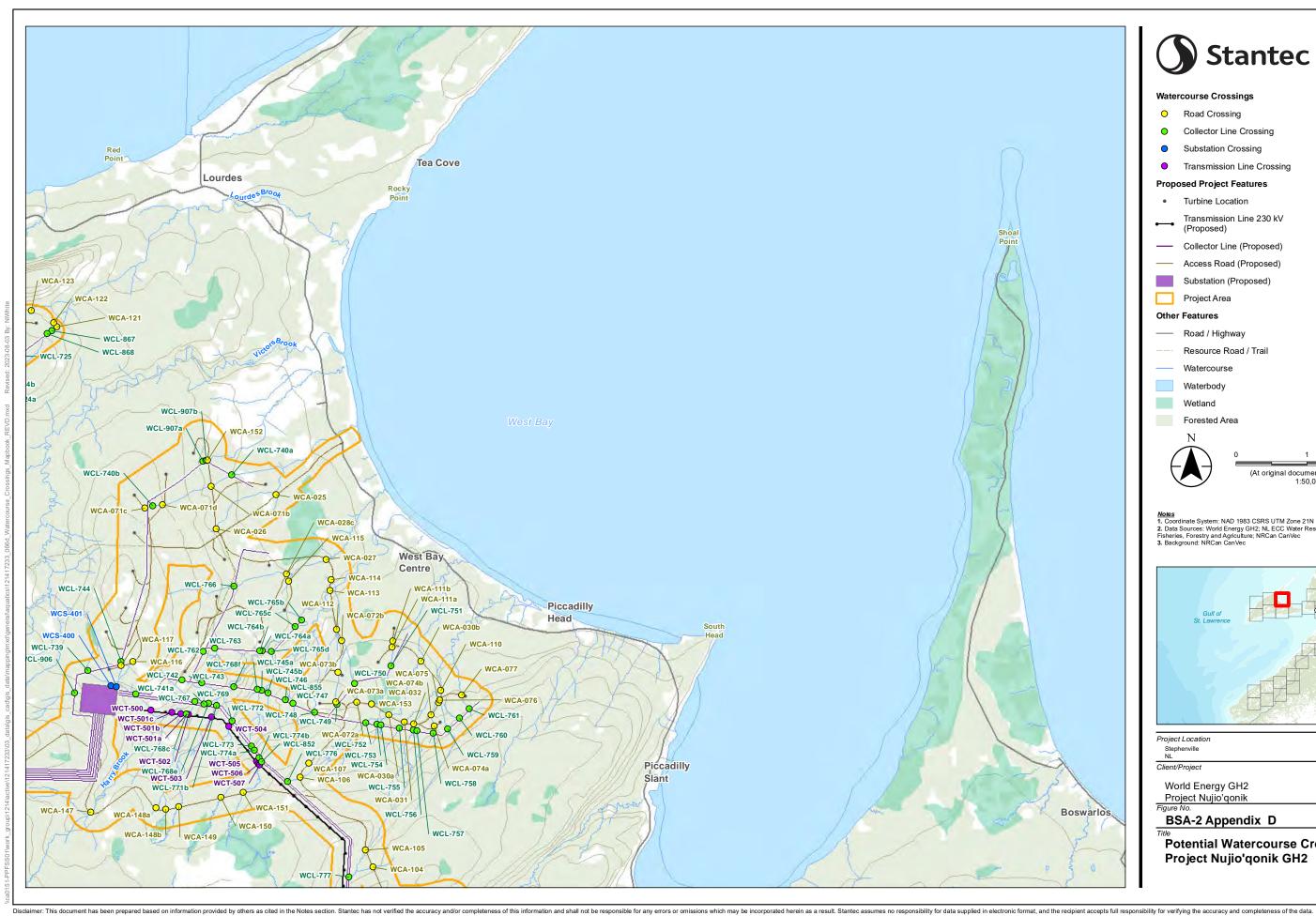

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023

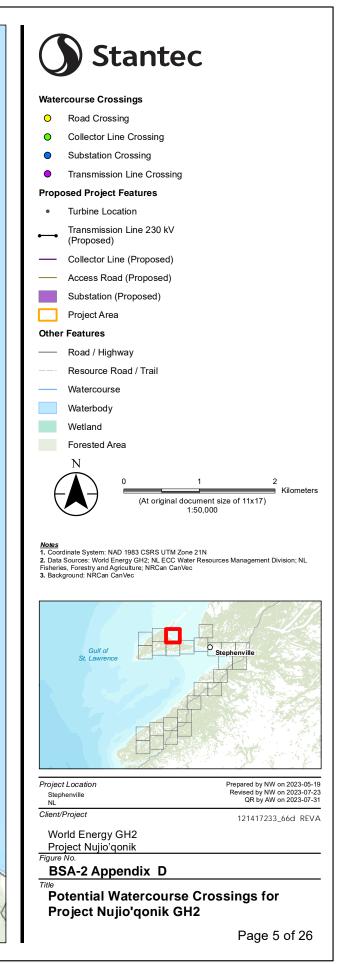


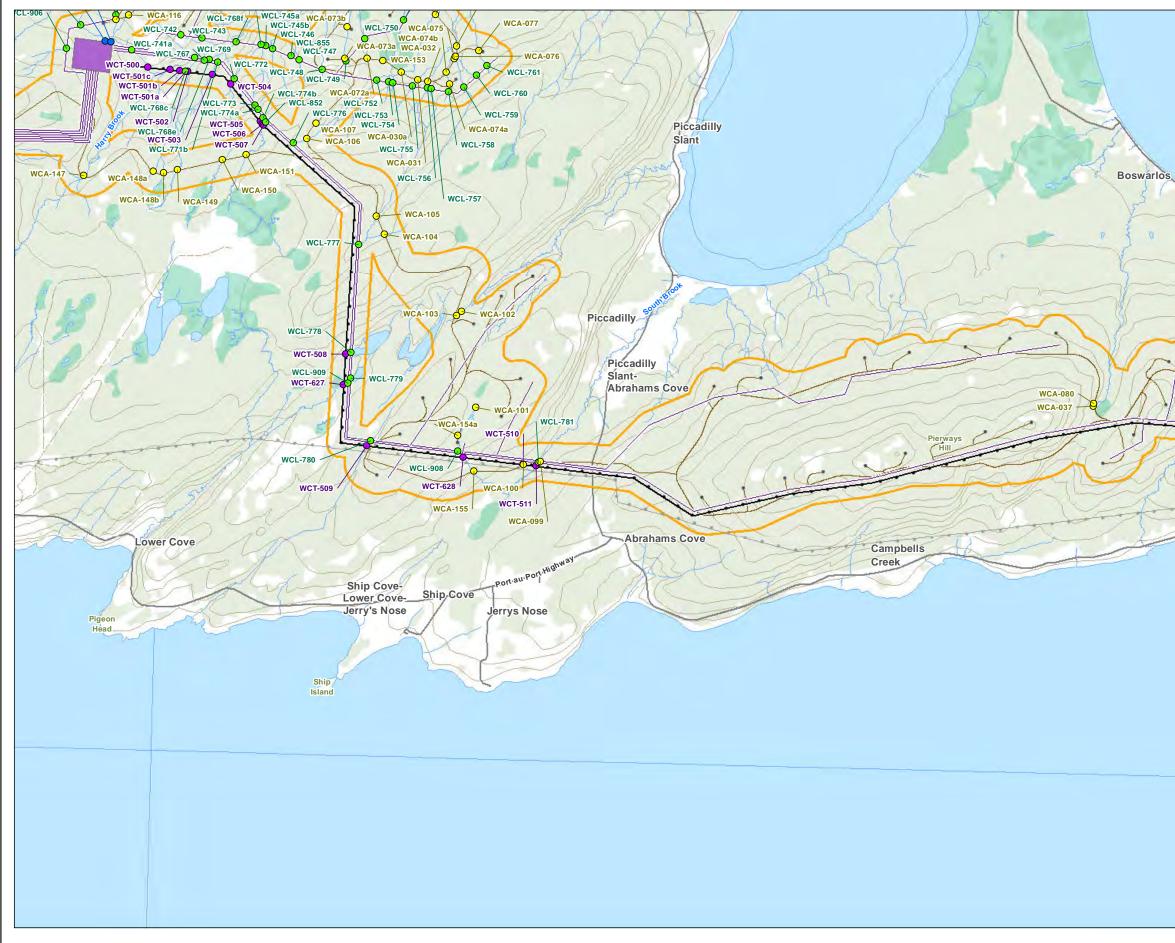


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and/or completeness of the data.

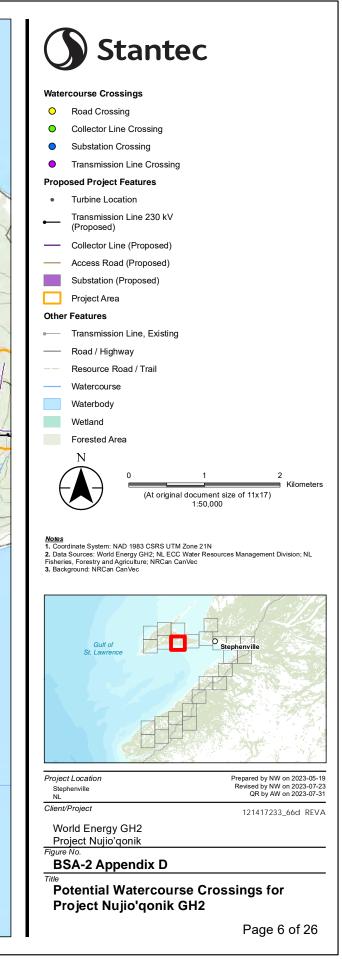


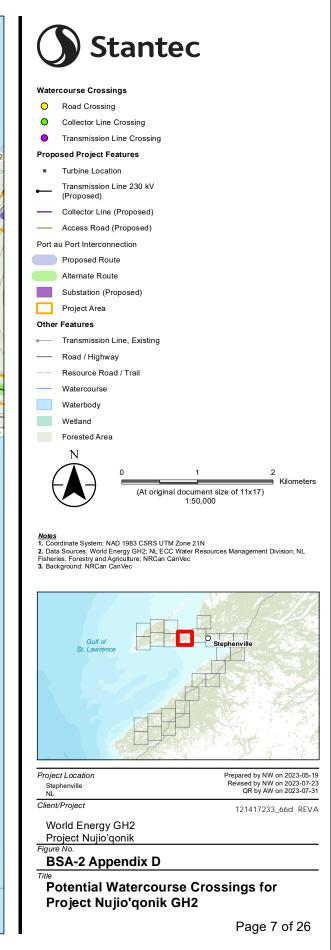



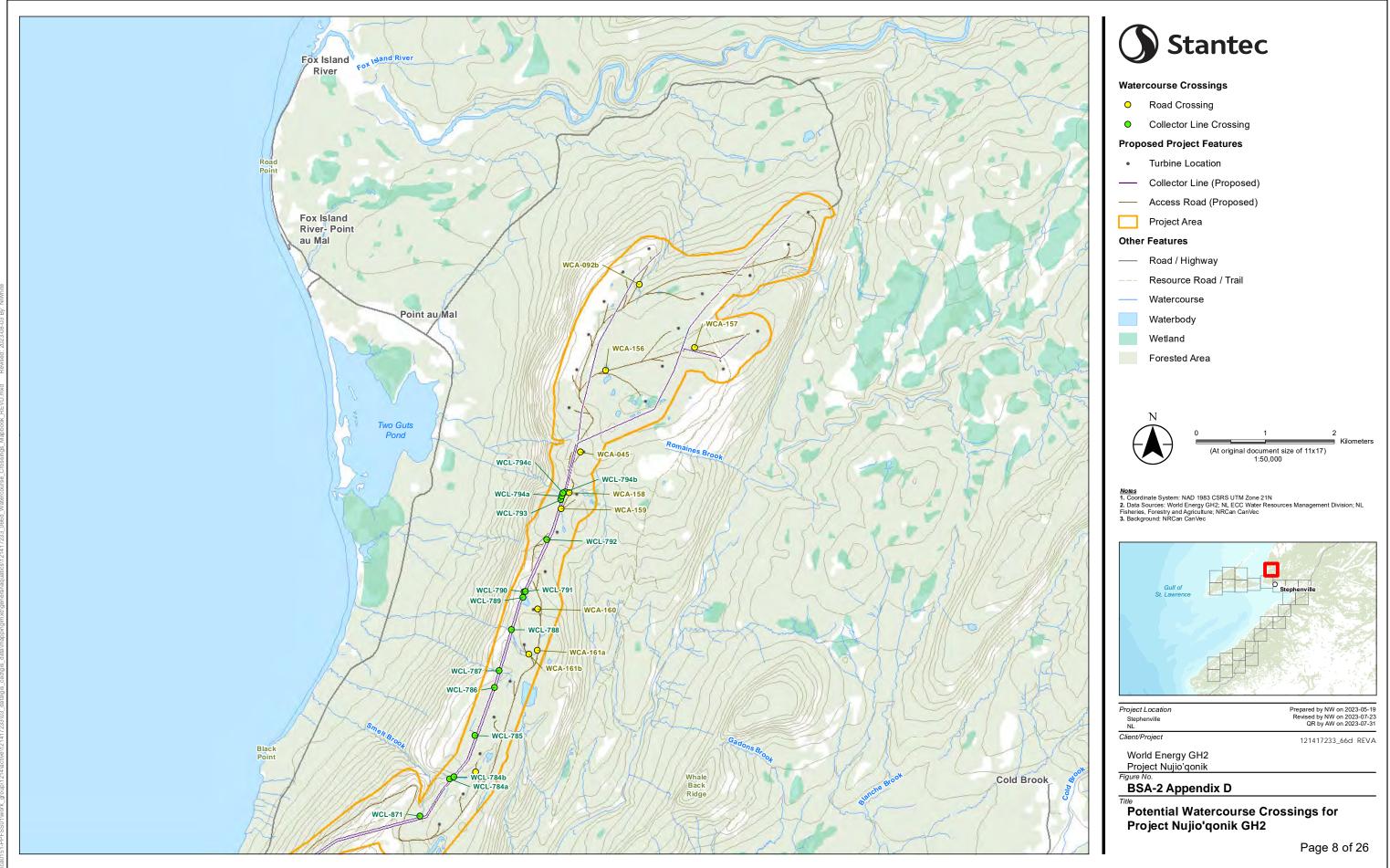



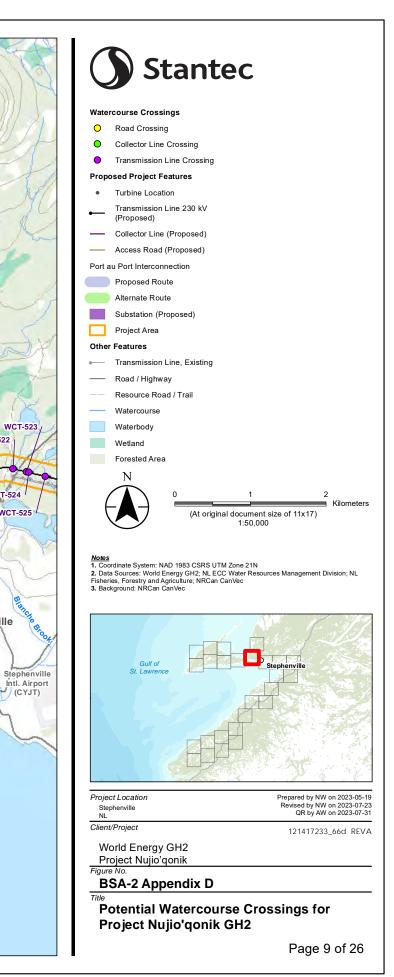


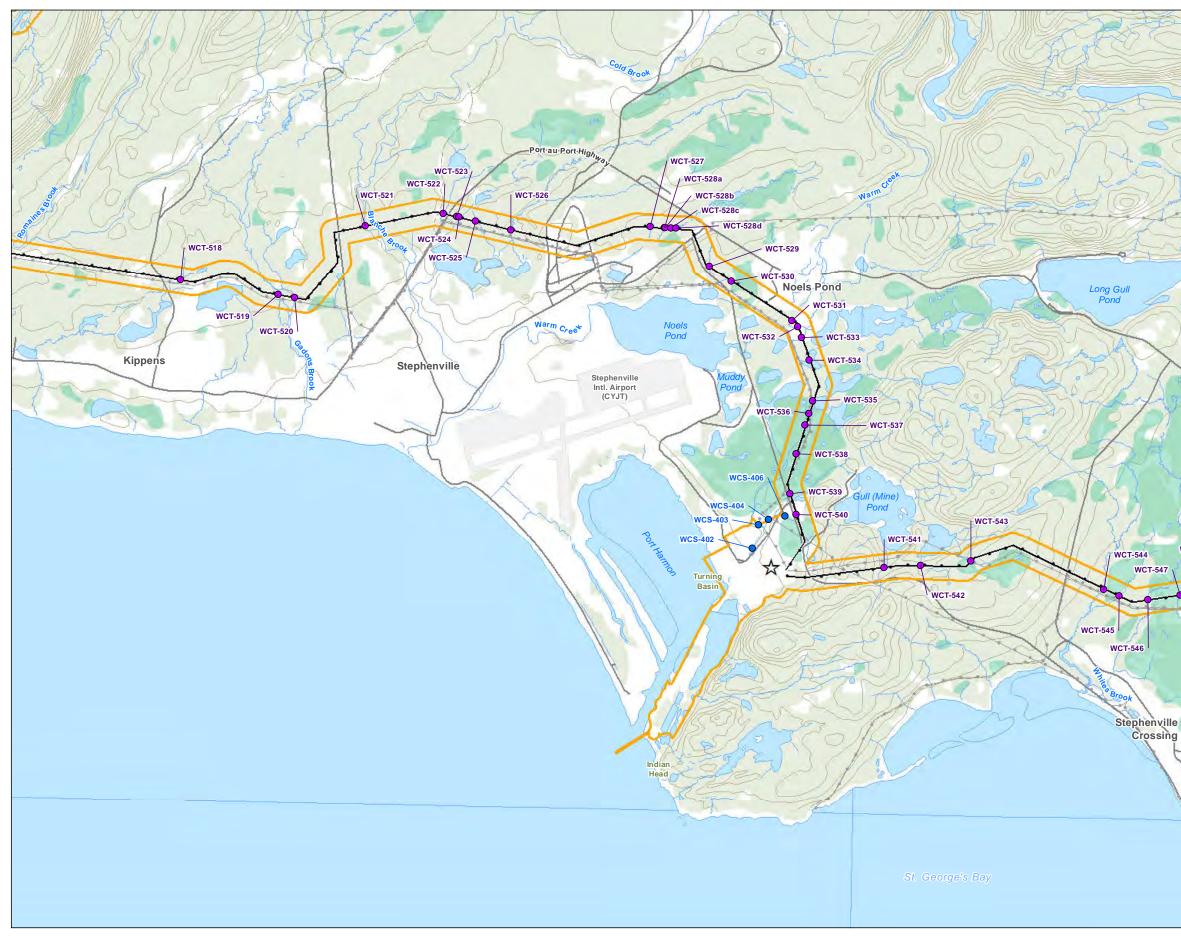



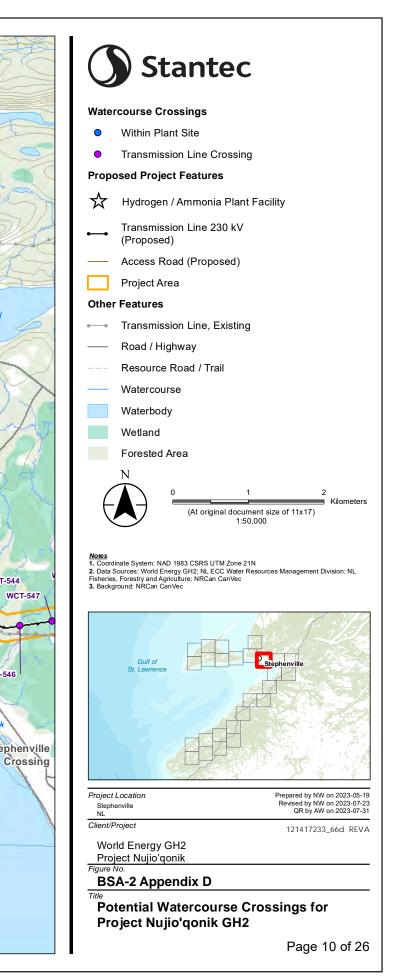


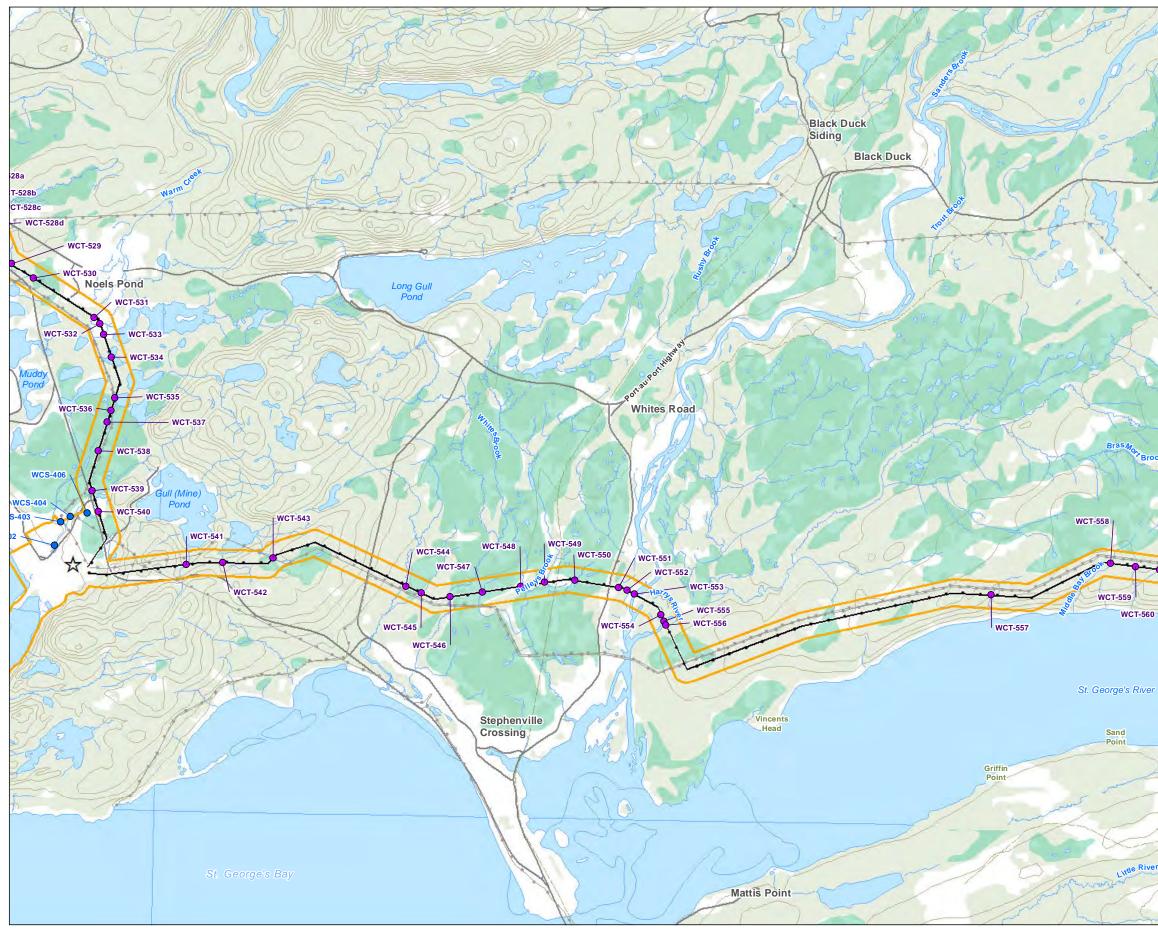



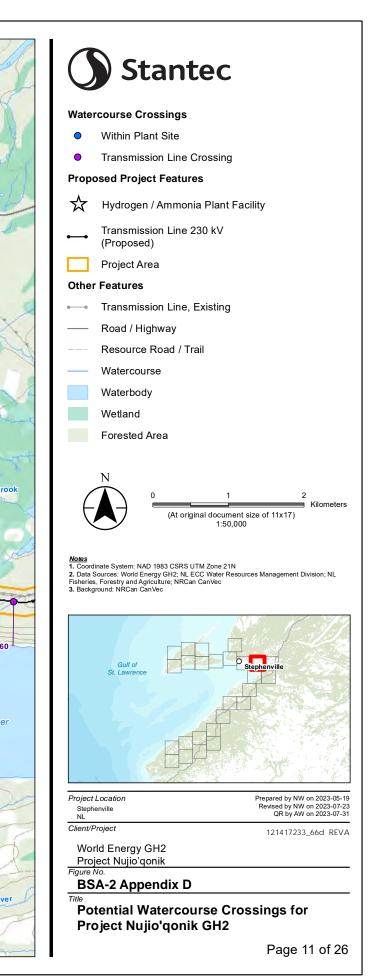


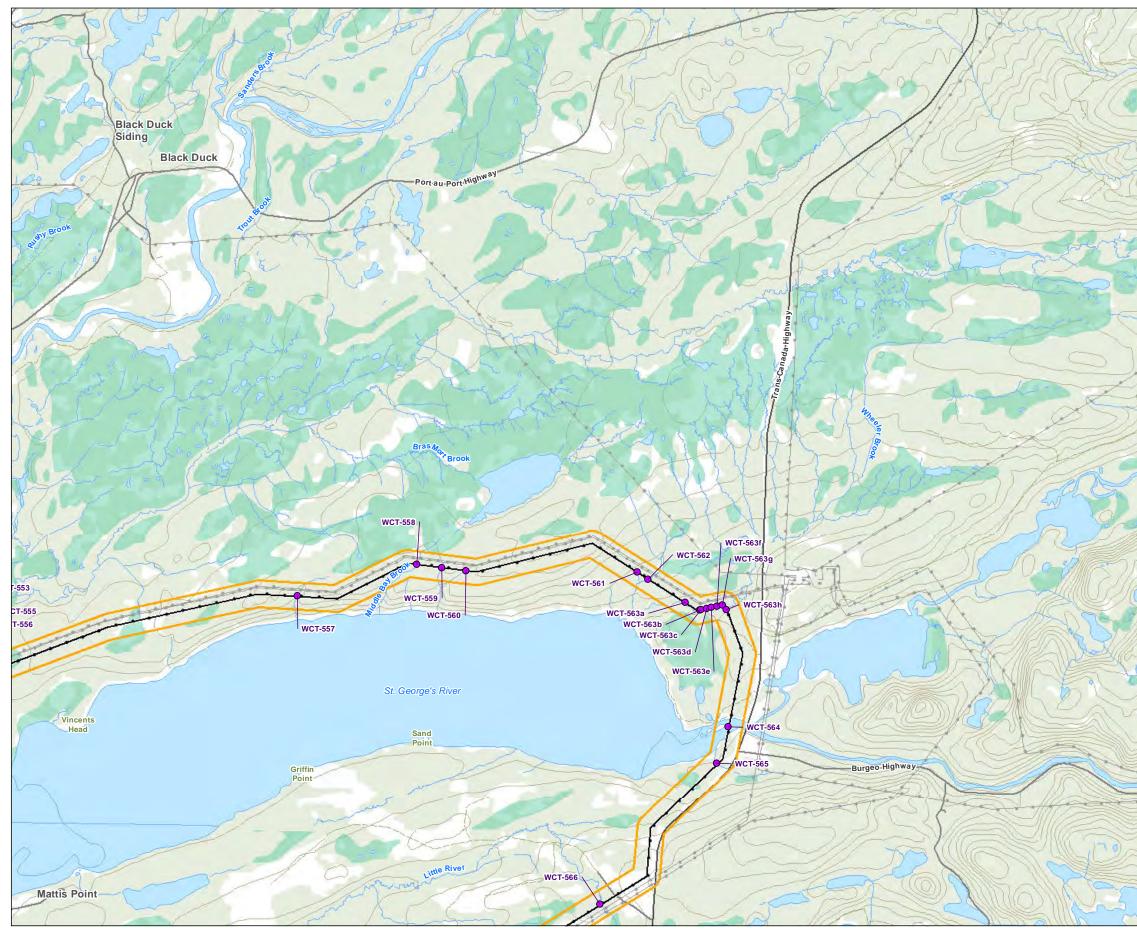





WCA-082



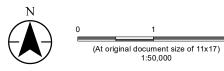






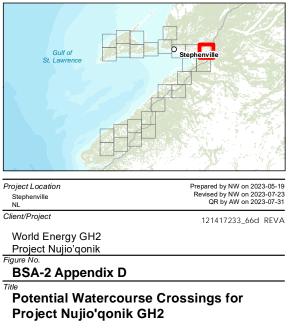




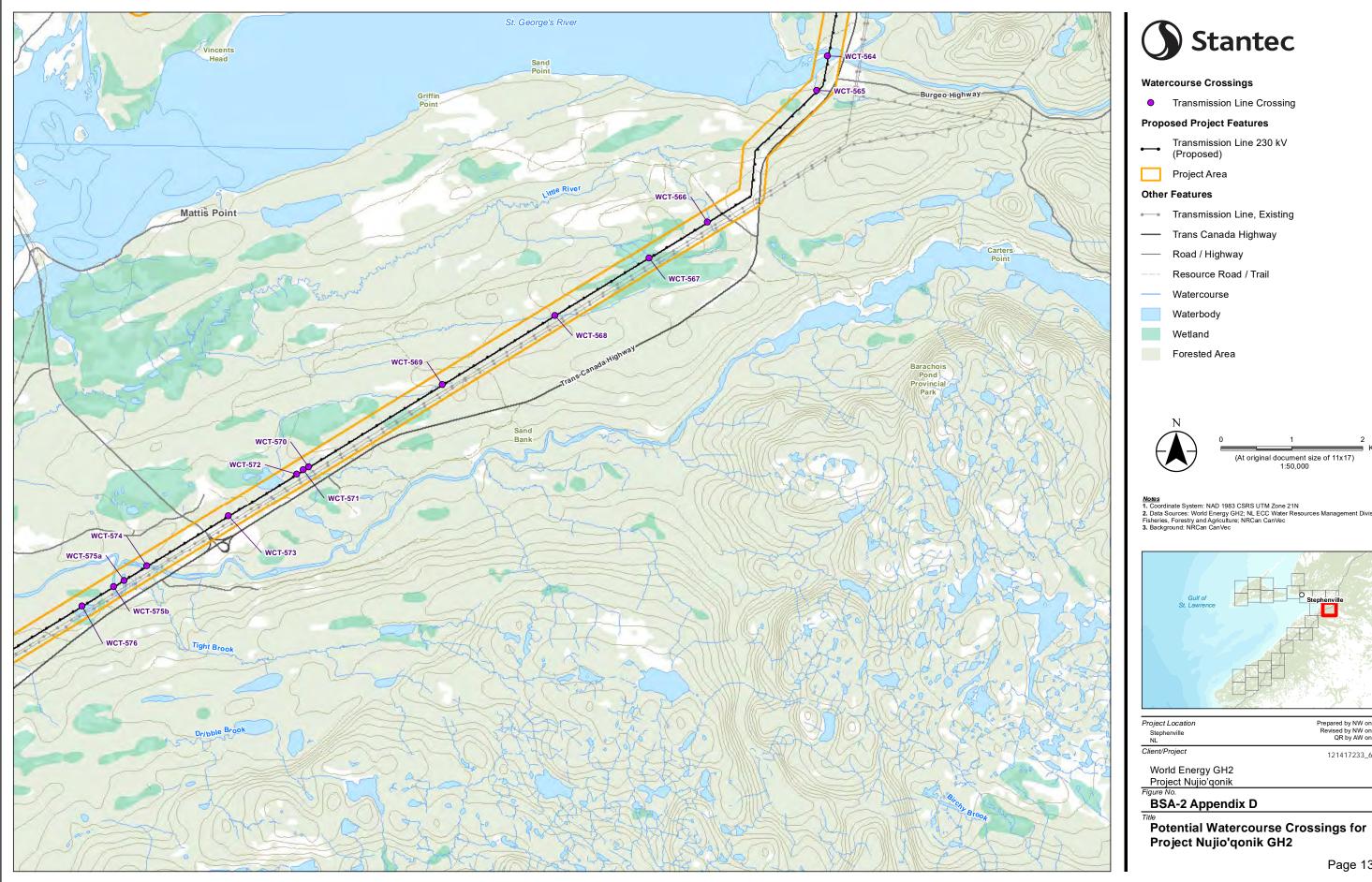






Project Area


## Other Features

- Transmission Line, Existing
- Trans Canada Highway
- Road / Highway
- Resource Road / Trail
- Watercourse
- Waterbody
- Wetland
- Forested Area




