

Valentine Gold Project: Acid Rock Drainage/Metal Leaching (ARD/ML) Assessment Report of the Berry Pit

Final Report

August 10, 2023

Prepared for:

Marathon Gold Corp. 10 King Street East, Suite 501, Toronto, ON M5C 1C3

Prepared by:

Stantec Consulting Ltd. 141 Kelsey Drive, St. John's, NL A1B 0L2

File No: 121417555.ARD.527292

This document entitled Valentine Gold Project: Acid Rock Drainage/Metal Leaching (ARD/ML) Assessment Report of the Berry Pit was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Marathon Gold Corporation (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by:				
	Signature			
	Megan Binner, M.Sc.			
	ROFESSIONAL GEOS			
	Megan Binner, M.Sc. Megan Binner, M.Sc. 11110 Brenda Lee Bailey			
Reviewed by:	Bronder Williams			
Signature				
	Brenda L. Bailey, Ph.D., P.Geo.			
	Printed Name and Title			
Approved by:	Digitally signed by Jim B Finley Date: 2023.08.10 17:02:01 -06'00'			
· · · · · · · · · · · · · · · · · · ·	Signature			

Jim Finley, Ph.D. Printed Name and Title

Table of Contents

EXEC	UTIVE SUN	IMARY	. I
ABBF	EVIATION	SI	V
1.0		CTION	
1.1		<u> </u>	
1.2	REPORT	STRUCTURE	3
2.0		TORY REQUIREMENTS	
2.1	REGULAT	ORY REQUIREMENTS	4
2.2	REPORTI	NG REQUIREMENTS	5
3.0	METHOD	OLOGY	6
3.1		G	
	3.1.1	Individual Samples	
	3.1.2	Composite Samples	
3.2		ORY ANALYSES	
	3.2.1	Static Tests	
	3.2.2	Kinetic Tests	
	3.2.3	Quality Control1	
3.3		TIONS AND CLASSIFICATION CRITERIA	
	3.3.1	ARD Criteria	
	3.3.2	Metal Leaching Criteria1	3
4.0		91	
4.1		IDENTIFICATION1	-
4.2		ESTS1	
	4.2.1	Overburden1	6
	4.2.2	Waste Rock1	
	4.2.3	Ore	
	4.2.4	Tailings	
4.3		rests2	
	4.3.1	Overburden	
	4.3.2	Waste Rock	
	4.3.3	Low-Grade and High-Grade Ore	
	4.3.4	Tailings2	25

5.0	DISCUSSION	27
5.1	OVERBURDEN	
5.2	WASTE ROCK	
	5.2.1 ARD/ML Management	
5.3	CONSTRUCTION MATERIAL	
5.4	LOW-GRADE ORE	
	5.4.1 ARD/ML Management	
5.5	HIGH-GRADE ORE	
	5.5.1 ARD/ML Management	
5.6	TAILINGS	
5.7	OPEN PITS	31
6.0	CONCLUSIONS	32
7.0	STATEMENT OF QUALIFICATIONS	
8.0	REFERENCES	
8.1	PERSONAL COMMUNICATIONS	

LIST OF APPENDICES

APPENDIX A FIGURES

- A.1 Project Area
- A.2 Approved Project and Project Expansion Site Plan
- A.3 Property Map
- A.4 Project Expansion Plan Map
- A.5 Berry Pit Long Section Along Fault
- A.6 Berry Pit Cross-Sections

APPENDIX B TABLES

- B.1 Lithological Codes for Composite Samples
- B.2 Description of Composite Samples Selected for Ageing, Kinetic, and Sub-aqueous Column Testing
- B.3 Mineralogical Analysis of Composite Samples of from Berry Pit
- B.4 Numbers and Percentages of Samples from Berry Pit Exceeding Selected ARD/ML Criteria
- B.5 Summary of ABA Statistics for Materials from Berry Pit
- B.6 Summary of SFE Statistics for Materials from Berry Pit
- B.7 Summary of Statistics for Total Concentration of Trace Elements in Materials from Berry Pit
- B.8 ABA Analysis for and rates Composite Samples
- B.9 SFE for Composite Samples
- B.10 Total Concentration of Trace Elements in Composite Samples
- B.11 Summary of Kinetic Test Results for the Berry Pit
- B.12 Summary of Ageing and Subaqueous testing for Berry tailings

APPENDIX C PLOTS

- Berry Waste Rock Humidity Cell Plots Berry Ore Humidity Cell Plots Tailings Sub-Aqueous Column Plots C.1
- C.2
- C.3

APPENDIX D CERTIFICATES OF ANALYSES

- Mineralogy D.1
- D.2 Static Tests
- Kinetic Tests Laboratory Certificates of Analysis D.3

Executive Summary

Marathon Gold Corporation (Marathon) is currently constructing an open pit gold mine, located in the west-central region of the Island of Newfoundland, approximately 60 kilometres (km) southwest of the Town of Millertown, Newfoundland and Labrador (NL). The Valentine Gold Project (the Approved Project) is comprised of two open pits (Leprechaun and Marathon), waste rock piles, low-grade ore (LGO) stockpiles, a high-grade ore (HGO) stockpile, crushing and stockpiling areas, conventional milling and processing facilities (the mill), a tailings management facility (TMF), personnel accommodations, and supporting infrastructure, including roads, on-site power lines, buildings, and water and effluent management facilities.

Marathon is proposing to develop a third open pit and associated infrastructure, to be located between the Leprechaun and Marathon pits, referred to as the Berry Pit Expansion Project (the Project Expansion). The Project Expansion infrastructure includes the Berry pit, waste rock pile, topsoil stockpile, combined overburden and LGO stockpile with the Marathon pit stockpiles, and associated water management infrastructure. Ore from the Approved Project and Project Expansion open pits will be mined and processed from stockpiles for approximately 14.4 years. The Berry open pit, which is comprised of three basins (northern, central, and southern) would be mined in Years 1 to 9. Thereafter, tailings and/or waste rock will be backfilled into the combined southern and central basins.

This report provides results from the geochemical characterization program for the Berry pit, assesses the potential for the development of acid rock drainage (ARD) and metal leaching (ML) from mined materials, and identifies parameters of potential concern (POPC). The ARD/ML potential of the Leprechaun and Marathon deposits is available in the Valentine Gold Project: Acid Rock Drainage/Metal Leaching (ARD/ML) Assessment Report (Stantec 2022). Stantec 2022 was originally submitted to regulators as part of the Valentine Gold Project Environmental Impact Statement (Valentine Gold EIS; Marathon 2020). The work outlined in this report is required to support environmental assessment (EA) and permitting requirements for the Project Expansion.

The methods for the ARD/ML assessment generally followed the Mine Environment Neutral Drainage (MEND) publication entitled "Prediction Manual for Characterizing Drainage Chemistry from Sulphidic Geologic Materials" (Price 2009). The geochemistry baseline program included:

- Static testing of 425 samples of waste rock, ore, and overburden for Acid-Base Accounting (ABA), Shake Flask Extraction (SFE), and total metals,
- ARD/ML characterization of composite waste rock and ore samples based on the static test results, and
- Kinetic testing of composite samples including 16 humidity cells; six field leach bins are planned for installation in 2023.

Acid Potential (AP) was calculated from sulphide-sulphur (S_{SULPHIDE}) concentrations. Carbonate neutralization potential (Carbonate NP) was calculated from Total Carbon concentrations. ARD classification is based on a Carbonate Neutralization Potential Ratio (NPR) of samples compared to thresholds consistent with Price (2009). A sample is classified as Potentially Acid Generating (PAG) if Carbonate NPR is below 2; otherwise, the sample is classified as non-PAG. Sources of construction rock will be tested and evaluated prior to use. Only non-PAG material with a low potential to generate ML will be used in construction.

Metal leaching (ML) potentials were evaluated by screening the concentrations of trace elements in the leachates from SFE to the effluent quality limits prescribed in the *Metal and Diamond Mining Effluent Regulations* (MDMER) and to the Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life (CWQG-FAL). A high leaching potential was defined as parameters with concentrations exceeding MDMER concentrations in SFE tests, whereas a moderate leaching potential was defined as parameters with concentrations exceeding the CWQG-FAL.

The findings of this assessment are summarized below for each source of mined materials.

Approximately 8.5 million tonnes (Mt) of overburden will be generated from the Berry pit. As indicated above, overburden from both the Marathon and Berry pits will be stockpiled together. Overburden is classified as non-PAG material, with moderate leaching potential for F, Al, As, Cd, Cu, Fe, Mn, Ni, Pb, Se, and Zn based on shake flask extraction tests of individual samples. No parameters in SFE leachate of individual overburden samples exceeded MDMER, thus no parameters were classified as having a high leaching potential in the overburden. If PAG overburden is identified by confirmatory testing, the material will be segregated and placed in the waste rock pile in accordance with the management protocols for PAG waste rock to limit the potential for ARD.

Leachate from the SFE tests of individual samples of the various waste rock lithologies suggest moderate leaching potential for F, AI, As, Cd, Cu, Fe, Mo and Zn, based on at least one sample having SFE leachate concentrations that exceeded CWQG-FAL.

Up to 11% of the 160.5 Mt of waste rock is conservatively estimated to be PAG. PAG material will be backfilled in the Berry pit below the flood level, or PAG materials will be blended with non-PAG rock and encapsulated within non-PAG rock to reduce risk of localized ARD within the waste rock pile. This management strategy is proposed for all lithologies containing PAG rock.

Approximately 40% of the 5.0 Mt of LGO is conservatively classified as PAG. As indicated above, LGO from both the Marathon and Berry pits will be stockpiled together. The LGO stockpile will be processed before the estimated onset time of ARD for PAG-classified LGO from the Berry pit. In the current mine design, the Marathon LGO stockpile effluent has been segregated from other mine flow streams to facilitate collection and further ARD/ML treatment, if required. To further reduce ARD/ML risks, Stantec recommends preferentially stockpiling non-PAG LGO and direct PAG LGO to the mill feed as soon as practicable, as long as the grade requirement for the mill feed is met. There are no exceedances of MDMER concentrations in leachates from LGO laboratory tests under neutral pH conditions. Based on concentrations from SFE tests exceeding CWQG-FAL, Ag, AI, As and Zn have moderate leaching potential.

Approximately 58% of the 10.1 Mt of Berry HGO is conservatively classified as PAG. Berry, Leprechaun, and Marathon HGO will be stockpiled together, with 28.5% of the combined material originating from Berry. The overall mixture of HGO is non-PAG and not expected to generate ARD. Drainage from the HGO stockpile flows to the TMF and any potential acidity will be neutralized in the tailings pond or in the mill during processing. To limit exposure of PAG HGO within the stockpile, this ore will be preferentially directed to the mill feed, while non-PAG HGO can be allocated to the stockpile, as long as the grade requirement for the mill feed is met. No parameter concentrations exceeded MDMER in SFE leachate. There is moderate leaching potential, based on CWQG-FAL exceedances in SFE leachate for at least one individual sample, for F, AI, Cd, Fe, Mn, Pb, Se and Zn in the Berry HGO.

Abbreviations

Parameter	Comment
ABA	Acid-Base Accounting
ACUC	Average Concentration in the Upper Crust
AP	Acid Potential
ARD/ML	Acid Rock Drainage/Metal Leaching
CALA	Canadian Association for Laboratory Accreditation
CEA Agency	Canadian Environmental Assessment Agency
CN(T)	Total Cyanide
CN _{WAD}	Weak-Acid Dissociable Cyanide
CVAAS	Cold Vapor Atomic Absorption Spectroscopy
CWQG-FAL	Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life.
DL	Detection Limit
EIS	Environmental Impact Statement
H ₂ O ₂	Hydrogen Peroxide
HCI	Hydrochloric Acid
HCT	Humidity Cell Testing
HGO	High-grade Ore
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
km	Kilometre
LGO	Low-Grade Ore
m	Metre
MD	Mafic Dyke Unit
MDMER	Metal and Diamond Mining Effluent Regulations
MEND	Mine Environment Neutral Drainage
mg/L	Milligram per liter
mL	Milliliter
Mt	Million tonne

n	Count
NAG	Net Acid Generating
NaOH	Sodium Hydroxide
NH ₃	Ammonia
NH ₃ +NH ₄	Total Ammonia
NNP	Net Neutralization Potential
NP	Neutralization Potential
NPR	Neutralization Potential Ratio
OB	Overburden
PAG	Potentially Acid Generating
POPC	Parameters of Potential Concern
PSD	Particle Size Distribution
QA/QC	Quality Assurance / Quality Control
QPOR	Quartz Porphyry Unit
QTP	Quartz-Tourmaline-Pyrite Unit
SED	Sedimentary Unit
SFE	Shake Flask Extraction
SO ₄	Sulphate
SSULPHATE	Sulphate Sulphur
SSULPHIDE	Sulphide Sulphur
TEC	Total Concentration of Trace Elements
TIC	Total Inorganic Carbon
TMF	Tailings Management Facility
wt. %	Percent by weight
%	Percent
<	Less than

1.0 INTRODUCTION

Marathon Gold Corporation (Marathon) is currently constructing an open pit gold mine, located in the west-central region of the Island of Newfoundland, approximately 60 kilometres (km) southwest of the Town of Millertown, Newfoundland and Labrador (NL) (Appendix A, Figure A-1). The Project Area includes several significant gold deposits, the Leprechaun, Marathon, Berry, Sprite and Victory gold deposits (Ausenco 2020). The Valentine Gold Project (the Approved Project) is comprised of two open pits (Leprechaun and Marathon), waste rock piles, low-grade ore (LGO) stockpiles, a high-grade ore (HGO) stockpile, crushing and stockpiling areas, conventional milling and processing facilities (the mill), a tailings management facility (TMF), personnel accommodations, and supporting infrastructure, including roads, on-site power lines, buildings, and water and effluent management facilities. The Approved Project was subject to both federal and provincial environmental assessment (EA), and Marathon submitted the Valentine Gold Environmental Impact Statement (Valentine Gold EIS; Marathon 2020) as part of the EA process for the Approved Project. The Approved Project was released from the provincial EA process in March 2022 and was given approval to proceed by the federal government in August 2022.

Marathon is now proposing to develop a third open pit, located between the Leprechaun and Marathon pits, referred to as the Berry Pit Expansion Project (the Project Expansion). The Project Expansion infrastructure includes the Berry pit, waste rock pile, topsoil stockpile, combined overburden and LGO stockpile with the Marathon pit stockpiles, and associated water management infrastructure. The mine site layout for the Approved Project and Project Expansion open pits will be mined and processed from stockpiles for approximately 14.4 years. The Berry pit, which is comprised of three basins (northern, central and southern) will be mined in Years 1 to 9. Thereafter, tailings and/or waste rock will be backfilled into the combined southern and central basins.

This Acid Rock Drainage (ARD) / Metal Leaching (ML) Assessment Report has been completed to help satisfy federal and provincial EA requirements for the Project Expansion. The Berry deposit represents approximately 29.3% of the Valentine Lake property resources. Only the Berry pit is addressed in this report, because the ARD/ML characterization of materials from the Marathon and Leprechaun pits has already been completed and documented (Stantec 2022).

The Berry deposit lies along a major regional fault zone in the central portion of Marathon's Valentine Lake property (Appendix A, Figure A-3). The Berry deposit is hosted predominantly by a quartz porphyry, comprising over 50% of the proposed open pit based on the geological model, the remainder of the deposit occurs in sedimentary host rocks (conglomerates). Discontinuous mafic dikes appear to be intimately associated with the development of mineralized veins The major types of veining encountered in the Project Area are gold-bearing quartz-tourmaline-pyrite (QTP) veins and barren quartz-calcite-chlorite veins. Pervasive carbonate-sericite and variably silicified alteration of the host rocks occurs in association with the QTP mineralized veining (Appendix A, Figures A-4, A-5, A-6). Approximately 160.5 Mt of waste rock will be mined from the Berry pit.

1.1 PURPOSE

The exposure and chemical weathering of some mine materials may result in acid generation and/or metal leaching (ML), which in turn may degrade runoff and groundwater quality. Geochemical characterization is required to assess the potential environmental effects of the Project Expansion and to inform permitting requirements. The geochemistry program described herein provides information about the ARD classification and ML potential of mine materials, and screening for parameters of potential concern (POPC) for rock materials associated with the Berry pit. The ARD/ML program for the EA and permitting of the Approved Project was completed in 2022 (Stantec 2022).

Testing and data analysis conducted on samples from the Berry deposit described in this ARD/ML Assessment Report includes:

- Static tests and analysis for 425 samples, plus the 16 composite samples for kinetic testing described below, from the Berry pit
- Initiation of twelve humidity cell tests (HCTs). HCT charges were selected based on results from the static testing: six HCTs contain the average composition of the waste rock lithologies, HGO and LGO; the other six HCTs contain potentially acid generating (PAG) or ML samples of waste rock lithologies, HGO, LGO and overburden
- Initiation of four HCTs containing carbonate depleted PAG waste rock and ore
- Initiation of a subaqueous and ageing column test of a tailings sample obtained from ongoing metallurgical work
- Planned installation of six field leaching bins (FLBs) containing waste rock lithologies, HGO and LGO has been delayed due to weather conditions. FLBs are anticipated to be constructed in 2023

1.2 REPORT STRUCTURE

This report consists of seven sections and four appendices that present the results of the ARD/ML assessment:

- Section 1: Introduction
- Section 2: Regulatory Requirements
- Section 3: Methodology
- Section 4: Results
- Section 5: Discussion
- Section 6: Conclusions
- Section 7: References
- Appendix A: Figures
- Appendix B: Tables
- Appendix C: Plots
- Appendix D: Certificates of Analyses and Tabulated Results

2.0 REGULATORY REQUIREMENTS

2.1 REGULATORY REQUIREMENTS

The Berry Pit ARD/ML assessment was designed to be consistent with the ARD/ML assessment for the Approved Project, which in turn was informed by requirements of the Provincial and Federal EIS Guidelines issued for the EA of the Approved Project under the Newfoundland and Labrador *Environmental Protection Act* (Government of NL 2020) and the *Canadian Environmental Assessment Act, 2012* (CEA Agency 2019), respectively. The Berry Pit ARD/ML report is also designed to satisfy the Development Plan Guidelines under the *Newfoundland and Labrador Mines Act* for the Project (Mineral Development Division, 2020).

These guidelines recommend use of the "Manual for Drainage Chemistry from Sulphidic Geologic Materials" produced by MEND for ARD/ML prediction (Price 2009). This manual was used in developing the study design and establishing ARD classification for this and previous studies.

The water quality criteria applicable to this study include the following:

- 1. Schedule 4 of *Metal and Diamond Mining Effluent Regulations* (MDMER) promulgated under the *Fisheries Act* (SOR/2002-222 2020)
- 2. Canadian Water Quality Guidelines for Protection of Freshwater Aquatic Life (CWQG-FAL) (Canadian by Council of Ministers of the Environment [CCME] 2020)
- 3. Schedule C of Newfoundland and Labrador Regulation 65/03 *Environmental Control Water and Sewage Regulations*, 2003 under the *Water Resources Act* (O.C. 2003-231) (NLR 65/03 2003)
- 4. Schedule C of the Newfoundland and Labrador Regulation 65/03 refers to Sections 3, 19.1, and 20 and Schedule 4 of the MDMER as follows:

"A person primarily in the Metal Mining Industry shall comply with sections 3 and 19.1 and 20 and Schedule 4 of the Metal Mining Effluent Regulations (Canada) SOR/2002-222, including any changes or amendments to those sections of and that schedule to those regulations over time."

Therefore, the CWQG-FAL and MDMER water quality criteria are applied in this report.

2.2 REPORTING REQUIREMENTS

The Development Plan Guidelines for the Approved Project (Mineral Development Division, 2020) required an ARD/ML program and report that include the following:

- The report must characterize and evaluate the potential for and mitigation of ARD/ML at the project.
- The program must conform to the "Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials, MEND Report 1.20.0, December 2009".
- The results must be interpreted by an ARD/ML Qualified Professional (ARD/ML QP).
- The report must include:
 - Discussion of the adequacy of the number of samples collected for each geologic material and types of tests conducted on the samples;
 - Interpretation of the test results and justification for recommendations for further sampling, testing, and investigation;
 - Discussion of appropriate ARD/ML prevention, mitigation, and management strategies for the project;
 - Site specific recommendations for ARD/ML prevention, mitigation, and management including practical considerations for the project regarding storage, handling, and long-term disposal of residual ore, waste rock, and tailings;
 - A statement of qualifications by the ARD/ML QP;
 - Analytical results must be appended.

This report includes each of these items related to the Project Expansion, but more details related to discussion of ARD/ML management are presented in the updated ARD/ML Management Plan (Stantec 2023b).

3.0 METHODOLOGY

3.1 SAMPLING

3.1.1 Individual Samples

Samples were collected from waste rock lithologies, overburden, HGO, LGO, and tailings. Individual samples for the ARD/ML program were collected in 2022. A total of 425 samples including waste rock (n = 263), overburden (n = 45), and ore (n = 117) were collected from the exploration drill cores, excluding internal standards and blanks. The individual samples represent approximately 1 to 2 m intervals of core, with a few exceptions of shorter intervals. The number of samples collected and analyzed for this program are consistent with the guidance for initial sample number and sample frequency provided in Price (2009).

The 45 samples of overburden were collected by GEMTEC from test pits and drill holes located near the proposed open pit. Sampling intervals and descriptions of the overburden samples can be found in GEMTEC (2019 and 2022). Notably, 15 of the 45 overburden samples were not tested using ABA analyses.

Individual samples were submitted to SGS Canada Inc. (SGS) for static testing. SGS is certified by the Canadian Association for Laboratory Accreditation (CALA) for all analyses discussed in this report. The analytical methods for these tests are summarized in Section 3.2 and laboratory reports are presented in Appendix D.1 to D.3.

Not all individual samples were analyzed by all static test methods. The number of samples tested using each static method is consistent with the guidance provided in Price (2009; Table 3-1).

Lithology	Material type	Expected Tonnage	Suggested frequency per Table 8-2, Price (2009)	Number of samples tested to date
Units		Mt	Number of samples	Number of Samples
Metasediments*	Waste Rock	44.1	80	83
Mafic Dykes	Waste Rock	7.7	26	42
QEPOR**	Waste Rock	106.3	80	108
QTP	Waste Rock	4.0	26	30
High Grade Ore	Ore	10.1	80	85
Low Grade Ore	Ore	5.0	29	32
Overburden	Waste	8.5	26	45

Table 3-1 Number of Individual Samples Tested by Lithology from the Berry Pit

Notes:

*Sample count and geological model includes conglomerate and sediments with QTP veins (QZ-STQP).

**Sample count and geological model includes Quartz Porphyry Varieties, Mafic Dike and non-ore QTP veins in Quartz Porphyry and Mafic Dike. In ARD block model, Quartz Porphyry (QEPOR) includes Quartz Porphyry Varieties.

3.1.2 Composite Samples

Selected individual samples of different waste rock or ore lithologies were combined to produce composite samples of PAG and non-PAG material (Appendix B, Table B-1 and Table B-2). The material type of the composite samples are provided in Appendix B (Table B-2). The composite samples were prepared from the individual core samples crushed to minus 6 mm ($\frac{1}{4}$ ") for static and HCT kinetic testing. Kinetic tests have been running for a range of 12 to 20 weeks at the time of this report and have not yet stabilized to completion.

3.2 LABORATORY ANALYSES

3.2.1 Static Tests

Samples for static testing were prepared by drying at 60°C, crushing, subsampling, and pulverizing to pass a number 200 mesh (0.74 mm) screen. The SGS Metallurgical Study describes preparation and leaching procedures (SGS 2019, 2020a, and 2020b).

Static testing conducted on the Berry pit samples included Acid-Base Accounting (ABA), solid phase total metals by *aqua regia* digestion and shake flask extraction (SFE) testing. Mineral identification analysis was also completed on Berry pit samples. The certificates of analyses for the static tests and mineral identification are presented in Appendix D.

3.2.1.1 Acid-Base Accounting

ABA was conducted on 410 samples. Analyses, methods and calculated parameters associated with ABA include:

- Paste pH measured by inserting a combination pH electrode into a paste of the sample composed of 1:2 water-to-solid ratio.
- Total Sulphur analyzed by a Horiba induction furnace with an infrared detector (IR) at or above a temperature of 1,650°C
- Sulphate-sulphur (S_{SULPHATE}) extracted by digesting the sample in 15% hydrochloric acid (HCI) and measuring the leachate for sulphate (SO₄) by gravimetric methods.
- Sulphide-sulphur (S_{SULPHIDE}) calculated from the difference between measured Total Sulphur and S_{SULPHATE}
- Acid Potential (AP) calculated from the product of S_{SULPHIDE} in a sample and 31.25 to yield results of acid potential in units of kg calcite (CaCO₃) equivalent/tonne.
- Total Carbon analyzed by a Horiba induction furnace with an IR detector at or above temperatures of 1,650°C
- Modified Sobek Neutralization Potential (NP) based on modified ABA testing (COASTECH Research Inc, 1991), wherein excess acid is added to the sample and a base is used to back-titrate. This method determines the total (bulk) neutralization potential, which is the balance between acid producing and acid consuming components of the sample.
- Carbonate NP calculated from the measured concentration of Total Carbon and the assumption that all carbon occurs as calcite using the equation: Total Carbon (wt. %) × (100.09/12.01) × 1000/100, where 100.09/12.01 is the proportion of carbon in calcite and 1000/100 is the conversion from wt. % to kgCaCO₃/t. Assuming the Total Carbon concentration is provided only by calcite may overestimate carbonate NP.

3.2.1.2 Solid Phase Total Metals

Solid phase total metals were measured by *aqua regia* digestion on 348 individual samples plus 16 composite samples collected from the Berry pit. Pulverized samples were digested by *aqua regia*, a 3:1 mixture of hydrochloric and nitric acids, and the digestate was analysed for trace elements by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

3.2.1.3 Shake Flask Extraction Tests

SFE testing was used to assess short-term leaching of trace elements in 234 of the samples collected from the Berry pit. Waste rock and overburden samples were crushed to less than 6 mm (1/4"); tailings were finer grained and not crushed for the SFE tests. The SFE tests consisted of continuous mixing of 250 g of crushed sample with 750 mL of deionized water for 24 hours. The leachate was analyzed for pH, alkalinity by titration, SO₄ (by colorimetric analysis); leachate was filtered through a 0.45 μ m membrane filter and was analyzed for trace elements by ICP-MS and mercury (Hg) was analyzed by Cold Vapor Atomic Absorption Spectroscopy (CVAAS).

3.2.1.4 Mineral Identification

A total of 16 samples (overburden composite samples, waste rock composite samples, LGO composite samples and HGO composite samples) were submitted to SGS for mineral identification by X-ray diffraction (XRD) with Rietveld refinement. Samples were pulverized and analyzed by pattern-matching with reference patterns compiled by the Joint Committee on Powder Diffraction Standards – International Center for Diffraction Data (JCPDS-ICDD) database. Rietveld refinement provides quantitative analysis for crystalline compounds; non-crystalline or amorphous phases are not identified by XRD and therefore are not included in the interpretations. The detection limit of XRD is 0.5 – 2%, depending on the crystallinity of the mineral phases.

Two samples of tailings were submitted to SGS for mineral identification by the automated mineralogy system QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy). The detection limit of QEMSCAN depends on the size of the particles and the resolution of the backscatter image.

3.2.2 Kinetic Tests

Kinetic testing for the Berry pit includes:

- Six HCTs containing composite samples of waste rock, low grade ore, or high-grade ore (B QPOR, B SED, B MD, B QTP, B LGO, B HGO)
- Six HCTs containing composite samples of waste rock, low grade ore, high grade ore, or overburden that are either PAG or have moderate to high potential of ML (B QPOR-PAG, B SED-High SFE, B QTP-PAG, B LGO-PAG, B HGO-PAG, B OB-ML)
- Four HCTs using the PAG composite samples leached of carbonate (carbonate leached; B QPOR-PAG-CO3DP, B QTP-PAG-CO3DP, B LGO-PAG-CO3DP, B HGO-PAG-CO3DP)

- One composite sample of tailings (BL1021-43 Detox TIs) subjected to ageing and sub-aqueous testing.
- Six field leach bins (FLBs) are planned to be initiated in 2023. FLBs will contain composite samples of waste rock, low grade ore, or high-grade ore (B-QPOR_FB, B-CG_FB, B-MD_FB, B-QTP_FB, B-LGO_FB, B-HGO_FB).

3.2.2.1 Humidity Cell Tests

The HCTs were initiated and are ongoing at SGS (Table B-2 in Appendix B). A 1 kg sample was split from a larger composite, placed into a standard cell, and subjected to weekly "air and flood" cycles (ASTM, 2010). The HCTs were leached weekly with 1 L of deionized water to flush the reaction products. The HCT leachate was analyzed for the following parameters:

- pH and conductivity using electrodes
- Alkalinity by titration
- SO₄ by IC and fluoride (F) by ISE
- Trace elements by ICP-MS
- Hg by CVAAS

Leachate pH and conductivity were measured weekly. Alkalinity, SO₄, F, trace elements and Hg were measured bi-weekly until week 8, after which they were measured every 4 weeks.

Four samples with elevated ARD potential were subjected to induced carbonate depletion to evaluate the ML potential under acidic conditions. The composite samples were leached in acetic acid buffered by sodium acetate to pH 4 to 4.5. Carbonate leached HCTs are identified by "CO3DP" in the sample identification code, to distinguish from the original composite samples that were not subjected to an acetic acid leach.

At the time of this report, the HCTs have been initiated and are ongoing (Appendix B, Table B-2). Data summaries for the HCTs are provided in Appendix B, Table B-11. Analytical results of HCTs to May 2023 are presented in Appendix D.

HCTs are recommended to operate until release rates have stabilized (Price 2009). The HCT data available for this report suggest stabilization has not yet occurred therefore only preliminary results are provided herein. A summary of the humidity cell test samples and start dates are presented in Table B-2 (Appendix B).

Preliminary calculations using the initial HCT data through to May 2023 are presented in Table B-9 and include:

 Neutralization Potential (NP) Depletion Rate (in mg CaCO₃/kg/week) — calculated for weekly data by the equation: NP Depletion Rate = Sulphate Leaching Rate x 100.09/96.06 + Alkalinity Production Rate – Acidity Production Rate. Where 100.09/96.06 is the molar ratio of CaCO₃ to SO₄. Acidity production was not measured for the HCTs containing tailings and was omitted from the equation for the tailings HCTs; omitting acidity production results in a slightly more conservative NP depletion rate value.

- Carbonate NP depletion time (in years) calculated using the carbonate NP and NP Depletion rate.
- ARD onset time (in years) calculated for weekly data by the equation: ARD onset time = (Carbonate NP/NP depletion rate) x 1000(365.25/7), where 1000 is the unit conversion between kg CaCO₃/t reported for carbonate NP, and mg/kg obtained from HCT data, and 365.25/7 is the conversion to year.

Additional data analysis and interpretation of the HCT results will be completed after the HCTs have stabilized, including metal release rates, and the calculation of depletion times for acid generating, acid neutralizing and metal leaching minerals.

3.2.2.2 Field Bin Tests

Field leach bin (FLB) tests have not started at the time of this report but are anticipated to be initiated in 2023. Six FLB tests containing composite samples of waste rock, LGO and HGO will be established at Marathon's exploration camp in 2023 (Appendix B, Table B-2). The FLBs will contain approximately 50 - 100 kg of material. The FLB tests are kinetic tests with waste rock exposed to the natural field and weathering conditions at the site: natural precipitation will contact and flow through the rock in the FLB, and the leachate will accumulate in a collector at the base of the FLB. When the collector contains sufficient leachate volume, the leachate will be sampled approximately monthly during the ice-free season. If insufficient leachate is present in the collector one month after the previous sampling, the FLB will be artificially irrigated with a known volume of distilled water. Leachate pH and volumes will be measured and recorded. The leachate samples will be analysed for pH, alkalinity, dissolved trace elements, including low-level mercury analysis, SO₄, and other anions.

At the time of this report preparation, the waste rock material for the FLBs is at the site but the FLBs have not been constructed.

3.2.2.3 Aging Tests

Ageing tests are designed to account for the natural degradation of cyanide and ammonia species, and the attenuation of trace elements in the tailings pond. The tailings pulp supernatant was mixed at 200 revolutions per minute for 1 hour before being split into five representative test charges. Test charges were then allowed to age undisturbed under ultraviolet lamps for 24 hours per day. The test charges were sampled at the beginning of the test (day 0) and then on days 7, 14, 28, 56 for BL1021-43 Detox TIs; leachates were analysed for general water chemistry, trace elements, nitrogen, and cyanide species following the same methods as leachates from humidity cells. Analytical results of ageing tests are presented in the laboratory certificates of analysis Appendix D.

3.2.2.4 Subaqueous Columns

One sample (BL1021-43 Detox TIs) of tailings processed by the cyanide destruction procedure were subjected to sub-aqueous column tests to simulate seepage quality from the TMF under flow-through conditions. A 3-kg dry equivalent weight of tailing slurry was loaded into a column and allowed to settle overnight. Process water was added to the column from Week 0 to Week 10. Deionized water, spiked with lithium (Li), was added to the columns after Week 10 to simulate rinsing to tailings after closure. Samples of column effluent were collected at the base of the column at the beginning of the test (Week 0), then Week 1, 2, and 4 and every fourth week thereafter. The sampled solutions were tested for similar parameters, and using the same methods, as ageing tests. The analytical results of sub-aqueous columns tests are presented along with the laboratory certificates of analysis in Appendix D.

3.2.3 Quality Control

Laboratory analyses were conducted by SGS, which is certified by CALA. Select Certificate of Analysis (COA) from the laboratory include method details. Quality Assurance/Quality Control (QA/QC) procedures used for the select analyses are provided in Appendix D, including analysis of a standard reference samples, laboratory duplicate samples, and spike recoveries for every batch of samples.

Additional QA/QC measures were applied, including the following:

- Internal laboratory QA/QC procedures to meet the contractual obligations that the method detection limits (DLs) for all analyzed parameters were less than the CWQG-FAL guidelines and to ensure high-quality analyses; and
- Screening of all analytical results following Stantec's Standard Operating Procedures. In the event of
 a discrepancy or suspected results, samples are re-checked or re-analyzed to confirm or replace the
 original reported value.

3.3 CALCULATIONS AND CLASSIFICATION CRITERIA

The following sections describe the criteria for ARD/ML classification of the materials produced from the Berry pit. Values below the DL were assigned a value of one half the DL for all calculations presented in this report.

3.3.1 ARD Criteria

3.3.1.1 Static Tests

The methods for the ARD/ML assessment using static tests are consistent with the MEND Manual (Price 2009).

Carbonate NP was calculated using the laboratory results of Total Carbon analyses and by applying the following equation:

Carbonate NP (CaCO₃ kg/t) = Total Carbon (wt.%) × $(100.09/12.01) \times 1000/100$ (3.3-1)

Where: 100.09/12.01 is the ratio of the molecular weight of calcium carbonate to elemental carbon and 1000/100 is the conversion factor from wt.% to kg CaCO₃/t.

AP was calculated by the laboratory as the arithmetic difference between Total Sulphur and $S_{SULPHATE}$ by the equation:

For samples with Total Sulphur concentrations below the DL of the $S_{SULPHATE}$ analytical method, or with DL for Total Sulphur less than $S_{SULPHIDE}$, the $S_{SULPHATE}$ is negligible and equation 3.3-2 reduces to an AP calculated only by the Total Sulphur concentration:

The acidic drainage potential was classified based on the balance between acid generating and neutralizing reactions as indicated by the carbonate neutralization potential ratio (NPR) in equation 3.3-4:

The MEND Manual (Price, 2009) ARD classification based on NPR is given by:

- PAG, if NPR is less than (<) 1;
- Uncertain ARD potential if NPR is between 1 and 2; and
- Non-PAG if NPR is greater than (>) 2.

Carbonate NPR was used for the ARD classification of materials for the Berry pit. To be conservative and to eliminate the uncertainty related with the samples within the range of Carbonate NPR between 1 and 2, samples for this Project were classified as PAG if Carbonate NPR < 2. The paste pH and SFE pH values were used to confirm that no sample with Carbonate NPR > 2 generated acid.

Additional calculations included:

Carbonate Net Neutralization Potential (NNP) was calculated by subtracting the AP from the Carbonate NP:

Carbonate NNP (kg CaCO₃/t) = Carbonate NP – AP
$$(3.3-5)$$

Carbonate NP, AP and Carbonate NPR in composite ore samples were calculated using Total Carbon and S_{SULPHIDE} analysis generated by SGS (2019, 2020a, and 2020b).

3.3.1.2 Kinetic Tests

The weekly rates of acidity generation and alkalinity depletion were calculated by multiplying the concentrations of SO_4 and alkalinity by the volume of recovered leachate and dividing by the mass of material in the humidity cell. For kinetic tests, concentrations reported below the DLs were set at one half the value of the DL for statistical calculations and plotting (Appendix C). At the time of writing, the HCTs have been operating for 11 - 20 weeks (Appendix B, Table B-2).

To use HCT tests to calculate mass loadings for waste rock and tailings, the HCT tests should be operated until mass loading rates stabilize, and at least 40 weeks. At the time of this report preparation, the HCTs for this Project mass loading rates had not yet stabilized. The HCTs will continue to operate until stabilization has been observed, and the results will be reviewed; interpretations will be revised if necessary and calculations of the depletion of acid generating, acid neutralizing and metal leaching will be completed.

3.3.2 Metal Leaching Criteria

ML potential and screening for POPCs were evaluated by comparing the solid phase metal concentrations to average crustal abundances, and screening static tests results to water quality guidelines.

Metals concentrations in the individual samples of ore, waste rock, and overburden were compared to average elemental abundances in the upper Earth's crust (Average Concentration in the Upper Crust or ACUC) (Rudnick and Gao 2004) as a screening tool for potentially elevated concentrations. Element concentrations exceeding ten times (10x) ACUC were considered elevated. Elevated elemental concentration used as a screening parameter does not necessarily indicate elevated leaching potential or environmentally significant elements. Therefore, exceedances of 10x ACUC were only discussed for elements showing leaching potentials from SFE analyses and/or exceedances of CWQG-FAL in static tests.

Although CWQG-FAL and MDMER are not directly applicable to SFE, tailings aging test, or subaqueous column leachates, screening against these criteria may identify parameters for additional investigation. Additionally, parameters elevated above ACUC or in leachates will not necessarily result in elevated discharge concentrations, but rather assist in understanding POPCs. To screen for POPC, metal concentrations and pH in SFE leachates from individual samples were compared to the MDMER, Table 1 of Schedule 4 and to CWQG-FAL (CCME 2020). For guidelines dependent on temperature, pH, hardness, and/or dissolved organic carbon, the lowest CWQG-FAL values were used as a measure of conservatism. Comparing the SFE leachate results to the MDMER limits and CWQG-FAL represents a qualitative comparison because the rock:solution ratio of 1:3 used in the leaching tests will differ from the actual field conditions.

The leaching potential was qualitatively assessed based on the magnitude of MDMER and CWQG-FAL exceedances of the leachate from the SFEs, tailings aging test and subaqueous columns using the classification:

- High leaching potential: concentration exceeds MDMER;
- Moderate leaching potential: concentration is less than MDMER but greater than CWQG; and
- Low leaching potential: concentration is less than CWQG.

Moderate leaching potential indicates the potential for exceedances of CWQG-FAL in the mixing zones of the receiving waters, which has been further assessed by water quality modelling and assimilative capacity studies.

The ML will be reviewed and revised, as necessary, based on a comparison to stabilized kinetic test leaching rates and mass loadings, water quality predictions of effluent quality at discharge locations, and field sampling programs.

4.0 RESULTS

4.1 MINERAL IDENTIFICATION

Mineral identification by XRD was completed on composite samples of waste rock, LGO, HGO, and overburden. The QEMSCAN system was used for mineral identification of the tailings samples. The dominant minerals in each lithology were identified as the common rock-forming minerals quartz and feldspars (Appendix B, Table B-3).

Pyrite was identified by XRD in the waste rock and tailings samples and pyrite and/or marcasite was identified by QEMSCAN in the tailings samples; pyrite and marcasite cannot be distinguished in the QEMSCAN method and are reported as combined "pyrite/marcasite". Low concentrations of sulfide minerals (below the XRD detection limit of approximately 0.5 - 2 wt. %, or particles smaller than the resolution for QEMSCAN) may not be identified by XRD. Chalcopyrite was identified by QEMSCAN in the tailings samples only.

The carbonates calcite and/or magnesian calcite, rapidly dissolving minerals for acid neutralization (e.g., Paktunc, 1999), were present in all waste rock samples and tailings, but were absent in the overburden sample (B-OB-ML). Ankerite was identified at concentrations <1 wt.% in the overburden sample, two waste rock samples, and the tailings samples. Contribution from silicate weathering to NP is limited by slower rates of dissolution compared to carbonate minerals.

Berry pit area overburden (B-OB-ML) consists mainly of quartz (37.6 wt. %), plagioclase (36.3 wt. %), muscovite/paragonite (12.5 wt. %), chlorite (6.1 wt. %), and actinolite (5.2 wt. %). The carbonate mineral ankerite (0.5 wt. %) and the sulfide mineral pyrite (0.2 wt. %) were identified in trace amounts (Appendix B, Table B-3).

Major minerals identified in the samples of the quartz porphyry lithology (B QPOR, B QPOR-PAG, B QPOR-PAG-CO3DP) were the rock-forming aluminosilicate minerals quartz, plagioclase, and muscovite/paragonite (Appendix B, Table B-3). In the B QPOR, the mineral mass percentages of magnesian calcite (3.5 wt. %) is more than 10x the mineral mass percentage of the sulphide minerals, pyrite (0.3 wt. %). In B QPOR-PAG, the mineral mass percentage of calcite minerals (2.7 wt. %) is approximately double that of pyrite (1.2 wt. %). In B QPOR-PAG-CO3DP, the mineral mass percentage of calcite is much lower (0.09 wt. %) than the non-depleted sample (B QPOR-PAG), but the pyrite content (1.3 wt. %) was similar.

The sedimentary lithology (B SED, B SED-High SFE) dominantly consists of plagioclase, quartz, and muscovite/paragonite. In B SED, the identified carbonate minerals were calcite (3.2 wt. %), magnesian calcite (1.9 wt. %), and ankerite (3.9 wt. %); the sulphide mineral was pyrite (0.1 wt. %). In B SED-High SFE, the only carbonate mineral identified was calcite (4.0 wt. %) and the only sulphide minerals identified was pyrite (0.2 wt. %).

The mafic dike lithology (B MD) dominantly consists of quartz (42.0 wt. %), plagioclase (19.8 wt. %), chlorite (16.1 wt. %), and muscovite/paragonite (10.9 wt. %). The carbonate minerals identified were calcite (5.7 wt. %) and ankerite (0.6 wt. %); pyrite was identified in trace amounts (0.3 wt. %).

The major minerals identified in quartz-Au mineralized zone within QTP veins lithology (B QTP, B QTP-PAG, B QTP-PAG-CO3DP) were quartz and plagioclase, followed by muscovite/paragonite and chlorite. In B QTP, the combined weight percentage of calcite (1.1 wt. %) and magnesian calcite (2.4 wt. %) was approximately 9x the weight percentage of pyrite (0.4 wt. %). In B QTP-PAG, the calcite mineral mass percentage (3.4 wt. %) was approximately that of pyrite (1.4 wt. %). In B QTP-PAG, the mineral mass percentage of calcite (0.05 wt. %) was much lower than that of the non-depleted sample (B QTP-PAG), but the pyrite content (1.4 wt. %) was similar.

Major minerals in Berry LGO samples (B LGO, B LGO-PAG, B LGO-PAG-CO3DP) were identified as quartz, plagioclase, and muscovite/paragonite. In B LGO, the combined mineral mass percentage of calcite (2.8 wt. %) and magnesian calcite (2.5 wt. %) was more than 4x that of pyrite (1.2 wt. %). In B LGO-PAG, the combined mineral mass percentage of calcite (2.1 wt. %) and magnesian calcite (1.1 wt.%) is approximately half that of pyrite (6.9 wt. %). In B LGO-PAG-CO3DP, the mineral mass percentage of calcite (0.09 wt. %) was much lower than the non-depleted sample (B LGO-PAG), but the pyrite content (6.4 wt. %) was similar.

Berry HGO samples (B HGO, B HGO-PAG-Zn, B HGO-PAG-Zn-CO3DP) dominantly consist of quartz and plagioclase, and to a lesser extent muscovite/paragonite and chlorite. In B HGO, the combined mineral mass percentage of calcite (1.8 wt. %) and magnesian calcite (2.4 wt. %) was approximately 4x the that of pyrite (1.1 wt. %). In B HGO-PAG-Zn, the combined mineral mass percentage of calcite (1.5 wt. %) and magnesian calcite (0.3 wt. %) is 1.6x greater than that of percentage of pyrite (1.1 wt. %). In B HGO-PAG-Zn-CO3DP, the mineral mass percentage of calcite (0.1 wt. %) was much lower than the non-depleted sample (B HGO-Zn-PAG), but the pyrite content (1.2 wt. %) was similar.

Tailings associated with the Berry pit (BL1021-24D Detox TIs, BL1021-43 Detox TIs) consisted mostly of quartz and plagioclase, with significant amounts of muscovite/sericite, chlorite and clays. In BL1021-24D Detox TIs, the combined mineral mass percentage of calcite and ankerite (3.6 wt. %) is more than 3x that of pyrite/marcasite (1.0 wt. %). In BL1021-23 Detox TIs, the combined mineral mass percentage of calcite and ankerite (4.6 wt. %) is more than 3x that of pyrite/marcasite (1.3 wt. %). Both tailing samples had sphalerite identified in trace amounts (0.01 wt. %).

4.2 STATIC TESTS

The results of the geochemical characterization of samples are provided in Appendix B (Table B-8, Table B-9 and Table B-10).

4.2.1 Overburden

All of the 30 overburden samples tested for ABA had a carbonate NPR > 2 (Appendix B, Table B-4). As such, the overburden is classified as non-PAG. The average AP value ($0.23 \text{ kg CaCO}_3/t$) was approximately 90x lower than the average carbonate NP value ($21 \text{ kg CaCO}_3/t$; Appendix B, Table B-5). The minimum paste pH was 7.12.

Forty-five overburden samples were subjected to SFE tests. Measurements of pH in the SFE leachate were less than the lower MDMER limit of pH 6.0 in 4% of samples and greater than the upper CWQG-FAL limit of pH 9.5 in 2% of samples subjected to SFE tests. Overburden SFE leachate concentrations exceeded CWQG-FAL for F (73% of samples), AI (93% of samples), As (56% of samples), Cd (18% of samples, Cu (58% of samples), Fe (33% of samples), Mn (18% of samples), Ni (4% of samples) Pb (24% of samples), Se (22% of samples), and Zn (51% of samples). Concentrations of 10x ACUC were identified in 69% of samples for manganese (Mn), 33% for As, and 2% for Se (Appendix B, Table B-4 and B-7).

The B OB-ML composite sample was classified as non-PAG, with an NPR value > 2. The AP value (1.3 kg CaCO3/t) is approximately 15x lower than the carbonate NP value (20.5 kg CaCO3/t). Leachate from the SFE of the composite sample did not exceed any MDMER concentrations but exceeded CWQG-FAL for Cd, Cu, Mn, and Se concentrations. No solid phase total metals concentrations in B OB-ML composite sample exceeded 10x ACUC.

4.2.2 Waste Rock

4.2.2.1 Quartz Porphyry (QE-POR)

Most samples (88 of 108 samples, 82%) of QE-POR were classified as non-PAG. Of the QE-POR samples, 18% were classified as PAG, with carbonate NPR < 2 (Appendix B, Table B-4). The average AP value (9.1 kg $CaCO_3/t$) was approximately 5x lower than the carbonate NP value (44 kg $CaCO_3/t$; Appendix B, Table B-5). All samples had paste pH greater than 8.6. Measured pH values in leachate from the 2% of the SFE tests exceeded the upper CWQG-FAL limit of 9.0, suggesting the short-term acid neutralization capacity is greater than the short-term acid generating capacity.

Concentrations of AI exceed the CWQG-FAL of 0.1 mg/L in leachate from all 51 SFE tests; exceedances of CWQG-FAL also occurred in leachate concentrations for Zn (22% of samples), F (10% of samples), As (6% of samples), Fe (6% of samples) and Cu (4% of samples). Of the 108 samples tested for solid phase total metals, none exceeded 10x ACUC for the POPCs identified by SFE leachate concentrations.

Composite sample B QPOR has a carbonate NPR > 2; the sample is classified as non-PAG (Appendix B, Table B-8). The AP value (7.5 kg CaCO₃/t) is approximately 4x lower than the carbonate NP value (27.6 kg CaCO₃/t); the paste pH value was 9.46. Leachate from the SFE test exceeded the CWQG-FAL for F, AI, Cd and Se concentrations.

The B QPOR-PAG composite sample had a carbonate NPR < 1; the sample is classified as PAG (Appendix B, Table B-8). The AP value (29.1 kg CaCO₃/t) is 2.3x higher than the carbonate NP value (12.9 kg CaCO₃/t); the paste pH was 9.20. Leachate from the SFE test exceeded the CWQG-FAL for AI concentrations.

The B QPOR-PAG-CO3DP composite sample had an NPR < 1; this carbonate-depleted sample is classified as PAG (Appendix B, Table B-8). The AP value ($40.6 \text{ kg CaCO}_3/t$) is 4.0x higher than the carbonate NP value ($10.1 \text{ kg CaCO}_3/t$); the paste pH was 9.11.

Composite sample B-QPOR_FB had a carbonate NPR > 2; the sample is classified as non-PAG (Appendix B, Table B-8). The AP value (7.2 kg CaCO₃/t) is 5.2x lower than the carbonate NP value (37.4 kg CaCO₃/t); the paste pH was measured to be 9.45. The SFE leachate exceeded of the CWQG-FAL for Al concentrations.

4.2.2.2 Sediments (SED)

Of the 83 samples of SED lithology, which includes conglomerates and sediments with QTP veins, only one had carbonate NPR between 1 and 2; the remaining 82 samples had carbonate NPR > 2 (Appendix B, Table B-4); 98% of samples of SED lithology are classified as non-PAG and 2% are classified as PAG. The average AP value ($3.0 \text{ kg CaCO}_3/t$) is approximately 30x lower than the carbonate NP value ($90 \text{ kg CaCO}_3/t$; Appendix B, Table B-5). All 83 samples had paste pH greater than 8.92. Of the 83 samples subjected to the SFE tests, leachate pH values exceeded the CWQG-FAL maximum pH value of 9.0 in 5% of samples.

Concentrations of Al, F, Zn, Fe, Cd, As and Mo exceed CWQG-FAL in leachate from SFE tests in 100%, 19%, 12%, 7%, 5%, 2% and 2%, of samples respectively. The solid phase total metal concentration for Mo exceeded 10x ACUC in 2% of samples.

B SED composite sample has carbonate NPR > 2; the material is classified as non-PAG (Appendix B, Table B-8). The AP value (1.3 kg CaCO₃/t) is approximately 54x lower than the carbonate NP value (70.0 kg CaCO₃/t); the paste pH was 9.21. The SFE leachate from the pre-HCT SFE test exceeded the CWQG-FAL for Al and F concentrations. The HCT is still in progress; a post-HCT SFE test will be conducted when the tests are complete and terminated.

B SED-High SFE composite sample had carbonate NPR > 2; the material is classified as non-PAG (Appendix B, Table B-8). The AP value ($3.1 \text{ kg CaCO}_3/t$) is approximately 8.4x lower than the carbonate NP value ($26.0 \text{ kg CaCO}_3/t$); the paste pH was 9.07. The leachate concentrations of Al and F from the pre-HCT SFE test exceeded the CWQG. The HCT is still in progress; a post-HCT SFE test has not been conducted.

B-CG_FB composite sample has carbonate NPR > 2; the material is classified as non-PAG (Appendix B, Table B-8). The AP value (1.3 kg CaCO₃/t) is approximately 56.4x lower than the carbonate NP value (73.3 kg CaCO₃/t); the paste pH was 9.35. Leachate from the SFE test exceeded the CWQG-FAL for Al concentrations.

4.2.2.3 Mafic Dykes (MD)

Of the 42 samples from the MD unit, only one had a carbonate NPR between 1 and 2 and none with NPR < 1 (Appendix B, Table B-4); 2% of the material from this lithology is classified as PAG and 98% as non-PAG. The average AP value (5.7 kg CaCO₃/t) is approximately 21x lower than the average carbonate NP value (119.0 kg CaCO₃/t; Appendix B, Table B-5). All samples had paste pH greater than 8.59.

Of the 22 MD samples subjected to SFE tests, leachate concentrations exceeded the CWQG-FAL for Al, F, As and Zn for 100%, 18%, 9% and 9% of the samples, respectively. Of the 42 MD lithology samples tested, solid phase total metals exceeded 10x ACUC for As in 2% of the samples.

B MD composite sample had carbonate NPR > 2; the composite sample is classified as non-PAG (Appendix B, Table B-8). The AP value ($6.9 \text{ kg CaCO}_3/t$) is approximately 10x lower than the carbonate NP value ($70.7 \text{ kg CaCO}_3/t$); the with paste pH of 8.88. The SFE leachate exceeded the CWQG-FAL for Al concentrations. The solid phase total metal Mn concentration exceeded 10x ACUC.

B-MD_FB composite had a carbonate NPR > 2 (Appendix B, Table B-8); the composite sample is classified as non-PAG. The paste pH was 9.07 (Appendix B, Table B-8). The AP value ($3.1 \text{ kg CaCO}_3/t$) is 32x lower than the carbonate NP value ($100.0 \text{ kg CaCO}_3/t$). The SFE leachate exceeded the CWQG-FAL for AI concentrations. The solid phase total metal Mn concentration exceeded 10x ACUC.

4.2.2.4 Non-ore Quartz-Tourmaline-Pyrite Veins (QTP)

Of the 30 samples of QTP lithology, six (20%) had carbonate NPR < 2 and are classified as PAG (Appendix B, Table B-4). The average AP value (12 kg CaCO₃/t) is approximately 3x lower than the average carbonate NP value (38 kg CaCO₃/t; Appendix B, Table B-5). All samples had paste pH greater than 8.98.

Of the 14 QTP samples subjected to SFE tests, one exceeded the CWQG-FAL upper pH guideline of 9.0. The SFE leachate exceeded the CWQG-FAL for concentrations of Al (100%), F (%), and Cd (14%). Nineteen samples were subjected to solid phase total metals analysis, with 5% of samples exceeding 10x ACUC for Cd.

The B QTP composite sample had a carbonate NPR > 2; the sample is classified as non-PAG. The AP value (7.8 kg CaCO₃/t) is approximately 3x lower than the carbonate NP value (23.5 kg CaCO₃/t); the paste pH of 9.45 (Appendix B, Table B-8). The SFE leachate exceeded the CWQG-FAL for AI, Cd and Se concentrations.

The B QTP-PAG composite had a carbonate NPR < 1; the composite sample is classified as PAG material. The paste pH was 9.24 (Appendix B, Table B-8). The AP value (40.6 kg CaCO₃/t) is approximately 2x higher than the carbonate NP value (20.1 kg CaCO₃/t). The SFE leachate from the pre-HCT SFE test exceeded the CWQG-FAL for Al concentrations. The HCT is still in progress; a post-HCT SFE test has not been conducted.

The B QTP-PAG-CO3DP composite sample had an NPR < 1; the carbonate-depleted composition sample is classified as PAG material (Appendix B, Table B-8). The AP value ($35.3 \text{ kg CaCO}_3/t$) is 5.4x higher than the carbonate NP value ($6.5 \text{ kg CaCO}_3/t$); the paste pH was 9.14.

B-QTP_FB composite had a carbonate NPR > 2; the composite sample is classified as non-PAG material. The paste pH was 9.40 (Appendix B, Table B-8). The AP value (7.2 kg CaCO₃/t) is 4.2x lower than the carbonate NP value (30.2 kg CaCO₃/t). The SFE leachate exceeded the CWQG-FAL for Al concentrations.

4.2.3 Ore

4.2.3.1 Low-Grade Ore (LGO)

Of the 32 samples of LGO, 13 (40%) had carbonate NPR< 2, and were classified as PAG (Appendix B, Table B-4). The average AP value (28 kgCaCO₃/t) is 1.4x lower than the average carbonate NP value (40 kg CaCO₃/t; Appendix B, Table B-5). All samples had paste pH greater than 8.33.

SFE tests were conducted on 16 LGO samples. The SFE leachate exceeded the CWQG-FAL for concentrations of AI (100%), As (13%), Ag (6%) and Zn (6%). Of the POPCs identified by SFE leachate concentrations exceeded 10x ACUC in the 18 samples tested for solid phase total metals.

The low-grade ore composite sample (B LGO) had carbonate NPR < 1 and was classified as PAG (Appendix B, Table B-8). The AP value ($60.0 \text{ kg CaCO}_3/t$) is approximately 1.8x lower than the carbonate NP value ($33.1 \text{ kg CaCO}_3/t$. Paste pH was 9.02. The SFE leachate exceeded CWQG-FAL for Al concentrations.

B LGO-PAG composite has a carbonate NPR < 1 and is classified as PAG material (Appendix B, Table B-8). The AP value (160 kg CaCO₃/t) is 6.4x higher than the carbonate NP value (25.1 kg CaCO₃/t). The paste pH is 8.39. The SFE leachate exceeded the CWQG-FAL for Al concentrations.

The carbonate-depleted composite sample B LGO-PAG-CO3DP had a carbonate NPR < 1 (Appendix B, Table B-8) and is classified as PAG material. The AP value (137.0 kg CaCO₃/t) is 15.9x higher than the carbonate NP value (8.6 kg CaCO₃/t). The paste pH was 8.23.

B-LGO_FB has a carbonate NPR > 2 with a paste pH of 9.43 (Appendix B, Table B-8). The AP value (15.0 kg CaCO₃/t) is approximately 2.1x lower than the carbonate NP value (31.7 kg CaCO₃/t. Leachate from the SFE test exceeded the CWQG-FAL for Al concentrations.

4.2.3.2 High-Grade Ore (HGO)

Of the 85 HGO samples, 49 had carbonate NPR < 2 (Appendix B, Table B-4), thus 58% is classified as PAG. The average AP value of 30 kg CaCO₃/t is 1.5x lower than the average carbonate NP value of 44 kg CaCO₃/t (Appendix B, Table B-5). All samples had paste pH between 8.09 and 9.91.

Values of pH in SFE leachate exceeded the upper CWQG-FAL limit of 9.0 in 4 of the 44 (9%) SFE tests. The SFE leachate concentrations from the 44 samples tested exceeded the CWQG-FAL for Al (98% of samples), F (14% of samples), Zn (11% of samples), Fe (7% of samples), Cd (5% of samples), Pb (5% of samples), Mn (2% of samples) and Se (2% of samples) (Appendix B, Table B-9). Solid phase total metals were measured on 52 HGO samples, with 10× ACUC exceeded for Mn, Cd, and Se in 10%, 4% and 4% of samples, respectively.

The B HGO composite sample had carbonate NPR between 1 and 2 and is classified as PAG. The paste pH was 9.48 (Appendix B, Table B-8). The AP value (23.8 kg CaCO₃/t) was similar to the carbonate NP value (26.7 kg CaCO₃/t). The SFE leachate exceeded the CWQG-FAL for AI and Cu concentrations.

B HGO-PAG-Zn composite was prepared to represent ore from the Berry pit with the highest potential for ARD/ML. The sample is classified as PAG with a carbonate NPR < 1 (Appendix B, Table B-8). The AP value (23.1 kg CaCO₃/t) is 1.5x higher than the carbonate NP value (15.4 kg CaCO₃/t); the paste pH was 9.29. Leachate from the SFE test exceeded the CWQG-FAL for Al concentrations.

The carbonate-depleted sample B HGO-PAG-Zn-CO3DP is classified as PAG with carbonate NPR < 1 (Appendix B, Table B-8). The AP value ($22.2 \text{ kg CaCO}_3/t$) is 7.4x higher than the carbonate NP value ($3.0 \text{ kg CaCO}_3/t$). The paste pH was 8.99.

B-HGO_FB sample had a carbonate NPR between 1 and 2 and was classified as PAG. The paste pH was 9.34 (Appendix B, Table B-8). The AP value (18.8 kg CaCO₃/t) is approximately 1.6x lower than the carbonate NP value (29.7 kg CaCO₃/t). Leachate from SFE test exceeded the CWQG-FAL for Al concentrations.

4.2.4 Tailings

The sample BL1021-24D Detox TIs had carbonate NPR > 2 and was classified as non-PAG. The paste pH was 9.00 (Appendix B, Table B-8). The AP value (13.4 kg CaCO₃/t) is approximately 2.3x lower than the carbonate NP value (31.0 kg CaCO₃/t. No solid phase total metals exceeded 10× ACUC.

The sample BL1021-43 Detox TIs had carbonate NPR > 2 and was classified as non-PAG. The paste pH was 9.23 (Appendix B, Table B-8). The AP value ($5.3 \text{ kg CaCO}_3/t$) is approximately 6.5x lower than the carbonate NP value ($34.7 \text{ kg CaCO}_3/t$). No solid phase total metals exceeded $10 \times \text{ACUC}$.

4.3 KINETIC TESTS

A summary of the HCT release rates to May 16, 2023, are presented in Appendix B, Table B-11. Release rates have not stabilized for many parameters, suggesting ongoing geochemical evolution in many of the samples, therefore, preliminary results are provided herein. Data analysis and interpretation of the HCTs will be completed after the HCTs are well flushed and the tests have stabilized for the prediction of primary reaction rates. The next reporting phase will include stabilized metal release rates, the calculation of depletion times for acid generating, acid neutralizing and metal leaching minerals, and the prediction of future geochemical conditions.

4.3.1 Overburden

4.3.1.1 Overburden: B OB-ML

In the first 20 weeks of the HCT, pH remained circumneutral between pH 6.6 and 7.3, and alkalinity release rates appear to have stabilized. Sulphate release rates declined over the testing period, with the rate at or near a stable release rate by week 20.

Of the POPCs identified by the SFE screening, F appears to have stable release rates at week 20, whereas release rates of AI, As, Cd, Cu, Fe, Mn, Ni, Pb, and Se and Zn have not yet stabilized (Appendix C, Figure C-1).

4.3.2 Waste Rock

A summary of the HCT release rates to May 16, 2023, are presented in Appendix B, Table B-11. Release rates had not stabilized for many parameters, suggesting ongoing geochemical evolution. The pH of HCT leachate from waste rock samples is near neutral to alkaline (excluding carbonate-depleted cells) with the lowest pH value of 6.61 observed in the B OB-ML cell.

4.3.2.1 Quartz Porphyry: B QPOR and B QPOR-PAG

Values of pH were circum-neutral to slightly alkaline (pH 7.0 - 9.0). Alkalinity release rates for B QPOR and B QPOR-PAG HCTs decline from week 1 through week 20 and have not yet stabilized. Sulphate release rates declined from a maximum in week 1 to week 12 and appear to be increasing from week 12 to week 20, suggesting ongoing sulphide oxidation (Appendix C, Figure C-1).

Of the POPCs identified by SFEs, the release rate of F appears to have stabilized by week 20, and As and Zn may have stabilized or are declining. The remaining POPCs identified by SFE tests have release rates that have not yet stabilized (Appendix C, Figure C-1).

4.3.2.2 Quartz Porphyry: B QPOR-PAG-CO3DP

The 12 weeks of data available for the carbonate-depleted QPOR-PAG-CO3DP HCT indicate acidic pH (4.6 - 5.4) and negligible alkalinity in leachate, due to the removal of carbonates prior to testing. Sulphate release rates suggest ongoing sulphide mineral oxidation that may be increasing (Appendix C, Figure C-1).

Of the POPCs identified in the SFEs, release rates of all parameters in the HCT are increasing at week 12. Copper and Ni, not identified as POPCs by static testing, have release rates at week 12 approximately double that of week 8 and should continue to be monitored and evaluated (Appendix C, Figure C-1).

4.3.2.3 Sediments: B SED and B SED-High SFE

Values of pH from the B SED and B SED-High SFE HCTs are more variable than the other waster rock lithologies but remain neutral to alkaline (7.3 - 9.2 and 7.3 - 8.9, respectively). Alkalinity release rates in both HCTs continue to decline at week 20. Sulphate release rates may be stabilizing or slightly increasing, with rates approximately double in the B SED-High SFE HCT than B SED at week 20 (Appendix C, Figure C-1).

Of the POPCs identified by SFE screening of individual SED samples, F and Fe release rates appear to be stable whereas As and Cd are fluctuating. Release rates of Al are fluctuating in B SED but appear to have stabilized in B SED-High SFE by week 20. Release rates of Mo steadily decline in cell B SED-High SFE to week 16 and then fluctuate to week 20; Mo release rates fluctuate in cell B SED throughout the 20 weeks of testing (Appendix C, Figure C-1).

4.3.2.4 Mafic dykes: B MD

The pH from the B MD HCT remains circumneutral to alkaline (7.2 - 8.9), and alkalinity is decreasing for the 20 weeks the HCTs have been operating. Suphate release rates decreased to week 12 but are fluctuating and possibly increasing through week 20 (Appendix C, Figure C-1).

Of the POPCs identified by SFEs and solid phase total metals of MD samples, HCT release rates of F appear to be stable; Al, Mn and Zn may be fluctuating or decreasing, and As and Cd are fluctuating or increasing by week 20 (Appendix C, Figure C-1).

4.3.2.5 Non-ore vein zones: B QTP and B QTP-PAG

Like the other waste rock lithologies, the pH of the B QTP and B QTP-PAG HCTs remain circumneutral through week 20 (7.0 - 8.9 and 6.9 - 8.4, respectively), alkalinity release rates generally decrease, and sulphate release rates may be stabilizing or slightly increasing (Appendix C, Figure C-1).

Of the POPCs identified by SFEs and solid phase total metals concentrations of the QTP individual and composite samples, the release rates from the B QTP and QTP-PAG for F have stabilized and Al are fluctuating but possibly decreasing at week 20. Release rates of Cd have greater variability in the B QTP-PAG HCT compared to the B QTP cell (Appendix C, Figure C-1).

4.3.2.6 Carbonate depleted non-ore vein zones: B QTP-PAG-CO3DP

Through the 12 weeks of testing, leachate from the carbonate-depleted HCT QPT-PAG-CO3DP remains acidic (pH 4.6 - 5.4). The negligible alkalinity release rates were based on <DL alkalinity concentrations and are indicative of the carbonate-depletion pre-treatment of the HCT cell charges. Sulphate release rates suggest ongoing sulphide oxidation and may be increasing at week 12 (Appendix C, Figure C-1).

Of the POPCs identified by static testing of the non-carbonate depleted QTP lithologies, release rates of F appear to be stable, Aluminum and Cd were increasing at week 12. Release rates of Cu, and Ni, not identified as a POPCs by static testing, increased at week 12 in the B QTP-PAG-CO3DP cell (Appendix C, Figure C-1).

4.3.3 Low-Grade and High-Grade Ore

4.3.3.1 Low grade ore: B LGO and B LGO-PAG and B LGO-PAG-CO3DP

Leachate from the low-grade ore HCTs B LGO and B LGO-PAG remain circumneutral to slightly alkaline through the 20 weeks of testing (pH 7.0 – 9.0, and pH 6.9 – 8.2, respectively), whereas leachate from the carbonate-depleted B LGO-PAG-CO3DP cell remains acidic (pH 4.1 – 5.1) for the 12 weeks of testing. Alkalinity release rates from B LGO decrease over the 20 weeks of testing, whereas release rates from B LGO-PAG are more variable and increase from weeks 16 through 20. Alkalinity remains low based on alkalinity concentrations <DL for B LGO-PAG-CO3DP due to leaching of the carbonate phases before HCT testing (Appendix C, Figure C-2).

Sulphate release rates are generally decreasing, but fluctuate, with rates approximately 6x higher in the B LGO-PAG HCT compared to B LGO at week 20. Sulphate release rates are increasing in the carbonate depleted cell B LGO-PAG-CO3DP, and at week 12 are approximate 36x higher than those from cell B LGO, and approximately 6x higher than observed in cell B LGO-PAG (Appendix C, Figure C-2).

Of the POPCs identified by static testing of LGO samples, AI release rates are sharply increasing at weeks 8 and 12 for cell B LGO-PAG-CO3DP to approximately 5 - 7x the B LGO and B LGO-PAG rates at week 8, respectively, and 20 - 70x the B LGO and B LGO-PAG rates, respectively. Release rates of As are variable for all three HCTs, but are higher and increasing for the B LGO-PAG-CO3DP HCT at week 12, compared to the other two cells. The Ag release rates are low and stable for all three cells as a result of Ag concentrations being <DL for all weeks. Release rates for Zn from B LGO-PAG-CO3DP decrease initially, then increase in weeks 8 and 12; the week 8 release rates were 7 - 10x in the B LGO-PAG CO3DP HCT compared to the B LGO and B LGO-PAG HCTs, respectively (Appendix C, Figure C-2).

4.3.3.2 High grade ore: B HGO, B HGO-PAG and B LGO-PAG-Zn-CO3DP

Similar to the low-grade ore HCTs, the high-grade ore HCTs B HGO and B HGO-PAG remain circumneutral to alkaline through the 20 weeks of testing (pH 7.0 - 8.7, and pH 6.8 - 8.5, respectively), whereas the carbonate-depleted B HGO-PAG-Zn-CO3DP cell remain acidic (pH 4.6 - 6.0) for the 12 weeks of testing. Alkalinity release rates from B HGO and B HGO-PAG decrease from week 2 to week 20 week. Alkalinity release rates remain low based on alkalinity concentrations <DL for B HGO-PAG-Zn-CO3DP due to leaching of the carbonate phases before HCT testing (Appendix C, Figure C-2).

Sulphate release rates are generally decreasing, however, fluctuated over the 20 weeks for HCTs B HGO and B HGO-PAG. Sulphate release rates are increasing in the carbonate depleted cell B HGO-PAG-Zn-CO3DP, and at week 12 are approximately 7 – 10x higher than those from cell B HGO-PAG and cell B HGO, respectively (Appendix C, Figure C-2).

The only POPC identified from screening of the static test results was Al. Aluminum release rates generally decrease, but fluctuate, for the 20 weeks of testing of B HGO and B HGO-PAG. The Al release rates from B HGO-PAG-Zn-CO3DP were lower than those of the other two HGO HCTs, but increase at week 12 (Appendix C, Figure C-2).

4.3.4 Tailings

4.3.4.1 Ageing

Tailings ageing tests were completed up to 56 days then terminated. These tests were for BL1021-43 Detox TIs which had MDMER exceedances for total cyanide $(CN_{(T)})$ and Cu, and CWQG-FAL exceedances for F, weak-acid dissociable cyanide (CN_{WAD}) , total ammonia (NH_3+NH_4) , Hg, Ag, Fe, phosphorus (P) and Zn for the 56-day testing period (Appendix B, Table B-12).

Nitrogen species generally decreased by the end of the ageing tests. $CN_{(T)}$ peaks on Day 14 (73 mg/L) and decreases below the MDMER threshold on Day 56. CN_{WAD} follows a similar trend, with the highest concentration (11 mg/L) at Day 28, sharply decreasing on Day 56 (0.02 mg/L). NH₃+NH₄ increases from Day 0 (2.8 mg/L) to Day 56 (10 mg/L), with the last concentration 20x the CWQG. Un-ionized ammonia peaked at Day 56 at 9x the CWQG (0.14 mg/L).