Kilometers

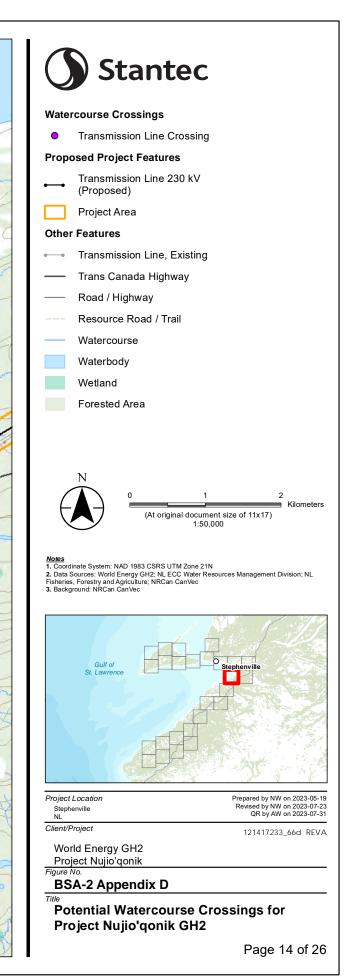
<u>wotes</u> 1. Coordinate System: NAD 1983 CSRS UTM Zone 21N 2. Data Sources: World Energy GH2; NL ECC Water Resources Manag Fisheries, Forestry and Agriculture; NRCan CanVec 3. Background: NRCan CanVec on · MI



Page 12 of 26



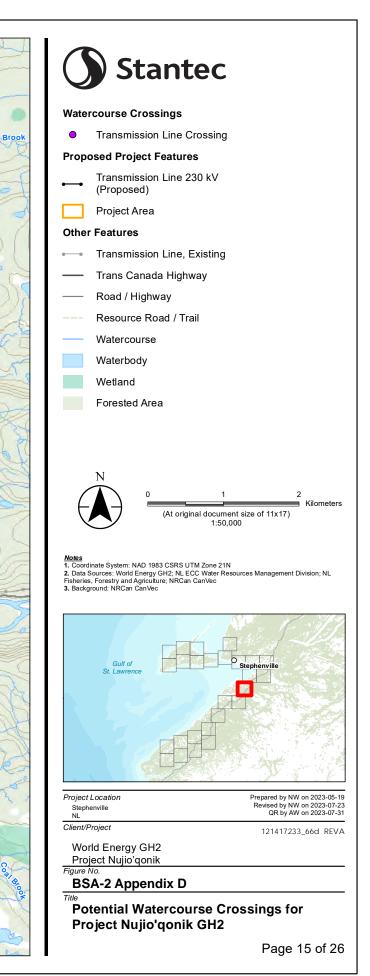
Kilometers

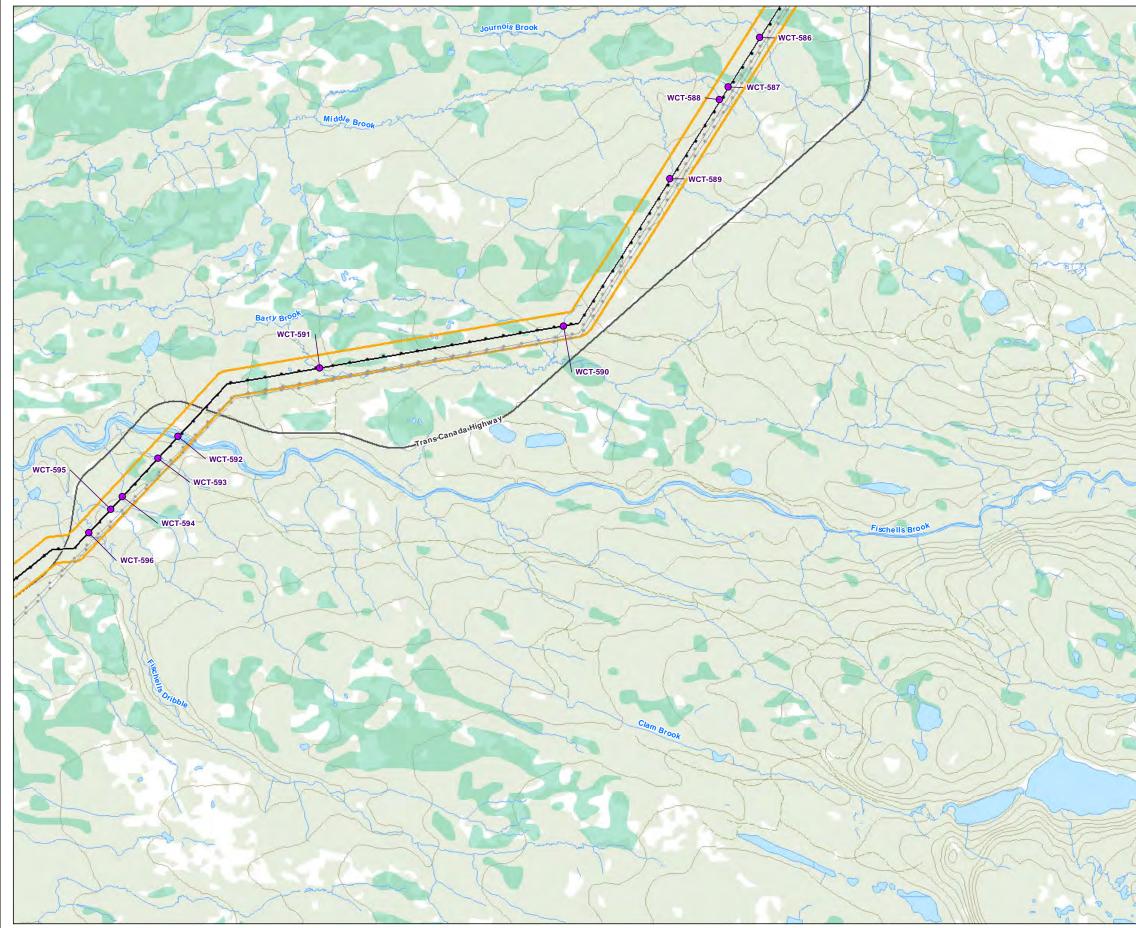

t Division: NL

Prepared by NW on 2023-05-19 Revised by NW on 2023-07-23 QR by AW on 2023-07-31

121417233\_66d REVA


Page 13 of 26




Griffin

Point







Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of the data.





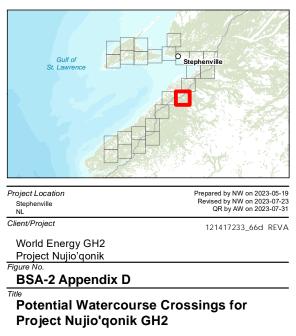
# Watercourse Crossings

• Transmission Line Crossing

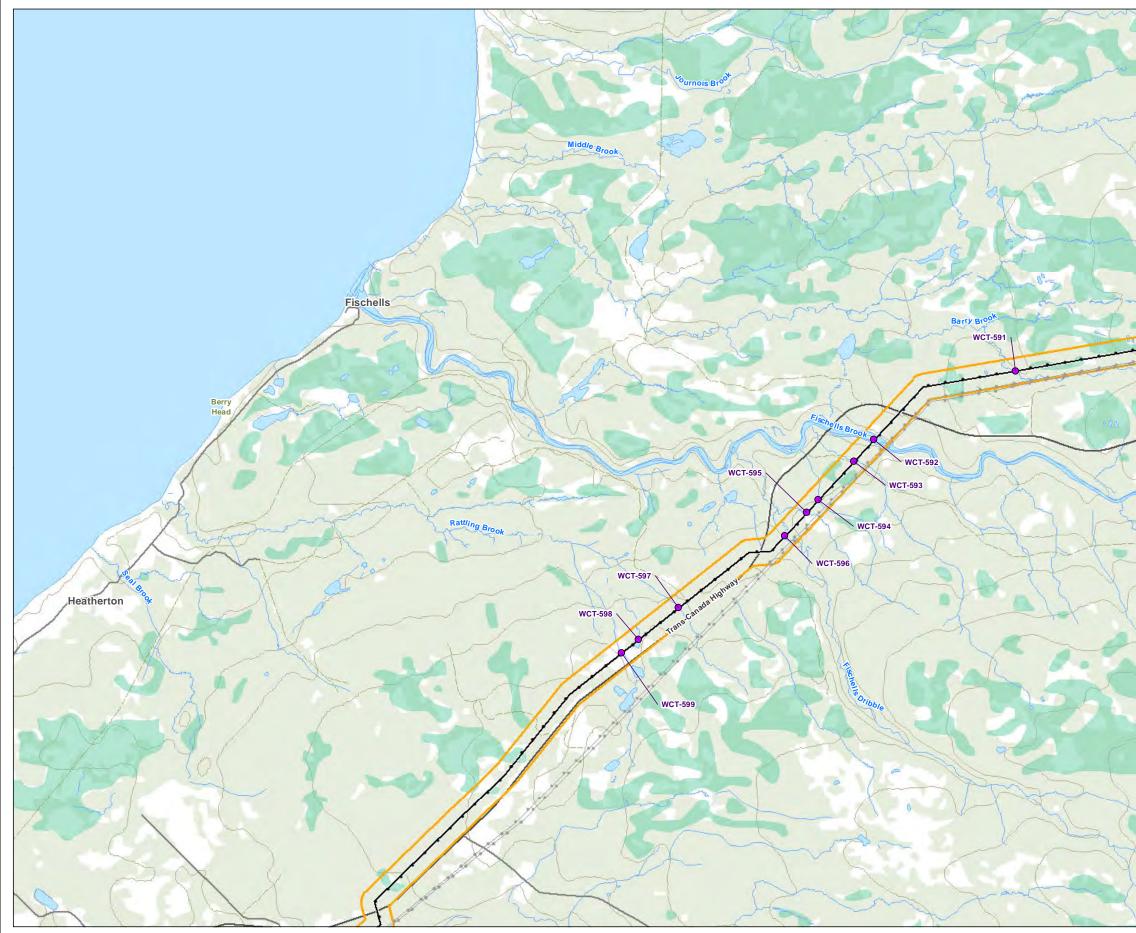
# **Proposed Project Features**

- Transmission Line 230 kV -----(Proposed)
- Project Area

## Other Features


- ---- Transmission Line, Existing
- Trans Canada Highway
- Resource Road / Trail
- Watercourse
- Waterbody
- Wetland
- Forested Area




(At original document size of 11x17) 1:50,000

Kilometers

Notes 1. Coordinate System: NAD 1983 CSRS UTM Zone 21N 2. Data Sources: World Energy GH2; NL ECC Water Resources Manag Fisheries, Forestry and Agriculture, NRCan CanVec 3. Background: NRCan CanVec on · MI



Page 16 of 26

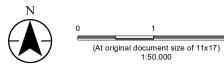


Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of the data.



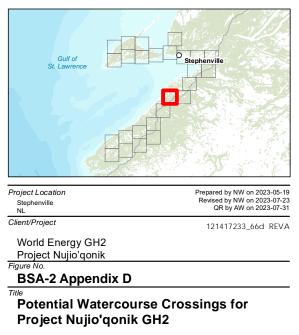


# Watercourse Crossings

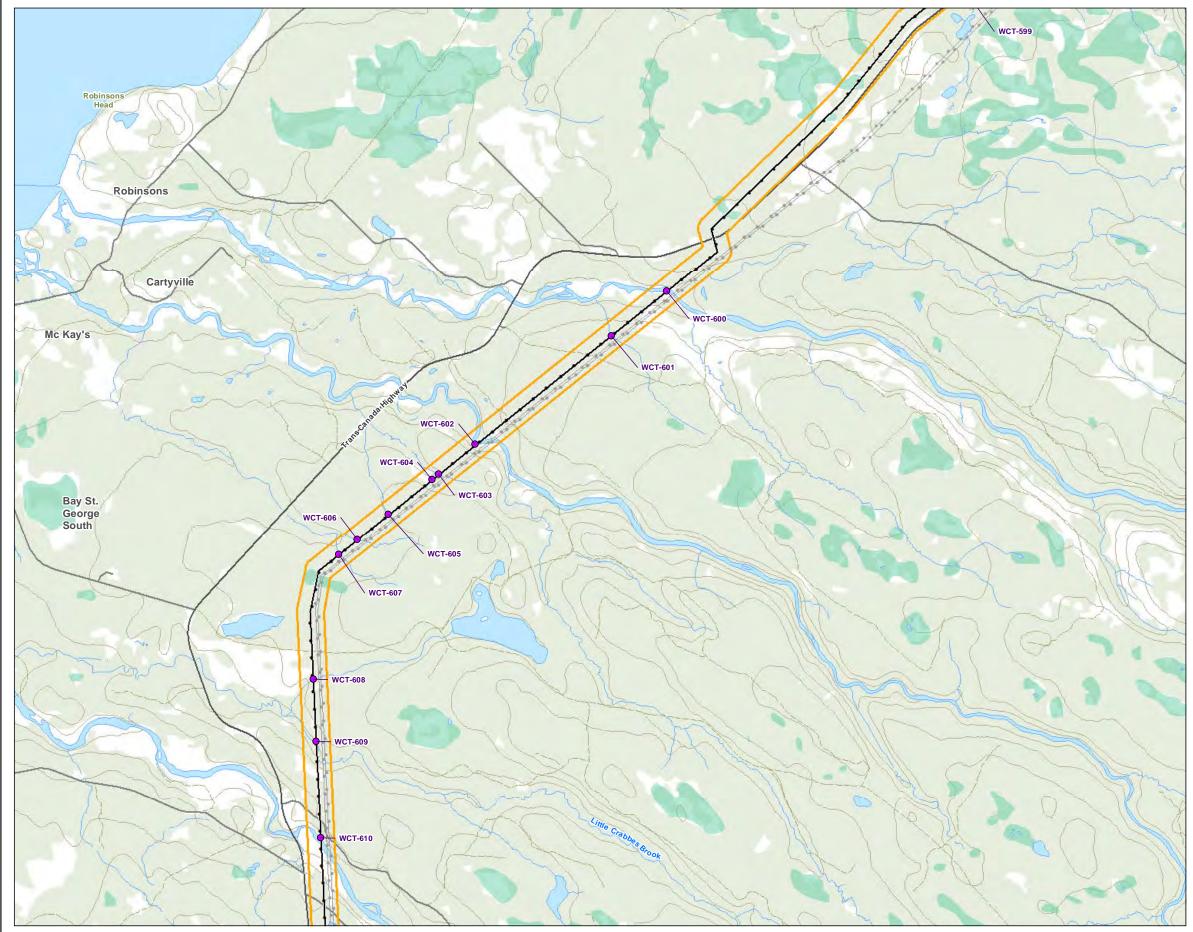

• Transmission Line Crossing

# **Proposed Project Features**

- Transmission Line 230 kV -----(Proposed)
- Project Area


### Other Features

- ---- Transmission Line, Existing
- Trans Canada Highway
- Road / Highway
- Resource Road / Trail
- Watercourse
- Waterbody
- Wetland
- Forested Area




Kilometers

<u>wotes</u> 1. Coordinate System: NAD 1983 CSRS UTM Zone 21N 2. Data Sources: World Energy GH2; NL ECC Water Resources Manager Fisheries, Forestry and Agriculture; NRCan CanVec 3. Background: NRCan CanVec ion<sup>,</sup> NI



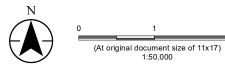
Page 17 of 26



Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of the data.

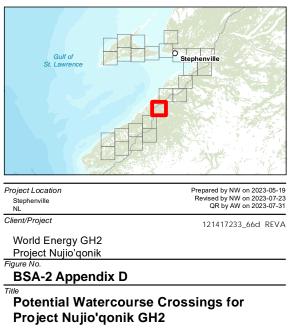


# Watercourse Crossings


• Transmission Line Crossing

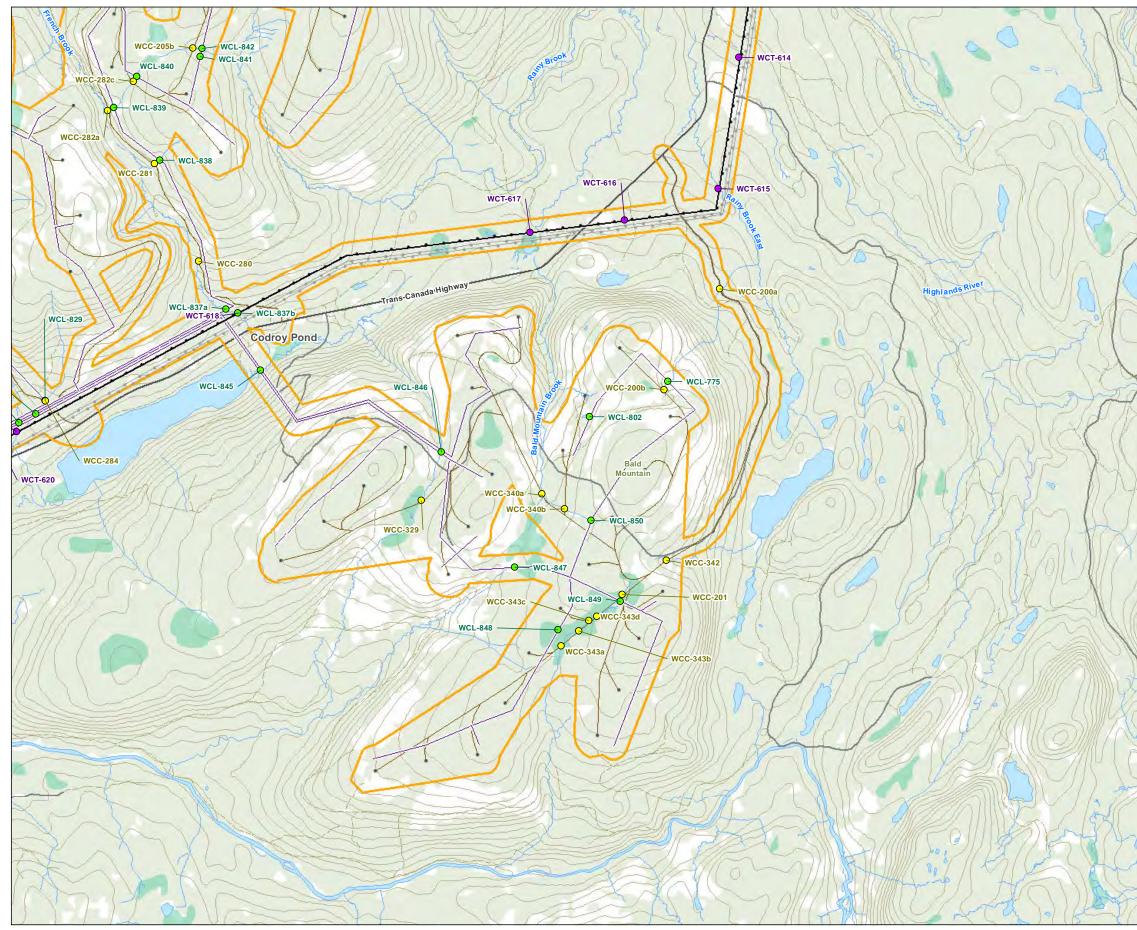
# **Proposed Project Features**

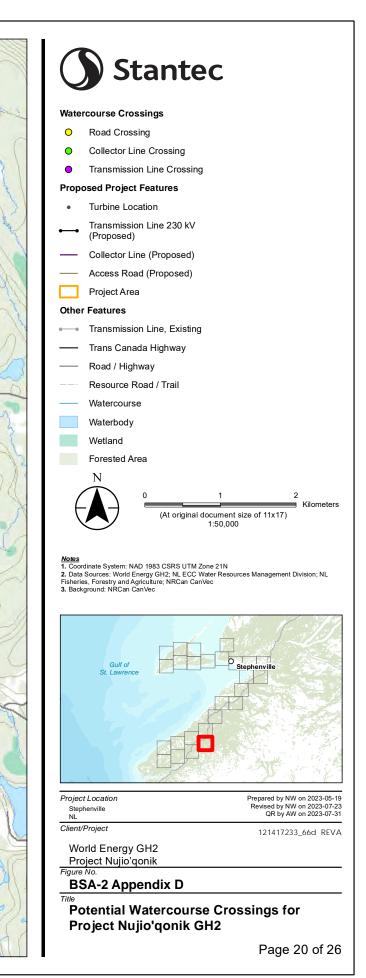
- Transmission Line 230 kV -----(Proposed)
- Project Area

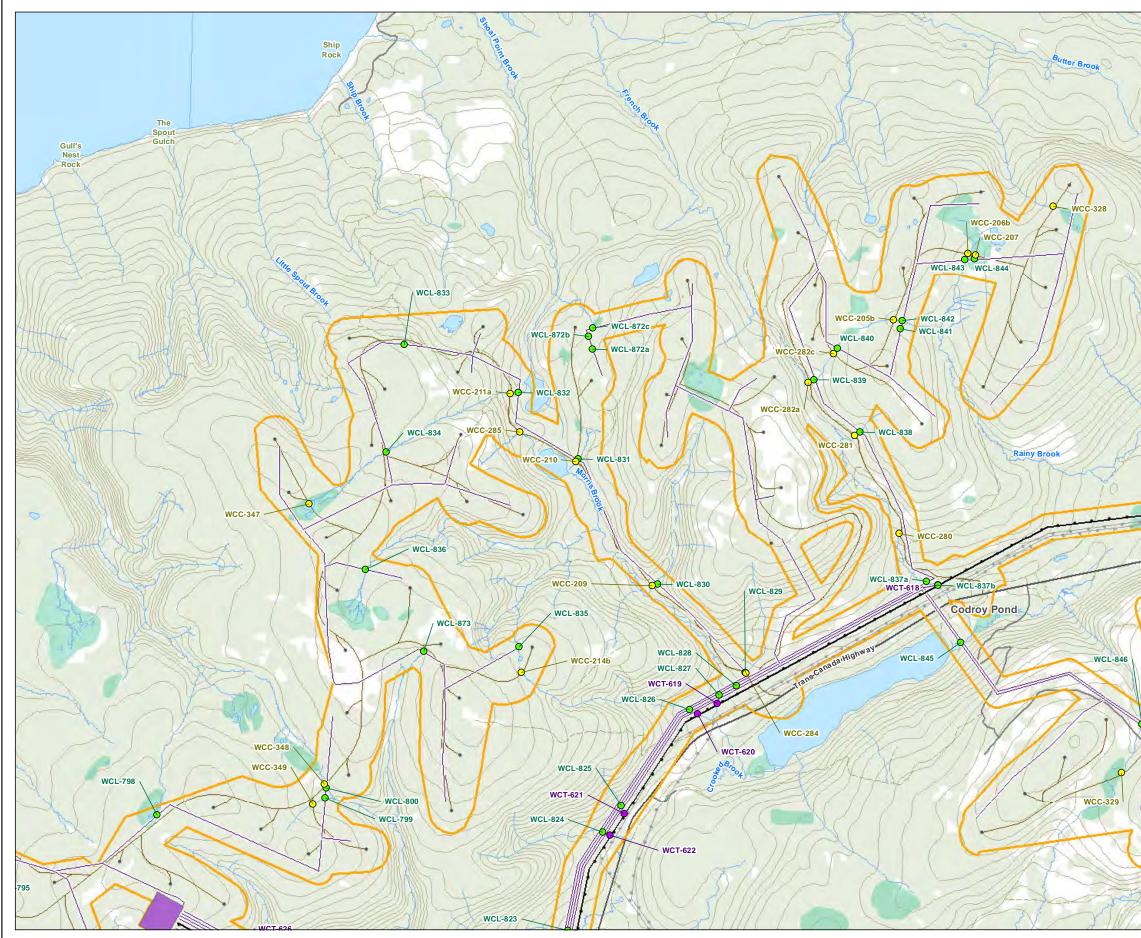

### Other Features

- ---- Transmission Line, Existing
- Trans Canada Highway
- Road / Highway
- Resource Road / Trail
- Watercourse
- Waterbody
- Wetland
- Forested Area

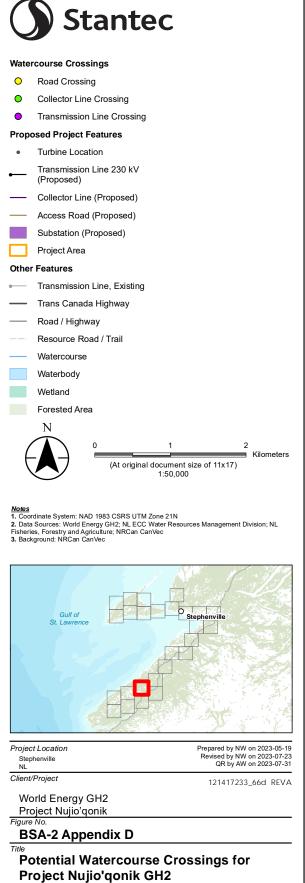




Kilometers

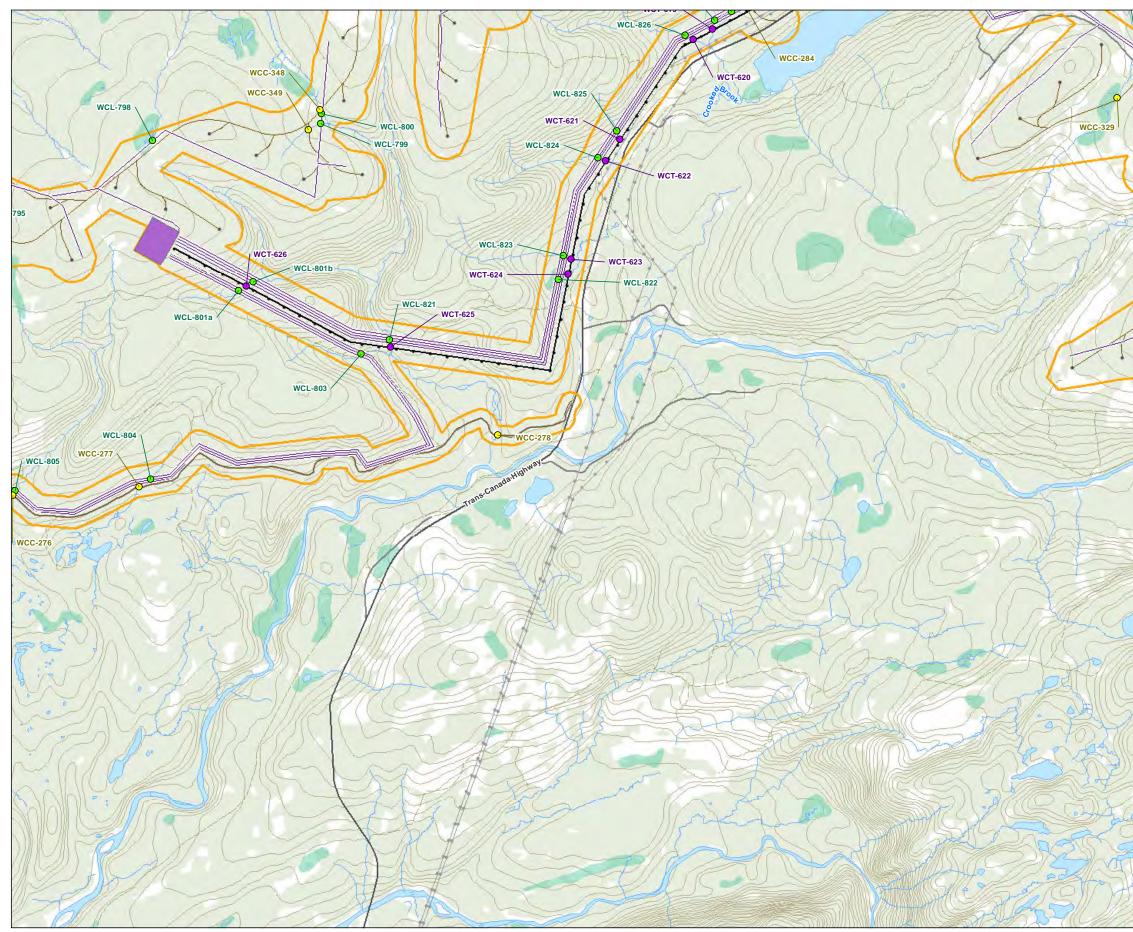

<u>Notes</u> 1. Coordinate System: NAD 1983 CSRS UTM Zone 21N 2. Data Sources: World Energy GH2: NL ECC Water Resources Manag Fisheries, Forestry and Agriculture; NRCan CanVec 3. Background: NRCan CanVec on · MI



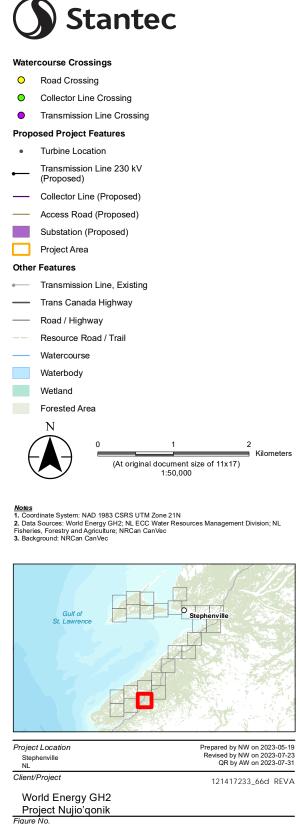

Page 18 of 26





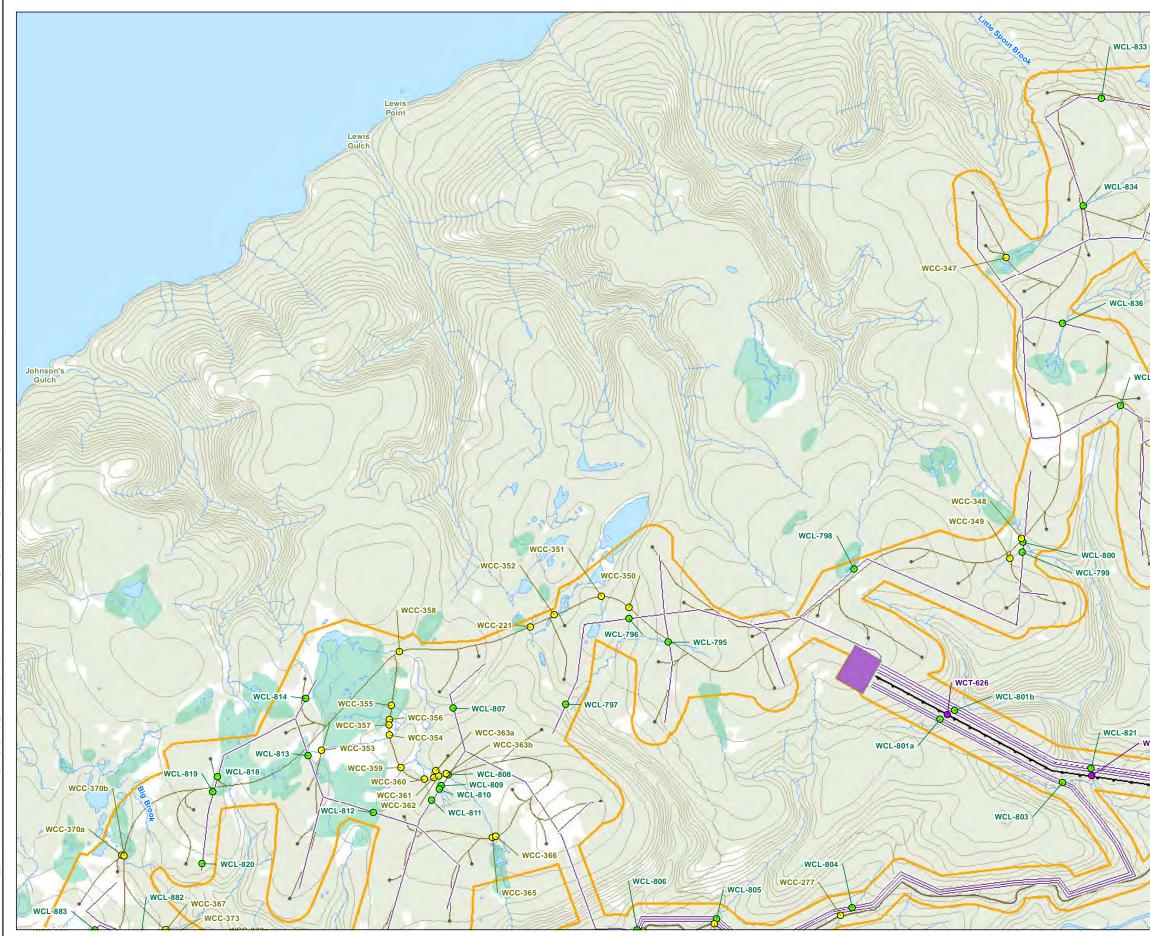


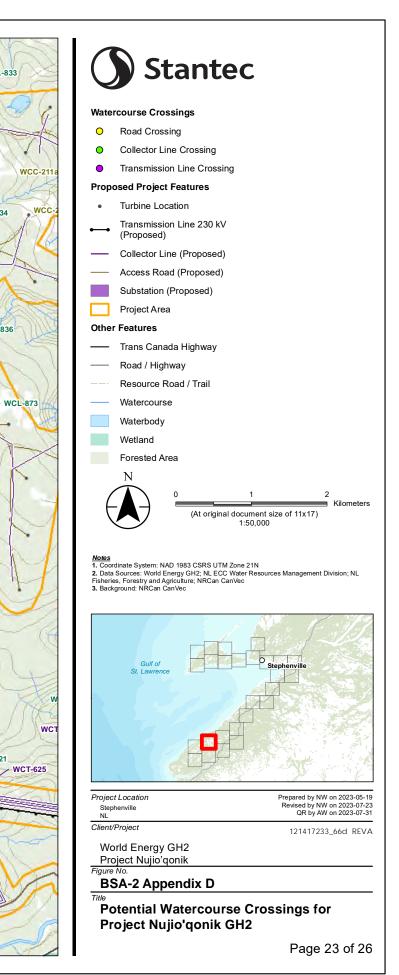



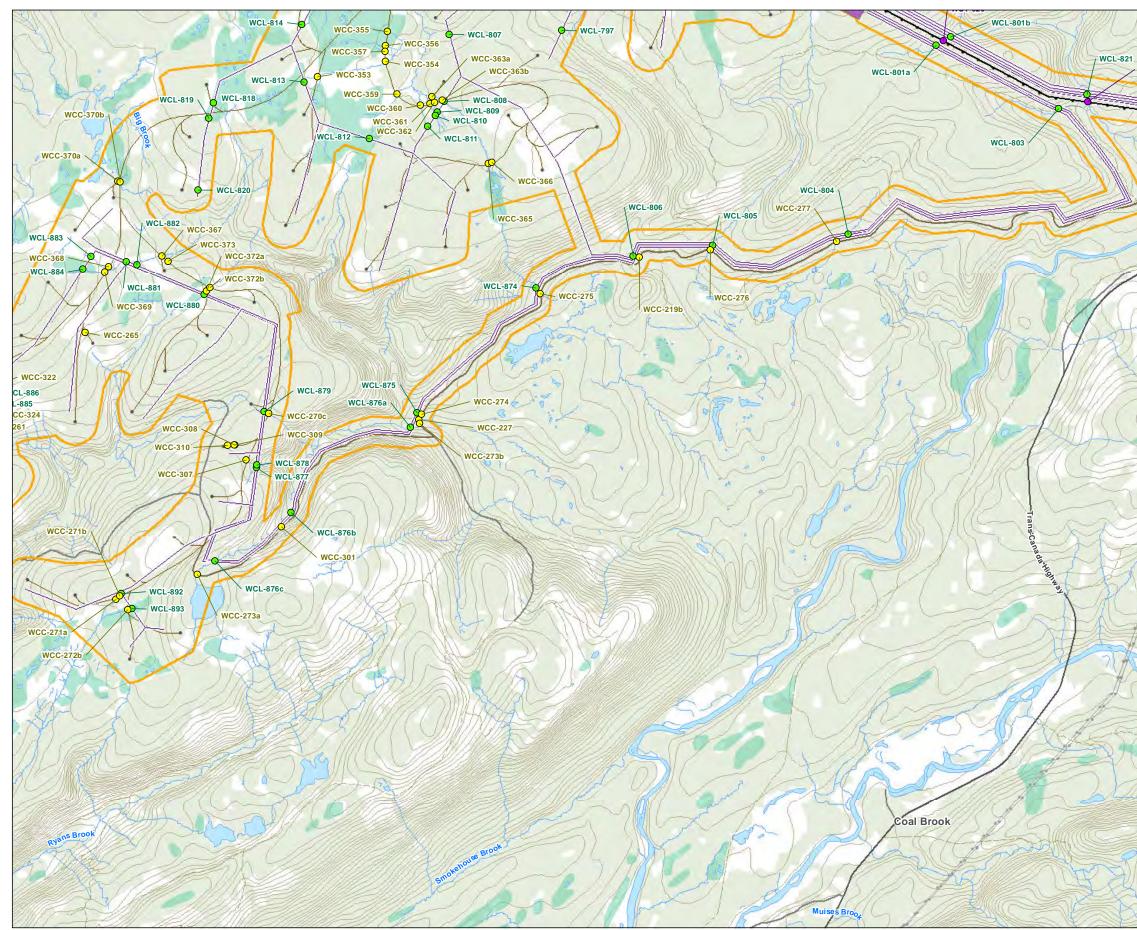


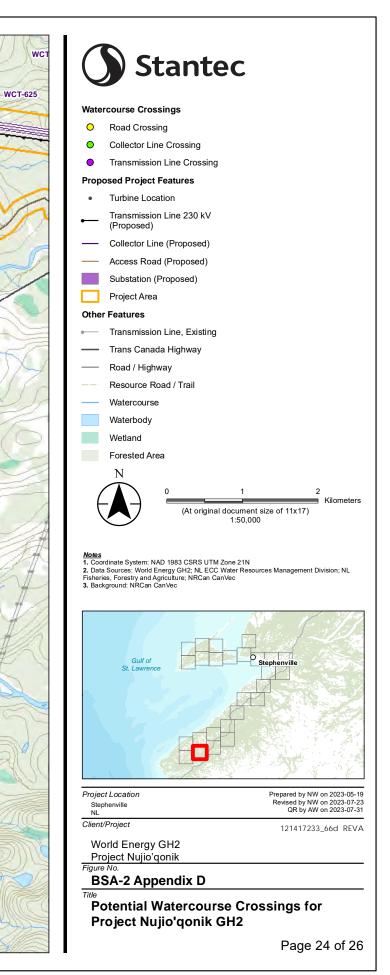

Page 21 of 26

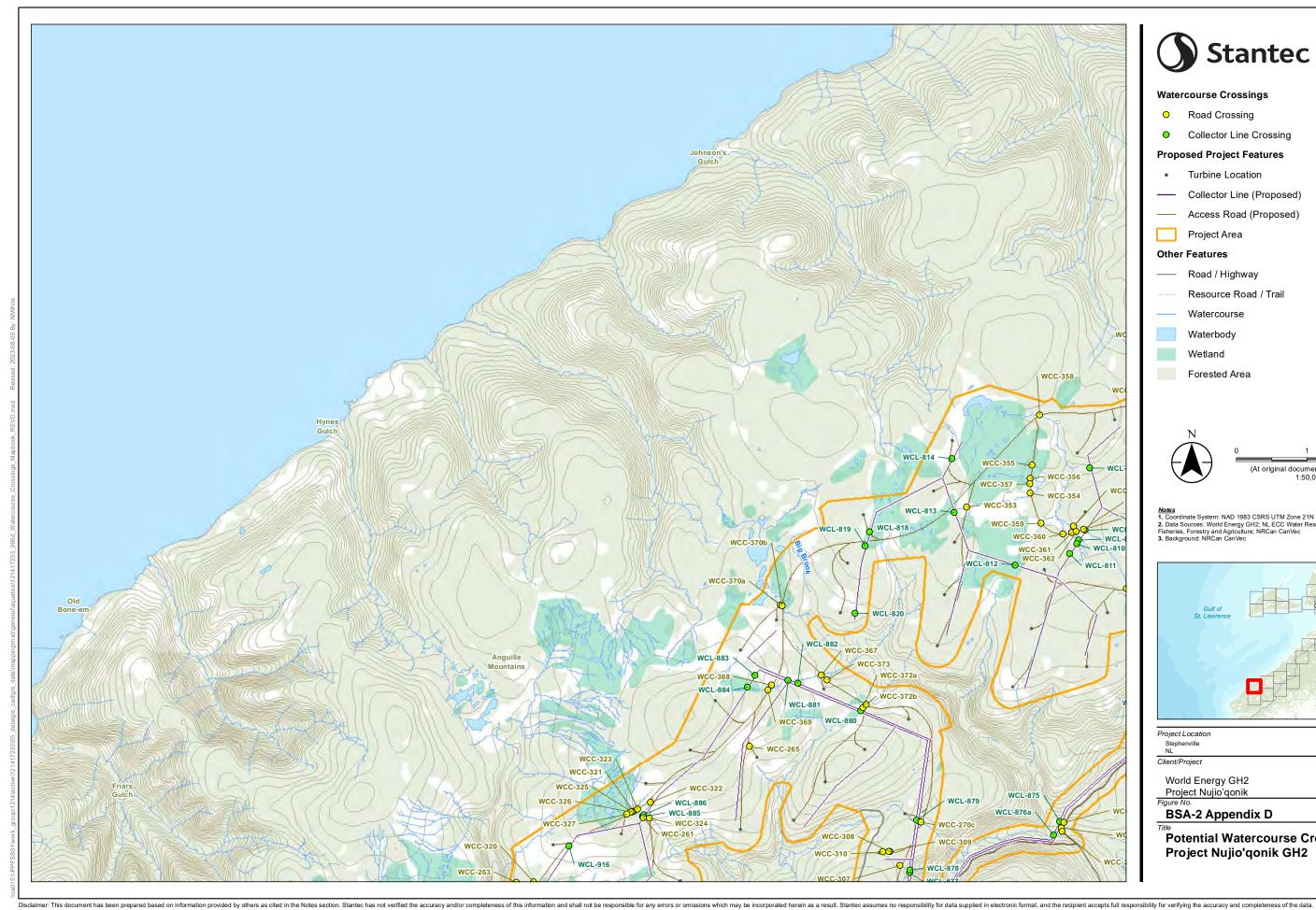


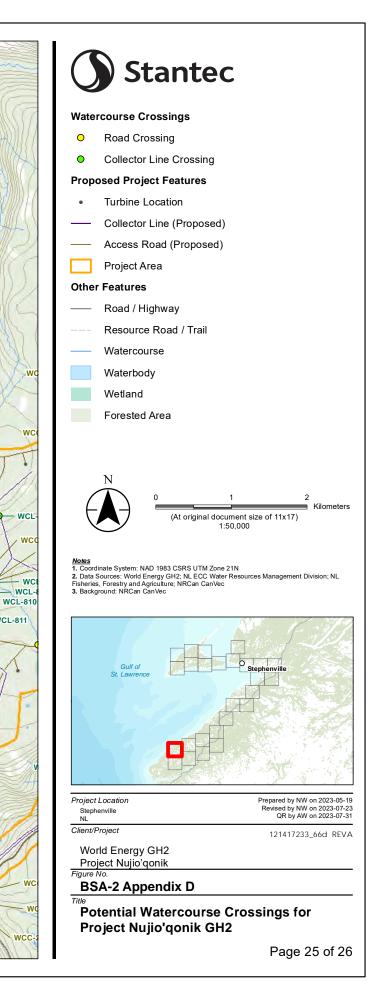


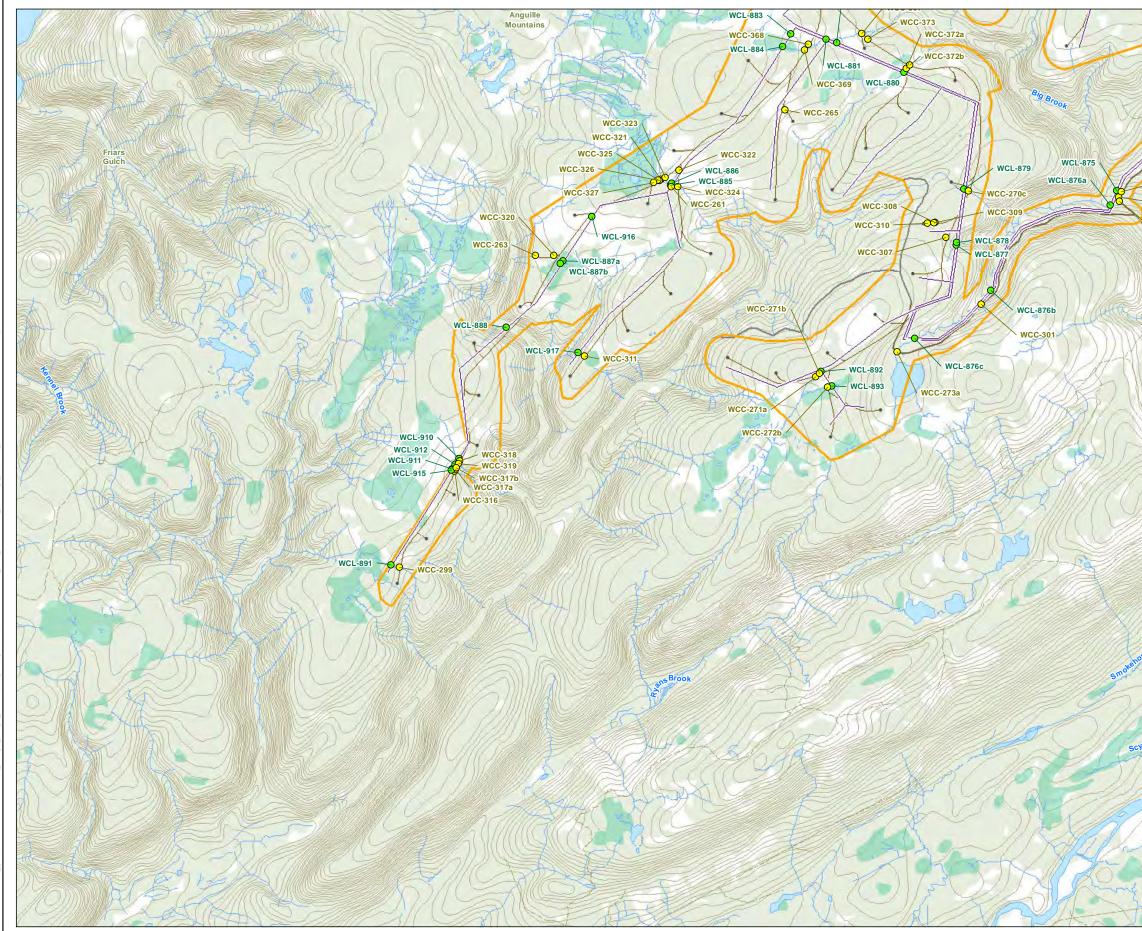



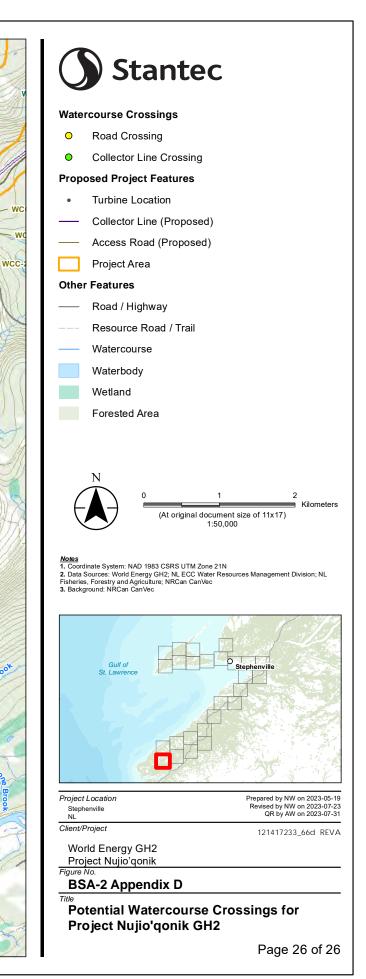


BSA-2 Appendix D Title


Potential Watercourse Crossings for Project Nujio'qonik GH2


Page 22 of 26














# Appendix E

**Detailed Fish Habitat Information** 

# PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023

# Table E.1. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Roads for the Port au Port Wind Farm

| Watercourse | Easting (UTM 21) | Northing<br>(UTM 21) | Watershed | Mapping  | Survey<br>Type | Name                                          | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                      | Fish Habitat?                           |
|-------------|------------------|----------------------|-----------|----------|----------------|-----------------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|------------------------------------------------------------------------|-----------------------------------------|
| WCA-132     | 343346           | 5379510              | WSC-130   | Unmapped | Desktop        | Unnamed Tributary to<br>Mainland Brook        | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | -                                                                      | Fish habitat based on connectivity      |
| WCA-002     | 342288           | 5381066              | WSC-130   | Mapped   | Desktop        | Unnamed Tributary to<br>Mainland Brook        | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 0                      | Coarse                             | Moderate | Trees                  | Forestry road upstream                                                 | Unlikely - overland drainage            |
| WCA-011a    | 343386           | 5379250              | WSC-130   | Unmapped | Desktop        | Unnamed Tributary to<br>Mainland Brook        | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Just north of Forest road                                              | Fish habitat based on connectivity      |
| WCA-011b    | 343469           | 5379161              | WSC-130   | Unmapped | Desktop        | Unnamed Tributary to<br>Mainland Brook        | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Just north of Forest road                                              | Fish habitat based on connectivity      |
| WCA-021     | 345916           | 5384891              | WSC-171   | Mapped   | Desktop        | Unnamed Brook                                 | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Downstream of wetland/pond                                             | Fish habitat based on connectivity pond |
| WCA-022     | 348624           | 5386897              | WSC-172   | Unmapped | Desktop        | Unnamed Tributary to Three<br>Rock Cove Brook | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 0                      | Coarse                             | Moderate | Trees                  | Downstream of pond. May be a ridge.                                    | Unlikely - overland drainage            |
| WCA-023     | 339769           | 5374899              | WSC-140   | Unmapped | Desktop        | Unnamed Pond                                  | Waterbody   | Waterbody visible   | na              | Bog Hole             | 24                     | Fines                              | Low      | Wetland/shrub<br>s     | Bog hole may be connected to Red<br>Brook                              | Unlikely - based on no connectivit      |
| WCA-024     | 339742           | 5374860              | WSC-140   | Unmapped | Desktop        | Unnamed Pond                                  | Waterbody   | Waterbody visible   | na              | Bog Hole             | 15                     | Fines                              | Low      | Wetland/shrub<br>s     | Bog hole may be connected to Red<br>Brook                              | Unlikely - based on no connectivit      |
| WCA-025     | 353981           | 5385880              | WSC-105   | Mapped   | Desktop        | Unnamed Brook                                 | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Crosses existing road, which<br>connects to Hwy 463                    | Fish habitat based on connectivit       |
| WCA-026     | 353139           | 5385394              | WSC-105   | Unmapped | Desktop        | Unnamed Brook                                 | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | West of Hwy 463                                                        | Fish habitat based on connectivity      |
| WCA-028c    | 354129           | 5384758              | WSC-107   | Mapped   | Desktop        | Tributary of Unnamed Brook                    | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                      | Fish habitat based on connectivity      |
| WCA-030a    | 355572           | 5382772              | WSC-110   | Mapped   | Desktop        | Tributary of Unnamed Brook                    | Watercourse | Watercourse visible | 3               | Riffle/run           | 4                      | Coarse                             | Low      | Trees                  | South of Hwy 463                                                       | Fish habitat based on connectivity      |
| WCA-030b    | 356023           | 5383530              | WSC-110   | Mapped   | Desktop        | Tributary of Unnamed Brook                    | Watercourse | Watercourse visible | 3               | Riffle/run           | 4                      | Coarse                             | Low      | Trees                  | South of Hwy 463                                                       | Fish habitat based on connectivity      |
| WCA-031     | 355791           | 5382671              | WSC-116   | Unmapped | Desktop        | Tributary of Unnamed Brook                    | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Unmapped tributary of mapped<br>watercourse                            | Fish habitat based on connectivity      |
| WCA-032     | 355924           | 5382649              | WSC-116   | Mapped   | Desktop        | Tributary of Unnamed Brook                    | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | South of Hwy 463                                                       | Fish habitat based on connectivity      |
| WCA-051a    | 340728           | 5380917              | WSC-114   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | •               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |
| WCA-051b    | 341115           | 5380932              | WSC-114   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |
| WCA-053     | 344901           | 5379805              | WSC-130   | Mapped   | Desktop        | Unnamed Tributary to<br>Mainland Brook        | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | Connects two bogholes within<br>wetland                                | Unlikely - overland drainage            |
| WCA-054     | 343491           | 5380071              | WSC-130   | Mapped   | Desktop        | Unnamed Tributary to<br>Mainland Brook        | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | No connectivity between bog hole<br>and stream channel through wetland | Unlikely - overland drainage            |
| WCA-055     | 345321           | 5381917              | WSC-130   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |
| WCA-057a    | 345398           | 5382323              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | -                                                                      | Fish habitat based on connectivity      |
| WCA-057b    | 345418           | 5382358              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivity      |
| WCA-057c    | 345428           | 5382374              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivity      |
| WCA-057d    | 345461           | 5382426              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivity      |
| WCA-057e    | 345513           | 5382509              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivit       |
| WCA-058     | 345571           | 5382600              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivity      |
| WCA-059a    | 345977           | 5382956              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivity      |
| WCA-059b    | 346350           | 5383349              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivit       |
| WCA-059c    | 346707           | 5383604              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near watershed divide                                                  | Fish habitat based on connectivit       |
| WCA-060     | 346681           | 5383576              | WSC-130   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |
| WCA-061     | 346747           | 5384366              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Small tributary off of main                                            | Fish habitat based on connectivity      |
| WCA-062     | 347191           | 5384314              | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook                   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Connected to pond.                                                     | Fish habitat based on connectivit       |
| WCA-063     | 343309           | 5383040              | WSC-130   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |
| WCA-064     | 344818           | 5384882              | WSC-171   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |
| WCA-066     | 346746           | 5385240              | WSC-172   | Mapped   | Desktop        | -                                             | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                      | No                                      |