Table B-12 provides detailed results for all parameters with key parameters summarized herein. Cu exceeds MDMER from Day 0 (2x) to Day 28 (maximum 6.9 mg/L on Day 28), and the Day 56 concentration (0.027 mg/L) exceeds CWQG-FAL by 14x. Fe concentrations from Day 0 to Day 14 are more than 10x higher than the CWQG-FAL (up to 77x on Day 0), but remain below the CWQG-FAL threshold from Day 28 to Day 56. There is no clear trend in P concentrations, with a maximum concentration of 0.0080 mg/L (2x the CWQG) on Day 0 and Day 56. Hg concentrations have no clear trends, with a maximum concentration on Day 7 (0.00044 mg/L) 17x the CWQG. Ag concentrations were also variable, with the maximum value on Day 7 (0.00062 mg/L) 2.5x above the CWQG-FAL threshold. Recorded pH values are above neutral with a minimum pH value of 7.56 on Day 56.

4.3.4.2 Sub-Aqueous Columns

Results for 12 weeks of the HCT BL1021-43 Detox TIs were available at the time of this report preparation. The pH remained alkaline (pH 7.7 - 8.0), and alkalinity release rates increase to week 8 before decreasing to week 12. Sulphate release rates increase to week 4 then decrease to week 12 (Appendix C, Figure C-3).

SFEs were not conducted on these tailings samples, and no solid phase total metal concentrations exceeded the POPC screening criterion of 10x ACUC. However, unlike the HCTs representing unsaturated conditions, concentrations from subaqueous kinetic testing were used as screening criteria for POPCs (Table 5-1; Appendix B, Table B-12). Concentrations from the subaqueous HCT leachate were screened against MDMER and CWQG.

Concentrations in HCT leachate to week 12 from BL1021-43 Detox TIs exceed MDMER for $CN_{(T)}$ (up to 62x) and Cu (up to 27x), and exceeded CWQG-FAL for F (up to 1.3x), CN_{WAD} (up to 460x), NH_3+NH_4 (up to 15x), unionized ammonia (NH₃) (up to 17.5x), Hg (up to 11x), Ag (up to 9.2x), As (up to 2.4x), Cd (up to 13x), Cr (up to 1.7x), Fe (up to 43x), Mn (up to 1.2x), P (up to 30x), Se (up to 11x), and Zn (up to 16x) (Appendix B, Table B-12).

Release rates for CN_(T) increase to week 8 and then decrease to week 12, whereas release rates for both CN_(WAD), NH₃+NH₄ and unionized ammonia increase to week 4 before decreasing to week 12. Release rates for As, P and Se each increase by approximately 5x from week 8 to week 12, and release rates for Cd increase approximately 9x from week 8 to week 12. Release rates for Hg are variable, as a result of some concentrations in the HCT leachate being <DL. Release rates for Ag decrease from week 1 to week 12 and release rates for Zn decrease from week 2 to week 12. Release rates for Cr and Fe increase from week 2 to week 8 and then decrease to week 12, and release rates for Cu increase form to week 2 before decreasing to week 12. Release rates for Mn increased steadily form week 1 to week 12 (Appendix C, Figure C-3).

5.0 DISCUSSION

5.1 OVERBURDEN

Approximately 8.5 Mt of overburden will be excavated from the Berry pit and stockpiled. Overburden is non-PAG, with all 30 samples having a carbonate NPR greater than 2. The SFE tests suggest slightly acidic to alkaline pH values. Moderate leaching potential for F, AI, As, Cd, Cu, Fe, Mn, Ni, Pb, Se and Zn are based on SFE leachate concentrations that exceeded the CWQG-FAL (Table 5-1).

VALENTINE GOLD PROJECT: ACID ROCK DRAINAGE/METAL LEACHING (ARD/ML) ASSESSMENT REPORT OF THE BERRY PIT

POPC					В	erry Pit				
Lithology	ОВ	QPOR	SED	MD	QTP	LGO	HGO	Tai (BL1021-4	lings 3 Detox Tls)	Count
Sample type	Individ, Comp	Individ, Comp	Individ, Comp	Individ, Comp	Individ, Comp	Individ, Comp	Individ, Comp	Comp - Ageing	Comp - Sub-Aq	
F	×	x	×	×	×		×	✓	✓	8
CN _(T)								✓	✓	2
CN _{WAD}								✓	✓	2
NH ₃ +NH ₄								✓	~	2
Un-ion. NH ₃									✓	1
Hg								✓	✓	2
Ag								✓	✓	2
Al	×	×	×	×	×	×	×			7
As	×	×	×	×		×			✓	6
Cd	×		×						✓	3
Cr									\checkmark	1
Cu	×	×						\checkmark	\checkmark	4
Fe	×	×	×				×	✓	\checkmark	6
Mn	×						×		\checkmark	3
Мо			×							1
Ni	×									1
Р								✓	\checkmark	2
Pb	×						×		✓	3
Se	×		×				×		✓	4
Zn	×	×	×	×		×	×	\checkmark	\checkmark	8

Table 5-1 Summary of Parameters of Potential Concern for the Materials from the Berry Pit

Notes:

Sub-Aq - Sub-Aqueous.

× Shake Flask Extraction (SFE) exceedance in one or more tests; ✓ Aging tests in one or more weeks

Orange cells - parameter exceeds MDMER, thus classified as high potential for ML

Gray cells - parameter exceeds 10 x CWQG, thus classified as high potential for ML

Unhighlighted SFE symbols - parameter exceeds CWQG, thus classified as moderate potential for ML.

SFE data from individual samples

5.2 WASTE ROCK

Approximately 160.5 Mt of waste rock will be mined from the Berry pit. A conservative estimate of 11% of the total waste rock tonnage designated as PAG is based on samples with Carbonate NPR < 2. PAG rock is associated with all lithological units in the Berry Pit.

There are no exceedances of MDMER limits observed in SFE leachate. The SFE leachate of waste rock material exceeds CWQG-FAL concentrations, which is considered moderate leaching potential, for F, Al, As, Cd, Cu, Fe, Mo, and Zn (Table 5-1; Appendix B, Table B-4).

5.2.1 ARD/ML Management

The ARD/ML management strategy for Berry pit materials will be reviewed when HCT concentrations have stabilized, and release rates can be calculated and evaluated. Results from the muti-year FBL tests should be reviewed annually to monitor the *in situ* development of leachate quality. This data should be used to review and revise, as necessary, ARD/ML management strategy.

Based on the relatively small percentage of PAG rock from the Berry pit, and the excess of NP in the majority of Berry pit waste rock, Stantec recommends blending PAG and non-PAG rock with subsequent encapsulation of the blended material within non-PAG rock as shown on Figure A-12 (Appendix A). This approach has been successfully applied to waste rock piles development in other mine sites as referenced in Sections 6.6.3.5 and 6.6.3.6 of Global ARD guide (<u>http://www.gardguide.com/index.php;</u> INAP, 2009, and is applicable to ARD/ML management for the Project Expansion. The water quality predictions will be verified by monitoring, which is discussed in the ARD/ML Management Plan in detail (Stantec 2023b). If testing of contact water discharge quality from overburden stockpiles exceed trigger levels identified in Section 4.2 of the ARD/ML Management Plan, the adaptive management protocol will be implemented to address the drainage water quality issue.

5.3 CONSTRUCTION MATERIAL

Rock used for construction will primarily be sourced from waste rock generated during development of the open pit. Waste rock types have been characterized with respect to ARD potential as described in Section 5.2. The characterization indicates that the non-PAG lithologies with low ML should be acceptable sources of construction materials. Sources of rock will be tested and further evaluated prior to use in construction.

5.4 LOW-GRADE ORE

Analysis of individual LGO samples indicate that 40% classify as PAG. The composite sample representative of average LGO samples (B LGO) was also determined to be PAG. Estimated time of NP depletion time was calculated on HCT data (to week 19) before releases had stabilized and should be revised with additional data. The LGO has moderate leaching potential of Ag, Al, As and Zn based on CWQG-FAL exceedances in SFE leachate (Table 5-1; Appendix B, Table B-4).

5.4.1 ARD/ML Management

Based on an overall low risk of ARD/ML in LGO from the Berry pit, no mitigation is currently anticipated for the LGO stockpile at Berry site. However, to reduce ARD/ML risks, non-PAG LGO will be preferentially stockpiled, while PAG LGO will be directed to the mill feed as soon as practicable, as long as the grade requirement for the mill feed is met. Additionally, contact water will be collected in a sedimentation pond and monitoring will be conducted as part of the ARD/ML Management Plan to continually evaluate the ARD/ML risk and any necessary mitigation measures.

5.5 HIGH-GRADE ORE

Based on the analysis of individual samples, 58% of Berry HGO is conservatively (Carbonate NPR < 2) classified as PAG. The composite sample of Berry HGO (B HGO) was determined to be PAG. The estimated time of NP depletion time was calculated on HCT data (to week 19), before releases had stabilized, and should be revised with additional data.

No parameters were identified as having a high leaching potential because no exceedances of the MDMER limits were observed in SFE leachate. The HGO has a moderate leaching potential for F, Al, Cd, Fe, Mn, Pb, Se and Zn based on CWQG-FAL exceedances in SFE leachate (Table 5-1; Appendix B, Table B-4).

5.5.1 ARD/ML Management

High-grade ore from the Berry pit will be stockpiled with Marathon and Leprechaun HGO within the HGO stockpile to the southeast of the Berry Pit Complex. To limit exposure of PAG HGO within the stockpile, this ore can be preferentially directed to the mill feed, while non-PAG HGO can be allocated to the stockpile, as long as the grade requirement for the mill feed is met. The HGO stockpile will only be operated from Mine Year 1 to Mine Year 10, after which the stockpile will be decommissioned (Golder 2022). The HGO stockpile will be placed on an engineered pad with a runoff collection system. During operations, drainage from the HGO stockpile would flow by gravity to the tailings pond. If acidity were generated in the stockpile, the acidity would be neutralized in the tailings pond or in the mill during processing. Potential ML will be also addressed by treatment of effluent from the tailings pond as discussed in the Section 5.6.

5.6 TAILINGS

Tailings slurry from the Berry pit will be deposited in the TMF during the first nine years of operation and then to the Berry pit until cessation of the milling operation (15.5 Mt of tailings). Composite samples of tailings classify as non-PAG and are not expected to generate ARD. Preferential settling of denser minerals, such as sulphides, near spigots may result in formation of heterogeneous areas with PAG potential. The TMF surface will have water cover and beach areas during operations. The TMF will be rehabilitated at closure by placement of a soil and overburden cover, reducing the risk of localized ARD/ML during post closure (Ausenco 2020; Stantec 2023a).

VALENTINE GOLD PROJECT: ACID ROCK DRAINAGE/METAL LEACHING (ARD/ML) ASSESSMENT REPORT OF THE BERRY PIT

During the operation stage, the tailings pond will receive discharge from the plant as represented by Day 0 of the tailing aging tests, runoff from tailings beaches as evaluated by the humidity cell tests, and collected seepage simulated by the sub-aqueous columns. Based on the exceedances of the MDMER limits for the tailings testing, CN_(T) and Cu are considered to have a high potential of leaching, and treatment may be required during operation as described in the Water Management Plan (Stantec 2023c). The parameters F, CN_{WAD}, NH₃+NH₄, unionized NH₃, Hg, Ag, As, Cd, Cr, Fe, Mn, P, Pb, Se, and Zn (Table 5-1) are considered to have a moderate leaching potential based on CWQG-FAL exceedances in the available sub-aqueous data.

5.7 OPEN PITS

Materials characterized as PAG will be exposed in the pit walls during operations, but the majority of these materials are not expected to generate ARD before the pits are backfill with waste rock and flooded during the mine closure period based on ARD onset estimates (Tables B-8 and B-24, Appendix B). However, some lithologies were assessed as having moderate leaching potential for a number of parameters in the testing conducted to date. In post-closure, only materials within the highwall above the permanent level of the pit lake will remain exposed. Exposed rock types in the Berry pit are mostly represented by sediments (conglomerates) that show low ARD potential but moderate leaching potential for a number of parameters, based on testing completed to date. Pit materials will be characterized as part of confirmatory testing during operation. Monitoring of mine water will verify the water quality predictions and provide information for updates of the pit water quality model to inform closure strategies.

The parameters Cu, unionized and total NH₃, and total and free CN were assessed as a moderate leaching potential, and the discharge of tailings slurry and overflow from the tailings pond may affect pit lake concentrations. Concentrations of these parameters would be expected to decline during pit lake filling as a result of dilution by groundwater and/or attenuation. Analyzing the additional, stabilized, HCT data, water quality modelling, and monitoring of mine water during operations and closure will be used to review and revise the assessment of pit lake water quality. Accelerated pit filling and maintaining stratification of pit lakes are major controls of ARD/ML currently considered for long-term pit lake management.

6.0 CONCLUSIONS

Overburden from the Berry pit is classified as non-PAG (Carbonate NPR > 2). If PAG overburden is identified by confirmation testing, it will be segregated and placed in the waste rock pile in accordance with the management protocols for PAG waste rock to limit potential for ARD.

The waste rock excavated and stockpiled from the Berry pit is estimated to contain up to 11% PAG material. For waste rock used as construction material, Stantec recommends targeting non-PAG lithologies and conducting confirmatory testing prior to use. For waste rock that will be stockpiled, PAG and non-PAG rock will be blended to form a non-PAG blend and subsequently encapsulated within non-PAG rock. Closure of the waste rock pile will include a soil/overburden/topsoil cover and revegetation to potentially reduce the ARD/ML risk as described in the Rehabilitation and Closure Plan for the Approved Project.

Approximately 40% of LGO is estimated to be PAG, however, because of the short duration of the LGO stockpile no mitigation is currently recommended for the LGO stockpile, with the exception of the collection of contact water prior to discharge. To reduce ARD/ML risks, non-PAG LGO will be preferentially stockpiled, while PAG LGO will be directed to the mill feed as soon as practicable, as long as the grade requirement for the mill feed is met.

Fifty-eight percent of Berry HGO is conservatively classified as PAG (Carbonate NPR<2). The composite sample of Berry HGO (B HGO) was determined to be PAG. High-grade ore from the Berry pit will be stockpiled with Marathon and Leprechaun HGO within the Berry Pit. To limit exposure of PAG HGO within the stockpile, this ore can be preferentially directed to the mill feed, while non-PAG HGO can be allocated to the stockpile, as long as the grade requirement for the mill feed is met.

Composite samples of tailings are classified as non-PAG and are not expected to generate ARD. Tailings from ore extracted from the Berry pit will be deposited in the TMF with some areas of water cover and beaches during operations, and a soil/overburden cover post closure. Elevated concentrations of $CN_{(T)}$, un-ionized NH₃, and Cu suggested in the Berry tailings may impact pit water quality. Active water treatment is currently included in the Project design to mitigate elevated concentrations.

Site specific recommendations for ARD/ML prevention, mitigation, and management including practical considerations for the Approved Project regarding storage, handling, and long-term disposal of residual ore, waste rock, and tailings are provided in the ARD/ML Management Plan. The ARD/ML Management Plan contains additional details on testing of materials, monitoring of contact water and mitigations including contingency actions to control ARD/ML (Stantec 2023b) and will be updated to include the Project Expansion.

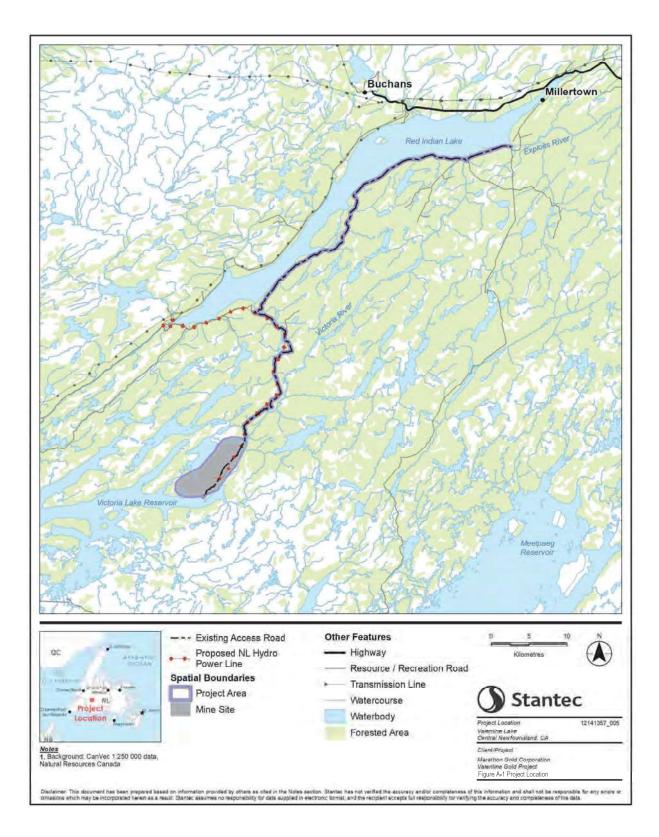
7.0 STATEMENT OF QUALIFICATIONS

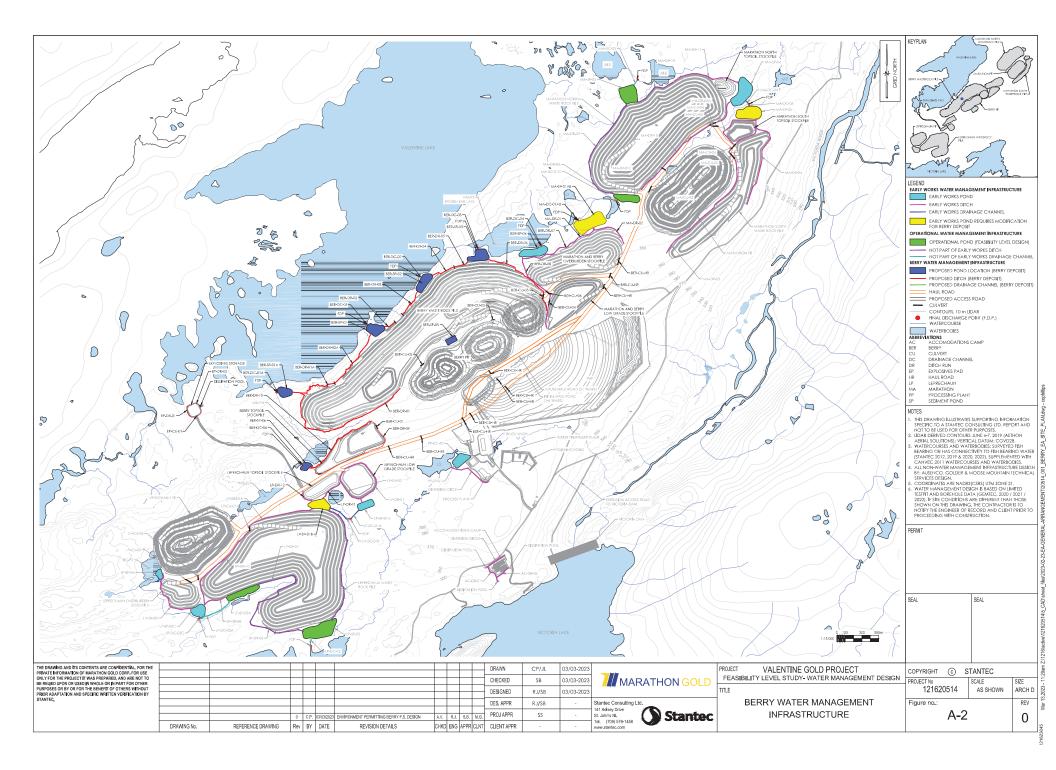
This report is written by staff under the supervision of Dr. Brenda L. Bailey, a Senior Associate -Geochemist with Stantec. Dr. Bailey received a master's degree in Earth Sciences in 2005 from Carleton University and Ph.D. from University of Waterloo in 2013. Dr. Bailey has over 18 years of professional and research experience in the environmental geoscience fields of contaminated sites, hydrogeochemistry, and metal leaching and acid rock drainage (ML/ARD) prediction, prevention, and mitigation. She has worked in coal, and hard-rock mining for projects in North and South America, and United Kingdom. Dr. Bailey has experience in the development and review of water quality and mine waste environmental management, monitoring, and mitigation programs for numerous mine projects in all phases of the mine life: baseline environmental assessment, permitting, operations, and closure. As a Senior Geochemist she focuses on water quality and mine waste aspects of mining projects, including ML/ARD characterization; mine water management plans, waste rock and tailings geochemical and microbiological assessments; scale-up predictions; water quality modelling; and mobility and fate of contaminants. Dr. Bailey is a register geoscience professional in Newfoundland and Labrador, British Columbia, Ontario, and Northwest Territories/Nunavut.

Quality review of this report was conducted by Dr. Jim B. Finley, a Principal Geochemist with Stantec. Dr. Finley has over 25 years of experience in the application of geochemical and hydrological principles to address water quality and management issues in a variety of environments associated with natural resource extraction and use. He has worked in coal, uranium, and hard-rock mining for his consulting career completing projects in North and South America, New Zealand, and Australia. He has extensive experience in mining at all phases of the mine life cycle from baseline work in support of permitting, active agency interaction, preparation of EIS/EIA documents, support for active mine operations, and participation of analysis and design for reclamation and closure of mines. Dr. Finley has expertise in the following technical areas: aqueous geochemistry, geochemical modeling, isotope geochemistry and hydrology, trace metal chemistry, watershed hydrology, and dynamic systems modeling.

8.0 REFERENCES

- Ausenco Engineering Canada (Ausenco).2020. N.I. 43-101 Technical Report and Pre-Feasibility Study on the Valentine Gold Project. Prepared for Marathon Gold Corporation, 21 April 2020.
- CCME. 2020. Canadian water quality guidelines for the protection of aquatic life: Summary Table. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, MB. Accessed from http://st-ts.ccme.ca/en/index.html in January 2020.
- COASTECH Research Inc. 1991. A Manual of Chemical Evaluation Procedures for the Prediction of Acid Generation from Mine Wastes. Prepared for CANMET-MSL Division Department of Energy, Mines and Resources, Canada. March 1991.
- GEMTEC. 2019. Limited Geotechnical Investigation, Draft Proposed Site Development Valentine Gold Project. Draft factual report prepared for Marathon Gold Corporation, 2 December 2019.
- Golder Associates Ltd. (Golder) 2022. Valentine Gold Project Water Balance and Hydraulic Design for Tailings Management Facility. Technical Memorandum. Reference No. 20350991-006-TM-RevB
- Government of NL. 2020. Environmental Impact Statement Guidelines for the Valentine Gold Project. Prepared by the 2015 Environment Assessment Committee for the Minister of the Department of Municipal Affairs and Environment, Government of Newfoundland and Labrador.
- International Network for Acid Prevention (INAP). 2009. Global Acid Rock Drainage Guide (GARD Guide). http://www.gardguide.com/index.php?title=Main_Page.
- Newfoundland and Labrador Regulation 65/03 (NLR 65/03). 2003. Environmental Control Water and Sewage Regulations under the Water Resource Act (O.C. 2003-231). Regulations consolidated to Nov 15, 2018.
- Paktunc, A.D. 1999. Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environmental Geology, 39, 103 112.
- Price, W.A. 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials, Report prepared for MEND. Report 1.20.1, p. 1-579.
- Rudnick R.L. and S. Gao. 2004. Composition of the Continental Crust. In Treatise on Geochemistry. Eds. H.D. Holland and K.K. Turekian. Volume 3. The Crust.
- SGS Minerals Services (SGS). 2019. An investigation into the Comminution Characteristics of Samples from the Valentine Lake Project. Prepared for Marathon Gold, Project 16863-01 Report 1 of 3 Comminution, 31 December 2019.
- SGS. 2020a. An Investigation of Gold Recovery from Valentine Lake Project Ores. Prepared for Marathon Gold, Project 16863-01 (includes 16863-03) Report 2 of 3 Milling, 15 April 2020.




VALENTINE GOLD PROJECT: ACID ROCK DRAINAGE/METAL LEACHING (ARD/ML) ASSESSMENT REPORT OF THE BERRY PIT

- SGS. 2020b. An Investigation of Gold Recovery from Valentine Lake Project Ores. Prepared for Marathon Gold, Project 16863-01 Report 3 of 3 Heap Leaching, 10 July 2020.
- SOR/2002-222. 2020. Metal and Diamond Mining Effluent Regulations (MDMER). Published by the Minister of Justice at the following address: http://laws-lois.justice.gc.ca Last amended on June 25, 2019.
- Stantec Consulting Ltd. (Stantec). 2018. Preliminary Results of Phase I ARD/ML Assessment. Final report prepared for Marathon Gold Corp. on 23 March 2018.
- Stantec Consulting Ltd. (Stantec). 2022. Valentine Gold Project: Acid Rock Drainage/Metal Leaching (ARD/ML) Assessment Report. September 2022.
- Stantec Consulting Ltd. (Stantec). 2023a. Berry Pit Expansion Project Water Quantity and Water Quality Model Update Report. August 2023.
- Stantec Consulting Ltd. (Stantec). 2023b. Valentine Gold Project: Acid Rock Drainage Metal Leaching Management Plan (Proposed Revisions to Address the Addition of the Berry Pit Expansion). August 2023.
- Stantec Consulting Ltd. (Stantec). 2023c. Berry Pit Expansion Project Water Management Plan. August 2023.
- 8.1 PERSONAL COMMUNICATIONS
- Goode, John. 2019a (Goode and Associates). Email titled "Marathon Gold PFS metallurgical data" sent on 7 Oct 2020 to Ruth Sherrit (Ausenco) and Jared Dietrich (Ausenco) and copied to Robbert Borst (Marathon Gold Corp.).
- J.R. Goode and Associates (Goode and Associates). 2019b. Marathon Gold Valentine Lake Gold project: Samples used in 2018-2019 metallurgical program (SGS project number 16863-01). Memorandum prepared by J.R. Goode and Associates for Robbert Borst, COO - Marathon Gold Corporation, 2019-10-03.

APPENDIX A Figures

APPENDIX B Tables

Composite ID	Lithological Description
B QPOR	Composite of Average Samples of Quartz Porphyry unit
B SED	Composite of Average Samples of Sedimentary unit
B MD	Composite of Average Samples of Mafic Dyke unit
B QTP	Composite of Average Samples of Quartz-Tourmaline-Pyrite veins
B LGO	Composite of Average Samples of Low-Grade Ore
B HGO	Composite of Average Samples of High-Grade Ore
B QPOR-PAG	Composite of Quartz Porphyry samples that are classified as PAG
B SED-High SFE	Composite of Sedimentary unit samples with exceedances in SFE tests
B QTP-PAG	Composite of Quartz-Tourmaline-Pyrite vein samples that are classified as PAG
B LGO-PAG	Composite of Low-Grade Ore samples that are classified as PAG
B HGO-PAG-Zn	Composite of High-Grade Ore samples that are classified as PAG and have Zn exceedances
B OB-ML	Composite of Overburden samples with exceedances in SFE tests
B QPOR-PAG-CO3DP	Carbonate-depleted composite of Quartz Porphyry samples that are classified as PAG
B QTP-PAG-CO3DP	Carbonate-depleted composite of Quartz-Tourmaline-Pyrite vein samples that are classified as PAG
B LGO-PAG-CO3DP	Carbonate-depleted composite of Low-Grade Ore samples that are classified as PAG
B HGO-PAG-Zn-CO3DP	Carbonate-depleted composite of High-Grade Ore samples that are classified as PAG and have Zn exceedances
B-QPOR_FB	Composite of Quartz Porphyry unit samples
B-CG_FB	Composite of Sedimentary unit samples
B-MD_FB	Composite of Average Mafic Dyke unit samples
B-QTP_FB	Composite of Quartz-Tourmaline-Pyrite vein samples
B-LGO_FB	Composite of Low-Grade Ore samples
B-HGO_FB	Composite of High-Grade Ore samples
BL1021-24D Detox TIs	Tailings from the Berry Pit
BL1021-43 Detox TIs	Tailings from the Berry Pit

Table B-1: Description of composite samples

Material	Sampe ID	Test type	Start	Finish	No. of weeks/days
Waste Rock	B QPOR	Humidity Cell	22/12/2022	Ongoing	19 weeks
Waste Rock	B SED	Humidity Cell	22/12/2022	Ongoing	19 weeks
Waste Rock	B MD	Humidity Cell	22/12/2022	Ongoing	19 weeks
Waste Rock	B QTP	Humidity Cell	22/12/2022	Ongoing	19 weeks
Low-Grade Ore	B LGO	Humidity Cell	22/12/2022	Ongoing	19 weeks
High-Grade Ore	B HGO	Humidity Cell	22/12/2022	Ongoing	19 weeks
Waste Rock	B QPOR-PAG	Humidity Cell	15/12/2022	Ongoing	20 weeks
Waste Rock	B SED-High SFE	Humidity Cell	15/12/2022	Ongoing	20 weeks
Waste Rock	B QTP-PAG	Humidity Cell	15/12/2022	Ongoing	20 weeks
Low-Grade Ore	B LGO-PAG	Humidity Cell	15/12/2022	Ongoing	20 weeks
High-Grade Ore	B HGO-PAG-Zn	Humidity Cell	15/12/2022	Ongoing	20 weeks
Waste Rock	B OB-ML	Humidity Cell	15/12/2022	Ongoing	20 weeks
Waste Rock	B QPOR-PAG-CO3DP	Humidity Cell	13/02/2023	Ongoing	11 weeks
Waste Rock	B QTP-PAG-CO3DP	Humidity Cell	13/02/2023	Ongoing	11 weeks
Low-Grade Ore	B LGO-PAG-CO3DP	Humidity Cell	13/02/2023	Ongoing	11 weeks
High-Grade Ore	B HGO-PAG-Zn-CO3DP	Humidity Cell	13/02/2023	Ongoing	11 weeks
Waste Rock	B-QPOR_FB	Field Bin	-	-	-
Waste Rock	B-CG_FB	Field Bin	-	-	-
Waste Rock	M-MD_FB	Field Bin	-	-	-
Waste Rock	B-QTP_FB	Field Bin	-	-	-
Low-Grade Ore	B-LGO_FB	Field Bin	-	-	-
High-Grade Ore	B-HGO_FB	Field Bin	-	-	-

Table B-2: Description of kinetic tests

Notes:

The number of weeks was calculated to May 16, 2023.

Sample ID	B OB-ML	B QPOR	B SED	BMD	B QTP	B LGO	B HGO	B QPOR- PAG	B SED- High SFE	B QTP- PAG	B LGO- PAG	B HGO- PAG-Zn	B QPOR- PAG- CO3DP	B QTP- PAG- CO3DP	B LGO- PAG- CO3DP	B HGO- PAG-Zn- CO3DP	BL1021- 24D Detox TIs	BL1021- 43 Detox TIs
Mineral Mass (wt %)																		
Method	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	XRD	QMA	QMA
Quartz	37.6	48.8	42.3	42.0	47.8	46.8	49.7	45.0	51.8	47.9	59.9	62.0	50.2	43.1	60.5	61.0	48.8	46.4
Alkali feldspar (Microcline / Orthoclase)	0.6	2.7	1.2	2.1	1.5	1.7	2.0	0.9	1.4	1.4	0.2	0.2	0.9	0.5	0.8	0.5		
Albite	36.3	33.4	12.4	19.7	37.0	32.7	35.3	39.3	13.0	37.1	17.7	29.2	38.1	44.3	19.5	29.0		
Plagioclase																	30.0	27.3
Other Silicates																	0.09	0.1
Calcite	0.00	-	3.2	5.7	1.1	2.8	1.8	1.00	4.0	3.4	2.1	1.5	0.09	0.05	0.09	0.12	3.5	4.3
Magnesian calcite	-	3.5	1.9	-	2.4	2.5	2.4	1.70	-	0.00	1.10	0.30	-	-	-	-		
Ankerite	0.5	-	3.9	0.6	-	-	-	-	-	-	-	-	-	-	-	-	0.2	0.2
Pyrite/Marcasite*	0.2	0.3	0.1	0.3	0.4	1.2	1.1	1.2	0.2	1.4	6.9	1.1	1.3	1.4	6.4	1.2	1.0	1.3
Sphalerite																	0.0	0.0
Chalcopyrite																	0.01	0.01
Other Sulphides																	0.00	0.00
Diaspore	-	-	-	-	-	-	-	-	-	0.5	0.5	-	-	-	-	-		
Gibbsite	-	-	-	-	-	-	-	0.3	-	-	-	-	-	-	-	-		
Fe-Oxides																	0.2	0.1
Hematite	-	-	0.7	0.5	-	-	-	-	-	-	-	-	-	-	-	-		
Magnetite	0.9	-	2.3	1.0	-	0.4	-	-	1.2	0.5	1.8	-	0.5	0.6	1.4	0.2	-	-
Actinolite	5.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Chlorite	6.1	3.5	6.8	16.1	2.8	2.8	2.4	2.0	10.2	1.2	1.3	1.3	0.2	0.5	0.5	0.6	5.3	4.8
Muscovite / Sericite / Paragonite	12.5	6.7	23.2	10.9	6.4	9.2	4.9	7.4	16.8	5.3	7.7	4.0	6.6	9.2	10.5	7.1	5.6	6.1
Clays																	3.6	7.3
Anhydrite																	0.02	0.01
Apatite																	0.09	0.10
Rutile	-	-	0.7	0.9	-	-	-	-	-	-	-	-	-	-	-	-	0.5	0.5
Stilpnomelane	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-		
Tourmaline	-	-	-	-	-	-	-	-	-	-	-	-	2.2	0.2	0.2	0.3	1.3	1.5
Zeolite (Laumontite)	-	1.2	1.3	-	0.7	-	0.5	1.4	1.4	1.2	0.8	0.4	-	-	-	-		
Other																	0.02	0.02
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table B-3: Mineralogical identification of composite samples of waste rock, ore and tailings

Notes:

The values of mineral mass greater than 30%

The values of mineral mass greater than 10%

The values of mineral mass greater than 1%

Mineral identification is based on the SGS laboratory reports provided in Appendix D-1.

Method XRD indicated mineral quantities reported based on XRD with Rietveld refinement; method QMA indicates mineral quantities based on automated mineral quantification by the QEMSCAN system

*XRD identified pyrite only; QMA cannot distinguish between pyrite and marcasite and reports a combined total wt%

A blank cell indicates the mineral was not reported for the mineral identification method

Values of 0.0 indicate the mineral was included in XRD refinement calcuations but the calcuated concentration was <0.05 wt%

A dash (-) indicates the mineral was not identified by the analyst and not included in the XRD refinement calcuations

Acial-Base Accounting (ABM)Mole	Parameter	Units	Criteria	1. QE	-POR	2. Cong	omerate	3. Mafi	c Dykes	4.0	QTP		-Grade re		-Grade re	7.	ов
NPR ratio 1+2 11 1 1 1 2 3 10 11 34 26 31 27 1 MOMER Criteria - n %																n	%
NPR rate etal 8 7 0 0 0 3 10 2 6 6 23 27 4 Shake Flask Extraction (SFE) 51 100 42 100 22 100 14 100 <	Acid-Base Account	ing (ABA)		108	100	83	100	42	100	30		32				30	100
IMDME Criteria n % % % %		ratio														0	0
Shake Flask Extraction (SFE) 51 100 42 100 12 100 10 100 100 100 100 100 100 100 100 100 100 0		ratio	<1	8		0	-	0		3		2		23		0	0
pH pH unit 6.0 0 0 0 0<																n	%
pH pH wint >>5.1 0 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>45</td><td>100</td></t<>			-													45	100
Ás mg/L >0.1 0<		- ·		-						-						2	4
Cu mgL >0.1 0 </td <td></td> <td>- · · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>1</td> <td>2</td>		- · · · · · · · · · · · · · · · · · · ·														1	2
Ni mg/L >>0.38 0 0 0 0<				-						-						0	0
Ph mg/L >>0.8 0 0 0 0 </td <td></td> <td>0</td> <td>0</td>																0	0
mg/L 0								-				-				0	0
CWOG Criteria n % n <				-		-		-								0	0
Shake Finake Extraction (SFE) 51 100 42 100 22 100 14 100 45 100 42 100 42 100 10 <td></td> <td>mg/L</td> <td>>0.4</td> <td></td> <td>0</td> <td></td>		mg/L	>0.4													0	
Final pH pH unt < 0 000 </td <td></td> <td>n</td> <td>%</td>																n	%
Find PH pH unit >9.0.0 1 2 2 5 0 0 1 7 0 0 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 5 10 8 19 4 18 3 21 0 0 6 14 33 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 <td></td> <td>45</td> <td>100</td>																45	100
F mg/L >>0.12 5 10 8 19 4 18 3 21 0 0 6 14 3 Åg mg/L >>0.0005 0 0 0 0 0 14 100 16 100 43 98 3 As mg/L >>0.01 3 6 1 2 2 9 0 0 2 13 0 0 0 0 Cd' mg/L >0.0004 0																4	9
Åg mg/L >00.025 0 0 0 0 0 1 6 0 0 1 AI mg/L >0.1 51 100 42 100 22 100 14 100 16 100 43 98 3 As mg/L >0.0004 0<	гіпаі рн г	- · ·														5	11 73
AI mg/L >0.01 51 100 42 100 22 100 14 100 16 100 43 98 3 As mg/L >0.005 3 6 1 2 2 9 0 0 2 13 0 0 0 0 Gat mg/L >1.5 0 <																33	0
As mg/L >>1.5 0					-		-								-	0 35	78
B mg/L >1.5 0<																35 25	56
Cd* mgL >0.0004 0 0 2 5 0 0 2 14 0 0 2 5 1 Cr mgL >0.0089 0 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>25</td> <td>0</td>				-												25	0
Cr mg/L >0.0089 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>18</td></t<>																8	18
Cu* mg/L >0.002 2 4 0 </td <td></td> <td>0</td> <td>0</td>																0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	-									26	58
Hg mg/L >0.00026 .										-						15	33
Mn* mg/L >0.19 0		-														-	
Mo mg/L >0.073 0 0 1 2 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>18</td></th<>																8	18
Ni* mg/L >0.025 0 <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td>0</td><td>0</td></th<>				-	-					-	-	-				0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																3	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- ×		-												-	-
Se mg/L >0.001 0	Pb*			0	0	0	0	0	0	0	0	0	0	2	5	11	24
ΠI mg/L >0.0008 0 <t< td=""><td>Se</td><td>-</td><td>>0.001</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>2</td><td>10</td><td>22</td></t<>	Se	-	>0.001	0	0	0	0	0	0	0	0	0	0		2	10	22
Zn* mg/L >0.0017 11 22 5 12 2 9 0 0 1 66 5 11 2 10 x ACUC Criteria n % n			>0.0008	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10 x ACUC Criteria n % n	U	mg/L	>0.015	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zn*	mg/L	>0.0017	11	22	5	12	2	9	0	0	1	6	5	11	23	51
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 x ACUC Criteria			n	%	n	%	n	%	n	%	n	%	n	%	n	%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trace Element Con	centration	(TEC)	108	100	64	100	42	100	19	100	18	100	52	100	45	100
As $\mu g/g$ >48000012000001B $\mu g/g$ 00000000000000000000000000000000000000 <td>Ag</td> <td>µg/g</td> <td>>530</td> <td>0</td>	Ag	µg/g	>530	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		µg/g						0								0	0
Be $\mu g/g$ >21 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>33</td></th<>																15	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-						-						0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																0	0
Fe µg/g >320415 0 <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td></th<>				-	-	-										0	0
Hg $\mu g/g$ >0.5 0 </td <td></td> <td>0</td> <td>0</td>																0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-	-	-	-	-	-		-		-	0	0
Ni $\mu g/g$ >470 0 </td <td></td> <td>31</td> <td>69 0</td>																31	69 0
P μg/g >654.3 -					-				-							0	0
Pb µg/g >170 0<																0	- 0
Se µg/g >0.9 2 2 0 0 0 0 1 6 2 4 TI µg/g >9 0 <																-	- 0
TI µg/g >9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																0	2
																1	2
			>9 >27	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-	µg/g														0	0
	•															0	0

Parameter	Paste pH	S _{TOTAL}	S _{SULPHATE}	S _{SULPHIDE}	Modified Sobek NP	Lab AP	Lab NNP	Carb. NP	AP (calc)	Carbonate NNP	Carb. NPR	тс
ABA Criteria	-	-	-	-	-	-		-	-	-	Less than 1; 1 to 2	-
Units	pH Units		wt.%						kg CaCO	₃ /t	unit less	wt.%
1. Qtz-eye Porph	yry (QE-PC)R), 108 sa	Imples									
Min	8.60	0.0025	0.020	0.020	1.3	1.3	-42.7	7.7	0.078	-45	0.28	0.093
10th, %ile	9.21	0.0043	0.020	0.020	18	1.3	3.6	19	0.13	7.2	1.4	0.22
Median	9.46	0.13	0.02	0.100	41	3.1	33.6	39	4.0	33	10	0.47
90th, %ile	9.72	0.91	0.06	0.946	72	31	58.4	67	28	59	290	0.80
Max	9.98	2.0	0.3	1.91	182	60	179.2	177	62	174	1771	2.1
Average	9.45	0.29	0.04	0.278	45	9.4	35.2	44	9.1	35	4.8	0.53
St. Dev.	0.24	0.40	0.04	0.405	28	13	31.9	27	13	31	247	0.32
2. Conglomerate	(CG), 83 s	amples										
Min	8.92	0.0025	0.020	0.020	10	1.3	6.9	8.8	0.078	6.4	1.8	0.11
10th, %ile	9.24	0.0025	0.020	0.020	30	1.3	28.5	28	0.078	28	4.8	0.34
Median	9.49	0.0060	0.020	0.020	86	1.3	77.8	89	0.19	85	328	1.1
90th, %ile	9.80	0.20	0.04	0.154	157	4.8	155.4	162	6.2	162	1664	1.9
Max	10.02	1.1	0.1	1.08	218	34	216.8	200	35	199	2432	2.4
Average	9.50	0.10	0.02	0.097	88	3.5	84.7	90	3.0	87	30	1.1
St. Dev.	0.22	0.23	0.01	0.219	48	6.7	48.4	48	7.2	49	686	0.58
3. Mafic Dykes (I		-										
Min	8.59	0.0025	0.020	0.020	27	1.3	25.6	24	0.078	22	1.8	0.29
10th, %i l e	8.84	0.0051	0.020	0.020	52	1.3	44.4	48	0.16	39	5.1	0.58
Median	9.16	0.10	0.020	0.080	101	2.5	94.5	109	3.3	102	33	1.3
90th, %ile	9.49	0.46	0.09	0.398	202	12	198.2	215	14	209	400	2.6
Max	9.79	0.91	0.32	0.84	286	26	284.1	312	28	311	1995	3.7
Average	9.15	0.18	0.04	0.152	119	4.7	114.4	119	5.7	113	21	1.4
St. Dev.	0.27	0.22	0.05	0.192	62	5.6	63.0	66	6.8	68	427	0.79
4. Quartz-Tourm												
Min	8.98	0.022	0.020	0.020	19	1.3	-0.3	18	0.69	-3.8	0.88	0.21
10th, %ile	9.23	0.036	0.020	0.020	25	1.3	14.5	25	1.1	11	1.5	0.30
Median	9.60	0.26	0.03	0.235	38	7.3	29.4	35	8	29	3.8	0.42
90th, %ile	9.76	0.99	0.15	0.83	55	26	42.6	52	31	38	27	0.63
Max	9.82	1.3	0.2	1.7	84	52	50.7	81	41	51	60	0.97
Average	9.55	0.40	0.06	0.38	40	12	27.7	38	12	25	3.0	0.46
St. Dev.	0.21	0.36	0.06	0.39	14	12	12.8	13	11	13	15	0.15
5. Low-Grade Or	<u>, , , , , , , , , , , , , , , , , , , </u>	•										
Min	8.33	0.0025	0.020	0.020	7.6	1.3	-230.9	6.1	0.078	-278	0.21	0.073
10th, %ile	9.25	0.14	0.020	0.088	24	2.7	6.3	24	4.4	4.4	1.1	0.29
Median	9.50	0.37	0.060	0.30	38	9.2	23.2	38	11	21	2.9	0.46
90th, %ile	9.69	1.2	0.15	1.1	62	34	43.2	63	37	41	8.8	0.76
Max	9.87	11	1.5	9.6	86	301	48.3	83	350	46	499	1.0
Average	9.47	0.89	0.13	0.77	40	24	16.3	40	28	12	1.4	0.48
St. Dev.	0.27	2.0	0.27	1.7	17	53	47.6	17	62	55	89	0.20
6. High-Grade O		-	0.000	0.000	0.0	10	050.0	0.0		070	0.00	0.10
Min	8.09	0.034	0.020	0.020	9.3	1.3	-258.6	8.3	1.1	-273	0.03	0.10
10th, %ile	8.94	0.18	0.020	0.096	22	3.8	-14.4	22	5.6	-18	0.62	0.26
Median	9.39	0.71	0.060	0.63	35	20	18.4	34	22	16	1.6	0.41
90th, %ile	9.70	1.7	0.21	1.5	78	46	48.1	74	52	47	9.2	0.88
Max	9.91	9.0	1.0	8.8	223	275	218.9	218	281	212	108	2.6
Average	9.36	0.95	0.10	0.86	45	27	17.6	44	30	14	1.5	0.53
St. Dev.	0.32	1.13	0.13	1.1	36	35	52.3	36	35	53	13	0.44
7. Overburden (C		•	0.000	0.000	2.0	10	4 7	0.1	0.070	7.0	0.5	0.11
Min 40th 0/11-	7.12	0.0025	0.020	0.020	2.9	1.3	1.7	9.1	0.078	7.8	6.5	0.11
10th, %ile	7.76	0.0025	0.020	0.020	7.1	1.3	5.8	9.4	0.078	9.3	48	0.11
Median	8.48	0.0025	0.020	0.020	8.6	1.3	7.3	16	0.078	16	139	0.19
90th, %ile	8.88	0.018	0.020	0.020	24	1.3	22.4	44	0.56	44	258	0.53
Max	8.93	0.045	0.040	0.020	42	1.3	40.5	61	1.4	61	389	0.73
Average	8.35	0.0073	0.021	0.020	12	1.3	10.7	21	0.23	20	91	0.25
St. Dev.	0.44	0.0089	0.0036	0	9.5	0	9.5	14	0.28	14	96	0.16

Table B-5: Summary of ABA Statistics for Materials from Berry Deposit

Notes:

Refer to Section 3.3.1 for definitions and calculations for NPR, NNP, Carb NP, AP, STOTAL, SSULPHIDE, SSULPHATE and TC.

S_{TOTAL} - Total Sulphur;

 $S_{\text{SULPHIDE}} \text{ - Sulphide Sulphur; } S_{\text{SULPHIDE}} \text{=} S_{\text{TOTAL}} S_{\text{SULPHATE}}$

S_{SULPHATE} - Sulphate Sulphur;

Carb. NP - Carbonate Neutralization Potential; Carb. NP=TC*M(CaCQ)/M(C)*10(kg/t from % diff.)

AP (calc) - Acid Potential; AP=S_{TOTAL}(%) x 31.25.

NNP - Net Neutralization Potential;

NPR - Neutralization Potential Ratio;

TC - Total Carbon.

NPR values between 1 and 2 are bolded and below 1 are bolded and shaded; See text for assumptions and calculations; For the values less than Reportable Detection Limit (RDLs) values, 1/2 of RDLs are used to calculate statistical parameters.

Table B-6: Summary of SFE Statistics for Materials from Berry Deposit

Paramet er	pН	SO₄	F	Ag	AI	As	в	Cd*	Cr	Cu*	Fe	Hg	Mn*	Mo	Ni*	Pb*	Se	п	U	Zn*
OMER	6.0-9.5	n/v	n/v	n/v	n/v	0.1	n/v	n/v	n/v	0.1	n/v	n/v	n/v	n/v	0.25	0.08	n/v	n/v	n/v	0.4
WQG	6.5-9.0	n/v	0.12	0.00025	0.1	0.005	1.5	0.00004	0.0089	0.002	0.3	2.6E-05	0.19	0.073	0.025	0.001	0.001	0.0008	0.015	0.00
Unit	pH Unit	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg
	Porphyry				0.40						0.0005					0.0000.45				-
n th, %i l e	7.61	1.0	0.030	0.000025	0.19	0.00040	0.0020	0.0000015	0.000040	0.00010	0.0035	-	0.00062	0.00026	0.000050	0.000045	0.000020	0.0000025	0.000014	0.00
edian	7.84	1.0	0.030	0.000025	0.45	0.00070	0.0040	0.0000015	0.000040	0.00010	0.0035	-	0.00088	0.00034	0.000050	0.000045	0.000020	0.0000025	0.000040	0.00
th, %ile	8.46	8.0	0.000	0.000025	1.0	0.0038	0.025	0.0000060	0.00035	0.00040	0.18	-	0.0055	0.0095	0.000000	0.00011	0.00022	0.0000025	0.00023	0.00
ax	9.20	17	0.15	0.000025	1.2	0.0092	0.13	0.000020	0.00063	0.0037	0.44	-	0.021	0.040	0.0035	0.00077	0.00052	0.0000090	0.00089	0.0
verage	7.93	2.4	0.062	0.000025	0.78	0.0018	0.015	0.0000034	0.00012	0.00059	0.062	-	0.0028	0.0044	0.00039	0.000084	0.000091	0.0000026	0.00014	0.00
t. Dev.	0.30	3.0	0.039	0	0.21	0.0018	0.022	0.0000038	0.00015	0.00064	0.10	-	0.0031	0.0093	0.00083	0.00013	0.00011	0.00000090	0.00017	0.00
	nerate (CO																			
lin	7.61	1.0	0.030	0.000025	0.23	0.00030	0.0040	0.0000015	0.000040	0.00010	0.0035	-	0.00069	0.00015	0.000050	0.000045	0.000020	0.0000025	0.0000060	0.00
Oth, %ile	7.78	1.0 2.0	0.030	0.000025	0.70	0.00051	0.0060	0.0000015	0.000040	0.00010	0.0035	-	0.00095	0.00026	0.000050	0.000045	0.000020	0.0000025	0.000051	0.00
ledian 0th, %ile	8.81	7.0	0.080	0.000025	1.2	0.0013	0.010	0.00000015	0.000093	0.00040	0.015	-	0.0034	0.00033	0.0000000	0.000045	0.000000	0.0000025	0.00020	0.00
lax	9.38	21	0.21	0.000025	1.4	0.0056	0.12	0.000046	0.00083	0.0011	0.41	-	0.0045	0.15	0.0029	0.00024	0.00079	0.000014	0.0018	0.00
verage	8.18	3.4	0.09	0.000025	0.86	0.0018	0.021	0.0000055	0.00018	0.00041	0.059	-	0.0020	0.0044	0.00028	0.000052	0.000098	0.0000029	0.00039	0.00
t. Dev.	0.43	4.0	0.049	0	0.22	0.0013	0.028	0.0000099	0.00019	0.00024	0.11	-	0.0010	0.022	0.00052	0.000033	0.00013	0.0000018	0.00043	0.00
	ykes (MD)	22 sampl																		
in	7.68	1.0	0.030	0.000025	0.36	0.00010	0.0020	0.0000015	0.000040	0.00010	0.0035	-	0.00024	0.00031	0.000050	0.000045	0.000020	0.0000025	0.0000020	0.00
)th, %ile	7.72	1.0 1.0	0.030	0.000025	0.45	0.00010	0.0031	0.0000015	0.000040	0.00010	0.0035	-	0.00076	0.00035	0.000050	0.000045	0.000020	0.0000025	0.0000030	0.0
edian)th, %i l e	7.88 8.58	2.9	0.030	0.000025	0.64	0.00075	0.0070	0.0000015	0.000040	0.00030	0.010	-	0.0015	0.0013	0.000050	0.000045	0.000020	0.0000025	0.000010	0.00
ax	8.97	4.0	0.48	0.000025	0.95	0.0097	0.066	0.0000012	0.00052	0.0016	0.22	-	0.0063	0.0095	0.0023	0.00011	0.00034	0.0000020	0.000049	0.00
verage	7.97	1.5	0.10	0.000025	0.64	0.0015	0.013	0.0000028	0.00010	0.00037	0.056	-	0.0020	0.0026	0.00052	0.000048	0.000050	0.0000027	0.000018	0.00
t. Dev.	0.35	0.84	0.12	0	0.17	0.0024	0.016	0.0000026	0.00014	0.00036	0.083	-	0.0014	0.0028	0.0010	0.000014	0.000069	0.00000073	0.000015	0.00
Quartz-1		e-Pyrite Ve		h (QTP), 14																
in	7.65	1.0	0.030	0.000025	0.47	0.00060	0.0050	0.0000015	0.000040	0.00010	0.0090	-	0.00087	0.00022	0.000050	0.000045	0.000020	0.0000025	0.000042	0.00
0th, %i l e	7.73	1.0	0.030	0.000025	0.61	0.00060	0.0056	0.0000015	0.000040	0.00020	0.012	-	0.0010	0.00031	0.000050	0.000045	0.000029	0.0000025	0.000058	0.00
edian	7.86	2.0	0.075	0.000025	0.84	0.0009	0.015	0.0000040	0.00011	0.00030	0.021	-	0.0014	0.00065	0.000050	0.000045	0.00012	0.0000025	0.00014	0.00
Oth, %i l e Iax	8.83 9.33	5.7 7.0	0.16	0.000025	1.1	0.0018	0.12	0.000046	0.00038	0.00054	0.096	-	0.0030	0.0053	0.00017	0.00023	0.00081	0.0000025	0.00017	0.00
verage	8.11	2.6	0.088	0.000025	0.86	0.0028	0.044	0.000012	0.00018	0.00032	0.037	-	0.0018	0.0039	0.000079	0.000094	0.00083	0.0000025	0.00023	0.00
t. Dev.	0.50	2.0	0.057	0.000020	0.21	0.00061	0.044	0.000012	0.00018	0.00018	0.037	-	0.0011	0.0028	0.000052	0.00012	0.00030	0.0000020	0.000050	0.00
	ade Ore (L																			<u> </u>
lin	7.65	1.0	0.030	0.000025	0.20	0.00010	0.0050	0.0000015	0.000040	0.00010	0.0035	-	0.0014	0.00028	0.000050	0.000045	0.000020	0.0000025	0.000049	0.00
Oth, %i l e	7.67	1.0	0.030	0.000025	0.52	0.00060	0.0075	0.0000015	0.000040	0.00010	0.0075	-	0.0018	0.00040	0.000050	0.000045	0.000035	0.0000025	0.000055	0.00
ledian	7.76	4.5	0.030	0.000025	0.90	0.0010	0.0180	0.0000035	0.000040	0.00025	0.017	-	0.0035	0.0013	0.00020	0.000045	0.00014	0.0000025	0.00012	0.00
Oth, %ile	7.91	18	0.090	0.000025	1.1	0.0052	0.038	0.0000100	0.000095	0.00065	0.071	-	0.0068	0.0074	0.00030	0.000045	0.00023	0.0000038	0.00038	0.00
lax verage	8.00 7.77	77 10	0.11	0.00037	1.2 0.86	0.0058	0.084	0.0000140	0.00011	0.0010	0.099	-	0.0368	0.038	0.00040	0.00012	0.00028	0.0000060	0.00070	0.00
t. Dev.	0.09	18	0.047	0.000084	0.24	0.0018	0.024	0.0000037	0.000026	0.00032	0.023	-	0.0082	0.0089	0.00011	0.000018	0.000077	0.0000010	0.00017	0.00
	ade Ore (C																			<u> </u>
lin	7.53	1.0	0.030	0.000025	0.087	0.00010	0.0080	0.0000015	0.000040	0.00010	0.0035	-	0.00053	0.00023	0.000050	0.000045	0.000020	0.0000025	0.0000080	0.00
Oth, %i le	7.67	1.0	0.030	0.000025	0.55	0.0005	0.010	0.0000015	0.000040	0.00010	0.0035	-	0.0012	0.00046	0.000050	0.000045	0.000026	0.0000025	0.000058	0.00
ledian	7.81	4.0	0.030	0.000025	0.77	0.0016	0.031	0.0000035	0.000065	0.00030	0.018	-	0.0030	0.0019	0.00005	0.000045	0.00014	0.0000025	0.00015	0.00
Oth, %i l e	8.46	15	0.13	0.000025	1.0	0.0036	0.088	0.000021	0.00037	0.00064	0.17	-	0.0076	0.0093	0.00037	0.00040	0.00041	0.0000050	0.00030	0.00
ax verage	9.38 8.00	85 7.9	0.17	0.000080	1.4 0.76	0.0046	0.15	0.00015	0.00064	0.00090	0.43	-	0.32	0.048	0.0025	0.0013	0.0013	0.000013	0.0014	0.00
t. Dev.	0.44	13	0.001	0.0000020	0.23	0.0017	0.041	0.000024	0.00016	0.00032	0.003	-	0.011	0.0041	0.00023	0.00030	0.00022	0.0000033	0.00018	0.00
		45 sample		0.0000002	0120	0.0011	0.002	0.00002.1	0.00010	OIGGOLL	0110		0.011	0.0014	0.00010	0.00000	0.00021	0.0000021	GIGGEL	
lin	5.63	1.0	0.030	0.000025	0.0060	0.00060	0.0070	0.0000015	0.000040	0.00020	0.0035	-	0.0029	0.00013	0.000050	0.000045	0.000020	0.0000025	0.0000090	0.00
0th, %i l e	6.92	3.0	0.042	0.000025	0.030	0.0015	0.012	0.0000054	0.000040	0.00060	0.0080	-	0.012	0.00021	0.00034	0.000045	0.000044	0.0000025	0.000042	0.00
edian	7.87	6.0	0.19	0.000025	0.19	0.0060	0.18	0.000017	0.00059	0.0025	0.20	-	0.048	0.0013	0.0011	0.00038	0.00014	0.0000025	0.00043	0.00
Oth, %ile	9.04	112	0.34	0.000025	1.3	0.013	0.50	0.00011	0.0028	0.011	1.8	-	0.41	0.0075	0.0080	0.0018	0.0025	0.000032	0.0026	0.00
ax	9.56 7.85	280 36	0.53	0.00011	4.7	0.025	0.68	0.0045	0.0075	0.039	3.7 0.53	-	7.4	0.027	0.068	0.0047	0.0083	0.000080	0.0099	0.0
verage	7.85	36 65	0.20	0.000027	0.53	0.0068	0.23	0.00017	0.0011	0.0044	0.53	-	1.2	0.0030	0.0059	0.00080	0.00092	0.000012	0.0010	0.00
otes:	0.00	00	0.11	0.000013	0.02	0.0001	0.20	0.00008	0.0014	0.0007	0.00	· ·	1,2	0.0040	0.013	0.0011	0.0010	0.000018	0.0010	0.00
	vzed for w	aste rock.	ore and ov	erburden as	sociated w	ith the Berr	v Pit.													
								le 4, Maximur	n Authorized	Monthly Me	an Concer	ntrations (S	OR/2002-2	22 2020).						
								ife, long-term (s of the Envir	onment (CCN	1E 2020).			
								and DOC-depe									,			
oncentrat	ions excee	ding CWQ	G are high	lighted oran	ge and MC			red and with re					ange fill wi	th red text.						
uidelines				d deviation v																
									statistical par											

Table B-7: Summary of TEC Statistics for Materials from Berry Deposit

l able E	s-7: Sur	nmary c	TIECS	tatistic	s for Ma	ateriais	Trom B	erry De	posit												
	Ag	AI	As	В	Be	Cd	Co	Cr	Cu	Fe	Hg	Mn	Мо	Ni	Р	Pb	Se	TI	U	V	Zn
ACUCx10	530	407639	48	-	21	0.90	173	920	280	320415	0.5	774.5	11	470	654.3	170	0.9	9	27	970	670
Units	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g	µg/g
1. Qtz-eye	Porphyry	(QE-POR),	108 sample	es																	
Min	0.50	3800	0.25	-	0.046	0.010	1.0	0.95	1.0	8900	0.025	120	0.050	0.21	-	0.21	0.35	0.010	0.046	1.0	3.8
10th, %ile	0.50	6640	0.25	-	0.058	0.010	2.7	1.4	1.8	18000	0.025	307	0.13	0.50	-	0.31	0.35	0.010	0.091	4.0	5.1
Median	0.50	9700	0.77	-	0.084	0.035	4.6	2.5	7.3	23000	0.025	530	0.52	0.81	-	0.62	0.35	0.010	0.13	13	6.8
90th, %ile	0.50	14000	2.4	-	0.13	0.26	8.3	89	31	32000	0.025	755	4.5	5.3	-	4.4	0.35	0.010	0.19	25	8.8
Max	0.50	22000	19	-	0.23	4.4	27	130	200	53000	0.025	2000	6.1	13	-	67	1.4	0.10	0.46	120	18
Average	0.50	10152	1.3	-	0.091	0.18	5.4	20	16	24906	0.025	548	1.3	2.1	-	2.8	0.37	0.011	0.14	15	7.0
St. Dev.	0	3338	2.0	-	0.032	0.58	3.7	36	25	7588	0	244	1.7	2.8	-	8.8	0.13	0.0086	0.060	18	2.0
2. Conglor	nerate (CO	6), 64 samp	es																		
Min	0.50	4000	0.25	-	0.085	0.010	2.6	3.6	0.3	17000	0.025	400	0.050	2.8	-	0.57	0.35	0.010	0.085	14	4.8
10th, %ile	0.50	6930	0.63	-	0.12	0.025	5.9	9.6	6.9	22000	0.025	586	0.050	5.6	-	0.88	0.35	0.010	0.30	20	7.5
Median	0.50	12000	1.1	-	0.19	0.064	11	49	20	28500	0.025	920	0.26	15	-	1.5	0.35	0.010	0.69	31	11.0
90th, %ile	0.50	19000	2.1	-	0.33	0.11	15	81	52	38700	0.025	1300	3.4	24	-	2.9	0.35	0.010	0.99	51	46
Max	0.50	35000	5.1	-	0.52	0.18	33	99	160	73000	0.025	2200	35	32	-	9.4	0.35	0.030	1.5	180	58
Average	0.50	12652	1.2	-	0.21	0.067	11	47	28	30281	0.025	949	1.5	14	-	1.8	0.35	0.011	0.64	38	20
St. Dev.	0	5782	0.78	-	0.093	0.037	5.4	27	26	10337	0	333	4.4	7.1	-	1.3	0	0.0035	0.27	30	15.8
3. Mafic D	ykes (MD),	42 sample	s																		
Min	0.50	8900	0.25	-	0.065	0.010	4.2	1.3	2.0	21000	0.025	390	0.050	0.70	-	0.40	0.35	0.010	0.044	5.4	4.3
10th, %ile	0.50	13200	0.58	-	0.10	0.021	9.0	2.2	10	31000	0.025	682	0.050	3.5	-	0.54	0.35	0.010	0.080	29	6.5
Median	0.50	23000	1.7	-	0.20	0.094	24	56	38	55000	0.025	1150	0.49	15	-	1.1	0.35	0.010	0.13	125	11
90th, %ile	0.50	35800	20	-	0.34	0.30	38	100	67	78900	0.025	1600	2.4	29	-	3.8	0.35	0.010	0.22	210	21
Max	0.50	40000	92	-	0.50	1.0	46	140	83	110000	0.025	1800	4.6	40	-	36	0.35	0.058	0.28	290	27
Average	0.50	23769	8.1	-	0.21	0.14	24	50	39	57071	0.025	1144	0.82	16	-	2.5	0.35	0.011	0.14	125	12
St. Dev.	0	8236	16	-	0.11	0.16	11	40	22	19915	0	375	1.0	11	-	5.5	0	0.0075	0.054	72	5.6
4. Quartz-	Fourmaline	e-Pyrite Vei	ns in Lith (QTP), 19 s	amples																
Min	0.50	3600	0.25	-	0.030	0.010	2.6	1.1	2.6	13000	0.025	170	0.10	0.48	-	0.23	0.35	0.010	0.061	4.0	4.5
10th, %ile	0.50	5080	0.25	-	0.048	0.018	3.1	1.4	4.7	18600	0.025	336	0.33	0.66	-	0.28	0.35	0.010	0.068	4.8	6.7
Median	0.50	8700	0.9	-	0.070	0.031	4.5	54	9	23000	0.025	560	0.60	1.3	-	0.69	0.35	0.010	0.13	10	10
90th, %ile	0.50	11200	1.7	-	0.11	0.1	7.3	70	71	29800	0.025	756	2.1	1.9	-	2.0	0.35	0.010	0.17	20	35
Max	0.50	13000	3.1	-	0.12	4.7	7.9	130	180	35000	0.060	910	7.6	3.7	-	18	0.35	0.010	0.19	22	48
Average	0.50	8426	1.0	-	0.074	0.28	5.0	39	27	23526	0.027	535	1.2	1.3	-	1.7	0.35	0.010	0.12	11	16
St. Dev.	0	2331	0.70	-	0.026	1.0	1.5	36	44	4967	0	176	1.6	0.72	-	4.0	0	0	0.037	5.7	12
5. Low-Gra	ade Ore (L	GO), 18 sar	nples																		
Min	0.50	2000	0.25	-	0.030	0.010	1.9	1.0	2.2	10000	0.025	190	0.20	0.76	-	0.12	0.35	0.010	0.020	0.50	5.3
10th, %ile	0.50	3550	0.25	-	0.036	0.010	3.6	1.4	2.6	17100	0.025	301	0.37	0.84	-	0.40	0.35	0.010	0.047	2.5	5.8
Median	0.50	6150	1.1	-	0.065	0.032	5.2	64	12	22500	0.025	520	0.94	1.8	-	0.71	0.35	0.010	0.10	7.3	14
90th, %ile	0.50	9190	3.3	-	0.10	0.080	12	79	47	30000	0.025	702	1.4	2.2	-	3.6	0.35	0.010	0.12	13	25
Max	0.50	10000	8.7	-	0.12	0.23	60	93	410	100000	0.025	890	1.6	6.4	-	9.4	2.3	0.040	0.19	23	57
Average	0.50	6117	1.8	-	0.064	0.047	8.5	52	39	26667	0.025	513	0.90	1.9	-	1.6	0.46	0.012	0.10	8.1	17
St. Dev.	0	2212	2.0	-	0.024	0.050	12.8	30	92	18532	0	167	0.36	1.2	-	2.2	0	0.0069	0.038	5.4	12
6. High-Gr	ade Ore (C	DRE), 52 sa	mples																		
Min	0.50	1200	0.25	-	0.010	0.010	2,1	1.2	0.90	12000	0.025	79	0.050	0.36	-	0.30	0.35	0.010	0.036	0.50	1.7
10th, %ile	0.50	2760	0.60	-	0.031	0.010	2.8	1.7	3.7	16100	0.025	292	0.20	0.62	-	0.46	0.35	0.010	0.059	2.2	4.5
Median	0.50	7150	1.3	-	0.070	0.035	5.9	72	13	25000	0.025	480	0.86	1.6	-	1.8	0.35	0.010	0.10	7.2	9.9
90th, %ile	0.50	12000	3.5	-	0.12	0.13	10	107	39	35000	0.025	728	6.2	4.3	-	14	0.35	0.010	0.16	16	30
Max	2.0	33000	6.8	-	0.27	5.0	26	202	60	91000	0.15	1400	11	27	-	150	1,4	0.080	0.28	160	54
Average	0.54	7915	1.8	-	0.076	0.19	6.6	61	18	27192	0.027	510	1.9	3.0	-	7.5	0.39	0.012	0.11	13	15
St. Dev.	0.22	5266	1.3	-	0.047	0.75	4.2	48	15	13219	0.017	248	2.6	5.3	-	22	0.19	0.010	0.045	24	13
7. Overbui	den (OB),	45 samples																			
Min	0.50	15000	3.2	-	0.21	0.040	15	30	38	33000	0.025	470	0.30	22	-	4.5	0.35	0.050	0.52	55	53
10th, %ile	0.50	16400	18	-	0.24	0.094	17	35	41	37400	0.025	564	0.50	26	-	5.4	0.35	0.070	0.60	63	60
Median	0.50	19000	42	-	0.28	0.18	21	41	50	43000	0.025	1200	1.0	30	-	6.9	0.35	0.090	0.92	78	71
90th, %ile	0.50	23000	58	-	0.36	0.31	25	80	61	49000	0.025	1560	2.4	45	-	12	0.35	0.13	2.2	90	91
Max	2.0	27000	91	-	0.50	0.60	30	120	98	57000	0.025	2600	4.9	66	-	26	1.1	0.39	3.8	116	130
Average	0.53	19622	41	-	0.29	0.20	21	53	51	43178	0.025	1083	1.4	34	-	8.1	0.38	0.10	1.3	78	75
St. Dev.	0.22	2627	17	-	0.054	0.10	3.1	20	11	4630	0	430	0.96	8.4	-	3.5	0.13	0.051	0.81	12	16
Notes:					•					•			•		•		•		•	•	

 St. Dev.
 U.22
 262/1
 17
 U.094
 0.10
 5.1
 20
 11
 4000
 0
 4000
 0.10
 0.10
 11
 4000
 0
 4000
 0.10
 0.10
 11
 4000
 0
 4000
 0.10
 0.11
 20
 11
 4000
 0
 4000
 0.10
 0.11
 11
 4000
 0.10
 0.11
 11
 4000
 0.10
 0.11
 11
 1000
 0.11
 1000
 0.11
 1000
 0.11
 1000
 0.11
 1000
 0.11
 1000
 0.11
 1000
 0.11
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 10000
 1000

Table B-8: ABA Analysis and rates for Composite Samples

Parameter	Units	B QPOR	B SED	BMD	B QTP	B LGO	B HGO	B QPOR- PAG	B SED-High SFE	B QTP- PAG	B LGO- PAG	B HGO- PAG-Zn	B OB-ML	B- QPOR_FB	B-CG_FB	B-MD_FB	B- QTP_FB	B- LGO_FB	B- HGO_FB	B QPOR- PAG- CO3DP	B QTP- PAG- CO3DP	B LGO- PAG- CO3DP	B HGO- PAG- CO3DP	BL1021- 24D Detox TIs	BL1021- 43 Detox TIs
Paste pH	pH Units	9.46	9.21	8.88	9.45	9.02	9.48	9.20	9.07	9.24	8.39	9.29	7.46	9.45	9.35	9.07	9.40	9.43	9.34	9.11	9.14	8.23	8.99	9.00	9.23
Fizz Rate	no unit	2	3	3	2	2	2	2	2	2	2	2	2	4	4	4	3	3	4	2	2	2	2	3	3
Sample weight	g	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
HCI Added	mL	30	60	75	30	35	30	20	28	20	20	20	20	40	54	76	27	27	40	20	20	20	20	31	31
HC	Normality	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH	Normality	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH to pH=8.3	mL	16	25	34	17	18	16	14	13	10	8	12	16	21	20	28	12	11	25	18	19	19	19	15	13
Final pH	no unit	1.55	1.59	1.63	1.42	1.43	1.52	1.32	1.62	1.56	1.77	1.40	1.44	1.46	1.63	1.64	1.58	1.59	1.26	1.13	1.18	1.21	1.18	1.76	1.89
STOTAL	wt.%	0.29	0.023	0.24	0.28	1.9	0.77	1.1	0.15	1.3	5.35	0.81	0.091	0.28	0.0090	0.13	0.27	0.57	0.67	1.3	1.1	4.4	0.77	0.51	0.21
SSULPHATE	wt.%	0.040	0.02	0.02	0.02	0.02	0.02	0.12	0.050	0.02	0.24	0.070	0.080	0.05	0.02	0.02	0.040	0.090	0.070	0.02	0.02	0.02	0.060	0.080	0.02
S _{SULPHIDE}	wt.%	0.24	0.02	0.22	0.25	1.92	0.76	0.93	0.10	1.30	5.11	0.74	0.02	0.23	0.02	0.10	0.23	0.48	0.60	1.30	1.13	4.37	0.71	0.43	0.17
Carb. NP	kg CaCO ₃ /t	35	88	88	29	41	33	16	33	25	31	19	26	47	92	125	38	40	37	13	8	11	4	39	43
Modified Sobek NP	kg CaCO ₃ /t	36	86	100	31	43	35	15	36	26	31	20	10	46	87	124	38	39	38	4.0	2.9	3.1	2.8	38	43
Lab AP	kg CaCO ₃ /t	7.5	1.3	6.9	7.8	60	24	29	3.1	41	160	23	1.3	7.2	1.3	3.1	7.2	15	19	41	35	137	22	13	5.3
Lab NNP	kg CaCO ₃ /t	28	85	93	23	-17	12	-14	33	-15	-129	-3.5	8.7	39	86	120	31	24	20	-37	-32	-133	-19	25	38
Carbonate NNP	kg CaCO ₃ /t	27	86	81	22	-19	9.5	-13	29	-15	-129	-3.8	24	40	90	122	31	25	18	-28	-27	-126	-18	25	38
Lab NPR	unit less	4.8	69.0	14.5	4.0	0.7	1.5	0.5	11.5	0.6	0.2	0.9	7.9	6.4	69.8	39.6	5.3	2.6	2.1	0.1	0.1	0.0	0.1	2.9	8.1
Carbonate NPR	unit less	4.6	70.0	12.8	3.8	0.7	1.4	0.6	10.4	0.6	0.2	0.8	20.5	6.5	73.3	40.1	5.3	2.6	2.0	0.3	0.2	0.1	0.2	2.9	8.2
Carbon (total)	wt.%	0.41	1.1	1.1	0.35	0.50	0.40	0.19	0.39	0.30	0.38	0.23	0.31	0.56	1.1	1.5	0.45	0.48	0.45	0.15	0.10	0.13	0.045	0.47	0.52
Carbonate	wt.%	2.0	5.2	5.2	1.7	2.3	1.9	0.9	1.9	1.4	1.8	1.1	0.68	2.7	5.4	7.4	2.1	2.2	2.1	0.26	0.21	0.20	0.07	2.2	2.4
Max Sulphate Rate	mg/kg/week	5.2	3.6	6.6	4.9	10	12	15	6.2	21	44	11	92	-	-	-	-	-	-	11	6.2	22	4.6	-	387
Max NP Rate	mg CaCO ₃ /kg/week	14	22	19	12	11	12	15	21	16	8.6	14	8.0	-	-	-	-	-	-	1.0	1.0	1.0	1.0	-	59
Max NP Depletion Rate	mg CaCO ₃ /kg/week	16	25	25	17	21	25	0	24	37	53	23	104	-	-	-	-	-	-	9	5	15	3	-	473
Carb. NP Depletion Time (minimum)	year	42	67	67	34	38	26	-	26	13	11	16	5	-	-	-	-	-	-	27	32	14	25	-	1.8
AP Depletion Time (minimum)	year	9	1.1	6	10	36	12	12	3	12	22	13	0.04	-	-	-	-	-	-	23	35	38	30	-	0.08
Time to ARD Onset	year	33.9	53.4	21.0	27.2	30.5	20.8	11.0	20.8	10.5	9.2	12.9	3.8							22	26	11.1	20		0.04

Notes:

 S_{TOTAL} = Total Sulphur; $S_{SULPHIDE}$ = Sulphide Sulphur; $S_{SULPHATE}$ = Sulphate Sulphur.

AP = Acid Potentia

Carb. NP - Carbonate Neutralization Potential

NNP = Net Neutralization Potential

NPR =Neutralization Potential Ratio

NPR values between 1 and 2 are bolded and below 1 are bolded and shaded;

See text for assumptions and calculations.

1/2 of RDLs are used to calculate statistical parameters, these values are shown in blue italics.

Table B-9: SFE concentrations in composite samples

				B QPOR	B SED	B MD	B QTP	B LGO	B HGO	B QPOR- PAG	B SED- High SFE	B QTP-PAG	B LGO-PAG	B HGO-PAG- Zn	B OB-ML	B QPOR_FB	B CG_FB	B MD_FB	B QTP_FB	B LGO_FB	B HGO_FB
Parameter	Unit	MDMER	CWQG	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT	Pre-HCT
Sample weight	g			250.00	250.00	251.00	251.00	249.00	249.00	100.00	100.00	100.00	100.00	100.00	100.00	250.00	250.00	250.00	250.00	250.00	251.00
Volume D.I. Water	mL			750.00	750.00	750.00	750.00	750.00	750.00	300.00	300.00	300.00	300.00	300.00	300.00	750.00	750.00	750.00	750.00	750.00	750.00
Final pH	no unit			9.38	9.27	8.99	9.37	8.91	9.26	8.72	9.08	9.04	8.49	8.99	7.51	9.02	9.16	8.90	9.08	9.20	8.98
pН	pH Unit	6.0-9.5	6.5-9.0	8.1	8.0	7.9	7.9	7.9	8.0	7.5	7.6	7.6	7.6	7.6	7.9	8.0	8.2	8.0	7.9	8.0	7.9
Conductivity	µS/cm	n/v	n/v	76	88	95	87	109	97	142	113	122	238	110	399	86	89	83	81	79	97
Alkalinity	mg/L as CaCO ₃	n/v	n/v	29	35	38	33	34	31	35	38	31	39	35	86	35	40	40	29	31	31
F	mg/L	n/v	0.12	0.16	0.14	0.13	0.080	0.080	0.060	0.11	0.16	0.03	0.060	0.03	0.060	0.070	0.11	0.03	0.060	0.03	0.03
SO4	mg/L	n/v	n/v	2.5	11	7.8	6.6	12	12	20	7.8	20	54	11	110	4.4	3.2	1	3.8	3.0	8.9
Hg	mg/L	n/v	0.000026	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005	-	-	-	-	-	-	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005
Ag	mg/L	n/v	0.00025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000080	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025
A	mg/L	n/v	0.1	1.2	0.88	0.55	0.93	0.75	0.89	0.43	0.45	0.66	0.39	0.62	0.070	1.0	0.93	0.76	1.2	1.3	0.97
As	mg/L	0.1	0.005	0.0033	0.0021	0.0010	0.0016	0.0016	0.0015	0.00080	0.00070	0.0011	0.00020	0.0012	0.0077	0.0047	0.0020	0.0018	0.0018	0.0027	0.0013
Ва	mg/L	n/v	n/v	0.00091	0.0199	0.0026	0.0010	0.0006	0.0008	0.0008	0.0039	0.0023	0.0017	0.0010	0.0434	0.0007	0.0038	0.0018	0.00074	0.00066	0.0011
В	mg/L	n/v	1.5	0.0050	0.019	0.013	0.048	0.029	0.027	0.018	0.026	0.033	0.017	0.020	0.0030	0.010	0.026	0.022	0.056	0.028	0.049
Be	mg/L	n/v	n/v	0.000039	0.0000035	0.000036	0.000040	0.000014	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035	0.0000035
Bi	mg/L	n/v	n/v	0.000005	0.000005	0.000005	0.000005	0.000005	0.000020	0.000005	0.000005	0.000005	0.000005	0.000080	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005
Ca	mg/L	n/v	n/v	7.0	6.7	11	8.1	11	9.2	16	9.9	15	33	13	74	8.0	5.9	8.9	8.0	7.9	11
Cd*	mg/L	n/v	0.00004	0.000063	0.0000040	0.000067	0.000049	0.0000070	0.000010	0.000005	0.000018	0.0000015	0.0000015	0.0000015	0.0000750	0.0000015	0.0000015	0.0000015	0.0000015	0.0000015	0.0000015
Co	mg/L	n/v	n/v	0.000015	0.0000080	0.000020	0.000020	0.000011	0.000012	0.000024	0.000014	0.000030	0.000039	0.000020	0.000314	0.000022	0.000011	0.0000060	0.0000060	0.000018	0.000014
Cr	mg/L	n/v	0.0089	0.0002	0.00004	0.0002	0.0002	0.00004	0.000090	0.00004	0.000090	0.00004	0.00004	0.00004	0.00041	0.00004	0.00004	0.00004	0.00004	0.0009	0.00004
Cu*	mg/L	0.1	0.002	0.00060	0.00080	0.00070	0.0014	0.0011	0.0021	0.0014	0.00040	0.00050	0.00050	0.00030	0.0077	0.00030	0.00040	0.00010	0.00020	0.00070	0.00020
Fe	ma/L	n/v	0.3	0.0035	0.0035	0.0035	0.026	0.008	0.012	0.017	0.017	0.011	0.0035	0.018	0.077	0.0035	0.0035	0.0035	0.010	0.015	0.0035
ĸ	mg/L	n/v	n/v	2.9	4.5	2.8	2.7	3.0	2.0	2.6	6.9	3.0	3.0	2.5	2.0	2.3	5.2	3.0	3.0	2.8	3.0
Li	mg/L	n/v	n/v	0.00050	0.00060	0.00030	0.00050	0.00060	0.00050	0.00060	0.00020	0.00020	0.00050	0.00020	0.00030	0.0011	0.00030	0.00020	0.00020	0.00060	0.00030
Ma	mg/L	n/v	n/v	0.45	0.95	1.4	0.75	0.74	0.63	1.3	1.3	0.98	1.9	0.95	4.4	0.81	0.96	1.67	0.65	0.61	0.90
Mn*	mg/L	n/v	0.19	0.0011	0.0014	0.0015	0.0020	0.0052	0.0023	0.025	0.0019	0.0040	0.0174	0.0043	0.35	0.0022	0.0015	0.0015	0.0016	0.0020	0.0024
Mo	mg/L	n/v	0.073	0.0019	0.0015	0.0030	0.0057	0.0054	0.0014	0.0092	0.068	0.0041	0.0039	0.0019	0.013	0.0011	0.00060	0.0011	0.0033	0.0017	0.0031
Na	mg/L	n/v	n/v	5.4	6.7	3.6	5.8	6.3	6.9	8.0	5.0	5.6	7.2	5.1	1.6	8.3	9.3	4.5	5.7	5.9	6.1
Ni*	mg/L	0.25	0.025	0.00010	0.00005	0.00010	0.00020	0.00005	0.00010	0.00060	0.00040	0.00050	0.00040	0.00040	0.0015	0.00050	0.00040	0.00020	0.00030	0.00070	0.00010
Pb*	mg/L	0.08	0.001	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045	0.000045
Sb	mg/L	n/v	n/v	0.0013	0.0023	0.0012	0.0013	0.0017	0.0024	0.00045	0.00045	0.00045	0.00045	0.0018	0.0031	0.00045	0.00045	0.00045	0.00045	0.00045	0.00090
Se	mg/L	n/v	0.001	0.0013	0.00023	0.0012	0.0012	0.00018	0.00024	0.00040	0.000040	0.00028	0.00032	0.00028	0.0036	0.00032	0.000050	0.00011	0.000060	0.00012	0.00030
Se	mg/L	n/v	n/v	0.000030	0.000024	0.00003	0.000070	0.000060	0.000021	0.00040	0.00003	0.000020	0.000032	0.00003	0.00003	0.000032	0.000030	0.00003	0.000000	0.000012	0.00003
Si	mg/L	n/v	n/v	2.4	2.1	1.4	2.5	2.2	2.6	2.2	2.2	2.2	1.7	2.2	2.4	2.0	1.9	1.0	1.8	2.1	1.6
Sr	mg/L	n/v	n/v	0.010	0.090	0.048	0.026	0.024	0.022	0.012	0.10	0.037	0.050	0.036	0.15	0.010	0.065	0.023	0.015	0.014	0.025
Ti	mg/L	n/v	n/v	0.00094	0.000070	0.0011	0.020	0.0024	0.00064	0.00071	0.00085	0.00042	0.00027	0.00083	0.0036	0.00014	0.00015	0.0023	0.00020	0.00038	0.000070
п	mg/L	n/v	0.0008	0.000094	0.0000025	0.000060	0.0000080	0.000025	0.0000025	0.0000025	0.0000025	0.000042	0.000027	0.0000025	0.000016	0.000014	0.0000025	0.000018	0.000020	0.000038	0.0000025
1	mg/L	n/v	0.0008	0.000070	0.000025	0.0000022	0.000080	0.000025	0.000023	0.000025	0.000023	0.000025	0.0000025	0.000025	0.0007	0.000025	0.000025	0.0000025	0.0000025	0.000023	0.0000025
V	0	n/v	n/v	0.00017	0.00013	0.000022	0.00026	0.00032	0.00017	0.00010	0.00022	0.00010	0.00010	0.00018	0.0087	0.0023	0.00027	0.00010	0.000075	0.00010	0.00010
Zn*	mg/L mg/L	0.4	0.0017	0.0022	0.0042	0.0032	0.0025	0.0013	0.0019	0.00022	0.0027	0.0011	0.00022	0.0010	0.0041	0.0023	0.0051	0.0017	0.0020	0.0020	0.0017
See notes at the en		0.4	0.0017	0.0010	0.0010	0.0010	0.0070	0.0070	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0070	0.0010	0.0070	0.0070	0.0070	0.0010

Notes:

HCT - Humidity Cell Testing.

The most stringent guideline was selected when two or more guidelines are established for the same parameter under the same jurisdiction (CCME, Government of Canada). CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020). MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020). *Evancines were used to evaluate bardinates. But proceedings of DOC deparednet CWQG-wideling are follower:

*Equations were used to calculate hardness-, pH-, temperature-, and DOC-dependent CWQG guidelines as follows:

- Total cadmium CWQG-FAL: at hardness > 280 mg/L the guideline is 0.00037 mg/L, at hardness between 17 and 280 mg/L the guideline (in µg/L) is 10⁴(1.016*(log10(Hardness))-1.71), at hardness 17 mg/L the guideline is 0.00004 mg/L. The most stringent guideline view is applied when the water hardness is < 17 mg/L.
 Total cooper CWQG: When the water hardness to 10 < 82 mg/L the Guideline is 0.002 mg/L.
- Total copper CWQG: when the water hardness is 0 to < 32 mg/L, the CWQG is 0.002 mg/L,
 The most stringent guideline value is applied when the water hardness is < 82 mg/L,
 at hardness ≥82 to ≤180 mg/L the CWQG is calculated as CWQG (µg/L) = 0.2 * (0.8545[In(hardness)]-1.465), at hardness >180 mg/L the CWQG is 0.004 mg/L, if the hardness was unknown the CWQG was 0.002 mg/L,
 Total lead CWQG; When the hardness is 0 to ≤ 60 mg/L the CWQG is 0.001 mg/L, at hardness >60 to ≤ 180 mg/L the CWQG is calculated as CWQG (µg/L) = (1.273[In(hardness)]-4.705),
- at hardness >180 mg/L the CWQG is 0.007 mg/L, if the hardness was unknown the CWQG was 0.001 mg/L. The most stringent long-term guideline value is applied when the water hardness is < 60 mg/L. Dissolved manganese CWQG-FAL (mg/L): pH- and hardness-dependent guideline calculated based on the CWQG and benchmark calculator in Appendix B or Table 5 of the Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life: Manganese (Dissolved) 2019 (CCME 2019).
- The table is valid between hardness 10 and 670 mg/L and pH 5.5 and 9.0. The most stringent guideline value is applied using 10 mg/L hardness and 5.5 pH. Total nickel CWQG: When the water hardness is 0 to ≤ 60 mg/L the CWQG is 0.025 mg/L, at hardness > 60 to ≤ 180 mg/L the CWQG is calculated as CWQG (µg/L) = e{0.76[In(hardness)]+1.06}. at hardness >180 mg/L, the CWQG is 150 µg/L. If the hardness is unknown, the CWQG is 2 µg/L. The most stringent long-term guideline value is applied when the water hardness is < 60 mg/L.
- a hardness not mgr., the owned is 1 bgr. In the nationess is the owned is 2 bgr. The most stingent burgeting guideline value is applied when the water nationess is < 60 mgr. . Dissoftwed zinc CWGG-FAL: pH, hardness, and DOC-dependent guideline calculated as exp(0.947/ln(hardness)) = 0.815(pH = 0.398[ln(DOC)] + 4.625). The equation is valid between hardness 23.4 and 399 mg/L hardness, pH 6.5 and 8.13 and DOC 0.3 to 22.9 mg/L. The most stringent guideline value is applied using 23.4 mg/L hardness, 8.13 pH, and 0.3 mg/L DOC,
- the values for which the equation is valid, and which generate the most stringent guideline. The Zn concentrations in this table are below the detection limit (0.002), which exceeds the guideline. Hardness is the calcium and magnesium hardness calculated as the concentration of calcium and magnesium ions expressed as equivalent of calcium carbonate.

CWQG for total phosphorus: Canadian Guidance Frameworks is used for total phosphorus (CCME 2014): ultra-oligotrophic <4 µg/L, oligotrophic 4-10 µg/L, mesotrophic 10-20 µg/L, meso-eutrophic 20-35 µg/L, eutrophic 35-100 µg/L, hyper-eutrophic >100 µg/L.

Ammonia CWQG: pH and temperature-dependent guideline for total ammonia presented in Table 2 of the CWQG guidelines for the protection of aquatic life: Ammonia (CCME 2010).

The values from Table 2 are multiplied by 0.8224 to convert them into total ammonia (as N).

Nitrate and Nitrite Nitrogen: CWQG for nitrate is applied.

Aluminum CWQG: 0.1 mg/L if pH>6.5, otherwise 0.005 mg/L.

n/v - no value, guideline is not established.

Concentrations exceeding CWQG are highlighted orange and MDMER are highlighted red and with red text. If the value exceeds both, it will have orange fill with red text.

Analysis	Unit	ACUCx10	B QPOR	B SED	B MD	B QTP	B LGO	B HGO	B QPOR- PAG	B SED- High SFE	B QTP- PAG	B LGO- PAG	B HGO- PAG-Zn	B OB-ML	B- QPOR_F B	B-CG_FB	B-MD_FB	B- QTP_FB	B- LGO_FB	в- ндо_гв	B QPOR- PAG- CO3DP	B QTP- PAG- CO3DP	B LGO- PAG- CO3DP	B HGO- PAG- CO3DP	BL1021- 24D Detox TIs	BL1021- 43 Detox TIs
Hg	µg/g	0.5	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
Ag	µg/g	530	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
As	µg/g	48	0.97	0.93	4.6	1.1	2.7	1.1	1.4	2.4	2.7	6.2	1.5	22	0.81	1.4	20	1.1	1.2	1.7	1.6	0.98	4.8	1.1	2.4	8.3
A	µg/g	407639	7400	10000	26000	6100	6600	6900	6300	16000	5200	6400	6900	16000	12000	12000	24000	9800	8000	7900	5100	5600	6800	6100	9600	9800
Ba	µg/g		22	83	18	9.8	15	10	18	39	17	22	11	64	14	41	15	12	11	9.3	16	18	18	9.8	32	27
Be	µg/g	21	0.14	0.31	0.32	0.12	0.10	0.090	0.11	0.28	0.080	0.090	0.070	0.29	0.074	0.20	0.18	0.054	0.048	0.058	0.051	0.069	0.062	0.044	0.12	0.12
Bi	µg/g		0.2	0.1	< 0.09	0.16	0.65	1.2	0.29	< 0.09	0.37	1.1	6.3	0.17	< 0.09	0.093	< 0.09	0.11	0.45	1.2	0.1	0.13	0.36	3.7	2	1.2
Ca	µg/g		8600	19000	24000	7500	15000	12000	6300	14000	10000	12000	7400	5400	15000	27000	38000	13000	13000	13000	960	690	940	650	15000	16000
Cd	µg/g	0.90	0.19	0.10	0.11	0.075	0.040	0.030	0.030	0.040	0.030	0.01	0.040	0.16	0.050	0.065	0.10	0.21	0.044	0.12	0.030	0.01	0.01	0.01	0.19	0.23
Co	µg/g	173	3.5	8.2	22	4.2	21	4.8	4.1	10	18	28	6.8	16	7.4	9.9	20	3.8	5.4	4.3	13	3.9	26	6.1	6.0	4.4
Cr	µg/g	920	3.5	13	58	6.2	4.7	7.1	95	69	130	90	150	73	56	45	62	76	56	82	2.6	1.9	2.2	2.6	270	210
Cu	µg/g	280	18	42	38	26	26	26	15	25	13	92	13	45	26	16	31	16	73	15	13	8.5	150	8.3	51	650
Fe	µg/g	320415	17000	21000	48000	15000	31000	25000	24000	31000	25000	64000	24000	39000	26000	29000	52000	23000	24000	22000	27000	24000	61000	23000	26000	27000
К	µg/g		490	740	350	280	590	320	560	990	550	650	470	1600	420	630	390	400	400	310	500	510	570	380	1000	950
Li	µg/g		2.7	5.6	8	2.6	2.2	2.5	2	9	2	2	< 2	15	3.5	5	5.2	2.1	< 2	< 2	< 2	< 2	< 2	< 2	2.7	3
Mg	µg/g		2200	7200	17000	2100	2600	2800	2300	12000	2200	2500	2700	11000	5300	9600	16000	3200	2900	3000	2000	1800	2400	2200	3400	3600
Mn	µg/g	774.5	380	810	900	370	560	410	320	730	300	320	290	600	480	780	1000	460	440	430	110	110	150	130	490	500
Mo	µg/g	11	1.8	1.9	1.3	1.6	3.8	5.7	1.2	1.3	4.4	1.6	2.5	1.3	0.62	0.31	0.56	0.78	0.92	1.9	2.9	0.70	0.60	1.8	5.7	4.2
Ni	µg/g	470	1.3	13	20	2.2	2.6	2.8	5.7	21	6.3	5.0	6.5	29	22	16	15	2.6	4.2	3.8	0.82	1.0	2.9	1.2	71	35
Pb	µg/g	170	1.3	1.8	5.0	0.85	5.8	1.7	0.80	2.8	0.76	1.3	5.5	8.2	0.94	2.0	1.3	1.6	15	3.8	1.6	2.2	1.2	4.3	6.9	5.7
Sb	µg/g		< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Se	µg/g	0.9	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.80	1.1	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.8	0.35	0.35	0.35
Tin	µg/g		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.7	0.7
Sr	µg/g		8.3	36	42	10	14	12	7.3	23	11	12	8.5	17	15	38	46	12	13	14	4.1	4.5	6.1	3.4	17	19
Tin	µg/g		28	33	250	27	29	48	49	87	50	29	82	1500	110	320	370	79	43	39	22	39	17	43	160	110
TI	µg/g	9	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.046	0.024	0.01	0.01	0.01
U	µg/g	27	0.14	0.62	0.16	0.11	0.10	0.10	0.13	0.58	0.10	0.12	0.090	1.6	0.13	0.79	0.12	0.12	0.10	0.10	0.084	0.10	0.079	0.071	0.15	0.14
V	µg/g	970	7.1	26	100	8.4	7.7	9.6	3.0	26	5.0	8.0	7.0	63	20	37	100	9.8	9.3	9.8	6.6	3.2	10	7.0	9.8	10
Y	hð/ð		6.4	8	12	5.5	6.5	6.1	5.5	9.6	5	6.4	4.3	9.3	6.1	9.7	11	6.9	5.7	5.9	3.7	3.8	4.1	3	6.5	6
Zn	µg/g	670	26	39	75	24	25	26	17	50	13	17	18	62	44	58	85	49	31	34	14	15	20	18	40	38

Notes:

ACUC - Average Concentration in the Upper Crust of the Earth based on Rudnick and Gao (2004);

Values exceeding 10x the Average Concentration in the Upper Crust are highlighted red with red text. For the values less than Reportable Detection Limit (RDLs) values, 1/2 of RDLs are used to calculate statistical parameters. It is displayed with blue italic text.

Table B-11: Summary of leachate chemistries from HC in waste rock, low-grade ore, and high-grade ore from Berry deposit.

	Parameter	pН	Alkalinity	SO₄	F	Hg	Ag	AI	As	В	Cd*	Cr	Cu*	Fe	Mn*	Mo	Ni*	Pb*	Se	TI	U	Zn*
	Unit	pH Unit	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Material	MDMER	6.0-9.5	n/v	n/v	n/v	n/v	n/v	n/v	0.1	n/v	n/v	n/v	0.1	n/v	n/v	n/v	0.25	0.08	n/v	n/v	n/v	0.4
	CWQG 10x CWQG	6.5-9.0	n/v	n/v	0.12	0.000026	0.00025	0.1	0.005	1.5	0.00004	0.0089	0.002	0.3	0.19	0.073	0.025	0.001	0.001	0.0008	0.015	0.0017
	B OB-ML	n/v	n/v	n/v	1.2	0.00026	0.0025	1	0.05	15	0.0004	0.089	0.02	3	1.9	0.73	0.25	0.01	0.01	0.008	0.15	0.017
	Max (Min for pH)	6.61	8.0	92	0.030	0.00002	0.000025	0.24	0.0046	0.029	0.000364	0.0018	0.014	0.20	0.58	0.0087	0.0031	0.00049	0.0022	0.000013	0.0105	0.016
Overburden	Average First Month	6.97	6.0	80	0.030	0.000005	0.000025	0.057	0.0020	0.0037	0.000058	9.3E-05	0.0033	0.042	0.084	0.0025	0.0005667	4.5E-05	0.0016	0.000004	0.00073	0.0010
	Average Last Month	7.01	6.7	10	0.030	0.000005	0.000025	0.095	0.0019	0.0020	1.167E-05	0.0003567	0.0029	0.092	0.010	0.00433	0.00053	0.00012	0.00031	0.000004	0.0017	0.001
	B QPOR																					-
	Max (Min for pH)	7.00	21	6.2	0.12	0.000005	0.000025	0.21	0.0021	0.024	0.000026	0.00060	0.0028	0.52	0.034	0.0046	0.0016	4.5E-05	0.00019	0.000043	0.0065	0.002
	Average First Month	8.03	13	3.3	0.060	0.000005	0.000025	0.060	0.0011	0.0077	1.333E-05	0.000040	0.0016	0.0035	0.022	0.0034	0.00015	4.5E-05	0.00012	0.000003	0.0028	0.001
	Average Last Month	7.51	7.7	0.67	0.030	0.000005	0.000025	0.045	0.00040	0.0010	0.000017	0.000065	0.00015	0.0035	0.032	0.00053	0.000825	4.5E-05	2.0E-05	0.000003	0.00037	0.001
	B QPOR-PAG																					
	Max (Min for pH)	7.02	24	33	0.030	0.000005	0.000025	0.089	0.0029	0.019	0.000069	0.00051	0.0031	0.0080	0.082	0.0083	0.0020	4.5E-05	0.00083	0.000007	0.0047	0.004
	Average First Month	7.65	15	17	0.030	0.000005	0.000025	0.050	0.0012	0.012	8.0E-06	0.0001533	0.0011	0.0050	0.067	0.0060	0.0005667	4.5E-05	0.00029	0.000003	0.0010	0.001
	Average Last Month	7.22	7.7	2.6	0.030	0.000005	0.000025	0.025	0.00010	0.0020	0.0000045	0.00020	0.00023	0.0035	0.015	0.00075	0.00010	4.5E-05	0.000093	0.000003	0.000077	0.001
	B QPOR-PAG-CO3DP	4.70	10	7.0	0.000	0.000005	0.000005	0.0000	0.00070	0.0010	0.000007	0.0000	0.0299	0.70	0.40	0.00050	0.014	0.00040	0.00070	0.000044	0.00407	0.039
	Max (Min for pH)	4.73 5.23	1.0	7.3	0.030	0.000005	0.000025	0.0300	0.00270	0.0010	0.000087	0.0020		0.78	0.40	0.00050	0.014	0.00013	0.00076	0.000011	0.00137	
	Average First Month Average Last Month	5.05	1.0	4.9 5.7	0.030	0.000005	0.000025	0.0055	0.00010	0.0010	0.0000255	0.0011	0.0045	0.033	0.076	0.00026	0.0048	8.8E-05 4.5E-05	0.000405	6.75E-06 0.000003	0.00014 1.7E-05	0.016
	B SED	5,05	1.0	5.7	0.030	0.000005	0.000025	0.0055	0.00010	0.0010	0.000010	0.000040	0.0034	0.033	0.11	0.00020	0.0037	4.5E-05	0.000030	0.000003	1.7E=03	0.010
	Max (Min for pH)	7.32	31	4.1	0.090	0.000005	0.000025	0.33	0.0037	0.015	6.0E-06	0.00034	0.0020	0.10	0.036	0.0053	0.0015	4.5E-05	0.00041	0.000028	0.012	0.003
	Average First Month	8.42	21	2.4	0.030	0.000005	0.000025	0.00	0.0016	0.0067	0.0000015	0.000040	0.0010	0.0035	0.036	0.0016	0.0001833	4.5E-05	6.333E-05	0.0000028	0.0015	0.001
	Average Last Month	8.04	11	0.47	0.030			0.0445	0.00055	0.00010	0.0000045	0.000095	0.00020	0.0035	0.034	0.00060	0.000775	4.5E-05	0.000050	0.000003	0.00080	0.001
	B SED-High SFE																					
Wester Deals	Max (Min for pH)	7.31	30	8.8	0.030	0.000005	0.000025	0.12	0.0019	0.017	0.000090	0.00052	0.00080	0.012	0.045	0.11	0.00070	0.00010	0.0010	0.000018	0.018	0.0010
Waste Rock	Average First Month	7.95	23	6.1	0.030	0.000005	0.000025	0.067	0.00043	0.012	0.000025	0.000080	0.00037	0.0050	0.028	0.075	0.0004333	6.3E-05	9.667E-05	1.233E-05	0.015	0.0010
	Average Last Month	7.57	11	0.83	0.030	0.000005	0.000025	0.042	0.00047	0.0010	7.0E-06	0.0002467	0.00010	0.0035	0.026	0.0058	0.00010	4.5E-05	3.333E-05	3.667E-06	0.0028	0.0010
	BMD																					
	Max (Min for pH)	7.18	25	7.2	0.030	0.000005	0.000025	0.20	0.00190	0.011	6.0E-06	0.00040	0.0018	0.11	0.021	0.0031	0.0016	4.5E-05	0.00017	0.000003	0.0021	0.0020
	Average First Month	8.15	18	4.4	0.030	0.000005	0.000025	0.079	0.00050	0.0080	2.333E-06	6.667E-05	0.00077	0.0077	0.013	0.0025	0.0002167	4.5E-05	0.0001133	0.000003	0.0014	0.0010
	Average Last Month	7.50	11	0.87	0.030	0.000005	0.000025	0.045	0.00050	0.0015	3.25E-06	0.000090	0.00010	0.0073	0.021	0.0017	0.00083	4.5E-05	0.000045	0.000003	0.00086	0.0010
	B QTP	7.04	00	5.0	0.000	0.000005	0.000005	0.00	0.00000	0.004	5.05.00	0.00045	0.0050	0.000	0.007	0.0004	0.0040	4.55.05	0.00040	0.000000	0.0040	0.0000
	Max (Min for pH) Average First Month	7.01	28	5.6 2.9	0.030			0.28	0.00080	0.021	5.0E-06 3.667E-06	0.00045 6.333E-05	0.0050	0.030	0.037	0.0094	0.0016	4.5E-05 4.5E-05	0.00048 9.333E-05	0.000008 4.333E-06	0.0046	0.0020
	Average Last Month	7.36	14	0.63	0.030	0.000005	0.000025	0.081	0.00047	0.0017	2.25E-06	0.000040	0.00029	0.0035	0.028	0.0036	0.0002333	4.5E-05	0.000045	0.000003	0.00022	0.0010
	B QTP-PAG	7,30	10	0.03	0.030	0.000003	0.000023	0.030	0.00010	0.0015	2.232-00	0.000040	0.00035	0.0033	0.037	0.0025	0.00003	4.52-05	0.000045	0.000003	0.00022	0.0010
	Max (Min for pH)	6.93	23	31	0.030	0.000005	0.000025	0.057	0.00230	0.024	0.000080	0.00048	0.0011	0.014	0.064	0.0066	0.0023	4.5E-05	0.00094	0.000016	0.0037	0.0020
	Average First Month	7.75	19	18	0.030	0.000005	0.000025	0.038	0.00040	0.015	4.8E-06	9.667E-05	0.00050	0.0035	0.049	0.0042	0.0011	4.5E-05	0.0001433	0.000003	0.00061	0.0010
	Average Last Month	7.20	6.7	2.8	0.030	0.000005		0.016	0.00093	0.006333	4.2E-06	0.0002067	0.00027	0.0035	0.021	0.0013	0.00010	4.5E-05	5.333E-05	0.000007	0.0014	0.0010
	B QTP-PAG-CO3DP																					
	Max (Min for pH)	4.73	1.0	7.3	0.030	0.000005	0.000025	0.0300	0.00270	0.0010	0.000087	0.0020	0.0299	0.78	0.40	0.00050	0.014	0.00013	0.00076	0.000011	0.00137	0.039
	Average First Month	5.23	1.0	4.9	0.030	0.000005	0.000025	0.0035	0.00010	0.0010	2.6E-05	0.0011	0.0045	0.40	0.076	0.00026	0.0048	8.8E-05	0.000405	6.75E-06	0.00014	0.016
	Average Last Month	5.05	1.0	5.65	0.030	0.000005	0.000025	0.0055	0.00010	0.0010	0.000016	0.000040	0.0054	0.033	0.11	0.00026	0.0037	4.5E-05	0.000050	0.000003	1.7E-05	0.010
	B LGO																					
	Max (Min for pH)	6.97	23	11	0.030	0.000005	0.000025	0.17	0.0030	0.018	5.0E-06	0.00047	0.0076	0.011	0.036	0.0023	0.0015	4.5E-05	0.00074	0.000003	0.0018	0.0020
	Average First Month	7.89	12	5.4	0.030	0.000005	0.000025	0.053	0.00027	0.0090	2.0E-06	0.000040	0.0042	0.0065	0.028	0.0011	0.00030	4.5E-05	6.333E-05	0.000003	0.00065	0.0010
	Average Last Month	7.20	8.0	1.2	0.030	0.000005	0.000025	0.031	0.00010	0.003	2.3E-06	0.000040	0.00025	0.00575	0.031	0.00040	0.00078	4.5E-05	0.00038	0.000003	0.00076	0.0010
	B LGO-PAG Max (Min for pH)	6.91	14	86	0.030	0.000005	0.000025	0.062	0.00050	0.010	0.000078	0.00052	0.0017	0.018	0.061	0.0033	0.0011	0.00012	0.0010	0.000030	0.018	0.0010
Low-Grade Ore	Average First Month	7.61	14	37	0.030	0.000005	0.000025	0.062	0.00050	0.0063	5.3E-06	7.667E-05	0.00017	0.0035	0.081	0.0033	0.0004333	4.5E-05	0.0002133	0.000030	0.0055	0.0010
	Average Last Month	7.30	10	9.5	0.030	0.000005	0.000025	0.019667	0.00023	0.0003	5.3E-06	0.0001333	0.00037	0.0035	0.033	0.002	0.0004333	4.5E-05	4.333E-05	0.000003	0.0033	0.0010
	B LGO-PAG-CO3DP	1.00	10	0.0	0.000	0.000000	0.000020	0.013007	0.00020	0.004	0.02-00	0.0001000	0.00007	0.0000	0.000	0.0010	0.00010	4.02-00	4.0002-00	0.000000	0.0017	0.0010
	Max (Min for pH)	4.12	1.0	31	0.070	0.000005	0.000025	1.27	0.00080	0.0010	0.000070	0.0017	0.21	2.37	0.077	0.0028	0.0073	4.5E-05	0.00070	0.000019	0.00113	0.028
	Average First Month	4.88	1.0	19	0.030	0.000005	0.000025	0.036	0.00045	0.0010	0.0000405	0.000925	0.034	0.49	0.047	0.00024	0.0053	4.5E-05	0.000375	1.075E-05	0.00015	0.020
	Average Last Month	4.42	1.0	13	0.050	0.000005		0.15	0.00025	0.0010	1.0E-05	0.000040	0.077	0.45	0.041	0.0014	0.0036	4.5E-05	0.00011	0.000003	0.00040	0.011
	B HGO																					
	Max (Min for pH)	6.97	25	14	0.11	0.000005	0.000025	0.20	0.00050	0.016	9.0E-06	0.00053	0.0033	0.17	0.039	0.0075	0.0016	0.00010	0.00043	0.000053	0.0054	0.0100
	Average First Month	7.88	13	7.8	0.030	0.000005	0.000025	0.042	0.00037	0.011	4.0E-06	0.000040	0.0016	0.0072	0.035	0.0046	0.0002667	6.3E-05	8.667E-05	3.333E-06	0.0022	0.001
	Average Last Month	7.36	7.3	1.1	0.030	0.000005	0.000025	0.031	0.0001	0.0020	2.75E-06	0.000080	0.00025	0.0035	0.031	0.00080	0.000825	4.5E-05	0.00020	0.000014	0.0018	0.0010
	B HGO-PAG																					L
High-Grade Ore	Max (Min for pH)	6.84	20	16	0.030	0.000005	0.000025	0.048	0.00070	0.017	0.000069	0.0016	0.0015	0.055	0.058	0.0043	0.00080	4.5E-05	0.00096	0.000025	0.0061	0.0030
5	Average First Month	7.65	16	9.9	0.030	0.000005	0.000025	0.035	0.00047	0.011	4.833E-06	0.0001067	0.00030	0.0035	0.048	0.0018	0.0004333	4.5E-05	0.00012	0.000006	0.0017	0.0010
	Average Last Month	7.19	6	1.4	0.030	0.000005	0.000025	0.018	0.00033	0.0020	3.0E-06	0.0001933	0.00017	0.0035	0.022	0.0011	0.000050	4.5E-05	0.00024	0.000003	0.00012	0.0010
	B HGO-PAG-CO3DP	4.00	4.0	0.0	0.020	0.000005	0.000005	0.0402	0.00042	0.0050	0.000051	0.0000	0.0202	0.44	0.074	0.00055	0.0407	4.55.05	0.000000	0.000010	0.000000	0.02
	Max (Min for pH)	4.62 5.48	1.0	9.8 3.4	0.030	0.000005	0.000025	0.0180	0.00040	0.0050	0.000051	0.0023	0.0202	0.44	0.071	0.00055	0.0127	4.5E-05 4.5E-05	0.00060	0.000018 1.025E-05	0.000089	0.02
	Average First Month Average Last Month	5.48	1.0	3.4	0.030		0.000025	0.0035	0.00010	0.0035	3.8E-06	0.00012	0.0024	0.23	0.012	0.00031	0.0017	4.5E-05	0.00031	1.025E-05 0.000003	0.0000585	0.016
	Average Last worth	0.11	1.0	3.1	0.030	10.000005	0.000025	0.0025	0.00010	0.0015	3.0⊑-06	0.000040	0.0028	0.014	0.011	0.00019	0.00075	4.0E-05	0.000050	0.000003	0.000035	0.014

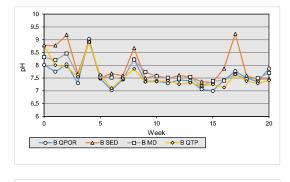
Notes:

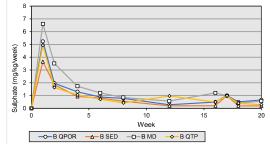
MDMER - Metal and Diamond Mining Effluent Regulations (Canada), Table 1 of Schedule 4, Maximum Authorized Monthly Mean Concentrations (SOR/2002-222 2020).

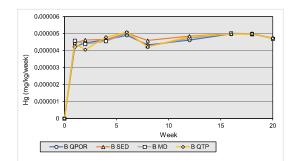
CWQG - Canadian Water Quality Guidelines for the Protection of Freshwater Aquatic Life, long-term (CWQG-FAL referred to as CWQG) by Canadian Council of Ministers of the Environment (CCME 2020).

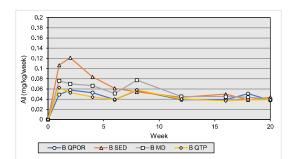
For the details on guideline selection and calculations of hardness-, pH-, temperature-, and DOC-dependent CWQG guidelines (*) see Table B-9.

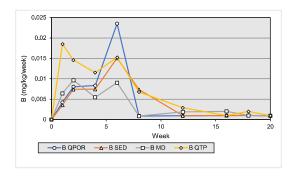
Concentrations exceeding CWQG are highlighted orange and MDMER are highlighted red and with red text. Values exceeding 10x CWQG are highlighted in yellow with yellow text.

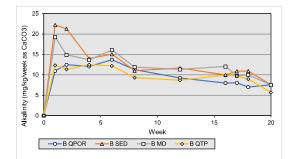

For the values less than Reportable Detection Limit (RDLs) values, 1/2 of RDLs are used to calculate statistical parameters.

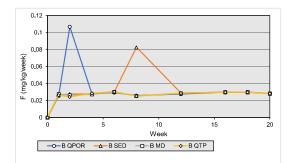

Table B-12: Summary of Ageing and Subaqueous testing for Berry tailings.

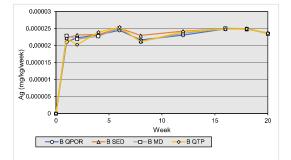

MOMER 0.905 mv mu mu mu mu <th< th=""><th>st</th><th>Parameter</th><th>pН</th><th>F</th><th>NO₂</th><th>NO₃</th><th>NO₂+NO₃</th><th>CI</th><th>SO4</th><th>CN(T)</th><th>CN_{WAD}</th><th>NH3+NH4</th><th>Un-ionized NH₃ (calc'd)</th><th>Hg</th><th>Ag</th><th>AI</th><th>As</th><th>в</th><th>Cd *</th><th>Cr</th><th>Cu*</th><th>Fe</th><th>Mn</th><th>Mo</th><th>Ni*</th><th>Ρ</th><th>Pb*</th><th>Se</th><th>т</th><th>U</th><th>Zr</th></th<>	st	Parameter	pН	F	NO ₂	NO ₃	NO ₂ +NO ₃	CI	SO4	CN(T)	CN _{WAD}	NH3+NH4	Un-ionized NH ₃ (calc'd)	Hg	Ag	AI	As	в	Cd *	Cr	Cu*	Fe	Mn	Mo	Ni*	Ρ	Pb*	Se	т	U	Zr
OWOR 6.5-0 0.12 0.06 1.3 nv 1.00 nv 1.00 0.016 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000		Unit	no unit	mg/L	as N mg/L	as N mg/L	as N mg/L	mg/L	mg/L	mg/L	mg/L	as N mg/L	as N mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m
100 (WOC) 1V 1.2 0.6.5 1.00 1.00 1.00 0.000 1.00 0.0000 0.0																														n/v	(
i i																														0.015	
v rop unt rop		10x CWQG																												0.15 U (diss)	0.
2022- by 0 2022- (No 0.0 0.15 0.3 0.3 7.8 780 60 0.48 2.8 0.11 0.000028 0.002 0.000 0.13 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.00004 0.44 2.3 0.066 0.033 0.000028 0.0001 0.44 2.3 0.060 0.0007 0.013 0.000028 0.0001 0.44 0.00070 0.012 0.00030 0.0033 0.00001 0.011 0.33			P		~				004		107944							<u> </u>			· /		· · ·		, ,					mg/L	_
bit		NOV24											, , , , , , , , , , , , , , , , , , ,							, i i i i i i i i i i i i i i i i i i i							, i		*	0.0013	
Internet function Boy 4 7.8 0.070 0.15 0.33 0.3 0.33 7.5 840 7.3 9.4 1.9 0.005 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000 0.0000000 0.000000 0.		2022-DEC2	7.86	0.070	0.15	0.3	0.3	10	770	63	7.9	1.9	0.05	0.00044	0.00062	0.013	0.00020	0.034	0.0000080	0.00004	0.91	18	0.050	0.0058	0.0094	0.0070	0.000045	0.00065	0.0000025	0.00099	0.
DEC22 NATE 7.8 0.15 0.15 0.3 0.3 0.3 7.6 940 13 11 0.3 0.11 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000	L1021-43		7.89	0.070	0.15	0.3	0.3	7.5	840	73	9.4	1.9	0.057	0.000030	0.000070	0.012	0.00030	0.088	0.0000060	0.00011	0.33	7.6	0.043	0.0029	0.0092	0.0070	0.000045	0.00041	0.0000025	0.00047	0.
JANB Day 7.56 0.12 0.15 0.33 0.33 0.41 970 0.10 0.020 10 0.41 0.00002 2.65 0.020 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000		DEC22 Day 28	7.88	0.15	0.15	0.3	0.3	7.6	940	13	11	3.9	0.11	0.000020	0.00037	0.017	0.00030	0.044	0.000026	0.00004	6.9	0.22	0.032	0.039	0.18	0.0040	0.000045	0.00047	0.0000080	0.00034	0.
for ph set ph for ph<			7.56	0.12	0.15	0.3	0.3	8.1	970	0.10	0.020	10	0.14	0.00029	2.5E-05	0.023	0.00060	0.039	0.000023	0.0035	0.027	0.15	0.030	0.042	0.023	0.0080	0.00016	0.0010	0.0000025	0.00028	0.0
102143 First Mering 7.91 0.083 0.015 0.03 0.03 8.3 823 2.4 2.0 6.8 0.22 0.00092 0.0012 0.026 0.00050 0.064 0.000080 2.3 0.014 0.078 0.037 0.0024 0.00057 0.000050 0.00042 0.00011 0.0	b-		7.72	0.15	0.015	0.95	0.95	12	910	31	2.3	7.3	0.28	0.00028	0.0023	0.035	0.012	0.097	0.00053	0.015	2.7	13	0.23	0.066	0.012	0.12	0.0010	0.011	0.000019	0.00087	0.
	Aqueous BL1021-43 Detox)		7.91	0.083	0.015	0.03	0.03	8.3	823	2.4	2.0	6.8	0.22	0.000092	0.0012	0.023	0.00050	0.064	0.000026	0.000080	2.3	0.014	0.078	0.037	0.0024	0.0057	0.0000050	0.00042	0.000011	0.00050	0.
Average Last Month 7.79 0.13 0.015 0.03 0.03 0.03 7.2 7.35 20 0.14 0.40 0.01 0.00022 0.0022 0.022 0.065 0.044 0.0007 0.0015 0.042 9.8 0.19 0.054 0.05 0.045 0.003 0.005 0.000 0.0000 0.0000 0.0000 0.000000	,		7.79	0.13	0.015	0.03	0.03	7.2	735	20	0.14	0.40	0 <u>.</u> 011	0.000028	0.000025	0.022	0.0065	0.044	0.00027	0.0015	0,042	9,8	0.19	0.054	0.0037	0,085	0.00013	0.0057	0.0000025	0.00015	0.

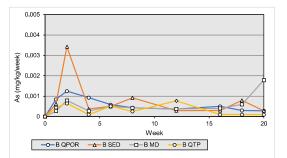

VALENTINE GOLD PROJECT: ACID ROCK DRAINAGE/METAL LEACHING (ARD/ML) ASSESSMENT REPORT OF THE BERRY PIT

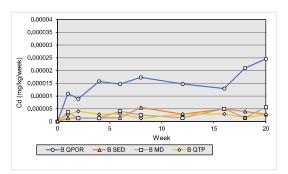

APPENDIX C

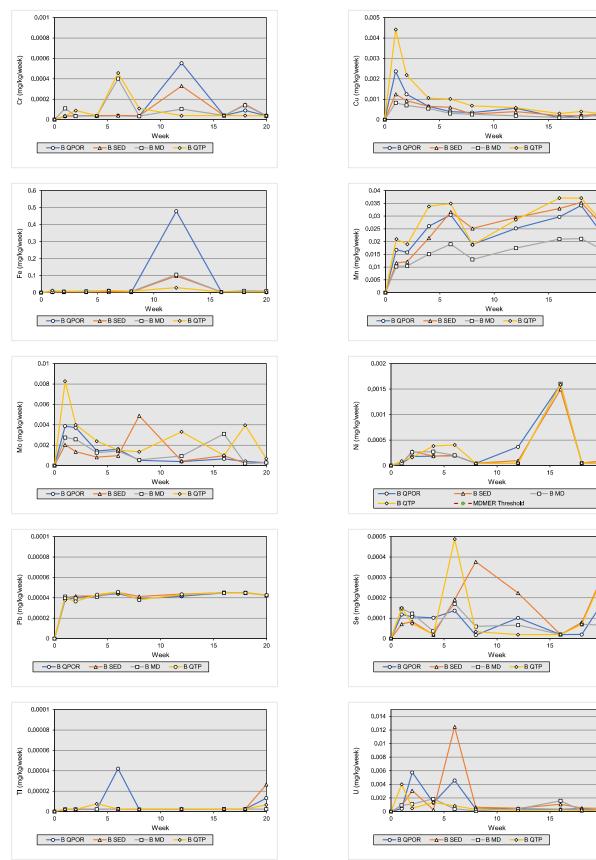


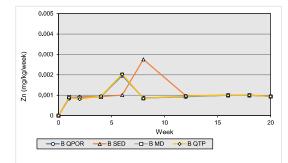


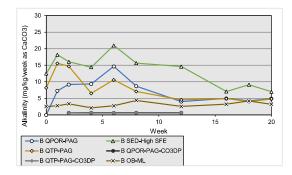


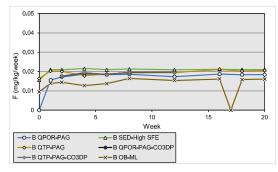


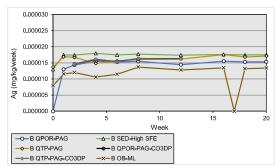


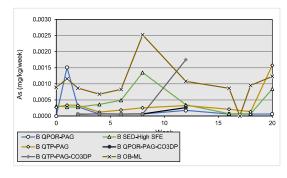


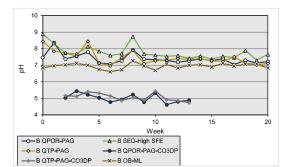


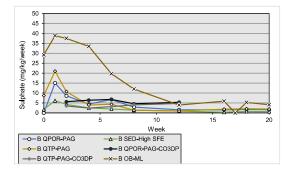


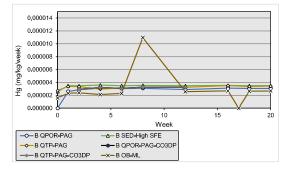


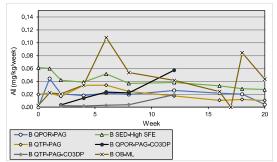


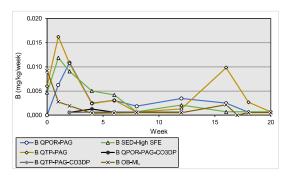


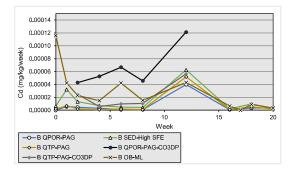


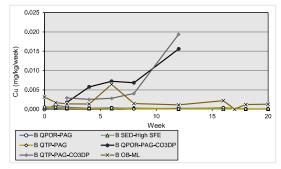


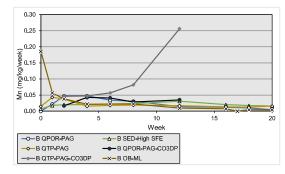


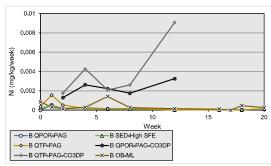


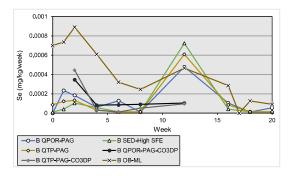


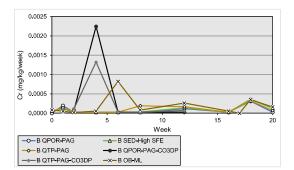


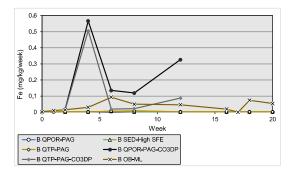


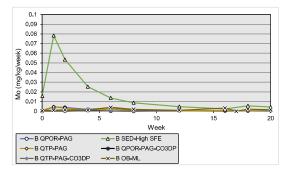


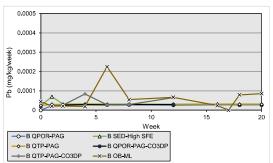


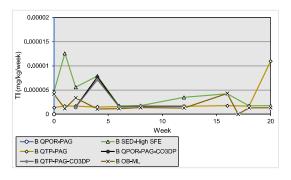


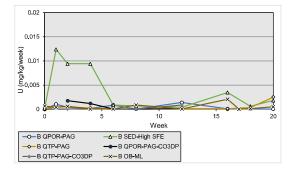


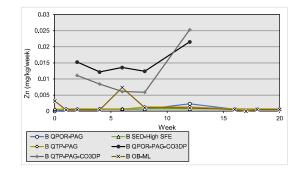


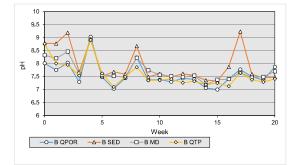


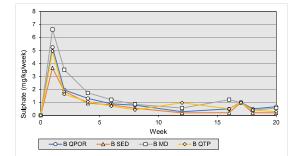


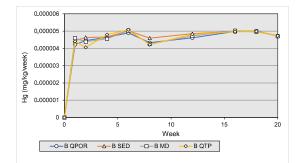


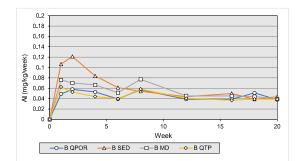


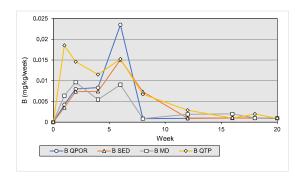


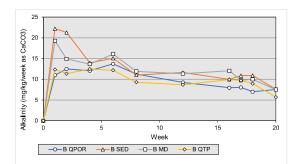


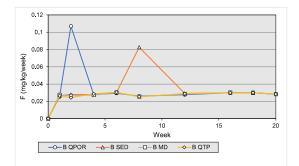


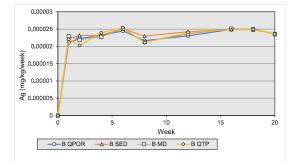


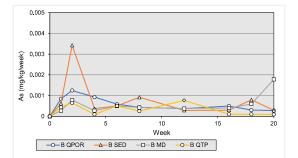


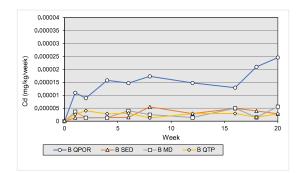


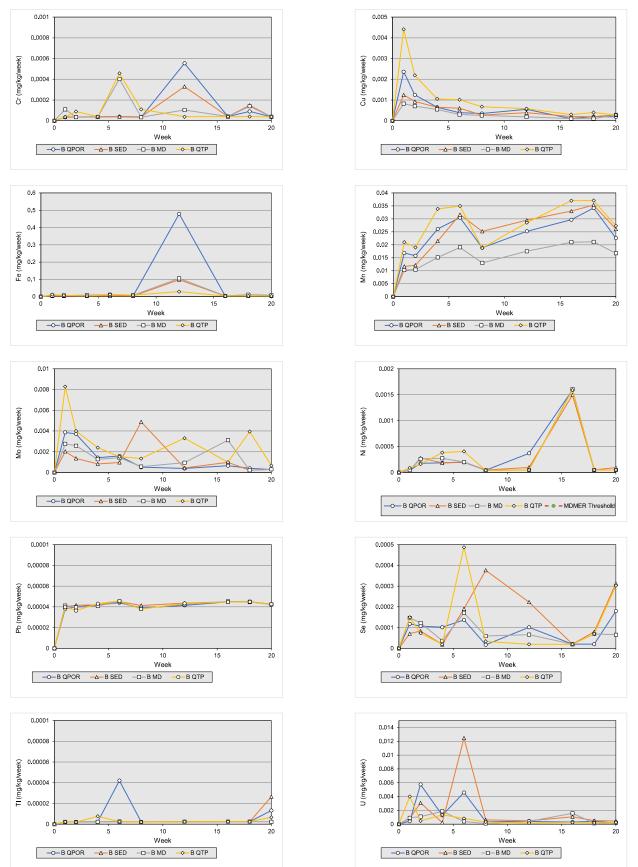


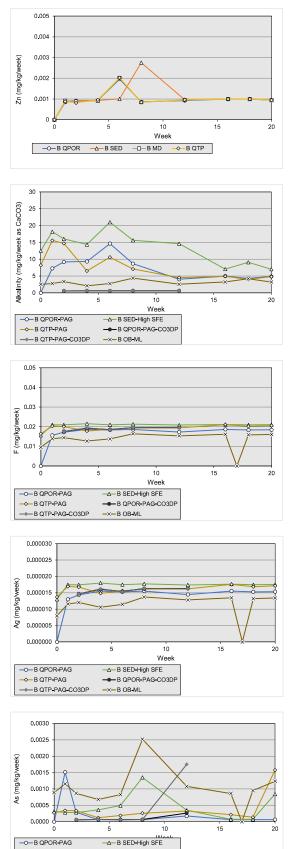


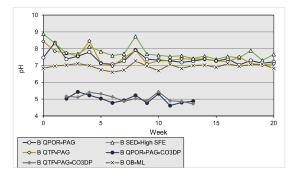


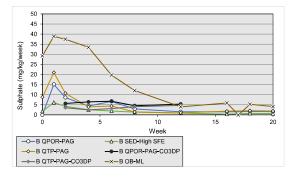


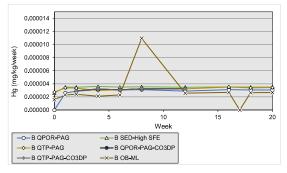


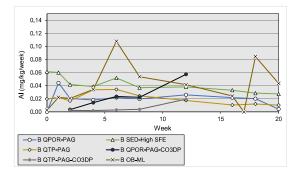


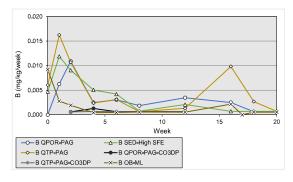


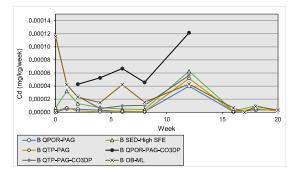


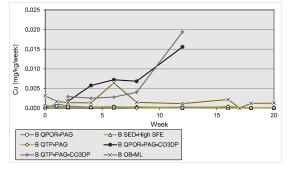


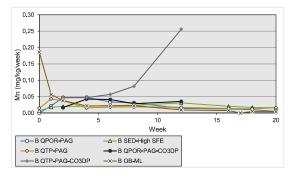


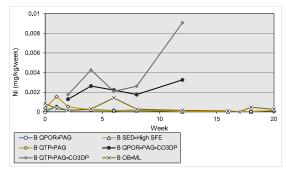


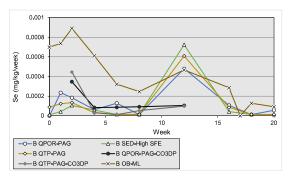


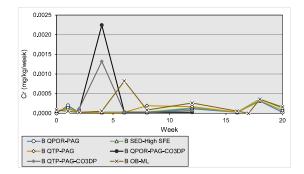


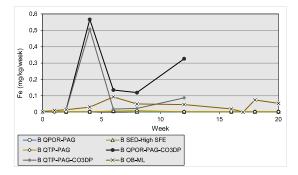


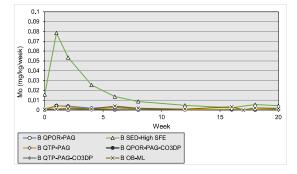


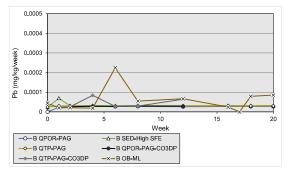

Note: Rates where concentrations where outflow concentrations were below the respective detection limits (DLs) were calcualted with half DLs.


-X-B OB-ML









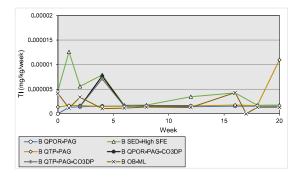
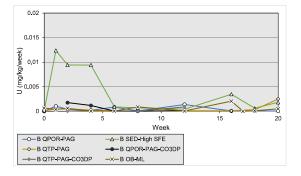
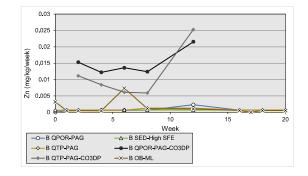
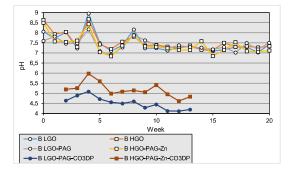
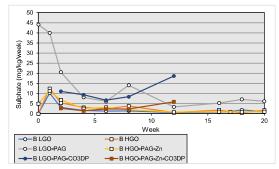
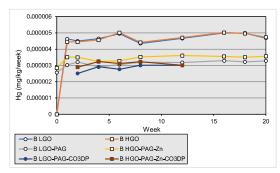
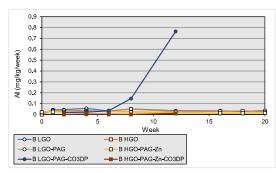
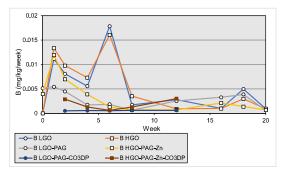
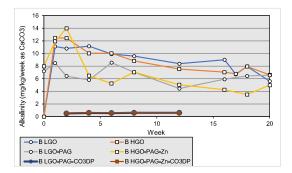
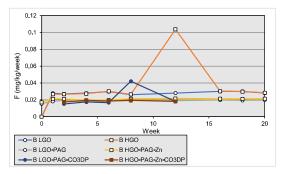



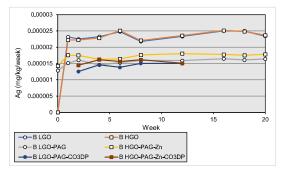
Figure C-1: Berry Waste Rock Humidity Cell Plots

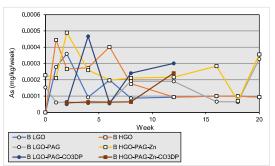






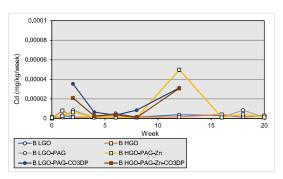
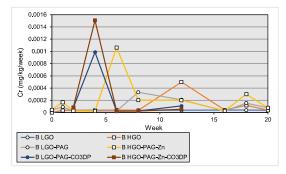
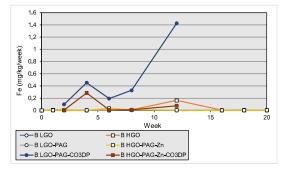
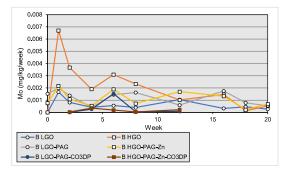
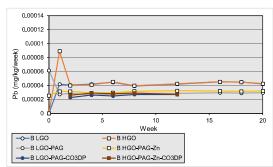

Figure C-2: Berry Ore and Overburden Humidity Cell Plots

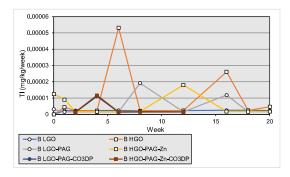


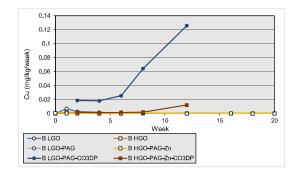


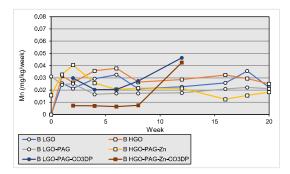


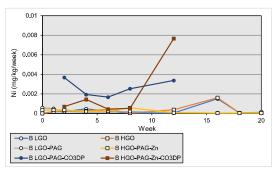


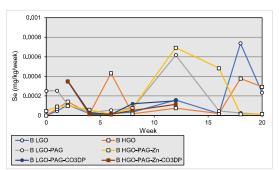







Figure C-2: Berry Ore and Overburden Humidity Cell Plots









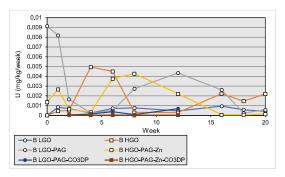


Figure C-2: Berry Ore and Overburden Humidity Cell Plots

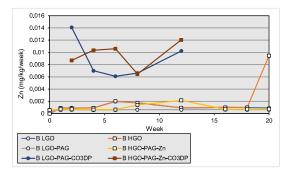
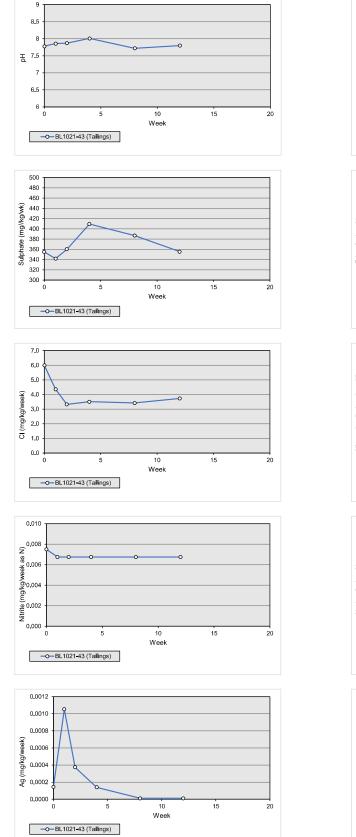
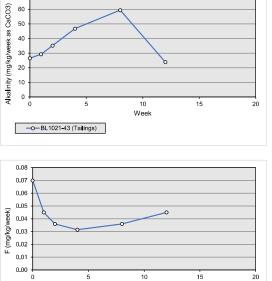
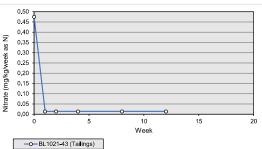
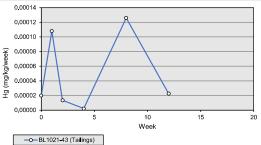
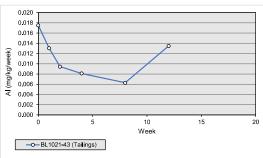
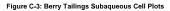




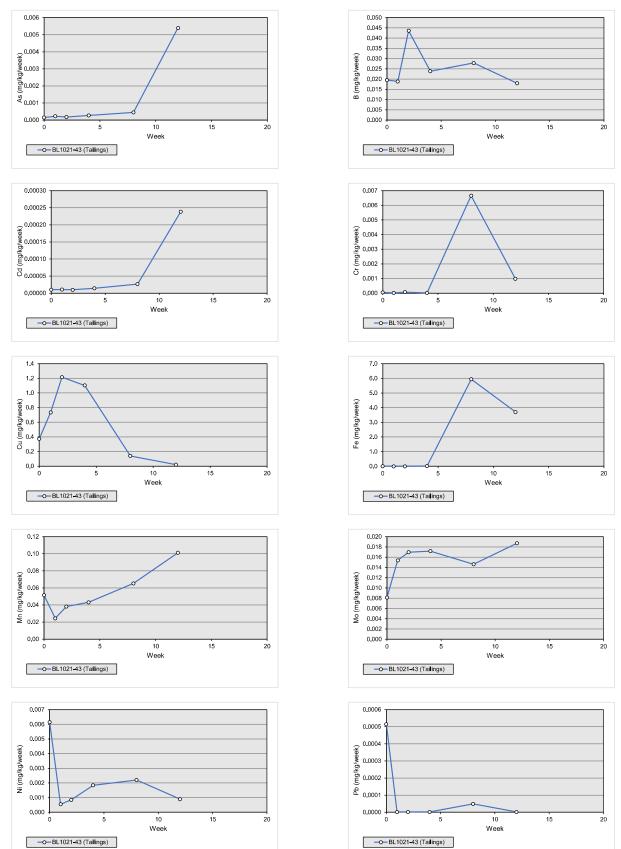
Figure C-3: Berry Tailings Subaqueous Cell Plots

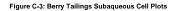


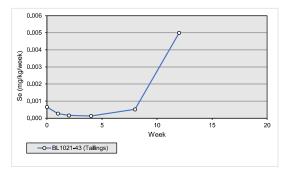

70

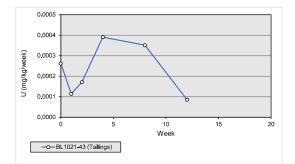

0

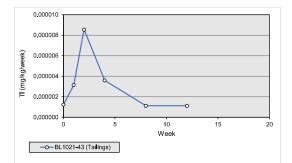

-o-BL1021-43 (Tailings)

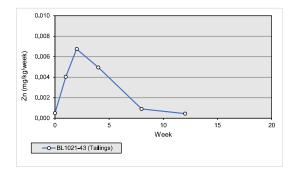



Week









APPENDIX D

Certificates Of Analyses

D.1 MINERALOGY

D.1 MINERALOGY

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for:	Environmental Services
Project Number/ LIMS No.	Custom XRD/MI4524-DEC22
Sample Receipt:	December 14, 2022
Sample Analysis:	January 5, 2023
Reporting Date:	January 19, 2023
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80°
Interpretations:	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.
Contents:	1) Method Summary 2) Quantitative XRD Results 3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

bluyin to

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: <u>https://www.scc.ca/en/search/palcan.</u>

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

	B QPOR-PAG	B SED-High SFE	B QTP-PAG	B LGO-PAG	B HGO-PAG- Zn	B OB-ML
Mineral/Compound	DEC4524-01	DEC4524-02	DEC4524-03	DEC4524-04	DEC4524-05	DEC4524-06
	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	45.0	51.8	47.9	59.9	62.0	37.6
Albite	39.3	13.0	37.1	17.7	29.2	36.3
Chlorite	2.0	10.2	1.2	1.3	1.3	6.1
Pyrite	1.2	0.2	1.4	6.9	1.1	0.2
Muscovite	7.4	16.8	5.3	7.7	4.0	12.5
Laumontite	1.4	1.4	1.2	0.8	0.4	-
Calcite	1.0	4.0	3.4	2.1	1.5	0.0
Microcline	0.9	1.4	1.4	0.2	0.2	0.6
Gibbsite	0.3	-	-	-	-	-
Calcite magnesian	1.7	-	0.0	1.1	0.3	-
Magnetite	-	1.2	0.5	1.8	-	0.9
Diaspore	-	-	0.5	0.5	-	-
Actinolite	-	-	-	-	-	5.2
Ankerite	-	-	-	-	-	0.5
TOTAL	100	100	100	100	100	100