# Table E.1. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Roads for the Port au Port Wind Farm

| UNLARD         Statem         Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fish Habitat?                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| NUCLOR         Method         Method<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                          |
| WEX.000         384830         Control Mark         Weight Desking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                          |
| GRC-3710         SIRRET         IRRET         SIRRET        SIRRET<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                          |
| WOC-171         Solf 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No                                          |
| WC-6070         Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                          |
| WD-C470         Sistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                          |
| WC-AC702         350035         S55032         VIS-101         Maged Part Mode         Part Macro Mark Mark Mark Mark Mark Mark Mark Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No                                          |
| WDC-768         SEG25         WSC-124         Mapped         Dentation         Normalization         Normalinstation         Normalinstation         Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                                          |
| WEAD 500         Stable S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                                          |
| Wick-Mr         Select i         Select i         Measure is an interval of the select is and the select i | No                                          |
| WEX.MD         58878         SS8778         WSS-116         Mapped         Deskup         T.         Witescaure         N. Valide Channel         I.         Model         I.         Model         I.         Model         I.         Model         I.         Model         Model         I.         Model         Model         Model         Model <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                          |
| Wick Norm         SNB236         SNB216         Mapped         Deakog         Norm         Waterrune         No. Valide Channel         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I        I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                          |
| WCA-070         SSGSBB         SSGSBB <thssgbb< th=""> <thssgbb< th="">         SSGSBB<td>No</td></thssgbb<></thssgbb<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                          |
| WCA-07         Station         Station <th< td=""><td>No</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No                                          |
| WCA-100         337110         MSC-120         Mage 1         Mage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                          |
| MACHANO       STATTON       MSG-180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No                                          |
| MCA-100         S37130         WSC-120         Mage 10         Decks 0         Indux y d Scored 0         Name 1000         Name 10         Low         Band 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n line Fish habitat based on connectivity   |
| MCA-103         JSBADD         VISC-119         Lengtop         Deskop         Attance Cocan         Waterourse         Dradge channel         1         Mode         1 <td>Fish habitat based on connectivity</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fish habitat based on connectivity          |
| NCA-110         Jobasis         Disksis         Disksis <t< td=""><td>Unlikely - based on no connectivity</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unlikely - based on no connectivity         |
| MCA-104         Gasobie         Cost of Mappe         Description (including or dimanding or dimandin dimandini dimanding or dimandin dimanding or dimanding or dim | Unlikely - based on no connectivity         |
| wick-list         assues         viscults         mage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unlikely - based on no connectivity         |
| WCA-107         354441         5382084         WSC-110         Mapped         Desktop         row         Watercourse         No Visible Channel         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -       -         -         - <td>Unlikely - based on ho connectivity</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unlikely - based on ho connectivity         |
| WCA-110         356304         533118         WSC-116         Mapped         Desktop         Tributary of Unnamed Brook         Watercourse         Drainage channel         1         India Drain         1         Mixed         Low         Shubs         Difficult bassess based<br>brainager.           WCA-111a         355630         5333727         WSC-110         Mapped         Desktop         Tributary of Unnamed Brook         Watercourse         Drainage channel         1         stand Drain         1         Mixed         Low         Shubs         Ifficut ora sease based<br>locations could be a<br>stand Drain         1         Mixed         Low         Shubs         Ifficut ora sease based<br>locations could be a<br>brook           WCA-112         3548357         S338467         WSC-110         Mapped         Desktop         Tributary of Unnamed Tributary to Harry<br>Brook         Watercourse         No Visible Channel         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                                          |
| WCA-110         35504         53317         WSC-16         Mappe         Desktop         Initiative of unitative of unitati                            | No                                          |
| WCA-111         35650         538227         WSC-10         Mapped         Desktop         Inoutary of Unmaned Brook         Waterourse         Drainage channel         1         Pind Drain         1         Mixed         Low         Snitus         Iocations could be as           WCA-111         335630         5388317         WSC-10         Mapped         Desktop         Tibulary of Unmaned Brook         Waterourse         Drainage channel         1         Pind Drain         1         Mixed         Low         Shrubs         Iffections could be as           WCA-112         354835         5389890         WSC-12         Mapped         Desktop         Unmaned Tribulary to Harring         Vaterourse         No Visible Channel         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Unlikely - based on no connectivity</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unlikely - based on no connectivity         |
| WCA-1103565.013538.01WSC-110MappeDesktopInductry of Unductry of Und                      | ed Unlikely - based on no connectivity      |
| WCA-112         334335         5383980         WSC-124         Mapped         Deskop         Parkov         Valercourse         Danage channel         2         Rittler/un         1         Mixed         Low         Status         imagery           WCA-116         354157         5384687         WSC-124         Mapped         Deskop          Waterourse         No Visible Channel                                                                              -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed Unlikely - based on no connectivity      |
| WCA-115334457WSC-107MappedDesktop $\cdot$ WatercourseNo Vasible Channel $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unlikely - based on no connectivity         |
| WCA-116       3351963       5333528       WSC-124       Mapped       Desktop       Watercourse       No Visible Channel           These two crossings of avoided of avoide of avoided of avoided of avoide of avoide of avoided of avoide of avoided of avoide                                                                                                                              | No                                          |
| WCA-1173517985383468WSC-124MappedDesktopUnamed Tributary to<br>Mainland BrookNo Visible Channel········These two crossings of<br>avoidedWCA-1253418065379919WSC-130MappedDesktopUnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsCrossing coulde avoid<br>moved to eastWCA-1263417965379944WSC-130MappedDesktopUnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsCrossing coulde avoid<br>moved to eastWCA-1273422995379803WSC-130MappedDesktopUnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsCrossing could be avoid<br>moved to eastWCA-128347191538510WSC-130MappedDesktopUnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsCrossing could be avoid<br>moved to eastWCA-1293433725384270WSC-130MappedDesktopUnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel01MixedLowShrubsCrossing could be avoid<br>moved to eastWCA-1293433725384270WSC-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
| WCA-1253410053799WSC-130MappedDeskopMainland BrookWatercourseDrainage1Drainage1MixedLowStrubsCrossing should be move<<br>avoid two crossinWCA-1263417965379944WSC-130MappedDeskopUnnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Drainage1MixedLowShrubsCrossing should be move<br>avoid two crossinWCA-1273422995379803WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsCrossing should be move<br>avoid two crossinWCA-1283471915385810WSC-172MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsShrubsCrossing should be move<br>avoid two crossinWCA-128343725384270WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0ShrubsWCA-1293430225384260WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0Shrubs-WCA-13034424538060WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lbe No                                      |
| WCA-126341796337944WSC-130MappedDeskopMainland BrookWaterCourseDrainage Channel1Drainage1MixedLowShrubsavoid two crossinWCA-1273422995379803WSC-130MappedDeskopDeskopUnnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsShrubs-WCA-1283471915385810WSC-172MappedDeskopUnnamed Tributary to<br>Mainland BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsShrubs-WCA-128343725384270WSC-130MappedDeskopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0ShrubsShrubs-WCA-1293434025384250WSC-130MappedDeskopUnnamed Tributary to<br>Mainland BrookNatercourseNo Visible Channel0ShrubsWCA-1303442845380660WSC-130MappedDeskopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0ShrubsWCA-1303442845380660WSC-130MappedDeskopUnnamed Tributary to<br>Mainland BrookWatercourseWatercourse visible1Riffle/run1Mixed <t< td=""><td>road Unlikely - based on no connectivity</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | road Unlikely - based on no connectivity    |
| WCA-1273422995379803WSC-130MappedDesktopMainland BrookWatercourseDrainage channel1Drainage1MixedLowShrubsCompositionWCA-128347191538510WSC-172MappedDesktopUnnamed Tributary to Three<br>Rock Cove BrookWatercourseDrainage channel1Overland<br>Drainage1MixedLowShrubsShrubsCompositionWCA-129a3433725384270WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0CompositionCompositionCompositionShrubsShrubsShrubsShrubsCompositionWCA-129b3434025384260WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0CompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionCompositionComp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | east to Unlikely - based on no connectivity |
| WCA-1283471913363810WSC-172MappedDeskopRock Cove BrookWaterCourseDrainage1Drainage1MixedLowSindusSindus1WCA-129a3433725384270WSC-130MappedDeskopUnnamed Tributary to<br>Mainland BrookWaterCourseNo Visible Channel0ShrubsShrubs-WCA-129a3434025384250WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseNo Visible Channel0Shrubs-WCA-1303442845380660WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourseWatercourse visible2Riffle/run1MixedLowShrubs-WCA-1313430415379590WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourse visible1Riffle/run2CoarseLowTreesWCA-1333430535379580WSC-130MappedDesktopUnnamed Tributary to<br>Mainland BrookWatercourse visible1Riffle/run2CoarseLowTreesDownstream of wetWCA-1343430535379580WSC-130MappedDesktopWatercourseNo Visible Channel0Forest-WCA-1343437125379210WSC-130UnmappedDesktop <t< td=""><td>Unlikely - overland drainage</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unlikely - overland drainage                |
| WCA-129a3433725384270WSC-130MappedDesktopMainland BrookWatercourseNo Visible Channel0ShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubsShrubs <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No                                          |
| WCA-12903434025384230WSC-130MappedDesktopMainland BrookWaterCourseNo Visible Chainlei0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                                          |
| WCA-130       344284       5380660       WSC-130       Mapped       Desktop       Mainland Brook       Watercourse       Watercourse visible       2       Riffle/run       1       Mixed       Low       Snrubs       Snrubs       -         WCA-131       343441       5379590       WSC-130       Mapped       Desktop       Unnamed Tributary to<br>Mainland Brook       Watercourse visible       1       Riffle/run       2       Coarse       Low       Trees       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                          |
| WCA-131       343441       5379590       WSC-130       Mapped       Desktop       Mainland Brook       WaterCourse       WaterCourse visible       1       Rifle/run       2       Coarse       Low       Trees       Downstream of wetercourse       Provide course       Provi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fish habitat based on connectivity          |
| WCA-133       343053       5379580       WSC-130       Mapped       Desktop       Mainland Brook       WaterCourse       WaterCourse Visible       1       Riffe/run       2       Coarse       Low       Trees       Downstream of Wet         WCA-134       343712       5379210       WSC-130       Unmapped       Desktop       -       WaterCourse       No Visible Channel       0       -       -       -       Forest       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fish habitat based on connectivity          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I Fish habitat based on connectivity No     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No                                          |
| WCA-135b       344223       5379200       WSC-130       Unmapped       Desktop       -       Watercourse       No Visible Channel       0       -       -       -       Wetland       -       -       Wetland       -       -       Wetland       -       -       -       Wetland       -       -       -       Wetland       -       -       Wetland       -       -       -       Wetland       -       -       -       Wetland       -       -       Wetland       -       -       -       Wetland       -       -       -       Wetland       -       -       -       Wetland <td>No</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                          |

# Table E.1. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Roads for the Port au Port Wind Farm

| Watercourse | Easting (UTM<br>21) |             | Watershed | Mapping  | Survey<br>Type | Is for the Port au Port Wind           | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                           | Fish Habitat?                                  |
|-------------|---------------------|-------------|-----------|----------|----------------|----------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|-------------------------------------------------------------|------------------------------------------------|
| WCA-136a    | 343513              | 5378370     | WSC-130   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Forest                 | -                                                           | No                                             |
| WCA-136b    | 343510              | 5378340     | WSC-130   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Forest                 | -                                                           | No                                             |
| WCA-137a    | 346092              | 5377050     | WSC-137   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                           | No                                             |
| WCA-137b    | 346023              | 5377170     | WSC-137   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                           | No                                             |
| WCA-138a    | 345925              | 5377630     | WSC-137   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                           | No                                             |
| WCA-138b    | 345869              | 5377660     | WSC-137   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                           | No                                             |
| WCA-139     | 346924              | 5377680     | WSC-135   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                           | No                                             |
| WCA-140a    | 345003              | 5379860     | WSC-130   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Wetland                | Drains low lying area                                       | No                                             |
| WCA-140b    | 345006              | 5379860     | WSC-130   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Wetland                | Drains low lying area                                       | No                                             |
| WCA-140c    | 345017              | 5379850     | WSC-130   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Wetland                | Drains low lying area                                       | No                                             |
| WCA-141     | 345156              | 5380190     | WSC-130   | Mapped   | Desktop        | Unnamed Tributary to<br>Unnamed Pond   | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Mixed                              | -        | Shrubs                 | -                                                           | Unlikely - based on no connectivity            |
| WCA-142     | 345841              | 5380720     | WSC-130   | Mapped   | Desktop        | Mainland Brook                         | Watercourse | Watercourse visible | 1               | Riffle/run           | 7                      | Mixed                              | -        | Shrubs                 | Drains a large pond                                         | Fish habitat based on connectivity             |
| WCA-143     | 347719              | 5381480     | WSC-124   | Mapped   | Desktop        | Harry Brook                            | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Mixed                              | -        | Shrubs                 | Channel drains into bog hole. Not<br>apparent connectivity. | No                                             |
| WCA-144     | 348114              | 5381610     | WSC-124   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | 0               | -                    | -                      | -                                  | -        | Wetland                | Bog                                                         | No                                             |
| WCA-145     | 348915              | 5381860     | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Coarse                             | -        | Shrubs                 | -                                                           | Fish habitat based on connectivity             |
| WCA-146     | 349145              | 5381900     | WSC-124   | Mapped   | Desktop        | Harry Brook                            | Watercourse | Watercourse visible | 2               | Steady               | 10                     | Fines                              | Low      | Wetland                | Watercourse is not as mapped.<br>Slightly east.             | Fish habitat based on connectivity             |
| WCA-147     | 351369              | 5381400     | WSC-124   | Mapped   | Desktop        | Harry Brook                            | Watercourse | Watercourse visible | 3               | Riffle/run           | 11                     | Coarse                             | Moderate | Trees                  | -                                                           | Fish habitat based on connectivity             |
| WCA-148a    | 352288              | 5381460     | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Drainage channel    | 1               | erland Drain         | 1                      | Coarse                             | Low      | Shrubs                 | -                                                           | Unlikely - overland drainage                   |
| WCA-148b    | 352428              | 5381440     | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Drains two adjacent wetlands                                | Fish habitat based on connectivity             |
| WCA-149     | 352608              | 5381480     | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | -                                                           | Fish habitat based on connectivity             |
| WCA-150     | 353206              | 5381610     | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 1               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | -                                                           | Fish habitat based on connectivity             |
| WCA-151     | 353522              | 5381680     | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Drains from AML Mine Site                                   | Fish habitat based on connectivity             |
| WCA-152     | 353016              | 5386370     | WSC-157   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | Drains through disturbed area                               | Unlikely - overland drainage                   |
| WCA-153     | 355330              | 5382920     | WSC-110   | Unmapped | Desktop        | Tributary of Unnamed Brook             | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | Appears to dissipate throug bog                             | Unlikely - overland drainage                   |
| WCA-155     | 356531              | 5377490     | WSC-152   | Unmapped | Desktop        | Tributary of Unnamed Brook             | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Coarse                             | Low      | Trees                  | -                                                           | Unlikely - overland drainage                   |
| WCA-154a    | 356317.6875         | 5377962.5   | WSC-152   | Unmapped | Desktop        | Unnamed Brook                          | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Course                             | Low      | Trees                  | No obvious flow path from imagery                           |                                                |
| WCA-156     | 380654.5938         | 380654.5938 | WSC-223   | Mapped   | Desktop        | Unnamed Pond                           | Waterbody   | Waterbody visible   | na              | Bog Hole             | 110                    | Fines                              | Low      | Wetland                | Does not appear to have connectivity                        | Unlikely fish habitat based on<br>connectivity |
| WCA-157     | 381945.625          | 381945.625  | WSC-223   | Mapped   | Desktop        | Unnamed Pond                           | Waterbody   | Waterbody visible   | na              | Bog Hole             | 55                     | Fines                              | Low      | Wetland                | Does not appear to have connectivity                        | Unlikely fish habitat based on<br>connectivity |
| WCA-158     | 380126.8438         | 380126.8438 | WSC-214   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Watercourse may not be as mapped                            | Fish habitat based on connectivity             |
| WCA-159     | 380010.5            | 380010.5    | WSC-214   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                           | Fish habitat based on connectivity             |
| WCA-160     | 379665.2813         | 379665.2813 | WSC-214   | Mapped   | Desktop        | -                                      | Waterbody   | Waterbody visible   | na              | Bog Hole             | 130                    | Fines                              | Low      | Shrubs                 | Adjacent smaller bog holes                                  | Unlikely - based on no connectivity            |
| WCA-161a    | 379661.3125         | 379661.3125 | WSC-235   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | Channel visible but appears to<br>dissipate downstream      | Unlikely - based on no connectivity            |
| WCA-161b    | 379540.9063         | 379540.9063 | WSC-235   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Coarse                             | Low      | Shrub/Trees            | Channel visible but appears to<br>dissipate near crossing   | Unlikely - based on no connectivity            |
| WCA-162     | 378769.6563         | 378769.6563 | WSC-218   | Mapped   | Desktop        | Smelt Brook                            | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | Appears steep downstream                                    | Fish habitat based on connectivity             |

Table E.2. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Collector Lines for the Port au Port Wind Farm

| Watercourse         | Easting (UTM<br>21) |                    | Watershed          | Mapping          | Survey<br>Type     | Name                                   | Source                     | Status                                     | Stream<br>Order | Habitat<br>Type          | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope      | Riparian<br>Vegetation | Relevant Features                                                                                    | Fish Habitat?                                                            |
|---------------------|---------------------|--------------------|--------------------|------------------|--------------------|----------------------------------------|----------------------------|--------------------------------------------|-----------------|--------------------------|------------------------|------------------------------------|------------|------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| WCL-704a            | 341517              | 5380593            | WSC-114            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | String bog                                                                                           | No                                                                       |
| WCL-704b            | 341275              | 5380917            | WSC-114            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-704c<br>WCL-706 | 340685<br>342987    | 5380953<br>5379547 | WSC-114<br>WSC-130 | Mapped<br>Mapped | Desktop<br>Desktop | -<br>Unnamed Tributary to              | Watercourse<br>Watercourse | No Visible Channel<br>Watercourse visible  | - 1             | -<br>Riffle/run          | - 2                    | -<br>Coarse                        | -<br>Low   | -<br>Trees             | -<br>Downstream of wetland                                                                           | No<br>Fish habitat based on connectivity                                 |
| WCL-707a            | 342895              | 5379855            | WSC-130            | Mapped           | Desktop            | Mainland Brook<br>Unnamed Stringbog    | Waterbody                  | Waterbody visible                          | na              | Bog Hole                 | 80                     | Fines                              | Low        | Wetland                | Stringbog no connectivity to                                                                         | Unlikely - based on no connectivity                                      |
| WCL-707b            | 342914              | 5379791            | WSC-130            | Mapped           | Desktop            | Unnamed Stringbog                      | Watercourse                | Drainage channel                           | na              | Overland<br>Drainage     | 17                     | Fines                              | Low        | Wetland                | watercourse<br>Stringbog no connectivity to<br>watercourse                                           | Unlikely - based on no connectivity                                      |
| WCL-707c            | 342819              | 5379765            | WSC-130            | Mapped           | Desktop            | Unnamed Stringbog                      | Watercourse                | Drainage channel                           | na              | Overland<br>Drainage     | 12                     | Fines                              | Low        | Wetland                | Stringbog no connectivity to<br>watercourse                                                          | Unlikely - based on no connectivity                                      |
| WCL-708             | 342691              | 5380482            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse Visible                        | 2               | Riffle/run               | 1                      | Coarse                             | Low        | Trees                  | Skidder trail marks                                                                                  | Fish habitat based on connectivity                                       |
| WCL-709             | 342615              | 5380852            | WSC-130            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-710             | 343504              | 5382627            | WSC-130            | Mapped           | Desktop            | Mainland Brook                         | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 9                      | Coarse                             | Low        | Trees                  | -                                                                                                    | Fish habitat based on connectivity                                       |
| WCL-711a            | 342626              | 5380989            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 3                      | Coarse                             | Low        | Trees                  | Old logging load downstream                                                                          | Fish habitat based on connectivity                                       |
| WCL-711b            | 342652              | 5381297            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 3                      | Coarse                             | Low        | Trees                  | Old logging load upstream                                                                            | Fish habitat based on connectivity                                       |
| WCL-711c            | 342893              | 5382263            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 10                     | Coarse                             | Low        | Trees                  | -                                                                                                    | Fish habitat based on connectivity                                       |
| WCL-712a            | 342700              | 5382173            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low        | Trees                  | East of HWY 463 (coast)                                                                              | Unlikely - overland drainage                                             |
| WCL-712b            | 342714              | 5382091            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low        | Trees                  | Redesign - shift east to avoid<br>watercourse                                                        | Unlikely - overland drainage                                             |
| WCL-712c            | 342711              | 5382048            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low        | Trees                  | Redesign - shift east to avoid<br>watercourse                                                        | Unlikely - overland drainage                                             |
| WCL-713<br>WCL-714  | 342079<br>345486    | 5382601<br>5384891 | WSC-130<br>WSC-171 | Mapped<br>Mapped | Desktop<br>Desktop | Mainland Brook<br>Unnamed Brook        | Watercourse<br>Watercourse | Watercourse visible<br>Watercourse visible | 4               | Riffle/run<br>Riffle/run | 13                     | Coarse<br>Coarse                   | Low<br>Low | Trees<br>Trees         | East of HWY 463 (coast)<br>East of HWY 463 (coast)                                                   | Fish habitat based on connectivity<br>Fish habitat based on connectivity |
| WCL-715a            | 343502              | 5378897            | WSC-130            | Unmapped         | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse visible                        | 0               | Riffle/run               | 1                      | Coarse                             | Low        | Trees                  | Just north of Forest road. 3 collector<br>lines run paralell                                         | Fish habitat based on connectivity                                       |
| WCL-715b            | 343548              | 5378667            | WSC-130            | Unmapped         | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse visible                        | 0               | Riffle/run               | 1                      | Coarse                             | Low        | Trees                  | Just north of Forest road                                                                            | Fish habitat based on connectivity                                       |
| WCL-715c            | 343537              | 5378580            | WSC-130            | Unmapped         | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Watercourse visible                        | 0               | Riffle/run               | 1                      | Coarse                             | Low        | Trees                  | Just north of Forest road                                                                            | Fish habitat based on connectivity                                       |
| WCL-716             | 344423              | 5380629            | WSC-130            | Mapped           | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low        | Trees                  | Downstream of wetland                                                                                | Unlikely - overland drainage                                             |
| WCL-717             | 344883              | 5381610            | WSC-130            | Mapped           | Desktop            | Tributary to Mainland Brook            | Watercourse                | Watercourse visible                        | 2               | Riffle/run               | 2                      | Coarse                             | Low        | Trees                  | ROW may contain additional<br>tributaries                                                            | Fish habitat based on connectivity to<br>pond                            |
| WCL-718             | 345406              | 5382608            | WSC-130            | Mapped           | Desktop            | Tributary to Mainland Brook            | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 1                      | Coarse                             | Low        | Trees                  | Near watershed divide                                                                                | Fish habitat based on connectivity                                       |
| WCL-719             | 347026              | 5384094            | WSC-130            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-720             | 347033              | 5384127            | WSC-130            | Mapped           | Desktop            | Unnamed Channel                        | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low        | Trees                  | Channel visible downstream of two inflowing tributaries                                              | Unlikely - based on no connectivity                                      |
| WCL-721             | 347074              | 5384295            | WSC-130            | Mapped           | Desktop            | Tributary to Mainland Brook            | Watercourse                | Watercourse visible                        | 2               | Riffle/run               | 1                      | Coarse                             | Low        | Trees                  | Connected to pond                                                                                    | Fish habitat based on connectivity                                       |
| WCL-722             | 349567              | 5387280            | WSC-172            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-726             | 344901              | 5379703            | WSC-130            | Mapped           | Desktop            | Unnamed Pond                           | Waterbody                  | Waterbody visible                          | na              | Bog Hole                 | 70                     | Fines                              | Low        | Shrubs                 | 3 of 5 collector lines intersect the<br>pond, likely not fish bearing since no<br>connectivity to WC | Unlikely - based on no connectivity                                      |
| WCL-727             | 345367              | 5380801            | WSC-130            | Mapped           | Desktop            | - 1                                    | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-728             | 345478              | 5381185            | WSC-130            | Mapped           | Desktop            | Tributary to Mainland Brook            | Watercourse                | Watercourse visible                        | 2               | Riffle/run               | 2                      | Coarse                             | Low        | Trees                  | downstream of two bog ponds,<br>upstream of WCL-717                                                  | Fish habitat based on connectivity                                       |
| WCL-729             | 345639              | 5381694            | WSC-130            | Mapped           | Desktop            |                                        | Watercourse                | No Visible Channel                         | -               |                          | -                      | -                                  |            | -                      | -                                                                                                    | No                                                                       |
| WCL-730             | 345752              | 5382058            | WSC-130            | Mapped           | Desktop            | Tributary to Mainland Brook            | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 1                      | Mixed                              | Low        | Shrubs                 | Connects to small pond an can see a bit of channelization                                            | Fish habitat based on connectivity to<br>pond                            |
| WCL-739             | 351330              | 5383397            | WSC-124            | Mapped           | Desktop            | -                                      |                            | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-740a            | 353356              | 5386158            | WSC-157            | Mapped           | Desktop            | -                                      |                            | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-740b            | 352242              | 5385719            | WSC-157            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No                                                                       |
| WCL-741a            | 352007              | 5383066            | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to<br>Victor's Brook | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 3                      | Mixed                              | Moderate   | Trees                  | 3 collector lines intersect 82 m of watercourse                                                      | Fish habitat based on connectivity                                       |
| WCL-742<br>WCL-743  | 352653<br>352937    | 5383265<br>5383224 | WSC-124<br>WSC-124 | Mapped<br>Mapped | Desktop<br>Desktop |                                        |                            | No Visible Channel<br>No Visible Channel   | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | No<br>No                                                                 |
| WCL-743<br>WCL-744  | 352937              | 5383224            | WSC-124<br>WSC-124 | Mapped           | Desktop            | -                                      |                            | No Visible Channel                         | -               | -                        | -                      | -                                  | -          | -                      | -                                                                                                    | NO                                                                       |
|                     |                     | 0000027            |                    | mapped           | Doomop             |                                        |                            |                                            | _               | _                        | _                      | _                                  | _          | _                      | -                                                                                                    | 140                                                                      |