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

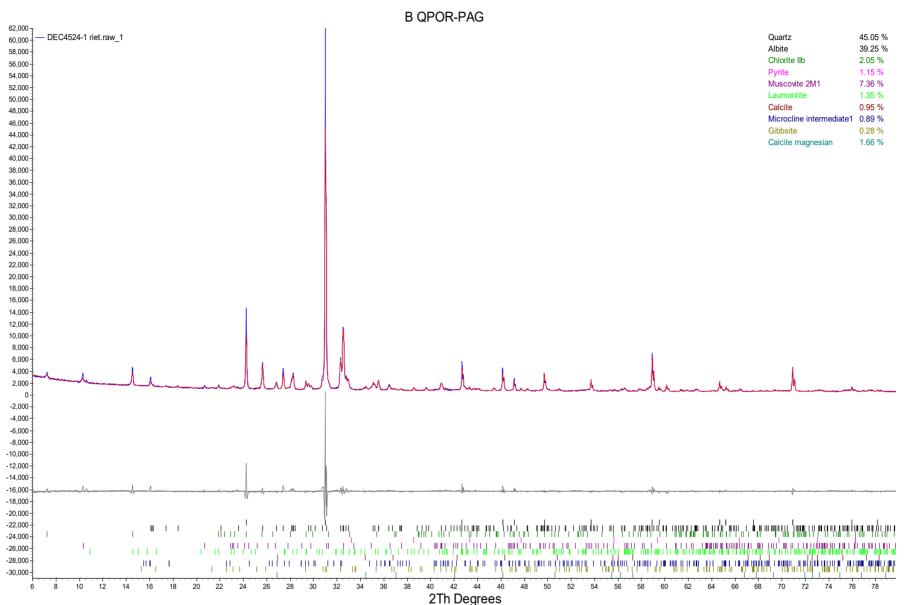
Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

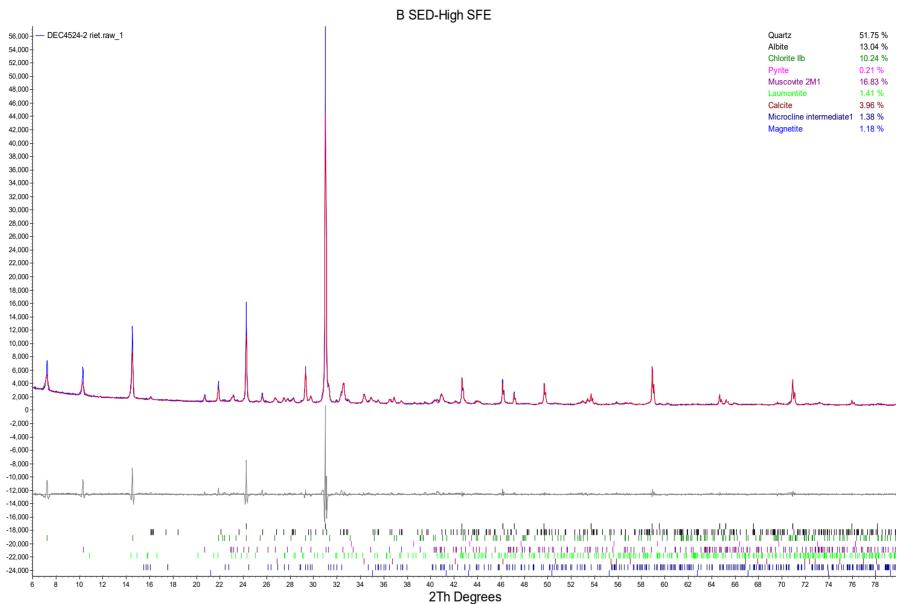
Mineral/Compound	Formula
Quartz	SiO ₂
Albite	NaAlSi ₃ O ₈
Chlorite	$(Fe,(Mg,Mn)_5,AI)(Si_3AI)O_{10}(OH)_8$
Pyrite	FeS ₂
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂
Laumontite	Ca(Al ₂ Si ₄ O ₁₂)·4H ₂ O
Calcite	CaCO ₃
Microcline	KAISi ₃ O ₈
Gibbsite	AI(OH) ₃
Calcite magnesian	(Ca,Mg)CO ₃
Magnetite	Fe ₃ O ₄
Diaspore	aAlO.OH
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂
Ankerite	CaFe(CO ₃) ₂

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

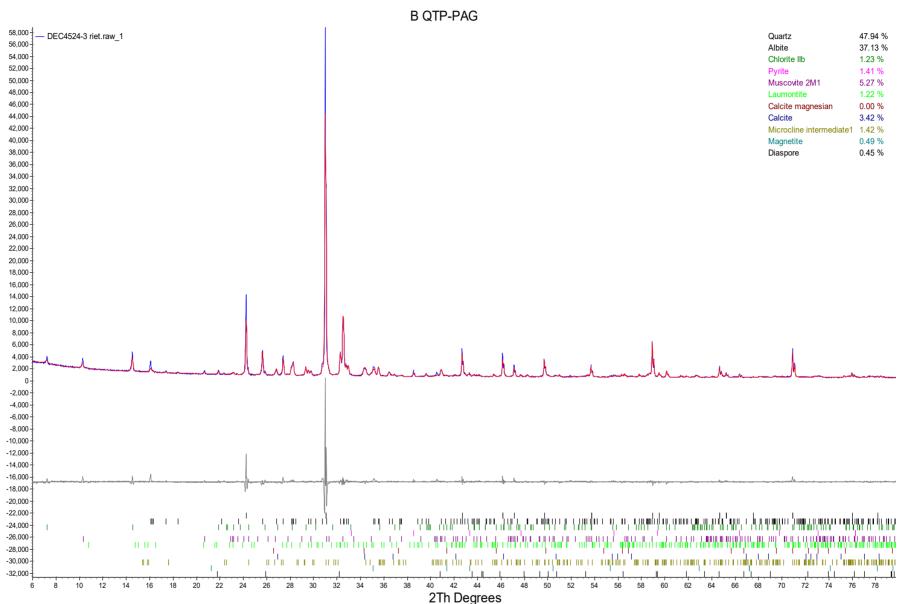
Mineral/Compound	B QPOR-PAG- DUP	B SED-High SFE- DUP	B QTP-PAG- DUP	B LGO-PAG- DUP	B HGO-PAG- Zn-DUP	B OB-ML- DUP
	DEC4524-07	DEC4524-08	DEC4524-09	DEC4524-10	DEC4524-11	DEC4524-12
	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	45.5	51.4	48.1	58.6	61.7	39.2
Albite	39.8	13.8	37.7	19.0	29.6	33.2
Chlorite	2.0	10.3	1.4	1.1	1.2	7.5
Pyrite	1.3	0.3	1.2	6.2	0.8	0.1
Muscovite	7.4	17.0	5.9	9.2	4.7	13.5
Laumontite	1.4	1.2	1.1	0.8	0.2	-
Calcite	0.8	3.7	3.1	2.7	1.2	0.1
Microcline	0.5	1.0	0.6	0.2	0.3	0.5
Gibbsite	0.3	-	-	-	-	-
Calcite magnesian	1.0	-	0.0	0.4	0.3	-
Magnetite	-	1.3	0.5	1.6	-	0.6
Diaspore	-	-	0.3	0.2	-	-
Actinolite	-	-	-	-	-	4.7
Ankerite	-	-	-	-	-	0.6
TOTAL	100	100	100	100	100	100

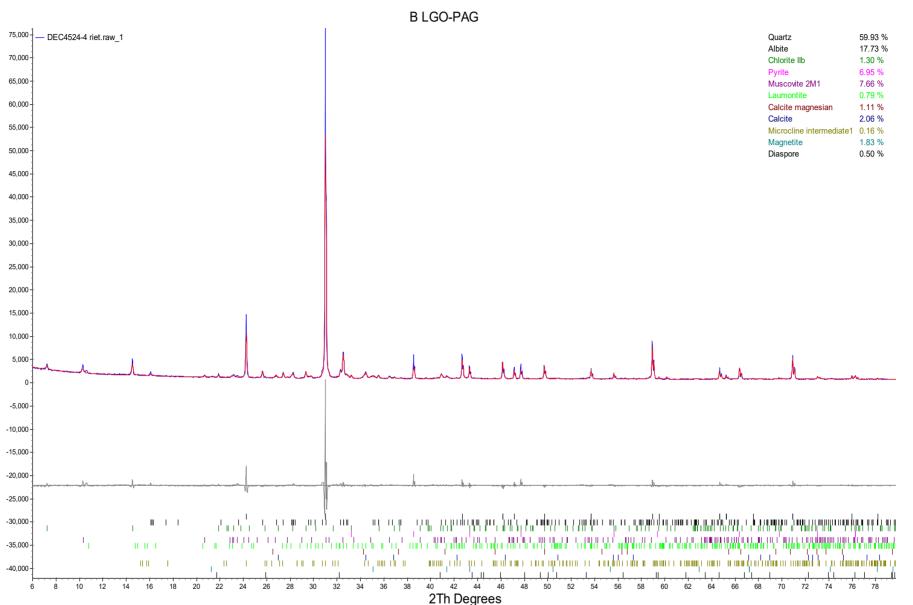

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

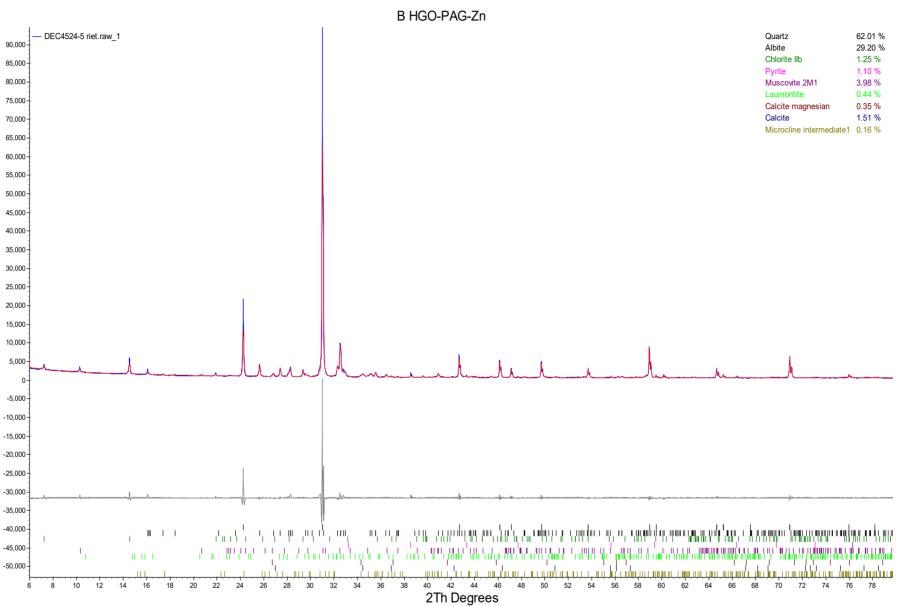
Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

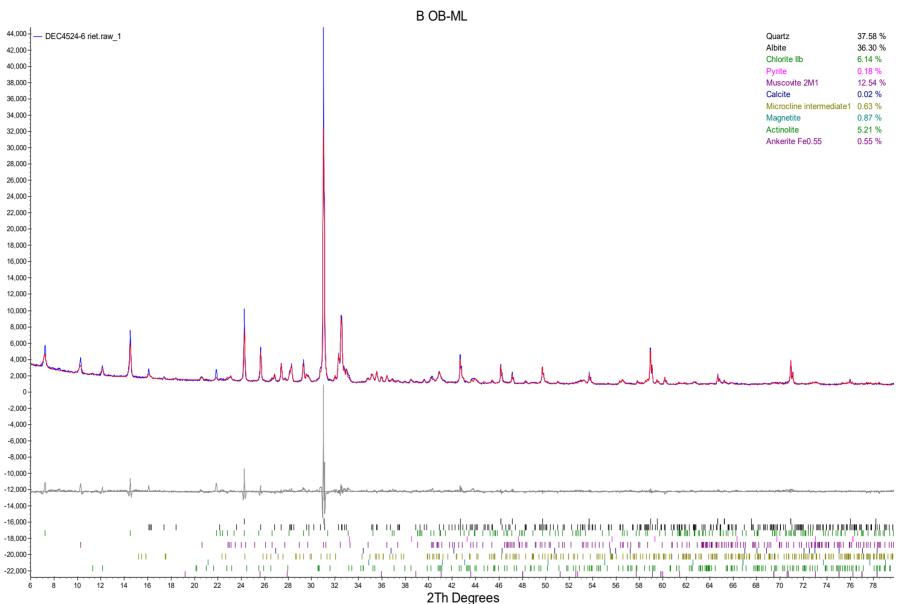

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

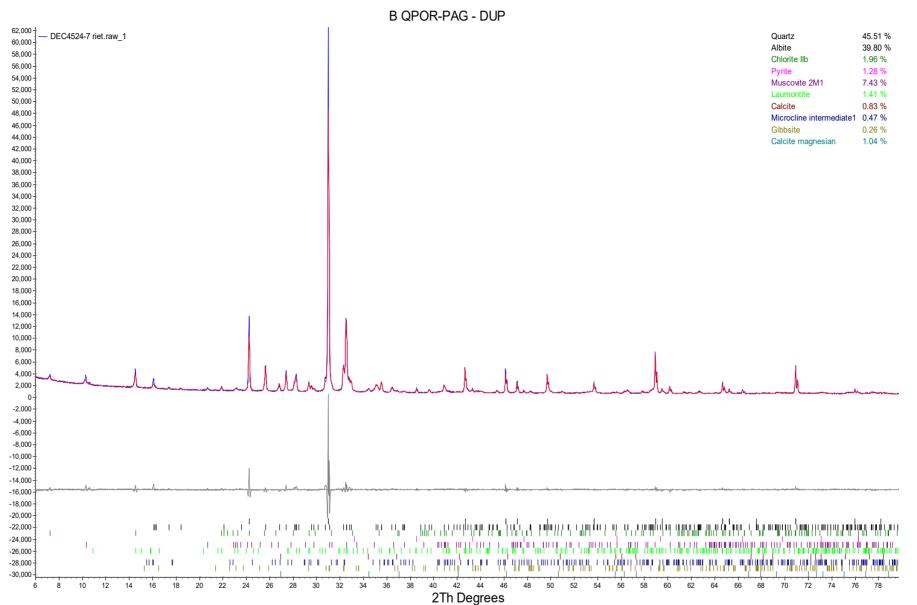
Mineral/Compound	Formula
Quartz	SiO ₂
Albite	NaAlSi ₃ O ₈
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Pyrite	FeS ₂
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$
Laumontite	Ca(Al ₂ Si ₄ O ₁₂)·4H ₂ O
Calcite	CaCO ₃
Microcline	KAISi ₃ O ₈
Gibbsite	AI(OH) ₃
Calcite magnesian	(Ca,Mg)CO ₃
Magnetite	Fe ₃ O ₄
Diaspore	aAlO.OH
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂
Ankerite	CaFe(CO ₃) ₂





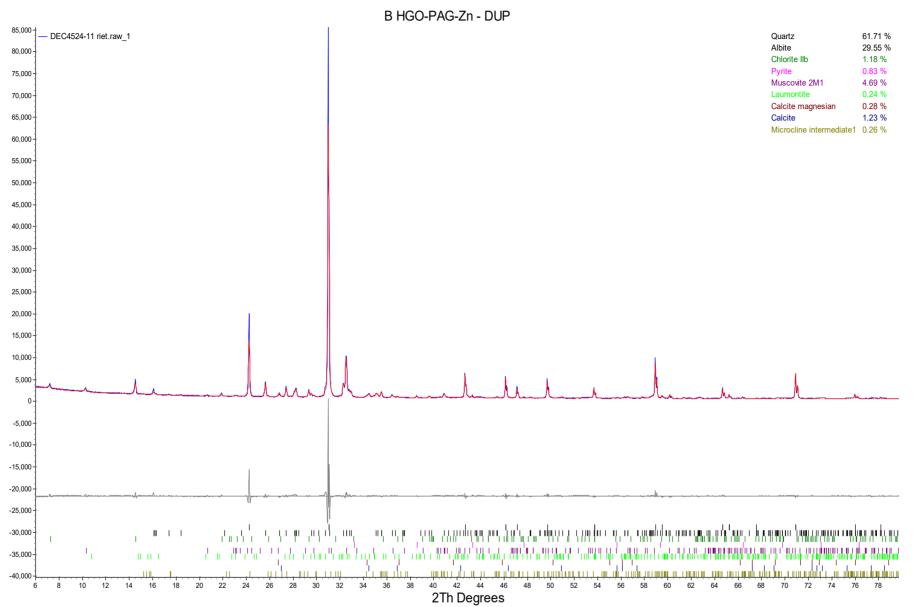




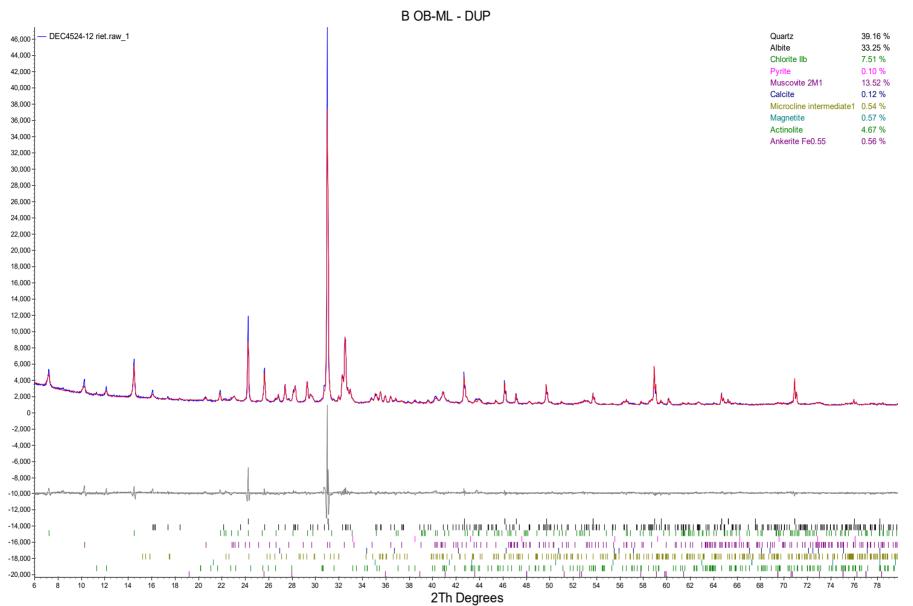


- DEC4524-8 riet.raw 1 Quartz 51.39 % 56,000 · 13.84 % Albite 54,000 Chlorite Ilb 10.32 % 52.000· Pyrite 0.29 % 50,000 16.96 % Muscovite 2M1 48,000 Laumontite 1.23 % 3.68 % Calcite 46,000 Microcline intermediate1 1.03 % 44.000 Magnetite 1.26 % 42,000 -40,000 38,000 · 36.000 34,000 32,000 30,000 · 28,000 26,000 24,000 22,000 -20,000 18,000 16,000 14,000 -12,000 10,000 8,000 · 6,000 4,000 2,000 0 -2,000--4,000 -6,000 -8,000 -10,000 -12,000 -14.000 - չուրուրում, ու, - չուրչու չչու կուներալությունը՝ բուրախելը չքացին էրությունակներ բարքացերին երուարդությանը տապետարակությունը։ . . . du di -16,000 -18,000 11.1.1 -20,000 100 40 42 44 32 38 52 58 60 62 66 68 70 72 74 76 78 16 18 22 26 30 34 36 46 48 50 54 56 64 10 12 14 20 24 28 6 8 2Th Degrees

B SED-High SFE - DUP



B QTP-PAG - DUP 66,000-- DEC4524-9 riet.raw 1 Quartz 48.11 % 64.000-37.68 % Albite 62,000 Chlorite Ilb 1.43 % 60.000 58,000-Pyrite 1.24 % 5.89 % 56,000-Muscovite 2M1 54,000 Laumontite 1.07 % 52,000· 0.01 % Calcite magnesian 50.000 Calcite 3.15 % 48,000 Microcline intermediate1 0.61 % 46,000 0.47 % Magnetite 44.000 Diaspore 0.35 % 42,000 -40.000 38,000 -36,000 · 34,000 -32,000 · 30.000 28,000 26,000-24,000-22,000 20.000 18,000 -16,000-14,000 · 12,000 10,000 -8,000 6,000 · 4,000 2,000 · (-2,000 -4,000--6,000 -8,000 -10,000 -12,000 -14,000 -16,000--18,000 -20,000 -22,000 . . . -24,000 -26,000 11-11-1 -28,000 -30,000 -II I -32,000 78 16 20 12 14 18 22 24 30 32 34 36 38 40 42 44 46 50 52 54 56 60 62 64 68 70 72 74 76 6 8 10 26 28 48 58 66 2Th Degrees



B LGO-PAG - DUP 66,000 - DEC4524-10 riet.raw 1 Quartz 58.55 % 64.000 19.00 % Albite 62,000 Chlorite Ilb 1.13 % 60.000 Pyrite 6.18 % 58,000 · Muscovite 2M1 9.24 % 56.000-Laumontite 0.83 % 54,000 Calcite magnesian 0.42 % 52,000· Calcite 2.66 % 50.000 Microcline intermediate1 0.16 % 48,000 1.63 % Magnetite 46.000-Diaspore 0.21 % 44,000-42,000 -40,000 -38,000-36,000-34,000 32,000-30,000-28,000-26,000 -24,000 22.000 20,000 -18.000 16,000-14.000-12,000 · 10,000 -8,000-6,000 4,000 · 2,000 0 -2,000--4,000 · -6,000 --8,000 -10,000 -12,000 -14,000 -16,000 -18,000 -20,000 արդիպարտուտարդերտերեր, արտեփարդարտութենա, ու արդարդ ու տիպուդ ու արդիադարդիսութե, ու երա արաչ արաչ հետարար, հետ արտետերի տիկանարտերերիցին կանգիտարութենան հարտերինենան։ հնարչան մեն նարդարդնեն նարդեն առաջնեն ներնեն են է է հան արդիանութեն գունիատութենան առաջատութենան նարտութենան առաջնութենան ու հետարան առաջնեն հարտես է հանձեն առաջնութեն Առաջնել է հետարան գունինենան առաջատութենան նարտութենան առաջնութենան առաջնեն հետարան առաջնեն հետ է հարտես է հանձե . . . -22,000 -24,000 нн -26,000 -28,000 -30,000 30 78 16 20 22 24 34 36 38 40 42 44 12 14 18 26 32 46 50 52 54 56 58 60 62 64 66 68 70 72 74 76 6 8 10 28 48 2Th Degrees

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: 20-January-2023

Date Rec. :08 December 2022LR Report:CA19107-DEC22Reference:Berry Composites- Set 3-
As Rec'd

Copy: #1

CERTIFICATE OF ANALYSIS

Final Report

Sample ID	Sample Date X & Time	RD-Rietveld
1: Analysis Start Date		20-Jan-23
2: Analysis Start Time		
3: Analysis Completed Date		20-Jan-23
4: Analysis Completed Time		
5: B-QPOR_FB	N/A	20-Jan-23
6: B-CG_FB	N/A	20-Jan-23
7: M-MD_FB	N/A	20-Jan-23
8: B-QTP_FB	N/A	20-Jan-23
9: B-LGO_FB	N/A	20-Jan-23
10: B-HGO_FB	N/A	20-Jan-23
11: B-QPOR_FB DUP	N/A	20-Jan-23
12: B-CG_FB DUP	N/A	20-Jan-23
13: M-MD_FB DUP	N/A	20-Jan-23
14: B-QTP_FB DUP	N/A	20-Jan-23
15: B-LGO_FB DUP	N/A	20-Jan-23
16: B-HGO_FB DUP	N/A	20-Jan-23

CHARTERED Catharine Aunold ATHARINE ARNOL CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003202782

Page 1 of 1

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for:	Environmental Services
Project Number/ LIMS No.	Custom XRD/MI4518-JAN23
Sample Receipt:	January 10, 2023
Sample Analysis:	February 13, 2023
Reporting Date:	February 15, 2023
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80°
Interpretations:	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.
Contents:	1) Method Summary 2) Quantitative XRD Results 3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

bluyin to

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: <u>https://www.scc.ca/en/search/palcan.</u>

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

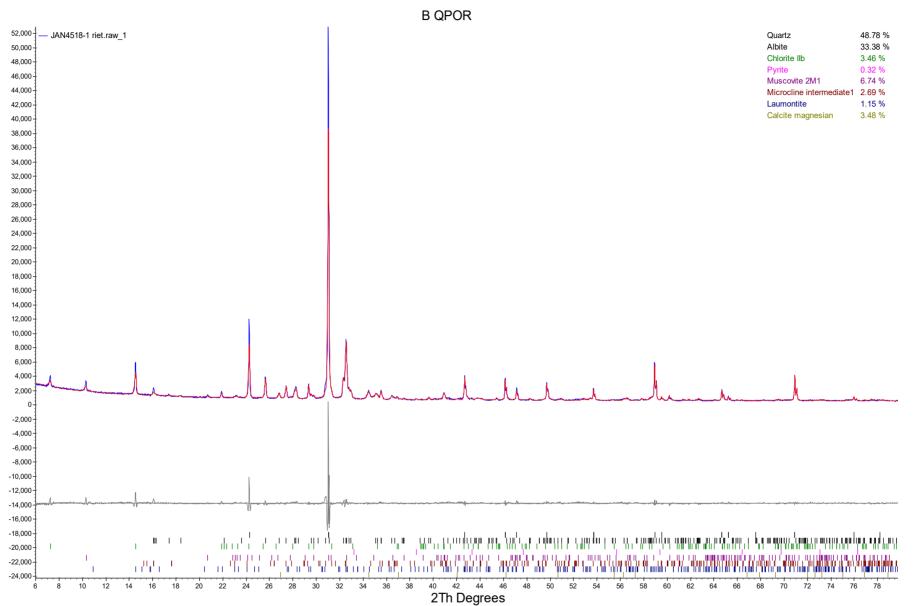
	B QPOR	B SED	B MD	B QTP	B LGO	B HGO
Mineral/Compound	JAN4518-01	JAN4518-02	JAN4518-03	JAN4518-04	JAN4518-05	JAN4518-06
	(wt %)					
Quartz	48.8	42.3	42.0	47.8	46.8	49.7
Albite	33.4	12.4	19.7	37.0	32.7	35.3
Chlorite	3.5	6.8	16.1	2.8	2.8	2.4
Pyrite	0.3	0.1	0.3	0.4	1.2	1.1
Muscovite	6.7	23.2	10.9	6.4	9.2	4.9
Microcline	2.7	1.2	2.1	1.5	1.7	2.0
Laumontite	1.2	1.3	-	0.7	-	0.5
Calcite magnesian	3.5	1.9	-	2.4	2.5	2.4
Calcite	-	3.2	5.7	1.1	2.8	1.8
Magnetite	-	2.3	1.0	-	0.4	-
Ankerite	-	3.9	0.6	-	-	-
Hematite	-	0.7	0.5	-	-	-
Rutile	-	0.7	0.9	-	-	-
TOTAL	100	100	100	100	100	100

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value. Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

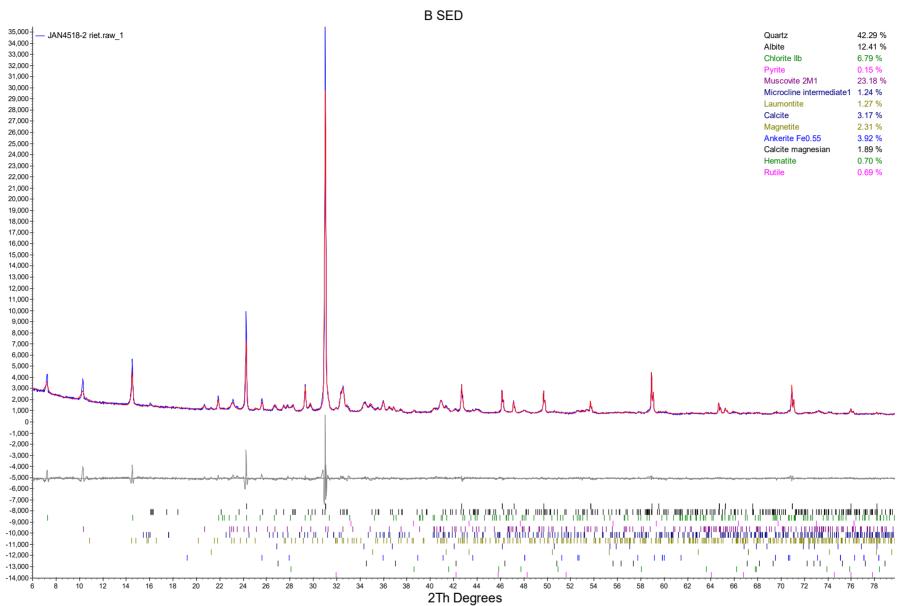
The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Albite	NaAlSi ₃ O ₈
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Pyrite	FeS ₂
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$
Microcline	KAISi ₃ O ₈
Laumontite	Ca(Al ₂ Si ₄ O ₁₂)·4H ₂ O
Calcite magnesian	(Ca,Mg)CO ₃
Calcite	CaCO ₃
Magnetite	Fe ₃ O ₄
Ankerite	CaFe(CO ₃) ₂
Hematite	Fe ₂ O ₃
Rutile	TiO ₂

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

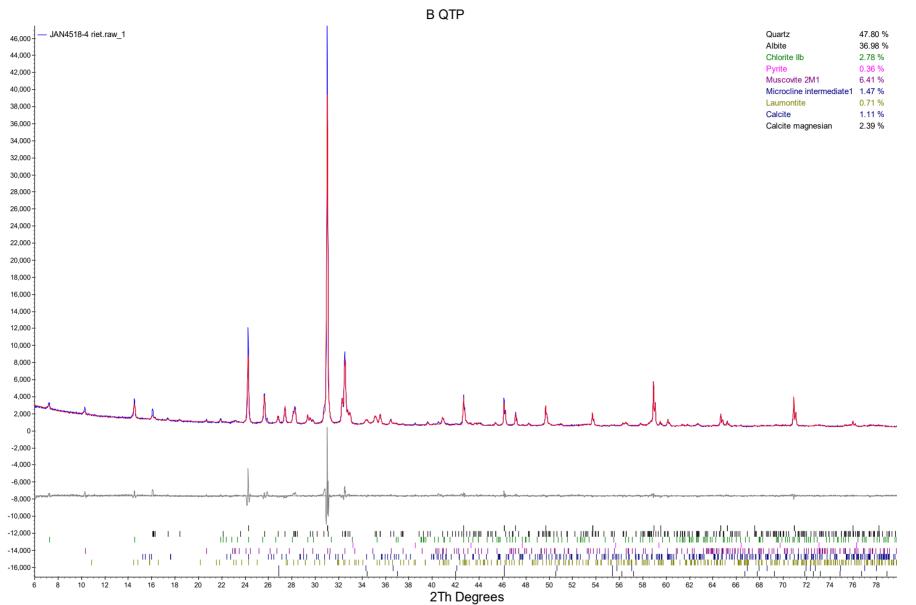

	B QPOR dup	B SED dup	B MD dup	B QTP dup	B LGO dup	B HGO dup
Mineral/Compound	JAN4518-07	JAN4518-08	JAN4518-09	JAN4518-10	JAN4518-11	JAN4518-12
	(wt %)					
Quartz	49.9	41.4	43.6	50.0	45.9	48.8
Albite	33.2	12.6	18.0	35.7	34.4	36.1
Chlorite	3.3	7.0	15.4	2.5	2.9	2.5
Pyrite	0.3	0.2	0.3	0.3	1.1	1.1
Muscovite	6.9	23.2	11.9	6.2	8.6	5.2
Microcline	2.5	1.0	1.9	1.4	1.2	1.4
Laumontite	1.2	1.1	-	0.6	-	1.0
Calcite magnesian	2.6	2.6	-	2.4	2.5	2.0
Calcite	-	3.3	5.9	1.0	3.0	1.8
Magnetite	-	2.3	1.2	-	0.3	-
Ankerite	-	4.0	0.3	-	-	-
Hematite	-	0.6	0.4	-	-	-
Rutile	-	0.7	1.1	-	-	-
TOTAL	100	100	100	100	100	100

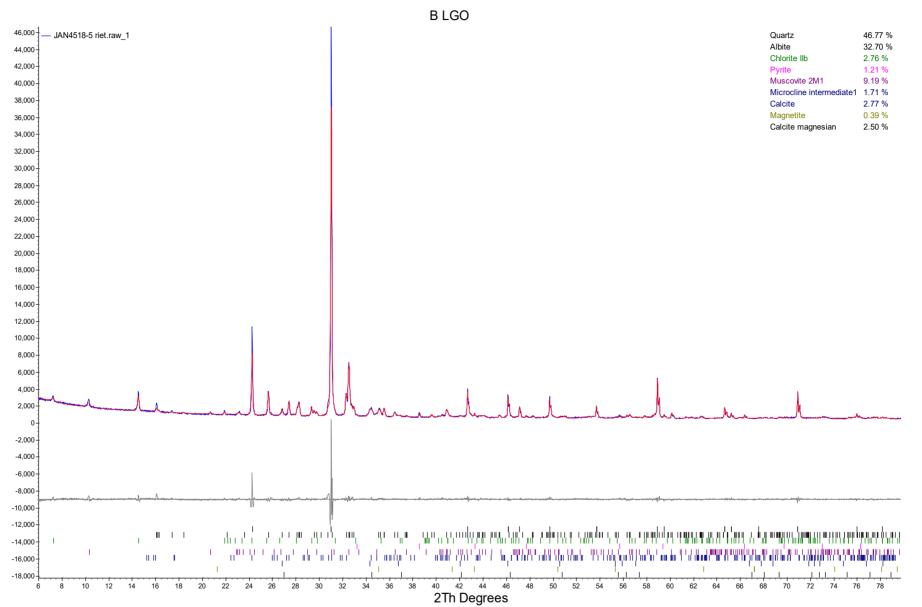
Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value. Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.


The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

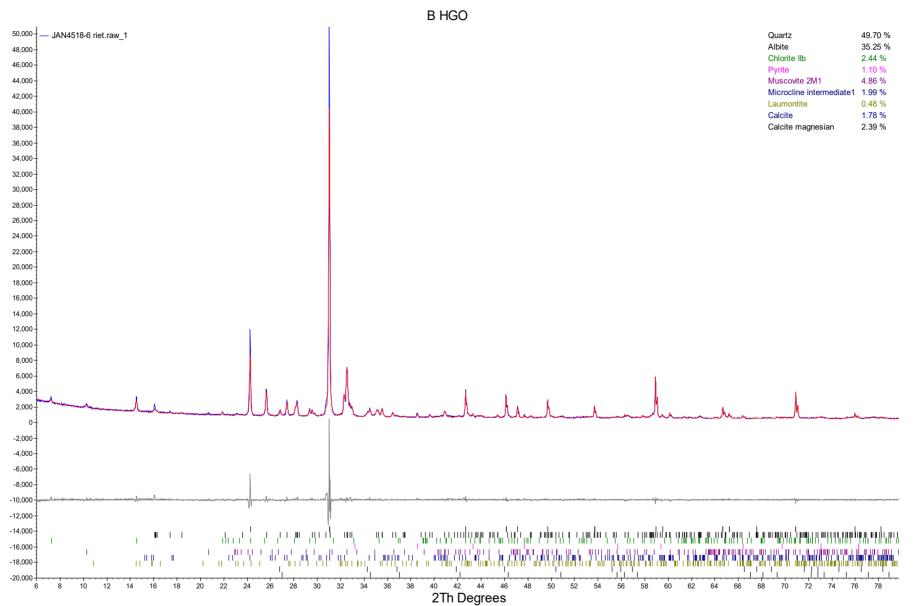
Mineral/Compound	Formula
Quartz	SiO ₂
Albite	NaAlSi ₃ O ₈
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Pyrite	FeS ₂
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$
Microcline	KAISi ₃ O ₈
Laumontite	Ca(Al ₂ Si ₄ O ₁₂)·4H ₂ O
Calcite magnesian	(Ca,Mg)CO ₃
Calcite	CaCO ₃
Magnetite	Fe ₃ O ₄
Ankerite	CaFe(CO ₃) ₂
Hematite	Fe ₂ O ₃
Rutile	TiO ₂



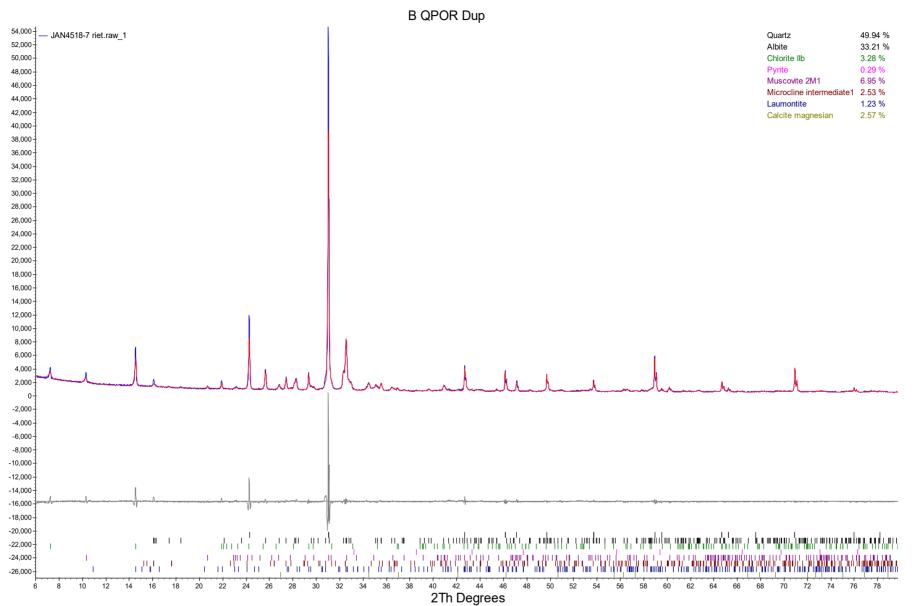


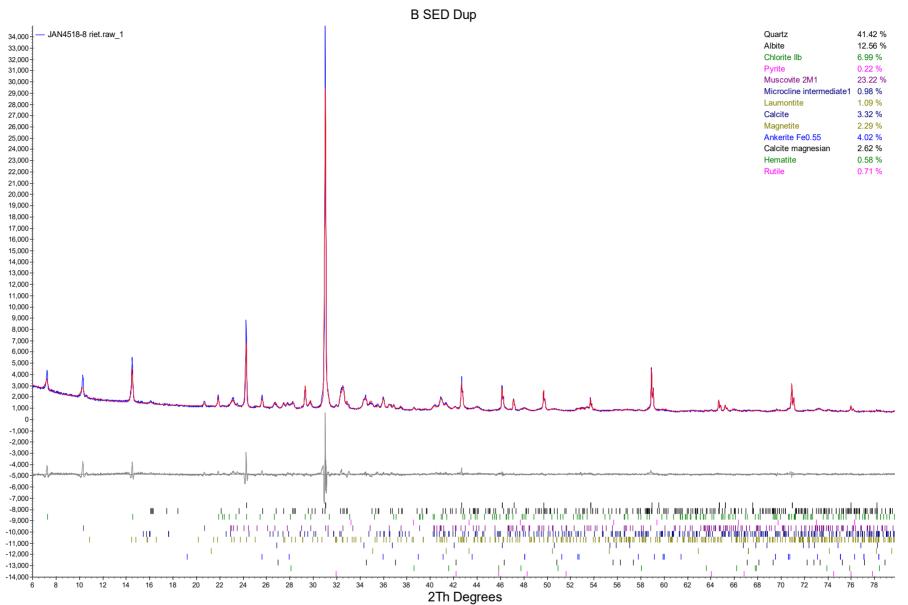


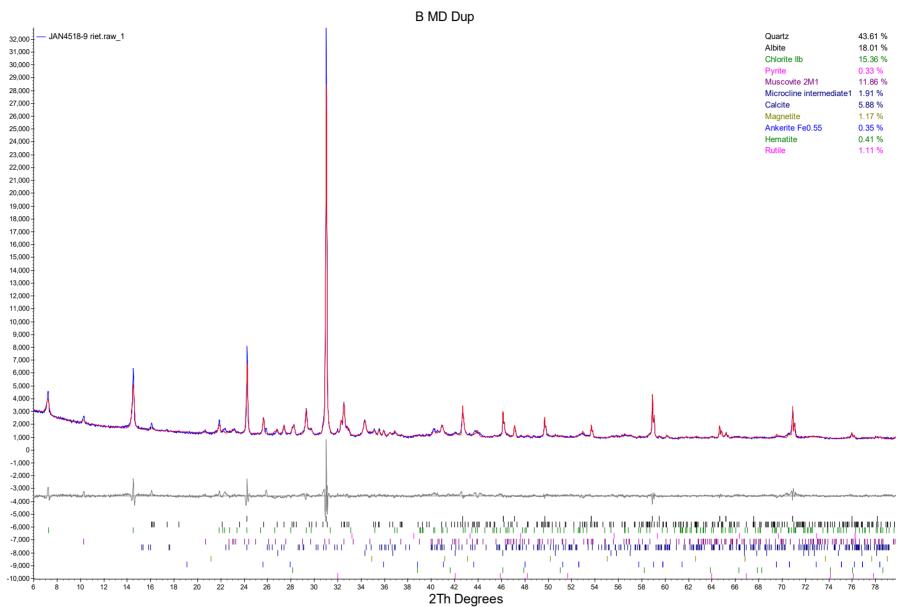
Environmental Services Custom XRD/MI4518-JAN23 15-Feb-23

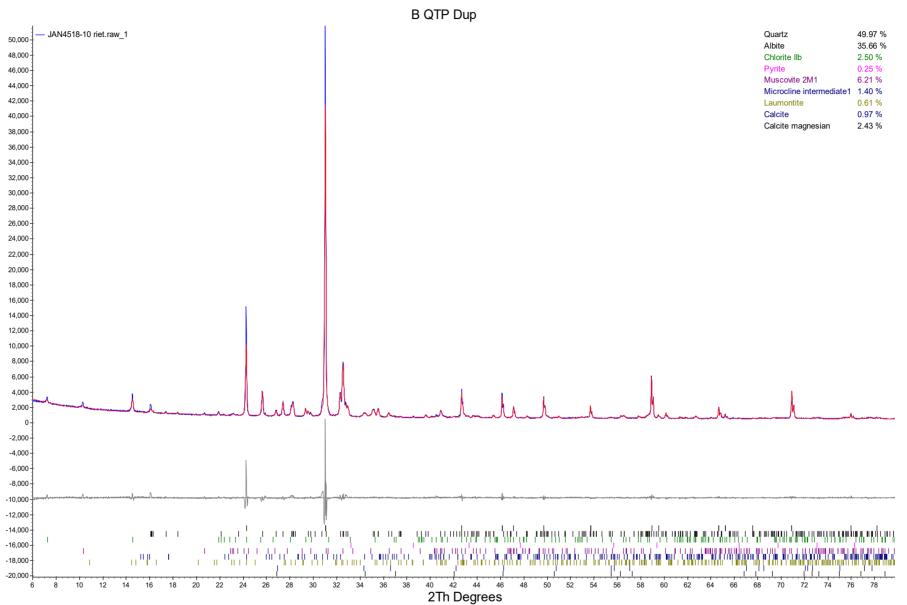


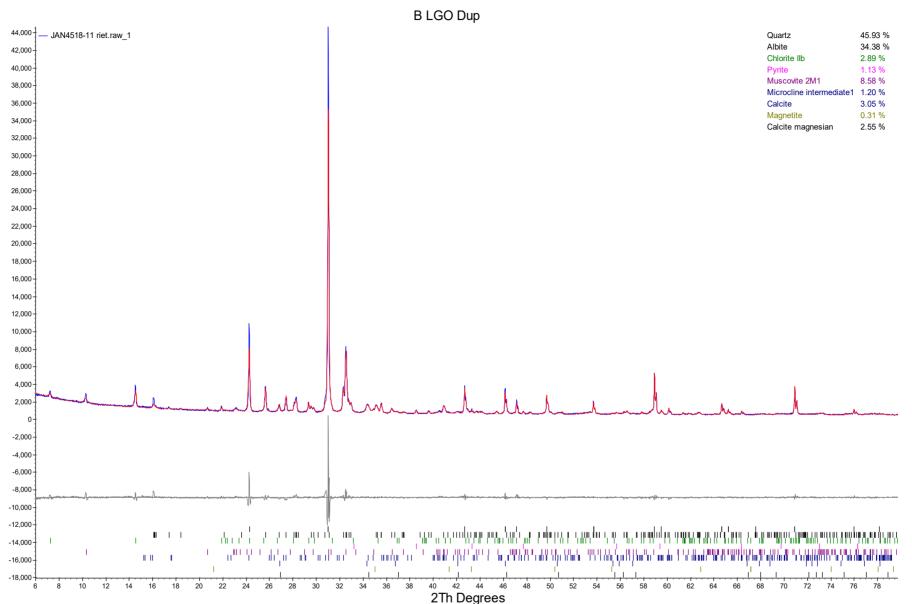
Environmental Services Custom XRD/MI4518-JAN23 15-Feb-23

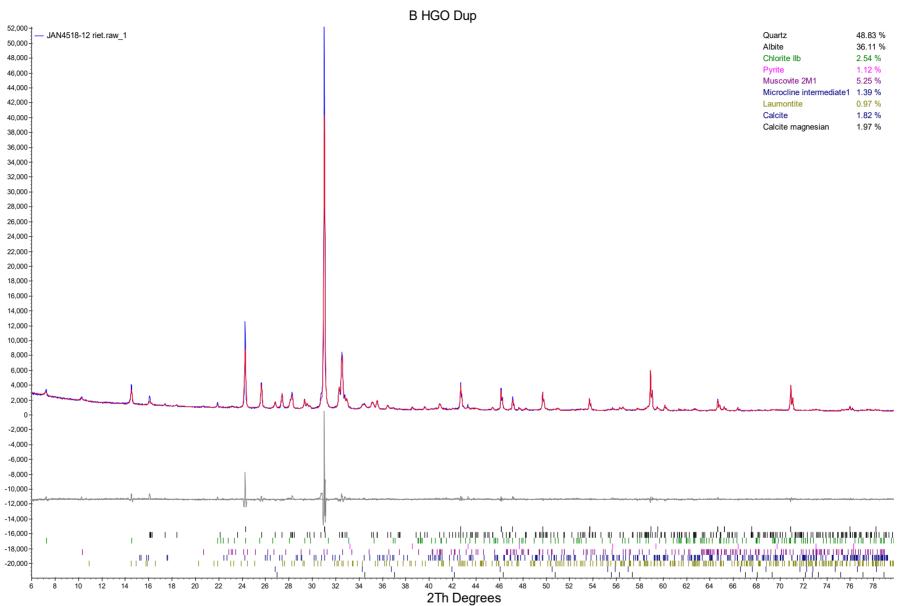



Environmental Services Custom XRD/MI4518-JAN23 15-Feb-23









Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for:	Environmental Services
Project Number/ LIMS No.	Custom XRD/MI4550-JAN23
Sample Receipt:	January 30, 2023
Sample Analysis:	February 13, 2023
Reporting Date:	April 14, 2023
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80°
Interpretations :	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.
Contents:	1) Method Summary 2) Quantitative XRD Results 3) XRD Pattern(s)

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

Haym to

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: <u>https://www.scc.ca/en/search/palcan.</u>

Method Summary

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

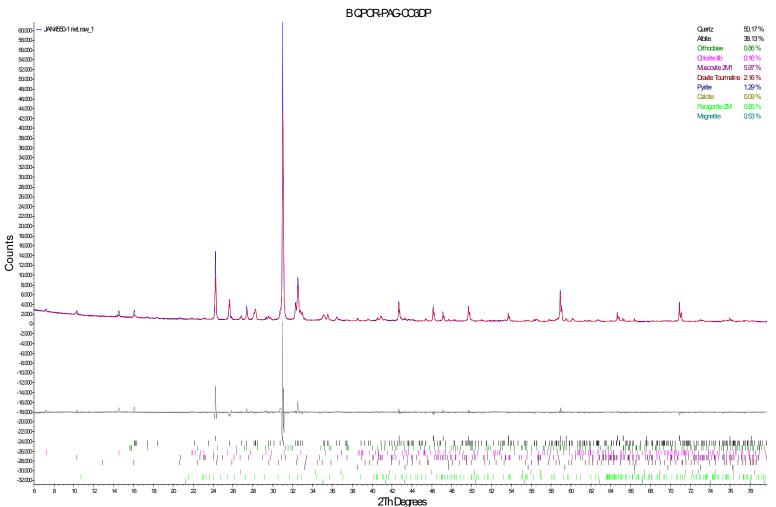
Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

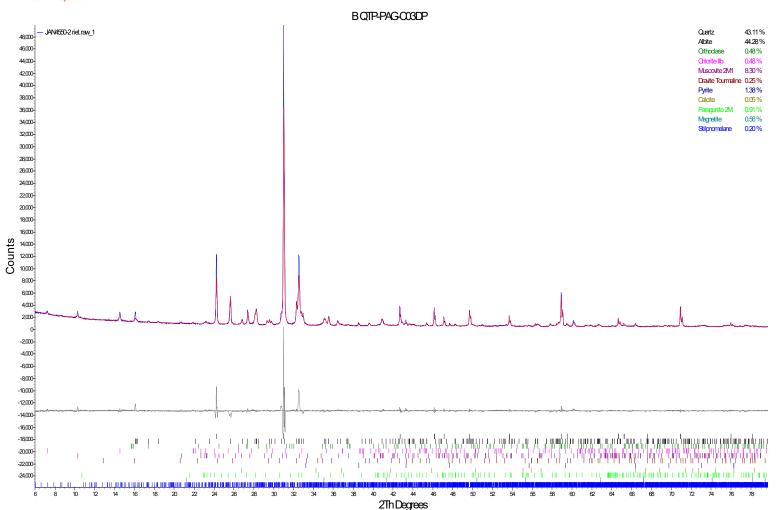
WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

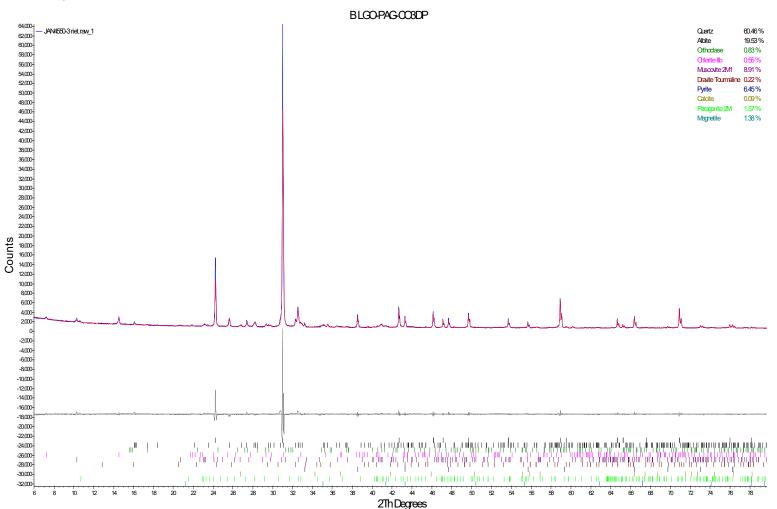
Mineral/Compound	B QPOR-PAG- CO3DP	B QTP-PAG- C03DP	B LGO-PAG- CO3DP	B HGO-PAG-Zn- CO3DP	B QPOR-PAG- CO3DP Duplicate	B QTP-PAG- C03DP Duplicate	B LGO-PAG- CO3DP Duplicate	B HGO-PAG-Zn- CO3DP Duplicate
	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	50.17	43.11	60.46	61.05	50.05	44.18	59.88	61.71
Albite	38.13	44.28	19.53	28.98	38.69	43.16	19.92	28.29
Orthoclase	0.86	0.48	0.83	0.45	0.65	0.68	0.76	0.57
Chlorite	0.16	0.48	0.55	0.60	0.46	0.49	0.47	0.64
Muscovite	5.97	8.30	8.91	6.61	6.39	8.23	9.18	6.51
Paragonite	0.65	0.91	1.57	0.51	0.53	0.82	1.45	0.53
Tourmaline	2.16	0.25	0.22	0.27	1.46	0.23	0.31	0.26
Pyrite	1.29	1.38	6.45	1.21	1.22	1.31	6.49	1.16
Calcite	0.09	0.05	0.09	0.12	0.16	0.09	0.07	0.17
Magnetite	0.53	0.56	1.38	0.20	0.39	0.61	1.46	0.18
Stilpnomelane	-	0.20	-	-	-	0.22	-	-
TOTAL	100	100	100	100	100	100	100	100

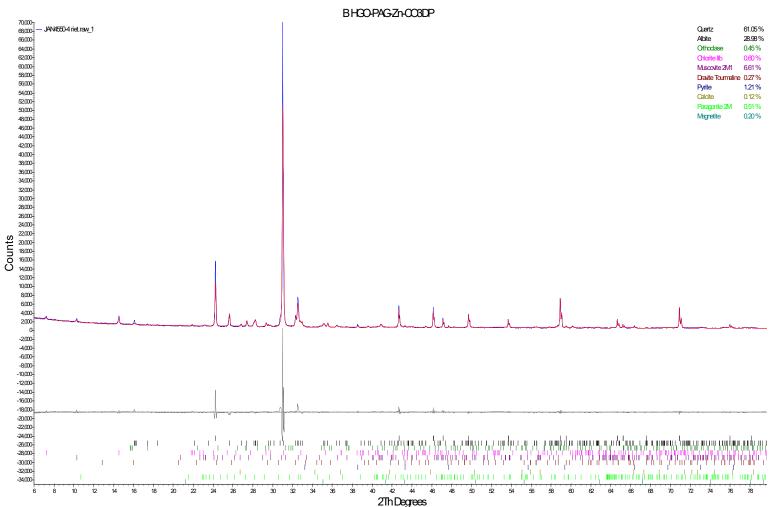

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

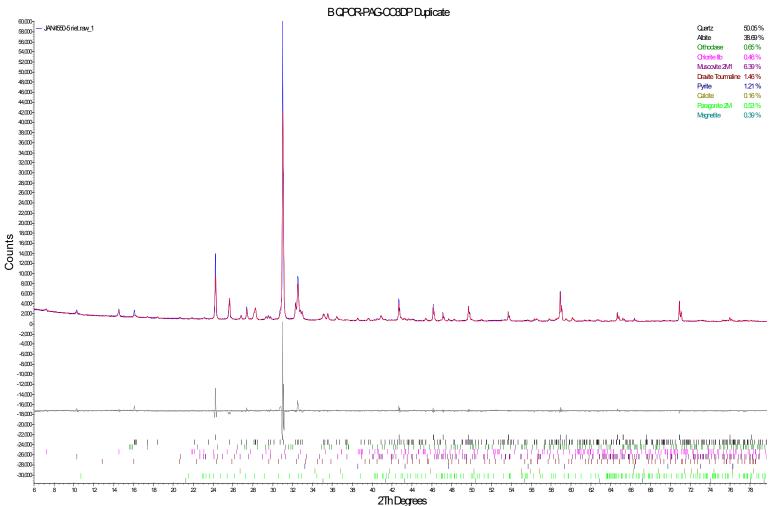
Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.


The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Albite	NaAlSi₃O ₈
Orthoclase	KAISi₃O ₈
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Muscovite	KAI ₂ (AISi ₃ O ₁₀)(OH) ₂
Paragonite	NaAl ₂ (AlSi ₃ O ₁₀)(OH) ₂
Tourmaline	(Na,Ca)(Li,Mg,Al)(Al,Fe,Mn) ₆ (BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₄
Pyrite	FeS ₂
Calcite	CaCO ₃
Magnetite	Fe ₃ O ₄
Stilpnomelane	K(Fe ²⁺ ,Mg,Fe ³⁺) ₈ (Si,Al) ₁₂ (O,OH) ₂₇ ·nH ₂ O







Environmental Services Custom XRD/MI4550-JAN23 14-Apr-23

B QTP-PAG-003DP Duplicate 54,000-JAN4550-6 riet.raw_1 44.18% Quartz 52,000 Albite 43.16% 50,000 0.68% Othoclase 48,000 0.49% Chlorite IIb 46,000 Muscovite 21/11 823% Dravite Tourmaline 0.23% 44,000 Pyrite 1.31 % 42,000 Calcite 0.09% 40,000 Paragonite 2M 0.82 % 38,000 Magnetite 0.61 % 36,000 Stilphomelane 0.22 % 34,000 32,000 30,000 28,000 26,000 24,000 22,000 20,000 18,000 16,000 Counts 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 -2,000 -4,000 -6,000 -8,000 -10,000 -12,000 -14,000 -16,000 -18,000 -20,000 an an dir gama. An an an an an (0,0,0,0,0)-22,000 -24,000 -26,000 -28,000 11111 -30,000 38 40 42 44 46 36 48 50 30 32 34 52 54 56 58 60 62 64 66 68 70 78 8 10 12 16 18 20 22 24 26 28 72 74 76 6 14 2Th Degrees

BLGO-PAG-CO3DP Duplicate 64,000-- JAN4550-7 riet.raw_1 59.88 % Quartz 62,000 Albite 19.92 % 60,000 0.76% Othoclase 58,000 Chlorite IIb 0.47% 56,000 Muscovite 21/11 9.18% 54,000 Dravite Tourmaline 0.31 % 52000 Pyrite 6.49% 50,000 Calcite 0.07% 48,000 46,000 Paragonite 2M 1.45% 44,000 Magnetite 1.46% 42,000 40,000 38,000 36,000 34,000 32,000 30,000 28,000 26,000 24,000 22,000 2000-1800-1600-1400-1200-10,000 8,000 6,000 4,000 2,000 0 -2,000 -4,000 -6,000 -8,000 -10,000 -12,000 -14,000 -16,000 -18,000 -20,000 -22,000 -24,000 -26,000 -28,000 -30,000 -32,000 à 10 12 14 16 18 ່ກ່ 6 2Th Degrees

BHGO-PAG-Zn-CO3DP Duplicate 74,000 72,000 - JAN4550-8 riet.raw_1 61.71 % Quartz Albite 28.29% 70,000 68,000-66,000-64,000-62,000-0.57% Othoclase 0.64% Chlorite IIb Muscovite 21/11 6.51 % Dravite Tourmaline 0.26% 60,000 Pyrite 1.15% Counts Back 100 Back Calcite 0.17% Paragonite 2M 0.53 % Magnetite 0.17% 2,000 0 -2,000 -4,000 -6,000 -8,000 -10,000 -12,000 -14,000 -16,000 -18,000 -20,000 -22,000 -24,000 -26,000 קה להגיעלות, עית גאות האלג שהללל היה שיטעה קללמית ביר הבירה את האלגה בראות הביר שיר את היה לביור שיר ביר ביר ב כיוא קילא קישיעה הגיעלו לבירה לשיטעלה היה הביר בנייש בנה ייניי בי השיטע שיר היה ביר ביר בנייה ביר ביר ביר ביר ש עיר הה לשיטע היא לבירה היא האלג הייניה של לא ביר ביר האת היה היא אינה היה היה ביר ביר היה ביר ביר ביר ביר ביר ה -28,000 ∎[∎] † 1 -30,000 -32,000 -34,000 -36,000 -38,000 68 70 32 38 44 46 54 56 58 60 62 66 72 76 30 36 40 42 48 50 12-74 78 à 10 12 14 16 18 ່ກ່ 22 26 28 34 6 2Th Degrees

D.2 STATIC TESTS

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

26-September-2022

Date Rec.: 24 August 2022 LR Report: CA19147-AUG22

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Ana	2: Ilvsis Start	3: Analysis	4: Analysis	5: 166984	6: 167102 16738	7: 8: 6 168445 168	9: 10: 532 168616	11: 169565
	Date		mpleted DateCo		100304	10/102 10/30	0 100443 100	552 100010	103303
Sample Date & Time					N/A	N/	A	N/A	N/A
Prep-Env AR [Prep]	22-Sep-22	09:59	26-Sep-22	10:29	1		1	1	1
Hg MS [ug/g]	23-Sep-22	13:15	26-Sep-22	10:29	< 0.05	< 0.0	5 < 0	0.05	< 0.05
Ag [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	< 1	<	1	< 1	< 1
As [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	3.3	1	.1	1.0	1.2
Al [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	12000	1300	0 4	200	6700
Ba [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	30	3	6	5.0	50
Be [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	0.52	0.4	.9 (0.03	0.23
Bi [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	< 0.09	0.1	3	0.36	0.16
Ca [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	47000	6000	0 10	000	41000
Cd [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	0.07	0.0	8 (0.03	0.08
Co [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	9.9	1	1	3.2	9.5
Cr [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	68	5	6	70	46
Cu [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	12	3	1	2.6	25
Fe [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	23000	2600	0 19	000	21000
K [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	1100	66	0	180	570
Li [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	10		6	< 2	2
Mg [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	13000	1200	0 2	100	11000
Mn [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	920	120	0	320	960
Mo [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	0.3	0	3	1.2	< 0.1
Ni [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	22	1	9	1.8	15
Pb [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	4.2	3	.0	0.50	2.5
Sb [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	< 6	<	6	< 6	< 6
Se [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	< 0.7	< 0	.7 <	0.7	< 0.7
Sn [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	< 2	<	2	< 2	< 2
Sr [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	79	8	5	7.7	42
Ti [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	270	19	0	20	310
TI [μg/g]	23-Sep-22	13:15	26-Sep-22	10:29	0.03	< 0.0	2 <0	0.02	< 0.02
U [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	0.93	0.6	7 0.	090	1.00
V [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	27	3	3	5	23
Y [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	15	9	5	3.5	9.8
Zn [µg/g]	23-Sep-22	13:15	26-Sep-22	10:29	42	4	5	13	42

Page 1 of 11

0003062984

LR Report : CA19147-AUG22

Analysis	12: 934952	13: 935172	14: 937527	15: 939437	16: 939706	17: 960224	18: 960691	19: 960958	20: 963179	21: 963541	22: 964658	23: 965384
Sample Date & Time		N/A										
Prep-Env AR [Prep]		1		1		1		1		1		1
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]		< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]		5.1		1.4		1.0		0.6		< 0.5		0.8
Al [µg/g]		6000		4700		9900		9500		8100		4200
Ba [µg/g]		12		50		107		5.7		5.3		26
Be [µg/g]		0.26		0.21		0.20		0.07		0.06		0.12
Bi [µg/g]		0.13		0.14		0.10		0.11		< 0.09		< 0.09
Ca [µg/g]		9100		65000		35000		13000		15000		39000
Cd [µg/g]		< 0.02		0.12		0.10		0.08		0.03		0.04
Co [µg/g]		5.8		9.3		11		4.5		3.7		9.4
Cr [µg/g]		44		43		47		45		56		46
Cu [µg/g]		0.3		29		60		9.1		3.0		20
Fe [µg/g]		17000		21000		30000		24000		21000		22000
K [µg/g]		400		480		530		270		230		500
Li [µg/g]		4		< 2		4		< 2		2		< 2
Mg [µg/g]		6100		11000		10000		4000		3500		12000
Mn [µg/g]		620		1100		1000		590		560		860
Mo [µg/g]		< 0.1		0.1		0.2		0.6		0.5		< 0.1
Ni [µg/g]		15		12		19		1.2		1.2		7.2
Pb [µg/g]		1.7		3.2		1.3		0.71		0.29		1.9
Sb [µg/g]		< 6		< 6		< 6		< 6		< 6		< 6
Se [µg/g]		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]		< 2		< 2		< 2		< 2		< 2		< 2
Sr [µg/g]		19		55		35		6.8		7.4		45
Ti [µg/g]		140		400		83		69		81		280
TI [µg/g]		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02
U [µg/g]		0.48		0.85		0.90		0.13		0.14		0.82
V [µg/g]		19		25		34		10		14		22
Y [µg/g]		7.0		11		12		7.4		8.9		9.2
Zn [µg/g]		29		41		48		48		21		40

Analysis	24: 965790	25: 965958	26: 966043	27: 966145	28: 966933	29: 967212	30: 967393	31: 967524	32: 970453	33: 970578	34: 968738	35: 968928
Sample Date & Time		N/A										
Prep-Env AR [Prep]		1		1		1		1		1		1
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]		< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]		1.5		1.3		1.2		< 0.5		1.3		0.6
Al [µg/g]		12000		13000		8100		8500		4000		9400
Ba [µg/g]		54		21		54		5.7		49		42
Be [µg/g]		0.27		0.35		0.21		0.04		0.17		0.17
Bi [µg/g]		0.10		0.16		0.12		< 0.09		0.20		< 0.09
Ca [µg/g]		17000		49000		41000		14000		28000		33000
Cd [µg/g]		0.04		0.08		0.09		0.04		0.05		0.10
Co [µg/g]		9.3		11		11		5.0		9.2		11
Cr [µg/g]		76		52		51		54		60		59
Cu [µg/g]		0.7		31		16		8.6		27		8.9
Fe [µg/g]		21000		26000		29000		22000		22000		22000

Page 2 of 11

0003062984

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

CA19147-AUG22 LR Report :

Analysis	24: 965790	25: 965958	26: 966043	27: 966145	28: 966933	29: 967212	30: 967393	31: 967524	32: 970453	33: 970578	34: 968738	35: 968928
K [µg/g]		450		530		550		200		530		550
Li [µg/g]		6		7		4		3		3		5
Mg [µg/g]		11000		11000		10000		3900		11000		11000
Mn [µg/g]		940		960		980		570		800		960
Mo [µg/g]		0.2		< 0.1		< 0.1		0.4		0.1		0.1
Ni [µg/g]		22		18		19		1.4		17		13
Pb [µg/g]		1.3		2.7		3.3		0.41		1.6		1.5
Sb [µg/g]		< 6		< 6		< 6		< 6		< 6		< 6
Se [µg/g]		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]		< 2		< 2		< 2		< 2		< 2		< 2
Sr [µg/g]		26		74		58		7.7		32		29
Ti [µg/g]		120		95		360		130		440		59
TI [μg/g]		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02
U [µg/g]		0.74		0.73		0.98		0.10		0.75		0.95
V [µg/g]		16		31		40		22		26		23
Y [µg/g]		11		10.0		12		6.1		4.6		8.2
Zn [µg/g]		47		49		45		35		46		49

Analysis	36: 37: 982589 954284	38: 39: 977884 978133	40: 41: 1023601 1023762	42: 43: 1023921 1025383	44: 45: 1015194 1008325	46: 1008754
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	
Prep-Env AR [Prep]	1	1	1	1	1	
Hg MS [ug/g]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Ag [µg/g]	< 1	< 1	< 1	< 1	< 1	
As [µg/g]	1.1	< 0.5	2.4	0.9	1.4	
Al [µg/g]	7000	3600	10000	8200	13000	
Ba [µg/g]	19	8.7	28	33	42	
Be [µg/g]	0.18	0.05	0.37	0.18	0.13	
Bi [µg/g]	0.15	0.15	0.24	0.15	< 0.09	
Ca [µg/g]	36000	11000	56000	31000	38000	
Cd [µg/g]	0.06	< 0.02	0.12	0.08	0.04	
Co [µg/g]	13	7.3	9.2	11	10	
Cr [µg/g]	61	67	62	52	44	
Cu [µg/g]	17	8.5	43	24	13	
Fe [µg/g]	29000	21000	23000	26000	24000	
K [µg/g]	500	250	660	640	510	
Li [µg/g]	3	< 2	5	3	7	
Mg [µg/g]	14000	1700	9200	9500	12000	
Mn [µg/g]	1200	170	1100	890	870	
Mo [µg/g]	< 0.1	0.6	< 0.1	< 0.1	< 0.1	
Ni [µg/g]	16	1.3	15	19	8.0	
Pb [µg/g]	1.7	0.23	4.4	2.5	1.2	
Sb [µg/g]	< 6	< 6	< 6	< 6	< 6	
Se [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	
Sn [µg/g]	< 2	< 2	< 2	< 2	< 2	
Sr [µg/g]	26	8.6	79	50	32	
Ti [μg/g]	290	12	320	470	260	
TI [μg/g]	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
U [µg/g]	0.54	0.095	1.0	0.97	0.70	
V [µg/g]	32	5	31	36	32	

Page 3 of 11

LR Report : CA19147-AUG22

Analysis	36: 982589	37: 954284	38: 977884	39: 978133	40: 1023601	41: 1023762	42: 1023921	43: 1025383	44: 1015194	45: 1008325	46: 1008754
Y [µg/g]		8.3		6.1		11		12		7.7	
Zn [µg/g]		58		8.0		36		46		45	

Analysis	47: 1016750	48: 1017129 1009	49: 191	50: 1027447	51: 1027455	52: 1018430	53: 1011111	54: 1019798	55: 1011804	56: 995902	57: 996071
Sample Date & Time	N/A		J/A		N/A		N/A		N/A		N/A
Prep-Env AR [Prep]	1		1		1		1		1		1
Hg MS [ug/g]	0.06	< 0	.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]	< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]	< 0.5		1.0		1.0		0.6		< 0.5		0.9
Al [µg/g]	9200	5	00		9500		11000		8100		11000
Ba [µg/g]	9.7		8.1		9.9		4.6		6.3		25
Be [µg/g]	0.07	C	.12		0.17		0.05		0.06		0.26
Bi [µg/g]	< 0.09	C	.10		0.32		0.13		< 0.09		0.20
Ca [µg/g]	11000	99	00		3900		11000		17000		31000
Cd [µg/g]	0.03	C	.05		< 0.02		0.02		< 0.02		0.05
Co [µg/g]	4.3		2.6		6.6		7.0		4.4		10
Cr [µg/g]	60		56		82		61		61		53
Cu [µg/g]	10		8.6		30		105		7.5		36
Fe [µg/g]	24000	13	000		23000		35000		25000		24000
K [µg/g]	440	:	570		490		190		260		710
Li [µg/g]	3		3		5		2		2		5
Mg [µg/g]	3600	20	600		5700		4700		3500		9800
Mn [µg/g]	410	:	40		400		740		590		840
Mo [µg/g]	0.1		2.2		0.2		0.6		0.5		< 0.1
Ni [µg/g]	1.3		1.1		7.5		1.6		1.4		17
Pb [µg/g]	1.3	C	.44		0.96		0.35		0.26		2.5
Sb [µg/g]	< 6		< 6		< 6		< 6		< 6		< 6
Se [µg/g]	< 0.7	<	0.7		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]	< 2		< 2		< 2		< 2		< 2		< 2
Sr [µg/g]	6.3		9.6		8.1		6.8		9.5		43
Ti [μg/g]	83		21		120		110		95		290
TI [μg/g]	< 0.02	< 0	.02		0.03		< 0.02		< 0.02		< 0.02
U [µg/g]	0.15	C	.18		0.31		0.099		0.15		0.98
V [µg/g]	9		7		21		17		19		30
Y [µg/g]	9.8		8.6		4.4		6.2		7.8		11
Zn [µg/g]	34		18		31		36		19		44

Analysis	58: 983936	59: 975618	60: 986301	61: 986527	62: 976319	63: 986619	64: 987176	65: 167317	66: 168506	67: 182574	68: 961457	69: 961744
Sample Date & Time		N/A										
Prep-Env AR [Prep]		1		1		1		1		1		1
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]		< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]		1.3		1.3		1.3		0.7		2.4		0.9
AI [µg/g]		8900		7700		7300		12000		6300		8700
Ba [µg/g]		9.4		18		1068		7.0		7.9		10
Be [µg/g]		0.11		0.26		0.17		0.05		0.19		0.09

0003062984

Page 4 of 11

0003062984

LR Report : CA19147-AUG22

Analysis	58: 983936	59: 975618	60: 986301	61: 986527	62: 976319	63: 986619	64: 987176	65: 167317	66: 168506	67: 182574	68: 961457	69: 961744
Bi [µg/g]		< 0.09		< 0.09		< 0.09		0.32		0.46		< 0.09
Ca [µg/g]		11000		70000		77000		16000		24000		16000
Cd [µg/g]		0.03		0.08		0.08		< 0.02		0.07		0.07
Co [µg/g]		4.0		7.0		8.4		6.7		6.5		2.6
Cr [µg/g]		72		42		48		52		64		79
Cu [µg/g]		8.5		17		15		27		20		8.8
Fe [µg/g]		22000		18000		22000		35000		25000		22000
K [µg/g]		470		490		450		230		430		560
Li [µg/g]		2		4		4		4		2		2
Mg [µg/g]		3000		9100		10000		5200		3600		3000
Mn [µg/g]		390		1000		1500		560		730		520
Mo [µg/g]		0.6		< 0.1		< 0.1		0.5		2.7		0.2
Ni [µg/g]		1.3		5.5		7.7		1.4		1.8		1.4
Pb [µg/g]		4.7		2.5		2.5		0.31		0.90		6.3
Sb [µg/g]		< 6		< 6		< 6		< 6		< 6		< 6
Se [µg/g]		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]		< 2		< 2		< 2		< 2		< 2		< 2
Sr [µg/g]		6.0		74		295		12		20		8.0
Ti [µg/g]		37		200		270		25		44		32
TI [µg/g]		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02
U [µg/g]		0.17		0.70		0.60		0.086		0.11		0.11
V [µg/g]		4		22		28		15		6		6
Y [µg/g]		6.5		8.6		10		4.6		5.4		5.6
Zn [µg/g]		12		26		36		36		27		27

Analysis	70:	71:	72:	73:	74:	75:	76:	77:	78:	79:	80:	81:
	962052	966413	953697	982894	954236	954535	954874	955411	993558	993900	977243	977550
Sample Date & Time		N/A										
Prep-Env AR [Prep]		1		1		1		1		1		1
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]		< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]		1.4		1.8		0.9		0.7		0.9		3.4
Al [µg/g]		6500		5200		2700		1200		3500		6100
Ba [µg/g]		15		3.3		5.0		1.1		6.4		3.5
Be [µg/g]		0.12		0.04		0.03		< 0.02		0.07		0.03
Bi [µg/g]		4.5		3.9		2.8		1.1		0.40		0.84
Ca [µg/g]		10000		13000		9900		15000		11000		15000
Cd [µg/g]		< 0.02		0.09		< 0.02		< 0.02		0.02		0.25
Co [µg/g]		5.5		7.4		4.6		2.3		2.1		4.4
Cr [µg/g]		85		85		83		68		87		91
Cu [µg/g]		25		17		2.9		0.9		5.0		26
Fe [µg/g]		22000		28000		18000		12000		13000		28000
K [µg/g]		630		160		140		39		280		130
Li [µg/g]		2		< 2		< 2		< 2		< 2		< 2
Mg [µg/g]		3400		2200		1100		330		1400		2800
Mn [µg/g]		380		360		240		310		320		480
Mo [µg/g]		0.2		0.3		5.4		10		0.2		1.3
Ni [µg/g]		2.3		1.8		1.7		1.5		1.4		2.0
Pb [µg/g]		1.6		2.4		4.1		0.82		0.45		1.8
Sb [µg/g]		< 6		< 6		< 6		< 6		< 6		< 6

Page 5 of 11

LR Report : CA19147-AUG22

Analysis	70: 962052 966	71: 6413 9:	72: 73: 53697 982894	74: 954236	75: 954535	76: 954874	77: 955411	78: 993558	79: 993900	80: 977243	81: 977550
Se [µg/g]	<	: 0.7	< 0.7		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]		< 2	< 2		< 2		< 2		< 2		< 2
Sr [µg/g]		8.0	7.0		12		8.9		8.0		7.2
Ti [µg/g]		9.0	47		12		5.4		27		23
TI [µg/g]	(0.02	< 0.02		< 0.02		< 0.02		< 0.02		< 0.02
U [µg/g]	0.	.083	0.11		0.058		0.052		0.11		0.093
V [µg/g]		8	7		2		1		3		10
Y [µg/g]		4.1	7.1		4.3		3.1		7.5		4.5
Zn [µg/g]		26	20		7.1		3.6		10		22

Analysis	82: 987879	83: 959394	84: 988032	85: 977937	86: 978315	87: 1023510	88: 1006148	89: 1006508	90: 1024643	91: 1006790	92: 954411	93: 1024043
Sample Date & Time		N/A		N/A		N/A		N/A		N/A		N/A
Prep-Env AR [Prep]		1		1		1		1		1		1
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]		< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]		2.6		4.4		1.4		4.5		1.2		< 0.5
AI [µg/g]		3300		2300		4600		3700		2600		7700
Ba [µg/g]		4.5		12		6.7		5.5		6.8		6.9
Be [µg/g]		0.05		0.05		0.05		0.05		0.05		0.07
Bi [µg/g]		0.27		1.3		1.1		0.46		12		0.34
Ca [µg/g]		7900		3300		13000		6600		26000		15000
Cd [µg/g]		< 0.02		< 0.02		0.02		< 0.02		0.04		0.06
Co [µg/g]		5.8		20		7.7		2.5		7.0		4.0
Cr [µg/g]		105		80		92		107		102		70
Cu [µg/g]		48		5.1		4.1		34		2.5		11
Fe [µg/g]		16000		91000		25000		14000		14000		20000
K [µg/g]		200		640		290		240		280		380
Li [µg/g]		< 2		< 2		< 2		< 2		< 2		< 2
Mg [µg/g]		1500		530		2000		1200		1600		3400
Mn [µg/g]		290		93		380		240		810		530
Mo [µg/g]		0.6		2.4		4.6		0.5		0.7		1.5
Ni [µg/g]		1.9		1.3		2.0		1.7		3.4		1.6
Pb [µg/g]		0.80		1.7		1.9		0.68		0.60		0.67
Sb [µg/g]		< 6		< 6		< 6		< 6		< 6		< 6
Se [µg/g]		< 0.7		1.3		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]		< 2		< 2		< 2		< 2		< 2		< 2
Sr [µg/g]		7.6		5.2		11		5.0		19		9.6
Ti [µg/g]		14		14		12		18		9.3		56
TI [µg/g]		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02
U [µg/g]		0.039		0.094		0.065		0.13		0.10		0.12
V [µg/g]		3		< 1		5		2		3		7
Y [µg/g]		1.9		1.9		3.3		3.0		7.1		5.4
Zn [µg/g]		8.6		3.4		13		9.1		9.8		26

Analysis	94:	95:	96:	97:	98:	99:	100:	101:	102:	103:	104:
	1024143	1014178	1014138	1014189	1007031	1007347	1016824	1007426	1015017	1025702	1026178
Sample Date & Time		N/A				N/A		N/A		N/A	

Page 6 of 11

0003062984

LR Report : CA19147-AUG22

Analysis	94: 1024143	95: 1014178	96: 1014138	97: 1014189	98: 1007031	99: 1007347	100: 1016824	101: 1007426	102: 1015017	103: 1025702	104: 1026178
	1024145	1014170	1014130	1014103	1007031	1007347	1010024	1007420	1013017	1023702	1020170
Prep-Env AR [Prep]		1				1		1		1	
Hg MS [ug/g]		< 0.05				< 0.05		< 0.05		< 0.05	
Ag [µg/g]		< 1				< 1		< 1		< 1	
As [µg/g]		1.9				1.8		2.8		< 0.5	
Al [µg/g]		6700				7200		7600		9900	
Ba [µg/g]		6.5				5.6		9.0		5.7	
Be [µg/g]		0.07				0.12		0.09		0.08	
Bi [µg/g]		0.62				0.12		0.60		0.16	
Ca [µg/g]		17000				11000		13000		16000	
Cd [µg/g]		0.08				0.03		0.03		< 0.02	
Co [µg/g]		5.2				3.8		9.1		4.9	
Cr [µg/g]		93				87		74		73	
Cu [µg/g]		12				10		39		4.4	
Fe [µg/g]		27000				21000		34000		26000	
K [µg/g]		240				300		390		280	
Li [µg/g]		< 2				2		< 2		3	
Mg [µg/g]		3500				2600		2800		4700	
Mn [µg/g]		560				360		500		510	
Mo [µg/g]		0.8				0.2		0.2		0.2	
Ni [µg/g]		1.9				1.5		1.5		1.6	
Pb [µg/g]		1.2				0.63		0.87		0.30	
Sb [µg/g]		< 6				< 6		< 6		< 6	
Se [µg/g]		< 0.7				< 0.7		< 0.7		< 0.7	
Sn [µg/g]		< 2				< 2		< 2		< 2	
Sr [µg/g]		13				12		10		15	
Ti [µg/g]		35				39		74		67	
TI [μg/g]		< 0.02				< 0.02		< 0.02		< 0.02	
U [µg/g]		0.12				0.13		0.12		0.10	
V [µg/g]		8				7		7		13	
Y [µg/g]		6.2				5.3		5.7		6.3	
Zn [µg/g]		25				17		26		29	

Analysis	105: 1026138	106: 1026408	107: 1008488	108: 1008340	109: 1008876	110: 1009326	111: 1027298	112: 1027382	113: 1009713	114: 1043650	115: 1044017
Sample Date & Time	N/A		N/A								
Prep-Env AR [Prep]	1		1		1		1		1		1
Hg MS [ug/g]	< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]	< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]	0.7		2.5		3.5		< 0.5		0.8		3.5
Al [µg/g]	9100		8000		6600		7300		7700		14000
Ba [µg/g]	3.9		7.4		7.7		3.5		7.6		6.2
Be [µg/g]	0.07		0.07		0.11		0.04		0.10		0.06
Bi [µg/g]	1.1		2.5		11		1.1		0.25		1.0
Ca [µg/g]	14000		14000		16000		11000		16000		10000
Cd [µg/g]	< 0.02		0.16		0.06		0.02		< 0.02		< 0.02
Co [µg/g]	5.8		5.5		2.4		3.7		4.9		14
Cr [µg/g]	77		72		83		64		79		61
Cu [µg/g]	2.6		48		27		1.8		5.9		60
Fe [µg/g]	26000		28000		17000		21000		19000		50000
K [µg/g]	200		330		560		200		450		240

Page 7 of 11

0003062984

LR Report : CA19147-AUG22

Analysis	105: 1026138	106: 107: 1026408 1008488	108: 109: 1008340 1008876	110: 111: 1009326 1027298	112: 113: 1027382 1009713	114: 115: 1043650 1044017
Li [µg/g]	3	2	< 2	< 2	< 2	4
Mg [µg/g]	3900	3500	2500	3000	3600	5300
Mn [µg/g]	530	480	500	310	480	480
Mo [µg/g]	1.0	1.3	0.3	0.7	0.6	1.0
Ni [µg/g]	1.6	1.6	1.7	1.3	2.6	1.4
Pb [µg/g]	0.62	14	8.4	0.67	0.70	0.63
Sb [µg/g]	< 6	< 6	< 6	< 6	< 6	< 6
Se [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	< 2	< 2	< 2	< 2	< 2	< 2
Sr [µg/g]	12	14	21	6.9	23	11
Ti [µg/g]	37	36	22	84	40	45
TI [µg/g]	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02
U [µg/g]	0.11	0.10	0.10	0.096	0.22	0.10
V [µg/g]	12	10	5	8	11	16
Y [µg/g]	7.3	5.1	4.6	5.8	6.1	4.5
Zn [µg/g]	25	30	17	14	21	39

Analysis	116: 1044097	117: 996541	118: 989877	119: 973322	120: 956379	121: 956542	122: 984474	123: 957562	124: 957928	125: 958200	126: 986925	127: 182172
Sample Date & Time		N/A		N/A		N/A		N/A		N/A		N/A
Prep-Env AR [Prep]		1		1		1		1		1		1
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05		< 0.05
Ag [µg/g]		< 1		< 1		< 1		< 1		< 1		< 1
As [µg/g]		0.9		2.4		1.2		0.5		0.6		0.7
Al [µg/g]		5500		4500		5200		18000		17000		6200
Ba [µg/g]		7.1		6.0		17		6.7		5.1		9.2
Be [µg/g]		0.04		0.04		0.08		0.09		0.10		0.06
Bi [µg/g]		2.6		0.54		1.9		0.15		1.9		0.23
Ca [µg/g]		18000		12000		16000		31000		34000		16000
Cd [µg/g]		0.04		0.13		< 0.02		0.04		0.04		< 0.02
Co [µg/g]		6.1		3.5		9.0		9.8		3.1		4.6
Cr [µg/g]		72		76		89		124		202		76
Cu [µg/g]		2.1		39		4.1		41		5.2		30
Fe [µg/g]		28000		21000		27000		33000		34000		26000
K [µg/g]		240		260		610		250		180		410
Li [µg/g]		< 2		< 2		< 2		6		5		2
Mg [µg/g]		2900		2100		2200		13000		12000		3200
Mn [µg/g]		480		330		500		860		1100		490
Mo [µg/g]		0.5		6.3		1.7		0.7		0.8		0.8
Ni [µg/g]		1.6		1.5		3.1		21		23		2.3
Pb [µg/g]		0.88		1.8		1.7		2.0		3.3		0.67
Sb [µg/g]		< 6		< 6		< 6		< 6		< 6		< 6
Se [µg/g]		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7		< 0.7
Sn [µg/g]		< 2		< 2		< 2		< 2		< 2		< 2
Sr [µg/g]		9.6		11		13		17		33		22
Ti [μg/g]		13		19		15		54		36		41
TI [μg/g]		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02		< 0.02
U [µg/g]		0.087		0.12		0.11		0.094		0.077		0.11
V [µg/g]		9		5		6		49		22		12
Y [µg/g]		5.1		3.5		5.4		6.7		5.8		4.6

Page 8 of 11

Analysis

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

128.

129.

130.

138-

137.

LR Report : CA19147-AUG22

136.

Analysis	116:	117:	118:	119:	120:	121:	122:	123:	124:	125:	126:	127:
	1044097	996541	989877	973322	956379	956542	984474	957562	957928	958200	986925	182172
Zn [µg/g]		17		19		15		54		52		20

132.

133.

134.

135.

131.

Analysis	128: 129: 991156 1009992	130: 131: 1010237 989779	132: 133: 955824 955884	134: 135: 1006198 1010388	136: 137: 1010413 1010700	138: 1006857
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	
Prep-Env AR [Prep]	1	1	N/A 1	N/A 1	N/A 1	
Hg MS [ug/g]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Ag [µg/g]	< 1	<1	< 1	< 1	< 1	
As [µg/g]	4.3	< 0.5	0.5	1.0	2.9	
Al [µg/g]	5600	6100	7100	5900	10000	
Ba [µg/g]	8.7	4.5	6.5	3.9	5.8	
Be [µg/g]	0.08	0.04	0.05	0.07	0.10	
Bi [µg/g]	0.18	0.19	0.64	1.5	0.53	
Ca [µg/g]	22000	18000	19000	21000	13000	
Cd [µg/g]	< 0.02	0.03	0.06	< 0.02	0.05	
Co [µg/g]	3.6	3.7	5.2	7.9	5.5	
Cr [µg/g]	76	62	68	78	68	
Cu [µg/g]	28	6.5	2.5	3.7	74	
Fe [µg/g]	19000	18000	24000	25000	30000	
K [µg/g]	430	240	290	190	360	
Li [µg/g]	< 2	< 2	< 2	< 2	3	
Mg [µg/g]	2400	2500	3800	2900	3800	
Mn [µg/g]	560	580	510	550	660	
Mo [µg/g]	0.7	1.0	1.6	0.8	1.0	
Ni [µg/g]	2.1	1.7	2.0	2.6	2.0	
Pb [µg/g]	0.86	0.42	0.72	1.8	1.0	
Sb [µg/g]	< 6	< 6	< 6	< 6	< 6	
Se [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	
Sn [µg/g]	< 2	< 2	< 2	< 2	< 2	
Sr [µg/g]	20	14	12	28	15	
Ti [μg/g]	16	18	50	31	46	
TI [μg/g]	0.04	< 0.02	< 0.02	< 0.02	< 0.02	
U [µg/g]	0.089	0.056	0.13	0.080	0.12	
V [µg/g]	5	6	11	8	15	
Y [µg/g]	5.2	4.8	7.1	5.5	7.1	
Zn [µg/g]	14	19	22	12	57	

Analysis	139: 1010941	140: 141: 1018771 1011231	142: 143: 1019658 1019827	144: 145: 1011905 1020450	146: 147: 1021458 1022334	148: 149: 1022283 1030811
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A
Prep-Env AR [Prep]	1	1	1	1	1	1
Hg MS [ug/g]	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ag [µg/g]	< 1	< 1	< 1	< 1	< 1	< 1
As [µg/g]	5.0	1.5	2.7	0.8	2.5	8.7
AI [µg/g]	10000	3700	12000	1200	3900	2000
Ba [µg/g]	4.7	3.4	3.8	7.3	6.1	4.2
Be [µg/g]	0.17	0.04	0.15	0.03	0.06	0.03
Bi [µg/g]	2.0	0.49	0.29	0.42	0.35	1.6

0003062984

Page 9 of 11

Trace Metals - Aqua Regia Digest, ICP-MS

0003062984

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

CA19147-AUG22 LR Report :

Analysis	139: 1010941	140: 141: 1018771 1011231	142: 143: 1019658 1019827	144: 145: 1011905 1020450	146: 147: 1021458 1022334	148: 149: 1022283 1030811
Ca [µg/g]	15000	19000	17000	5200	14000	30000
Cd [µg/g]	0.05	0.03	0.04	< 0.02	0.02	0.08
Co [µg/g]	5.6	4.1	5.1	5.1	6.1	60
Cr [µg/g]	70	82	63	64	65	44
Cu [µg/g]	14	6.2	16	5.2	30	24
Fe [µg/g]	32000	19000	35000	31000	21000	100000
K [µg/g]	440	150	230	260	280	140
Li [µg/g]	3	< 2	4	< 2	< 2	< 2
Mg [µg/g]	4700	1900	6800	340	1200	1300
Mn [µg/g]	430	630	710	79	470	400
Mo [µg/g]	2.0	1.4	0.6	1.0	1.0	0.4
Ni [µg/g]	2.1	2.2	2.4	2.0	2.2	6.4
Pb [µg/g]	1.9	0.36	2.6	0.44	0.56	9.4
Sb [µg/g]	< 6	< 6	< 6	< 6	< 6	< 6
Se [µg/g]	< 0.7	< 0.7	< 0.7	1.4	< 0.7	2.3
Sn [µg/g]	< 2	< 2	< 2	< 2	< 2	< 2
Sr [µg/g]	19	11	22	5.4	10	15
Ti [µg/g]	24	18	100	3.6	11	3.8
TI [μg/g]	0.08	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	0.14	0.097	0.11	0.055	0.066	0.025
V [µg/g]	13	5	11	< 1	4	< 1
Y [µg/g]	4.6	6.5	5.4	2.7	7.4	4.2
Zn [µg/g]	23	12	53	1.7	11	13

Analysis	150: 1042567	151: 1048365	152: 996297	153: 956228	154: 956284	155: 957775	156 98638
Sample Date & Time		N/A		N/A		N/A	
Prep-Env AR [Prep]		1		1		1	
Hg MS [ug/g]		< 0.05		< 0.05		< 0.05	
Ag [µg/g]		< 1		< 1		< 1	
As [µg/g]		2.6		< 0.5		1.8	
Al [µg/g]		4300		3200		5000	
Ba [µg/g]		5.3		2.6		5.9	
Be [µg/g]		0.10		0.03		0.07	
Bi [µg/g]		< 0.09		0.24		0.42	
Ca [µg/g]		10000		3600		35000	
Cd [µg/g]		0.23		< 0.02		0.06	
Co [µg/g]		4.1		1.9		11	
Cr [µg/g]		56		48		38	
Cu [µg/g]		17		35		4.4	
Fe [µg/g]		15000		10000		30000	
K [µg/g]		240		120		370	
Li [µg/g]		< 2		< 2		< 2	
Mg [µg/g]		1500		1500		2300	
Mn [µg/g]		280		310		890	
Mo [µg/g]		0.3		0.2		0.8	
Ni [µg/g]		1.4		1.1		1.8	
Pb [µg/g]		5.1		0.12		3.0	
Sb [µg/g]		< 6		< 6		< 6	
Se [µg/g]		< 0.7		< 0.7		< 0.7	

Page 10 of 11

LR Report : CA19147-AUG22

Analysis	150: 1042567 1048	151: 152: 365 996297	153: 956228	154: 956284	155: 957775	156: 986388
Sn [µg/g]		< 2	< 2		< 2	
Sr [µg/g]		8.8	2.2		28	
Ti [µg/g]		22	17		15	
TI [µg/g]	<	0.02	< 0.02		< 0.02	
U [µg/g]	0	.083	0.020		0.095	
V [µg/g]		10	3		4	
Y [µg/g]		5.1	3.2		8.6	
Zn [µg/g]		16	14		13	

HARTERED Catharine Arnold CATHARINE ARNO CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003062984

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

27-September-2022

Date Rec.: 24 August 2022 LR Report: CA19148-AUG22

0003063906

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:
	Analysis Start Ana Date		Analysis mpleted DateCon	Analysis	166984	167102	167386	168445	168532
	2410								
Sample Date & Time					N/A		N/A		N/A
Sample weight [g]	12-Sep-22	08:38	14-Sep-22	14:32	250		250		250
Volume D.I. Water [mL]	12-Sep-22	08:38	14-Sep-22	14:32	750		750		750
Final pH [no unit]	12-Sep-22	08:38	14-Sep-22	14:32	9.20		9.27		9.33
pH [No unit]	14-Sep-22	08:28	19-Sep-22	08:50	7.85		7.99		7.73
Conductivity [uS/cm]	14-Sep-22	08:28	19-Sep-22	08:50	93		97		88
Alkalinity [mg/L as CaCO3]	14-Sep-22	08:28	19-Sep-22	08:50	34		45		29
SO4 [mg/L]	14-Sep-22	11:47	19-Sep-22	15:48	3		3		5
F [mg/L]	14-Sep-22	09:06	15-Sep-22	12:59	0.08		0.12		< 0.06
Hg [mg/L]	20-Sep-22	16:04	21-Sep-22	17:24	< 0.00001		< 0.00001		< 0.00001
Ag [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.00005		< 0.00005		< 0.00005
AI [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.836		1.13		0.570
As [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.0015		0.0016		0.0017
Ba [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00132		0.00362		0.00098
B [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.009		0.009		0.009
Be [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.000007		< 0.000007		< 0.000007
Bi [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.00001		< 0.00001		< 0.00001
Ca [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	6.90		5.98		9.22
Cd [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.000003		< 0.000003		0.000003
Co [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.000011		< 0.000004		0.000015
Cr [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00024		0.00012		0.00011
Cu [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.0004		0.0004		0.0004
Fe [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.007		< 0.007		0.021
K [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	8.58		4.53		2.59
Li [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.0002		0.0002		< 0.0001
Mg [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.691		0.929		0.525
Mn [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00130		0.00112		0.00198
Mo [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00040		0.00042		0.00072
Na [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	7.08		11.2		6.28
Ni [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.0001		< 0.0001		< 0.0001
Pb [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.00009		< 0.00009		< 0.00009
Sb [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.0010		0.0009		0.0009
Se [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00020		0.00010		0.00011
Si [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	1.95		1.52		3.09
Sn [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.00006		< 0.00006		< 0.00006
Sr [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.0724		0.0779		0.0113

Page 1 of 16

0003063906

LR Report : CA19148-AUG22

Analysis	1: Analysis Start Anal Date		3: Analysis mpleted DateCon	4: Analysis npleted Time	5: 166984	6: 167102	7: 167386	8: 168445	9: 168532
Ti [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00012		0.00017		0.00053
TI [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.000005		< 0.000005		< 0.000005
U [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.000157		0.000695		0.000120
V [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	0.00703		0.00497		0.00214
Zn [mg/L]	16-Sep-22	14:05	27-Sep-22	09:19	< 0.002		< 0.002		< 0.002
pH Check <2 [pH]	14-Sep-22	18:57	27-Sep-22	09:19	1.00		1.00		1.00

Analysis	10: 11: 168616 169565	12: 13: 934952 935172	14: 15: 937527 939437	16: 17: 939706 960224	18: 19: 960691 960958
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	250	250	250
Volume D.I. Water [mL]	750	750	750	750	750
Final pH [no unit]	9.34	9.58	9.29	9.21	9.48
pH [No unit]	8.89	7.85	8.00	7.96	7.73
Conductivity [uS/cm]	94	72	120	123	73
Alkalinity [mg/L as CaCO3]	41	35	50	43	35
SO4 [mg/L]	3	< 2	7	12	< 2
F [mg/L]	0.12	0.13	0.08	0.15	0.08
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	1.05	0.994	0.885	0.705	1.13
As [mg/L]	0.0019	0.0028	0.0009	0.0006	0.0009
Ba [mg/L]	0.00802	0.00225	0.04165	0.106	0.00078
B [mg/L]	0.007	0.010	0.025	0.014	0.007
Be [mg/L]	< 0.000007	0.000012	< 0.000007	< 0.000007	< 0.000007
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	5.90	3.64	7.16	8.81	6.17
Cd [mg/L]	< 0.000003	< 0.000003	0.000006	0.000007	0.000004
Co [mg/L]	< 0.000004	0.000031	< 0.000004	0.000006	0.000006
Cr [mg/L]	< 0.00008	0.00033	< 0.00008	0.00015	< 0.00008
Cu [mg/L]	0.0005	0.0002	0.0005	0.0004	0.0002
Fe [mg/L]	< 0.007	0.032	< 0.007	< 0.007	0.021
K [mg/L]	5.33	3.12	8.63	7.63	3.78
Li [mg/L]	0.0002	0.0002	0.0004	0.0002	< 0.0001
Mg [mg/L]	0.842	0.383	1.62	1.43	0.373
Mn [mg/L]	0.00151	0.00262	0.00223	0.00195	0.00095
Mo [mg/L]	0.00070	0.00030	0.00042	0.00481	0.00077
Na [mg/L]	9.64	11.2	10.1	9.94	7.28
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	< 0.0009	0.0013	0.0017	0.0011	< 0.0009
Se [mg/L]	0.00008	0.00005	0.00005	0.00013	0.00010
Si [mg/L]	2.14	2.54	1.94	1.71	2.10
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0732	0.0313	0.0653	0.179	0.00731
Ti [mg/L]	0.00006	0.00192	0.00011	0.00015	0.00032
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000852	0.000346	0.000917	0.000283	0.000109
V [mg/L]	0.00626	0.00597	0.00442	0.00547	0.00278
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Page 2 of 16

LR Report : CA19148-AUG22

Analysis	10: 11: 168616 169565		13: 935172	14: 937527	15: 939437	16: 939706	17: 960224	18: 960691	19: 960958
pH Check <2 [pH]	1.00		1.00		1.00		1.00		1.00
	1.00	·	1.00		1.00		1.00		1.00
Analysis	20: 21: 963179 963541		23: 965384	24: 965790	25: 965958	26: 966043	27: 966145	28: 966933	29: 967212
Sample Date & Time	N/A		N/A		N/A		N/A		N/A
Sample weight [g]	250	1	250		250		250		250
Volume D.I. Water [mL]	750	1	750		750		750		750
Final pH [no unit]	9.42		9.23		9.41		9.34		9.14
pH [No unit]	7.90		8.10		8.41		7.89		7.94
Conductivity [uS/cm]	83		105		99		90		105
Alkalinity [mg/L as CaCO3]	34		51		46		38		46
SO4 [mg/L]	<2		< 2		2		2		5
F [mg/L]	0.10		0.09		0.21		0.11		0.14
Hg [mg/L]	< 0.00001		< 0.00001		< 0.00001		< 0.00001		< 0.00001
Ag [mg/L]	< 0.00005		< 0.00005		< 0.00005		< 0.00005		< 0.00005
AI [mg/L]	1.22		1.41		0.771		1.11		1.18
As [mg/L]	0.0006		0.0020		0.0034		0.0007		0.0010
Ba [mg/L]	0.00051		0.00207		0.0034		0.0007		0.01813
B [mg/L]	0.00001		0.00207		0.065		0.00100		0.000
Be [mg/L]	< 0.00007		< 0.00007		< 0.00007		< 0.000007		< 0.00007
Bi [mg/L]	< 0.00001		< 0.00001		< 0.00001		< 0.000007		< 0.000007
	6.75		< 0.00001 5.30		< 0.00001 4.57		< 0.00001 5.81		5.59
Ca [mg/L]	0.000007		< 0.000003		< 0.000003		< 0.000003		0.000009
Cd [mg/L]									
Co [mg/L]	0.000004		< 0.000004		0.000013		< 0.000004		0.00000
Cr [mg/L]	0.00012		0.00011		0.00058		0.00008		< 0.0000
Cu [mg/L]	0.0002		0.0003		0.0003		0.0002		< 0.0002
Fe [mg/L]	0.012		< 0.007		0.026		< 0.007		< 0.007
K [mg/L]	2.97		5.13		2.11		5.24		6.29
Li [mg/L]	< 0.0001		0.0003		0.0003		0.0002		0.0003
Mg [mg/L]	0.412		0.973		0.467		0.472		0.771
Mn [mg/L]	0.00100		0.00125		0.00133		0.00070		0.00157
Mo [mg/L]	0.00022		0.00055		0.00042		0.00031		0.00036
Na [mg/L]	8.88		13.5		16.7		9.22		10.4
Ni [mg/L]	< 0.0001		< 0.0001		0.0001		< 0.0001		< 0.0001
Pb [mg/L]	< 0.00009		< 0.00009		< 0.00009		< 0.00009		< 0.00009
Sb [mg/L]	< 0.0009		0.0012		< 0.0009		< 0.0009		0.001
Se [mg/L]	0.00007		0.00008		0.00005		0.00011		0.00013
Si [mg/L]	2.13		1.90		2.26		1.67		2.17
Sn [mg/L]	< 0.00006		< 0.00006		< 0.00006		< 0.00006		< 0.00006
Sr [mg/L]	0.0137		0.0589		0.0461		0.0360		0.0879
Ti [mg/L]	0.00022		0.00017		0.00117		< 0.00005		0.00016
TI [mg/L]	< 0.000005		< 0.000005		< 0.000005		< 0.000005		< 0.00005
U [mg/L]	0.000080	1	0.001814		0.000424		0.000171		0.000339
V [mg/L]	0.00331		0.00765		0.00499		0.00998		0.00544
Zn [mg/L]	< 0.002		< 0.002		< 0.002		< 0.002		< 0.002
pH Check <2 [pH]	1.00	1	1.00		1.00		1.00		1.00

0003063906

LR Report : CA19148-AUG22

Analysis	30: 31: 967393 967524	32: 33: 970453 970578	34: 35: 968738 968928	36: 37: 982589 954284	38: 39: 977884 978133
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	250	250	250
Volume D.I. Water [mL]	750	750	750	750	750
Final pH [no unit]	9.34	9.34	9.12	9.35	9.30
pH [No unit]	7.82	7.84	7.81	7.90	7.77
Conductivity [uS/cm]	72	92	84	91	92
Alkalinity [mg/L as CaCO3]	35	44	40	44	32
SO4 [mg/L]	< 2	< 2	< 2	< 2	6
F [mg/L]	0.07	0.10	0.20	0.12	0.12
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	1.03	0.793	0.474	0.842	0.847
As [mg/L]	0.0013	0.0050	0.0004	0.0009	0.0009
Ba [mg/L]	0.00060	0.00355	0.00100	0.00069	0.00160
B [mg/L]	0.013	0.008	0.014	0.008	0.005
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	0.000009	< 0.000007
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	6.62	5.92	7.04	6.53	8.71
Cd [mg/L]	0.000005	0.000004	0.000003	0.000010	< 0.000003
Co [mg/L]	0.000004	< 0.000004	< 0.000004	0.000012	0.000014
Cr [mg/L]	< 0.00008	0.00027	0.00009	0.00009	0.00010
Cu [mg/L]	0.0002	0.0004	0.0003	0.0007	0.0002
Fe [mg/L]	0.012	0.007	0.010	0.008	0.036
K [mg/L]	2.21	5.66	3.02	4.05	2.29
Li [mg/L]	< 0.0001	0.0004	0.0003	0.0003	0.0001
Mg [mg/L]	0.451	1.55	1.04	1.27	0.448
Mn [mg/L]	0.00126	0.00189	0.00178	0.00181	0.00180
Mo [mg/L]	0.00034	0.00024	0.00157	0.00074	0.00038
Na [mg/L]	7.84	10.5	13.3	12.6	8.63
Ni [mg/L]	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0010	0.0021	< 0.0009	0.0009	< 0.0009
Se [mg/L]	0.00009	0.00017	< 0.00004	0.00011	0.00013
Si [mg/L]	2.23	2.32	1.92	2.71	2.74
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.00781	0.0490	0.0131	0.0118	0.0213
Ti [mg/L]	0.00024	0.00015	0.00025	0.00029	0.00054
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000109	0.001506	0.000185	0.000404	0.000146
V [mg/L]	0.00403	0.00640	0.00287	0.00451	0.00191
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

Analysis	40: 1023601	41: 1023762	42: 1023921	43: 1025383	44: 1015194	45: 1008325	46: 1008754	47: 1016750	48: 1017129	49: 1009891
Sample Date & Time		N/A								
Sample weight [g]		250		250		250		250		250
Volume D.I. Water [mL]		750		750		750		750		750
Final pH [no unit]		9.44		9.38		9.56		9.23		9.33
pH [No unit]		8.70		7.95		8.81		8.96		9.33
pH [No unit]		8.70		7.95		8.81		8.96		9.3

Page 4 of 16

SFE 3:1 ratio 24hr (MEND) prefilter pH

0003063906

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19148-AUG22

Analysis	40: 41: 1023601 1023762	42: 43: 1023921 1025383	44: 45: 1015194 1008325	46: 47: 1008754 1016750	48: 49: 1017129 1009891
Conductivity [uS/cm]	88	87	66	102	103
Alkalinity [mg/L as CaCO3]	36	35	31	43	43
SO4 [mg/L]	3	6	< 2	3	3
F [mg/L]	0.11	0.13	< 0.06	0.21	0.15
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	0.804	1.25	1.26	0.814	0.730
As [mg/L]	0.0056	0.0007	0.0005	0.0007	0.0015
Ba [mg/L]	0.00206	0.00432	0.00705	0.00236	0.00341
B [mg/L]	0.007	0.009	0.004	0.063	0.236
Be [mg/L]	0.000011	0.000011	0.000007	0.000024	0.000033
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001
Ca [mg/L]	5.63	8.27	6.31	7.51	5.79
Cd [mg/L]	0.000007	0.000009	0.00008	< 0.000003	0.000024
Co [mg/L]	0.000007	0.000010	0.000007	0.000009	0.000046
Cr [mg/L]	0.00018	0.00044	0.00008	0.00040	0.00066
Cu [mg/L]	0.0003	0.0003	< 0.0002	0.0003	0.0008
Fe [mg/L]	0.014	0.032	< 0.007	0.079	0.144
K [mg/L]	6.59	5.50	4.96	4.21	4.68
Li [mg/L]	0.0002	0.0002	0.0001	0.0003	0.0003
Mg [mg/L]	0.466	0.987	0.484	0.467	0.524
Mn [mg/L]	0.00134	0.00210	0.00085	0.00087	0.00495
Mo [mg/L]	0.00023	0.00048	0.00030	0.00044	0.00560
Na [mg/L]	9.04	6.73	7.08	12.3	18.1
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0002
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00047
Sb [mg/L]	< 0.0009	< 0.0009	< 0.0009	0.0013	< 0.0009
Se [mg/L]	0.00016	0.00017	0.00014	0.00017	0.00036
Si [mg/L]	2.06	2.02	2.24	1.40	3.20
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00010
Sr [mg/L]	0.0556	0.534	0.0507	0.0203	0.0260
Ti [mg/L]	0.00056	0.00021	0.00019	0.00130	0.01038
TI [mg/L]	0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000262	0.000303	0.000111	0.000157	0.000247
V [mg/L]	0.00787	0.00442	0.00461	0.00167	0.00649
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

Analysis	50: 1027447 10	51: 027455	52: 1018430	53: 1011111	54: 1019798	55: 1011804	56: 995902	57: 996071	58: 983936	59: 975618
Sample Date & Time		N/A		N/A		N/A		N/A		N/A
Sample weight [g]		250		250		250		250		250
Volume D.I. Water [mL]		750		750		750		750		750
Final pH [no unit]		9.26		9.09		9.47		9.45		9.28
pH [No unit]		9.38		8.08		8.48		8.63		8.54
Conductivity [uS/cm]		112		94		75		79		111
Alkalinity [mg/L as CaCO3]		42		39		33		35		41
SO4 [mg/L]		6		< 2		< 2		< 2		3
F [mg/L]		0.17		0.12		0.06		0.12		0.17
Hg [mg/L]	< 0	.00001		< 0.00001		< 0.00001		< 0.00001		< 0.00001

Page 5 of 16

0003063906

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Analysis	50: 1027447	51: 1027455	52: 1018430	53: 1011111	54: 1019798	55: 1011804	56: 995902	57: 996071	58: 983936	59: 975618
Ag [mg/L]		< 0.00005		< 0.00005		< 0.00005		< 0.00005		< 0.00005
AI [mg/L]		0.860		0.979		1.13		1.17		0.698
As [mg/L]		0.0019		0.0006		0.0006		0.0012		0.0018
Ba [mg/L]		0.00294		0.00089		0.00073		0.00113		0.00245
B [mg/L]		0.100		0.018		0.016		0.009		0.064
Be [mg/L]		0.000031		0.000032		0.000028		< 0.000007		0.000017
Bi [mg/L]		< 0.00001		< 0.00001		< 0.00001		< 0.00001		< 0.00001
Ca [mg/L]		4.85		10.2		7.26		6.00		6.56
Cd [mg/L]		0.000045		0.000056		0.000055		0.000006		0.000006
Co [mg/L]		0.000067		0.000020		0.000020		0.000005		0.000018
Cr [mg/L]		0.00069		0.00027		0.00027		< 0.00008		0.00034
Cu [mg/L]		0.0004		< 0.0002		0.0002		< 0.0002		0.0004
Fe [mg/L]		0.167		0.013		0.012		< 0.007		0.103
K [mg/L]		2.40		2.48		2.26		5.71		4.79
Li [mg/L]		0.0004		0.0001		< 0.0001		0.0002		0.0003
Mg [mg/L]		0.450		1.11		0.421		0.565		0.437
Mn [mg/L]		0.00333		0.00342		0.00173		0.00104		0.00132
Mo [mg/L]		0.00039		0.00042		0.00030		0.00051		0.00474
Na [mg/L]		17.0		7.31		7.86		7.19		14.3
Ni [mg/L]		0.0002		0.0001		< 0.0001		< 0.0001		0.0001
Pb [mg/L]		< 0.00009		< 0.00009		< 0.00009		< 0.00009		0.00031
Sb [mg/L]		0.0012		0.0014		< 0.0009		< 0.0009		0.0010
Se [mg/L]		0.00079		0.00082		0.00078		0.00015		0.00018
Si [mg/L]		2.77		1.34		2.16		2.34		2.23
Sn [mg/L]		< 0.00006		< 0.00006		< 0.00006		< 0.00006		< 0.00006
Sr [mg/L]		0.0109		0.0182		0.0167		0.0617		0.0154
Ti [mg/L]		0.00512		0.00097		0.00093		0.00016		0.00144
TI [mg/L]		0.000006		< 0.000005		< 0.000005		< 0.000005		< 0.000005
U [mg/L]		0.000822		0.000048		0.000143		0.000485		0.000153
V [mg/L]		0.00759		0.00094		0.00245		0.00695		0.00138
Zn [mg/L]		< 0.002		< 0.002		< 0.002		< 0.002		< 0.002
pH Check <2 [pH]		1.00		1.00		1.00		1.00		1.00

Analysis	60: 61 986301 98652		63: 986619	64: 987176	65: 167317	66: 168506	67: 182574	68: 961457	69: 961744
Sample Date & Time	N//	\	N/A		N/A		N/A		N/A
Sample weight [g]	250)	250		250		250		250
Volume D.I. Water [mL]	750)	750		750		750		750
Final pH [no unit]	9.3		9.21		9.29		8.86		9.18
pH [No unit]	8.40)	8.36		8.50		7.93		9.38
Conductivity [uS/cm]	99)	130		99		152		117
Alkalinity [mg/L as CaCO3]	38	3	39		38		49		46
SO4 [mg/L]	:	5	21		4		17		3
F [mg/L]	0.0	7	0.08		0.09		0.13		0.17
Hg [mg/L]	< 0.0000		< 0.00001		< 0.00001		< 0.00001		< 0.00001
Ag [mg/L]	< 0.0000	5	< 0.00005		< 0.00005		< 0.00005		< 0.00005
AI [mg/L]	0.904	ļ.	0.729		1.36		0.743		0.400
As [mg/L]	0.0014	ļ	0.0007		0.0006		0.0005		0.0020
Ba [mg/L]	0.0219)	0.223		0.00199		0.00191		0.00180
B [mg/L]	0.010)	0.006		0.009		0.093		0.090

Page 6 of 16

0003063906

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Analysis	60: 61: 986301 986527	62: 63: 976319 986619	64: 65: 987176 167317	66: 67: 168506 182574	68: 69: 961457 961744
	•••••		•••••		•••••
Be [mg/L]	< 0.000007	< 0.000007	0.000027	0.000016	0.000026
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001
Ca [mg/L]	7.03	14.6	10.0	17.2	6.72
Cd [mg/L]	< 0.000003	0.000025	0.000034	< 0.000003	0.000021
Co [mg/L]	< 0.000004	0.000008	0.000009	0.000015	0.000022
Cr [mg/L]	0.00010	0.00015	0.00022	0.00019	0.00049
Cu [mg/L]	< 0.0002	0.0002	0.0004	0.0003	0.0009
Fe [mg/L]	< 0.007	< 0.007	0.013	< 0.007	0.105
K [mg/L]	5.35	7.12	2.48	6.18	6.80
Li [mg/L]	0.0005	0.0003	0.0001	0.0003	0.0003
Mg [mg/L]	0.990	1.68	0.572	2.02	0.500
Mn [mg/L]	0.00171	0.00246	0.00151	0.00862	0.00399
Mo [mg/L]	0.00024	0.00031	0.00036	0.00327	0.00235
Na [mg/L]	9.73	8.23	9.39	6.00	14.0
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	0.0001	0.0001
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00118
Sb [mg/L]	< 0.0009	< 0.0009	< 0.0009	0.0038	< 0.0009
Se [mg/L]	0.00005	0.00025	0.00061	0.00017	0.00029
Si [mg/L]	1.86	1.72	1.58	1.41	2.42
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.128	1.80	0.0294	0.0294	0.00910
Ti [mg/L]	0.00012	0.00041	0.00093	< 0.00005	0.00212
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000327	0.000180	0.000062	0.000214	0.000189
V [mg/L]	0.00471	0.00288	0.00149	0.00073	0.00192
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

Analysis	70: 71: 962052 966413	72: 953697	73: 982894	74: 954236	75: 954535	76: 954874	77: 955411	78: 993558	79: 993900
	N/A		N1/A		N1/A		N1/A		N/A
Sample Date & Time	N/A		N/A		N/A		N/A		N/A
Sample weight [g]	250		250		250		250		250
Volume D.I. Water [mL]	750		750		750		750		750
Final pH [no unit]	9.17		9.15		9.24		9.43		9.16
pH [No unit]	9.33		7.96		9.11		9.12		7.79
Conductivity [uS/cm]	128		100		112		104		100
Alkalinity [mg/L as CaCO3]	45		37		36		39		34
SO4 [mg/L]	11		6		4		3		5
F [mg/L]	0.16		< 0.06		0.08		< 0.06		< 0.06
Hg [mg/L]	< 0.00001		< 0.00001		< 0.00001		0.00002		< 0.00001
Ag [mg/L]	< 0.00005		< 0.00005		< 0.00005		< 0.00005		< 0.00005
AI [mg/L]	0.311		0.733		0.660		0.792		0.702
As [mg/L]	0.0025		0.0007		0.0011		0.0010		0.0012
Ba [mg/L]	0.00288		0.00057		0.00250		0.00173		0.00064
B [mg/L]	0.107		0.048		0.084		0.083		0.041
Be [mg/L]	< 0.000007		0.000031		< 0.000007		0.000022		0.000034
Bi [mg/L]	0.00002		0.00002		0.00055		0.00083		0.00002
Ca [mg/L]	7.72		11.3		8.27		8.20		10.5
Cd [mg/L]	0.000004		0.000004		0.000008		0.000005		0.000006
Co [mg/L]	0.000021		< 0.000004		0.000022		0.000028		0.000018

Page 7 of 16

SFE 3:1 ratio 24hr (MEND) prefilter pH

0003063906

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19148-AUG22

Analysis	70: 71: 962052 966413	72: 73: 953697 982894	74: 75: 954236 954535	76: 77: 954874 955411	78: 79: 993558 993900
	302032 300413	333031 302034	334230 334333	334014 333411	555555 555556
Cr [mg/L]	0.00054	0.00010	0.00032	0.00052	0.00011
Cu [mg/L]	0.0004	< 0.0002	0.0005	0.0008	0.0003
Fe [mg/L]	0.046	< 0.007	0.166	0.201	0.018
K [mg/L]	2.78	1.14	1.39	0.325	2.65
Li [mg/L]	0.0004	0.0001	0.0003	0.0004	< 0.0001
Mg [mg/L]	0.689	0.586	0.371	0.253	0.445
Mn [mg/L]	0.00107	0.00261	0.00415	0.02341	0.00310
Mo [mg/L]	0.00103	0.00127	0.00188	0.00623	0.00072
Na [mg/L]	17.1	5.56	12.3	16.0	7.77
Ni [mg/L]	0.0001	< 0.0001	< 0.0001	0.0001	< 0.0001
Pb [mg/L]	< 0.00009	< 0.00009	0.00041	0.00093	< 0.00009
Sb [mg/L]	0.0017	0.0045	0.0013	< 0.0009	0.0019
Se [mg/L]	0.00032	0.00016	0.00018	0.00015	0.00027
Si [mg/L]	2.35	1.89	3.38	5.81	2.56
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	0.00006	< 0.00006
Sr [mg/L]	0.0219	0.0342	0.0149	0.0137	0.0172
Ti [mg/L]	0.00112	0.00014	0.01078	0.01211	0.00075
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000005
U [mg/L]	0.000098	0.000158	0.000083	0.000170	0.000212
V [mg/L]	0.00324	0.00120	0.00158	0.00109	0.00155
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

Analysis	80: 81: 977243 977550	82: 83: 987879 959394	84: 85: 988032 977937	86: 87: 978315 1023510	88: 89: 1006148 1006508
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	250	250	250
Volume D.I. Water [mL]	750	750	750	750	750
Final pH [no unit]	8.95	8.99	7.85	9.01	9.32
pH [No unit]	7.94	8.05	7.78	7.81	7.81
Conductivity [uS/cm]	120	101	365	115	78
Alkalinity [mg/L as CaCO3]	34	31	59	35	31
SO4 [mg/L]	7	9	85	8	2
F [mg/L]	< 0.06	< 0.06	0.09	< 0.06	< 0.06
Hg [mg/L]	0.00001	0.00001	0.00004	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	0.00008	< 0.00005	< 0.00005
AI [mg/L]	0.603	0.665	0.087	0.826	0.566
As [mg/L]	0.0019	0.0017	< 0.0002	0.0012	0.0021
Ba [mg/L]	0.00101	0.00141	0.00431	0.00102	0.00084
B [mg/L]	0.026	0.037	0.013	0.049	0.022
Be [mg/L]	0.000025	0.000040	0.000022	0.000030	< 0.000007
Bi [mg/L]	0.00002	0.00003	< 0.00001	0.00003	0.00005
Ca [mg/L]	13.9	13.6	57.7	14.1	8.23
Cd [mg/L]	0.000013	0.000150	0.000014	0.000059	0.000007
Co [mg/L]	0.000019	0.000030	0.000305	0.000028	0.000011
Cr [mg/L]	0.00032	0.00035	< 0.00008	0.00030	< 0.00008
Cu [mg/L]	0.0003	< 0.0002	< 0.0002	0.0003	0.0003
Fe [mg/L]	0.012	0.010	< 0.007	0.017	0.049
K [mg/L]	2.20	2.72	8.12	3.01	1.85
Li [mg/L]	0.0001	0.0004	0.0003	0.0002	0.0001

Page 8 of 16

SFE 3:1 ratio 24hr (MEND) prefilter pH

0003063906

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19148-AUG22

Analysis	80: 81: 977243 977550	82: 83: 987879 959394	84: 85: 988032 977937	86: 87: 978315 1023510	88: 89 1006148 1006508
			•••••		
Mg [mg/L]	0.742	0.650	0.993	0.636	0.312
Mn [mg/L]	0.00355	0.00663	0.320	0.00558	0.00256
Mo [mg/L]	0.00974	0.00681	0.00231	0.00191	0.00169
Na [mg/L]	8.72	4.69	8.98	6.73	5.85
Ni [mg/L]	0.0002	< 0.0001	0.0001	0.0001	< 0.0001
Pb [mg/L]	< 0.00009	0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0025	0.0015	0.0018	< 0.0009	0.0010
Se [mg/L]	0.00013	0.00129	0.00023	0.00076	0.00069
Si [mg/L]	1.98	2.24	1.75	1.99	3.28
Sn [mg/L]	< 0.00006	< 0.00006	0.00030	< 0.00006	< 0.00006
Sr [mg/L]	0.0220	0.0204	0.0624	0.0234	0.0216
Ti [mg/L]	0.00022	0.00224	0.00012	0.00126	0.00135
TI [mg/L]	0.000005	0.000010	0.000006	< 0.000005	< 0.000005
U [mg/L]	0.000168	0.000160	0.000394	0.000314	0.000469
V [mg/L]	0.00142	0.00107	0.00002	0.00170	0.00177
Zn [mg/L]	< 0.002	0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

Analysis	90: 91: 1024643 1006790	92: 93: 954411 1024043	94: 95: 1024143 1014178	96: 1014138	97: 1014189	98: 1007031	99: 1007347
	1024040 1000100	1021010		1014100	1014100	1001001	1001041
Sample Date & Time	N/A	N/A	N/A				N/A
Sample weight [g]	250	250	250				250
Volume D.I. Water [mL]	750	750	750				750
Final pH [no unit]	9.26	9.39	9.18				9.20
pH [No unit]	7.77	7.88	7.76				7.79
Conductivity [uS/cm]	88	86	97				102
Alkalinity [mg/L as CaCO3]	32	35	33				31
SO4 [mg/L]	4	< 2	4				10
F [mg/L]	< 0.06	< 0.06	< 0.06				0.06
Hg [mg/L]	0.00001	< 0.00001	< 0.00001				< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005				< 0.00005
AI [mg/L]	0.599	1.19	0.825				0.848
As [mg/L]	0.0013	0.0011	0.0011				0.0014
Ba [mg/L]	0.00203	0.00062	0.00075				0.00069
B [mg/L]	0.147	0.014	0.031				0.020
Be [mg/L]	0.000030	0.000024	0.000019				0.000019
Bi [mg/L]	0.00001	< 0.00001	< 0.00001				< 0.00001
Ca [mg/L]	11.8	8.16	10.8				11.1
Cd [mg/L]	0.000006	< 0.000003	< 0.000003				< 0.000003
Co [mg/L]	0.000018	< 0.000004	0.000005				0.000011
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008				< 0.0008
Cu [mg/L]	< 0.0002	< 0.0002	< 0.0002				0.0002
Fe [mg/L]	0.010	0.014	0.007				0.016
K [mg/L]	2.14	4.95	2.16				2.50
Li [mg/L]	0.0003	< 0.0001	0.0001				0.0003
Mg [mg/L]	0.590	0.473	0.777				0.470
Mn [mg/L]	0.00504	0.00153	0.00303				0.00229
Mo [mg/L]	0.00760	0.00066	0.00255				0.00295
Na [mg/L]	7.98	8.34	7.09				7.68
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001				< 0.0001

Page 9 of 16

LR Report : CA19148-AUG22

Analysis	90: 9 [.] 1024643 100679		93: 1024043	94: 1024143	95: 1014178	96: 1014138	97: 1014189	98: 1007031	99: 1007347
	1024043 100073	0 334411	1024045	1024145	1014170	1014130	1014103	1007031	1007347
Pb [mg/L]	< 0.0000	9	< 0.00009		< 0.00009				< 0.00009
Sb [mg/L]	0.001	2	< 0.0009		0.0015				0.0014
Se [mg/L]	0.0001	4	0.00020		0.00011				0.00008
Si [mg/L]	2.0	7	1.85		1.81				1.80
Sn [mg/L]	0.0000	8	< 0.00006		< 0.00006				< 0.00006
Sr [mg/L]	0.060	1	0.0208		0.0302				0.0314
Ti [mg/L]	0.0004	8	0.00024		0.00011				0.00031
TI [mg/L]	< 0.00000	5	< 0.000005		< 0.000005				0.000005
U [mg/L]	0.00013	2	0.000116		0.000131				0.000171
V [mg/L]	0.0016	6	0.00192		0.00139				0.00128
Zn [mg/L]	< 0.00	2	< 0.002		< 0.002				< 0.002
pH Check <2 [pH]	1.0	0	1.00		1.00				1.00

026408 1008488	1026138	104: 1026178		102: 1015017	101: 1007426	100: 1016824	Analysis
N/A	N/A		N/A		N/A		Sample Date & Time
250	250		250		250		Sample weight [g]
750	750		750		750		Volume D.I. Water [mL]
9.32	9.19		9.46		8.86		Final pH [no unit]
8.06	8.00		8.35		7.78		pH [No unit]
86	85		66		131		Conductivity [uS/cm]
32	35		32		37		Alkalinity [mg/L as CaCO3]
4	< 2		< 2		14		SO4 [mg/L]
< 0.06	0.07		< 0.06		0.10		F [mg/L]
< 0.00001	< 0.00001		0.00002		< 0.00001		Hg [mg/L]
< 0.00005	< 0.00005		< 0.00005		< 0.00005		Ag [mg/L]
1.09	0.557		1.12		0.783		AI [mg/L]
0.0017	0.0009		0.0005		0.0004		As [mg/L]
0.00083	0.00030		0.00055		0.00106		Ba [mg/L]
0.037	0.006		0.009		0.045		B [mg/L]
0.000024	0.000017		0.000021		0.000015		Be [mg/L]
0.00001	0.00001		< 0.00001		< 0.00001		Bi [mg/L]
9.56	8.83		7.07		16.5		Ca [mg/L]
< 0.000003	< 0.000003		< 0.000003		< 0.000003		Cd [mg/L]
0.000004	0.000018		< 0.000004		0.000015		Co [mg/L]
< 0.00008	0.00009		< 0.00008		0.00009		Cr [mg/L]
0.0002	0.0010		< 0.0002		0.0002		Cu [mg/L]
0.011	0.047		0.013		0.011		Fe [mg/L]
2.48	1.43		2.51		4.54		K [mg/L]
0.0001	0.0001		0.0001		0.0006		Li [mg/L]
0.514	0.591		0.447		0.795		Mg [mg/L]
0.00160	0.00486		0.00094		0.00601		Mn [mg/L]
0.00865	0.00183		0.00023		0.00058		Mo [mg/L]
9.38	10.9		6.19		8.54		Na [mg/L]
< 0.0001	0.0001		< 0.0001		< 0.0001		Ni [mg/L]
< 0.00009			< 0.00009		< 0.00009		Pb [mg/L]
0.0017	< 0.0009		< 0.0009		0.0023		Sb [mg/L]
0.00023	0.00026		< 0.00004		0.00011		Se [mg/L]
1.66							Si [mg/L]
							Sn [mg/L]
4 5 3 1 9 7 3 6	0.514 0.00160 0.00862 9.38 < 0.0000 < 0.00002 0.0017 0.00022	$\begin{array}{cccc} 0.591 & 0.514 \\ 0.00486 & 0.00160 \\ 0.00183 & 0.00861 \\ 10.9 & 9.36 \\ 0.0001 & < 0.0000 \\ < 0.00009 & < 0.00002 \\ < 0.00009 & 0.0011 \\ 0.00026 & 0.00022 \\ 3.31 & 1.66 \\ \end{array}$	$\begin{array}{ccccc} 0.591 & 0.514 \\ 0.00486 & 0.00160 \\ 0.00183 & 0.00863 \\ 10.9 & 9.33 \\ 0.0001 & < 0.0000 \\ < 0.00009 & < 0.00009 \\ < 0.00009 & < 0.00001 \\ 0.00026 & 0.00022 \\ 3.31 & 1.60 \\ < 0.00006 & < 0.00000 \end{array}$	$\begin{array}{c cccccc} 0.447 & 0.591 & 0.514 \\ 0.00094 & 0.00486 & 0.00166 \\ 0.00023 & 0.00183 & 0.00868 \\ 6.19 & 10.9 & 9.36 \\ < 0.0001 & 0.0001 & < 0.0007 \\ < 0.0009 & < 0.0009 & < 0.0009 \\ < 0.0009 & < 0.0009 & < 0.00017 \\ < 0.0009 & < 0.0009 & 0.0017 \\ < 0.00004 & 0.00026 & 0.00027 \\ 1.94 & 3.31 & 1.66 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Page 10 of 16

Analysis

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

110:

111:

112:

117:

118:

119:

LR Report : CA19148-AUG22

Analysis	100: 101: 1016824 1007426	102: 103: 1015017 1025702	104: 105: 1026178 1026138	106: 107: 1026408 1008488	108: 109: 1008340 1008876
	1010024 1007420	1015017 1025702	1020170 1020130	1020400 1000400	1008340 100870
Sr [mg/L]	0.0322	0.0241	0.0124	0.0327	0.0328
Ti [mg/L]	0.00022	0.00018	0.00085	0.00024	0.00051
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000005
U [mg/L]	0.000114	0.000071	0.000314	0.000128	0.000267
V [mg/L]	0.00049	0.00262	0.00170	0.00164	0.00272
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

113:

114:

115:

116:

	1009326 1027298	1027382 1009713	1043650 1044017	1044097 996541	989877 973322
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	250	250	250
Volume D.I. Water [mL]	750	750	750	750	750
Final pH [no unit]	9.49	9.12	8.72	9.23	9.01
pH [No unit]	8.35	8.04	7.66	7.75	7.53
Conductivity [uS/cm]	72	92	124	91	110
Alkalinity [mg/L as CaCO3]	31	33	32	32	29
SO4 [mg/L]	< 2	5	16	3	12
F [mg/L]	< 0.06	0.15	< 0.06	< 0.06	< 0.06
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	0.00001	0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	0.958	0.773	0.950	1.31	0.612
As [mg/L]	0.0011	0.0017	0.0008	0.0018	0.0037
Ba [mg/L]	0.00032	0.00102	0.00112	0.00073	0.00116
B [mg/L]	0.012	0.014	0.025	0.033	0.028
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bi [mg/L]	0.00003	< 0.00001	< 0.00001	0.00005	0.00001
Ca [mg/L]	8.34	8.80	14.8	10.2	12.7
Cd [mg/L]	< 0.000003	< 0.000003	< 0.000003	< 0.000003	0.000020
Co [mg/L]	0.000004	0.000015	0.000013	0.000021	0.000014
Cr [mg/L]	0.00009	0.00015	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	< 0.0002	0.0003	0.0003	0.0002
Fe [mg/L]	0.021	0.015	0.012	0.023	0.013
K [mg/L]	1.52	4.69	3.09	3.49	2.65
Li [mg/L]	< 0.0001	0.0002	0.0002	0.0001	0.0002
Mg [mg/L]	0.444	0.610	0.851	0.637	0.615
Mn [mg/L]	0.00118	0.00154	0.00273	0.00210	0.00337
Mo [mg/L]	0.00043	0.00130	0.01022	0.00030	0.04788
Na [mg/L]	6.35	12.4	6.61	8.19	7.23
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
^D b [mg/L]	< 0.00009	< 0.00009	< 0.00009	0.00026	< 0.00009
Sb [mg/L]	< 0.0009	0.0013	0.0021	< 0.0009	0.0024
Se [mg/L]	0.00007	0.00008	0.00012	0.00009	0.00032
Si [mg/L]	2.19	2.00	1.00	1.71	1.54
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.00928	0.0512	0.0173	0.0214	0.0307
Fi [mg/L]	0.00068	0.00037	0.00026	0.00046	0.00062
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000007
U [mg/L]	0.000216	0.000189	0.000041	0.000068	0.000233
V [mg/L]	0.00180	0.00320	0.00044	0.00368	0.00124

Page 11 of 16

LR Report : CA19148-AUG22

Analysis	110: 1009326	111: 1027298	112: 1027382	113: 1009713	114: 1043650	115: 1044017	116: 1044097	117: 996541	118: 989877	119: 973322
Zn [mg/L]		< 0.002		< 0.002		< 0.002		0.002		< 0.002
pH Check <2 [pH]		1.00		1.00		1.00		1.00		1.00

Analysis	120: 121: 956379 956542	122: 123: 984474 957562	124: 125: 957928 958200	126: 127: 986925 182172	128: 129: 991156 1009992
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	250	250	250
Volume D.I. Water [mL]	750	750	750	750	750
Final pH [no unit]	9.10	9.25	9.18	9.43	9.21
pH [No unit]	7.68	7.74	7.73	7.75	7.65
Conductivity [uS/cm]	114	77	78	88	111
Alkalinity [mg/L as CaCO3]	32	34	32	35	34
SO4 [mg/L]	10	2	< 2	< 2	9
F [mg/L]	< 0.06	0.16	0.10	0.09	< 0.06
Hg [mg/L]	0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	0.773	0.871	0.870	1.06	0.832
As [mg/L]	0.0017	0.0007	0.0007	0.0058	0.0045
Ba [mg/L]	0.00177	0.00076	0.00087	0.00108	0.00135
B [mg/L]	0.075	0.011	0.062	0.020	0.043
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000007
Bi [mg/L]	0.00005	< 0.00001	0.00003	< 0.00001	0.00001
Ca [mg/L]	11.2	7.57	8.46	6.67	11.4
Cd [mg/L]	< 0.000003	0.000004	< 0.000003	0.000004	0.000013
Co [mg/L]	0.000010	0.000019	0.000006	0.000067	0.000038
Cr [mg/L]	0.00017	< 0.00008	< 0.00008	< 0.00008	0.00010
Cu [mg/L]	0.0002	< 0.0002	< 0.0002	0.0008	0.0005
Fe [mg/L]	0.012	< 0.007	< 0.007	0.055	0.027
K [mg/L]	5.23	2.22	1.70	4.57	4.81
Li [mg/L]	0.0001	< 0.0001	0.0001	0.0109	0.0005
Mg [mg/L]	0.902	0.911	1.11	0.569	0.631
Mn [mg/L]	0.00462	0.00097	0.00135	0.00336	0.00356
Mo [mg/L]	0.00136	0.00110	0.00197	0.00055	0.00557
Na [mg/L]	5.69	5.42	4.23	7.74	5.83
Ni [mg/L]	0.0002	< 0.0001	< 0.0001	0.0003	0.0002
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	0.0011	< 0.0009	< 0.0009	< 0.0009	0.0020
Se [mg/L]	0.00036	0.00009	< 0.00004	0.00005	0.00019
Si [mg/L]	1.24	0.75	0.83	2.10	1.62
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0296	0.0182	0.0249	0.0160	0.0486
Ti [mg/L]	0.00061	0.00010	0.00013	0.00235	0.00143
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000006
U [mg/L]	0.000130	0.000016	0.00008	0.000253	0.000170
V [mg/L]	0.00196	0.00194	0.00061	0.00288	0.00216
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

SGS Canada Inc. P.O. Box 4300 - 185 Concession St.