## Table E.2. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Collector Lines for the Port au Port Wind Farm

| Watercourse          | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed          | Mapping          | Survey<br>Type     | Name                                   | Source                     | Status                                     | Stream<br>Order | Habitat<br>Type          | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope         | Riparian<br>Vegetation | Relevant Features                                                                | Fish Habitat?                                                            |
|----------------------|---------------------|----------------------|--------------------|------------------|--------------------|----------------------------------------|----------------------------|--------------------------------------------|-----------------|--------------------------|------------------------|------------------------------------|---------------|------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| WCL-745a             | 353715              | 5383135              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to<br>Victor's Brook | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 3                      | Coarse                             | Moderate      | Trees                  | Just east of Victors brook channel                                               | Fish habitat based on connectivity                                       |
| WCL-745b             | 353780              | 5383119              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to<br>Victor's Brook | Watercourse                | Watercourse visible                        | 3               | Riffle/run               | 3                      | Coarse                             | Moderate      | Trees                  | Just east of Victors brook channel                                               | Fish habitat based on connectivity                                       |
| WCL-746              | 353868              | 5383082              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to<br>Victor's Brook | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 1                      | Coarse                             | Moderate      | Trees                  | Just east of Victors brook channel                                               | Fish habitat based on connectivity                                       |
| WCL-747              | 354220              | 5382933              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-748              | 354523              | 5382807              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-749              | 354842              | 5382920              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-750              | 355089              | 5383213              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-751              | 355604              | 5383462              | WSC-110            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-752              | 355245              | 5382663              | WSC-110            | Mapped           | Desktop            | Unnamed Brook                          | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 1                      | Coarse                             | Moderate      | Shrubs                 | -                                                                                | Fish habitat based on connectivity                                       |
| WCL-753              | 355403              | 5382641              | WSC-110            | Mapped           | Desktop            | -                                      | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Mixed                              | Moderate      | Shrubs                 | -                                                                                | Unlikely - based on no connectivity                                      |
| WCL-754              | 355458              | 5382630              | WSC-110            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-755              | 355721              | 5382587              | WSC-116            | Mapped           | Desktop            | Tributary of Unnamed Brook             | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 2                      | Coarse                             | Low           | Trees                  | South of Hwy 462                                                                 | Fish habitat based on connectivity                                       |
| WCL-756              | 355919              | 5382560              | WSC-116            | Mapped           | Desktop            | Tributary of Unnamed Brook             | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 1                      | Coarse                             | Low           | Trees                  | South of Hwy 463                                                                 | Fish habitat based on connectivity                                       |
| WCL-757              | 355967              | 5382551              | WSC-116            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-758              | 356199              | 5382513              | WSC-116            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-759              | 356403              | 5382575              | WSC-116            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-760              | 356567              | 5382728              | WSC-116            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-761              | 356707              | 5382858              | WSC-116            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-762              | 352954              | 5383668              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-763              | 353120              | 5383714              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
| WCL-764a             | 353790              | 5383677              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low           | Trees                  | Channel not visible due to trees but pattern suggests channel is possible        | Unlikely - overland drainage                                             |
| WCL-764b             | 353753              | 5383678              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse                | Drainage channel                           | 1               | Overland<br>Drainage     | 1                      | Coarse                             | Low           | Trees                  | Channel not visible due to trees but pattern suggests channel is possible        | Unlikely - overland drainage                                             |
| WCL-765b<br>WCL-765c | 354340<br>354253    | 5384108<br>5384019   | WSC-124<br>WSC-124 | Mapped<br>Mapped | Desktop<br>Desktop | Harry Brook<br>Harry Brook             | Watercourse<br>Watercourse | Watercourse visible<br>Watercourse visible | 4 4             | Riffle/run<br>Riffle/run | 5                      | Coarse<br>Coarse                   | Low<br>Low    | Trees<br>Trees         | sw of HWY 464<br>sw of HWY 465                                                   | Fish habitat based on connectivity<br>Fish habitat based on connectivity |
| WCL-765d             | 353916              | 5383668              | WSC-124            | Mapped           | Desktop            | Harry Brook                            | Watercourse                | Watercourse visible                        | 4               | Riffle/run               | 4                      | Coarse                             | Low           | Trees                  | Channel braids/ has flooded side channel                                         | Fish habitat based on connectivity                                       |
| WCL-766              | 353389              | 5384588              | WSC-107            | Mapped           | Desktop            | Tributary of Unnamed Brook             | Watercourse                | Watercourse visible                        | 1               | Riffle/run               | 1                      | Coarse                             | Moderate      | Trees                  | Crosses existing logging road, which<br>connects to Hwy 463                      | Fish habitat based on connectivity                                       |
| WCL-767              | 352839              | 5382962              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse                | Watercourse visible                        | 2               | Riffle/run               | 1                      | Coarse                             | Moderate      | Trees                  | Collector line intersects 23 m of                                                | Fish habitat based on connectivity                                       |
| WCL-768c             | 352718              | 5382783              | WSC-124            | Mapped           | Desktop            | Harry Brook                            | Watercourse                | Watercourse visible                        | 4               | Riffle/run               | 10                     | Coarse                             | Moderate      | Trees                  | watercourse.                                                                     | Fish habitat based on connectivity                                       |
| WCL-768e             | 353032              | 5382936              | WSC-124            | Mapped           | Desktop            | Harry Brook                            | Watercourse                | Watercourse visible                        | 4               | Riffle/run               | 7                      | Coarse                             | Moderate      | Trees                  | Two collector lines span this location                                           | Fish habitat based on connectivity                                       |
| WCL-768f             | 353388              | 5383171              | WSC-124            | Mapped           | Desktop            | Victor's Brook                         | Watercourse                | Watercourse visible                        | 4               | Riffle/run               | 6                      | Coarse                             | Moderate      | Trees                  | -                                                                                | Fish habitat based on connectivity                                       |
| WCL-769              | 352966              | 5382926              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary of Harry<br>Brook    | Watercourse                | Drainage channel                           | 1               | Overland                 | 1                      | Coarse                             | Moderate      | Trees                  | Two collector lines span this location                                           | Unlikely - overland drainage                                             |
| WCL-771b             | 353141              | 5382903              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse                | Watercourse visible                        | 2               | Drainage<br>Riffle/run   | 1                      | Coarse                             | Low           | Trees                  | Two collector lines span this location                                           | Fish habitat based on connectivity                                       |
| WCL-772              | 353364              | 5382684              | WSC-124            | Mapped           | Desktop            | Unnamed Tributary to Harry             | Watercourse                | Watercourse visible                        | 2               | Riffle/run               | 2                      | Mixed                              | Low           | Shrubs                 | -                                                                                | Fish habitat based on connectivity                                       |
| WCL-773              | 353634              | 5382331              | WSC-124            | Mapped           | Desktop            | Brook<br>-                             | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | Three collector lines span at this                                               | No                                                                       |
| WCL-774a             | 353676              | 5382277              | WSC-124            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | _               | _                        | _                      | _                                  | _             |                        | location<br>Three collector lines span at this                                   | No                                                                       |
|                      | 500070              |                      |                    | mapped           | Loonop             |                                        |                            |                                            |                 | Ourseless                |                        |                                    |               |                        | location<br>Watercourse originates in the                                        |                                                                          |
|                      | 0.505.45            | 5382167              | WSC-124            | Mapped           | Desktop            | Tributary to Harry Brook               | Watercourse                | Drainage channel                           | 2               | Overland<br>Drainage     | 1                      | Coarse                             | Low           | Trees                  | footprint of an existing mine, unclear<br>how or if it connects to Harry's Brook | Unlikely - overland drainage                                             |
| WCL-774b             | 353745              |                      |                    |                  |                    |                                        |                            |                                            |                 |                          |                        |                                    |               |                        |                                                                                  |                                                                          |
| WCL-774b<br>WCL-776  | 353745              | 5381834              | WSC-110            | Mapped           | Desktop            | -                                      | Watercourse                | No Visible Channel                         | -               | -                        | -                      | -                                  | -             | -                      | -                                                                                | No                                                                       |
|                      |                     | 5381834<br>5380489   | WSC-110<br>WSC-116 | Mapped<br>Mapped | Desktop<br>Desktop | -                                      | Watercourse<br>Watercourse | No Visible Channel<br>No Visible Channel   | -               | -                        | -                      | -                                  | -             | -                      | -<br>Three collector lines span at this<br>location                              | No<br>No                                                                 |
| WCL-776              | 354143              |                      |                    |                  |                    | -<br>-<br>Three Ponds Pond 1           |                            |                                            | -<br>-<br>na    | -<br>-<br>Pond           | -<br>-<br>122          | -<br>-<br>Fines                    | -<br>-<br>Low | -<br>-<br>Trees        | -<br>Three collector lines span at this<br>location<br>-                         |                                                                          |

## Table E.2. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Collector Lines for the Port au Port Wind Farm

| Watercourse          | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed          | Mapping              | Survey<br>Type     | Name                                   | Source                   | Status                                  | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope      | Riparian<br>Vegetation | Relevant Features                                                                                                                                                | Fish Habitat?                           |
|----------------------|---------------------|----------------------|--------------------|----------------------|--------------------|----------------------------------------|--------------------------|-----------------------------------------|-----------------|----------------------|------------------------|------------------------------------|------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| WCL-780              | 355166              | 5377895              | WSC-151            | Mapped               | Desktop            | Unnamed Brook                          | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 2                      | Coarse                             | Moderate   | Trees                  | Flooded skidder trail/logging road.<br>Channel is visible upstream but does<br>not appear to have connectivity.<br>Three collector lines cross this<br>location. | Unlikely - overland drainage            |
| WCL-852              | 353780              | 5382111              | WSC-124            | Mapped               | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-855              | 354113              | 5382988              | WSC-124            | Mapped               | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-856<br>WCL-857   | 346866<br>346750    | 5381368<br>5381208   | WSC-124<br>WSC-124 | Unmapped<br>Unmapped | Desktop<br>Desktop | Unnamed Pond<br>Unnamed Pond           | Waterbody<br>Waterbody   | Waterbody visible<br>Waterbody visible  | 0               | Bog Hole<br>Bog Hole | 67<br>26               | Fines<br>Fines                     | Low<br>Low | Wetland<br>Wetland     | -                                                                                                                                                                | No<br>No                                |
| WCL-858              | 346599              | 5381151              | WSC-124<br>WSC-130 | Unmapped             | Desktop            | Unnamed Pond                           | Waterbody                | Waterbody visible                       | 0               | Bog Hole             | 20<br>55               | Fines                              | Low        | Wetland/Tree           |                                                                                                                                                                  | No                                      |
|                      |                     |                      |                    |                      |                    | Unnamed Tributary to                   | · · · · ·                | <u> </u>                                | 0               | Overland             |                        |                                    |            |                        |                                                                                                                                                                  | 110                                     |
| WCL-861              | 342336              | 5379846              | WSC-130            | Mapped               | Desktop            | Mainland Brook<br>Unnamed Tributary to | Watercourse              | Drainage channel                        | 1               | Drainage<br>Overland | 1                      | Mixed                              | Low        | Shrubs                 | -                                                                                                                                                                | -                                       |
| WCL-862              | 341884              | 5380058              | WSC-130            | Mapped               | Desktop            | Mainland Brook                         | Watercourse              | Drainage channel                        | 2               | Drainage             | 1                      | Mixed                              | Low        | Shrubs                 | -                                                                                                                                                                | -                                       |
| WCL-863<br>WCL-864   | 340075<br>339990    | 5375691<br>5375636   | WSC-143<br>WSC-143 | Unmapped<br>Mapped   | Desktop<br>Desktop | -                                      | Waterbody<br>Watercourse | Waterbody visible<br>No Visible Channel | na              | Bog Hole             | 26                     | Fines                              | Low        | Wetland                | No visible connectivity                                                                                                                                          | Unlikely - based on no connectivi<br>No |
| WCL-865              | 339676              | 5374930              | WSC-143<br>WSC-140 | Unmapped             | Desktop            | -                                      | Waterbody                | Waterbody visible                       | na              | -<br>Bog Hole        | - 22                   | -<br>Fines                         | Low        | -<br>Wetland           | No visible connectivity                                                                                                                                          | Unlikely - based on no connectivit      |
| WCL-866              | 344893              | 5381615              | WSC-130            | Mapped               | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | - Bog Hole           | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-868              | 350757              | 5388149              | WSC-148            | Mapped               | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | Within RoW                                                                                                                                                       | No                                      |
| WCL-869              | 343236              | 5382471              | WSC-130            | Mapped               | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-870              | 341576              | 5382341              | WSC-130            | Mapped               | Desktop            | Unnamed Tributary to<br>Mainland Brook | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 1                      | Mixed                              | Low        | Shrubs                 | Dissipates into forested wetland.<br>Within RoW.                                                                                                                 | Unlikely - based on no connectivit      |
| WCL-894              | 349482              | 5387300              | WSC-172            | Mapped               | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | Maybe at watershed divide                                                                                                                                        | No                                      |
| WCL-895              | 343718              | 5384040              | WSC-130            | Mapped               | Desktop            | -                                      | Watercourse              | Drainage channel                        | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low        | Shrubs                 | -                                                                                                                                                                | Unlikely - overland drainage            |
| WCL-896b             | 344192              | 5379280              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 1                      | Coarse                             | Moderate   | Trees                  | -                                                                                                                                                                | Unlikely - overland drainage            |
| WCL-896c             | 344166              | 5379300              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 1                      | Coarse                             | Moderate   | Trees                  | -                                                                                                                                                                | No                                      |
| WCL-896d             | 344197              | 5379220              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 1                      | Coarse                             | Moderate   | Trees                  | -                                                                                                                                                                | No                                      |
| WCL-897a             | 343518              | 5378420              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-897b             | 343515              | 5378390              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-898              | 345940              | 5377610              | WSC-137            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 0               | Overland<br>Drainage | 1                      | Coarse                             | Moderate   | Trees                  | -                                                                                                                                                                | Unlikely - overland drainage            |
| WCL-899              | 347197              | 5377450              | WSC-135            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 0               | erland Drain         | u 1                    | Mixed                              | Low        | Shrubs                 | -                                                                                                                                                                | Unlikely - overland drainage            |
| WCL-900              | 344703              | 5378320              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 0               | erland Drain         | u 1                    | Mixed                              | Low        | Shrubs                 | -                                                                                                                                                                | Unlikely - overland drainage            |
| WCL-901              | 343212              | 5377230              | WSC-140            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 0               | erland Drain         | u 1                    | Mixed                              | Low        | Shrubs                 | -                                                                                                                                                                | Unlikely - overland drainage            |
| WCL-902a             | 345053              | 5379790<br>5379740   | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-902b<br>WCL-902c | 345090<br>345120    | 5379730              | WSC-130<br>WSC-130 | Unmapped             | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      |                                    | -          | -                      | -                                                                                                                                                                | No                                      |
| WCL-903a             | 346057              | 5380490              | WSC-130            | Unmapped<br>Unmapped | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    |                        |                                    | -          |                        | Skidder trail marks                                                                                                                                              | No<br>No                                |
| WCL-903b             | 346068              | 5380540              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 1                      | Coarse                             | Low        | Trees                  | Appears to drain a low lying area                                                                                                                                | No                                      |
| WCL-903c             | 346057              | 5380610              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | Drainage channel                        | 1               | Overland<br>Drainage | 1                      | Coarse                             | Low        | Trees                  | Appears to drain a low lying area                                                                                                                                | No                                      |
| WCL-903d             | 346015              | 5380660              | WSC-130            | Unmapped             | Desktop            | -                                      | Watercourse              | No Visible Channel                      | -               | -                    | -                      | -                                  | -          | -                      | Appears to drain a low lying area                                                                                                                                | No                                      |
| WCL-904a             | 347525              | 5381860              | WSC-124            | Unmapped             | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Drainage channel                        | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low        | Shrubs                 | Appears to be crossed by and old logging road/skidder trail                                                                                                      | Unlikely - overland drainage            |
| WCL-904b             | 347621              | 5381780              | WSC-124            | Unmapped             | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Drainage channel                        | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low        | Shrubs                 | Appears to be crossed by and old logging road/skidder trail                                                                                                      | Unlikely - overland drainage            |
| WCL-904c             | 347578              | 5381820              | WSC-124            | Unmapped             | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Drainage channel                        | 0               | Overland<br>Drainage | 1                      | Coarse                             | Low        | Trees                  | Appears to be crossed by and old logging road/skidder trail                                                                                                      | Unlikely - overland drainage            |
| WCL-905a             | 348772              | 5381910              | WSC-124            | Mapped               | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Watercourse visible                     | 1               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | -                                                                                                                                                                | Fish habitat based on connectivit       |
| WCL-905b             | 348878              | 5381940              | WSC-124            | Mapped               | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Watercourse visible                     | 1               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | -                                                                                                                                                                | Fish habitat based on connectivit       |
| WCL-905c             | 349021              | 5382000              | WSC-124            | Mapped               | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Watercourse visible                     | 1               | Riffle/run           | 1                      | Mixed                              | Low        | Shrub/Tree             | -                                                                                                                                                                | Fish habitat based on connectivit       |
| WCL-905d             | 349061              | 5382000              | WSC-124            | Mapped               | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Watercourse visible                     | 1               | Riffle/run           | 1                      | Mixed                              | Low        | Shrub/Tree             | -                                                                                                                                                                | Fish habitat based on connectivit       |
| WCL-905e             | 349076              | 5381970              | WSC-124            | Mapped               | Desktop            | Unnamed Tributary to Harry<br>Brook    | Watercourse              | Watercourse visible                     | 1               | Glide                | 3                      | Fines                              | Low        | Wetland                | -                                                                                                                                                                | Fish habitat based on connectivit       |

Table E.2. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Collector Lines for the Port au Port Wind Farm

| Watercourse | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed | Mapping  | Survey<br>Type | Name                                   | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                               | Fish Habitat?                      |
|-------------|---------------------|----------------------|-----------|----------|----------------|----------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|-------------------------------------------------|------------------------------------|
| WCL-905f    | 349063              | 5381940              | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 1               | Glide                | 3                      | Fines                              | Low      | Wetland                | -                                               | Fish habitat based on connectivity |
| WCL-905g    | 349113              | 5381930              | WSC-124   | Mapped   | Desktop        | Harry Brook                            | Watercourse | Watercourse visible | 2               | Steady               | 6                      | Fines                              | Low      | Wetland                | Watercourse is not as mapped.<br>Slightly east. | Fish habitat based on connectivity |
| WCL-905h    | 349142              | 5381900              | WSC-124   | Mapped   | Desktop        | Harry Brook                            | Watercourse | Watercourse visible | 2               | Steady               | 10                     | Fines                              | Low      | Wetland                | Watercourse is not as mapped.<br>Slightly east. | Fish habitat based on connectivity |
| WCL-905i    | 348960              | 5381970              | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrub/Tree             | -                                               | Fish habitat based on connectivity |
| WCL-906     | 351143              | 5383080              | WSC-124   | Mapped   | Desktop        | Tributary to Harry Brook               | Watercourse | Watercourse visible | 2               | Riffle/run           | 1                      | Coarse                             | Moderate | Trees                  | -                                               | Fish habitat based on connectivity |
| WCL-907a    | 352950              | 5386350              | WSC-157   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | Drains through disturbed area                   | Unlikely - overland drainage       |
| WCL-907b    | 352994              | 5386360              | WSC-157   | Mapped   | Desktop        | Unnamed Tributary to<br>Atlantic Ocean | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | Drains through disturbed area                   | Unlikely - overland drainage       |
| WCL-908     | 356318              | 5377760              | WSC-152   | Unmapped | Desktop        | Tributary of Unnamed Brook             | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | -                                               | Unlikely - overland drainage       |
| WCL-909     | 354865              | 5378660              | WSC-150   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                               | No                                 |
| WCL-918     | 350350              | 5387850              | WSC-148   | Mapped   | Desktop        | Lourdes Brook                          | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | -        | Trees                  | -                                               | Fish habitat based on connectivity |
| WCL-919     | 343708              | 5379240              | WSC-130   | Unmapped | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                               | No                                 |

# Table E.3. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Substations, Wind Turbines and the Plant Site for the Port au Port Wind Farm

| Crossing Type     | Watercourse | Easting (UTM<br>21) | Northing (UTM 21) | Watershed | Mapping  | Survey<br>Type | Name                                   | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                                                    | Fish Habitat?                      |
|-------------------|-------------|---------------------|-------------------|-----------|----------|----------------|----------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|------------------------------------------------------------------------------------------------------|------------------------------------|
| Plant             | WCS-402     | 387879              | 5376470           | WSC-232   | Mapped   | Desktop        | Outlet of Gull Pond                    | Watercourse | Watercourse visible | 3               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Beaver impoundment                                                                                   | Fish habitat based on connectivity |
| Plant             | WCS-403     | 387962              | 5376778           | WSC-232   | Mapped   | Desktop        | Outlet of Gull Pond                    | Watercourse | Watercourse visible | 2               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                                    | Fish habitat based on connectivity |
| Plant             | WCS-404     | 388090              | 5376851           | WSC-232   | Mapped   | Desktop        | Outlet of Gull Pond                    | Watercourse | Watercourse visible | 2               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                                    | Fish habitat based on connectivity |
| Plant             | WCS-405     | 388182              | 5376956           | WSC-232   | Mapped   | Desktop        | Outlet of Gull Pond                    | Watercourse | Watercourse visible | 2               | Riffle/run           | 3                      | Mixed                              | Low      | Shrubs                 | -                                                                                                    | Fish habitat based on connectivity |
| Plant             | WCS-406     | 388310              | 5376894           | WSC-232   | Mapped   | Desktop        | Outlet of Gull Pond                    | Watercourse | Watercourse visible | 1               | Riffle/run           | 3                      | Mixed                              | Low      | Shrubs                 | May not be as mapped                                                                                 | Fish habitat based on connectivity |
| Sub station       | WCS-400     | 351654              | 5383183           | WSC-124   | Mapped   | Desktop        | Tributary to Harry Brook               | Watercourse | Watercourse visible | 2               | Riffle/run           | 1                      | Coarse                             | Moderate | Trees                  | Substation potentially overprints stream                                                             | Fish habitat based on connectivity |
| Sub station       | WCS-401     | 351732              | 5383172           | WSC-124   | Mapped   | Desktop        | Tributary to Harry Brook               | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Moderate | Trees                  | Substation potentially overprints stream                                                             | Fish habitat based on connectivity |
| Turbine Footprint | WCA-132     | 356313              | 5377900           | WSC-152   | Unmapped | Desktop        | Tributary of Unnamed Brook             | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                                    | Unlikely - overland drainage       |
| Turbine Footprint | WCF-1000    | 354116              | 5384230           | WSC-124   | Mapped   | Desktop        | Unnamed Tributary to Harry<br>Brook    | Watercourse | Drainage channel    | 1               | erland Drair         | ו ו                    | Mixed                              | Low      | Shrubs                 | Need to confirm if fish habitat in the field                                                         | Unlikely - overland drainage       |
| Turbine Footprint | WCF-1001    | 354860              | 5383332           | WSC-124   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1002    | 354540              | 5382938           | WSC-124   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field. Footprint within 15 m buffer of mapped watercourse. | No                                 |
| Turbine Footprint | WCF-1003    | 356349              | 5382686           | WSC-116   | Mapped   | Desktop        | Unnamed Tributary                      | Watercourse | Drainage channel    | 2               | erland Drair         | า: 1                   | Mixed                              | Low      | Tree/Shrub             | Need to confirm if fish habitat in the field. Footprint within 15 m buffer of mapped watercourse.    | No                                 |
| Turbine Footprint | WCF-1004    | 356606              | 5383019           | WSC-116   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1005    | 360323              | 5378775           | WSC-169   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1006    | 347079              | 5385237           | WSC-172   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1007    | 347213              | 5384328           | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook            | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Connected to pond. Need to confirm if fish habitat in the field.                                     | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1008    | 346778              | 5383624           | WSC-130   | Mapped   | Desktop        | Tributary to Mainland Brook            | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Need to confirm if fish habitat in the field. Footprint within 15 m buffer of watercourse.           | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1009    | 346115              | 5386166           | WSC-172   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1010    | 344988              | 5384941           | WSC-171   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1011    | 342503              | 5381930           | WSC-130   | Mapped   | Desktop        | Unnamed Tributary to<br>Mainland Brook | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Coarse                             | Low      | Trees                  | Need to confirm not fish habitat in the field. Footprint on mapped watercourse.                      | Unlikely - overland drainage       |
| Turbine Footprint | WCF-1031    | 345298              | 5380310           | WSC-130   | Mapped   | Desktop        | -                                      | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | Need to confirm no visible channel in the field                                                      | No                                 |
| Turbine Footprint | WCF-1032    | 356318              | 5377960           | WSC-152   | Unmapped | Desktop        | Tributary of Unnamed Brook             | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Inlet to pond. Need to confirm if fish habitat in the field.                                         | Fish habitat based on connectivity |

## Table E.4. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Roads for the Codroy Wind Farm

| Watercourse          | r e              | Northing (UTM 21)  | Watershed          | Mapping          | Survey<br>Type     | s for the Codroy Wind Farm<br>Name                                          | Source                     | Status              | Stream<br>Order | Habitat<br>Type | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                                          | Fish Habitat?                       |
|----------------------|------------------|--------------------|--------------------|------------------|--------------------|-----------------------------------------------------------------------------|----------------------------|---------------------|-----------------|-----------------|------------------------|------------------------------------|----------|------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|
| WCC-200a             | 367463           | 5326551            | WSC-312            | Mapped           | Desktop            | Tributary to Rainy Brook                                                    | Watercourse                | Watercourse visible | 1               | Riffle/run      | 2                      | Coarse                             | Low      | Trees                  | Appears to disspate into wetlands in<br>a few places                                       | Fish habitat based on connectivity  |
| WCC-200b             | 366724           | 5325210            | WSC-312            | Mapped           | Desktop            | Tributary to Rainy Brook                                                    | Watercourse                | Drainage Channel    | 1               | erland Drain    | 1                      | Mixed                              | Low      | Shrubs                 | Overland drainage to Rainy Brook                                                           | Unlikely - based on no connectivity |
| WCC-201              | 366172           | 5322504            | WSC-312            | Unmapped         | Desktop            | Tributary to Grand Codroy<br>River                                          | Watercourse                | Watercourse visible | 0               | Riffle/run      | 1                      | Coarse                             | Low      | Trees                  | Small tributary                                                                            | Fish habitat based on connectivity  |
| WCC-205b             | 360493           | 5329735            | WSC-312            | Mapped           | Desktop            | Unnamed Tributary to Rainy<br>Brook                                         | Watercourse                | Drainage channel    | 1               | erland Drair    | n 1                    | Coarse                             | Moderate | Trees                  | Drains wetland into Tributary to<br>Rainy Brook                                            | Unlikely - overland drainage        |
| WCC-206b             | 361479           | 5330617            | WSC-312            | Mapped           | Desktop            | Rainy Brook                                                                 | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | Outlet of pond through wetland<br>(Rainy Brook)                                            | Fish habitat based on connectivity  |
| WCC-207              | 361584           | 5330595            | WSC-312            | Unmapped         | Desktop            | Unnamed Tributary to Rainy<br>Brook                                         | Watercourse                | Watercourse visible | 0               | Glide           | 1                      | Fines                              | Low      | Wetland                | Flows through a wetland. Possible<br>second outlet of pond during high<br>flow conditions. | Fish habitat based on connectivity  |
| WCC-209              | 357301           | 5326221            | WSC-315            | Mapped           | Desktop            | Tributary to Morris Brook                                                   | Watercourse                | Watercourse visible | 2               | Riffle/run      | 2                      | Coarse                             | Low      | Trees                  | -                                                                                          | Fish habitat based on connectivity  |
| WCC-210              | 356290           | 5327861            | WSC-315            | Mapped           | Desktop            | Tributary to Morris Brook                                                   | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Coarse                             | Low      | Trees                  | Inlet to Morris Pond, connected to<br>Morris Brook                                         | Fish habitat based on connectivity  |
| WCC-211a             | 355425           | 5328760            | WSC-307            | Mapped           | Desktop            | Shoal Point Brook                                                           | Watercourse                | Watercourse visible | 1               | Riffle/run      | 2                      | Coarse                             | Moderate | Trees                  | Inlet to Shoal Point Pond                                                                  | Fish habitat based on connectivity  |
| WCC-214b             | 355572           | 5325070            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to<br>Morris Brook                                        | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs/Trees           | -                                                                                          | Fish habitat based on connectivity  |
| WCC-219b             | 347959           | 5318393            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to North<br>Branch Grand Codroy                           | Watercourse                | Watercourse visible | 3               | Riffle/run      | 12                     | Coarse                             | Moderate | Trees                  | Channel flows into North Branch                                                            | Fish habitat based on connectivity  |
| WCC-221              | 346467           | 5322419            | WSC-315            | Unmapped         | Desktop            | Tributary to North Branch<br>Grand Codroy                                   | Watercourse                | Watercourse visible | 0               | Riffle/run      | 3                      | Mixed                              | Low      | Shrubs                 | Outlet of pond. Channel braids through wetland.                                            | Fish habitat based on connectivity  |
| WCC-227              | 345043           | 5316246            | WSC-315            | Mapped           | Desktop            | -                                                                           | Watercourse                | No Visible Channel  | -               | -               | -                      | -                                  | -        | -                      | -                                                                                          | No                                  |
| WCC-261              | 339122           | 5316386            | WSC-315            | Unmapped         | Desktop            | Unnamed Tributary to<br>Brooms Brook                                        | Watercourse                | Watercourse visible | 0               | Glide           | 2                      | Fines                              | Low      | Wetland                | -                                                                                          | Fish habitat based on connectivity  |
| WCC-263              | 337323           | 5315473            | WSC-315            | Unmapped         | Desktop            | Unnamed Tributary to<br>Brooms Brook                                        | Watercourse                | Watercourse visible | 0               | Glide           | 1                      | Fines                              | Moderate | Wetland                | -                                                                                          | Fish habitat based on connectivity  |
| WCC-265              | 340628           | 5317401            | WSC-315            | Unmapped         | Desktop            | Unnamed Tributary to Big<br>Brook                                           | Watercourse                | Watercourse visible | 0               | Glide           | 1                      | Fines                              | Moderate | Wetland                | Old logging trail to west                                                                  | Fish habitat based on connectivity  |
| WCC-270c             | 343056           | 5316327            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to Big<br>Brook                                           | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Moderate | Shrubs                 | Located on sub-watershed divide                                                            | Fish habitat based on connectivity  |
| WCC-271a             | 341034           | 5313868            | WSC-315            | Mapped           | Desktop            | Unnamed Triubutary to<br>Ryans Brook                                        | Watercourse                | Watercourse visible | 1               | Glide           | 1                      | Fines                              | Low      | Wetland                | -                                                                                          | Fish habitat based on connectivity  |
| WCC-271b             | 341084           | 5313916            | WSC-315            | Mapped           | Desktop            | Unnamed Triubutary to<br>Ryans Brook                                        | Watercourse                | Watercourse visible | 1               | Glide           | 1                      | Fines                              | Low      | Wetland                | -                                                                                          | Fish habitat based on connectivity  |
| WCC-272b             | 341193           | 5313732            | WSC-315            | Mapped           | Desktop            | Unnamed Triubutary to<br>Ryans Brook                                        | Watercourse                | Watercourse visible | 1               | Glide           | 1                      | Fines                              | Low      | Wetland                | -                                                                                          | Fish habitat based on connectivity  |
| WCC-273a             | 342111           | 5314198            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to Big<br>Brook                                           | Watercourse                | Watercourse visible | 1               | Riffle/run      | 3                      | Coarse                             | Low      | Trees                  | Outlet of Wedding Pond                                                                     | Fish habitat based on connectivity  |
| WCC-273b             | 345054           | 5316193            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to Big<br>Brook                                           | Watercourse                | Watercourse visible | 1               | Riffle/run      | 3                      | Coarse                             | Low      | Trees                  | Outlet of Wedding Pond                                                                     | Fish habitat based on connectivity  |
| WCC-274              | 345079           | 5316319            | WSC-315            | Mapped           | Desktop            | Big Brook                                                                   | Watercourse                | Watercourse visible | 3               | Riffle/run      | 6                      | Coarse                             | Moderate | Trees                  | -                                                                                          | Fish habitat based on connectivity  |
| WCC-275              | 346650           | 5317914            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to<br>Woodpecker Pond                                     | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Coarse                             | Moderate | Trees                  | -                                                                                          | Fish habitat based on connectivity  |
| WCC-276              | 348898           | 5318491            | WSC-315            | Mapped           | Desktop            | Tributary to Big Brook                                                      | Watercourse                | Watercourse visible | 2               | Riffle/run      | 5                      | Coarse                             | Moderate | Trees                  | -                                                                                          | Fish habitat based on connectivity  |
| WCC-277              | 350574           | 5318602            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to<br>Unnamed Brook connected<br>North Brand Grand Codrov | Watercourse                | Watercourse visible | 1               | Riffle/run      | 2                      | Coarse                             | Moderate | Trees                  | Tributary off larger tributary                                                             | Fish habitat based on connectivity  |
| WCC-278              | 355316           | 5319289            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to North<br>Branch Grand Codroy                           | Watercourse                | Watercourse visible | 3               | Riffle/run      | 10                     | Coarse                             | Moderate | Trees                  | Tributary just off North Branch. North of TCH                                              | Fish habitat based on connectivity  |
| WCC-280              | 360569           | 5326913            | WSC-315            | Mapped           | Desktop            | -                                                                           | Watercourse                | No Visible Channel  | -               | -               | -                      | -                                  | -        | -                      | -                                                                                          | No                                  |
| WCC-281              | 359981<br>359365 | 5328207<br>5328908 | WSC-315            | Mapped           | Desktop            | -                                                                           | Watercourse                | No Visible Channel  | -               | -               | -                      | -                                  | -        | -                      | -                                                                                          | No                                  |
| WCC-282a<br>WCC-282c | 359365           | 5328908            | WSC-306<br>WSC-306 | Mapped<br>Mapped | Desktop<br>Desktop | -                                                                           | Watercourse<br>Watercourse | No Visible Channel  | -               | -               | -                      | -                                  | -        | -                      | -                                                                                          | No<br>No                            |
| WCC-284              | 358541           | 5325064            | WSC-315            | Mapped           | Desktop            | -                                                                           | Watercourse                | No Visible Channel  | -               | -               | -                      | -                                  | -        | -                      |                                                                                            | No                                  |
| WCC-285              | 355551           | 5328253            | WSC-315            | Mapped           | Desktop            | Tributary to Codroy River                                                   | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Coarse                             | Low      | Trees                  | Parallels existing access road                                                             | Fish habitat based on connectivity  |
| WCC-299              | 335524           | 5311347            | WSC-315            | Mapped           | Desktop            | Unnamed Tributary to<br>Brooms Brook                                        | Watercourse                | Watercourse visible | 1               | Riffle/run      | 1                      | Fines                              | Low      | Shrubs                 | Connected to Brooms Brook                                                                  | Fish habitat based on connectivity  |
| WCC-301              | 343225           | 5314831            | WSC-315            | Mapped           | Desktop            | -                                                                           | Watercourse                | No Visible Channel  | -               | -               | -                      | -                                  | -        | -                      | -                                                                                          | No                                  |
| WCC-307              | 342760           | 5315713            | WSC-315            | Unmapped         | Desktop            | Unnamed Tributary to Big<br>Brook                                           | Watercourse                | Watercourse visible | 0               | Glide           | 2                      | Fines                              | Low      | Wetland                | Drains pool in wetland                                                                     | Fish habitat based on connectivity  |
| WCC-308              | 342613           | 5315910            | WSC-315            | Unmapped         | Desktop            | Unnamed Tributary to Big<br>Brook                                           | Watercourse                | Watercourse visible | 0               | Glide           | 1                      | Fines                              | Low      | Wetland                | -                                                                                          | Fish habitat based on connectivity  |