Lakefield - Ontario - KOL 2HO

Phone: 705-652-2000 FAX: 705-652-6365

400

400

LR Report : CA19148-AUG22

Analysis	130: 131: 1010237 989779	132: 133: 955824 955884	134: 135: 1006198 1010388	136: 137: 1010413 1010700	138: 139: 1006857 1010941
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	250	250	250
Volume D.I. Water [mL]	750	750	750	750	750
Final pH [no unit]	9.41	9.41	9.14	9.15	9.00
pH [No unit]	7.75	7.76	7.67	7.76	7.68
Conductivity [uS/cm]	75	80	99	105	137
Alkalinity [mg/L as CaCO3]	31	33	31	35	36
SO4 [mg/L]	3	3	8	7	17
F [mg/L]	< 0.06	0.06	< 0.06	< 0.06	0.07
Hg [mg/L]	< 0.00001	0.00002	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	1.10	1.03	0.799	0.974	0.622
As [mg/L]	0.0005	0.0009	0.0005	0.0019	0.0013
Ba [mg/L]	0.00044	0.00055	0.00125	0.00120	0.00175
B [mg/L]	0.033	0.019	0.057	0.017	0.022
Be [mg/L]	< 0.000007	< 0.000007	0.000007	0.000012	< 0.000007
Bi [mg/L]	< 0.00001	< 0.00001	0.00003	< 0.00001	0.00002
Ca [mg/L]	7.31	7.67	11.8	9.82	15.0
Cd [mg/L]	0.000004	0.000005	< 0.000003	0.000006	0.000009
Co [mg/L]	0.000008	0.000018	0.000022	0.000017	0.000022
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	< 0.0002	0.0005	< 0.0002	0.0003	0.0003
Fe [mg/L]	0.011	0.020	< 0.007	0.012	0.021
K [mg/L]	2.47	3.03	1.80	4.78	4.72
Li [mg/L]	0.0007	0.0001	0.0004	0.0003	0.0003
Mg [mg/L]	0.401	0.686	0.796	0.554	1.32
Mn [mg/L]	0.00211	0.00325	0.00460	0.00432	0.00294
Mo [mg/L]	0.00030	0.00050	0.00039	0.00521	0.01285
Na [mg/L]	6.02	9.01	6.29	7.86	6.83
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	0.0002	0.0003
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	< 0.0009	< 0.0009	0.0028	0.0017	0.0071
Se [mg/L]	0.00010	< 0.00004	0.00007	0.00019	0.00010
Si [mg/L]	1.28	2.04	1.48	0.84	1.44
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0132	0.0270	0.0529	0.0498	0.108
Ti [mg/L]	0.00053	0.00045	0.00021	0.00024	0.00030
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000013
U [mg/L]	0.000050	0.000095	0.000056	0.000701	0.000390
V [mg/L]	0.00224	0.00260	0.00112	0.00186	0.00122
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00

Analysis	140: 1018771	141: 1011231	142: 1019658	143: 1019827	144: 1011905	145: 1020450	146: 1021458	147: 1022334	148: 1022283
Sample Date & Time		N/A		N/A		N/A		N/A	
Sample weight [g]		250		250		250		250	
Volume D.I. Water [mL]		750		750		750		750	
Final pH [no unit]		9.12		8.91		8.96		9.21	
pH [No unit]		7.65		7.67		7.66		7.68	

0003063906

LR Report : CA19148-AUG22

Analysis	140: 141: 1018771 1011231	142: 143: 1019658 1019827	144: 145: 1011905 1020450	146: 147: 1021458 1022334	148 1022283
Conductivity [uS/cm]	125	142	113	94	
Alkalinity [mg/L as CaCO3]	34	33	32	32	
SO4 [mg/L]	8	23	13	6	
F [mg/L]	< 0.06	0.13	0.07	< 0.06	
Hg [mg/L]	0.00002	0.00001	< 0.00001	< 0.00001	
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	
AI [mg/L]	0.487	0.698	0.883	0.943	
As [mg/L]	0.0009	0.0008	0.0017	0.0010	
Ba [mg/L]	0.00070	0.00100	0.00089	0.00073	
B [mg/L]	0.084	0.038	0.010	0.028	
Be [mg/L]	0.000008	< 0.000007	< 0.000007	< 0.000007	
Bi [mg/L]	0.00002	< 0.00001	0.00007	0.00002	
Ca [mg/L]	13.6	15.3	11.3	9.44	
Cd [mg/L]	0.000007	0.000015	0.00008	0.000004	
Co [mg/L]	0.000049	0.000034	0.000034	0.000054	
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.00008	
Cu [mg/L]	0.0003	0.0002	0.0005	0.0003	
Fe [mg/L]	0.013	0.168	0.025	0.027	
K [mg/L]	1.35	2.35	2.09	2.72	
Li [mg/L]	0.0002	0.0004	0.0004	0.0001	
Mg [mg/L]	0.918	1.20	0.495	0.475	
Mn [mg/L]	0.00873	0.00510	0.00799	0.00283	
Mo [mg/L]	0.00158	0.00710	0.00063	0.00913	
Na [mg/L]	7.69	7.57	8.16	5.49	
Ni [mg/L]	0.0002	0.0003	0.0003	0.0003	
Pb [mg/L]	0.00012	< 0.00009	0.00036	< 0.00009	
Sb [mg/L]	0.0013	0.0017	0.0021	< 0.0009	
Se [mg/L]	0.00010	0.00019	0.00033	0.00013	
Si [mg/L]	1.30	0.72	0.97	0.94	
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	
Sr [mg/L]	0.0491	0.0516	0.0311	0.0226	
Ti [mg/L]	0.00027	0.00027	0.00084	0.00159	
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	
U [mg/L]	0.000418	0.001436	0.000182	0.000073	
V [mg/L]	0.00108	0.00029	0.00090	0.00131	
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	
pH Check <2 [pH]	1.00	1.00	1.00	1.00	

Analysis	149: 1030811	150: 1042567	151: 1048365	152: 996297	153: 956228	154: 956284	155: 957775	156: 986388	157: 1023762
Sample Date & Time	N/A		N/A		N/A		N/A		
Sample weight [g]	250		250		250		250		250
Volume D.I. Water [mL]	750		750		750		750		750
Final pH [no unit]	8.16		9.01		9.54		8.99		9.37
pH [No unit]	7.81		7.73		7.72		7.79		8.73
Conductivity [uS/cm]	339		123		72		146		90
Alkalinity [mg/L as CaCO3]	53		33		29		37		36
SO4 [mg/L]	77		16		< 2		19		3
F [mg/L]	< 0.06		0.09		< 0.06		0.11		0.11
Hg [mg/L]	0.00001		< 0.00001		< 0.00001		< 0.00001		< 0.00001

Page 14 of 16

0003063906

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19148-AUG22

Analysis	149: 1030811	150: 1042567	151: 1048365	152: 996297	153: 956228	154: 956284	155: 957775	156: 986388	157: 1023762
	1030811	1042567	1046365	990297	930228	930204	951115	900300	1023762
Ag [mg/L]	0.00037		< 0.00005		< 0.00005		< 0.00005		< 0.00005
AI [mg/L]	0.201		0.882		0.912		1.02		0.908
As [mg/L]	< 0.0002		0.0058		0.0008		0.0007		0.0064
Ba [mg/L]	0.00206		0.00106		0.00084		0.00096		0.00194
B [mg/L]	0.009		0.017		0.012		0.032		0.009
Be [mg/L]	< 0.000007		< 0.000007		0.000007		< 0.000007		< 0.000007
Bi [mg/L]	< 0.00001		< 0.00001		0.00002		< 0.00001		< 0.00001
Ca [mg/L]	52.3		12.2		5.44		13.8		6.22
Cd [mg/L]	0.000003		0.000014		0.000003		0.000003		< 0.000003
Co [mg/L]	0.000147		0.000036		0.000028		0.000093		< 0.000004
Cr [mg/L]	0.00011		< 0.00008		0.00008		< 0.00008		0.00022
Cu [mg/L]	< 0.0002		0.0002		0.0004		< 0.0002		0.0003
Fe [mg/L]	< 0.007		0.022		0.099		0.008		< 0.007
K [mg/L]	1.09		3.63		1.22		5.29		7.58
Li [mg/L]	0.0004		0.0003		0.0001		0.0002		0.0003
Mg [mg/L]	2.28		0.744		0.380		0.889		0.541
Mn [mg/L]	0.03679		0.00327		0.00466		0.00413		0.00115
Mo [mg/L]	0.00105		0.03750		0.00072		0.00177		0.00021
Na [mg/L]	6.74		6.84		6.71		8.31		12.6
Ni [mg/L]	0.0002		0.0002		0.0004		< 0.0001		< 0.0001
Pb [mg/L]	< 0.00009		< 0.00009		< 0.00009		< 0.00009		< 0.00009
Sb [mg/L]	0.0014		0.0029		< 0.0009		< 0.0009		< 0.0009
Se [mg/L]	0.00028		0.00018		0.00005		0.00014		0.00017
Si [mg/L]	0.70		1.07		2.78		0.64		2.09
Sn [mg/L]	< 0.00006		< 0.00006		< 0.00006		< 0.00006		0.00006
Sr [mg/L]	0.0939		0.0533		0.0122		0.0421		0.0605
Ti [mg/L]	0.00008		0.00177		0.00343		0.00028		0.00008
TI [mg/L]	< 0.000005		0.000005		< 0.000005		< 0.000005		< 0.000005
U [mg/L]	0.000130		0.000087		0.000049		0.000114		0.000279
V [mg/L]	0.00003		0.00134		0.00146		0.00059		0.00887
Zn [mg/L]	< 0.002		0.003		< 0.002		< 0.002		< 0.002
pH Check <2 [pH]	1.00		1.00		1.00		1.00		1.00

Analysis	158: 955411 \$i	159:BLK: D.I. Leachate \$I Blank	160:BLK: D.I. Leachate Blank	161: 1025702	162: 957775	163: 958200
Sample Date & Time						
Sample weight [g]	250			250	250	250
Volume D.I. Water [mL]	750	750	750	750	750	750
Final pH [no unit]	9.39	5.61	5.61	9.41	9.01	9.21
pH [No unit]	8.78	5.60	5.82	8.61	7.78	7.75
Conductivity [uS/cm]	104	< 2	< 2	59	141	79
Alkalinity [mg/L as CaCO3]	38	< 2	< 2	31	37	32
SO4 [mg/L]	4	< 2	< 2	< 2	17	< 2
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06	0.10	0.08
Hg [mg/L]	< 0.00001	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	0.607	0.001	0.003	1.10	1.06	0.922
As [mg/L]	0.0010	< 0.0002	< 0.0002	0.0006	0.0007	0.0007
Ba [mg/L]	0.00148	< 0.00008	< 0.00008	0.00054	0.00092	0.00076
B [mg/L]	0.080	< 0.002	< 0.002	0.009	0.028	0.059

Page 15 of 16

CA19148-AUG22

163:

958200

0.000008

LR Report :

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - O Phone: 705-

Analysis	158: 955411 \$	159:BLK: D.I. Leachate \$	160:BLK: D.I. Leachate	161: 1025702	162: 957775
		Blank	Blank		
Be [mg/L]	0.000018	0.000009	< 0.000007	< 0.000007	< 0.000007
Bi [mg/L]	0.00063	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	7.99	0.02	0.02	6.69	13.8
Cd [mg/L]	0.000003	< 0.000003	< 0.000003	< 0.000003	0.000009
Co [mg/L]	0.000018	0.000008	0.000005	< 0.000004	0.000027
Cr [mg/L]	0.00031	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	0.0008	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Fe [mg/L]	0.138	< 0.007	< 0.007	0.013	< 0.007
K [mg/L]	0.344	0.029	0.046	2.42	5.57
Li [mg/L]	0.0003	< 0.0001	< 0.0001	< 0.0001	0.0002

Bi [mg/L]	0.00063	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00003
Ca [mg/L]	7.99	0.02	0.02	6.69	13.8	8.44
Cd [mg/L]	0.000003	< 0.000003	< 0.000003	< 0.000003	0.000009	0.000009
Co [mg/L]	0.000018	0.00008	0.000005	< 0.000004	0.000027	0.000010
Cr [mg/L]	0.00031	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	0.0008	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0004
Fe [mg/L]	0.138	< 0.007	< 0.007	0.013	< 0.007	< 0.007
K [mg/L]	0.344	0.029	0.046	2.42	5.57	1.74
Li [mg/L]	0.0003	< 0.0001	< 0.0001	< 0.0001	0.0002	< 0.0001
Mg [mg/L]	0.238	0.002	0.003	0.417	0.882	1.06
Mn [mg/L]	0.0159	0.00024	0.00021	0.00094	0.00423	0.00157
Mo [mg/L]	0.00589	< 0.00004	< 0.00004	0.00018	0.00153	0.00209
Na [mg/L]	14.6	4.00	0.32	6.33	7.68	3.97
Ni [mg/L]	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0002
Pb [mg/L]	0.00066	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	0.00010	< 0.00004	< 0.00004	0.00005	0.00010	0.00010
Si [mg/L]	5.18	< 0.02	< 0.02	1.85	0.76	0.84
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Sr [mg/L]	0.0132	< 0.00008	< 0.00008	0.0232	0.0428	0.0245
Ti [mg/L]	0.00873	< 0.00005	< 0.00005	0.00023	0.00015	0.00012
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	0.000165	< 0.000002	< 0.000002	0.000067	0.000098	0.00008
V [mg/L]	0.00113	< 0.00001	< 0.00001	0.00268	0.00056	0.00062
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00	1.00	1.00

CHARTERED Catharine Aunold CATHARINE ARNOL CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003063906

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

ABA - Modified Sobek

13-October-2022

Date Rec.: 24 August 2022 LR Report: CA19146-AUG22

0003082164

Copy: #1

CERTIFICATE OF ANALYSIS

Final Report

Analysis	1: Analysia StartAna	2:	3: Analysis	4: Analysis	5:	6:	7:	8: 168445
	Analysis StartAna Date	166984	167102	167386	10044:			
Sample Date & Time					N/A	N/A	N/A	N/A
Paste pH [no unit]	23-Sep-22	09:00	26-Sep-22	15:02	9.41	9.78	9.38	9.68
Fizz Rate [rating]	23-Sep-22	09:00	26-Sep-22	15:02	4	4	4	4
Sample weight [g]	23-Sep-22	09:00	26-Sep-22	15:02	2.00	1.99	2.02	2.00
HCI_add [mL]	24-Sep-22	06:46	26-Sep-22	15:02	65.00	80.00	80.00	75.00
HCI [Normality]	23-Sep-22	09:00	26-Sep-22	15:02	0.10	0.10	0.10	0.10
NaOH [Normality]	23-Sep-22	09:00	26-Sep-22	15:02	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	24-Sep-22	09:00	26-Sep-22	15:02	19.56	25.07	22.14	22.81
Final pH [no unit]	24-Sep-22	09:00	26-Sep-22	15:02	1.77	1.81	1.77	1.76
NP [t CaCO3/1000 t]	24-Sep-22	09:00	26-Sep-22	15:02	114	138	143	130
AP [t CaCO3/1000 t]	11-Oct-22	15:00	11-Oct-22	15:03	1.25	1.25	1.56	1.25
Net NP [t CaCO3/1000 t]	11-Oct-22	15:00	11-Oct-22	15:03	112	137	142	129
NP/AP [ratio]	11-Oct-22	15:00	11-Oct-22	15:03	90.9	110	91.6	104
S [%]	28-Sep-22	14:03	11-Oct-22	14:59	0.043	< 0.005	0.072	< 0.005
Acid Leachable SO4-S [%]	11-Oct-22	14:54	11-Oct-22	14:59	0.04	<0.04	< 0.04	<0.04
Sulphide [%]	Oct-07-22	08:24	11-Oct-22	14:59	< 0.04	< 0.04	0.05	< 0.04
C [%]	28-Sep-22	14:03	05-Oct-22	10:32	1.34	1.78	1.68	1.61
CO3 (HCl) as %CO3 [%]	03-Oct-22	16:04	05-Oct-22	10:32	6.45	8.76	8.22	7.85

Analysis	9: 168532	10: 168616	11: 169565	12: 934952	13: 935172	14: 937527	15: 939437	16: 939706	17: 960224	18: 960691
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.76	9.68	9.80	9.93	9.90	9.50	9.77	9.85	9.54	9.55
Fizz Rate [rating]	3	3	4	3	3	3	4	3	3	4
Sample weight [g]	2.00	2.00	2.01	1.99	1.99	1.99	2.02	2.01	2.02	2.00

Page 1 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	9: 168532	10: 168616	11: 169565	12: 934952	13: 935172	14: 937527	15: 939437	16: 939706	17: 960224	18: 960691
HCI_add [mL]	20.00	20.00	80.00	60.00	20.00	20.00	115.00	55.00	60.00	60.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	9.99	7.32	32.84	20.01	11.01	7.32	41.66	17.83	21.82	22.36
Final pH [no unit]	1.45	1.67	1.56	1.72	1.42	1.72	1.58	1.76	1.66	1.62
NP [t CaCO3/1000 t]	25.0	31.7	117	100	22.6	31.9	182	92.5	94.5	94.1
AP [t CaCO3/1000 t]	25.3	10.3	1.25	1.25	1.25	14.4	1.25	1.25	1.25	1.25
Net NP [t CaCO3/1000 t]	-0.31	21.4	116	99.2	21.4	17.5	180	91.2	93.2	92.8
NP/AP [ratio]	0.99	3.07	93.8	80.4	18.1	2.22	145	74.0	75.6	75.3
S [%]	0.963	0.426	< 0.005	< 0.005	< 0.005	0.692	< 0.005	< 0.005	0.028	< 0.005
Acid Leachable SO4-S [%]	0.15	0.10	<0.04	<0.04	<0.04	0.23	<0.04	<0.04	<0.04	<0.04
Sulphide [%]	0.81	0.33	< 0.04	< 0.04	< 0.04	0.46	< 0.04	< 0.04	< 0.04	< 0.04
C [%]	0.316	0.403	1.48	1.28	0.242	0.406	2.28	1.16	1.20	1.11
CO3 (HCI) as %CO3 [%]	1.43	1.84	7.27	6.27	1.00	1.86	11.3	5.68	5.84	5.38

Analysis	19: 960958	20: 963179	21: 963541	22: 964658	23: 965384	24: 965790	25: 965958	26: 966043	27: 966145	28: 966933
Sample Date & Time	N/A									
Paste pH [no unit]	9.79	9.84	9.82	9.71	10.02	9.65	9.68	9.60	9.50	9.40
Fizz Rate [rating]	3	3	3	3	3	4	3	4	4	4
Sample weight [g]	2.03	1.98	1.99	2.00	2.01	1.99	1.99	2.00	2.02	2.02
HCI_add [mL]	20.00	40.00	25.00	30.00	80.00	80.00	30.00	115.00	65.00	60.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	7.96	10.83	10.21	11.35	27.53	35.73	10.79	42.00	15.17	18.76
Final pH [no unit]	1.70	1.89	1.58	1.73	1.70	1.55	1.74	1.54	1.75	1.74
NP [t CaCO3/1000 t]	29.6	73.7	37.2	46.6	130	111	48.3	182	123	102
AP [t CaCO3/1000 t]	1.25	1.25	1.25	4.06	1.25	1.25	1.25	1.25	3.12	1.25
Net NP [t CaCO3/1000 t]	28.4	72.4	36.0	42.5	129	110	47.0	181	120	101
NP/AP [ratio]	23.7	59.0	29.8	11.5	104	89.0	38.6	146	39.5	81.7
S [%]	0.044	< 0.005	0.050	0.228	< 0.005	< 0.005	< 0.005	< 0.005	0.126	< 0.005
Acid Leachable SO4-S [%]	0.04	<0.04	0.05	0.10	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04
Sulphide [%]	< 0.04	< 0.04	< 0.04	0.13	< 0.04	< 0.04	< 0.04	< 0.04	0.10	< 0.04
C [%]	0.391	0.893	0.418	0.536	1.85	1.48	0.656	2.13	1.37	1.23
CO3 (HCI) as %CO3 [%]	1.78	4.35	1.96	2.49	9.12	7.27	3.13	10.5	6.61	5.94

Analysis	29: 967212	30: 967393	31: 967524	32: 970453	33: 970578	34: 968738	35: 968928	36: 982589	37: 954284	38: 977884
Sample Date & Time	N/A									
Paste pH [no unit]	9.66	9.77	9.75	9.74	9.86	9.61	9.48	9.59	9.79	9.41
Fizz Rate [rating]	4	4	3	3	3	4	4	3	4	2
Sample weight [g]	1.97	1.98	2.01	2.01	2.00	1.99	1.99	2.00	2.02	2.00

Page 2 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	29: 967212	30: 967393	31: 967524	32: 970453	33: 970578	34: 968738	35: 968928	36: 982589	37: 954284	38: 977884
HCI_add [mL]	75.00	40.00	25.00	50.00	65.00	40.00	60.00	30.00	85.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	21.61	19.44	10.72	19.49	24.27	19.31	21.62	12.93	34.92	15.71
Final pH [no unit]	1.54	1.50	1.57	1.65	1.63	1.51	1.67	1.52	1.55	1.32
NP [t CaCO3/1000 t]	136	51.9	35.5	75.9	102	52.0	96.4	42.7	124	10.7
AP [t CaCO3/1000 t]	1.25	1.25	1.25	1.25	1.25	9.06	1.25	6.88	1.25	1.25
Net NP [t CaCO3/1000 t]	134	50.6	34.2	74.6	101	42.9	95.2	35.8	123	9.45
NP/AP [ratio]	108	41.5	28.4	60.7	81.4	5.74	77.1	6.21	99.2	8.56
S [%]	< 0.005	0.030	0.035	0.008	< 0.005	0.363	< 0.005	0.345	< 0.005	0.012
Acid Leachable SO4-S [%]	<0.04	< 0.04	<0.04	< 0.04	<0.04	0.07	<0.04	0.12	<0.04	<0.04
Sulphide [%]	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.29	< 0.04	0.22	< 0.04	< 0.04
C [%]	1.42	0.626	0.416	0.985	1.32	0.588	1.23	0.498	1.58	0.106
CO3 (HCl) as %CO3 [%]	6.91	2.95	1.86	4.79	6.42	2.79	5.99	2.33	7.76	0.37

Analysis	39: 978133	40: 1023601	41: 1023762	42: 1023921	43: 1025383	44: 1015194	45: 1008325	46: 1008754	47: 1016750
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.65	9.41	9.40	9.37	9.67	9.24	9.58	9.53	9.51
Fizz Rate [rating]	3	4	4	4	4	3	4	4	3
Sample weight [g]	1.99	2.03	1.99	2.02	2.00	2.01	1.98	1.99	2.02
HCI_add [mL]	20.00	40.00	75.00	60.00	55.00	30.00	60.00	85.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	9.71	14.87	21.78	17.62	20.57	14.33	23.91	22.44	8.82
Final pH [no unit]	1.48	1.70	1.71	1.71	1.63	1.50	1.56	1.83	1.68
NP [t CaCO3/1000 t]	25.9	61.9	134	105	86.1	39.0	91.1	157	27.7
AP [t CaCO3/1000 t]	25.6	1.25	1.25	3.75	1.25	37.8	1.25	1.25	2.81
Net NP [t CaCO3/1000 t]	0.28	60.6	132	101	84.8	1.19	89.8	156	24.9
NP/AP [ratio]	1.01	49.5	107	28.0	68.9	1.03	72.9	126	9.85
S [%]	0.984	< 0.005	0.057	0.182	< 0.005	1.30	< 0.005	< 0.005	0.148
Acid Leachable SO4-S [%]	0.16	<0.04	0.06	0.06	<0.04	0.09	<0.04	<0.04	0.06
Sulphide [%]	0.82	< 0.04	< 0.04	0.12	< 0.04	1.21	< 0.04	< 0.04	0.09
C [%]	0.336	0.761	1.60	1.24	1.07	0.486	1.07	1.96	0.309
CO3 (HCI) as %CO3 [%]	1.50	3.66	7.76	6.04	5.21	2.26	5.14	9.59	1.37

Analysis	48: 1017129	49: 1009891	50: 1027447	51: 1027455	52: 1018430	53: 1011111	54: 1019798	55: 1011804	56: 995902
Sample Date & Time	N/A	N/A							
Paste pH [no unit]	8.98	9.68	9.76	9.55	9.87	9.60	9.70	9.68	9.33
Fizz Rate [rating]	4	3	4	3	4	3	3	3	3
Sample weight [g]	2.00	1.99	1.99	2.02	2.03	1.99	2.01	2.02	2.01

Page 3 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	48: 1017129	49: 1009891	50: 1027447	51: 1027455	52: 1018430	53: 1011111	54: 1019798	55: 1011804	56: 995902
HCI_add [mL]	40.00	20.00	110.00	20.00	95.00	20.00	30.00	30.00	90.40
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	13.63	10.80	45.18	15.85	23.56	8.31	13.08	13.24	28.12
Final pH [no unit]	1.64	1.40	1.54	1.26	1.84	1.84	1.55	1.54	1.62
NP [t CaCO3/1000 t]	65.9	23.1	163	10.3	176	29.4	42.1	41.5	155
AP [t CaCO3/1000 t]	29.1	5.94	1.25	3.44	1.25	9.69	4.06	1.25	1.25
Net NP [t CaCO3/1000 t]	36.8	17.2	162	6.86	175	19.7	38.0	40.2	154
NP/AP [ratio]	2.27	3.89	130	3.00	141	3.03	10.4	33.2	124
S [%]	1.14	0.241	0.031	0.115	< 0.005	0.413	0.152	0.022	0.020
Acid Leachable SO4-S [%]	0.21	0.05	<0.04	< 0.04	<0.04	0.10	< 0.04	<0.04	<0.04
Sulphide [%]	0.93	0.19	< 0.04	0.11	< 0.04	0.31	0.13	< 0.04	< 0.04
C [%]	0.777	0.271	2.05	0.120	2.20	0.352	0.479	0.494	1.74
CO3 (HCI) as %CO3 [%]	3.69	1.16	9.99	0.38	10.8	1.59	2.24	2.31	8.51

Analysis	57: 996071	58: 983936	59: 975618	60: 986301	61: 986527	62: 976319	63: 986619	64: 987176	65: 167317	66: 168506
Sample Date & Time	N/A									
Paste pH [no unit]	9.45	9.40	9.51	9.51	9.59	9.69	9.16	9.30	9.55	9.14
Fizz Rate [rating]	3	3	3	3	4	3	4	4	3	3
Sample weight [g]	1.88	2.02	2.03	2.07	2.11	1.99	2.08	2.06	1.99	1.96
HCI_add [mL]	53.00	32.50	20.00	28.70	104.40	20.00	128.70	62.60	28.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	23.28	11.76	9.31	12.28	29.41	12.28	37.90	24.08	12.93	7.47
Final pH [no unit]	1.55	1.84	1.78	1.73	1.69	1.56	1.57	1.66	1.69	1.81
NP [t CaCO3/1000 t]	79.0	51.3	26.3	39.7	178	19.4	218	93.5	37.9	32.0
AP [t CaCO3/1000 t]	1.25	1.25	2.50	3.12	1.25	3.44	1.25	1.25	16.6	28.8
Net NP [t CaCO3/1000 t]	77.8	50.0	23.8	36.6	176	16.0	217	92.2	21.3	3.25
NP/AP [ratio]	63.2	41.0	10.5	12.7	142	5.64	175	74.8	2.29	1.11
S [%]	< 0.005	0.005	0.107	0.185	0.007	0.148	0.033	< 0.005	0.615	1.09
Acid Leachable SO4-S [%]	<0.04	<0.04	< 0.04	0.08	< 0.04	< 0.04	<0.04	< 0.04	0.08	0.17
Sulphide [%]	< 0.04	< 0.04	0.08	0.10	< 0.04	0.11	< 0.04	< 0.04	0.53	0.92
C [%]	0.899	0.576	0.301	0.471	2.11	0.213	2.40	1.14	0.464	0.380
CO3 (HCl) as %CO3 [%]	4.30	2.72	1.32	2.17	10.3	0.91	11.8	5.45	2.18	1.69

Analysis	67: 182574	68: 961457	69: 961744	70: 962052	71: 966413	72: 953697	73: 982894	74: 954236	75: 954535	76: 954874
Sample Date & Time	N/A									
Paste pH [no unit]	8.92	9.42	9.33	9.43	9.32	9.67	9.12	9.32	9.73	8.81
Fizz Rate [rating]	4	3	3	3	3	3	3	3	3	3
Sample weight [g]	2.11	2.08	1.94	1.91	1.91	2.10	1.99	2.04	1.96	2.01

Page 4 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	67: 182574	68: 961457	69: 961744	70: 962052	71: 966413	72: 953697	73: 982894	74: 954236	75: 954535	76: 954874
HCI_add [mL]	40.00	29.60	20.00	20.00	20.00	20.00	20.00	27.70	20.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	13.90	12.86	6.56	8.28	10.76	9.11	8.25	13.64	10.38	10.28
Final pH [no unit]	1.78	1.68	1.96	1.90	1.64	1.82	1.72	1.59	1.59	1.64
NP [t CaCO3/1000 t]	61.8	40.2	34.6	30.7	24.2	25.9	29.5	34.5	24.5	24.2
AP [t CaCO3/1000 t]	19.7	15.0	1.25	12.2	12.8	5.94	46.6	41.2	31.9	102
Net NP [t CaCO3/1000 t]	42.1	25.2	33.4	18.5	11.4	20.0	-17.06	-6.75	-7.38	-78.30
NP/AP [ratio]	3.14	2.68	27.7	2.52	1.89	4.36	0.63	0.84	0.77	0.24
S [%]	0.760	0.480	0.053	0.405	0.492	0.233	1.72	1.40	1.24	3.47
Acid Leachable SO4-S [%]	0.13	< 0.04	0.05	< 0.04	0.08	0.04	0.23	0.08	0.22	0.19
Sulphide [%]	0.63	0.48	< 0.04	0.39	0.41	0.19	1.49	1.32	1.02	3.28
C [%]	0.774	0.493	0.422	0.381	0.291	0.306	0.341	0.398	0.297	0.262
CO3 (HCI) as %CO3 [%]	3.67	2.27	1.84	1.72	1.28	1.36	1.52	1.82	1.31	1.17

Analysis	77: 955411	78: 993558	79: 993900	80: 977243	81: 977550	82: 987879	83: 959394	84: 988032	85: 977937	86: 978315
Sample Date & Time	N/A									
Paste pH [no unit]	9.88	9.57	9.78	9.59	9.22	8.45	9.18	9.84	8.09	9.52
Fizz Rate [rating]	3	3	3	3	3	3	3	3	2	2
Sample weight [g]	1.97	1.99	2.12	2.04	2.00	2.00	1.95	2.00	1.89	1.93
HCI_add [mL]	20.00	20.00	20.00	20.00	20.00	92.60	20.00	20.00	20.00	30.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	6.13	9.22	9.42	12.35	6.39	31.06	12.08	11.01	13.81	13.04
Final pH [no unit]	1.84	1.66	1.71	1.57	1.92	1.77	1.45	1.52	1.34	1.66
NP [t CaCO3/1000 t]	35.2	27.1	25.0	18.7	34.0	154	20.3	22.5	16.4	43.9
AP [t CaCO3/1000 t]	27.2	27.2	11.6	15.0	29.4	106	19.7	14.1	275	11.2
Net NP [t CaCO3/1000 t]	8.01	-0.09	13.4	3.70	4.62	48.2	0.61	8.44	-258.29	32.6
NP/AP [ratio]	1.29	1.00	2.16	1.25	1.16	1.46	1.03	1.60	0.06	3.90
S [%]	0.976	0.985	0.421	0.614	1.19	3.47	0.714	0.499	9.00	0.430
Acid Leachable SO4-S [%]	0.11	0.12	0.05	0.13	0.25	0.09	0.08	0.05	0.21	0.07
Sulphide [%]	0.87	0.87	0.37	0.48	0.94	3.38	0.63	0.45	8.79	0.36
C [%]	0.423	0.322	0.317	0.235	0.408	2.10	0.226	0.266	0.100	0.538
CO3 (HCI) as %CO3 [%]	1.96	1.36	1.43	0.99	1.82	10.3	0.96	1.14	0.33	2.53

Analysis	87: 1023510	88: 1006148	89: 1006508	90: 1024643	91: 1006790	92: 954411	93: 1024043	94: 1024143	95: 1014178
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.40	9.56	9.70	9.69	9.43	9.35	9.66	9.65	9.43
Fizz Rate [rating]	3	3	2	3	4	2	3	3	3
Sample weight [g]	2.10	2.02	2.03	1.98	1.88	1.98	2.01	2.05	2.05

Page 5 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	87: 1023510	88: 1006148	89: 1006508	90: 1024643	91: 1006790	92: 954411	93: 1024043	94: 1024143	95: 1014178
	1023310	1000140	1000300	1024043	1000730	554411	1024043	1024143	1014170
HCI_add [mL]	20.00	20.00	20.00	20.00	40.00	20.00	28.30	28.90	29.60
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	7.48	7.63	13.32	9.24	17.12	15.18	14.39	15.00	12.56
Final pH [no unit]	1.81	1.79	1.44	1.72	1.57	1.45	1.54	1.56	1.69
NP [t CaCO3/1000 t]	29.8	30.6	16.4	27.2	60.8	12.2	34.6	33.9	41.6
AP [t CaCO3/1000 t]	42.5	4.06	13.8	4.69	21.6	1.25	3.75	2.81	28.8
Net NP [t CaCO3/1000 t]	-12.70	26.5	2.65	22.5	39.2	11.0	30.8	31.1	12.8
NP/AP [ratio]	0.70	7.53	1.19	5.80	2.82	9.76	9.23	12.1	1.45
S [%]	1.57	0.158	0.486	0.192	0.742	0.017	0.182	0.145	1.14
Acid Leachable SO4-S [%]	0.21	< 0.04	0.05	0.04	0.05	< 0.04	0.06	0.06	0.22
Sulphide [%]	1.36	0.13	0.44	0.15	0.69	< 0.04	0.12	0.09	0.92
C [%]	0.362	0.374	0.194	0.334	0.741	0.144	0.414	0.402	0.490
CO3 (HCl) as %CO3 [%]	1.61	1.66	0.79	1.50	3.55	0.51	1.88	1.82	2.28

Analysis	96: 1014138	97: 1014189	98: 1007031	99: 1007347	100: 1016824	101: 1007426	102: 1015017	103: 1025702	104: 1026178
Sample Date & Time			N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]			9.42	9.51	9.27	9.18	9.35	9.58	8.82
Fizz Rate [rating]			3	3	3	3	3	3	3
Sample weight [g]			2.09	2.06	2.10	2.04	1.95	2.00	2.02
HCI_add [mL]			40.00	20.00	38.70	20.00	20.00	27.70	114.00
HCI [Normality]			0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]			0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]			18.37	9.23	15.60	7.91	6.71	12.35	23.81
Final pH [no unit]			1.58	1.82	1.56	1.96	1.96	1.70	1.90
NP [t CaCO3/1000 t]			51.7	26.1	55.0	29.6	34.1	38.4	223
AP [t CaCO3/1000 t]			3.44	6.56	30.3	35.3	15.6	2.19	4.06
Net NP [t CaCO3/1000 t]			48.3	19.5	24.7	-5.71	18.5	36.2	219
NP/AP [ratio]			15.0	3.98	1.81	0.84	2.18	17.6	54.9
S [%]			0.191	0.325	1.12	1.17	0.620	0.129	0.212
Acid Leachable SO4-S [%]			0.08	0.12	0.15	< 0.04	0.12	0.06	0.08
Sulphide [%]			0.11	0.21	0.97	1.13	0.50	0.07	0.13
C [%]			0.598	0.308	0.361	0.383	0.415	0.456	2.62
CO3 (HCl) as %CO3 [%]			2.80	1.40	1.64	1.74	1.87	2.11	13.0

Analysis	105: 1026138	106: 1026408	107: 1008488	108: 1008340	109: 1008876	110: 1009326	111: 1027298	112: 1027382	113: 1009713
Sample Date & Time	N/A	N/A	N/A		N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.48	9.51	9.69		9.45	9.67	9.71	9.73	9.50
Fizz Rate [rating]	3	3	3		3	3	3	3	3
Sample weight [g]	1.98	1.99	2.00		1.98	2.01	2.01	2.02	1.99

Page 6 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	105: 1026138	106: 1026408	107: 1008488	108: 1008340	109: 1008876	110: 1009326	111: 1027298	112: 1027382	113: 1009713
HCI_add [mL]	20.00	25.00	20.00		30.00	35.00	20.00	20.00	30.00
HCI [Normality]	0.10	0.10	0.10		0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10		0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	6.84	10.12	6.70		14.82	15.13	8.88	8.61	14.43
Final pH [no unit]	1.77	1.48	1.82		1.39	1.45	1.52	1.52	1.43
NP [t CaCO3/1000 t]	33.2	37.4	33.3		38.3	49.4	27.7	28.2	39.1
AP [t CaCO3/1000 t]	9.06	16.9	30.0		5.94	1.25	5.00	5.94	9.06
Net NP [t CaCO3/1000 t]	24.1	20.5	3.30		32.4	48.2	22.7	22.3	30.0
NP/AP [ratio]	3.66	2.22	1.11		6.45	39.5	5.54	4.75	4.31
S [%]	0.391	0.632	1.06		0.249	0.070	0.248	0.259	0.307
Acid Leachable SO4-S [%]	0.10	0.09	0.10		0.06	< 0.04	0.09	0.07	< 0.04
Sulphide [%]	0.29	0.54	0.96		0.19	0.04	0.16	0.19	0.29
C [%]	0.400	0.444	0.396		0.442	0.579	0.329	0.336	0.437
CO3 (HCI) as %CO3 [%]	1.81	2.02	1.79		1.97	2.69	1.43	1.47	2.04

Analysis	114: 1043650	115: 1044017	116: 1044097	117: 996541	118: 989877	119: 973322	120: 956379	121: 956542	122: 984474	123: 957562
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.06	9.13	9.00	9.46	8.93	9.22	9.60	9.37	8.80	9.34
Fizz Rate [rating]	4	3	3	3	4	3	3	3	4	4
Sample weight [g]	1.98	1.99	1.98	2.00	1.98	1.98	2.02	2.02	2.00	2.00
HCI_add [mL]	60.00	20.00	30.00	30.00	65.00	20.00	30.00	30.00	120.00	60.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	22.66	9.67	13.16	14.39	23.46	9.08	14.34	15.40	36.37	27.37
Final pH [no unit]	1.53	1.53	1.42	1.39	1.53	1.46	1.48	1.43	1.69	1.44
NP [t CaCO3/1000 t]	94.3	26.0	42.5	39.0	105	27.6	38.8	36.1	209	81.6
AP [t CaCO3/1000 t]	13.1	47.8	25.3	44.4	55.3	30.0	16.6	50.9	6.25	5.31
Net NP [t CaCO3/1000 t]	81.2	-21.81	17.2	-5.38	49.6	-2.40	22.2	-14.84	203	76.3
NP/AP [ratio]	7.18	0.54	1.68	0.88	1.90	0.92	2.34	0.71	33.5	15.4
S [%]	0.507	1.80	0.837	1.68	1.85	1.12	0.539	1.67	0.220	0.209
Acid Leachable SO4-S [%]	0.09	0.27	< 0.04	0.26	0.08	0.16	< 0.04	0.04	< 0.04	< 0.04
Sulphide [%]	0.42	1.53	0.81	1.42	1.77	0.96	0.53	1.63	0.20	0.17
C [%]	1.10	0.282	0.487	0.504	1.26	0.325	0.453	0.429	2.47	0.912
CO3 (HCl) as %CO3 [%]	5.35	1.27	2.31	2.33	6.13	1.44	2.06	1.92	12.2	4.39

Analysis	124: 957928	125: 958200	126: 986925	127: 182172	128: 991156	129: 1009992	130: 1010237	131: 989779	132: 955824	133: 955884
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.52	9.17	9.13	9.73	9.68	9.26	9.31	9.68	9.62	9.57
Fizz Rate [rating]	3	4	3	3	3	4	3	3	3	3
Sample weight [g]	2.00	2.01	2.01	1.98	1.99	2.00	1.99	1.98	2.02	1.99

Page 7 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	124: 957928	125: 958200	126: 986925	127: 182172	128: 991156	129: 1009992	130: 1010237	131: 989779	132: 955824	133: 955884
	501520	300200	000020	102172	001100	1000002	1010201	000110	500024	500004
HCI_add [mL]	20.00	60.00	30.00	30.00	30.00	40.00	20.00	35.00	30.00	35.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	9.25	25.63	14.00	14.72	15.40	18.28	11.34	16.86	14.59	16.49
Final pH [no unit]	1.55	1.54	1.45	1.42	1.36	1.40	1.37	1.40	1.41	1.42
NP [t CaCO3/1000 t]	26.9	85.5	39.8	38.6	36.7	54.3	21.8	45.8	38.1	46.5
AP [t CaCO3/1000 t]	42.8	1.88	43.4	1.25	28.1	20.6	23.1	7.50	2.19	12.5
Net NP [t CaCO3/1000 t]	-15.91	83.6	-3.64	37.4	8.58	33.7	-1.32	38.3	35.9	34.0
NP/AP [ratio]	0.63	45.6	0.92	30.9	1.30	2.63	0.94	6.11	17.4	3.72
S [%]	1.52	0.074	1.46	< 0.005	0.955	0.692	0.729	0.334	0.096	0.491
Acid Leachable SO4-S [%]	0.15	< 0.04	0.07	< 0.04	0.06	< 0.04	< 0.04	0.09	< 0.04	0.09
Sulphide [%]	1.37	0.06	1.39	< 0.04	0.90	0.66	0.74	0.24	0.07	0.40
C [%]	0.319	1.00	0.472	0.468	0.416	0.631	0.322	0.548	0.460	0.551
CO3 (HCl) as %CO3 [%]	1.38	4.83	2.17	2.17	1.88	3.00	1.48	2.59	2.11	2.49

Analysis	134: 1006198	135: 1010388	136: 1010413	137: 1010700	138: 1006857	139: 1010941	140: 1018771	141: 1011231	142: 1019658
	1000100	1010000	1010410	1010100	1000001	1010041	1010111	1011201	1010000
Sample Date & Time	N/A								
Paste pH [no unit]	9.61	9.25	9.76	9.34	9.59	8.77	9.66	9.36	9.57
Fizz Rate [rating]	3	4	3	3	4	3	3	3	3
Sample weight [g]	1.99	1.98	1.99	1.99	2.03	1.99	2.04	1.99	2.04
HCI_add [mL]	30.00	40.00	20.00	20.00	40.00	25.00	20.00	30.00	30.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	14.88	18.47	8.52	7.30	20.06	10.80	8.63	12.01	15.26
Final pH [no unit]	1.38	1.40	1.54	1.78	1.41	1.51	1.62	1.50	1.44
NP [t CaCO3/1000 t]	38.0	54.4	28.8	31.9	49.1	35.7	27.9	45.2	36.1
AP [t CaCO3/1000 t]	9.38	35.3	5.94	15.0	5.94	29.7	2.50	29.7	15.6
Net NP [t CaCO3/1000 t]	28.6	19.1	22.9	16.9	43.2	6.01	25.4	15.5	20.5
NP/AP [ratio]	4.05	1.54	4.85	2.13	8.27	1.20	11.2	1.52	2.31
S [%]	0.339	1.15	0.241	0.532	0.272	0.971	0.116	1.00	0.521
Acid Leachable SO4-S [%]	< 0.04	< 0.04	0.05	0.05	0.08	< 0.04	< 0.04	0.06	< 0.04
Sulphide [%]	0.30	1.13	0.19	0.48	0.19	0.95	0.08	0.95	0.50
C [%]	0.455	0.625	0.341	0.377	0.598	0.425	0.332	0.551	0.435
CO3 (HCl) as %CO3 [%]	2.05	2.95	1.54	1.70	2.79	1.98	1.49	2.53	1.96

Analysis	143: 1019827	144: 1011905	145: 1020450	146: 1021458	147: 1022334	148: 1022283	149: 1030811	150: 1042567	151: 1048365
Sample Date & Time	N/A	N/A	N/A	N/A	N/A		N/A	N/A	N/A
Paste pH [no unit]	9.09	9.34	9.09	9.08	9.35		8.33	9.57	9.48
Fizz Rate [rating]	3	4	3	3	3		4	3	3
Sample weight [g]	1.99	2.00	1.98	2.00	1.99		2.04	1.99	2.03

Page 8 of 10

LR Report : CA19146-AUG22

0003082164

Analysis	143: 1019827	144: 1011905	145: 1020450	146: 1021458	147: 1022334	148: 1022283	149: 1030811	150: 1042567	151: 1048365
HCI_add [mL]	30.00	40.00	20.00	35.00	20.00		40.00	20.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10		0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10		0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	13.36	14.98	14.70	15.53	6.64		11.41	7.73	9.89
Final pH [no unit]	1.52	1.50	1.15	1.45	1.84		1.65	1.47	1.40
NP [t CaCO3/1000 t]	41.8	62.5	13.4	48.7	33.6		70.1	30.8	24.9
AP [t CaCO3/1000 t]	17.2	40.6	103	31.2	32.2		301	26.2	3.75
Net NP [t CaCO3/1000 t]	24.6	21.9	-90.04	17.4	1.41		-230.84	4.55	21.2
NP/AP [ratio]	2.43	1.54	0.13	1.56	1.04		0.23	1.17	6.64
S [%]	0.728	1.33	3.27	1.16	1.13		11.2	0.851	0.182
Acid Leachable SO4-S [%]	0.18	< 0.04	< 0.04	0.16	0.10		1.52	< 0.04	0.06
Sulphide [%]	0.55	1.30	3.31	1.00	1.03		9.63	0.84	0.12
C [%]	0.465	0.736	0.153	0.559	0.404		0.865	0.372	0.305
CO3 (HCI) as %CO3 [%]	2.14	3.52	0.62	2.64	1.83		4.13	1.67	1.35

Analysis	152: 996297	153: 956228	154: 956284	155: 957775	156: 986388
Camala Data & Tima	N1/A	N1/A	N1/A	N1/A	N1/A
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.61	9.87	9.43	9.16	9.43
Fizz Rate [rating]	3	2	3	4	3
Sample weight [g]	2.04	2.02	2.01	1.99	1.99
HCI_add [mL]	35.00	20.00	30.00	60.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	16.12	15.81	11.78	25.98	8.12
Final pH [no unit]	1.42	1.11	1.46	1.43	1.71
NP [t CaCO3/1000 t]	46.3	10.4	45.3	85.5	29.8
AP [t CaCO3/1000 t]	3.12	3.75	31.2	50.9	11.6
Net NP [t CaCO3/1000 t]	43.2	6.65	14.0	34.6	18.2
NP/AP [ratio]	14.8	2.77	1.45	1.68	2.58
S [%]	0.215	0.182	1.04	1.94	0.515
Acid Leachable SO4-S [%]	0.12	0.06	< 0.04	0.31	0.14
Sulphide [%]	0.10	0.12	1.00	1.63	0.37
C [%]	0.570	0.133	0.546	0.999	0.357
CO3 (HCl) as %CO3 [%]	2.68	0.51	2.57	4.82	1.58

*NP (Neutralization Potential)

= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25 *Net NP (Net Neutralization Potential) = NP-AP NP/AP Ratio = NP/AP *Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.04 will be calculated using a 0.04 value.

ABA - Modified Sobek

LR Report : CA19146-AUG22

0003082164

CHARTERED CATHARINE ARNOL Catharine Aunold CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

29-December-2022

Date Rec. :	07 December 2022
LR Report:	CA19064-DEC22
Reference:	Berry Composites - Set 2

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1: Analysis Start A	2:	3: Analysis	4:	5:	6:	7:	8: B QTP	9:	10:
	Analysis Start A Date		ompleted DateCo	Analysis npleted Time	B QPOR	B SED	BMD	BQIP	B LGO	B HGO
Mercury [ug/g]	19-Dec-22	23:49	20-Dec-22	15:33	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Silver [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	0.97	0.93	4.6	1.1	2.7	1.1
Aluminum [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	7400	10000	26000	6100	6600	6900
Barium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	22	83	18	9.8	15	10
Beryllium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	0.14	0.31	0.32	0.12	0.10	0.09
Bismuth [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	0.20	0.10	< 0.09	0.16	0.65	1.2
Calcium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	8600	19000	24000	7500	15000	12000
Cadmium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	0.19	0.10	0.11	0.075	0.040	0.030
Cobalt [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	3.5	8.2	22	4.2	21	4.8
Chromium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	3.5	13	58	6.2	4.7	7.1
Copper [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	18	42	38	26	26	26
Iron [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	17000	21000	48000	15000	31000	25000
Potassium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	490	740	350	280	590	320
Lithium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	2.7	5.6	8.0	2.6	2.2	2.5
Magnesium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	2200	7200	17000	2100	2600	2800
Manganese [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	380	810	900	370	560	410
Molybdenum [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	1.8	1.9	1.3	1.6	3.8	5.7
Nickel [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	1.3	13	20	2.2	2.6	2.8
Lead [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	1.3	1.8	5.0	0.85	5.8	1.7
Antimony [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	< 6	< 6	< 6	< 6	< 6	< 6
Selenium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Tin [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	< 2	< 2	< 2	< 2	< 2	< 2
Strontium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	8.3	36	42	10	14	12
Titanium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:33	28	33	250	27	29	48
Thallium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:34	< 0.02	< 0.02	< 0.02	< 0.02	0.04	< 0.02
Uranium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:34	0.14	0.62	0.16	0.11	0.10	0.10
Vanadium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:34	7.1	26	100	8.4	7.7	9.6
Yttrium [µg/g]	19-Dec-22	23:49	20-Dec-22	15:34	6.4	8.0	12	5.5	6.5	6.1
Zinc [µg/g]	19-Dec-22	23:49	20-Dec-22	15:34	26	39	75	24	25	26

0003175669

Trace Metals - Aqua Regia Digest, ICP-MS

0003175669

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19064-DEC22

Method Descriptions

Parameter	SGS Method Code	Reference Method Code
Mercury by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004	EPA 7471A/EPA 245
Metals in Soil - Aqua-regia/ICP-MS	ME-CA-[ENV]SPE-LAK-AN-005	EPA 3050/EPA 200.8

ENACAL CHAFTERED Chris Sullion Christopher Sullivan Christopher Scillvan

Project Specialist, Environment, Health & Safety

LR Report :

CA19064-DEC22

Quality Control Report

	Inorganic Analysis												
Parameter	Reporting	Unit	Method	-	Dupl			L	CS / Spike Blar	nk	Matrix Spi	ike / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery	Limits (%)	Spike Recovery (%)	Recovery	Limits (%)
							%		Low	High		Low	High
Mercury by CVAAS - QCBatchID: EMS0144-DEC22													
Mercury	0.05	ug/g	<0.05			ND	20	96	80	120	118	70	130
Metals in Soil - Aqua-regia/ICP-MS - QCBatchID: EMS014	4-DEC22												
Aluminum	3	µg/g	<3			1	20	92	70	130	NV	70	130
Antimony	6	µg/g	<0.8			ND	20	91	70	130	NV	70	130
Arsenic	0.5	µg/g	<0.5			4	20	92	70	130	83	70	130
Barium	0.01	µg/g	<0.01			2	20	100	70	130	93	70	130
Beryllium	0.02	µg/g	<0.02			7	20	94	70	130	NV	70	130
Bismuth	0.09	µg/g	<0.09			2	20	95	70	130	NV	70	130
Cadmium	0.02	µg/g	<0.02			8	20	101	70	130	NV	70	130
Calcium	3	µg/g	17.4			1	20	95	70	130	NV	70	130
Chromium	0.5	µg/g	<0.5			8	20	91	70	130	76	70	130
Cobalt	0.01	µg/g	<0.01			1	20	93	70	130	87	70	130
Copper	0.1	µg/g	<0.1			1	20	94	70	130	85	70	130
Iron	3	µg/g	23.1			3	20	97	70	130	78	70	130
Lead	0.05	µg/g	<0.05			7	20	90	70	130	101	70	130
Lithium	2	µg/g	<2			4	20	94	70	130	NV	70	130
Magnesium	3	µg/g	3.2			1	20	93	70	130	NV	70	130
Manganese	0.1	µg/g	<0.1			1	20	95	70	130	95	70	130
Molybdenum	0.1	µg/g	<0.1			15	20	102	70	130	NV	70	130
Nickel	0.1	µg/g	<0.1			2	20	94	70	130	85	70	130
Potassium	3	µg/g	<3			3	20	92	70	130	NV	70	130
Selenium	0.7	µg/g	<0.7			ND	20	96	70	130	NV	70	130
Silver	1	µg/g	<0.01			ND	20	91	70	130	129	70	130
Strontium	0.02	µg/g	<0.02			1	20	90	70	130	NV	70	130
Thallium	0.02	µg/g	<0.02			ND	20	NV	70	130	NV	70	130
Tin	2	µg/g	<2			ND	20	92	70	130	NV	70	130
Titanium	0.1	µg/g	<0.1			18	20	94	70	130	NV	70	130
Uranium	0.002	µg/g	<0.002			0	20	92	70	130	NV	70	130
Vanadium	1	µg/g	<1			1	20	93	70	130	89	70	130
Yttrium	0.004	µg/g	<0.004			2	20	93	70	130	NV	70	130
Zinc	0.7	µg/g	<0.7			1	20	91	70	130	81	70	130

Page 3 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

29-December-2022

Date Rec. :	07 December 2022
LR Report:	CA19066-DEC22
Reference:	Berry Composites - Set 2

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1: Analysis Start Ana Date		3: Analysis mpleted DateCor	4: Analysis noleted Time	5: B QPOR	6: B SED	7: B MD	8: B QTP	9: B LGO	10: B HGO
	Duito	11110 00		npietou nine						
SiO2 [%]	14-Dec-22	10:47	19-Dec-22	08:30	72.5	63.5	54.4	75.5	72.2	73.9
Al2O3 [%]	14-Dec-22	10:47	19-Dec-22	08:30	11.6	12.5	11.8	10.7	11.2	11.2
Fe2O3 [%]	14-Dec-22	10:47	19-Dec-22	08:30	4.24	5.36	10.3	3.52	4.69	4.18
MgO [%]	14-Dec-22	10:47	19-Dec-22	08:30	0.71	2.34	4.44	0.69	0.67	0.59
CaO [%]	14-Dec-22	10:47	19-Dec-22	08:30	2.64	4.98	6.63	1.84	2.64	2.19
Na2O [%]	14-Dec-22	10:47	19-Dec-22	08:30	3.92	1.64	2.19	3.88	3.63	4.42
K2O [%]	14-Dec-22	10:47	19-Dec-22	08:30	0.63	1.38	0.31	0.49	0.75	0.40
TiO2 [%]	14-Dec-22	10:47	19-Dec-22	08:30	0.27	0.42	1.18	0.28	0.30	0.28
P2O5 [%]	14-Dec-22	10:47	19-Dec-22	08:30	0.05	0.12	0.14	0.05	0.05	0.05
MnO [%]	14-Dec-22	10:47	19-Dec-22	08:30	0.07	0.15	0.17	0.06	0.09	0.06
Cr2O3 [%]	14-Dec-22	10:47	19-Dec-22	08:30	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
V2O5 [%]	14-Dec-22	10:47	19-Dec-22	08:30	< 0.01	< 0.01	0.04	< 0.01	0.01	< 0.01
LOI [%]	14-Dec-22	10:47	19-Dec-22	08:30	3.04	6.66	8.05	2.62	3.41	2.46
Sum [%]	14-Dec-22	10:47	19-Dec-22	08:30	99.6	99.0	99.8	99.6	99.6	99.7

GNACAL CHAFTERED Chris Sullion Christopher Scillyar CHEMIST

Chris Sullivan, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

Page 1 of 1 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

0003175673

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

29-December-2022

Date Rec. :	08 December 2022
LR Report:	CA19106-DEC22
Reference:	Berry Composites- Set 3- As Rec'd

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:
	Analysis Start Anal Date		Analysis mpleted DateCor	Analysis npleted Time	B-QPOR_FB	B-CG_FB	M-MD_FB	B-QTP_FB	B-LGO_FB
SiO2 [%]	20-Dec-22	17:51	28-Dec-22	09:39	72.0	62.8	55.2	72.3	72.4
Al2O3 [%]	20-Dec-22	17:51	28-Dec-22	09:39	12.2	13.4	13.0	11.9	12.2
Fe2O3 [%]	20-Dec-22	17:51	28-Dec-22	09:39	4.14	5.47	8.68	3.98	3.80
MgO [%]	20-Dec-22	17:51	28-Dec-22	09:39	1.01	2.24	3.30	0.78	0.71
CaO [%]	20-Dec-22	17:51	28-Dec-22	09:39	2.76	5.16	6.60	2.71	2.34
Na2O [%]	20-Dec-22	17:51	28-Dec-22	09:39	3.64	2.01	3.39	3.88	3.76
K2O [%]	20-Dec-22	17:51	28-Dec-22	09:39	0.69	1.40	0.58	0.71	0.88
TiO2 [%]	20-Dec-22	17:51	28-Dec-22	09:39	0.36	0.52	1.11	0.34	0.31
P2O5 [%]	20-Dec-22	17:51	28-Dec-22	09:39	0.06	0.13	0.15	0.07	0.06
MnO [%]	20-Dec-22	17:51	28-Dec-22	09:39	0.07	0.14	0.17	0.08	0.07
Cr2O3 [%]	20-Dec-22	17:51	28-Dec-22	09:39	0.02	0.02	0.01	0.02	0.02
V2O5 [%]	20-Dec-22	17:51	28-Dec-22	09:39	< 0.01	0.02	0.03	< 0.01	< 0.01
LOI [%]	20-Dec-22	17:51	28-Dec-22	09:39	3.22	6.57	7.22	2.82	2.71
Sum [%]	20-Dec-22	17:51	28-Dec-22	09:39	100.2	100.0	99.3	99.6	99.3

Analysis	10:	11:	12:	13:	14:	15:	16:
	B-HGO_FB	B-QPOR_FB B-0 DUP	CG_FB DUPM-MD	_FB DUPB-Q1	TP_FB DUP B-LG	60_FB DUP B-HC	60_FB DUP
SiO2 [%]	71.7	71.6	62.7	55.0	72.0	72.5	71.9
AI2O3 [%]	11.6	12.1	13.4	13.0	11.8	12.2	11.6
Fe2O3 [%]	4.14	4.13	5.46	8.59	3.95	3.82	4.16
MgO [%]	0.83	1.02	2.22	3.32	0.79	0.71	0.84
CaO [%]	2.49	2.73	5.15	6.60	2.70	2.31	2.50
Na2O [%]	4.02	3.60	2.02	3.40	3.90	3.74	4.01
K2O [%]	0.63	0.69	1.39	0.58	0.72	0.90	0.63
TiO2 [%]	0.35	0.36	0.51	1.12	0.33	0.30	0.36
P2O5 [%]	0.06	0.07	0.12	0.15	0.06	0.05	0.06
MnO [%]	0.07	0.06	0.15	0.17	0.08	0.07	0.07
Cr2O3 [%]	0.03	0.02	0.01	0.01	0.02	0.02	0.02
V2O5 [%]	< 0.01	< 0.01	0.01	0.04	< 0.01	< 0.01	< 0.01
LOI [%]	3.05	3.19	6.67	7.46	2.78	2.65	2.81
Sum [%]	99.0	99.5	99.8	99.4	99.1	99.3	98.9

Page 1 of 2

LR Report : CA19106-DEC22

0003175678

GNACAL . CHAFTERED Chris Sullion Christopher Sollivan 2 CHEMIST

Chris Sullivan, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: **ABA - Modified Sobek**

29-December-2022

Date Rec. :	01 December 2022
LR Report:	CA19002-DEC22
Reference:	Berry Composites - Set 1- As Rec'd

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:
	Analysis Start Ar Date		Analysis ompleted DateCor	Analysis npleted Time	B QPOR-PAG	B SED-High SFE	B QTP-PAG	B LGO-PAG B H	GO-PAG-Zn	B OB-ML	B QPOR-PAG- DUP	B SED-High SFE- DUP
Paste pH [no unit]	14-Dec-22	16:00	16-Dec-22	15:42	9.20	9.07	9.24	8.39	9.29	7.46	9.16	9.08
Fizz Rate [rating]	14-Dec-22	16:00	16-Dec-22	15:42	2	2	2	2	2	2	2	2
Sample weight [g]	14-Dec-22	16:00	16-Dec-22	15:42	2.07	2.11	2.03	1.92	2.01	2.06	1.99	1.95
HCI Added [mL]	15-Dec-22	14:00	16-Dec-22	15:42	20.00	27.80	20.00	20.00	20.00	20.00	20.00	26.10
HCI [Normality]	14-Dec-22	16:00	16-Dec-22	15:42	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	14-Dec-22	16:00	16-Dec-22	15:42	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
NaOH to pH=8.3 [mL]	16-Dec-22	14:41	16-Dec-22	15:42	13.66	12.71	9.57	8.22	12.13	15.92	13.91	11.88
Final pH [no unit]	15-Dec-22	16:01	16-Dec-22	15:42	1.32	1.62	1.56	1.77	1.40	1.44	1.26	1.60
NP [t CaCO3/1000 t]	16-Dec-22	14:41	16-Dec-22	15:42	15.3	35.8	25.7	30.7	19.6	9.9	15.3	36.5
AP [t CaCO3/1000 t]	16-Dec-22	15:42	16-Dec-22	15:43	29.1	3.12	40.6	160	23.1	1.25	30.9	3.75
Net NP [t CaCO3/1000 t]	16-Dec-22	15:42	16-Dec-22	15:43	-13.76	32.7	-14.92	-128.99	-3.52	8.65	-15.64	32.8
NP/AP [ratio]	16-Dec-22	15:42	16-Dec-22	15:43	0.53	11.5	0.63	0.19	0.85	7.92	0.49	9.73
Sulphur (total) [%]	08-Dec-22	18:00	14-Dec-22	15:06	1.05	0.154	1.32	5.35	0.811	0.091	1.076	0.153
Acid Leachable SO4-S [%]	14-Dec-22	15:03	14-Dec-22	15:06	0.12	0.05	< 0.04	0.24	0.07	0.08	0.09	< 0.04
Sulphide [%]	14-Dec-22	09:55	14-Dec-22	15:06	0.93	0.10	1.30	5.11	0.74	< 0.04	0.99	0.12
Carbon (total) [%]	08-Dec-22	18:00	13-Dec-22	11:45	0.193	0.390	0.302	0.377	0.231	0.308	0.194	0.395
Carbonate (HCI) [%]	13-Dec-22	10:28	13-Dec-22	11:45	0.85	1.87	1.41	1.79	1.05	0.68	0.85	1.90

0003175683

Page 1 of 4 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report :

CA19002-DEC22

Analysis	13: B QTP-PAG- DUP	14: B LGO-PAG- DUP	15: B I HGO-PAG-Zn-D UP	16: 3 OB-ML- DUP
Paste pH [no unit]	9.25	8.33	9.17	7.37
Fizz Rate [rating]	3	3	2	3
Sample weight [g]	2.06	2.00	2.04	1.94
HCI Added [mL]	20.00	20.00	20.00	20.00
HCI [Normality]	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10
NaOH to pH=8.3 [mL]	9.25	7.84	12.22	16.18
Final pH [no unit]	1.58	1.85	1.40	1.33
NP [t CaCO3/1000 t]	26.1	30.4	19.1	9.9
AP [t CaCO3/1000 t]	39.4	163	23.8	1.25
Net NP [t CaCO3/1000 t]	-13.28	-132.72	-4.65	8.65
NP/AP [ratio]	0.66	0.19	0.80	7.92
Sulphur (total) [%]	1.38	5.40	0.825	0.091
Acid Leachable SO4-S [%]	0.12	0.18	0.06	0.05
Sulphide [%]	1.26	5.22	0.76	0.04
Carbon (total) [%]	0.310	0.378	0.231	0.299
Carbonate (HCI) [%]	1.41	1.81	1.08	0.64

*NP (Neutralization Potential)

= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25 *Net NP (Net Neutralization Potential) = NP-AP NP/AP Ratio = NP/AP *Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.04 will be calculated using a 0.04 value.

0003175683

Page 2 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

ABA - Modified Sobek

LR Report : CA19002-DEC22

Method Descriptions

Parameter	SGS Method Code	Reference Method Code
Acid Potential	ME-CA-[ENV]ARD-LAK-AN-001/003	MEND PROJECT 1.16.1B
Carbon/Sulphur	ME-CA-[ENV]ARD-LAK-AN-019	ASTM E1915-07A
Carbon/Sulphur	ME-CA-[ENV]ARD-LAK-AN-020	ASTM E1915-07A
Neutralization Potential	ME-CA-[ENV]ARD-LAK-AN-001/003	MEND PROJECT 1.16.1B
Paste pH	ME-CA-[ENV]ARD-LAK-AN-005	ARD Predicition Manual, 2009

ENISCAT CHAFTERED Chris Sullion Christopher Sullian Christopher Scillyan

Chris Sullivan, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003175683

Page 3 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

ABA - Modified Sobek

LR Report : CA19002-DEC22

Quality Control Report

				Ino	rganic Analys	is									
Parameter					Dupl	icate		LC	CS / Spike Blar	nk	Matrix Spike / Reference Material				
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery Limits (%)		Recovery Limits (%)		Spike Recovery (%)	Recovery	Limits (%)
							%		Low	High		Low	High		
Carbon/Sulphur - QCBatchID: ECS0029-DEC22															
Sulphide	0.04	%	< 0.04			5	20	97	80	120					
Carbon/Sulphur - QCBatchID: ECS0031-DEC22															
Carbon (total)	0.005	%	< 0.005			1	20				96	70	130		
Sulphur (total)	0.005	%	< 0.005			3	20				104	70	130		
Carbon/Sulphur - QCBatchID: ECS0043-DEC22					•	•									
Carbonate (HCI)	0.04	%	<0.04			1	20	98	80	120					

0003175683

Page 4 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. *Temperature Upon Receipt* is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

#1

29-December-2022

Date Rec. :	01 December 2022
LR Report:	CA19003-DEC22
Reference:	Berry Composites- Set 1- As Rec'd

Copy:

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:		3:	4:	5:	6:	7:	8:	9:	10:	11:	12:
	Analysis Start Date	t Analysis Start Time (Analysis Analy Completed DateCompleted T		B QPOR-PAG	B SED-High SFE	B QTP-PAG	B LGO-PAG B HGO-PAG-Zn		B OB-ML	B QPOR-PAG- DUP	B SED-High SFE- DUP
			•	•								
Mercury [ug/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Silver [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Arsenic [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	1.4	2.4	2.7	6.2	1.5	22	1.5	2.5
Aluminum [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	6300	16000	5200	6400	6900	16000	6400	16000
Barium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	18	39	17	22	11	64	20	41
Beryllium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	0.11	0.28	0.08	0.09	0.07	0.29	0.11	0.28
Bismuth [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	0.29	< 0.09	0.37	1.1	6.3	0.17	0.31	< 0.09
Calcium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	6300	14000	10000	12000	7400	5400	6400	15000
Cadmium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	0.03	0.04	0.03	< 0.02	0.04	0.16	0.03	0.04
Cobalt [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	4.1	10	18	28	6.8	16	4.1	10
Chromium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	95	69	130	90	150	73	95	71
Copper [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	15	25	13	92	13	45	16	25
Iron [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	24000	31000	25000	64000	24000	39000	24000	32000
Potassium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	560	990	550	650	470	1600	580	1000
Lithium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	2	9	2	2	< 2	15	2	9
Magnesium [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	2300	12000	2200	2500	2700	11000	2300	12000
Manganese [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	320	730	300	320	290	600	330	740
Molybdenum [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	1.2	1.3	4.4	1.6	2.5	1.3	1.2	1.1
Nickel [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	5.7	21	6.3	5.0	6.5	29	6.0	21
Lead [µg/g]	09-Dec-22	2 16:29	12-Dec-22	15:05	0.80	2.8	0.76	1.3	5.5	8.2	0.84	3.0

0003175686

Page 1 of 4 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19003-DEC22

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:
	Analysis Start A		Analysis	Analysis	B QPOR-PAG	B SED-High	B QTP-PAG	B LGO-PAG B H	GO-PAG-Zn	B OB-ML	B QPOR-PAG-	B SED-High
	Date	Time C	ompleted DateCo	mpleted Time		SFE					DUP	SFE- DUP
Antimony [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Selenium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 0.7	< 0.7	0.8	1.1	< 0.7	< 0.7	< 0.7	< 0.7
Tin [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Strontium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	7.3	23	11	12	8.5	17	7.6	22
Titanium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	49	87	50	29	82	1500	100	95
Thallium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.09	< 0.02	< 0.02
Uranium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	0.13	0.58	0.10	0.12	0.090	1.6	0.14	0.59
Vanadium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	3	26	5	8	7	63	3	27
Yttrium [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	5.5	9.6	5.0	6.4	4.3	9.3	5.5	9.3
Zinc [µg/g]	09-Dec-22	16:29	12-Dec-22	15:05	17	50	13	17	18	62	17	51

Analysis	13: B QTP-PAG- DUP	14: B LGO-PAG-	15: B I HGO-PAG-Zn-D	16: B OB-ML- DUP
	DOP	DUP	UP	
Mercury [ug/g]	< 0.05	< 0.05	< 0.05	< 0.05
Silver [µg/g]	< 1	< 1	< 1	< 1
Arsenic [µg/g]	2.7	6.2	1.4	21
Aluminum [µg/g]	5200	6600	7200	17000
Barium [µg/g]	17	22	12	62
Beryllium [µg/g]	0.08	0.09	0.07	0.29
Bismuth [µg/g]	0.33	1.1	6.5	0.17
Calcium [µg/g]	9900	13000	7500	5600
Cadmium [µg/g]	0.03	< 0.02	0.03	0.19
Cobalt [µg/g]	18	30	6.9	16
Chromium [µg/g]	130	91	150	74
Copper [µg/g]	13	93	13	46
Iron [µg/g]	25000	66000	24000	40000
Potassium [µg/g]	560	680	490	1700
Lithium [µg/g]	< 2	2	< 2	14
Magnesium [µg/g]	2200	2500	2700	11000
Manganese [µg/g]	300	330	290	610
Molybdenum [µg/g]	4.3	1.2	2.6	1.3
Nickel [µg/g]	6.4	5.1	6.4	29
Lead [µg/g]	0.73	1.4	5.5	7.9
Antimony [µg/g]	< 6	< 6	< 6	< 6

0003175686

Page 2 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19003-DEC22

Analysis	13: B QTP-PAG- DUP	14: B LGO-PAG- DUP H	15: B E GO-PAG-Zn-D UP	16: 3 OB-ML- DUP
Selenium [µg/g]	0.7	1.1	< 0.7	< 0.7
Tin [µg/g]	< 2	< 2	< 2	< 2
Strontium [µg/g]	11	12	8.5	17
Titanium [µg/g]	41	30	82	1500
Thallium [µg/g]	< 0.02	< 0.02	< 0.02	0.10
Uranium [µg/g]	0.099	0.10	0.10	1.5
Vanadium [µg/g]	5	8	7	65
Yttrium [µg/g]	5.0	6.1	4.2	9.5
Zinc [µg/g]	13	17	19	63

Method Descriptions

Parameter	SGS Method Code	Reference Method Code
Mercury by CVAAS	ME-CA-[ENV]SPE-LAK-AN-004	EPA 7471A/EPA 245
Metals in Soil - Aqua-regia/ICP-MS	ME-CA-[ENV]SPE-LAK-AN-005	EPA 3050/EPA 200.8

GNACAL CHAFTERED Chris Sullion Christopher Sollivan Christopher Sollivan

Chris Sullivan, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

OnLine LIMS

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 3 of 4

LR Report :

CA19003-DEC22

Quality Control Report

	Inorganic Analysis												
Parameter	Reporting	Unit	Method		Dupl			L	CS / Spike Blar	nk	Matrix Sp	ike / Reference	e Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery	Limits (%)	Spike Recovery (%)	Recovery	Limits (%)
							%		Low	High		Low	High
Mercury by CVAAS - QCBatchID: EMS0062-DEC22													
Mercury	0.05	ug/g	<0.05			ND	20	109	80	120	112	70	130
Metals in Soil - Aqua-regia/ICP-MS - QCBatchID: EMS006													
Aluminum	3	µg/g	<3			0	20	106	70	130	NV	70	130
Antimony	6	µg/g	<0.8			ND	20	95	70	130	NV	70	130
Arsenic	0.5	µg/g	<0.5			1	20	93	70	130	109	70	130
Barium	0.01	µg/g	<0.01			5	20	94	70	130	109	70	130
Beryllium	0.02	µg/g	<0.02			7	20	90	70	130	NV	70	130
Bismuth	0.09	µg/g	<0.09			3	20	96	70	130	NV	70	130
Cadmium	0.02	µg/g	<0.02			ND	20	97	70	130	NV	70	130
Calcium	3	µg/g	<3			0	20	101	70	130	NV	70	130
Chromium	0.5	µg/g	<0.5			1	20	98	70	130	82	70	130
Cobalt	0.01	µg/g	<0.01			4	20	98	70	130	96	70	130
Copper	0.1	µg/g	<0.1			1	20	99	70	130	92	70	130
Iron	3	µg/g	100.5			1	20	107	70	130	111	70	130
Lead	0.05	µg/g	<0.05			9	20	92	70	130	118	70	130
Lithium	2	µg/g	<2			1	20	90	70	130	NV	70	130
Magnesium	3	µg/g	<3			1	20	105	70	130	NV	70	130
Manganese	0.1	µg/g	<0.1			0	20	102	70	130	112	70	130
Molybdenum	0.1	µg/g	<0.1			6	20	94	70	130	NV	70	130
Nickel	0.1	µg/g	<0.1			1	20	101	70	130	96	70	130
Potassium	3	µg/g	<3			1	20	103	70	130	NV	70	130
Selenium	0.7	µg/g	<0.7			ND	20	98	70	130	NV	70	130
Silver	1	µg/g	<0.01			3	20	101	70	130	128	70	130
Strontium	0.02	µg/g	<0.02			1	20	93	70	130	NV	70	130
Thallium	0.02	µg/g	<0.02			ND	20	NV	70	130	NV	70	130
Tin	2	µg/g	<2			ND	20	97	70	130	NV	70	130
Titanium	0.1	µg/g	<0.1			7	20	97	70	130	NV	70	130
Uranium	0.002	µg/g	<0.002			1	20	91	70	130	NV	70	130
Vanadium	1	µg/g	<1			2	20	97	70	130	100	70	130
Yttrium	0.004	µg/g	<0.004			1	20	94	70	130	NV	70	130
Zinc	0.7	µg/g	<0.7			2	20	97	70	130	87	70	130

0003175686

Page 4 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

29-December-2022

Date Rec. :	01 December 2022
LR Report:	CA19005-DEC22
Reference:	Berry Composites- Set 1- As Rec'd

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Sample ID	SiO2	AI2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3	V2O5	LOI	Sum
	%	%	%	%	%	%	%	%	%	%	%	%	%	%
1: Analysis Start Date	08-Dec-22													
2: Analysis Start Time	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54	11:54
3: Analysis Completed Date	14-Dec-22													
4: Analysis Completed Time	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49	08:49
5: B QPOR-PAG	74.9	12.0	3.49	0.46	1.18	4.41	0.63	0.30	0.05	0.04	0.03	< 0.01	2.02	99.6
6: B SED-High SFE	67.6	13.4	5.53	2.36	2.33	1.71	1.46	0.59	0.13	0.10	0.01	0.01	4.03	99.4
7: B QTP-PAG	73.2	11.3	4.26	0.73	2.13	3.88	0.61	0.32	0.06	0.05	0.04	< 0.01	2.88	99.5
8: B LGO-PAG	71.0	9.31	8.47	0.53	1.92	2.09	0.80	0.24	0.05	0.04	0.04	< 0.01	4.77	99.3
9: B HGO-PAG-Zn	82.0	7.58	3.19	0.45	1.18	2.61	0.41	0.21	0.03	0.03	0.05	< 0.01	2.13	99.9
10: B OB-ML	65.8	13.7	6.89	2.41	2.40	3.19	1.41	1.13	0.17	0.14	0.02	0.03	2.99	100.3
11: B QPOR-PAG- DUP	75.3	12.0	3.50	0.46	1.18	4.46	0.63	0.30	0.05	0.04	0.03	< 0.01	2.15	100.1
12: B SED-High SFE- DUP	68.2	13.6	5.53	2.39	2.35	1.71	1.45	0.59	0.14	0.11	0.02	0.01	4.06	100.2
13: B QTP-PAG- DUP	73.0	11.3	4.26	0.73	2.11	3.92	0.61	0.32	0.06	0.05	0.03	< 0.01	3.06	99.5
14: B LGO-PAG- DUP	70.6	9.26	8.43	0.53	1.92	2.08	0.81	0.24	0.05	0.04	0.03	< 0.01	4.56	98.5
15: B HGO-PAG-Zn-DUP	83.2	7.68	3.19	0.45	1.19	2.62	0.42	0.20	0.04	0.03	0.06	< 0.01	1.94	101.0
16: B OB-ML- DUP	65.8	13.7	6.89	2.39	2.39	3.15	1.38	1.13	0.18	0.14	0.02	0.03	2.96	100.2

0003175696

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 1 of 2

LR Report : CA19005-DEC22

CHAFTERED

Chris Sullivan, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003175696

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 2 of 2

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: SFE 3:1 ratio 24hr (MEND) prefilter pH - Please use only 100g to SFE

29-December-2022

Date Rec. :	01 December 2022
LR Report:	CA19004-DEC22
Reference:	Berry Composites- Set 1- As Rec'd

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis		Analysis Start	3: Analysis	4: Analysis	5: B QPOR-PAG	6: B SED-High	7: B QTP-PAG	8: B LGO-PAG E	9: HGO-PAG-Zn	10: B OB-ML
	Date	Time C	ompleted DateCo	mpleted Time		SFE				
Sample weight [g]	08-Dec-22	11:42	09-Dec-22	15:19	100	100	100	100	100	100
Volume D.I. Water [mL]	08-Dec-22	11:42	09-Dec-22	15:19	300	300	300	300	300	300
Final pH [no unit]	09-Dec-22	10:39	09-Dec-22	15:19	8.72	9.08	9.04	8.49	8.99	7.51
pH [No unit]	12-Dec-22	07:52	13-Dec-22	11:36	7.52	7.55	7.60	7.60	7.61	7.88
Conductivity [uS/cm]	12-Dec-22	07:52	13-Dec-22	11:36	142	113	122	238	110	399
Alkalinity [mg/L as CaCO3]	12-Dec-22	07:52	13-Dec-22	11:36	35	38	31	39	35	86
Fluoride [mg/L]	15-Dec-22	09:17	15-Dec-22	12:33	0.11	0.16	< 0.06	0.06	< 0.06	0.06
Sulphate [mg/L]	16-Dec-22	20:37	22-Dec-22	15:55	20	7.8	20	54	11	110
Silver [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.00005	< 0.00005	< 0.00005	0.00008	< 0.00005	< 0.00005
Aluminum [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.431	0.446	0.655	0.385	0.623	0.070
Arsenic [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.0008	0.0007	0.0011	0.0002	0.0012	0.0077
Barium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.00081	0.00392	0.00228	0.00174	0.00097	0.0434
Boron [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.018	0.026	0.033	0.017	0.020	0.003
Beryllium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
Bismuth [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00008	< 0.00001
Calcium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	15.8	9.94	14.8	33.2	13.4	74.0
Cadmium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.000005	0.000018	< 0.000003	< 0.000003	< 0.000003	0.000075
Cobalt [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.000024	0.000014	0.000030	0.000039	0.000020	0.000314
Chromium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.00008	0.00009	< 0.00008	< 0.00008	< 0.00008	0.00041
Copper [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.0014	0.0004	0.0005	0.0005	0.0003	0.0077

0003175690

Page 1 of 5

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19004-DEC22

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Start Ar Date		Analysis mpleted DateCo	Analysis mpleted Time	B QPOR-PAG	B SED-High SFE	B QTP-PAG	B LGO-PAG B	HGO-PAG-Zn	B OB-ML
Iron [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.017	0.017	0.011	< 0.007	0.018	0.077
Potassium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	2.64	6.90	3.00	3.03	2.47	2.04
Lithium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.0006	0.0002	0.0002	0.0005	0.0002	0.0003
Magnesium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	1.34	1.33	0.978	1.86	0.947	4.44
Manganese [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.0245	0.00185	0.00399	0.0174	0.00426	0.349
Molybdenum [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.00915	0.0680	0.00414	0.00393	0.00193	0.0134
Sodium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	8.04	5.02	5.57	7.22	5.11	1.63
Nickel [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.0006	0.0004	0.0005	0.0004	0.0004	0.0015
Lead [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Antimony [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0018	0.0031
Selenium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.00040	0.00008	0.00028	0.00032	0.00028	0.00356
Tin [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Silicon [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	2.16	2.21	2.22	1.67	2.23	2.36
Strontium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.0124	0.104	0.0368	0.0499	0.0355	0.145
Titanium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.00071	0.00085	0.00042	0.00027	0.00083	0.00363
Thallium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000016
Uranium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.000103	0.000223	0.000098	0.000099	0.000159	0.006734
Vanadium [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	0.00022	0.00273	0.00111	0.00022	0.00103	0.00407
Zinc [mg/L]	10-Dec-22	19:04	13-Dec-22	09:41	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

GN/ICA/ CHAFTERED Chris Sullion Christopher Sullion

Project Specialist, Environment, Health & Safety

0003175690

Page 2 of 5

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

SFE 3:1 ratio 24hr (MEND) prefilter pH - Please use only 100g to SFE

LR Report : CA19004-DEC22

Method Descriptions

Parameter	SGS Method Code	Reference Method Code
Alkalinity	ME-CA-[ENV]EWL-LAK-AN-006	SM 2320
Anions by IC	ME-CA-[ENV]IC-LAK-AN-001	EPA300/MA300-lons1.3
Conductivity	ME-CA-[ENV]EWL-LAK-AN-006	SM 2510
Fluoride by Specific Ion Electrode	ME-CA-[ENV]EWL-LAK-AN-014	SM 4500
Metals in aqueous samples - ICP-MS	ME-CA-[ENV]SPE-LAK-AN-006	SM 3030/EPA 200.8
рН	ME-CA-[ENV]EWL-LAK-AN-006	SM 4500

0003175690

Page 3 of 5

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

LR Report : CA19004-DEC22

Quality Control Report

				Ino	rganic Analys	is							
Parameter	Reporting	Unit	Method		Dupl			LC	S / Spike Blan	k	Matrix Spi	ke / Reference	Material
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery L	imits (%)	Spike Recovery (%)	Recovery I	∟imits (%)
							%		Low	High		Low	High
Alkalinity - QCBatchID: EWL0194-DEC22													
Alkalinity	2	mg/L as Ca	< 2			0	20	106	80	120	NA		
Alkalinity - QCBatchID: EWL0211-DEC22													
Alkalinity	2	mg/L as Ca	< 2			1	20	100	80	120	NA		
Anions by IC - QCBatchID: DIO0423-DEC22													
Sulphate	0.2	mg/L	<0.2			1	20	94	90	110	93	75	125
Anions by IC - QCBatchID: DIO0479-DEC22				-									
Sulphate	0.2	mg/L	<0.2			0	20	102	90	110	NV	75	125
Conductivity - QCBatchID: EWL0194-DEC22													
Conductivity	2	uS/cm	< 2			1	20	99	90	110	NA		
Conductivity - QCBatchID: EWL0211-DEC22													
Conductivity	2	uS/cm	< 2			1	20	98	90	110	NA		
Fluoride by Specific Ion Electrode - QCBatchID: EWL0252	-DEC22												
Fluoride	0.06	mg/L	<0.06			ND	10	103	90	110	NV	75	125
Metals - QCBatchID: EMS0083-DEC22													
Cobalt	0.000004	mg/L	< 0.000004			0	20	97	90	110	102	70	130
Metals in aqueous samples - ICP-MS - QCBatchID: EMS0	083-DEC22			•							·		
Aluminum	0.001	mg/L	<0.001			0	20	102	90	110	113	70	130
Antimony	0.0009	mg/L	<0.0009			ND	20	98	90	110	85	70	130
Arsenic	0.0002	mg/L	<0.0002			0	20	98	90	110	103	70	130
Barium	0.00008	mg/L	< 0.00002			0	20	100	90	110	100	70	130
Beryllium	0.000007	mg/L	< 0.000007			ND	20	95	90	110	104	70	130
Bismuth	0.00001	mg/L	<0.00001			ND	20	99	90	110	91	70	130
Boron	0.002	mg/L	<0.002			0	20	90	90	110	80	70	130
Cadmium	0.000003	mg/L	< 0.000003			0	20	100	90	110	101	70	130
Calcium	0.01	mg/L	<0.01			3	20	99	90	110	102	70	130
Chromium	0.00008	mg/L	<0.00008			0	20	97	90	110	89	70	130
Copper	0.0002	mg/L	<0.0002			0	20	98	90	110	95	70	130
Iron	0.007	mg/L	<0.007			0	20	100	90	110	100	70	130
Lead	0.00009	mg/L	<0.00001			0	20	100	90	110	98	70	130
Lithium	0.0001	mg/L	<0.0001			0	20	92	90	110	92	70	130
Magnesium	0.001	mg/L	<0.001			2	20	101	90	110	102	70	130
Manganese	0.00001	mg/L	<0.00001			0	20	104	90	110	100	70	130
Molybdenum	0.00004	mg/L	<0.00004			0	20	91	90	110	93	70	130
Nickel	0.0001	mg/L	<0.0001			0	20	96	90	110	90	70	130
Potassium	0.003	mg/L	<0.009				20	104					130

Page 4 of 5

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19004-DEC22

				Ino	rganic Analys	is							
Parameter	Reporting									Matrix Sp	Matrix Spike / Reference Material		
	Limit		Blank	Result 1	Result 2	RPD	Acceptance Criteria	Spike Recovery (%)	Recovery	Limits (%)	Spike Recovery Recovery (%)		Limits (%)
							%		Low	High		Low	High
Selenium	0.00004	mg/L	< 0.00004			ND	20	103	90	110	101	70	130
Silicon	0.02	mg/L	<0.02			0	20	94	90	110	NV	70	130
Silver	0.00005	mg/L	<0.00005			ND	20	100	90	110	85	70	130
Sodium	0.01	mg/L	<0.01			4	20	101	90	110	98	70	130
Strontium	0.00008	mg/L	<0.00002			0	20	100	90	110	102	70	130
Thallium	0.000005	mg/L	<0.000005			ND	20	99	90	110	98	70	130
Tin	0.00006	mg/L	<0.00006			0	20	90	90	110	NV	70	130
Titanium	0.00005	mg/L	<0.00005			0	20	92	90	110	NV	70	130
Uranium	0.000002	mg/L	<0.00002			0	20	91	90	110	93	70	130
Vanadium	0.00001	mg/L	<0.00001			0	20	98	90	110	110	70	130
Zinc	0.002	mg/L	<0.002			0	20	97	90	110	93	70	130
pH - QCBatchID: EWL0194-DEC22			•	•								•	
pH	0.05	No unit	NA			0		100			NA		
pH - QCBatchID: EWL0211-DEC22				•	•	•			•		·		
рН	0.05	No unit	NA			0		100			NA		

0003175690

Page 5 of 5

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

19-January-2023

Date Rec. :	09 January 2023
LR Report:	CA19050-JAN23
Reference:	Berry Composites - Set 2

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Start Analysis Date		Analysis ompleted DateCom		B QPOR dup	B SED dup	B MD dup	B QTP dup	B LGO dup B	HGO dup
	Duit	Time C								
Sample Date & Time					N/A	N/A	N/A	N/A	N/A	N/A
Hg MS [ug/g]	15-Jan-23	01:13	17-Jan-23	11:08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ag [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	< 1	< 1	< 1	< 1	< 1	< 1
As [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	7.5	3.0	5.9	2.2	3.6	1.7
AI [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	9000	11000	33000	7600	7100	7700
Ba [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	20	86	18	9.7	15	10
Be [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	0.089	0.25	0.29	0.076	0.069	0.054
Bi [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	0.19	0.097	< 0.09	0.16	0.59	1.3
Ca [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	11000	19000	32000	9700	14000	11000
Cd [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	0.17	0.081	0.13	0.060	0.055	0.049
Co [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	3.7	7.7	25	4.6	20	4.8
Cr [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	3.2	11	63	7.4	4.1	6.7
Cu [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	19	39	43	27	26	22
Fe [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	22000	20000	67000	20000	30000	26000
K [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	630	690	450	390	560	310
Li [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	2.1	4.3	6.7	2.0	< 2	< 2
Mg [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	2900	7000	22000	2700	2400	2600
Mn [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	400	730	1000	400	520	400
Mo [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	2.3	0.39	1.2	2.7	1.6	2.9
Na [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	770	390	310	660	600	700

0003199569

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

LR Report : CA19050-JAN23

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Start Ana		Analysis		QPOR dup B	SED dup	B MD dup	B QTP dup B	LGO dup B	HGO dup
	Date	Time Co	mpleted DateCor	npleted Time						
Ni [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	1.5	12	22	2.6	2.5	3.1
P [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	180	260	560	170	150	160
Pb [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	1.5	1.9	5.2	1.0	6.1	2.1
Sb [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	< 6	< 6	< 6	< 6	< 6	< 6
Se [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	< 2	< 2	< 2	< 2	< 2	< 2
Sr [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	9.6	36	50	12	15	13
Ti [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	76	41	740	61	33	48
TI [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	0.15	0.75	0.17	0.13	0.12	0.12
V [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	7.8	23	110	8.6	7.3	9.1
Y [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	7.4	8.0	14	6.5	6.0	6.7
Zn [µg/g]	15-Jan-23	01:13	17-Jan-23	11:08	31	35	87	29	28	27

Catharine Arnold, B.Sc., C.Chem

Catharine Arnold, B.Sc., C.Chen Project Specialist, Environment, Health & Safety

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 2 of 2

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: **ABA - Modified Sobek**

19-January-2023

Date Rec. :	07 December 2022
LR Report:	CA19063-DEC22
Reference:	Berry Composites - Set 2

#1

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: B QPOR	6: B SED	7: B MD	8: B QTP	9: B LGO	10: B HGO
Sample Date & Time					N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	03-Jan-23	08:07	05-Jan-23	15:38	9.46	9.21	8.88	9.45	9.02	9.48
Fizz Rate [rating]	03-Jan-23	08:07	05-Jan-23	15:38	2	3	3	2	2	2
Sample weight [g]	03-Jan-23	08:07	05-Jan-23	15:38	1.98	2.03	2.05	2.05	2.00	2.03
HCI_add [mL]	03-Jan-23	08:07	05-Jan-23	15:38	30.00	60.00	75.00	30.00	35.00	30.00
HCI [Normality]	03-Jan-23	08:07	05-Jan-23	15:38	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	03-Jan-23	08:07	05-Jan-23	15:38	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	03-Jan-23	08:07	05-Jan-23	15:38	15.77	24.99	34.15	17.30	17.79	15.61
Final pH [no unit]	03-Jan-23	08:07	05-Jan-23	15:38	1.55	1.59	1.63	1.42	1.43	1.52
NP [t CaCO3/1000 t]	03-Jan-23	08:07	05-Jan-23	15:38	35.9	86.2	99.6	31.0	43.0	35.4
AP [t CaCO3/1000 t]	05-Jan-23	15:38	05-Jan-23	15:39	7.50	1.25	6.88	7.81	60.0	23.8
Net NP [t CaCO3/1000 t]	05-Jan-23	15:38	05-Jan-23	15:39	28.4	85.0	92.7	23.2	-17.00	11.6
NP/AP [ratio]	05-Jan-23	15:38	05-Jan-23	15:39	4.79	69.0	14.5	3.97	0.72	1.49
S [%]	15-Dec-22	10:29	05-Jan-23	11:28	0.285	0.023	0.240	0.282	1.91	0.767
Acid Leachable SO4-S [%]	05-Jan-23	11:28	05-Jan-23	11:28	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Sulphide [%]	20-Dec-22	09:24	05-Jan-23	11:28	0.24	< 0.04	0.22	0.25	1.92	0.76

0003199580

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

ABA - Modified Sobek

LR Report : CA19063-DEC22

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: B QPOR	6: B SED	7: B MD	8: B QTP	9: B LGO	10: B HGO
C [%]	15-Dec-22	10:29	19-Dec-22	12:09	0.414	1.05	1.06	0.353	0.497	0.400
CO3 (HCl) as %CO3 [%]	19-Dec-22	07:49	19-Dec-22	12:09	1.98	5.16	5.24	1.70	2.32	1.93

*NP (Neutralization Potential)

= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25
*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP
*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material
Samples with a % Sulphide value of <0.04 will be calculated using a 0.04 value.</pre>

Catharine anold Chartered

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003199580

Page 2 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO, Mt. Pearl Canada, A1N 0A1 Phone: 709-730-5046, Fax:

ABA - Modified Sobek

19-January-2023

Date Rec. :	08 December 2022
LR Report:	CA19103-DEC22
Reference:	Berry Composites - Set 3- As Rec'd

#1

Copy:

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed	Completed	5: B-QPOR_FB	6: B-CG_FB	7: M-MD_FB	8: B-QTP_FB	9: B-LGO_FB	10: B-HGO_FB
			Date	Time						
Sample Date & Time					N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	04-Jan-23	09:58	06-Jan-23	09:13	9.45	9.35	9.07	9.40	9.43	9.34
Fizz Rate [rating]	04-Jan-23	09:58	06-Jan-23	09:13	4	4	4	3	3	4
Sample weight [g]	04-Jan-23	09:58	06-Jan-23	09:13	2.05	1.95	1.95	1.97	1.99	1.94
HCI_add [mL]	04-Jan-23	09:58	06-Jan-23	09:13	40.00	54.00	76.30	26.80	26.70	40.00
HCI [Normality]	04-Jan-23	09:58	06-Jan-23	09:13	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	04-Jan-23	09:58	06-Jan-23	09:13	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	04-Jan-23	09:58	06-Jan-23	09:13	21.17	20.00	28.11	11.77	11.38	25.08
Final pH [no unit]	04-Jan-23	09:58	06-Jan-23	09:13	1.46	1.63	1.64	1.58	1.59	1.26
NP [t CaCO3/1000 t]	04-Jan-23	09:58	06-Jan-23	09:13	45.9	87.2	124	38.1	38.5	38.4
AP [t CaCO3/1000 t]	06-Jan-23	16:32	06-Jan-23	16:33	7.19	1.25	3.12	7.19	15.0	18.8
Net NP [t CaCO3/1000 t]	06-Jan-23	16:32	06-Jan-23	16:33	38.7	86.0	120	30.9	23.5	19.6
NP/AP [ratio]	06-Jan-23	16:32	06-Jan-23	16:33	6.39	69.8	39.6	5.30	2.57	2.05
S [%]	05-Jan-23	13:25	06-Jan-23	16:32	0.277	0.009	0.130	0.271	0.569	0.668
Acid Leachable SO4-S [%]	06-Jan-23	16:32	06-Jan-23	16:32	0.05	<0.04	< 0.04	0.04	0.09	0.07
Sulphide [%]	06-Jan-23	14:09	06-Jan-23	16:32	0.23	< 0.04	0.10	0.23	0.48	0.60

0003199597

Page 1 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19103-DEC22

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: B-QPOR_FB	6: B-CG_FB	7: M-MD_FB	8: B-QTP_FB	9: B-LGO_FB	10: B-HGO_FB
C [%]	05-Jan-23	13:25	06-Jan-23	15:17	0.561	1.10	1.50	0.453	0.475	0.446
CO3 (HCI) [%]	06-Jan-23	11:06	06-Jan-23	15:17	2.66	5.38	7.39	2.14	2.24	2.07
	08-Dec-22		08-Dec-22		1	1	1	1	1	1
Weight [g]	20-Dec-22		20-Dec-22		5034	5012	5021	5024	5067	5035
Split	20-Dec-22		20-Dec-22		1	1	1	1	1	1
CRU24 [kg]	20-Dec-22		20-Dec-22		2.0	2.0	2.0	2.0	2.1	2.0
Pulv200M [250g]	20-Dec-22		20-Dec-22		1	1	1	1	1	1

Analysis	11: B-QPOR_FB	12: B-CG_FB	13: M-MD_FB	14: B-QTP_FB	15: B-LGO_FB	16: B-HGO_FB
	DUP	DUP	DUP	DUP	DUP	DUP
Sample Date & Time	N/A	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	9.48	9.35	9.06	9.43	9.43	9.29
Fizz Rate [rating]	3	4	4	3	3	4
Sample weight [g]	2.05	2.07	1.90	2.08	2.07	2.03
HCI_add [mL]	35.20	51.80	75.70	28.10	28.30	40.00
HCI [Normality]	0.10	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	16.53	15.32	26.37	12.47	12.18	24.31
Final pH [no unit]	1.58	1.84	1.64	1.61	1.53	1.24
NP [t CaCO3/1000 t]	45.5	88.1	130	37.6	38.9	38.7
AP [t CaCO3/1000 t]	6.56	1.25	2.81	6.88	14.4	18.4
Net NP [t CaCO3/1000 t]	38.9	86.8	127	30.7	24.5	20.3
NP/AP [ratio]	6.93	70.5	46.2	5.47	2.71	2.10
S [%]	0.265	0.009	0.134	0.273	0.549	0.652
Acid Leachable SO4-S [%]	0.06	<0.04	0.04	0.05	0.09	0.06
Sulphide [%]	0.21	< 0.04	0.09	0.22	0.46	0.59
C [%]	0.564	1.11	1.52	0.452	0.474	0.447

0003199597

Page 2 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19103-DEC22

Analysis	11: B-QPOR_FB DUP	12: B-CG_FB DUP	13: M-MD_FB DUP	14: B-QTP_FB DUP	15: B-LGO_FB DUP	16: B-HGO_FB DUP
CO3 (HCI) [%]	2.65	5.41	7.45	2.12	2.23	2.10
	1	1	1	1	1	1
Weight [g]						
Split						
CRU24 [kg]						
Pulv200M [250g]						

*NP (Neutralization Potential)

= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25 *Net NP (Net Neutralization Potential) = NP-AP NP/AP Ratio = NP/AP

*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material

Samples with a % Sulphide value of <0.04 will be calculated using a 0.04 value.

CHARTERED CHEMIST Catharine anold

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003199597

Page 3 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: #1

19-January-2023

08 December 2022
CA19104-DEC22
Berry Composites- Set 3- As Rec'd

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:	13:
	Analysis Start Ana Date		Analysis ompleted DateCor	Analysis npleted Time	B-QPOR_FB	B-CG_FB	M-MD_FB	B-QTP_FB	B-LGO_FB	B-HGO_FB	B-QPOR_FB E DUP	-CG_FB DUPM-	MD_FB DUP
Sample Date & Time					N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Prep-Env AR [Prep]	11-Jan-23	14:56	17-Jan-23	11:33	1	1	1	1	1	1	1	1	1
Hg MS [ug/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ag [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
As [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	0.81	1.4	20	1.1	1.2	1.7	0.76	1.4	12
AI [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	12000	12000	24000	9800	8000	7900	12000	12000	24000
Ba [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	14	41	15	12	11	9.3	14	42	15
Be [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	0.074	0.20	0.18	0.054	0.048	0.058	0.070	0.19	0.17
Bi [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 0.09	0.093	< 0.09	0.11	0.45	1.2	< 0.09	< 0.09	< 0.09
Ca [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	15000	27000	38000	13000	13000	13000	14000	26000	38000
Cd [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	0.050	0.065	0.10	0.21	0.044	0.12	0.049	0.062	0.087
Co [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	7.4	9.9	20	3.8	5.4	4.3	6.6	9.9	20
Cr [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	56	45	62	76	56	82	56	45	63
Cu [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	26	16	31	16	73	15	22	16	31
Fe [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	26000	29000	52000	23000	24000	22000	26000	28000	53000
K [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	420	630	390	400	400	310	420	620	390
Li [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	3.5	5.0	5.2	2.1	< 2	< 2	2.8	4.4	4.8
Mg [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	5300	9600	16000	3200	2900	3000	5100	9400	17000
Mn [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	480	780	1000	460	440	430	480	780	1100
Mo [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	0.62	0.31	0.56	0.78	0.92	1.9	0.62	0.26	0.45

0003199605

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 1 of 3

LR Report :

CA19104-DEC22

Analysis	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:	13:
	Analysis Start Anal		Analysis	Analysis	B-QPOR_FB	B-CG_FB	M-MD_FB	B-QTP_FB	B-LGO_FB	B-HGO_FB		CG_FB DUPM-N	ID_FB DUP
	Date	Time C	ompleted DateCor	mpleted Time							DUP		
Na [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	530	370	280	430	410	410	530	360	280
Ni [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	22	16	15	2.6	4.2	3.8	6.7	16	15
P [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	240	500	530	210	170	180	220	480	520
Pb [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	0.94	2.0	1.3	1.6	15	3.8	0.93	2.0	1.2
Sb [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6	< 6
Se [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Sr [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	15	38	46	12	13	14	15	38	47
Ti [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	110	320	370	79	43	39	93	290	370
TI [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
U [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	0.13	0.79	0.12	0.12	0.10	0.10	0.12	0.74	0.12
V [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	20	37	100	9.8	9.3	9.8	20	36	100
Y [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	6.1	9.7	11	6.9	5.7	5.9	6.1	9.6	11
Zn [µg/g]	14-Jan-23	13:46	17-Jan-23	11:33	44	58	85	49	31	34	47	61	87

Analysis	14:	15:	16:
	B-QTP_FB DUP I	B-LGO_FB DUP	B-HGO_FB DUP
Sample Date & Time	N/A	N/A	N/A
Prep-Env AR [Prep]	1	1	1
Hg MS [ug/g]	< 0.05	< 0.05	< 0.05
Ag [µg/g]	< 1	< 1	< 1
As [µg/g]	1.1	1.2	1.8
Al [µg/g]	9800	7900	8000
Ba [µg/g]	12	12	9.8
Be [µg/g]	0.056	0.054	0.058
Bi [µg/g]	0.10	0.33	1.2
Ca [µg/g]	13000	13000	13000
Cd [µg/g]	0.23	0.054	0.12
Co [µg/g]	3.8	5.1	4.6
Cr [µg/g]	74	58	84
Cu [µg/g]	17	73	15
Fe [µg/g]	23000	24000	22000
K [µg/g]	390	390	310
Li [µg/g]	2.1	< 2	< 2

0003199605

Page 2 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

LR Report : CA19104-DEC22

Analysis	14: B-QTP_FB DUP B-LC	15: GO FB DUP B-HO	16: O FB DUP
Mg [µg/g]	3200	2900	3000
Mn [µg/g]	460	440	440
Mo [µg/g]	0.79	0.96	2.0
Na [µg/g]	420	410	420
Ni [µg/g]	2.5	3.8	4.5
P [µg/g]	220	160	180
Pb [µg/g]	1.6	15	4.0
Sb [µg/g]	< 6	< 6	< 6
Se [µg/g]	< 0.7	< 0.7	< 0.7
Sn [µg/g]	< 2	< 2	< 2
Sr [µg/g]	12	13	14
Ti [µg/g]	75	41	40
TI [µg/g]	< 0.02	< 0.02	< 0.02
U [µg/g]	0.12	0.12	0.10
V [µg/g]	9.7	9.3	10
Y [µg/g]	6.9	5.7	6.1
Zn [µg/g]	51	32	36

Catharine Arnold, B.Sc., C.Chem

Catharine Arnold, B.Sc., C.Chen Project Specialist, Environment, Health & Safety

Page 3 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: #1

19-January-2023

08 December 2022
CA19105-DEC22
Berry Composites- Set 3- As Rec'd

Copy:

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start An Date		3: Analysis ompleted DateCo	4: Analysis mpleted Time	5: B-QPOR_FB	6: B-CG_FB	7: M-MD_FB	8: B-QTP_FB	9: B-LGO_FB	10: B-HGO_FB	11: B-QPOR_FB B DUP	12: -CG_FB DUP
Sample Date & Time					N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sample weight [g]	22-Dec-22	08:30	23-Dec-22	11:55	250	250	250	250	250	251	252	250
Volume D.I. Water [mL]	22-Dec-22	08:30	23-Dec-22	11:55	750	750	750	750	750	750	750	750
Final pH [no unit]	23-Dec-22	06:38	23-Dec-22	11:55	9.02	9.16	8.90	9.08	9.20	8.98	9.12	9.24
pH [No unit]	23-Dec-22	11:05	29-Dec-22	15:54	8.00	8.20	8.02	7.87	7.99	7.87	8.01	8.16
Conductivity [uS/cm]	23-Dec-22	11:05	29-Dec-22	15:54	86	89	83	81	79	97	90	88
Alkalinity [mg/L as CaCO3]	23-Dec-22	11:05	29-Dec-22	15:54	35	40	40	29	31	31	38	41
F [mg/L]	27-Dec-22	08:10	28-Dec-22	09:19	0.07	0.11	< 0.06	0.06	< 0.06	< 0.06	0.07	0.11
SO4 [mg/L]	28-Dec-22	21:35	06-Jan-23	16:13	4.4	3.2	< 2	3.8	3.0	8.9	4.4	3.0
Hg [mg/L]	29-Dec-22	06:34	29-Dec-22	17:02	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	1.01	0.927	0.761	1.19	1.26	0.972	0.986	0.984
As [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.0047	0.0020	0.0018	0.0018	0.0027	0.0013	0.0018	0.0018
Ba [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.00073	0.00375	0.00183	0.00074	0.00066	0.00113	0.00066	0.00331
B [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.010	0.026	0.022	0.056	0.028	0.049	0.018	0.013
Be [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000007
Bi [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	7.99	5.91	8.91	8.00	7.92	11.2	8.01	5.86
Cd [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.000022	0.000011	0.000006	0.000006	0.000018	0.000014	< 0.000004	0.000006

0003199619

Page 1 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Analysi

LR Report : CA19105-DEC22

Analysis	1: Analysis Start Ana	2: Nucio Start	3: Analysis	4: Analysis	5: B-QPOR FB	6: B-CG FB	7: M-MD FB	8: B-QTP FB	9: B-LGO FB	10: B-HGO FB	11: B-QPOR FB E	
	Date		mpleted DateCor		B-QFOR_FB	B-C0_FB		B-QIF_FB	B-LGO_FB	B-1160_FB	DUP	-CG_FB D0F
Cr [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.00008	< 0.00008	< 0.00008	< 0.00008	0.00090	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.0003	0.0004	< 0.0002	0.0002	0.0007	0.0002	0.0003	0.0004
Fe [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.007	< 0.007	< 0.007	0.010	0.015	< 0.007	< 0.007	< 0.007
K [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	2.25	5.24	3.01	3.02	2.78	3.01	2.33	5.27
Li [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.0011	0.0003	0.0002	0.0002	0.0006	0.0003	0.0009	0.0003
Mg [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.809	0.958	1.67	0.651	0.607	0.899	0.823	0.965
Mn [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.00224	0.00148	0.00145	0.00162	0.00204	0.00240	0.00183	0.00131
Mo [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.00110	0.00060	0.00113	0.00325	0.00165	0.00311	0.00183	0.00054
Na [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	8.34	9.33	4.48	5.65	5.94	6.05	9.04	9.93
Ni [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.0005	0.0004	0.0002	0.0003	0.0007	0.0001	0.0002	0.0001
Pb [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0009	< 0.0009	< 0.0009
Se [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.00032	0.00005	0.00011	0.00006	0.00012	0.00014	0.00017	< 0.00004
Sn [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Si [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	2.03	1.85	1.03	1.83	2.12	1.55	1.67	2.40
Sr [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.0102	0.0652	0.0232	0.0147	0.0143	0.0252	0.0103	0.0659
Ti [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.00014	0.00015	0.00018	0.00020	0.00038	0.00007	0.00015	0.00013
TI [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.000107	0.000274	0.000010	0.000075	0.000099	0.000098	0.000110	0.000274
V [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	0.00225	0.00511	0.00171	0.00199	0.00195	0.00171	0.00235	0.00538
Zn [mg/L]	29-Dec-22	17:19	30-Dec-22	13:47	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	28-Dec-22	12:25	30-Dec-22	13:47	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Analysis	13:	14:	15:	16:
	M-MD_FB DUPB-QTP	_FB DUP B-LGO	_FB DUP B-HGO	FB DUP

Sample Date & Time	N/A	N/A	N/A	N/A
Sample weight [g]	250	250	249	250
Volume D.I. Water [mL]	750	750	750	750
Final pH [no unit]	8.89	9.04	9.11	8.93
pH [No unit]	7.99	8.09	8.08	7.89
Conductivity [uS/cm]	82	88	78	97
Alkalinity [mg/L as CaCO3]	38	55	31	32
F [mg/L]	< 0.06	< 0.06	< 0.06	< 0.06
SO4 [mg/L]	< 2	4.6	2.7	8.1

0003199619

Page 2 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

LR Report : CA19105-DEC22

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

Analysis	13: M-MD_FB DUPB-			
			LGO_FB DOF B-	
Hg [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	0.797	1.15	1.22	1.00
As [mg/L]	0.0016	0.0019	0.0019	0.0014
Ba [mg/L]	0.00174	0.00083	0.00058	0.0008
B [mg/L]	0.012	0.033	0.025	0.04
Be [mg/L]	< 0.000007	< 0.000007	< 0.000007	< 0.00000
Bi [mg/L]	< 0.00001	< 0.00001	< 0.00001	< 0.0000
Ca [mg/L]	8.68	8.31	7.95	10.
Cd [mg/L]	< 0.000003	< 0.00003	< 0.000003	< 0.00000
Co [mg/L]	0.000005	0.000015	0.000006	0.00001
Cr [mg/L]	< 0.00008	< 0.00008	< 0.00008	< 0.0000
Cu [mg/L]	0.0002	0.0003	< 0.0002	< 0.000
Fe [mg/L]	< 0.007	< 0.007	< 0.007	< 0.00
K [mg/L]	3.05	3.38	2.59	2.82
Li [mg/L]	0.0003	0.0003	0.0005	0.000
Mg [mg/L]	1.64	0.792	0.566	0.85
Mn [mg/L]	0.00142	0.00175	0.00153	0.0021
Mo [mg/L]	0.00099	0.00321	0.00135	0.0026
Na [mg/L]	4.63	6.74	5.11	5.7
Ni [mg/L]	0.0001	0.0002	< 0.0001	0.000
Pb [mg/L]	< 0.00009	< 0.00009	< 0.00009	< 0.0000
Sb [mg/L]	< 0.0009	< 0.0009	< 0.0009	< 0.000
Se [mg/L]	0.00017	0.00006	0.00013	0.0000
Sn [mg/L]	< 0.00006	< 0.00006	< 0.00006	< 0.0000
Si [mg/L]	1.29	1.96	2.11	1.8
Sr [mg/L]	0.0225	0.0152	0.0149	0.023
Ti [mg/L]	0.00006	0.00005	0.00019	0.0001
TI [mg/L]	< 0.000005	< 0.000005	< 0.000005	< 0.00000
U [mg/L]	0.000009	0.000090	0.000103	0.00010
V [mg/L]	0.00171	0.00184	0.00188	0.0018
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002
pH Check <2 [pH]	1.00	1.00	1.00	1.00

0003199619

Page 3 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19105-DEC22

CHARTERED E CATHARINE ARNOLD Catharine Arnold Catharine Arnold, B.Sc., C.Chem

Catharine Arnold, B.Sc., C.Cher Project Specialist, Environment, Health & Safety

Page 4 of 4

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.)

D.3 KINETIC TESTS

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: 17-February-2023

Date Rec. :	07 December 2022
LR Report:	CA19070-DEC22
Reference:	Berry Composites- Set 1- NP Depleted

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start	2: Analysis Start	3: Analysis	4:	5: B	6: B	7: B		9: B
	Analysis Start Date			Analysis Completed Time				ы В HGO-PAG-Zn-C	
					3DP	Р	DF		3DP Duplicate
Sample Date & Time					N/A	N/A	N/A	N/A	N/A
Prep-Env AR [Prep]	10-Feb-23	08:05	14-Feb-23	13:24	1	1	1	1	1
Hg MS [ug/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 0.05	< 0.05	< 0.05	o < 0.05	< 0.05
Ag [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 1	< 1	< 1	2	< 1
As [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	1.6	0.98	4.8	3 1.1	1.7
Al [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	5100	5600	6800	6100	5300
Ba [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	16	18	18	9.8	17
Be [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	0.051	0.069	0.062	0.044	0.056
Bi [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	0.10	0.13	0.36	3.7	0.11
Ca [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	960	690	940	650	960
Cd [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	0.030	< 0.02	< 0.02	2 < 0.02	0.04
Co [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	13	3.9	26	6.1	13
Cr [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	2.6	1.9	2.2	2 2.6	2.6
Cu [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	13	8.5	150	8.3	13
Fe [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	27000	24000	61000	23000	27000
K [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	500	510	570	380	520
Li [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 2	< 2	< 2	2 < 2	< 2
Mg [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	2000	1800	2400	2200	2100
Mn [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	110	110	150) 130	110
Mo [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	2.9	0.7	0.6	6 1.8	3.0
Ni [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	0.82	1.0	2.9) 1.2	0.82
Pb [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	1.6	2.2	1.2	4.3	1.8
Sb [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 6	< 6	< 6	° < 6	< 6
Se [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 0.7	< 0.7	0.8	3 < 0.7	< 0.7
Sn [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 2	< 2	< 2	2 < 2	< 2
Sr [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	4.1	4.5	6.1	3.4	4.1
Ti [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	22	39	17	43	22
TI [μg/g]	14-Feb-23	06:53	14-Feb-23	13:24	< 0.02	0.046	0.024	< 0.02	< 0.02
U [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	0.084	0.10	0.079	0.071	0.094
V [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	6.6	3.2	10	7.0	6.8
Y [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	3.7	3.8	4.1	3.0	3.7
Zn [µg/g]	14-Feb-23	06:53	14-Feb-23	13:24	14	15	20) 18	15

0003235563

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

LR Report : CA19070-DEC22

Analysis	10: B	11: B	12: B
	QTP-PAG-CO3D		
	P Duplicate	DP Duplicate	O3DP Duplicate
Sample Date & Time	N/A	N/A	N/A
Prep-Env AR [Prep]	1	1	1
Hg MS [ug/g]	< 0.05	< 0.05	< 0.05
Ag [µg/g]	< 1	< 1	2
As [µg/g]	1.0	4.8	1.1
AI [µg/g]	5600	6800	6000
Ba [µg/g]	17	18	9.8
Be [µg/g]	0.062	0.060	0.042
Bi [µg/g]	0.12	0.39	3.9
Ca [µg/g]	690	910	660
Cd [µg/g]	0.02	< 0.02	< 0.02
Co [µg/g]	4.0	25	5.9
Cr [µg/g]	2.7	2.3	2.6
Cu [µg/g]	8.6	140	7.3
Fe [µg/g]	24000	60000	23000
K [µg/g]	510	570	370
Li [µg/g]	< 2	< 2	< 2
Mg [µg/g]	1800	2400	2200
Mn [µg/g]	110	140	120
Mo [µg/g]	0.9	0.7	1.8
Ni [µg/g]	1.5	2.8	1.3
Pb [µg/g]	2.2	1.1	5.9
Sb [µg/g]	< 6	< 6	< 6
Se [µg/g]	< 0.7	0.9	< 0.7
Sn [µg/g]	< 2	< 2	< 2
Sr [µg/g]	4.5	6.0	3.5
Ti [µg/g]	37	17	44
TI [µg/g]	< 0.02	< 0.02	< 0.02
U [µg/g]	0.10	0.077	0.071
V [µg/g]	3.3	9.9	6.7
Y [µg/g]	3.8	4.0	2.9
Zn [µg/g]	15	19	18

CHARTEREI CATHARINE ARNON Catharine Aunold

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003235563

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. *Temperature Upon Receipt* is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

ABA - Modified Sobek

17-February-2023

Date Rec. :	07 December 2022
LR Report:	CA19069-DEC22
Reference:	Berry Composites - Set 1- NP Depleted

0003235555

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1: Analysis Start	2: Analysis Start	3: Analysia	4: Analysia	5: B	6: B	7: B
	Date	Analysis Start Time	Analysis Completed Date C	Analysis ompleted Time			
					3DP	Р	Р
Sample Date & Time					N/A	N/A	N/A
Paste pH [no unit]	09-Feb-23	11:28	13-Feb-23	15:25	9.11	9.14	8.23
Fizz Rate [rating]	09-Feb-23	11:28	13-Feb-23	15:25	2	2	2
Sample weight [g]	09-Feb-23	11:28	13-Feb-23	15:25	2.03	1.91	2.02
HCI_add [mL]	224831	09:30	13-Feb-23	15:25	20.00	20.00	20.00
HCI [Normality]	09-Feb-23	11:28	13-Feb-23	15:25	0.10	0.10	0.10
NaOH [Normality]	09-Feb-23	11:28	13-Feb-23	15:25	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	10-Feb-23	11:30	13-Feb-23	15:25	18.38	18.89	18.74
Final pH [no unit]	10-Feb-23	11:30	13-Feb-23	15:25	1.13	1.18	1.21
NP [t CaCO3/1000 t]	10-Feb-23	11:30	13-Feb-23	15:25	4.0	2.9	3.1
AP [t CaCO3/1000 t]	16-Feb-23	10:50	16-Feb-23	10:51	40.6	35.3	137
Net NP [t CaCO3/1000 t]	16-Feb-23	10:50	16-Feb-23	10:51	-36.62	-32.41	-133.46
NP/AP [ratio]	16-Feb-23	10:50	16-Feb-23	10:51	0.10	0.08	0.02
S [%]	13-Feb-23	13:28	16-Feb-23	10:50	1.30	1.13	4.36
Acid Leachable SO4-S [%]	16-Feb-23	10:49	16-Feb-23	10:50	< 0.04	< 0.04	< 0.04
Sulphide [%]	15-Feb-23	12:28	16-Feb-23	10:50	1.30	1.13	4.37
C [%]	13-Feb-23	13:28	15-Feb-23	15:03	0.151	0.098	0.129
CO3 (HCl) as %CO3 [%]	15-Feb-23	10:59	15-Feb-23	15:03	0.26	0.21	0.20

Analysis	8:	9:	10:	11:	12:
	В	В	В	В	В
	HGO-PAG-Zn-C	QPOR-PAG-COQ	TP-PAG-CO3DLG	O-PAG-CO3D HGO	-PAG-Zn-C
	O3DP	3DP Duplicate	P Duplicate	P Duplicate O3D	Duplicate
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Paste pH [no unit]	8.99	8.98	9.11	8.12	8.92
Fizz Rate [rating]	2	2	2	2	2
Sample weight [g]	1.95	1.88	1.99	2.09	1.92
HCI_add [mL]	20.00	20.00	20.00	20.00	20.00

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Analysis	8: B HGO-PAG-Zn-C O3DP	9: B QPOR-PAG-COG 3DP Duplicate	10: B TP-PAG-CO3DL P Duplicate		12: B IGO-PAG-Zn-C 03DP Duplicate
HCI [Normality]	0.10	0.10	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	18.89	18.59	18.95	18.70	18.86
Final pH [no unit]	1.18	1.16	1.10	1.26	1.19
NP [t CaCO3/1000 t]	2.8	3.8	2.6	3.1	3.0
AP [t CaCO3/1000 t]	22.2	36.9	35.9	137	21.6
Net NP [t CaCO3/1000 t]	-19.39	-33.08	-33.34	-133.78	-18.56
NP/AP [ratio]	0.13	0.10	0.07	0.02	0.14
S [%]	0.774	1.31	1.15	4.42	0.793
Acid Leachable SO4-S [%]	0.06	0.13	< 0.04	0.04	0.10
Sulphide [%]	0.71	1.18	1.15	4.38	0.69
C [%]	0.045	0.145	0.092	0.121	0.050
CO3 (HCI) as %CO3 [%]	0.07	0.23	0.09	0.18	0.11

*NP (Neutralization Potential) = 50 x (N of HCL x Total HCL added - N NaOH x NaOH added) ------

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25 *Net NP (Net Neutralization Potential) = NP-AP NP/AP Ratio = NP/AP *Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material Samples with a % Sulphide value of <0.04 will be calculated using a 0.04 value.

CHARTERED T CATHARINE ARNOL Catharine Aunold CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003235555

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

17-February-2023

Date Rec. :	07 December 2022
LR Report:	CA19071-DEC22
Reference:	Berry Composites- Set 1- NP Depleted

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:			4:	5:	6:	7:	
	Analysis Start Date		Analysis Completed DateC	Analysis	B	B OTB-BAG-CO3	B	B
	Date	Time	Completed Dateo	ompleted time	3DP	DP	DP	O3DP
Sample Date & Time					N/A	N/A	N/A	N/A
Sample weight [g]	06-Feb-23	14:04	08-Feb-23	09:52	50	51	50	50
Volume D.I. Water [mL]	06-Feb-23	14:04	08-Feb-23	09:52	150	150	150	150
Final pH [no unit]	07-Feb-23	19:04	08-Feb-23	09:52	5.87	5.90	5.23	6.27
pH [No unit]	08-Feb-23	07:53	08-Feb-23	15:45	6.15	6.46	5.77	6.26
Conductivity [uS/cm]	08-Feb-23	07:53	08-Feb-23	15:45	15	14	32	9
Alkalinity [mg/L as CaCO3]	08-Feb-23	07:53	08-Feb-23	15:45	2	2	< 2	2
F [mg/L]	08-Feb-23	08:49	08-Feb-23	12:28	< 0.06	< 0.06	< 0.06	< 0.06
SO4 [mg/L]	08-Feb-23	11:14	13-Feb-23	14:13	3.1	3.0	10.0	2.1
Hg [mg/L]	09-Feb-23	12:35	10-Feb-23	13:07	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.088	0.112	0.018	0.097
As [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.0004	0.0004	< 0.0002	0.0005
Ba [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00042	0.00042	0.00080	0.00034
B [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.034	0.007	0.013	0.028
Be [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.000038	< 0.000007	0.000012	< 0.000007
Bi [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.00001	< 0.00001	< 0.00001	0.00001
Ca [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.12	0.12	1.72	0.06
Cd [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.000069	0.000048	< 0.000003	< 0.000003
Co [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.000358	0.000212	0.00188	0.000167
Cr [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00025	0.00029	< 0.00008	< 0.00008
Cu [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.0020	0.0025	0.0073	0.0009
Fe [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.061	0.068	0.048	0.069
K [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.278	0.231	0.546	0.124
Li [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.0007	0.0005	0.0006	0.0003
Mg [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.036	0.046	0.266	0.026
Mn [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00338	0.00969	0.0412	0.00089
Mo [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00129	0.00067	0.00049	0.00073
Na [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	2.47	1.98	2.61	1.71
Ni [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.0005	0.0008	0.0030	0.0003
Pb [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00140	0.00064	0.00004	< 0.00004

0003235566

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

LR Report : CA19071-DEC22

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	Analysis Start Ana	lysis Start	Analysis	Analysis	В	В	В	В
	Date	Time Co	mpleted DateCo	mpleted Time		QTP-PAG-CO3		HGO-PAG-Zn-C
					3DP	DP	DP	O3DP
Sn [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.00006	< 0.00006	< 0.00006	< 0.00006
Si [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	3.25	3.36	2.99	2.68
Sr [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00037	0.00088	0.00250	0.00055
Ti [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00198	0.00163	< 0.00005	0.00144
TI [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	< 0.000002	< 0.000002	< 0.00002	< 0.000002
V [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00017	0.00011	0.00010	0.00047
W [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00044	0.00021	0.00015	0.00034
Y [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.00003	0.00005	< 0.00002	0.00003
Zn [mg/L]	10-Feb-23	16:59	14-Feb-23	11:19	0.002	0.002	0.005	0.002
pH Check <2 [pH]	09-Feb-23	16:00	14-Feb-23	11:19	1.00	1.00	1.00	1.00

ARTERE CATHARINE ARN Catharine Arnold CHEMIST (CHEMIST) Catharine Arnold, B.Sc., C.Chem

Catharine Arnold, B.Sc., C.Cher Project Specialist, Environment, Health & Safety

0003235566

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Page 2 of 2

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

24-February-2023

Date Rec. :	07 December 2022
LR Report:	CA19072-DEC22
Reference:	Berry Composites - Set 1 - NP Depleted

0003242507

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:	2:	3:	4:	5:	6:	7:
		Analysis Start	Analysis	Analysis	В	В	В
	Date	Time C	ompleted Date Co	mpleted Time QP			
					3DP	Р	Р
Sample Date & Time					N/A	N/A	N/A
Borate Fusion [Prep]	21-Feb-23	14:35	23-Feb-23	06:13	1	1	1
SiO2 [%]	21-Feb-23	14:35	23-Feb-23	06:13	76.3	76.4	73.5
Al2O3 [%]	21-Feb-23	14:35	23-Feb-23	06:13	11.3	12.1	9.80
Fe2O3 [%]	21-Feb-23	14:35	23-Feb-23	06:13	4.01	3.43	8.49
MgO [%]	21-Feb-23	14:35	23-Feb-23	06:13	0.56	0.41	0.53
CaO [%]	21-Feb-23	14:35	23-Feb-23	06:13	0.35	0.38	0.25
Na2O [%]	21-Feb-23	14:35	23-Feb-23	06:13	4.10	4.48	2.06
K2O [%]	21-Feb-23	14:35	23-Feb-23	06:13	0.60	0.64	0.85
TiO2 [%]	21-Feb-23	14:35	23-Feb-23	06:13	0.30	0.29	0.26
P2O5 [%]	21-Feb-23	14:35	23-Feb-23	06:13	0.05	0.05	0.05
MnO [%]	21-Feb-23	14:35	23-Feb-23	06:13	0.02	0.02	0.02
Cr2O3 [%]	21-Feb-23	14:35	23-Feb-23	06:13	< 0.01	< 0.01	< 0.01
V2O5 [%]	21-Feb-23	14:35	23-Feb-23	06:13	< 0.01	< 0.01	< 0.01
LOI [%]	21-Feb-23	14:35	23-Feb-23	06:13	1.93	1.82	4.10
Sum [%]	21-Feb-23	14:35	23-Feb-23	06:13	99.5	100.0	99.9

Analysis	8: B	9: B	10: B	11: B	12: B
	_	_	_	GO-PAG-CO3D HGO P Duplicate O3DF	-PAG-Zn-C
Sample Date & Time	N/A	N/A	N/A	N/A	N/A
Borate Fusion [Prep]	1	1	1	1	1
SiO2 [%]	83.0	76.3	75.9	73.1	82.7
AI2O3 [%]	8.04	11.3	12.0	9.79	8.00
Fe2O3 [%]	3.18	4.00	3.41	8.40	3.20
MgO [%]	0.46	0.57	0.41	0.55	0.45
CaO [%]	0.26	0.35	0.38	0.25	0.27

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

LR Report : CA19072-DEC22

Analysis	8: B	9: B	10: B	11: B	12: B
	_	_	_	GO-PAG-CO3D HC P Duplicate O3	GO-PAG-Zn-C
Na2O [%]	2.77	4.12	4.48	2.04	2.77
K2O [%]	0.43	0.59	0.64	0.85	0.42
TiO2 [%]	0.22	0.30	0.30	0.26	0.23
P2O5 [%]	0.04	0.06	0.05	0.06	0.04
MnO [%]	0.01	< 0.01	0.02	0.01	0.02
Cr2O3 [%]	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
V2O5 [%]	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
LOI [%]	1.27	1.92	1.75	4.09	1.29
Sum [%]	99.6	99.6	99.3	99.4	99.4

CHARTERED CATHARINE ARNOL Catharine Aunold CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0003242507

Page 2 of 2 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

ABA - Modified Sobek

24-February-2023

Date Rec. :	09 January 2023
LR Report:	CA19049-JAN23
Reference:	Berry Composites - Set 2

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:	2:	3:	4:	5:	6:	7:
	Analysis StartAnal Date	•	Analysis mpleted Date Cor	Analysis npleted Time	B QPOR dup	B SED dup	B MD dup
Sample Date & Time					N/A	N/A	N/A
Paste pH [no unit]	30-Jan-23	08:01	31-Jan-23	16:08	9.38	9.20	8.80
Fizz Rate [rating]	30-Jan-23	08:01	31-Jan-23	16:08	3	3	3
Sample weight [g]	30-Jan-23	08:01	31-Jan-23	16:08	1.98	2.10	2.09
HCI_add [mL]	30-Jan-23	08:01	31-Jan-23	16:08	30.00	55.00	75.00
HCI [Normality]	30-Jan-23	08:01	31-Jan-23	16:08	0.10	0.10	0.10
NaOH [Normality]	30-Jan-23	08:01	31-Jan-23	16:08	0.10	0.10	0.10
Vol NaOH to pH=8.3 [mL]	30-Jan-23	08:01	31-Jan-23	16:08	15.52	18.94	32.15
Final pH [no unit]	30-Jan-23	08:01	31-Jan-23	16:08	1.56	1.77	1.63
NP [t CaCO3/1000 t]	30-Jan-23	08:01	31-Jan-23	16:08	36.6	85.9	102
AP [t CaCO3/1000 t]	03-Feb-23	17:20	03-Feb-23	17:21	6.88	1.25	5.94
Net NP [t CaCO3/1000 t]	03-Feb-23	17:20	03-Feb-23	17:21	29.7	84.6	96.6
NP/AP [ratio]	03-Feb-23	17:20	03-Feb-23	17:21	5.32	68.7	17.3
S [%]	31-Jan-23	14:48	03-Feb-23	17:20	0.280	0.023	0.240
Acid Leachable SO4-S [%]	03-Feb-23	17:18	03-Feb-23	17:20	0.06	<0.04	0.05
Sulphide [%]	03-Feb-23	09:54	03-Feb-23	17:20	0.22	< 0.04	0.19
C [%]	31-Jan-23	14:48	03-Feb-23	17:20	0.408	1.05	1.07
CO3 (HCl) as %CO3 [%]	03-Feb-23	11:44	06-Feb-23	10:52	1.93	5.12	5.22

Analysis	8: B QTP dup	9: B LGO dup	10: B HGO dup
Sample Date & Time	N/A	N/A	N/A
Paste pH [no unit]	9.30	8.74	9.36
Fizz Rate [rating]	3	3	3
Sample weight [g]	2.08	2.02	2.15
HCI_add [mL]	26.00	35.00	27.00
HCI [Normality]	0.10	0.10	0.10
NaOH [Normality]	0.10	0.10	0.10

000324253

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

LR Report : CA19049-JAN23

Analysis	8: B QTP dup	9: B LGO dup	10: B HGO dup
Vol NaOH to pH=8.3 [mL]	12.30	17.37	11.89
Final pH [no unit]	1.59	1.50	1.64
NP [t CaCO3/1000 t]	32.9	43.6	35.1
AP [t CaCO3/1000 t]	7.50	56.6	23.1
Net NP [t CaCO3/1000 t]	25.4	-12.96	12.0
NP/AP [ratio]	4.39	0.77	1.52
S [%]	0.273	1.80	0.738
Acid Leachable SO4-S [%]	< 0.04	< 0.04	< 0.04
Sulphide [%]	0.24	1.81	0.74
C [%]	0.349	0.501	0.402
CO3 (HCl) as %CO3 [%]	1.66	2.37	1.89

*NP (Neutralization Potential)

= 50 x (N of HCL x Total HCL added - N NaOH x NaOH added)

Weight of Sample

*AP (Acid Potential) = % Sulphide Sulphur x 31.25
*Net NP (Net Neutralization Potential) = NP-AP
NP/AP Ratio = NP/AP
*Results expressed as tonnes CaCO3 equivalent/1000 tonnes of material
Samples with a % Sulphide value of <0.04 will be calculated using a 0.04 value.</pre>

Catharine Anold ATHARMS AR CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

000324253

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

24-February-2023

Date Rec. :	07 December 2022
LR Report:	CA19065-DEC22
Reference:	Berry Composites - Set 2

0003242520

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Ana Date		3: Analysis mpleted DateCon	4: Analysis opleted Time	5: B QPOR	6: B SED	7: B MD	8: B QTP	9: B LGO
	2410								
Sample Date & Time					N/A	N/A	N/A	N/A	N/A
Sample weight [g]	30-Jan-23	08:21	31-Jan-23	15:34	250	250	251	251	249
Volume D.I. Water [mL]	30-Jan-23	08:21	31-Jan-23	15:34	750	750	750	750	750
Final pH [no unit]	31-Jan-23	10:15	31-Jan-23	15:34	9.38	9.27	8.99	9.37	8.91
pH [No unit]	31-Jan-23	15:18	01-Feb-23	11:30	8.09	8.03	7.94	7.91	7.89
Conductivity [uS/cm]	31-Jan-23	15:18	01-Feb-23	11:30	76	88	95	87	109
Alkalinity [mg/L as CaCO3]	31-Jan-23	15:18	01-Feb-23	11:30	29	35	38	33	34
F [mg/L]	31-Jan-23	15:25	01-Feb-23	09:31	0.16	0.14	0.13	0.08	0.08
SO4 [mg/L]	03-Feb-23	17:06	21-Feb-23	15:16	< 5	11	7.8	6.6	12
Hg [mg/L]	01-Feb-23	13:15	01-Feb-23	17:10	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	1.23	0.884	0.552	0.925	0.745
As [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.0033	0.0021	0.0010	0.0016	0.0016
Ba [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00091	0.0199	0.00258	0.00099	0.00062
B [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.005	0.019	0.013	0.048	0.029
Be [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.000039	< 0.000007	0.000036	0.000040	0.000014
Bi [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	6.97	6.68	10.6	8.05	11.0
Cd [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.000063	0.000004	0.000067	0.000049	0.000007
Co [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.000015	0.00008	0.000020	0.000020	0.000011
Cr [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00023	< 0.00008	0.00017	0.00016	< 0.00008
Cu [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.0006	0.0008	0.0007	0.0014	0.0011
Fe [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	< 0.007	< 0.007	< 0.007	0.026	0.008
K [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	2.90	4.48	2.80	2.74	3.00
Li [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.0005	0.0006	0.0003	0.0005	0.0006
Mg [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.450	0.950	1.44	0.746	0.738
Mn [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00112	0.00143	0.00150	0.00203	0.00517
Mo [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00185	0.00150	0.00304	0.00572	0.00541
Na [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	5.35	6.70	3.62	5.75	6.30
Ni [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.0001	< 0.0001	0.0001	0.0002	< 0.0001
Pb [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.0013	0.0023	0.0012	0.0013	0.0017
Se [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00109	0.00024	0.00128	0.00120	0.00018
Sn [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	< 0.00006	< 0.00006	< 0.00006	0.00007	0.00006

Page 1 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

0003242520

LR Report : CA19065-DEC22

Analysis	1: Analysis Start Anal	2: Iveis Start	3: Analysis	4: Analvsis	5: B QPOR	6: B SED	7: B MD	8: B QTP	9: B LGO
	Date	•	mpleted DateCon		Barok	D GLD	DWD	Bell	B 200
Si [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	2.38	2.07	1.39	2.46	2.18
Sr [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.0100	0.0896	0.0481	0.0258	0.0237
Ti [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00094	0.00007	0.00111	0.00171	0.00025
TI [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.000007	< 0.000005	0.000006	0.000008	< 0.000005
U [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.000169	0.000146	0.000022	0.000262	0.000318
V [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	0.00222	0.00416	0.00318	0.00249	0.00134
Zn [mg/L]	01-Feb-23	11:36	02-Feb-23	11:12	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

15: 16: 3 LGO dup B HGO dup E	15: B LGO dup	14: B QTP dup	13: B MD dup	12: B SED dup	11: 3 QPOR dup	10: B HGO B	Analysis
N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	Sample Date & Time
249 249	249	249	251	250	250	249	Sample weight [g]
750 750	750	750	750	750	750	750	Volume D.I. Water [mL]
9.14 9.27	9.14	9.34	9.10	9.31	9.38	9.26	Final pH [no unit]
7.94 8.06	7.94	7.99	7.84	7.96	8.09	8.00	pH [No unit]
110 98	110	88	94	90	85	97	Conductivity [uS/cm]
34 33	34	33	37	37	34	31	Alkalinity [mg/L as CaCO3]
0.07 0.07	0.07	0.08	0.14	0.15	0.20	0.06	F [mg/L]
11 9.1	11	6.6	5.3	5.8	< 5	12	SO4 [mg/L]
< 0.00001 < 0.00001 < 0	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	Hg [mg/L]
< 0.00005 < 0.00005 < 0	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	Ag [mg/L]
0.804 0.960	0.804	0.918	0.551	0.926	1.08	0.891	AI [mg/L]
0.0016 0.0015	0.0016	0.0018	0.0008	0.0023	0.0043	0.0015	As [mg/L]
0.00069 0.00088	0.00069	0.00082	0.00231	0.0151	0.00088	0.00076	Ba [mg/L]
0.033 0.027	0.033	0.051	0.010	0.014	0.005	0.027	B [mg/L]
< 0.000007 0.000035 0	< 0.000007	0.000059	0.000018	< 0.000007	0.000028	< 0.000007	Be [mg/L]
< 0.00001 0.00003 <	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	Bi [mg/L]
11.0 9.38	11.0	8.09	10.2	6.54	6.96	9.15	Ca [mg/L]
0.000008 0.000062 0.	0.000008	0.000097	0.000037	0.000010	0.000030	0.000010	Cd [mg/L]
0.000013 0.000025 0	0.000013	0.000037	0.000015	0.000009	0.000011	0.000012	Co [mg/L]
< 0.00008 0.00027	< 0.00008	0.00028	0.00010	< 0.00008	0.00012	0.00009	Cr [mg/L]
0.0008 0.0014	0.0008	0.0014	0.0007	0.0014	0.0008	0.0021	Cu [mg/L]
< 0.007 0.010	< 0.007	0.026	< 0.007	< 0.007	0.008	0.012	Fe [mg/L]
3.07 2.04	3.07	2.73	2.64	4.72	2.89	1.98	K [mg/L]
0.0005 0.0006	0.0005	0.0005	0.0003	0.0007	0.0007	0.0005	Li [mg/L]
0.757 0.647	0.757	0.754	1.35	0.935	0.509	0.627	Mg [mg/L]
0.00487 0.00227	0.00487	0.00199	0.00148	0.00206	0.00129	0.00227	Mn [mg/L]
0.00520 0.00160	0.00520	0.00584	0.00340	0.00140	0.00267	0.00143	Mo [mg/L]
6.33 6.98	6.33	5.99	3.39	6.76	6.13	6.90	Na [mg/L]
0.0001 0.0002	0.0001	0.0002	0.0001	0.0001	< 0.0001	0.0001	Ni [mg/L]
< 0.00009 < 0.00009 < 0	< 0.00009	< 0.00009	< 0.00009	0.00012	< 0.00009	< 0.00009	Pb [mg/L]
0.0016 0.0029	0.0016	0.0013	0.0012	0.0024	0.0017	0.0024	Sb [mg/L]
0.00015 0.00130		0.00168	0.00085	0.00021	0.00086	0.00021	Se [mg/L]
< 0.00006 0.00006		0.00008	< 0.00006	< 0.00006	0.00009	< 0.00006	Sn [mg/L]
2.20 2.63		2.43	1.40	2.13	2.38	2.55	Si [mg/L]
0.0235 0.0214		0.0249	0.0474	0.0839	0.0113	0.0217	Sr [mg/L]
0.00013 0.00129		0.00212	0.00053	0.00017	0.00059	0.00064	Ti [mg/L]
	< 0.000005	0.000010	0.000005	< 0.000005	0.000005	< 0.000005	TI [mg/L]
0.000246 0.000189 0.		0.000289	0.000018	0.000149	0.000203	0.000171	U [mg/L]
0.00130 0.00215		0.00249	0.00329	0.00420	0.00219	0.00189	V [mg/L]

Page 2 of 3

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or received and the samples.