## Table E.4. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Roads for the Codroy Wind Farm

| Watercourse | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed | Mapping  | Survey<br>Type | Name                                              | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                                             | Fish Habitat?                       |
|-------------|---------------------|----------------------|-----------|----------|----------------|---------------------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|
| WCC-309     | 342602              | 5315910              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook                 | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | -                                                                                             | Unlikely - overland drainage        |
| WCC-310     | 342511              | 5315904              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook                 | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Low      | Wetland                | -                                                                                             | Fish habitat based on connectivit   |
| WCC-311     | 337976              | 5314144              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | Headwater that flows down steep slope below crossing                                          | Unlikely - based on no connectivity |
| WCC-316     | 336259              | 5312621              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-317a    | 336269              | 5312643              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-317b    | 336278              | 5312664              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-318     | 336325              | 5312759              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivi    |
| WCC-319     | 336307              | 5312721              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-320     | 337571              | 5315477              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivi    |
| WCC-321     | 338989              | 5316479              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 2               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-322     | 339228              | 5316605              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-323     | 339041              | 5316508              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-324     | 339208              | 5316382              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 3               | Glide                | 2                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-325     | 338968              | 5316467              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 2               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-326     | 338949              | 5316471              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-327     | 338889              | 5316440              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook              | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-328     | 362609              | 5331242              | WSC-316   | Unmapped | Desktop        | Butter Brook                                      | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Drains a bog                                                                                  | Fish habitat based on connectivit   |
| WCC-329     | 363512              | 5323748              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Drainage channel    | 1               | erland Drain         | u 1                    | Coarse                             | Moderate | Trees                  | Very close to existing bog hole                                                               | Unlikely - overland drainage        |
| WCC-340a    | 365111              | 5323833              | WSC-312   | Mapped   | Desktop        | Unnamed Tributary to Bald<br>Mountain Brook       | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs/Trees           | Adjacent watercourse nearby                                                                   | Fish habitat based on connectivit   |
| WCC-340b    | 365409              | 5323636              | WSC-312   | Mapped   | Desktop        | Unnamed Tributary to Bald<br>Mountain Brook       | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs/Trees           | -                                                                                             | Fish habitat based on connectivit   |
| WCC-342     | 366755              | 5322959              | WSC-312   | Mapped   | Desktop        | Unnamed Tributary to an<br>Unnamed Pond           | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Moderate | Shrubs/Trees           | -                                                                                             | Fish habitat based on connectivit   |
| WCC-343a    | 365363              | 5321823              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-343b    | 365599              | 5322023              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivi    |
| WCC-343c    | 365730              | 5322160              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivi    |
| WCC-343d    | 365834              | 5322213              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-347     | 352762              | 5327304              | WSC-318   | Mapped   | Desktop        | Unnamed Pond                                      | Waterbody   | Waterbody visible   | 1               | Pond                 | 100                    | Fines                              | Low      | Wetland                | Road crosses pond                                                                             | Fish habitat based on connectivi    |
| WCC-348     | 352966              | 5323593              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy         | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-349     | 352813              | 5323329              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy         | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                             | Fish habitat based on connectivit   |
| WCC-350     | 347773              | 5322674              | WSC-315   | Unmapped | Desktop        | Tributary to North Branch<br>Grand Codroy         | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Skidder/ATV trail upstream of<br>crossing. Watercourse appears to be<br>slightly to the east. | Fish habitat based on connectivit   |
| WCC-351     | 347405              | 5322823              | WSC-315   | Unmapped | Desktop        | Tributary to North Branch<br>Grand Codroy         | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Skidder/ATV trail downstream of<br>crossing.                                                  | Fish habitat based on connectivi    |
| WCC-352     | 346782              | 5322580              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy         | Watercourse | Watercourse visible | 1               | Riffle/run           | 5                      | Mixed                              | Low      | Shrubs                 | Flows between two ponds                                                                       | Fish habitat based on connectivit   |

# Table E.4. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Roads for the Codroy Wind Farm

| Watercourse | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed | Mapping | Survey<br>Type | Name                                      | Source      | Status              | Stream<br>Order | Habitat<br>Type | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                       | Fish Habitat?                      |
|-------------|---------------------|----------------------|-----------|---------|----------------|-------------------------------------------|-------------|---------------------|-----------------|-----------------|------------------------|------------------------------------|----------|------------------------|---------------------------------------------------------|------------------------------------|
| WCC-353     | 343701              | 5320786              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-354     | 344602              | 5320987              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 2               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | Watercourse is slightly to the north.<br>Not as mapped. | Fish habitat based on connectivity |
| WCC-355     | 344626              | 5321382              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Mixed                              | Moderate | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-356     | 344603              | 5321194              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | Watercourse is slightly to the north.<br>Not as mapped. | Fish habitat based on connectivity |
| WCC-357     | 344595              | 5321120              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Mixed                              | Moderate | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-358     | 344733              | 5322092              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 4                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-359     | 344752              | 5320557              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 2               | Riffle/run      | 1                      | Coarse                             | Moderate | Trees                  | -                                                       | Fish habitat based on connectivity |
| WCC-360     | 345063              | 5320405              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | Watercourse slightly to west. Not as mapped.            | Fish habitat based on connectivity |
| WCC-361     | 345191              | 5320427              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 2               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-362     | 345251              | 5320444              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-363a    | 345217              | 5320520              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 3               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-363b    | 345356              | 5320474              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 3               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-365     | 345965              | 5319634              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 2               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-366     | 346010              | 5319650              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Coarse                             | Low      | Trees                  | -                                                       | Fish habitat based on connectivity |
| WCC-367     | 341646              | 5318411              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Coarse                             | Low      | Trees                  | -                                                       | Fish habitat based on connectivity |
| WCC-368     | 340939              | 5318268              | WSC-315   | Mapped  | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | Potentially braided at crossing                         | Fish habitat based on connectivity |
| WCC-369     | 340889              | 5318195              | WSC-315   | Mapped  | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-370a    | 341063              | 5319401              | WSC-315   | Mapped  | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-370b    | 341091              | 5319390              | WSC-315   | Mapped  | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-372a    | 342232              | 5317948              | WSC-315   | Mapped  | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | Watercourse slightly to west. Not as mapped.            | Fish habitat based on connectivity |
| WCC-372b    | 342279              | 5317995              | WSC-315   | Mapped  | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |
| WCC-373     | 341724              | 5318339              | WSC-315   | Mapped  | Desktop        | Tributary to North Branch<br>Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run      | 1                      | Mixed                              | Low      | Shrubs                 | -                                                       | Fish habitat based on connectivity |

# Table E.5. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Collector Lines for the Codroy Wind Farm

| Watercourse | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed | Mapping  | Survey<br>Type | Name                                                                                 | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                              | Fish Habitat?                                  |
|-------------|---------------------|----------------------|-----------|----------|----------------|--------------------------------------------------------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|--------------------------------------------------------------------------------|------------------------------------------------|
| WCL-775     | 366776              | 5325326              | WSC-312   | Mapped   | Desktop        | Tributary to Rainy Brook                                                             | Watercourse | Drainage Channel    | 1               | Overland<br>Drainage | 1                      | Coarse                             | Low      | Trees                  | Overland drainage to Rainy Brook                                               | Unlikely - based on no connectivity            |
| WCL-795     | 348290              | 5322221              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Moderate | Wetland                | Branching channels through wetland<br>connect with North Brand Grand<br>Codroy | Fish habitat based on connectivity             |
| WCL-796     | 347770              | 5322530              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Mixed                              | Moderate | Shrubs                 | Braided through wetland                                                        | Fish habitat based on connectivity             |
| WCL-797     | 346935              | 5321398              | WSC-315   | Mapped   | Desktop        | US Unnamed Tributary to<br>North Branch Grand Codroy                                 | Watercourse | Watercourse visible | 3               | Riffle/run           | 11                     | Coarse                             | Moderate | Trees/Wetland          | Channel flows into North Branch just<br>bfore confluence with South Branch     | Fish habitat based on connectivity             |
| WCL-798     | 350750              | 5323186              | WSC-318   | Mapped   | Desktop        | Tributary to Unnamed Brook                                                           | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | Channelizes in wetland but looks like<br>not fully connected to brook          | Unlikely - based on no connectivity            |
| WCL-799     | 352976              | 5323410              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Moderate | Shrubs                 | Drains wetland, large valley with high slope                                   | Fish habitat based on connectivity             |
| WCL-800     | 352988              | 5323543              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 2               | Watercour<br>se      | 1                      | Mixed                              | Moderate | Shrubs                 | Braided at proposed crossing<br>location                                       | Unlikely - overland drainage                   |
| WCL-801a    | 351890              | 5321200              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy                                    | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Coarse                             | Moderate | Trees                  | Three collector lines associated with this location                            | Fish habitat based on connectivity             |
| WCL-801b    | 352083              | 5321314              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy                                    | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Coarse                             | Moderate | Trees                  | Five collector lines associated with proposed crossing                         | Fish habitat based on connectivity             |
| WCL-802     | 365741              | 5324859              | WSC-312   | Mapped   | Desktop        | Unnamed Pond                                                                         | Waterbody   | Waterbody visible   | na              | Bog Hole             | 42                     | Fines                              | Low      | Shrubs                 | Does not appear to be connected to a watercourse                               | Unlikely fish habitat based on<br>connectivity |
| WCL-803     | 353510              | 5320361              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy                                    | Watercourse | Watercourse visible | 2               | Overland<br>Drainage | 1                      | Coarse                             | Moderate | Trees                  | 3 collector lines intersecting 83 m of<br>watercourse                          | Fish habitat based on connectivity             |
| WCL-804     | 350723              | 5318702              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Unnamed Brook connected<br>North Brand Grand Codroy<br>River | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Coarse                             | Moderate | Trees                  | 3 collector lines intersecting 83 m of watercourse                             | Fish habitat based on connectivity             |
| WCL-805     | 348932              | 5318553              | WSC-315   | Mapped   | Desktop        | Tributary to Big Brook                                                               | Watercourse | Watercourse visible | 2               | Riffle/run           | 5                      | Coarse                             | Moderate | Trees                  | 3 collector lines intersecting 83 m of watercourse                             | Fish habitat based on connectivity             |
| WCL-806     | 347878              | 5318410              | WSC-315   | Mapped   | Desktop        | US Unnamed Tributary to<br>North Branch Grand Codroy                                 | Watercourse | Watercourse visible | 3               | Riffle/run           | 11                     | Coarse                             | Moderate | Trees                  | Channel flows into North Branch just<br>bfore confluence with South Branch     | Fish habitat based on connectivity             |
| WCL-807     | 345447              | 5321344              | WSC-315   | Mapped   | Desktop        | Unnamed Triubutary to<br>North Branch Codroy Brook                                   | Watercourse | Watercourse visible | 3               | Riffle/run           | 7                      | Coarse                             | Moderate | Shrubs                 | Drains wetlands into main channel                                              | Fish habitat based on connectivity             |
| WCL-808     | 345379              | 5320461              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 1               | Glide                | 3                      | Mixed                              | Low      | Wetland                | Channelizes through wetland, may drain a pond                                  | Fish habitat based on connectivity             |
| WCL-809     | 345286              | 5320318              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | Channelizes through wetland                                                    | Fish habitat based on connectivity             |
| WCL-810     | 345261              | 5320272              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 2               | Glide                | 2                      | Fines                              | Low      | Wetland                | Channelizes through wetland                                                    | Fish habitat based on connectivity             |
| WCL-811     | 345160              | 5320126              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Drainage channel    | 1               | erland Drain         | n 2                    | Fines                              | Low      | Wetland                | Channelizes through wetland                                                    | Unlikely - based on no connectivit             |
| WCL-812     | 344388              | 5319964              | WSC-315   | Unmapped | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Fines                              | Moderate | Wetland                | Channelization but not connected to watercourse                                | Unlikely - based on no connectivit             |
| WCL-813     | 343523              | 5320713              | WSC-315   | Mapped   | Desktop        | Tributary to North Branch<br>Grand Codroy                                            | Watercourse | Watercourse visible | 1               | Glide                | 5                      | Fines                              | Low      | Wetland                | Channelizes through wetland                                                    | Fish habitat based on connectivity             |
| WCL-814     | 343492              | 5321473              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Unnamed Brook                                                | Watercourse | Watercourse visible | 1               | Glide                | 3                      | Fines                              | Low      | Wetland                | Channelizes through wetland and<br>flows as inlet to pond                      | Fish habitat based on connectivity             |
| WCL-818     | 342325              | 5320436              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook                                                    | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Low      | Wetland                | Unclear if connected to watercourse                                            | Fish habitat based on connectivity             |
| WCL-819     | 342266              | 5320237              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook                                                    | Watercourse | Watercourse visible | 0               | Riffle/run           | 15                     | Mixed                              | Low      | Shrubs                 | Unclear if connected to watercourse, flooded wetland                           | Fish habitat based on connectivity             |
| WCL-820     | 342121              | 5319286              | WSC-315   | Unmapped | Desktop        | Drainage to Big Brook                                                                | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Fines                              | Moderate | Wetland                | Wetland adjacent but potentially not<br>permanently connected to Big Brook     | Unlikely - based on no connectivity            |
| WCL-821     | 353886              | 5320548              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy                                    | Watercourse | Watercourse visible | 3               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Just downstream of TCH, 4 collector lines transect 100m of watercourse         | Fish habitat based on connectivity             |
| WCL-822     | 356122              | 5321343              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook                                                | Watercourse | Watercourse visible | 1               | Glide                | 2                      | Fines                              | Low      | Wetland                | Five collector lines associated with<br>proposed crossing                      | Fish habitat based on connectivity             |
| WCL-823     | 356185              | 5321659              | WSC-315   | Mapped   | Desktop        | -                                                                                    | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                              | No                                             |

| Table E.5. Desktop Analysis of Watercourse/Waterbody | v Crossings As | sociated With Collector | Lines for the Codroy Wind Farm |
|------------------------------------------------------|----------------|-------------------------|--------------------------------|
|                                                      |                |                         |                                |

| Watercourse | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed | Mapping  | Survey<br>Type | Name                                              | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                                                          | Fish Habitat?                      |
|-------------|---------------------|----------------------|-----------|----------|----------------|---------------------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|
| WCL-824     | 356646              | 5322958              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 2               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Just downstream of TCH, 4 collector lines intersects 100 m of watercourse                                  | Fish habitat based on connectivity |
| WCL-825     | 356892              | 5323311              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Just downstream of TCH, 4 collector lines intersects 120 m of watercourse                                  | Fish habitat based on connectivit  |
| WCL-826     | 357798              | 5324580              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Connected to brook just downstream<br>of Codroy Pond, 4 collector lines<br>intersects 135 m of watercourse | Fish habitat based on connectivit  |
| WCL-827     | 358188              | 5324773              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 3               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Connected to brook just downstream<br>of Codroy Pond, 4 collector lines<br>intersects 110 m of watercourse | Fish habitat based on connectivi   |
| WCL-828     | 358414              | 5324893              | WSC-315   | Mapped   | Desktop        | -                                                 | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                                                          | No                                 |
| WCL-829     | 358535              | 5325072              | WSC-315   | Mapped   | Desktop        | -                                                 | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        |                        | -<br>Morris brook flows into Crooked                                                                       | No                                 |
| WCL-830     | 357375              | 5326241              | WSC-315   | Mapped   | Desktop        | Tributary to Morris Brook                         | Watercourse | Watercourse visible | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Brook after Codroy Pond Outlet<br>Inlet to Morris Pond, connected to                                       | Fish habitat based on connectivit  |
| WCL-831     | 356321              | 5327895              | WSC-315   | Mapped   | Desktop        | Tributary to Morris Brook                         | Watercourse | Watercourse visible | 2               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Morris Brook                                                                                               | Fish habitat based on connectivit  |
| WCL-832     | 355528              | 5328776              | WSC-307   | Mapped   | Desktop        | Shoal Point Brook                                 | Watercourse | Watercourse visible | 2               | Riffle/run           | 2                      | Coarse                             | Moderate | Trees                  | Inlet to Shoal Point Pond                                                                                  | Fish habitat based on connectivit  |
| WCL-833     | 354023              | 5329413              | WSC-321   | Mapped   | Desktop        | Unnamed Tributary to Ship<br>Brook                | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Coarse                             | Moderate | Trees                  | Likely drains into Unnamed pond<br>which is likely connected to Ship<br>Brook                              | Fish habitat based on connectivit  |
| WCL-834     | 353782              | 5327991              | WSC-307   | Mapped   | Desktop        | Shoal Point Brook                                 | Watercourse | Watercourse visible | 2               | Riffle/run           | 3                      | Coarse                             | Moderate | Trees                  | Inlet to Shoal Point Pond                                                                                  | Fish habitat based on connectivi   |
| WCL-835     | 355542              | 5325411              | WSC-315   | Mapped   | Desktop        | Tributary to Morris Brook                         | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Fines                              | Moderate | Shrubs                 | Drains wetland into Morris Brook                                                                           | Fish habitat based on connectivi   |
| WCL-836     | 353508              | 5326435              | WSC-315   | Mapped   | Desktop        | Tributary to Morris Brook                         | Watercourse | Watercourse visible | 3               | Riffle/run           | 1                      | Fines                              | Moderate | Wetland                | Drains wetland into Morris Brook                                                                           | Fish habitat based on connectivit  |
| WCL-837a    | 360929              | 5326278              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Connected to Codroy Pond                                                                                   | Fish habitat based on connectivit  |
| WCL-837b    | 361084              | 5326227              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Connected to Codroy Pond                                                                                   | Fish habitat based on connectivit  |
| WCL-838     | 360053              | 5328254              | WSC-315   | Mapped   | Desktop        | -                                                 | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                                                          | No                                 |
| WCL-839     | 359445              | 5328946              | WSC-306   | Mapped   | Desktop        | -                                                 | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                                                          | No                                 |
| WCL-840     | 359751              | 5329359              | WSC-306   | Mapped   | Desktop        | -                                                 | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                                                          | No                                 |
| WCL-841     | 360587              | 5329621              | WSC-312   | Mapped   | Desktop        | -                                                 | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                                                          | No                                 |
| WCL-842     | 360611              | 5329728              | WSC-312   | Mapped   | Desktop        | Unnamed Tributary to Rainy<br>Brook               | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Coarse                             | Moderate | Trees                  | Drains wetland into Tributary to<br>Rainy Brook                                                            | Unlikely - overland drainage       |
| WCL-843     | 361441              | 5330537              | WSC-312   | Mapped   | Desktop        | Rainy Brook                                       | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Outlet of pond through wetland<br>(Rainy Brook)                                                            | Fish habitat based on connectivit  |
| WCL-844     | 361567              | 5330545              | WSC-312   | Unmapped | Desktop        | Unnamed Tributary to Rainy<br>Brook               | Watercourse | Watercourse visible | 0               | Riffle/run           | 1                      | Fines                              | Low      | Wetland                | Second outlet of pond? Goes<br>through wetland                                                             | Fish habitat based on connectivit  |
| WCL-845     | 361386              | 5325471              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 3               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Inlet to Codroy Pond                                                                                       | Fish habitat based on connectivit  |
| WCL-846     | 363781              | 5324388              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Crooked Brook             | Watercourse | Watercourse visible | 1               | Riffle/run           | 3                      | Mixed                              | Low      | Shrubs                 | Flows into Codroy Pond which flows<br>into Crooked Brook                                                   | Fish habitat based on connectivit  |
| WCL-847     | 364747              | 5322865              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | -                                                                                                          | Fish habitat based on connectivit  |
| WCL-848     | 365322              | 5322036              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Grand Codroy River        | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Very small tributary of the north brand of the Gran Codroy.                                                | Fish habitat based on connectivit  |
| WCL-849     | 366147              | 5322415              | WSC-312   | Unmapped | Desktop        | Unnamed Tributary to<br>Grand Codroy River        | Watercourse | Watercourse visible | 0               | Glide                | 1                      | mixed                              | Low      | Shrubs                 | Very small tributary of the north brand of the Gran Codroy.                                                | Fish habitat based on connectivit  |
| WCL-850     | 365759              | 5323487              | WSC-312   | Mapped   | Desktop        | Unnamed Tributary to Bald<br>Mountain Brook       | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Bald Mountain Brook Headwaters                                                                             | Fish habitat based on connectivit  |
| WCL-872a    | 356512              | 5329351              | WSC-307   | Unmapped | Desktop        | Unnamed Tributary to Shoal<br>Point Brook         | Watercourse | Watercourse visible | 0               | Glide                | 2                      | Fines                              | Low      | Wetland                | -                                                                                                          | Fish habitat based on connectivit  |
| WCL-872b    | 356458              | 5329517              | WSC-307   | Unmapped | Desktop        | Unnamed Tributary to Shoal<br>Point Brook         | Watercourse | Watercourse visible | 0               | Glide                | 2                      | Fines                              | Low      | Wetland                | -                                                                                                          | Fish habitat based on connectivit  |

### Table E.5. Desktop Analysis of Watercourse/Waterbody Crossings Associated With Collector Lines for the Codroy Wind Farm

| Watercourse | Easting (UTM<br>21) | Northing (UTM<br>21) | Watershed | Mapping  | Survey<br>Type | Name                                      | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                                                                                | Fish Habitat?                             |
|-------------|---------------------|----------------------|-----------|----------|----------------|-------------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| WCL-872c    | 356518              | 5329631              | WSC-307   | Unmapped | Desktop        | Unnamed Tributary to Shoal<br>Point Brook | Watercourse | Watercourse visible | 0               | Glide                | 2                      | Fines                              | Low      | Wetland                | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-873     | 354278              | 5325350              | WSC-315   | Mapped   | Desktop        | -                                         | Watercourse | No Visible Channel  | -               | -                    | -                      | -                                  | -        | -                      | -                                                                                                                                | No                                        |
| WCL-874     | 346596              | 5317991              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Woodpecker Pond   | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Coarse                             | Moderate | Trees                  | Two collector lines span this location                                                                                           | Fish habitat based on connectivity        |
| WCL-875     | 345018              | 5316336              | WSC-315   | Mapped   | Desktop        | Big Brook                                 | Watercourse | Watercourse visible | 3               | Riffle/run           | 6                      | Coarse                             | Moderate | Trees                  | Big Brook System                                                                                                                 | Fish habitat based on connectivity        |
| WCL-876a    | 344930              | 5316143              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Outlet of Wedding Pond. Two<br>collector lines span this location.                                                               | Fish habitat based on connectivity        |
| WCL-876b    | 343350              | 5315015              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Outlet of Wedding Pond into Big<br>Brook. Redesign - watercourse runs<br>through collector line RoW for 1200<br>m. Move to east. | Fish habitat based on connectivity        |
| WCL-876c    | 342348              | 5314378              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Outlet of Wedding Pond into Big<br>Brook. Two collector lines span this<br>location.                                             | Fish habitat based on connectivity        |
| WCL-877     | 342894              | 5315611              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Drainage channel    | 1               | Riffle/run           | 1                      | Coarse                             | Moderate | Trees                  | Headwater                                                                                                                        | Fish habitat based on connectivity        |
| WCL-878     | 342902              | 5315648              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 0               | Glide                | 2                      | Mixed                              | Low      | Shrubs                 | Drains pool in wetland                                                                                                           | Fish habitat based on connectivity        |
| WCL-879     | 342994              | 5316353              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Moderate | Shrubs                 | Located on sub-watershed divide                                                                                                  | Fish habitat based on connectivity        |
| WCL-880     | 342203              | 5317901              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | Big Brook System                                                                                                                 | Fish habitat based on connectivity        |
| WCL-881     | 341173              | 5318336              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Low      | Wetland                | Two collector lines span this location                                                                                           | Fish habitat based on connectivity        |
| WCL-882     | 341312              | 5318291              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Low      | Wetland                | Two collector lines span this location                                                                                           | Fish habitat based on connectivity        |
| WCL-883     | 340702              | 5318407              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Drainage Channel    | 1               | erland Drain         | n 1                    | Fines                              | Low      | Wetland                | Big Brook System                                                                                                                 | Unlikely - overland drainage              |
| WCL-884     | 340596              | 5318238              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook         | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | Big Brook System                                                                                                                 | Fish habitat based on connectivity        |
| WCL-885     | 339115              | 5316405              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 3               | Glide                | 2                      | Fines                              | Low      | Wetland                | Brooms Brook system                                                                                                              | Fish habitat based on connectivity        |
| WCL-886     | 339132              | 5316429              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-887a    | 337693              | 5315402              | WSC-315   | Unmapped | Desktop        | -                                         | Waterbody   | Waterbody visible   | 0               | Bog Hole             | 37                     | Fines                              | Low      | Shrubs                 | -                                                                                                                                | Unlikely based on lack of<br>connectivity |
| WCL-887b    | 337655              | 5315367              | WSC-315   | Unmapped | Desktop        | -                                         | Waterbody   | Waterbody visible   | 0               | Bog Hole             | 17                     | Fines                              | Low      | Shrubs                 | -                                                                                                                                | Unlikely based on lack of<br>connectivity |
| WCL-888     | 336941              | 5314524              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 4               | Riffle/run           | 10                     | Coarse                             | Moderate | Shrubs                 | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-891     | 335416              | 5311382              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Fines                              | Low      | Shrubs                 | Connected to Brooms Brook                                                                                                        | Fish habitat based on connectivity        |
| WCL-892     | 341107              | 5313942              | WSC-315   | Mapped   | Desktop        | Unnamed Triubutary to<br>Ryans Brook      | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | Ryans Brook system                                                                                                               | Fish habitat based on connectivity        |
| WCL-893     | 341247              | 5313745              | WSC-315   | Mapped   | Desktop        | Unnamed Pond                              | Waterbody   | Waterbody visible   | 1               | Bog Hole             | 10                     | Fines                              | Low      | Wetland                | Ryans Brook system                                                                                                               | Unlikely - based on no connectivity       |
| WCL-910     | 336314              | 5312788              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-911     | 336223              | 5312651              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-912     | 336261              | 5312711              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-915     | 336215              | 5312637              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | -                                                                                                                                | Fish habitat based on connectivity        |
| WCL-916     | 338075              | 5315989              | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Drainage channel    | 0               | Overland<br>Drainage | 1                      | Fines                              | Low      | Wetland                | Appears to dissipate through bog                                                                                                 | Unlikely - overland drainage              |
| WCL-917     | 337891              | 5314191              | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook      | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Coarse                             | High     | Trees                  | Headwater that flows down steep slope below crossing                                                                             | Unlikely - based on no connectivity       |

| Crossing Type     | Watercourse | Easting (UTM 21) | Northing (UTM 21) | Watershed | Mapping  | Survey<br>Type | Name                                   | Source      | Status              | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                                                                          | Fish Habitat?                      |
|-------------------|-------------|------------------|-------------------|-----------|----------|----------------|----------------------------------------|-------------|---------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|
| Turbine Footprint | WCF-1017    | 346903           | 5322463           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Mainland Brook | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | Need to confirm not fish habitat in the field. Footprint on mapped watercourse.                            | Unlikely - overland drainage       |
| Turbine Footprint | WCF-1018    | 345395           | 5318527           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary                      | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Low      | Wetland                | Need to confirm if fish habitat in the field. Footprint on potential watercourse.                          | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1019    | 344347           | 5318237           | WSC-315   | Mapped   | Desktop        | Tributary to Grand Codroy<br>River     | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on mapped watercourse.                             | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1020    | 365678           | 5325164           | WSC-312   | Mapped   | Desktop        | Tributary to Grand Codroy<br>River     | Watercourse | Watercourse visible | 1               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on mapped watercourse.                             | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1021    | 348089           | 5321155           | WSC-315   | Unmapped | Desktop        | Unnamed                                | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Mixed                              | Low      | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on unmapped watercourse.                           | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1022    | 348118           | 5321137           | WSC-315   | Unmapped | Desktop        | Unnamed                                | Watercourse | Drainage channel    | 1               | Overland<br>Drainage | 1                      | Mixed                              | Low      | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on potential watercourse.                          | Unlikely - overland drainage       |
| Turbine Footprint | WCF-1023    | 342813           | 5316462           | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook      | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Moderate | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on mapped watercourse.                             | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1024    | 342488           | 5315880           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook      | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Low      | Wetland                | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1025    | 342488           | 5315881           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook      | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Moderate | Wetland                | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1026    | 340978           | 5319220           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to Big<br>Brook      | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Moderate | Wetland                | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1027    | 337105           | 5314770           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Brooms Brook   | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Moderate | Wetland                | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1028    | 337087           | 5314824           | WSC-315   | Unmapped | Desktop        | Unnamed Tributary to<br>Brooms Brook   | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Moderate | Wetland                | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1029    | 337277           | 5315470           | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook   | Watercourse | Watercourse visible | 0               | Glide                | 1                      | Fines                              | Moderate | Wetland                | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1030    | 335480           | 5311100           | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to<br>Brooms Brook   | Watercourse | Watercourse visible | 1               | Riffle/run           | 2                      | Mixed                              | Low      | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on potentially mapped watercourse (not as mapped). | Fish habitat based on connectivity |
| Turbine Footprint | WCF-1033    | 342828           | 5316452           | WSC-315   | Mapped   | Desktop        | Unnamed Tributary to Big<br>Brook      | Watercourse | Watercourse visible | 1               | Riffle/run           | 1                      | Mixed                              | Moderate | Shrubs                 | Need to confirm if fish habitat in the field. Footprint on potentially unmapped watercourse.               | Fish habitat based on connectivity |

### Table E.7. Desktop Analysis of Watercourse/Waterbody Transmission Line Crossings Associated With the Project Nujio'Qonik GH2 Wind Farm

| Watercourse        | Easting (UTM<br>21) | Northing<br>(UTM 21) | Watershed          | Mapping          | Survey<br>Type     | sociated With the Project N<br>Name          | Source                   | Status                                   | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope      | Riparian<br>Vegetation | Relevant Features                                                                                                                   | Fish Habitat?                            |
|--------------------|---------------------|----------------------|--------------------|------------------|--------------------|----------------------------------------------|--------------------------|------------------------------------------|-----------------|----------------------|------------------------|------------------------------------|------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| WCT-500            | 352219              | 5382838              | WSC-124            | Mapped           | Desktop            | Tributary to Harry Brook                     | Watercourse              | Watercourse visible                      | 3               | Riffle/run           | 2                      | Coarse                             | Moderate   | Trees                  | May be intermittent in low flow<br>conditions                                                                                       | Fish habitat based on connectivity       |
| WCT-501a           | 352722              | 5382782              | WSC-124            | Mapped           | Desktop            | Harry Brook                                  | Watercourse              | Watercourse visible                      | 4               | Riffle/run           | 6                      | Coarse                             | Low        | Trees                  | Old logging north of brook                                                                                                          | Fish habitat based on connectivity       |
| WCT-501b           | 352642              | 5382790              | WSC-124            | Mapped           | Desktop            | Harry Brook                                  | Watercourse              | Watercourse visible                      | 4               | Steady               | 18                     | Mixed                              | Low        | Trees                  | Large pool                                                                                                                          | Fish habitat based on connectivity       |
| WCT-501c           | 352511              | 5382806              | WSC-124            | Mapped           | Desktop            | Harry Brook                                  | Watercourse              | Watercourse visible                      | 4               | Riffle/run           | 8                      | Coarse                             | Low        | Trees                  | Old cut line near brook                                                                                                             | Fish habitat based on connectivity       |
| WCT-502            | 352744              | 5382780              | WSC-124            | Mapped           | Desktop            | Tributary to Harry Brook                     | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | Old cut line near brook                                                                                                             | Fish habitat based on connectivity       |
| WCT-503            | 353072              | 5382740              | WSC-124            | Mapped           | Desktop            | Tributary to Harry Brook                     | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | -                                                                                                                                   | Fish habitat based on connectivity       |
| WCT-504            | 353316              | 5382613              | WSC-124            | Mapped           | Desktop            | Tributary to Harry Brook                     | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Channelization is more pronounced<br>upstream                                                                                       | Fish habitat based on connectivity       |
| WCT-505            | 353705              | 5382119              | WSC-124            | Mapped           | Desktop            | -                                            | Watercourse              | No Visible Channel                       | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                   | No                                       |
| WCT-506<br>WCT-507 | 353733              | 5382084              | WSC-124            | Mapped           | Desktop            | -                                            | Watercourse              | No Visible Channel                       | - 2             | -<br>Diffle/run      | - 1                    | -                                  | -          | -                      | -<br>Watercourse originates in the                                                                                                  | No<br>Fish habitat based on connectivity |
| WCT-507<br>WCT-508 | 353746<br>354833    | 5382069<br>5379043   | WSC-124<br>WSC-150 | Mapped<br>Mapped | Desktop<br>Desktop | Tributary to Harry Brook<br>Three Ponds Pond | Watercourse<br>Waterbody | Watercourse visible<br>Waterbody visible | ∠<br>na         | Riffle/run<br>Pond   | 26                     | Coarse<br>Fines                    | Low<br>Low | Trees                  | footprint of an existing mine<br>Adjacent to large pond.                                                                            | Fish habitat based on connectivity       |
| VVC1-508           | 304833              | 5379043              | WSC-150            | wapped           | Desklop            | Three Ponds Pond                             | waterbody                | waterbody visible                        | na              | Pona                 | 20                     | Fines                              | LOW        | Shrubs                 | Flooded skidder trail/logging road.                                                                                                 | Fish habitat based on connectivity       |
| WCT-509            | 355113              | 5377825              | WSC-151            | Mapped           | Desktop            | Unnamed Brook                                | Watercourse              | Drainage channel                         | 1               | Overland<br>Drainage | 2                      | Coarse                             | Moderate   | Trees                  | Flooded skidder trai/logging road.<br>Flooding in clearcut. Channel is<br>visible upstream but dissipates into<br>forest below RoW. | Unlikely - overland drainage             |
| WCT-510            | 357183              | 5377581              | WSC-152            | Mapped           | Desktop            | South Brook                                  | Watercourse              | Drainage channel                         | 1               | Overland<br>Drainage | 1                      | Mixed                              | Low        | Shrubs                 | Skidder trail marks                                                                                                                 | Unlikely - overland drainage             |
| WCT-511            | 357354              | 5377563              | WSC-152            | Mapped           | Desktop            | South Brook                                  | Watercourse              | Watercourse visible                      | 1               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Crosses existing clearcut                                                                                                           | Fish habitat based on connectivity       |
| WCT-512            | 365999              | 5378084              | WSC-133            | Mapped           | Desktop            | -                                            | -                        | No Visible Channel                       | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                   | No                                       |
| WCT-513            | 368418              | 5379112              | WSC-122            | Mapped           | Desktop            | Jack of Clubs Brook                          | Watercourse              | Watercourse visible                      | 1               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Drains Unnamed pond into ocean.                                                                                                     | Fish habitat based on connectivity       |
| WCT-514            | 376602              | 5380829              | WSC-223            | Mapped           | Desktop            | Tributary to Romaine's<br>Brook              | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | Small tributary to large brook                                                                                                      | Fish habitat based on connectivity       |
| WCT-515            | 376781              | 5380809              | WSC-223            | Mapped           | Desktop            | Tributary to Romaine's<br>Brook              | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | Small tributary to large brook                                                                                                      | Fish habitat based on connectivity       |
| WCT-516            | 377132              | 5380682              | WSC-223            | Mapped           | Desktop            | Tributary to Romaine's<br>Brook              | Watercourse              | Watercourse visible                      | 3               | Riffle/run           | 2                      | Coarse                             | Low        | Trees                  | Located near quarry                                                                                                                 | Fish habitat based on connectivity       |
| WCT-517            | 377553              | 5380484              | WSC-223            | Mapped           | Desktop            | Romaine's Brook                              | Watercourse              | Watercourse visible                      | 4               | Riffle/run           | 33                     | Coarse                             | Low        | Trees                  | A little over 2km from ocean                                                                                                        | Fish habitat based on connectivity       |
| WCT-518            | 380312              | 5380025              | WSC-237            | Mapped           | Desktop            | Tributary to Unnamed Brook                   | Watercourse              | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | Connected to several Unnamed<br>ponds                                                                                               | Fish habitat based on connectivity       |
| WCT-519            | 381604              | 5379826              | WSC-238            | Mapped           | Desktop            | Gadon's Brook                                | Watercourse              | Watercourse visible                      | 3               | Riffle/run           | 3                      | Mixed                              | Low        | Shrubs                 | Outlet of pond                                                                                                                      | Fish habitat based on connectivity       |
| WCT-520            | 381824              | 5379789              | WSC-238            | Mapped           | Desktop            | Tributary to Gadon's Brook                   | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 1                      | Mixed                              | Low        | Shrubs                 | Cuts across clearcut after<br>watercrossing                                                                                         | Fish habitat based on connectivity       |
| WCT-521            | 382757              | 5380737              | WSC-224            | Mapped           | Desktop            | Blanche Brook                                | Watercourse              | Watercourse visible                      | 4               | Riffle/run           | 51                     | Coarse                             | Low        | Trees                  | Crosses at an island. Large gravel<br>bar at low flows.                                                                             | Fish habitat based on connectivity       |
| WCT-522            | 383787              | 5380903              | WSC-224            | Mapped           | Desktop            | Unnamed Tributary to<br>Blanche Brook        | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | Inlet to Ned's Ponds. Flows through highway culvert downstream.                                                                     | Fish habitat based on connectivity       |
| WCT-523            | 383966              | 5380862              | WSC-224            | Mapped           | Desktop            | Unnamed Tributary to<br>Blanche Brook        | Watercourse              | Watercourse visible                      | 2               | Steady               | 14                     | Fines                              | Low        | Wetland                | Inlet to Ned's Ponds                                                                                                                | Fish habitat based on connectivity       |
| WCT-524            | 383998              | 5380855              | WSC-224            | Mapped           | Desktop            | Unnamed Tributary to<br>Blanche Brook        | Watercourse              | Watercourse visible                      | 2               | Glide                | 1                      | Fines                              | Low        | Wetland                | Inlet to Ned's Ponds                                                                                                                | Fish habitat based on connectivity       |
| WCT-525            | 384218              | 5380801              | WSC-224            | Mapped           | Desktop            | -                                            | Watercourse              | No Visible Channel                       | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                   | No                                       |
| WCT-526            | 384684              | 5380684              | WSC-224            | Mapped           | Desktop            | Unnamed Tributary to                         | Watercourse              | Watercourse visible                      | 3               | Riffle/run           | 3                      | Coarse                             | Low        | Trees                  | Inlet to Ned's Ponds                                                                                                                | Fish habitat based on connectivity       |
| WCT-527            | 386527              | 5380726              | WSC-224            | Mapped           | Desktop            | Blanche Brook<br>Tributary to Warm Creek     | Watercourse              | Watercourse visible                      | 1               | Riffle/run           | 1                      | Mixed                              | Low        | Shrubs                 | Very small inlet to pond, unlikely to<br>be permanent but connectivity with<br>pond suggests fish habitat                           | Fish habitat based on connectivity       |
| WCT-528a           | 386714              | 5380715              | WSC-224            | Mapped           | Desktop            | Warm Creek                                   | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Between Hwy 460 and pond                                                                                                            | Fish habitat based on connectivity       |
| WCT-528b           | 386726              | 5380714              | WSC-224            | Mapped           | Desktop            | Warm Creek                                   | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Between Hwy 460 and pond                                                                                                            | Fish habitat based on connectivity       |
| WCT-528c           | 386803              | 5380709              | WSC-224            | Mapped           | Desktop            | Warm Creek                                   | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Between Hwy 460 and pond                                                                                                            | Fish habitat based on connectivity       |
| WCT-528d           | 386867              | 5380705              | WSC-224            | Mapped           | Desktop            | Warm Creek                                   | Watercourse              | Watercourse visible                      | 2               | Riffle/run           | 2                      | Mixed                              | Low        | Shrubs                 | Between Hwy 460 and pond                                                                                                            | Fish habitat based on connectivity       |
| WCT-529            | 387310              | 5380197              | WSC-226            | Mapped           | Desktop            | Warm Creek                                   | Watercourse              | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low        | Trees                  | Connected to pond just north of<br>larger Noel's Pond                                                                               | Fish habitat based on connectivity       |
| WCT-530            | 387600              | 5380005              | WSC-226            | Mapped           | Desktop            | -                                            | Watercourse              | No Visible Channel                       | -               | -                    | -                      | -                                  | -          | -                      | -                                                                                                                                   | No                                       |
| WCT-531            | 388403              | 5379485              | WSC-226            | Mapped           | Desktop            | Warm Creek                                   | Watercourse              | Watercourse visible                      | 4               | Glide                | 9                      | Mixed                              | Low        | Shrubs                 | Just off gravel road                                                                                                                | Fish habitat based on connectivity       |
| WCT-532            | 388482              | 5379401              | WSC-226            | Mapped           | Desktop            | Unnamed Tributary to<br>Warm Creek           | Watercourse              | Watercourse visible                      | 2               | Glide                | 1                      | Fines                              | Low        | Wetland                | Channelises through wetland, connected to pond                                                                                      | Fish habitat based on connectivity       |

| Table E.7. Desktop Analysis of Watercourse/Waterbod | v Transmission Line Crossings | Associated With the Project Nujio'Qonik GH2 Wind Farm |
|-----------------------------------------------------|-------------------------------|-------------------------------------------------------|
|                                                     |                               |                                                       |

| Watercourse | Easting (UTM<br>21) | Northing<br>(UTM 21) | Watershed | Mapping | Survey<br>Type | Name                                    | Source      | Status              | Stream<br>Order | Habitat<br>Type        | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope | Riparian<br>Vegetation | Relevant Features                                                                        | Fish Habitat?                              |
|-------------|---------------------|----------------------|-----------|---------|----------------|-----------------------------------------|-------------|---------------------|-----------------|------------------------|------------------------|------------------------------------|-------|------------------------|------------------------------------------------------------------------------------------|--------------------------------------------|
| WCT-533     | 388530              | 5379258              | WSC-226   | Mapped  | Desktop        | Unnamed Tributary to<br>Warm Creek      | Watercourse | Watercourse visible | 2               | Glide                  | 3                      | Fines                              | Low   | Wetland/Shrubs         | Difficult to tell if actual channelization or just edge of flooded wetland.              | Fish habitat based on connectivity         |
| WCT-534     | 388633              | 5378962              | WSC-226   | Mapped  | Desktop        | Unnamed Pond                            | Waterbody   | Waterbody visible   | na              | Pond                   | 240                    | Fines                              | Low   | Trees                  | Part of series of interconnected<br>ponds that are connected to Warm<br>Creek            | Fish habitat based on connectivity         |
| WCT-535     | 388678              | 5378422              | WSC-232   | Mapped  | Desktop        | Unnamed Pond                            | Waterbody   | Waterbody visible   | na              | Pond                   | 98                     | Fines                              | Low   | Trees                  | Part of series of interconnected<br>pond, not clear which watercourse is<br>connected to | Fish habitat based on connectivity         |
| WCT-536     | 388626              | 5378255              | WSC-232   | Mapped  | Desktop        | Unnamed Tributary to<br>Unnamed Brook   | Watercourse | Watercourse visible | 1               | Glide                  | 2                      | Fines                              | Low   | Wetland                | Connects two ponds                                                                       | Fish habitat based on connectivity         |
| WCT-537     | 388576              | 5378100              | WSC-232   | Mapped  | Desktop        | Unnamed Pond                            | Waterbody   | Waterbody visible   | na              | Pond                   | 260                    | Fines                              | Low   | Wetland                | Flows into Unnamed Brook                                                                 | Fish habitat based on connectivity         |
| WCT-538     | 388457              | 5377720              | WSC-232   | Mapped  | Desktop        | Unnamed Pond                            | Waterbody   | Waterbody visible   | na              | Bog Hole               | 18                     | Fines                              | Low   | Wetland                | Area of flooded wetland in close<br>proximity to watercourse                             | Unlikely, based on lack of<br>connectivity |
| WCT-539     | 388379              | 5377189              | WSC-232   | Mapped  | Desktop        | Unnamed Tributary to<br>Unnamed Brook   | Watercourse | Watercourse visible | 2               | Glide                  | 4                      | Fines                              | Low   | Shrubs                 | Connects (Gull Mine) Pond to Ocean                                                       | Fish habitat based on connectivity         |
| WCT-540     | 388460              | 5376916              | WSC-232   | Mapped  | Desktop        | Unnamed Pond                            | Waterbody   | Waterbody visible   | na              | Pond                   | 89                     | Fines                              | Low   | Shrubs                 | Flows into Unnamed Brook                                                                 | Fish habitat based on connectivity         |
| WCT-541     | 389625              | 5376218              | WSC-231   | Mapped  | Desktop        | Unnamed Inlet to Gull Pond              | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Mixed                              | Low   | Shrubs                 | Inlet to Gull (Mine) Pond                                                                | Unlikely - overland drainage               |
| WCT-542     | 390106              | 5376239              | WSC-231   | Mapped  | Desktop        | Inlet to Oxback Pond                    | Watercourse | Watercourse visible | 1               | Riffle/run             | 1                      | Mixed                              | Low   | Shrubs                 | -                                                                                        | Fish habitat based on connectivity         |
| WCT-543     | 390773              | 5376304              | WSC-231   | Mapped  | Desktop        | Unnamed Inlet to Oxback<br>Pond         | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Mixed                              | Low   | Shrubs                 | Cleared                                                                                  | Unlikely - overland drainage               |
| WCT-544     | 392529              | 5375927              | -         | Mapped  | Desktop        | Whites Brook                            | Watercourse | Watercourse visible | 3               | Riffle/run             | 2                      | Coarse                             | Low   | Trees                  | Just north of clearcut/transmission line                                                 | Fish habitat based on connectivity         |
| WCT-545     | 392730              | 5375837              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Whites Brook    | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Mixed                              | Low   | Shrubs                 | Just north of clearcut/transmission line                                                 | Unlikely - overland drainage               |
| WCT-546     | 393112              | 5375788              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Whites Brook    | Watercourse | Watercourse visible | 3               | Riffle/run             | 2                      | Mixed                              | Low   | Shrubs                 | Edge of wetland                                                                          | Fish habitat based on connectivity         |
| WCT-547     | 393541              | 5375850              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Pelleys Brook   | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Mixed                              | Low   | Shrubs                 | Disconnected channelization through wetland, not likely connected                        | Unlikely - overland drainage               |
| WCT-548     | 394050              | 5375927              | -         | Mapped  | Desktop        | -                                       | Watercourse | No Visible Channel  | -               | -                      | -                      | -                                  | -     | -                      | -                                                                                        | No                                         |
| WCT-549     | 394362              | 5375984              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Pelleys Brook   | Watercourse | Watercourse visible | 3               | Riffle/run             | 3                      | Mixed                              | Low   | Shrubs                 | Edge of wetland                                                                          | Fish habitat based on connectivity         |
| WCT-550     | 394764              | 5376007              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Pelleys Brook   | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Fines                              | Low   | Wetland                | Disconnected channelization through wetland, not likely connected                        | Unlikely - overland drainage               |
| WCT-551     | 395343              | 5375913              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Harrys River    | Watercourse | Watercourse visible | 1               | Riffle/run             | 5                      | Coarse                             | Low   | Trees                  | Braid off main channel                                                                   | Fish habitat based on connectivity         |
| WCT-552     | 395456              | 5375874              | -         | Mapped  | Desktop        | Unnamed Tributary to<br>Harrys River    | Watercourse | Watercourse visible | 1               | Riffle/run             | 1                      | Mixed                              | Low   | Shrubs                 | Braid off main channel                                                                   | Fish habitat based on connectivity         |
| WCT-553     | 395552              | 5375824              | -         | Mapped  | Desktop        | Harrys River                            | Watercourse | Watercourse visible | 5               | Riffle/run             | 51                     | Coarse                             | Low   | Trees                  | main channel                                                                             | Fish habitat based on connectivity         |
| WCT-554     | 395904              | 5375549              | -         | Mapped  | Desktop        | Unnamed Tributary to Bras               | Watercourse | Drainage channel    | 1               | Overland               | 22                     | Fines                              | Low   | Wetland                | Small pond, appears to dissipate                                                         | Unlikely - based on no connectivity        |
| WCT-555     | 395945              | 5375465              | -         | Mapped  | Desktop        | Mort Brook<br>Bras Mort Brook           | Watercourse | Watercourse visible | 4               | Drainage<br>Riffle/run | 15                     | Fines                              | Low   | Shrubs                 | through wetland<br>Main branch of tributary                                              | Fish habitat based on connectivity         |
| WCT-556     | 395970              | 5375411              | -         | Mapped  | Desktop        | Unnamed Tributary to Bras<br>Mort Brook | Watercourse | Watercourse visible | 1               | Steady                 | 23                     | Mixed                              | Low   | Trees                  | Side channel of tributary that is flooded                                                | Fish habitat based on connectivity         |
| WCT-557     | 400274              | 5375814              | -         | Mapped  | Desktop        | -                                       | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Mixed                              | Low   | Shrubs                 | Some channelization upstream in existing RoW                                             | Unlikely - overland drainage               |
| WCT-558     | 401856              | 5376233              | -         | Mapped  | Desktop        | Unnamed Brook                           | Watercourse | Drainage channel    | 1               | Overland<br>Drainage   | 1                      | Mixed                              | Low   | Shrubs                 | Disconnected channelization through<br>wetland, not likely connected                     | Unlikely - overland drainage               |
| WCT-559     | 402183              | 5376187              | -         | Mapped  | Desktop        | Unnamed Brook                           | Watercourse | Drainage channel    | 2               | Overland<br>Drainage   | 2                      | Mixed                              | Low   | Shrubs                 | Disconnected channelization through wetland, not likely connected                        | Unlikely - overland drainage               |
| WCT-560     | 402505              | 5376146              | -         | Mapped  | Desktop        | Unnamed Brook                           | Watercourse | Drainage channel    | 1               | erland Drain           | u 1                    | Mixed                              | Low   | Shrubs                 | Channelized upstream and<br>downstream of crossing                                       | Unlikely - overland drainage               |
| WCT-561     | 404770              | 5376127              | -         | Mapped  | Desktop        | Tributary to Unnamed Brook              | Watercourse | Watercourse visible | 1               | Riffle/run             | 1                      | Coarse                             | Low   | Trees                  | Slightly west of where mapped.                                                           | Fish habitat based on connectivity         |
| WCT-562     | 404912              | 5376033              | -         | Mapped  | Desktop        | Unnamed Brook                           | Watercourse | Watercourse visible | 2               | Riffle/run             | 2                      | Mixed                              | Low   | Shrubs                 | Channelized through clearcut to north                                                    | Fish habitat based on connectivity         |
| WCT-563a    | 405404              | 5375728              | -         | Mapped  | Desktop        | Wheeler Brook                           | Watercourse | Watercourse visible | 4               | Riffle/run             | 3                      | Coarse                             | Low   | Trees                  | Main channel, drains large wetland                                                       | Fish habitat based on connectivity         |
| WCT-563b    | 405598              | 5375627              | -         | Mapped  | Desktop        | Wheeler Brook                           | Watercourse | Watercourse visible | 4               | Riffle/run             | 3                      | Coarse                             | Low   | Trees                  | Main channel, drains large wetland                                                       | Fish habitat based on connectivity         |
| WCT-563c    | 405615              | 5375630              | -         | Mapped  | Desktop        | Wheeler Brook                           | Watercourse | Watercourse visible |                 | Riffle/run             | 3                      | Coarse                             | Low   | Trees                  | Main channel, drains large wetland                                                       | Fish habitat based on connectivity         |
| WCT-563d    | 405692              | 5375648              | -         | Mapped  | Desktop        | Wheeler Brook                           | Watercourse | Watercourse visible | 4               | Riffle/run             | 3                      | Coarse                             | Low   | Trees                  | Main channel, drains large wetland                                                       | Fish habitat based on connectivity         |

### Table E.7. Desktop Analysis of Watercourse/Waterbody Transmission Line Crossings Associated With the Project Nujio'Qonik GH2 Wind Farm

| Watercourse        | Easting (UTM<br>21) |                    | Watershed | Mapping            | Survey<br>Type     | sociated With the Project N<br>Name             | Source                     | Status                                    | Stream<br>Order | Habitat<br>Type                    | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope      | Riparian<br>Vegetation | Relevant Features                                                                          | Fish Habitat?                                                      |
|--------------------|---------------------|--------------------|-----------|--------------------|--------------------|-------------------------------------------------|----------------------------|-------------------------------------------|-----------------|------------------------------------|------------------------|------------------------------------|------------|------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| WCT-563e           | 405753              | 5375661            | -         | Mapped             | Desktop            | Wheeler Brook                                   | Watercourse                | Watercourse visible                       | 4               | Riffle/run                         | 3                      | Coarse                             | Low        | Trees                  | Main channel, drains large wetland                                                         | Fish habitat based on connectivity                                 |
| WCT-563f           | 405827              | 5375678            | -         | Mapped             | Desktop            | Wheeler Brook                                   | Watercourse                | Watercourse visible                       | 4               | Riffle/run                         | 3                      | Coarse                             | Low        | Trees                  | Main channel, drains large wetland                                                         | Fish habitat based on connectivity                                 |
| WCT-563g           | 405900              | 5375694            | -         | Mapped             | Desktop            | Wheeler Brook                                   | Watercourse                | Watercourse visible                       | 4               | Riffle/run                         | 3                      | Coarse                             | Low        | Trees                  | Main channel, drains large wetland                                                         | Fish habitat based on connectivity                                 |
| WCT-563h           | 405947              | 5375633            | -         | Mapped             | Desktop            | Wheeler Brook                                   | Watercourse                | Watercourse visible                       | 4               | Riffle/run                         | 3                      | Coarse                             | Low        | Trees                  | Main channel, drains large wetland                                                         | Fish habitat based on connectivity                                 |
| WCT-564<br>WCT-565 | 405975<br>405821    | 5374083<br>5373597 | -         | Mapped<br>Mapped   | Desktop<br>Desktop | Southwest Brook<br>Unnamed Brook                | Watercourse<br>Watercourse | Watercourse visible<br>Drainage channel   | 3               | Riffle/run<br>Overland<br>Drainage | 224<br>1               | Coarse<br>Coarse                   | Low<br>Low | Trees<br>Trees         | Delta. May be estuarine<br>Small overland drainage channel<br>connected to flooded wetland | Fish habitat based on connectivity<br>Unlikely - overland drainage |
| WCT-566            | 404277              | 5371736            | -         | Mapped             | Desktop            | Tributary to Little River                       | Watercourse                | Watercourse visible                       | 1               | Riffle/run                         | 1                      | Mixed                              | Low        | Shrubs                 | Drains wetland, headwaters of brook                                                        | Fish habitat based on connectivity                                 |
| WCT-567            | 403452              | 5371230            | -         | Mapped             | Desktop            | Tributary to Little River                       | Watercourse                | Drainage channel                          | 1               | Overland<br>Drainage               | 1                      | Coarse                             | Low        | Trees                  | Headwaters of brook                                                                        | Unlikely - based on no connectivity                                |
| WCT-568            | 402124              | 5370413            | -         | Mapped             | Desktop            | -                                               | Watercourse                | No Visible Channel                        | -               | -                                  | -                      | -                                  | -          | -                      | No channel in existing RoW                                                                 | No                                                                 |
| WCT-569            | 400533              | 5369437            | -         | Mapped             | Desktop            | -                                               | Watercourse                | No Visible Channel                        | -               | -                                  | -                      | -                                  | -          | -                      | Channelizes downstream of RoW                                                              | No                                                                 |
| WCT-570            | 398642              | 5368274            | -         | Mapped             | Desktop            | -                                               | Watercourse                | No Visible Channel                        | -               | -                                  | -                      | -                                  | -          | -                      | -                                                                                          | No                                                                 |
| WCT-571            | 398567              | 5368233            | -         | Unmapped           | Desktop            | Unnamed Inlet to Unnamed<br>Pond                | Watercourse                | Watercourse visible                       | 0               | Riffle/run                         | 1                      | Mixed                              | Low        | Shrubs                 | Inlet through wetland to pond/<br>flooded wetland                                          | Fish habitat based on connectivity                                 |
| WCT-572            | 398474              | 5368176            | -         | Mapped             | Desktop            | Unnamed Inlet to Unnamed<br>Pondd               | Watercourse                | Watercourse visible                       | 1               | Riffle/run                         | 2                      | Mixed                              | Low        | Shrubs                 | Inlet through wetland to pond/<br>flooded wetland                                          | Fish habitat based on connectivity                                 |
| WCT-573            | 397510<br>396357    | 5367585<br>5366880 | -         | Mapped             | Desktop            | Unnamed Pond                                    | Waterbody                  | Waterbody visible<br>Watercourse visible  | na<br>4         | Bog Hole                           | 280<br>56              | Fines                              | Low        | Shrubs                 | No obvious outlet, relatively large<br>shallow pond                                        | Unlikely - based on no connectivity                                |
| WCT-574            | 396357              | 5366880            | -         | Mapped             | Desktop            | Barachois Brook                                 | Watercourse                | vvatercourse visible                      | 4               | Riffle/run                         | 00                     | Coarse                             | Low        | Trees                  | Just northwest of TCH                                                                      | Fish habitat based on connectivity                                 |
| WCT-575a           | 396034              | 5366670            | -         | Mapped             | Desktop            | Unnamed Tributary<br>(Oxbow) to Barachois Brook | Watercourse                | Watercourse visible                       | 1               | Steady                             | 31                     | Mixed                              | Low        | Shrubs                 | Old oxbow, now flooded wetland                                                             | Fish habitat based on connectivity                                 |
| WCT-575b           | 395887              | 5366585            | -         | Mapped             | Desktop            | Unnamed Tributary<br>(Oxbow) to Barachois Brook | Watercourse                | Watercourse visible                       | 1               | Steady                             | 48                     | Mixed                              | Low        | Shrubs                 | Old oxbow, now flooded wetland                                                             | Fish habitat based on connectivity                                 |
| WCT-576            | 395441              | 5366311            | -         | Mapped             | Desktop            | Unnamed Pond                                    | Waterbody                  | Waterbody visible                         | na              | Bog Hole                           | 109                    | Fines                              | Low        | Shrubs                 | Does not appear connected                                                                  | Unlikely - based on no connectivity                                |
| WCT-577            | 394262              | 5365589            | -         | Mapped             | Desktop            | -                                               | Watercourse                | No Visible Channel                        | -               | -                                  | -                      | -                                  | -          | -                      | -                                                                                          | No                                                                 |
| WCT-578            | 392272              | 5363339            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Dribble Brook           | Watercourse                | Watercourse visible                       | 2               | Glide                              | 1                      | Fines                              | Low        | Shrubs                 | Small tributary off main channel                                                           | Fish habitat based on connectivity                                 |
| WCT-579            | 392182              | 5363195            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Dribble Brook           | Watercourse                | Watercourse visible                       | 1               | Glide                              | 1                      | Fines                              | Low        | Wetland                | Small tributary off main channel<br>Headwater of tributary assocaited                      | Fish habitat based on connectivity                                 |
| WCT-580<br>WCT-581 | 392070<br>391541    | 5363014<br>5362194 | -         | Unmapped<br>Mapped | Desktop<br>Desktop | -<br>Dribble Brook                              | Watercourse<br>Watercourse | No Visible Channel<br>Watercourse visible | - 3             | -<br>Riffle/run                    | - 11                   | -<br>Coarse                        | -<br>Low   | -<br>Trees             | with bog hole<br>Southwest of Steel Mountain Rd                                            | No<br>Fish habitat based on connectivity                           |
| WCT-582            | 390570              | 5360649            | -         | Mapped             | Desktop            | Tributary to Flat Bay Brook                     | Watercourse                | Watercourse visible                       | 1               | Glide                              | 1                      | Fines                              | Low        | Wetland                | Tributary skirts wetland                                                                   | Fish habitat based on connectivity                                 |
| WCT-583            | 390162              | 5360017            | -         | Mapped             | Desktop            | Flat Bay Brook                                  | Watercourse                | Watercourse visible                       | 5               | Riffle/run                         | 51                     | Coarse                             | Low        | Trees                  | Main channel                                                                               | Fish habitat based on connectivity                                 |
| WCT-584            | 389976              | 5359710            | -         | Mapped             | Desktop            | Unnamed Pond                                    | Waterbody                  | Waterbody visible                         | na              | Bog Hole                           | 112                    | Fines                              | Low        | Shrubs                 | Bog Hole. No connectivity.                                                                 | Unlikely - based on no connectivity                                |
| WCT-585            | 388302              | 5357070            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Middle Brook            | Watercourse                | Watercourse visible                       | 4               | Riffle/run                         | 7                      | Coarse                             | Low        | Trees                  | West of clearcut and TCH                                                                   | Fish habitat based on connectivity                                 |
| WCT-586            | 387952              | 5356505            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Middle Brook            | Watercourse                | Watercourse visible                       | 2               | Riffle/run                         | 1                      | Mixed                              | Low        | Shrubs                 | West of clearcut and TCH                                                                   | Fish habitat based on connectivity                                 |
| WCT-587            | 387536              | 5355853            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Middle Brook            | Watercourse                | Watercourse visible                       | 1               | Riffle/run                         | 1                      | Mixed                              | Low        | Shrubs                 | West of clearcut and TCH                                                                   | Fish habitat based on connectivity                                 |
| WCT-588            | 387417              | 5355682            | -         | Mapped             | Desktop            | -                                               | Watercourse                | No Visible Channel                        |                 |                                    | -                      | -                                  | -          | -                      | -                                                                                          | No                                                                 |
| WCT-589            | 386761              | 5354639            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Middle Brook            | Watercourse                | Watercourse visible                       | 2               | Riffle/run                         | 2                      | Coarse                             | Low        | Trees                  | West of clearcut and TCH                                                                   | Fish habitat based on connectivity                                 |
| WCT-590            | 385355              | 5352688            | -         | Mapped             | Desktop            | Unnamed Tributary to Barry<br>Brook             | Watercourse                | Watercourse visible                       | 1               | Riffle/run                         | 1                      | Coarse                             | Low        | Trees                  | -                                                                                          | Fish habitat based on connectivity                                 |
| WCT-591            | 382130              | 5352134            | -         | Mapped             | Desktop            | Unnamed Tributary to Barry<br>Brook             | Watercourse                | Watercourse visible                       | 2               | Riffle/run                         | 2                      | Mixed                              | Low        | Shrubs                 | North of clearcut and TCH<br>Upstream of TCH and braided part of                           | Fish habitat based on connectivity                                 |
| WCT-592            | 380251              | 5351227            | -         | Mapped             | Desktop            | Fischells Brook<br>Unnamed Tributary to         | Watercourse                | Watercourse visible                       | 5               | Riffle/run                         | 92                     | Coarse                             | Low        | Trees                  | channel                                                                                    | Fish habitat based on connectivity                                 |
| WCT-593            | 379990              | 5350938            | -         | Mapped             | Desktop            | Fischells Brook<br>Unnamed Tributary to         | Watercourse                | Watercourse visible                       | 2               | Riffle/run<br>Overland             | 1                      | Coarse                             | Low        | Trees                  | Upstream of TCH                                                                            | Fish habitat based on connectivity                                 |
| WCT-594            | 379516              | 5350428            | -         | Mapped             | Desktop            | Fischells Brook                                 | Watercourse                | Drainage channel                          | 1               | Drainage                           | 1                      | Coarse                             | Low        | Trees                  | Upstream of TCH<br>Braided through wetland just                                            | Unlikely - based on no connectivity                                |
| WCT-595            | 379361              | 5350262            | -         | Mapped             | Desktop            | Unnamed Tributary to<br>Fischells Dribble       | Watercourse                | Watercourse visible                       | 1               | Riffle/run                         | 1                      | Mixed                              | Low        | Shrubs                 | downstream of clearcut, but clearly<br>channelized US and DS of the<br>crossing            | Fish habitat based on connectivity                                 |
| WCT-596            | 379072              | 5349952            | -         | Mapped             | Desktop            | Fischells Dribble                               | Watercourse                | Watercourse visible                       | 3               | Riffle/run                         | 13                     | Coarse                             | Low        | Trees                  | Upstream of TCH. Flows into<br>Fischells Brook                                             | Fish habitat based on connectivity                                 |

### Table E.7. Desktop Analysis of Watercourse/Waterbody Transmission Line Crossings Associated With the Project Nujio'Qonik GH2 Wind Farm

| Watercourse        | Easting (UTM<br>21) | Northing<br>(UTM 21) | Watershed | Mapping          | Survey<br>Type     | Name                                              | Source                     | Status                                   | Stream<br>Order | Habitat<br>Type      | Estimated<br>Width (m) | Predicted<br>Dominant<br>Substrate | Slope    | Riparian<br>Vegetation | Relevant Features                                              | Fish Habitat?                      |
|--------------------|---------------------|----------------------|-----------|------------------|--------------------|---------------------------------------------------|----------------------------|------------------------------------------|-----------------|----------------------|------------------------|------------------------------------|----------|------------------------|----------------------------------------------------------------|------------------------------------|
| WCT-597            | 377667              | 5349000              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Rattling Brook            | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Downstream of TCH                                              | Fish habitat based on connectivity |
| WCT-598            | 377137              | 5348581              | -         | Mapped           | Desktop            | Unnamed Pond                                      | Waterbody                  | Waterbody visible                        | na              | Pond                 | 89                     | Mixed                              | Low      | Trees                  | Downstream of TCH, connected to<br>tributary to Rattling Brook | Fish habitat based on connectivity |
| WCT-599            | 376912              | 5348402              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Rattling Brook            | Watercourse                | Watercourse visible                      | 2               | Riffle/run           | 1                      | Mixed                              | Low      | Shrubs                 | Downstream of TCH                                              | Fish habitat based on connectivity |
| WCT-600            | 373054              | 5344288              | -         | Mapped           | Desktop            | Robinsons River                                   | Watercourse                | Watercourse visible                      | 5               | Riffle/run           | 30                     | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-601            | 372320              | 5343693              | -         | Mapped           | Desktop            | -                                                 | Watercourse                | No Visible Channel                       | -               | -                    | -                      | -                                  | -        | -                      | -                                                              | No                                 |
| WCT-602            | 370518              | 5342259              | -         | Mapped           | Desktop            | Middle Barachois River                            | Watercourse                | Watercourse visible                      | 4               | Riffle/run           | 22                     | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-603            | 370036              | 5341866              | -         | Mapped           | Desktop            | -                                                 | Watercourse                | No Visible Channel                       | -               | -                    | -                      | -                                  | -        | -                      | -                                                              | No                                 |
| WCT-604<br>WCT-605 | 369947<br>369369    | 5341792<br>5341333   | -         | Mapped<br>Mapped | Desktop<br>Desktop | -                                                 | Watercourse<br>Watercourse | No Visible Channel<br>No Visible Channel | -               | -                    | -                      | -                                  | -        | -                      | -                                                              | No<br>No                           |
| WCT-606            | 368959              | 5341001              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Middle Barachois River    | Watercourse                | Watercourse visible                      | 1               | -<br>Riffle/run      | 2                      | Mixed                              | Low      | Shrubs                 | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-607            | 368715              | 5340802              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Middle Barachois River    | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-608            | 368376              | 5339149              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Crabbe's River            | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Upstream of TCH, Outlet of Mitchell's<br>Pond                  | Fish habitat based on connectivity |
| WCT-609            | 368415              | 5338326              | -         | Mapped           | Desktop            | Little Crabbe's River                             | Watercourse                | Watercourse visible                      | 3               | Riffle/run           | 7                      | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-610            | 368474              | 5337054              | -         | Mapped           | Desktop            | Crabbe's River                                    | Watercourse                | Watercourse visible                      | 5               | Riffle/run           | 90                     | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-611            | 368130              | 5332179              | WSC-312   | Mapped           | Desktop            | Unnamed tributary to<br>Highlands River           | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-612            | 368009              | 5331441              | WSC-312   | Mapped           | Desktop            | Unnamed tributary to<br>Highlands River           | Watercourse                | Watercourse visible                      | 2               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-613            | 368005              | 5331410              | WSC-312   | Mapped           | Desktop            | -                                                 | Watercourse                | No Visible Channel                       | -               | -                    | -                      | -                                  | -        | -                      | -                                                              | No                                 |
| WCT-614            | 367719              | 5329613              | WSC-312   | Mapped           | Desktop            | Highlands River                                   | Watercourse                | Watercourse visible                      | 4               | Riffle/run           | 48                     | Coarse                             | Low      | Trees                  | Large braid with island between two channels                   | Fish habitat based on connectivity |
| WCT-615            | 367442              | 5327875              | WSC-312   | Mapped           | Desktop            | Unnamed tributary to<br>Highlands River           | Watercourse                | Watercourse visible                      | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Upstream of TCH                                                | Fish habitat based on connectivity |
| WCT-616            | 366204              | 5327456              | WSC-312   | Unmapped         | Desktop            | Unnamed brook/ wetland                            | Watercourse                | Drainage channel                         | 0               | Overland<br>Drainage | 1                      | Fines                              | Low      | Shrubs                 | Small channelization in wetland<br>connected to small bog hole | Unlikely - overland drainage       |
| WCT-617            | 364953              | 5327297              | WSC-312   | Mapped           | Desktop            | Unnamed Pond                                      | Waterbody                  | Waterbody visible                        | na              | Pond                 | 16                     | Fines                              | Low      | Shrubs                 | Connected to Bald Mountain Brook                               | Fish habitat based on connectivity |
| WCT-618            | 361085              | 5326231              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to<br>Crooked Brook             | Watercourse                | Watercourse visible                      | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Connected to brook upstream of<br>Codroy Pond                  | Fish habitat based on connectivity |
| WCT-619            | 358160              | 5324659              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to<br>Crooked Brook             | Watercourse                | Watercourse visible                      | 3               | Riffle/run           | 3                      | Coarse                             | Low      | Trees                  | Connected to brook just downstream<br>of Codroy Pond           | Fish habitat based on connectivity |
| WCT-620            | 357905              | 5324521              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to<br>Crooked Brook             | Watercourse                | Watercourse visible                      | 2               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Connected to brook just downstream<br>of Codroy Pond           | Fish habitat based on connectivity |
| WCT-621            | 356932              | 5323200              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to<br>Crooked Brook             | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Just downstream of TCH                                         | Fish habitat based on connectivity |
| WCT-622            | 356745              | 5322917              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to<br>Crooked Brook             | Watercourse                | Watercourse visible                      | 2               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Just downstream of TCH                                         | Fish habitat based on connectivity |
| WCT-623            | 356290              | 5321616              | WSC-315   | Mapped           | Desktop            | -<br>Unnamed Tributary to                         | watercourse                | No Visible Channel                       | -               | -                    | -                      | -                                  | -        | -                      | -                                                              | No                                 |
| WCT-624            | 356250              | 5321417              | WSC-315   | Mapped           | Desktop            | Crooked Brook                                     | Watercourse                | Watercourse visible                      | 1               | Glide                | 1                      | Fines                              | Low      | Wetland                | Just downstream of TCH                                         | Fish habitat based on connectivity |
| WCT-625            | 353898              | 5320452              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse                | Watercourse visible                      | 3               | Riffle/run           | 2                      | Coarse                             | Low      | Trees                  | Just downstream of TCH                                         | Fish habitat based on connectivity |
| WCT-626            | 351988              | 5321261              | WSC-315   | Mapped           | Desktop            | Unnamed Tributary to North<br>Branch Grand Codroy | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Moderate | Trees                  | -                                                              | Fish habitat based on connectivity |
| WCT-627            | 354805              | 5378630              | WSC-150   | Unmapped         | Desktop            | -                                                 | Watercourse                | No Visible Channel                       | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                              | No                                 |
| WCT-628            | 356390              | 5377680              | WSC-152   | Unmapped         | Desktop            | -                                                 | Watercourse                | No Visible Channel                       | 0               | -                    | -                      | -                                  | -        | Shrubs                 | -                                                              | No                                 |
| WCT-629            | 369731              | 5380195              | WSC-179   | Mapped           | Desktop            | -                                                 | Watercourse                | Drainage channel                         | 1               | Overland<br>Drainage | 1                      | Coarse                             | Low      | Trees                  | Drains through quarry to ocean                                 | No                                 |
| WCT-630            | 370603              | 5379886              | WSC-155   | Mapped           | Desktop            | Unnamed Tributary to<br>Atlantic Ocean            | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Flows into ocean                                               | Yes                                |
| WCT-631            | 371239              | 5380002              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Atlantic Ocean            | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | -                                                              | Yes                                |
| WCT-632            | 371516              | 5379998              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Atlantic Ocean            | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Near ocean                                                     | Yes                                |
| WCT-633            | 373957              | 5380210              | -         | Mapped           | Desktop            | Unnamed Tributary to<br>Atlantic Ocean            | Watercourse                | Watercourse visible                      | 1               | Riffle/run           | 1                      | Coarse                             | Low      | Trees                  | Adjacent to road                                               | Yes                                |

# Appendix F

# Land and Resource Use Responses

### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023

# Appendix F Land and Resource Use Responses

## Marine Harvesting in or Around Port au Port Bay

**Q56** Marine Fish and/or Aquatic Species harvesting in or around the Port au Port Bay

Fifty-six participants skipped Q56, and 459 participants provided a response. Of the 459 participants, approximately 34.9% (n=160) reported that they, or a member of their family, catch marine fish and/or aquatic species in or around the Port au Port Bay. Approximately 65.1% (n=299) indicated they did not catch marine fish and/or aquatic species in this area.

Q57 Purpose of marine fish and/or aquatic species harvesting in and around the Port au Port Bay

Q57 allowed participants to identify one or more of the purposes for harvesting marine fish and/or aquatic species. Recreation and/or food was identified as the most common purpose for harvesting marine fish and/or aquatic species in and around the Port au Port Bay (83.3%; n=130). Traditional and/or cultural purposes was identified as the second most common purpose for harvesting marine fish and/or aquatic species (46.8%; n=73). Traditional/cultural purposes for harvesting marine fish and/or aquatic species would include use for food, bait, ceremonies, and other purposes.

Approximately 26.3% (n=41) indicated they harvest for commercial purposes, and 3.9% (n=6) indicated they harvest marine fish and/or aquatic species for "other" purposes. However, the participants that selected "other" did not provide new purposes for harvesting marine fish and/or aquatic species. Open-ended responses received for Q57 include "work", "do not apply", "food is a necessity", "food only", "fisherperson", and "food to augment household budget". Except for the "do not apply" response, the other responses can be categorized as either "food/recreation" or "commercial" purposes. These open-ended responses indicated that marine fish and/or aquatic species are an important and economically viable food source for some of the participants.

Q58 Marine fish and/or aquatic species harvested in and around the Port au Port Bay

- 58 allowed participants to identify one or more marine fish and/or aquatic species that they, or a member of their family, catch in and around the Port au Port Bay. The most harvested marine fish and/or aquatic species in and around the Port au Port Bay identified by the participants include Atlantic cod (87.2%; n=136), capelin (69.9%; n=109), mackerel (67.3%; n=105), lobster (59%; n=92), halibut (55.1%; n=86), mussels (49.4%; n=77), herring (44.9%; n=70), snow crab (37.2%; n=58), and scallop (33.3%; n=52).
- Other species harvested by 22% or less of the participants (in order of frequency) include flounder, haddock, seal, turbot, lumpfish, skate, redfish, pollock, hake, hagfish, swordfish, and monkfish.
- Approximately 4.5% (n=7) reported harvesting "other" marine fish and/or aquatic species not listed. Species identified in the "other" category include sea-trout (n=1), squid (n=1), herring (n=2; was included in the list), and salmon (n=1). Participants also shared the following responses: "what ever fish is in season", "illegal to dig for mussels on west bay beach", and "do not apply".

Q59 Frequency of marine fish and/or aquatic species harvesting in and around the Port au Port Bay

Q59 allowed participants to select only one option. Approximately 34.6% (n=54) of the participants reported that they, or a member of their family, catch marine fish and/or aquatic species in and around the Port au Port Bay once or twice a week. Approximately 32.1% (n=50) reported catching marine fish and/or aquatic species daily, 13.5% (n=21) reported catching marine fish and/or aquatic species daily, 13.5% (n=21) reported catching marine fish and/or aquatic species once every few months, and 9% (n=14) reported catching marine fish and/or aquatic species once a month. Approximately 9.6% (n=15) reported that they did not know the frequency at which they or a family member catch marine fish and/or aquatic species in and around the Port au Port Peninsula. Two participants (1.3%) indicated they never catch marine fish and/or aquatic species in and around the Port au Port Peninsula.

**Q60** Frequency of consumption of marine fish and/or aquatic species harvested in and around the Port au Port Bay

Q60 allowed participants to select only one option. Approximately 60.3% (n=94) of the participants reported consuming marine fish and/or aquatic species harvested in or around the Port au Port Bay once or twice a week and 19.2% (n=30) reported consuming marine fish and/or aquatic species once a month. Approximately 7.1% (n=11) reported consuming marine fish and/or aquatic species once every few months and 6.4% (n=10) reported consuming marine fish and/or aquatic species daily. Approximately 5.1% (n=8) reported not knowing the frequency at which they consume marine fish and/or aquatic species harvested in or around the Port au Port Bay.

### Marine Harvesting within Bay St. George

Q61 Marine Fish and/or Aquatic Species harvesting within Bay St. George

• Sixty-four participants skipped Q61 and 451 participants provided a response. Of the 451 participants, only 34.2% (n=154) reported that they, or a member of their family, catch marine fish and/or aquatic species within Bay St. George. Most of the participants 65.9% (n=297) indicated they did not catch marine fish and/or aquatic species in this area.

Q62 Purpose of marine fish and/or aquatic species harvesting within Bay St. George

Q62 allowed participants to identify one or more of the purposes for harvesting marine fish and/or aquatic species. Recreation and/or food was identified as the most common purpose for harvesting marine fish and/or aquatic species within Bay St. George (92.1%; n=140). Traditional and/or cultural purposes was identified as the second most common purpose for harvesting marine fish and/or aquatic species (42.8%; n=65). Traditional/cultural purposes for harvesting marine fish and/or aquatic species would include use of for food, bait, ceremonies, and other purposes. Approximately 21.7% (n=33) indicated they harvest for commercial purposes, and 2% (n=3) indicated they harvest marine fish and/or aquatic species for "other" purposes. However, the participants that selected "other" did not provide new purposes for harvesting marine fish and/or aquatic species. Open-ended responses received for Q62 include "food only not recreational"; "food to augment my household"; and "occupation".Q63 Marine fish and/or aquatic species harvested within Bay St. George

- Q63 allowed participants to identify one or more marine fish and/or aquatic species that they, or a member of their family, catch within Bay St. George. The most harvested marine fish and/or aquatic species within Bay St. George identified by the participants include Atlantic cod (84.5%; n=136), capelin (63.8%; n=81), mackerel (53.3%; n=81), lobster (48.7%; n=74), halibut (38.8%; n=59), mussels (33.6%; 51), herring (30.9%; n=47), scallop (30.9%; n=47), and snow crab (29%; n=44).
- Other species harvested by 20% (n=30) or less of the participants (in order of frequency) include turbot, haddock, flounder, seal, redfish, lumpfish, pollock, hake, skate, plaice, hagfish, monkfish, and swordfish. Approximately 5.3% (n=8) reported harvesting "other" marine fish and/or aquatic species not listed. Species identified in the "other" category include catfish (n=1), smelt (n=1), squid (n=1) and salmon (n=1). Participants also shared the following responses: "you must come talk to our fishers"; "Some species are not caught by us but other fishermen fish it and we buy it and eat it"; and "what ever is in season".

Q64 Frequency of marine fish and/or aquatic species harvesting within Bay St. George

Q64 allowed participants to select only one option. Approximately 37.5% (n=57) of the participants reported that they, or a member of their family, catch marine fish and/or aquatic species within Bay St. George once or twice a week and 26.3% (n=40) reported catching marine fish and/or aquatic species every day. Approximately 15.1% (n=23) reported catching marine fish and/or aquatic species once every few months, and 113.8% (n=21) reported catching marine fish and/or aquatic species once a month. Approximately 6.6% (n=10) reported they did not know the frequency at which they or a family member catch marine fish and/or aquatic species within Bay St. George. One participant (0.7%) indicated they never catch marine fish and/or aquatic species within Bay St. George.

Q65 Frequency of consumption of marine fish and/or aquatic species harvested within Bay St. George

Q65 allowed participants to select only one option. Approximately 59.9% (n=91) of the participants reported consuming marine fish and/or aquatic species harvested within Bay St. George once or twice a week, 19.1% (n=29) reported consuming marine fish and/or aquatic species once a month, 12.5% (n=19) reported consuming marine fish and/or aquatic species once every few months, and 4% (n=6) reported consuming marine fish and/or aquatic species daily. Approximately 4% (n=6) reported not knowing the frequency at which they consume marine fish and/or aquatic species harvested within Bay St. George and 0.7% (n=1) reported never consuming marine fish and/or aquatic species harvested from this area.

### Marine Harvesting Within or Near the Port of Stephenville

Q66 Marine Fish and/or Aquatic Species harvesting within or near the Port of Stephenville

• Sixty-seven participants skipped Q66, and 448 participants provided a response. Most of the participants (84.4%; n=378) indicated that they, or members of their family, do not catch marine fish and/or aquatic species within or near the Port of Stephenville. Only 15.6% (n=70) of the participants indicated that they or a member of their family catch marine fish and/or aquatic species in this area.

Q67 Purpose of marine fish and/or aquatic species harvesting within or near the Port of Stephenville

Q67 allowed participants to identify one or more of the purposes for harvesting marine fish and/or aquatic species. Recreation and/or food was identified as the most common purpose for harvesting marine fish and/or aquatic species within or near the Port of Stephenville (88.6%; n=62). Traditional and/or cultural purposes was identified as the second most common purpose for harvesting marine fish and/or aquatic species (54.3%; n=38). Traditional/cultural purposes for harvesting marine fish and/or aquatic species would include use of for food, bait, ceremonies, and other purposes. Approximately 24.3% (n=17) indicated they harvest for commercial purposes, and 2.9% (n=2) indicated they harvest marine fish and/or aquatic species for "other" purposes. However, the participants that selected "other" did not provide new purposes for harvesting marine fish and/or aquatic species. Open-ended responses received for Q67 include "food only not recreational" and "food to augment my household".

Q68 Marine fish and/or aquatic species harvested within or near the Port of Stephenville

- Q68 allowed participants to identify one or more marine fish and/or aquatic species that they, or a member of their family, catch within or near the Port of Stephenville. The most harvested marine fish and/or aquatic species within or near the Port of Stephenville identified by the participants include Atlantic cod (84.3%; n=59), capelin (61.4%; n=43), lobster (55.7%; n=39), mackerel (54.3%; n=38), halibut (48.6%; n=34), herring (41.4%; n=29), mussels (38.6%; n=27), scallop (34.3%; n=24), snow crab (30%; n=21), and turbot (22.9%; n=16).
- Other species harvested by 16% (n=11) or less of the participants (in order of frequency) include flounder, haddock, seal, lumpfish, redfish, skate, pollock, and swordfish. Approximately 5.7% (n=4) reported harvesting "other" marine fish and/or aquatic species not listed. Species identified in the "other" category include squid (n=1) and mackerel (n=1; was included in the list). Participants also shared the following responses: "Some species are not caught here in BSG but are bought and we eat it. Only certain specifies can be fished here" and "what ever is in season". Note that BSG means Bay St. George and that this participant may have been confused about the area in question (i.e., the Port of Stephenville).

Q69 Frequency of marine fish and/or aquatic species harvesting within or near the Port of Stephenville

• Q69 allowed participants to select only one option. Approximately 50% (n=35) of the participants reported that they, or a member of their family, catch marine fish and/or aquatic species within or near the Port of Stephenville once or twice a week. Approximately 21.4% (n=15) reported catching marine fish and/or aquatic species daily, 15.7% (n=11) reported catching marine fish and/or aquatic species once every few months, and 8.6% (n=6) reported catching marine fish and/or aquatic species once a month. Approximately 4.3% (n=3) reported they did not know the frequency at which they or a family member catch marine fish and/or aquatic species within or near the Port of Stephenville.

#### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023

**Q70** Frequency of consumption of marine fish and/or aquatic species harvested within or near the Port of Stephenville

Q70 allowed participants to select only one option. Approximately 61.4% (n=43) of the participants reported consuming marine fish and/or aquatic species harvested within or near the Port of Stephenville once or twice a week and 21.4% (n=15) reported consuming marine fish and/or aquatic species once a month. Approximately 7.1% (n=5) reported consuming marine fish and/or aquatic species once every few months and 5.7% (n=4) reported consuming marine fish and/or aquatic species daily. Approximately 4.3% (n=3) reported not knowing the frequency at which they consume marine fish and/or aquatic species harvested within or near the Port of Stephenville.

### PROJECT NUJIO'QONIK Aquatic Environment Baseline Study August 2023