0003242520

LR Report : CA19065-DEC22

Analysis	10:	11:	12:	13:	14:	15:	16:	17:
	B HGO B	QPOR dup	B SED dup	B MD dup	B QTP dup	B LGO dup	B HGO dup	B QPOR
Zn [mg/L]	< 0.002	< 0.002	< 0.002	< 0.002	0.008	< 0.002	< 0.002	< 0.002

Catharine Aunold ATHARINE AR CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

30-December-2022

Date Rec.: 15 December 2022 LR Report: CA10092-DEC22 Reference: Wk#0 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#0	B SED-High SFE Wk#0	B QTP-PAG Wk#0	B LGO-PAG B Wk#0	HGO-PAG-ZnB Wk#0	OB-ML Wk#0
Sample Date & Time			15-Dec-22	15-Dec-22	15-Dec-22	15-Dec-22	15-Dec-22	15-Dec-22
HumCell Leachate Vol [mL]	16-Dec-22	16:49	462	521	548	513	570	318
pH [No unit]	19-Dec-22	10:07	7.47	8.88	8.44	7.60	8.50	6.84
Acidity [mg/L as CaCO3]	19-Dec-22	10:07	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	19-Dec-22	10:07	22	24	15	14	14	8
Conductivity [uS/cm]	19-Dec-22	10:07	149	34	52	128	38	214
SO4 [mg/L]	30-Dec-22	07:57	33	3.4	16	86	8.7	92
F [mg/L]	16-Dec-22	11:29	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	19-Dec-22	16:37	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	22-Dec-22	10:32	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	22-Dec-22	10:32	0.089	0.118	0.036	0.035	0.040	0.008
As [mg/L]	22-Dec-22	10:32	0.0010	0.0006	0.0005	0.0003	0.0004	0.0028
Ba [mg/L]	22-Dec-22	10:32	0.00095	0.00139	0.00102	0.00210	0.00061	0.0218
Be [mg/L]	22-Dec-22	10:32	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	22-Dec-22	10:32	0.011	0.009	0.011	0.010	0.007	0.029
Bi [mg/L]	22-Dec-22	10:32	< 0.00001	< 0.00001	< 0.00001	0.00001	0.00001	< 0.00001
Ca [mg/L]	22-Dec-22	10:32	13.5	5.31	8.73	35.9	6.06	36.0
Cd [mg/L]	22-Dec-22	10:32	0.000008	0.000013	0.000004	0.000004	< 0.000003	0.000364
Co [mg/L]	22-Dec-22	10:32	0.000137	0.000046	0.000094	0.000202	0.000054	0.00102
Cr [mg/L]	22-Dec-22	10:32	< 0.00008	0.00011	0.00009	0.00008	0.00008	0.00026
Cu [mg/L]	22-Dec-22	10:32	0.0031	0.0008	0.0011	0.0017	0.0009	0.0099
Fe [mg/L]	22-Dec-22	10:32	< 0.007	0.012	< 0.007	< 0.007	< 0.007	0.008
K [mg/L]	22-Dec-22	10:32	2.30	2.68	1.28	2.26	0.833	0.660
Li [mg/L]	22-Dec-22	10:32	0.0012	0.0002	0.0002	0.0006	0.0001	0.0003
Mg [mg/L]	22-Dec-22	10:32	1.68	0.609	0.576	2.20	0.452	3.52
Mn [mg/L]	22-Dec-22	10:32	0.0602	0.0136	0.0272	0.0609	0.0277	0.584
Mo [mg/L]	22-Dec-22	10:32	0.00535	0.03037	0.00186	0.00298	0.00133	0.00166
Na [mg/L]	22-Dec-22	10:32	10.3	2.64	4.02	7.34	3.17	1.27
Ni [mg/L]	22-Dec-22	10:32	0.0020	0.0004	0.0007	0.0011	0.0006	0.0027
Pb [mg/L]	22-Dec-22	10:32	< 0.00009	< 0.00009	< 0.00009	0.00012	< 0.00009	0.00014
Sb [mg/L]	22-Dec-22	10:32	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0010
Se [mg/L]	22-Dec-22	10:32	0.00064	< 0.00004	0.00016	0.00049	0.00008	0.00220
Sr [mg/L]	22-Dec-22	10:32	0.0145	0.0487	0.0257	0.0698	0.0224	0.0621
Sn [mg/L]	22-Dec-22	10:32	0.00806	0.00444	0.0108	0.00088	0.00345	0.00481

0003176127

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Marathon - Berry Set 1

Project : Berry Project LR Report : CA10092-DEC22

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#0	6: B SED-High SFE Wk#0	7: B QTP-PAG Wk#0	8: B LGO-PAG B Wk#0	9: HGO-PAG-ZnB Wk#0	10: OB-ML Wk#0
Ti [mg/L]	22-Dec-22	10:32	0.00015	0.00041	0.00006	0.00005	0.00014	0.00030
TI [mg/L]	22-Dec-22	10:32	0.000007	0.000009	< 0.000005	0.000006	0.000022	0.000013
U [mg/L]	22-Dec-22	10:32	0.00467	0.000313	0.000133	0.0178	0.00238	0.00204
V [mg/L]	22-Dec-22	10:32	0.00012	0.00059	0.00007	0.00005	0.00010	0.00135
W [mg/L]	22-Dec-22	10:32	0.00121	0.00032	0.00018	0.00027	0.00051	0.00042
Y [mg/L]	22-Dec-22	10:32	0.00015	0.00025	0.00004	0.00012	0.00006	0.00029
Zn [mg/L]	22-Dec-22	10:32	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.010

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003176127

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or consultable. regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

10-January-2023

Date Rec. :05 January 2023LR Report:CA10041-JAN23Reference:Wk#3

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#3	6: B SED-High SFE Wk#3	7: B QTP-PAG Wk#3	8: B LGO-PAG B H Wk#3	9: IGO-PAG-Zn Wk#3	10: B OB-ML Wk#3
Sample Date & Time			5-Jan-23	5-Jan-23	5-Jan-23	5-Jan-23	5-Jan-23	5-Jan-23
HumCell Leachate Vol [mL]	06-Jan-23	14:57	619	721	690	673	733	499
pH [No unit]	06-Jan-23	10:58	7.55	7.69	7.55	7.48	7.62	7.12
Conductivity [uS/cm]	06-Jan-23	10:58	62	59	66	129	55	141

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003187451

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

10-January-2023

Date Rec.: 22 December 2022 LR Report: CA10136-DEC22 Reference: Wk#1 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#1	B SED-High SFE Wk#1	B QTP-PAG Wk#1	B LGO-PAG B Wk#1	HGO-PAG-ZnB Wk#1	OB-ML Wk#1
Sample Date & Time			22-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22
HumCell Leachate Vol [mL]	29-Dec-22	09:15	521	700	677	606	702	463
pH [No unit]	23-Dec-22	11:02	8.36	8.33	7.85	7.82	7.58	6.97
Acidity [mg/L as CaCO3]	23-Dec-22	11:02	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	23-Dec-22	11:02	14	26	23	14	17	6
Conductivity [uS/cm]	23-Dec-22	11:02	101	77	122	179	79	180
SO4 [mg/L]	06-Jan-23	14:50	29	8.8	31	66	16	84
F [mg/L]	23-Dec-22	08:24	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	29-Dec-22	13:44	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	30-Dec-22	11:17	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	30-Dec-22	11:17	0.085	0.086	0.033	0.062	0.039	0.048
As [mg/L]	30-Dec-22	11:17	0.0029	0.0004	0.0005	< 0.0002	0.0003	0.0025
Ba [mg/L]	30-Dec-22	11:17	0.00110	0.00350	0.00287	0.00155	0.00141	0.0112
Be [mg/L]	30-Dec-22	11:17	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	30-Dec-22	11:17	0.012	0.017	0.024	0.009	0.017	0.006
Bi [mg/L]	30-Dec-22	11:17	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00003	< 0.00001
Ca [mg/L]	30-Dec-22	11:17	11.9	8.35	16.2	28.2	9.88	33.9
Cd [mg/L]	30-Dec-22	11:17	0.000011	0.000046	0.000010	< 0.000003	0.000004	0.000091
Co [mg/L]	30-Dec-22	11:17	0.000045	0.000050	0.000092	0.000092	0.000036	0.000189
Cr [mg/L]	30-Dec-22	11:17	0.00038	0.00016	0.00021	0.00015	0.00024	0.00011
Cu [mg/L]	30-Dec-22	11:17	0.0021	0.0005	0.0008	0.0008	0.0004	0.0037
Fe [mg/L]	30-Dec-22	11:17	0.008	0.008	< 0.007	< 0.007	< 0.007	0.022
K [mg/L]	30-Dec-22	11:17	1.54	3.59	2.07	1.54	1.32	0.405
Li [mg/L]	30-Dec-22	11:17	0.0004	0.0004	0.0004	0.0004	0.0003	0.0001
Mg [mg/L]	30-Dec-22	11:17	1.46	1.37	1.42	1.86	0.986	2.12
Mn [mg/L]	30-Dec-22	11:17	0.0420	0.0255	0.0640	0.0403	0.0467	0.122
Mo [mg/L]	30-Dec-22	11:17	0.00831	0.112	0.00656	0.00329	0.00309	0.00216
Na [mg/L]	30-Dec-22	11:17	7.15	5.40	7.16	4.75	5.69	0.53
Ni [mg/L]	30-Dec-22	11:17	0.0010	0.0007	0.0023	0.0008	0.0005	0.0007
Pb [mg/L]	30-Dec-22	11:17	< 0.00009	0.00010	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	30-Dec-22	11:17	< 0.0009	< 0.0009	0.0011	< 0.0009	0.0009	0.0009
Se [mg/L]	30-Dec-22	11:17	0.00045	0.00006	0.00018	0.00042	0.00013	0.00159
Sr [mg/L]	30-Dec-22	11:17	0.0118	0.0951	0.0550	0.0558	0.0431	0.0471
Sn [mg/L]	30-Dec-22	11:17	0.00230	0.00193	0.00365	0.00054	0.00140	0.00150

0003187499

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

16-January-2023

Date Rec. :12 January 2023LR Report:CA10087-JAN23Reference:Wk#3 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date Con	4: Analysis npleted Time	5: B QPOR Wk#3	6: B SED Wk#3	7: B MD Wk#3	8: B QTP Wk#3	9: B LGO Wk#3
Sample Date & Time			12-Jan-23	12-Jan-23	12-Jan-23	12-Jan-23	12-Jan-23
HumCell Leachate Vol [mL]	13-Jan-23	10:08	856	913	868	889	902
pH [No unit]	13-Jan-23	14:24	7.30	7.67	7.61	7.54	7.23
Conductivity [uS/cm]	13-Jan-23	14:24	31	42	42	31	30

Analysis	10: B HGO Wk#3
Sample Date & Time	12-Jan-23
HumCell Leachate Vol [mL]	867
pH [No unit]	7.30
Conductivity [uS/cm]	36

NI

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003195739

Page 1 of 1 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or gravitation

Marathon - Berry Set 1

Project : Berry Project LR Report : CA10136-DEC22

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#1	6: B SED-High SFE Wk#1	7: B QTP-PAG Wk#1	8: B LGO-PAG B Wk#1	9: HGO-PAG-ZnB Wk#1	10: OB-ML Wk#1
Ti [mg/L]	30-Dec-22	11:17	0.00015	0.00032	0.00017	0.00007	0.00011	0.00085
TI [mg/L]	30-Dec-22	11:17	< 0.000005	0.000018	< 0.000005	< 0.000005	0.000013	< 0.000005
U [mg/L]	30-Dec-22	11:17	0.00201	0.0177	0.000684	0.0135	0.00379	0.000851
V [mg/L]	30-Dec-22	11:17	0.00006	0.00065	0.00007	0.00006	0.00014	0.00166
W [mg/L]	30-Dec-22	11:17	0.00039	0.00063	0.00034	0.00026	0.00133	0.00025
Y [mg/L]	30-Dec-22	11:17	0.00006	0.00020	0.00005	0.00005	0.00005	0.00007
Zn [mg/L]	30-Dec-22	11:17	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003187499

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or consultable upon request. regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

18-January-2023

Date Rec. :	22 December 2022					
LR Report:	CA10137-DEC22					
Reference:	Wk#0 - Berry Project					

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom		5: B QPOR Wk#	6: B SED Wk#0	7: B MD Wk#0	8: B QTP Wk#0	9: B LGO Wk#0	10: B HGO Wk#0
Sample Date & Time			22-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22	22-Dec-22
HumCell Leachate Vol [mL]	29-Dec-22	09:15	834	860	826	831	844	832
pH [No unit]	23-Dec-22	10:19	8.01	8.78	8.32	8.76	8.06	8.64
Acidity [mg/L as CaCO3]	28-Dec-22	10:32	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	23-Dec-22	10:19	21	31	25	28	23	25
Conductivity [uS/cm]	23-Dec-22	10:19	52	59	61	60	66	62
SO4 [mg/L]	18-Jan-23	12:42	2.3	1.9	3.3	3.8	6.4	5.2
F [mg/L]	23-Dec-22	08:24	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	29-Dec-22	13:44	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	30-Dec-22	11:18	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	30-Dec-22	11:18	0.212	0.334	0.200	0.275	0.165	0.200
As [mg/L]	30-Dec-22	11:18	0.0021	0.0008	0.0004	0.0006	0.0030	0.0005
Ba [mg/L]	30-Dec-22	11:18	0.00071	0.00573	0.00154	0.00044	0.00056	0.00049
Be [mg/L]	30-Dec-22	11:18	0.000014	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	30-Dec-22	11:18	0.003	0.006	0.005	0.017	0.011	0.009
Bi [mg/L]	30-Dec-22	11:18	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	30-Dec-22	11:18	5.52	5.16	7.36	5.67	6.78	6.04
Cd [mg/L]	30-Dec-22	11:18	0.000005	0.000004	< 0.000003	< 0.000003	0.000003	0.000005
Co [mg/L]	30-Dec-22	11:18	0.000024	0.000027	0.000014	0.000030	0.000028	0.000059
Cr [mg/L]	30-Dec-22	11:18	0.00013	0.00016	< 0.00008	0.00034	0.00047	0.00031
Cu [mg/L]	30-Dec-22	11:18	0.0015	0.0020	0.0018	0.0028	0.0015	0.0033
Fe [mg/L]	30-Dec-22	11:18	< 0.007	0.010	< 0.007	0.016	0.011	0.009
K [mg/L]	30-Dec-22	11:18	1.42	2.02	1.52	1.74	1.46	1.16
Li [mg/L]	30-Dec-22	11:18	0.0006	0.0004	0.0002	0.0004	0.0004	0.0005
Mg [mg/L]	30-Dec-22	11:18	0.266	0.504	0.807	0.365	0.371	0.306
Mn [mg/L]	30-Dec-22	11:18	0.00970	0.00543	0.00430	0.0121	0.0160	0.0140
Mo [mg/L]	30-Dec-22	11:18	0.00124	0.00082	0.00132	0.00427	0.00233	0.00066
Na [mg/L]	30-Dec-22	11:18	4.03	4.61	2.90	4.80	4.25	4.55
Ni [mg/L]	30-Dec-22	11:18	0.0002	0.0003	0.0002	0.0005	0.0003	0.0006
Pb [mg/L]	30-Dec-22	11:18	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	30-Dec-22	11:18	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	30-Dec-22	11:18	0.00009	< 0.00004	0.00006	0.00007	0.00011	0.00011
Sr [mg/L]	30-Dec-22	11:18	0.00727	0.0403	0.0262	0.0169	0.0145	0.0140
Sn [mg/L]	30-Dec-22	11:18	0.00056	0.00828	0.00070	0.00026	0.00280	0.00092

0003198786

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Project : Berry Project LR Report : CA10137-DEC22

Analysis	3: Analysis Anal Completed DateCompleted	4: Iysis Time	5: B QPOR Wk#	6: B SED Wk#0	7: B MD Wk#0	8: B QTP Wk#0	9: B LGO Wk#0	10: B HGO Wk#0
Ti [mg/L]	30-Dec-22 1	1:18	0.00027	0.00038	0.00008	0.00084	0.00022	0.00027
TI [mg/L]	30-Dec-22 1	1:18	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	30-Dec-22 1	1:18	0.00167	0.000464	0.000289	0.000497	0.00183	0.00223
V [mg/L]	30-Dec-22 1	1:18	0.00031	0.00081	0.00271	0.00060	0.00023	0.00032
W [mg/L]	30-Dec-22 1	1:18	0.00046	0.00044	0.00027	0.00054	0.00038	0.00031
Y [mg/L]	30-Dec-22 1	1:18	0.00003	< 0.00002	< 0.00002	0.00010	0.00005	0.00005
Zn [mg/L]	30-Dec-22 1	1:18	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003198786

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or consultable upon request. regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

18-January-2023

Date Rec.: 29 December 2022 LR Report: CA10253-DEC22 Reference: Wk#2 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis	4: Analysis	5:	6: D SED Histo	7: B QTP-PAG	8:	9:	10:
	Analysis Completed DateCom		B QPOR-PAG Wk#2	B SED-High SFE Wk#2	B QTP-PAG Wk#2	B LGO-PAG B Wk#2	HGO-PAG-ZnB Wk#2	OB-ML WK#2
Sample Date & Time			29-Dec-22	29-Dec-22	29-Dec-22	29-Dec-22	29-Dec-22	29-Dec-22
HumCell Leachate Vol [mL]	03-Jan-23	09:49	574	698	669	642	700	481
pH [No unit]	03-Jan-23	11:19	7.38	7.74	7.75	7.47	7.55	7.03
Acidity [mg/L as CaCO3]	04-Jan-23	10:30	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	03-Jan-23	11:19	16	23	22	10	20	7
Conductivity [uS/cm]	03-Jan-23	11:19	79	71	90	116	66	207
SO4 [mg/L]	18-Jan-23	12:43	15	6.1	16	32	9.7	78
F [mg/L]	03-Jan-23	13:14	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	03-Jan-23	15:54	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	05-Jan-23	12:31	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	05-Jan-23	12:31	0.036	0.060	0.025	0.033	0.029	0.043
As [mg/L]	05-Jan-23	12:31	0.0005	0.0004	0.0005	< 0.0002	0.0007	0.0018
Ba [mg/L]	05-Jan-23	12:31	0.00071	0.00333	0.00231	0.00090	0.00143	0.0119
Be [mg/L]	05-Jan-23	12:31	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	05-Jan-23	12:31	0.019	0.013	0.016	0.007	0.010	0.004
Bi [mg/L]	05-Jan-23	12:31	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	< 0.00001
Ca [mg/L]	05-Jan-23	12:31	9.73	7.04	11.7	16.5	8.99	34.7
Cd [mg/L]	05-Jan-23	12:31	0.000008	0.000019	0.000003	0.000013	0.000009	0.000048
Co [mg/L]	05-Jan-23	12:31	0.000028	0.000038	0.000068	0.000039	0.000027	0.000142
Cr [mg/L]	05-Jan-23	12:31	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.0008
Cu [mg/L]	05-Jan-23	12:31	0.0009	0.0003	0.0004	0.0004	0.0004	0.0029
Fe [mg/L]	05-Jan-23	12:31	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.031
K [mg/L]	05-Jan-23	12:31	0.981	2.78	1.27	0.822	0.875	0.452
Li [mg/L]	05-Jan-23	12:31	0.0002	0.0002	0.0002	0.0002	0.0001	< 0.0001
Mg [mg/L]	05-Jan-23	12:31	0.934	0.964	0.790	0.963	0.645	1.33
Mn [mg/L]	05-Jan-23	12:31	0.0822	0.0288	0.0559	0.0393	0.0579	0.0795
Mo [mg/L]	05-Jan-23	12:31	0.00675	0.0766	0.00487	0.00216	0.00155	0.00296
Na [mg/L]	05-Jan-23	12:31	2.37	3.13	3.03	1.86	2.59	0.30
Ni [mg/L]	05-Jan-23	12:31	0.0003	0.0002	0.0008	0.0003	0.0005	0.0003
Pb [mg/L]	05-Jan-23	12:31	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	05-Jan-23	12:31	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0009
Se [mg/L]	05-Jan-23	12:31	0.00032	0.00015	0.00020	0.00017	0.00014	0.00185
Sr [mg/L]	05-Jan-23	12:31	0.00901	0.0787	0.0365	0.0295	0.0332	0.0486
Sn [mg/L]	05-Jan-23	12:31	0.00138	0.00067	0.00130	0.00012	0.00043	0.00041

0003198836

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Marathon - Berry Set 1

Project : Berry Project LR Report : CA10253-DEC22

Analysis	3: Analysis Completed DateComp	4: Analysis leted Time	5: B QPOR-PAG Wk#2	6: B SED-High SFE Wk#2	7: B QTP-PAG Wk#2	8: B LGO-PAG B Wk#2	9: HGO-PAG-ZnB Wk#2	10: OB-ML Wk#2
Ti [mg/L]	05-Jan-23	12:31	0.00014	0.00018	0.00012	0.00024	0.00022	0.00136
TI [mg/L]	05-Jan-23	12:31	< 0.000005	0.000008	< 0.000005	< 0.000005	< 0.000005	0.000007
U [mg/L]	05-Jan-23	12:31	0.000718	0.0135	0.000744	0.00257	0.000887	0.00124
V [mg/L]	05-Jan-23	12:31	0.00003	0.00057	0.00007	0.00004	0.00009	0.00143
W [mg/L]	05-Jan-23	12:31	0.00028	0.00050	0.00027	0.00022	0.00096	0.00023
Y [mg/L]	05-Jan-23	12:31	0.00005	0.00014	0.00005	0.00002	0.00003	0.00007
Zn [mg/L]	05-Jan-23	12:31	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003198836

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or consultable upon request. regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 2

Project : Berry Project

18-January-2023

Date Rec. :	29 December 2022					
LR Report:	CA10254-DEC22					
Reference:	Wk#1 - Berry Project					

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis Completed DateCom		5: B QPOR Wk#	6: B SED Wk#1	7: B MD Wk#1	8: B QTP Wk#1	9: B LGO Wk#1	10: B HGO Wk#1
Sample Date & Time			29-Dec-22	29-Dec-22	29-Dec-22	29-Dec-22	29-Dec-22	29-Dec-22
HumCell Leachate Vol [mL]	03-Jan-23	09:49	845	889	917	882	927	890
pH [No unit]	03-Jan-23	11:20	7.75	8.77	8.20	8.00	7.73	7.93
Acidity [mg/L as CaCO3]	04-Jan-23	11:14	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	03-Jan-23	11:20	13	25	21	14	12	14
Conductivity [uS/cm]	03-Jan-23	11:20	62	55	62	58	74	88
SO4 [mg/L]	18-Jan-23	12:44	6.2	4.1	7.2	5.6	11	14
F [mg/L]	03-Jan-23	13:14	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	03-Jan-23	15:54	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	04-Jan-23	14:02	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	04-Jan-23	14:02	0.058	0.120	0.083	0.071	0.047	0.043
As [mg/L]	04-Jan-23	14:02	0.0010	0.0007	0.0003	0.0005	0.0003	0.0005
Ba [mg/L]	04-Jan-23	14:02	0.00072	0.00527	0.00151	0.00058	0.00087	0.00068
Be [mg/L]	04-Jan-23	14:02	0.000012	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	04-Jan-23	14:02	0.005	0.004	0.007	0.021	0.012	0.015
Bi [mg/L]	04-Jan-23	14:02	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001	0.00001
Ca [mg/L]	04-Jan-23	14:02	4.09	4.34	6.96	4.39	5.17	8.07
Cd [mg/L]	04-Jan-23	14:02	0.000013	< 0.000003	0.000004	0.000003	0.000003	0.000009
Co [mg/L]	04-Jan-23	14:02	0.000014	0.000008	0.000016	0.000020	0.000031	0.000030
Cr [mg/L]	04-Jan-23	14:02	< 0.00008	< 0.00008	0.00012	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	04-Jan-23	14:02	0.0028	0.0014	0.0009	0.0050	0.0076	0.0026
Fe [mg/L]	04-Jan-23	14:02	< 0.007	< 0.007	0.007	0.013	0.009	0.011
K [mg/L]	04-Jan-23	14:02	1.36	1.49	1.15	1.44	1.28	1.19
Li [mg/L]	04-Jan-23	14:02	0.0003	0.0002	< 0.0001	0.0002	0.0002	0.0001
Mg [mg/L]	04-Jan-23	14:02	0.285	0.465	0.826	0.380	0.418	0.595
Mn [mg/L]	04-Jan-23	14:02	0.0199	0.0131	0.0112	0.0238	0.0276	0.0356
Mo [mg/L]	04-Jan-23	14:02	0.00458	0.00229	0.00301	0.00939	0.00180	0.00753
Na [mg/L]	04-Jan-23	14:02	6.30	4.66	2.71	5.16	7.29	6.32
Ni [mg/L]	04-Jan-23	14:02	< 0.0001	< 0.0001	< 0.0001	0.0001	0.0002	0.0002
Pb [mg/L]	04-Jan-23	14:02	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00010
Sb [mg/L]	04-Jan-23	14:02	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	04-Jan-23	14:02	0.00014	0.00008	0.00016	0.00017	0.00005	0.00008
Sr [mg/L]	04-Jan-23	14:02	0.00792	0.0442	0.0315	0.0175	0.0194	0.0279
Sn [mg/L]	04-Jan-23	14:02	0.00029	0.00097	0.00025	0.00017	0.00021	0.00043

0003198845

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Project : Berry Project

LR Report : CA10254-DEC22

Analysis	3: Analysis		5: B QPOR Wk#	6: B SED Wk#1	7: B MD Wk#1	8: B QTP Wk#1	9: B LGO Wk#1	10: B HGO Wk#1
	Completed DateComp	pietea l'ime						
Ti [mg/L]	04-Jan-23	14:02	0.00024	0.00016	0.00027	0.00058	0.00036	0.00023
TI [mg/L]	04-Jan-23	14:02	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000005
U [mg/L]	04-Jan-23	14:02	0.000518	0.000954	0.00101	0.00455	0.000903	0.000496
V [mg/L]	04-Jan-23	14:02	0.00016	0.00058	0.00456	0.00026	0.00015	0.00010
W [mg/L]	04-Jan-23	14:02	0.00058	0.00053	0.00015	0.00072	0.00043	0.00032
Y [mg/L]	04-Jan-23	14:02	0.00006	0.00003	< 0.00002	0.00015	0.00013	0.00014
Zn [mg/L]	04-Jan-23	14:02	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003198845

Page 2 of 2 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 2

Project : Berry Project

18-January-2023

Date Rec.: 05 January 2023 LR Report: CA10042-JAN23 Reference: Wk#2

0003198906

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

nalysis	3: Analysis	4: Analysis B	5: QPOR Wk#2	6: B SED Wk#2	7: B MD Wk#2	8: B QTP Wk#2	9: B LGO Wk#2	10: B HGO Wk#2	
	Completed DateCon	pleted Time							
ample Date & Time			5-Jan-23	5-Jan-23	5-Jan-23	5-Jan-23	5-Jan-23	5-Jan-23	
umCell Leachate Vol [mL]	06-Jan-23	15:00	891	926	877	811	900	889	
H [No unit]	09-Jan-23	12:01	8.03	9.19	8.46	7.95	8.03	8.05	
cidity [mg/L as CaCO3]	09-Jan-23	12:01	< 2	< 2	< 2	< 2	< 2	< 2	
kalinity [mg/L as CaCO3]	09-Jan-23	12:01	14	23	17	14	12	14	
onductivity [uS/cm]	09-Jan-23	12:01	39	41	48	33	37	49	
O4 [mg/L]	16-Jan-23	15:38	2.2	2.0	4.0	2.0	3.5	6.0	
[mg/L]	06-Jan-23	13:23	0.12	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	
g [mg/L]	06-Jan-23	15:31	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	
g [mg/L]	10-Jan-23	14:18	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	
[mg/L]	10-Jan-23	14:18	0.065	0.131	0.080	0.065	0.050	0.042	
s [mg/L]	10-Jan-23	14:18	0.0014	0.0037	0.0009	0.0008	0.0004	0.0003	
a [mg/L]	10-Jan-23	14:18	0.00052	0.00656	0.00108	0.00046	0.00040	0.00030	
e [mg/L]	10-Jan-23	14:18	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	
[mg/L]	10-Jan-23	14:18	0.009	0.008	0.011	0.018	0.009	0.011	
[mg/L]	10-Jan-23	14:18	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00001	< 0.00001	
a [mg/L]	10-Jan-23	14:18	3.44	4.01	5.20	3.58	3.44	4.75	
d [mg/L]	10-Jan-23	14:18	0.000010	< 0.000003	< 0.000003	0.000005	< 0.000003	< 0.000003	
o [mg/L]	10-Jan-23	14:18	0.000027	0.000009	0.000011	0.000013	0.000025	0.000038	
r [mg/L]	10-Jan-23	14:18	< 0.00008	< 0.00008	< 0.00008	0.00011	< 0.00008	< 0.0008	
u [mg/L]	10-Jan-23	14:18	0.0014	0.0010	0.0008	0.0027	0.0031	0.0015	
e [mg/L]	10-Jan-23	14:18	< 0.007	< 0.007	0.007	0.010	0.007	0.007	
[mg/L]	10-Jan-23	14:18	0.991	1.28	0.841	0.973	0.724	0.675	
[mg/L]	10-Jan-23	14:18	0.0003	0.0002	0.0001	0.0002	0.0002	< 0.0001	
g [mg/L]	10-Jan-23	14:18	0.207	0.405	0.569	0.263	0.237	0.347	
n [mg/L]	10-Jan-23	14:18	0.0177	0.0131	0.0119	0.0234	0.0236	0.0295	
o [mg/L]	10-Jan-23	14:18	0.00417	0.00147	0.00294	0.00493	0.00091	0.00414	
a [mg/L]	10-Jan-23	14:18	3.31	2.90	1.77	2.52	3.28	3.20	
[mg/L]	10-Jan-23	14:18	0.0002	0.0003	0.0003	0.0002	0.0002	0.0003	
o [mg/L]	10-Jan-23	14:18	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	
o [mg/L]	10-Jan-23	14:18	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	
e [mg/L]	10-Jan-23	14:18	0.00012	0.00009	0.00014	0.00009	0.00012	0.00016	
r [mg/L]	10-Jan-23	14:18	0.00499	0.0361	0.0206	0.0112	0.00919	0.0127	
n [mg/L]	10-Jan-23	14:18	0.00012	0.00050	0.00011	0.00007	0.00011	0.00021	

Page 1 of 2

Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

Project : Berry Project

LR Report : CA10042-JAN23

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom		QPOR Wk#2	B SED Wk#2	B MD Wk#2	B QTP Wk#2	B LGO Wk#2	B HGO Wk#2
Ti [mg/L]	10-Jan-23	14:18	0.00017	0.00010	0.00021	0.00044	0.00034	0.00019
TI [mg/L]	10-Jan-23	14:18	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	10-Jan-23	14:18	0.00647	0.00333	0.00125	0.000597	0.000783	0.000566
V [mg/L]	10-Jan-23	14:18	0.00023	0.00077	0.00559	0.00026	0.00016	0.00013
W [mg/L]	10-Jan-23	14:18	0.00045	0.00041	0.00016	0.00044	0.00030	0.00022
Y [mg/L]	10-Jan-23	14:18	0.00004	0.00002	< 0.00002	0.00011	0.00010	0.00007
Zn [mg/L]	10-Jan-23	14:18	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003198906

Page 2 of 2 Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

23-January-2023

Date Rec. :19 January 2023LR Report:CA10134-JAN23Reference:Wk#5 - Berry Project

Copy: #1

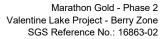
CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#5	6: B SED-High SFE Wk#5	7: B QTP-PAG Wk#5	8: B LGO-PAG B Wk#5	9: HGO-PAG-Zn Wk#5	10: B OB-ML Wk#5
Sample Date & Time			18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23
HumCell Leachate Vol [mL]	20-Jan-23	15:07	604	709	681	625	703	532
pH [No unit]	20-Jan-23	10:06	7.14	7.84	7.13	7.10	7.05	6.75
Conductivity [uS/cm]	20-Jan-23	10:06	38	44	38	42	30	114

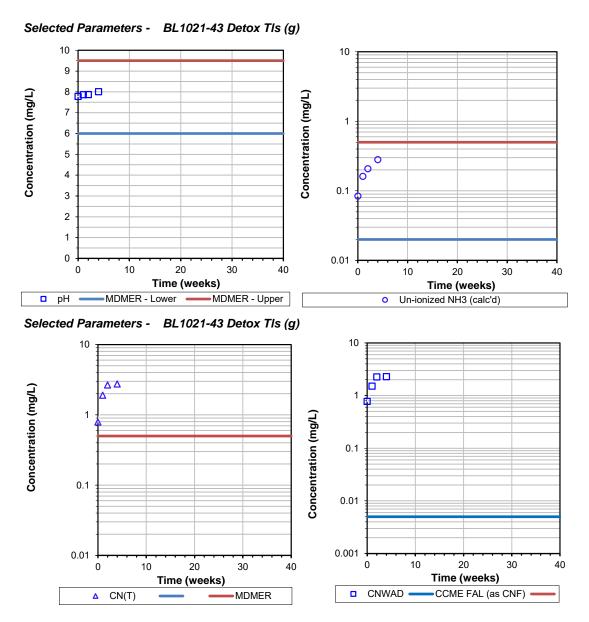
Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003204076

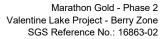
Results relate only to the sample tested. Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation.

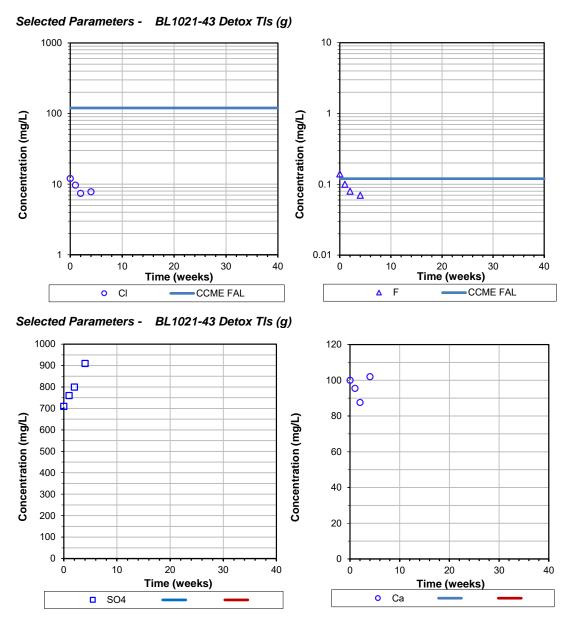

Sample Properties

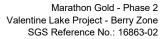
BL1021-43 Detox Tls (g)	3000
Process Water Cover (mL)	2390
Initital Tailings Height in Column (cn	27.6

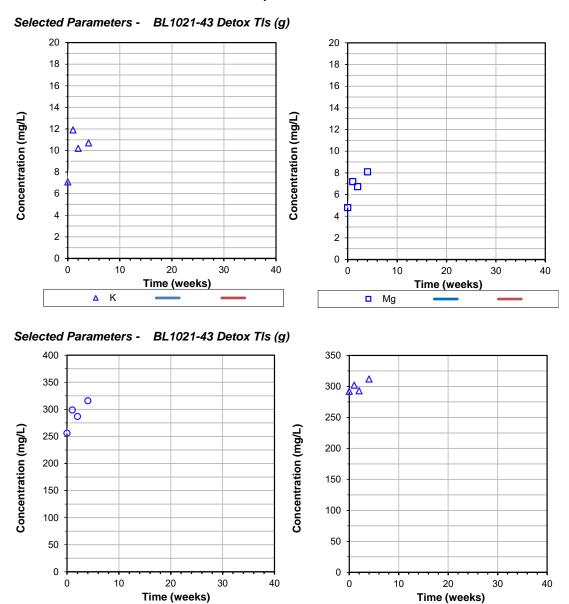

Analysis of Column Leachate

Parameter	Units	CCME FAL /	0	1	2	4	6
Date		MDMER	25-Nov-22	01-Dec-22		22-Dec-22	05-Jan-23
LIMS				14059-DEC22			05-Jan-25 n/a
Volume Collected	mL	_	500	450	450	450	450
Temp Upon Receipt	°C	-	20.0	21.0	20.0	20.0	-
oH	no unit	6.0-9.5	7.78	7.86	7.87	8.01	_
Alkalinity	mg/L as CaCO ₃		53	65	78	104	_
Conductivity	µS/cm	_	1840	1890	1870	1950	-
Redox Potential	mV	-	164	329	333	286	-
TDS	mg/L	-	1260	1160	1320	1310	-
F	•	- 0.12	0.14	0.10	0.08	0.07	-
	mg/L						-
NO ₂	as N mg/L	0.06	< 0.3	< 0.3	< 0.3	< 0.3	-
NO ₃	as N mg/L	13	0.95	< 0.6	< 0.6	< 0.6	-
NO ₂ +NO ₃	as N mg/L	-	0.95	< 0.6	< 0.06	< 0.6	-
CI	mg/L	120	12	9.7	7.4	7.8	-
SO ₄	mg/L	-	710	760	800	910	-
CN _(T)	mg/L	0.50	0.79	1.90	2.66	2.74	-
CNWAD	mg/L	0.005 as CNF	0.774	1.51	2.25	2.29	-
CNS	mg/L	-	< 2	5.7	5.6	4.0	-
CNO	mg/L	-	62	14 UAL	1.5	< 1	-
NH ₃ +NH ₄	as N mg/L	-	3.6	5.8	7.3	7.2	-
Un-ionized NH ₃ (calc'd)	-	0.02 / 0.50	0.08	0.16	0.21	0.28	-
		0.02 / 0.00	< 20	< 20	< 20	< 20	
S ₂ O ₃	as S ₂ O ₃ mg/L	-				< 0.00001	-
Hg A≈	•).000026 / 0.000		0.00024	0.00003		-
Ag	mg/L	0.00025	0.00029	0.00234	0.00083	0.00031	-
AI	mg/L	0.1@pH>6.5	0.035	0.029	0.021	0.018	-
As	mg/L	0.005 / 0.10	0.0003	0.0005	0.0004	0.0006	-
3	mg/L	1.5	0.039	0.042	0.097	0.053	-
Ba	mg/L	-	0.00789	0.00932	0.01056	0.00914	-
Be	mg/L		< 0.000007	< 0.000007	< 0.000007	< 0.000007	-
Bi	mg/L	-	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-
Ca	mg/L	-	100	95.5	87.6	102	-
Cd	mg/L	0.00009	0.000021	0.000024	0.000022	0.000032	-
Co	mg/L	-	0.00479	0.00247	0.00389	0.0102	-
Cr	mg/L	-	0.00011	< 0.00008	0.00016	< 0.00008	-
Cu	mg/L	0.002 / 0.10	0.743	1.63	2.70	2.45	-
Fe	mg/L	0.3	0.030	< 0.007	< 0.007	0.036	-
K	mg/L	-	7.09	11.9	10.2	10.7	-
Li	mg/L	-	0.0037	0.0038	0.0018	0.0012	-
Mg	mg/L	-	4.81	7.20	6.73	8.10	-
Mn	mg/L	-	0.103	0.0543	0.0848	0.0959	-
Mo	mg/L	0.073	0.0163	0.0342	0.0377	0.0382	-
Na	mg/L	-	256	299	287	316	-
Ni	mg/L	0.025 / 0.25	0.0123	0.0012	0.0019	0.0041	-
P	mg/L	-	0.013	0.007	0.006	0.004	-
Pb	mg/L	0.001 / 0.08	0.00103	< 0.00009	< 0.00009	< 0.00009	-
S	mg/L	-	292	302	293	312	-
Sb	mg/L	-	0.0013	0.0012	0.0013	0.0013	-
Se	mg/L	0.001 / 0.01	0.00131	0.00060	0.00036	0.00029	-
Si	mg/L	-	1.25	2.36	2.23	2.45	-
Sn	mg/L	-	0.00389	0.00023	0.00025	0.00016	-
Sr	mg/L	-	0.351	0.361	0.347	0.367	-
Th	mg/L	-	< 0.0001	< 0.0001	0.0008	< 0.0001	-
Ti	mg/L	-	< 0.00005	< 0.00005	< 0.00005	0.00010	-
TI	mg/L	0.0008	< 0.000005	0.000007	0.000019	0.000008	-
U	mg/L	0.015	0.000524	0.000253	0.000379	0.000868	-
V	mg/L	-	0.00002	0.00003	0.00004	0.00003	-
W	mg/L	-	0.00009	0.00010	0.00010	0.00006	-
Y	mg/L	-	< 0.00002	< 0.00002	< 0.00002	< 0.00002	-
Zn	mg/L	0.007 / 0.40	< 0.002	0.009	0.015	0.011	-

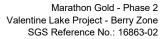

Parameters outside the CCME FAL guidelines are indicated in bold type. Parameters outside the MDMER limits are indicated in bold blue type. Raised RL's for CNS, Nitrates + S2O $_3$ due to sample matrix UAL=CNO process past holding time

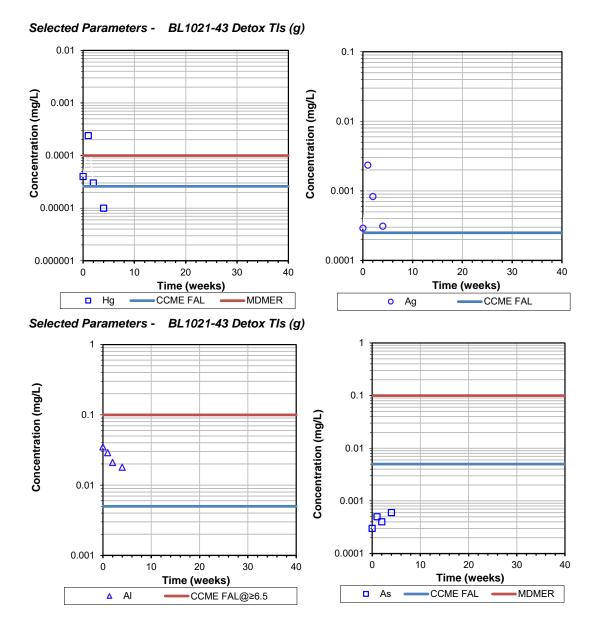



This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

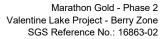


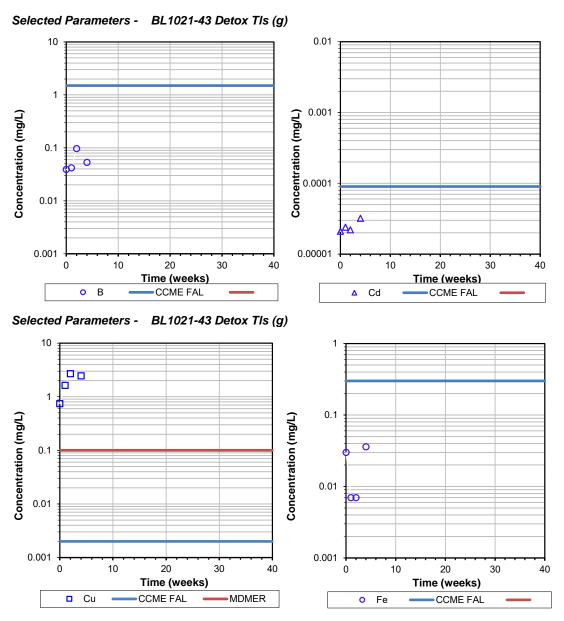
This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.




This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

Δ S


o Na



This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

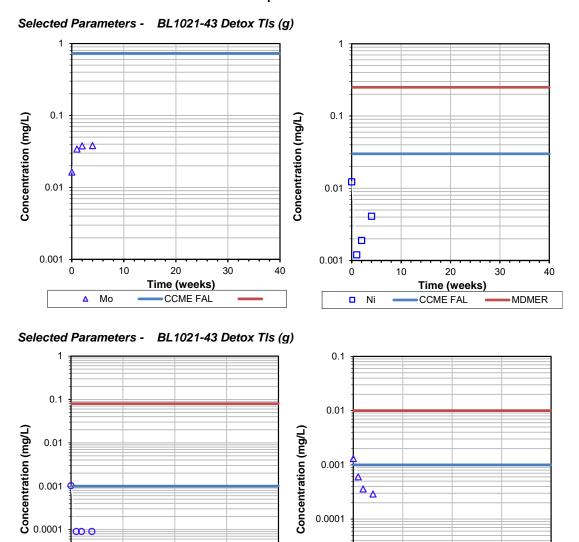
This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

 $\infty \circ$

10

0

0 Pb 20


CCME FAL

Time (weeks)

30

MDMER

0.00001

Δ

0.0001

0.00001

0

∆ Se

10

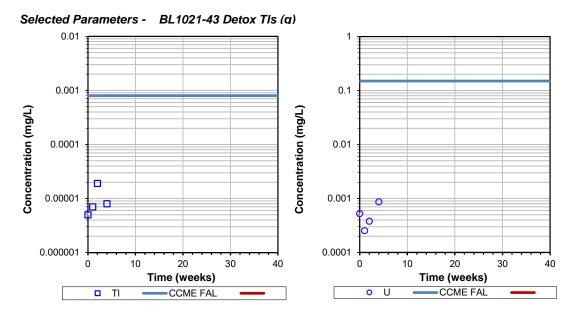
20

Time (weeks)

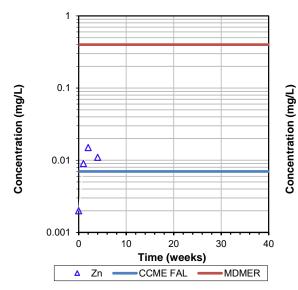
CCME FAL

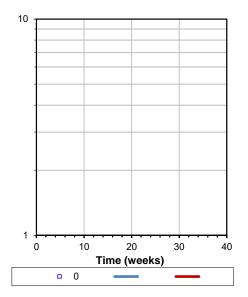
30

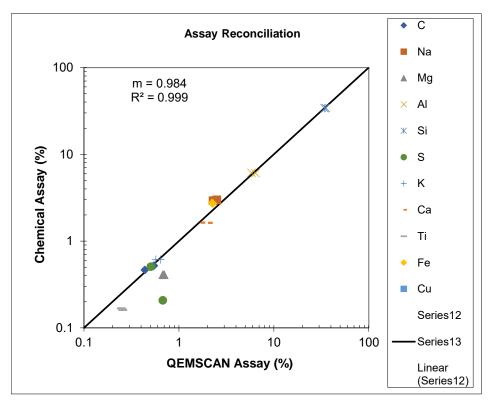
40


MDMER

TEST REPORT Sub-Aqueous Column

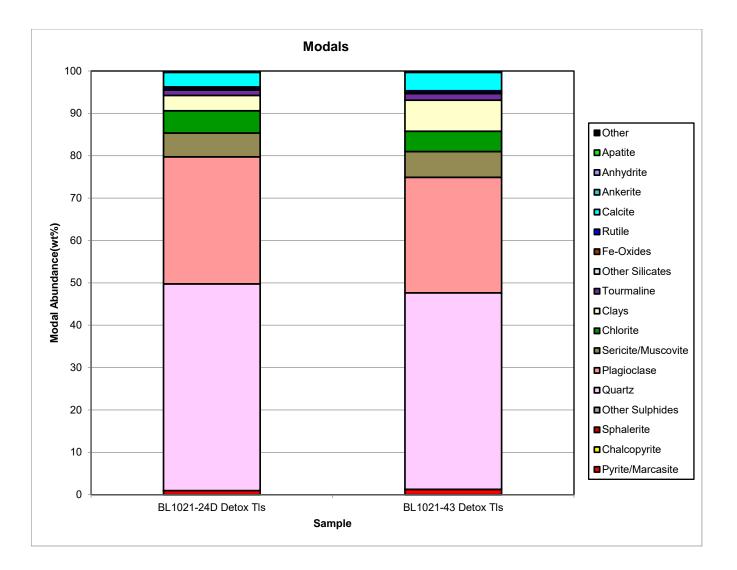

This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.


40

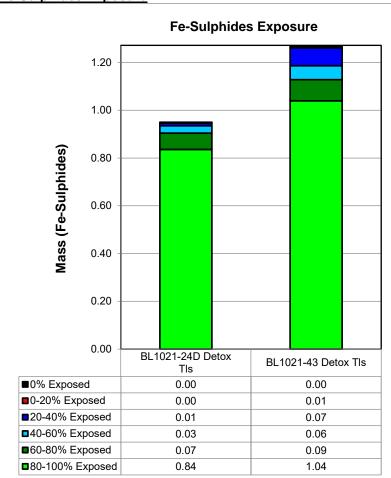

Selected Parameters - BL1021-43 Detox TIs (g)

This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)


	BL1021-	BL1021-43
Sample/Element	24D Detox	Detox TIs
	TIs	
C (QEMSCAN)*	0.44	0.55
C (Chemical)	0.47	0.52
Na (QEMSCAN)	2.51	2.29
Na (Chemical)	2.98	2.93
Mg (QEMSCAN)	0.70	0.68
Mg (Chemical)	0.41	0.41
AI (QEMSCAN)	5.82	6.40
Al (Chemical)	6.14	6.09
Si (QEMSCAN)	35.3	34.2
Si (Chemical)	34.3	34.0
S (QEMSCAN)	0.51	0.68
S (Chemical)	0.51	0.21
K (QEMSCAN)	0.57	0.64
K (Chemical)	0.61	0.61
Ca (QEMSCAN)	1.70	2.05
Ca (Chemical)	1.64	1.63
Ti (QEMSCAN)	0.26	0.25
Ti (Chemical)	0.16	0.17
Fe (QEMSCAN)	2.25	2.27
Fe (Chemical)	2.75	2.72
Cu (QEMSCAN)	0.00	0.00
Cu (Chemical)	0.01	0.02

* Note: "C (QEMSCAN)" reflects carbonate carbon since QEMSCAN cannot measure graphitic or organic carbon.

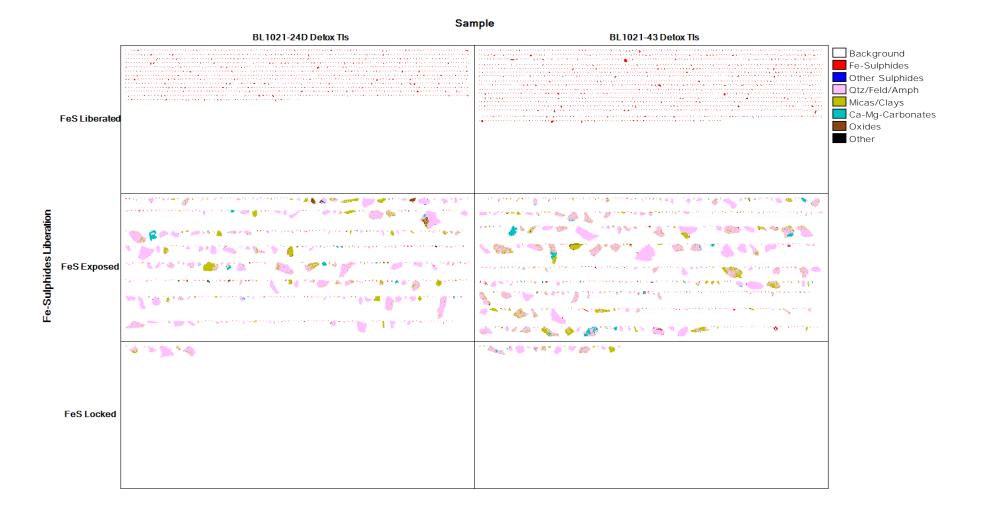

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

<u>Modals</u>

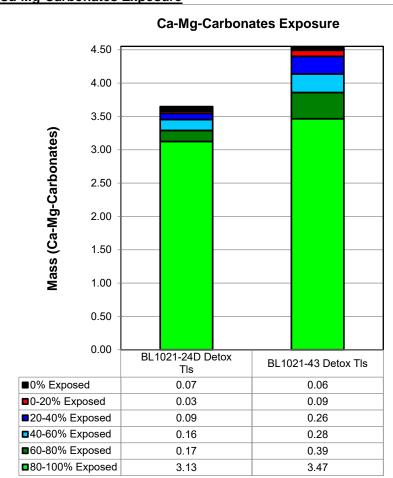
Sample		BL1021-24D	BL1021-43
Sample		Detox TIs	Detox TIs
Fraction		-300/+3um	-300/+3um
Calculated ES	D Particle Size (µm)	33	32
Mineral Mass	Pyrite/Marcasite	0.95	1.27
(%)	Chalcopyrite	0.01	0.01
	Sphalerite	0.00	0.00
	Other Sulphides	0.00	0.00
	Quartz	48.8	46.4
	Plagioclase	30.0	27.3
	Sericite/Muscovite	5.61	6.07
	Chlorite	5.26	4.80
	Clays	3.61	7.32
	Tourmaline	1.26	1.54
	Other Silicates	0.09	0.14
	Fe-Oxides	0.16	0.07
	Rutile	0.49	0.46
	Calcite	3.45	4.34
	Ankerite	0.20	0.21
	Anhydrite	0.02	0.01
	Apatite	0.09	0.10
	Other	0.02	0.02
	Total	100.0	100.0
Mean Grain	Pyrite/Marcasite	10	11
Size by	Chalcopyrite	10	10
Frequency	Sphalerite	6	8
(µm)	Other Sulphides	17	6
" <i>'</i>	Quartz	36	34
	Plagioclase	24	18
	Sericite/Muscovite	14	14
	Chlorite	20	19
	Clays	6	7
	Tourmaline	19	20
	Other Silicates	7	7
	Fe-Oxides	12	10
	Rutile	14	13
	Calcite	19	20
	Ankerite	20	21
	Anhydrite	11	8
	Apatite	13	14
	Other	8	7


High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

Fe-Sulphides Exposure

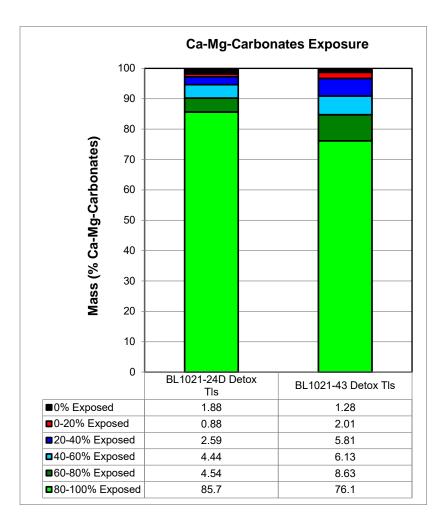

Absolute Mass of Fe-Sulphides Across Samples

Mineral Name	BL1021-24D	BL1021-43
	Detox TIs	Detox TIs
80-100% Exposed	0.84	1.04
60-80% Exposed	0.07	0.09
40-60% Exposed	0.03	0.06
20-40% Exposed	0.01	0.07
0-20% Exposed	0.00	0.01
0% Exposed	0.00	0.00
Total	0.95	1.27

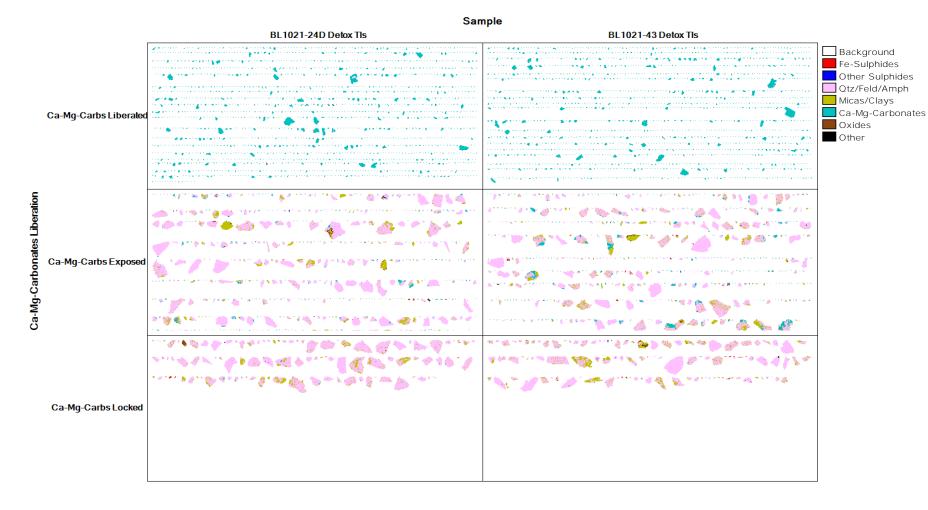


Normalized Mass of Fe-Sulphides Across Samples

Mineral Name	BL1021-24D	BL1021-43
	Detox TIs	Detox TIs
80-100% Exposed	88.0	81.7
60-80% Exposed	7.17	6.96
40-60% Exposed	3.20	4.58
20-40% Exposed	1.31	5.89
0-20% Exposed	0.03	0.54
0% Exposed	0.25	0.28
Total	100.0	100.0
Total Exposed	99.8	99.7


High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

Ca-Mg-Carbonates Exposure


Absolute Mass of Ca-Mg-Carbonates Across Sample

Mineral Name	BL1021-24D	BL1021-43
	Detox TIs	Detox TIs
80-100% Exposed	3.13	3.47
60-80% Exposed	0.17	0.39
40-60% Exposed	0.16	0.28
20-40% Exposed	0.09	0.26
0-20% Exposed	0.03	0.09
0% Exposed	0.07	0.06
Total	3.65	4.55

Normalized Mass of Ca-Mg-Carbonates Across Samples

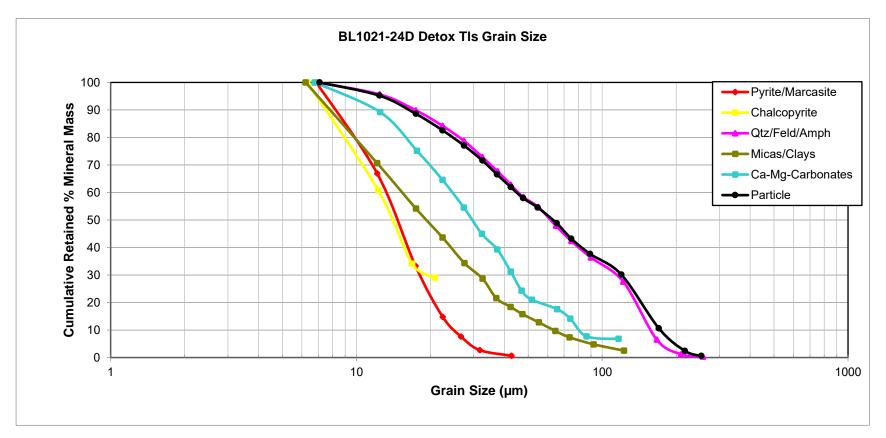
Mineral Name	BL1021-24D	BL1021-43
	Detox TIs	Detox TIs
80-100% Exposed	85.7	76.1
60-80% Exposed	4.54	8.63
40-60% Exposed	4.44	6.13
20-40% Exposed	2.59	5.81
0-20% Exposed	0.88	2.01
0% Exposed	1.88	1.28
Total	100.0	100.0
Total Exposed	98.1	98.7

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

Mineralogical Acid-Base Accounting

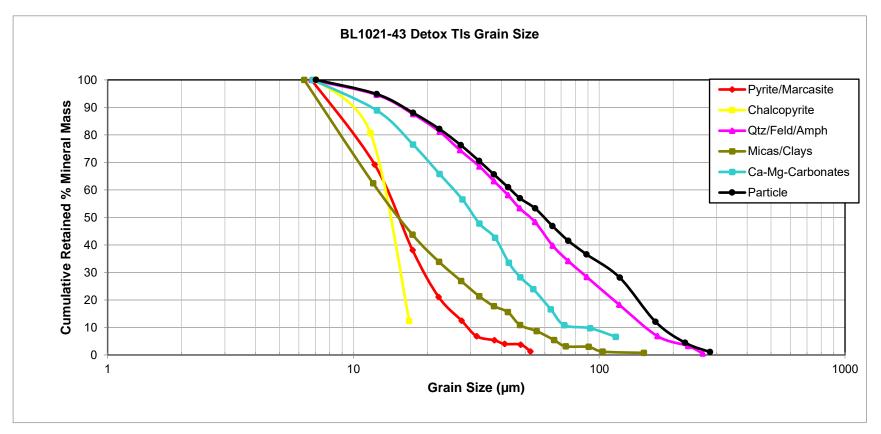
Parameter	BL1021-24D Detox TIs	BL1021-43 Detox TIs
NP from Ca-Mg Carbonates (tonnes CaCO3/1000 tonnes)	36.4	45.5
AP from Fe-Sulphides (tonnes CaCO3/1000 tonnes)	15.9	21.2
NP/AP	2.30	2.14
Available NP/AP	2.26	2.12

Notes:

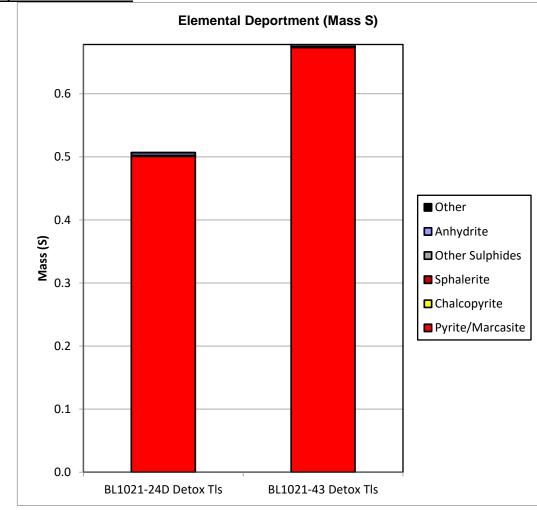

NP = Neutralization Potential AP = Acid Generation Potential "Available NP/AP" takes into account the exposure of Ca-Mg-carbonates and Fe-sulphides

A carbonate/sulphide ratio > 2 indicates probable net neutralizing conditions. Only net acid consuming carbonates (Ca-Mg carbonates) are used for the mineralogical neutralization potential (NP) determination. Only Fe-sulphides are used for the mineralogical acid generation potential (AGP) as they are the main sulphides to contribute to net acidity.

In cases of low carbonate and sulphide abundance (typically <0.5 wt.% of each), values are only semi-quantitative due to low particle statistics for study. More replicate analyses are recommended to properly quantify the NP/AGP potential of these samples.

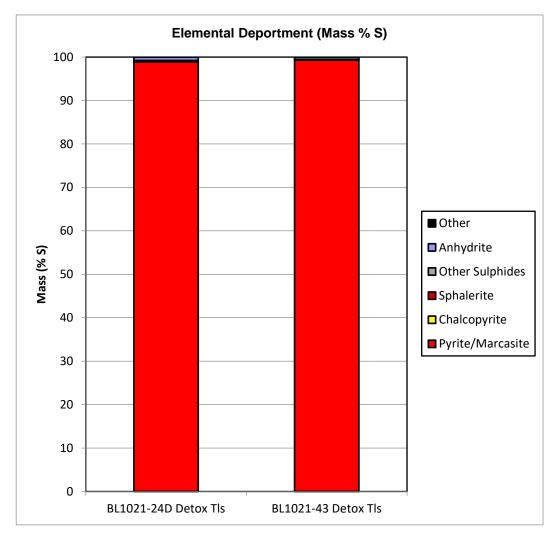

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

Cumulative Retained Grain Size Distribution

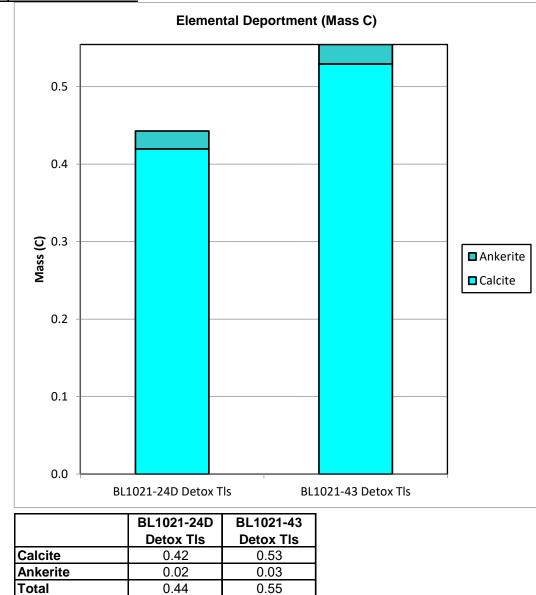


High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

Cumulative Retained Grain Size Distribution

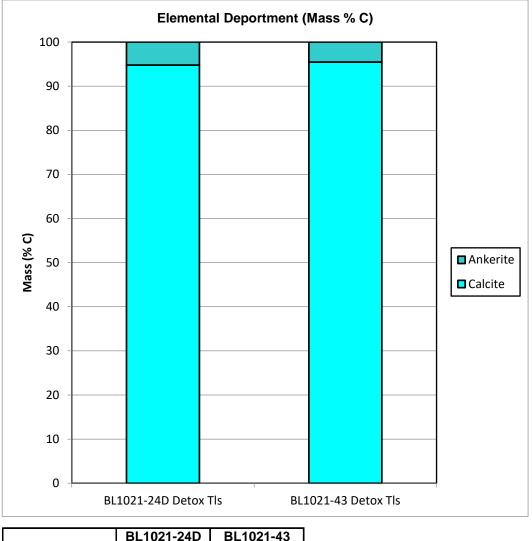

High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

S Deportment - Absolute


	BL1021-24D Detox TIs	BL1021-43 Detox TIs
Pyrite/Marcasite	0.50	0.67
Chalcopyrite	0.00	0.00
Sphalerite	0.00	0.00
Other Sulphides	0.00	0.00
Anhydrite	0.00	0.00
Other	0.00	0.00
Total	0.51	0.68

S Deportment - Normalized

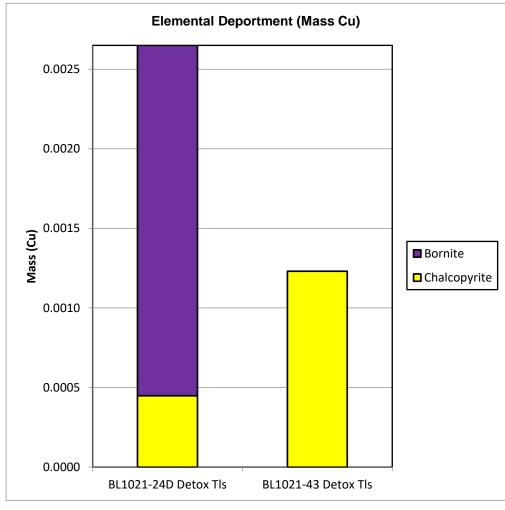
	BL1021-24D Detox TIs	BL1021-43 Detox TIs
Pyrite/Marcasite	98.9	99.3
Chalcopyrite	0.04	0.16
Sphalerite	0.06	0.03
Other Sulphides	0.21	0.02
Anhydrite	0.77	0.49
Other	0.01	0.00
Total	100.0	100.0


High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

C Deportment* - Absolute

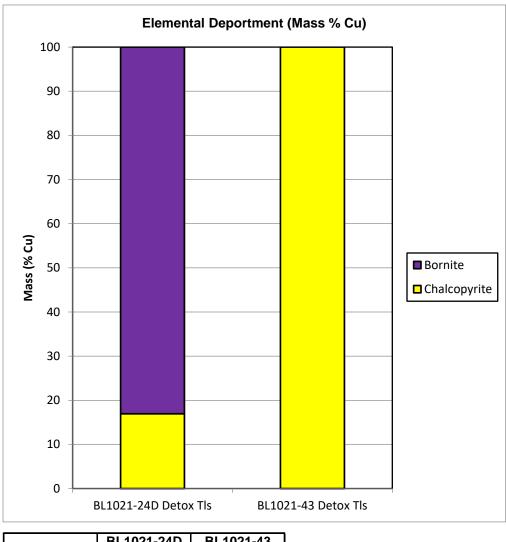
*Carbon deportment is for carbonate carbon only.

C Deportment* - Normalized



	BL1021-24D	BL1021-43
	Detox TIs	Detox TIs
Calcite	94.8	95.5
Ankerite	5.23	4.53
Total	100.0	100.0

*Carbon deportment is for carbonate carbon only.


High Definition Mineralogical Analysis using QEMSCAN (Quantitative Evaluation of Materials by Scanning Electron Microscopy)

Cu Deportment - Absolute

	BL1021-24D	BL1021-43
	Detox TIs	Detox TIs
Chalcopyrite	0.0004	0.0012
Bornite	0.0022	0.0000
Total	0.0026	0.0012

Cu Deportment - Normalized

BL1021-24D	BL1021-43		
Detox TIs	Detox TIs		
16.9	100.0		
83.1	0.00		
100.0	100.0		
	Detox TIs 16.9 83.1		

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

30-January-2023

Date Rec. :12 January 2023LR Report:CA10086-JAN23Reference:Wk#4 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateComp	Analysis bleted Time	B QPOR-PAG Wk#4	B SED-High SFE Wk#4	B QTP-PAG Wk#4	B LGO-PAG B Wk#4	HGO-PAG-ZnB Wk#4	OB-ML Wk#4
Sample Date & Time			12-Jan-23	12-Jan-23	12-Jan-23	12-Jan-23	12-Jan-23	12-Jan-23
HumCell Leachate Vol [mL]	13-Jan-23	10:08	622	719	594	582	650	424
pH [No unit]	17-Jan-23	13:34	7.80	8.13	8.45	8.17	8.43	7.00
Acidity [mg/L as CaCO3]	17-Jan-23	13:34	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	17-Jan-23	13:34	15	20	11	10	10	5
Conductivity [uS/cm]	17-Jan-23	13:34	48	46	38	54	30	180
SO4 [mg/L]	26-Jan-23	06:12	7.1	3.5	6.7	14	3.9	79
F [mg/L]	13-Jan-23	10:21	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	16-Jan-23	12:33	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	26-Jan-23	16:26	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	26-Jan-23	16:26	0.029	0.054	0.057	0.050	0.038	0.081
As [mg/L]	26-Jan-23	16:26	< 0.0002	0.0005	0.0002	< 0.0002	0.0004	0.0016
Ba [mg/L]	26-Jan-23	16:26	0.00040	0.00229	0.00098	0.00040	0.00051	0.00939
Be [mg/L]	26-Jan-23	16:26	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	26-Jan-23	16:26	0.004	0.007	0.004	0.003	0.006	< 0.002
Bi [mg/L]	26-Jan-23	16:26	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00003	< 0.00001
Ca [mg/L]	26-Jan-23	16:26	7.80	6.12	5.80	8.99	4.55	33.5
Cd [mg/L]	26-Jan-23	16:26	0.000005	0.000010	< 0.000003	< 0.000003	< 0.000003	0.000035
Co [mg/L]	26-Jan-23	16:26	0.000016	0.000082	0.000030	0.000019	0.000023	0.000172
Cr [mg/L]	26-Jan-23	16:26	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	0.00013
Cu [mg/L]	26-Jan-23	16:26	0.0004	0.0003	0.0003	0.0005	< 0.0002	0.0032
Fe [mg/L]	26-Jan-23	16:26	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.072
K [mg/L]	26-Jan-23	16:26	0.529	2.08	0.585	0.407	0.312	0.390
Li [mg/L]	26-Jan-23	16:26	0.0002	0.0002	0.0002	0.0002	0.0001	< 0.0001
Mg [mg/L]	26-Jan-23	16:26	0.539	0.741	0.295	0.313	0.251	0.960
Mn [mg/L]	26-Jan-23	16:26	0.0768	0.0285	0.0262	0.0283	0.0396	0.0510
Mo [mg/L]	26-Jan-23	16:26	0.00292	0.0354	0.00123	0.00072	0.00084	0.00245
Na [mg/L]	26-Jan-23	16:26	0.83	1.60	0.84	0.53	0.66	0.24
Ni [mg/L]	26-Jan-23	16:26	0.0004	0.0004	0.0003	0.0002	0.0003	0.0007
Pb [mg/L]	26-Jan-23	16:26	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	26-Jan-23	16:26	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	26-Jan-23	16:26	0.00010	0.00008	0.00005	0.00005	0.00009	0.00144
Sr [mg/L]	26-Jan-23	16:26	0.00604	0.0566	0.0139	0.0119	0.0114	0.0442
Sn [mg/L]	26-Jan-23	16:26	0.00071	0.00034	0.00094	< 0.00006	0.00016	0.00016

0003212909

Page 1 of 2

Marathon - Berry Set 1

Project : Berry Project

LR Report : CA10086-JAN23

Analysis	3:	4:	5: B QPOR-PAG	6:	7:	8:	9:	10:
	Analysis Completed DateComp	Analysis Analysis Completed DateCompleted Time		B SED-High SFE Wk#4	B QTP-PAG Wk#4	B LGO-PAG B HGO-PAG-Zn Wk#4 Wk#4		3 OB-ML WK#4
Ti [mg/L]	26-Jan-23	16:26	0.00006	0.00013	0.00020	0.00007	0.00023	0.00331
TI [mg/L]	26-Jan-23	16:26	< 0.000005	0.000011	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	26-Jan-23	16:26	0.000299	0.0131	0.000396	0.000384	0.000490	0.000103
V [mg/L]	26-Jan-23	16:26	0.00002	0.00054	0.00009	0.00004	0.00008	0.00159
W [mg/L]	26-Jan-23	16:26	0.00016	0.00038	0.00012	0.00012	0.00032	0.00015
Y [mg/L]	26-Jan-23	16:26	0.00002	0.00008	0.00004	< 0.00002	< 0.00002	0.00008
Zn [mg/L]	26-Jan-23	16:26	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003212909

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

30-January-2023

Date Rec. :26 January 2023LR Report:CA10183-JAN23Reference:Wk#5 - Berry Project (Set 2)

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR Wk#5	6: B SED Wk#5	7: B MD Wk#5	8: B QTP Wk#5	9: B LGO Wk#5	10: B HGO Wk#5
Sample Date & Time			26-Jan-23	26-Jan-23	26-Jan-23	26-Jan-23	26-Jan-23	26-Jan-23
HumCell Leachate Vol [mL]	27-Jan-23	11:09	872	895	882	864	857	884
pH [No unit]	30-Jan-23	11:54	7.48	7.51	7.56	7.62	7.49	7.43
Conductivity [uS/cm]	30-Jan-23	11:54	30	37	37	27	27	37

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003213158

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

06-February-2023

Date Rec. :02 February 2023LR Report:CA10021-FEB23Reference:Wk#7 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#7	6: B SED-High SFE Wk#7	7: B QTP-PAG Wk#7	8: B LGO-PAG B Wk#7	9: HGO-PAG-Zn Wk#7	10: B OB-ML Wk#7
Sample Date & Time			02-Feb-23	02-Feb-23	02-Feb-23	02-Feb-23	02-Feb-23	02-Feb-23
HumCell Leachate Vol [mL]	06-Feb-23	10:23	637	701	646	603	700	536
pH [No unit]	03-Feb-23	10:42	7.27	7.70	7.46	7.28	7.37	6.73
Conductivity [uS/cm]	03-Feb-23	10:42	40	44	36	47	30	95

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003221250

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 2

Project : Berry Project

06-February-2023

Date Rec. :	19 January 2023
LR Report:	CA10135-JAN23
Reference:	Wk#4 - Berry Project (Set 2)

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis Completed DateCom		5: QPOR Wk#4	6: B SED Wk#4	7: B MD Wk#4	8: B QTP Wk#4	9: B LGO Wk#4	10: B HGO Wk#4
Sample Date & Time			18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23
HumCell Leachate Vol [mL]	20-Jan-23	15:11	928	931	911	959	930	913
pH [No unit]	20-Jan-23	12:06	9.03	8.94	8.91	8.91	8.96	8.67
Acidity [mg/L as CaCO3]	20-Jan-23	12:06	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	20-Jan-23	12:06	13	15	15	13	12	11
Conductivity [uS/cm]	20-Jan-23	12:06	28	32	33	27	27	30
SO4 [mg/L]	02-Feb-23	15:11	1.4	1.0	1.9	1.1	1.7	3.4
F [mg/L]	23-Jan-23	09:05	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	20-Jan-23	15:49	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	24-Jan-23	15:49	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	24-Jan-23	15:49	0.057	0.090	0.073	0.046	0.061	0.040
As [mg/L]	24-Jan-23	15:49	0.0010	0.0004	0.0003	< 0.0002	< 0.0002	0.0003
Ba [mg/L]	24-Jan-23	15:49	0.00063	0.00713	0.00084	0.00035	0.00046	0.00029
Be [mg/L]	24-Jan-23	15:49	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	24-Jan-23	15:49	0.009	0.008	0.006	0.012	0.006	0.008
Bi [mg/L]	24-Jan-23	15:49	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	24-Jan-23	15:49	3.82	4.23	5.20	3.86	3.97	4.62
Cd [mg/L]	24-Jan-23	15:49	0.000017	< 0.000003	< 0.000003	0.000003	< 0.000003	< 0.000003
Co [mg/L]	24-Jan-23	15:49	0.000012	0.000013	0.000014	0.000013	0.000018	0.000031
Cr [mg/L]	24-Jan-23	15:49	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	24-Jan-23	15:49	0.0007	0.0007	0.0006	0.0011	0.0018	0.0008
Fe [mg/L]	24-Jan-23	15:49	< 0.007	< 0.007	0.009	< 0.007	< 0.007	< 0.007
K [mg/L]	24-Jan-23	15:49	0.775	0.957	0.594	0.583	0.459	0.443
Li [mg/L]	24-Jan-23	15:49	0.0002	0.0002	< 0.0001	0.0002	0.0002	< 0.0001
Mg [mg/L]	24-Jan-23	15:49	0.203	0.390	0.463	0.256	0.191	0.241
Mn [mg/L]	24-Jan-23	15:49	0.0281	0.0230	0.0166	0.0353	0.0315	0.0392
Mo [mg/L]	24-Jan-23	15:49	0.00154	0.00089	0.00140	0.00250	0.00045	0.00208
Na [mg/L]	24-Jan-23	15:49	1.26	1.26	0.91	0.87	0.98	1.13
Ni [mg/L]	24-Jan-23	15:49	0.0002	0.0002	0.0003	0.0004	0.0005	0.0003
Pb [mg/L]	24-Jan-23	15:49	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	24-Jan-23	15:49	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	24-Jan-23	15:49	0.00011	< 0.00004	0.00004	< 0.00004	< 0.00004	< 0.00004
Sr [mg/L]	24-Jan-23	15:49	0.00487	0.0357	0.0174	0.0108	0.00855	0.00936

Page 1 of 2

Project : Berry Project

LR Report : CA10135-JAN23

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis	Analysis B	QPOR Wk#4	B SED Wk#4	B MD Wk#4	B QTP Wk#4	B LGO Wk#4	B HGO Wk#4
	Completed DateCon	npleted Time						
Sn [mg/L]	24-Jan-23	15:49	< 0.00006	0.00017	< 0.00006	< 0.00006	< 0.00006	0.00010
Ti [mg/L]	24-Jan-23	15:49	0.00015	0.00009	0.00031	0.00024	0.00041	0.00017
TI [mg/L]	24-Jan-23	15:49	< 0.000005	< 0.000005	< 0.000005	0.000008	< 0.000005	< 0.000005
U [mg/L]	30-Jan-23	14:27	0.00139	0.000265	0.00206	0.00141	0.000268	0.00541
V [mg/L]	24-Jan-23	15:49	0.00019	0.00058	0.00789	0.00018	0.00015	0.00013
W [mg/L]	24-Jan-23	15:49	0.00018	0.00017	0.00009	0.00042	0.00012	0.00015
Y [mg/L]	24-Jan-23	15:49	0.00003	0.00002	< 0.00002	0.00004	0.00004	0.00004
Zn [mg/L]	24-Jan-23	15:49	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003221253

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

07-February-2023

Date Rec. :03 February 2023LR Report:CA14053-FEB23Reference:Wk#4 - Berry Project (Set 2)

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Analysis Completed Date Completed Time		B QPOR Wk#4	B SED Wk#4	B MD Wk#4	B QTP Wk#4 E	B LGO Wk#4 B	3 HGO Wk#4
Sample Date & Time			18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23	18-Jan-23
pH [No unit]	07-Feb-23	10:46	8.87	8.91	8.84	7.64	7.60	7.03

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003222334

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

10-February-2023

Date Rec.: 26 January 2023 LR Report: CA10182-JAN23 Reference: Wk#6 - Berry Project (Berry Set 1)

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#6	B SED-High SFE Wk#6	B QTP-PAG Wk#6	B LGO-PAG B Wk#6	HGO-PAG-ZnB Wk#6	OB-ML Wk#6
Sample Date & Time			26-Jan-23	26-Jan-23	26-Jan-23	26-Jan-23	26-Jan-23	26-Jan-23
HumCell Leachate Vol [mL]	27-Jan-23	11:09	611	700	623	611	657	459
pH [No unit]	30-Jan-23	11:41	7.07	7.59	6.97	6.91	6.84	6.61
Acidity [mg/L as CaCO3]	30-Jan-23	11:41	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	30-Jan-23	11:41	24	30	17	14	8	6
Conductivity [uS/cm]	30-Jan-23	11:41	42	40	31	42	27	105
SO4 [mg/L]	07-Feb-23	17:11	11	2.8	7.0	10	4.8	43
F [mg/L]	27-Jan-23	08:58	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	30-Jan-23	15:46	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	30-Jan-23	15:38	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	30-Jan-23	15:38	0.036	0.074	0.055	0.046	0.048	0.235
As [mg/L]	31-Jan-23	14:16	< 0.0002	0.0007	0.0003	< 0.0002	0.0003	0.0018
Ba [mg/L]	30-Jan-23	15:38	0.00029	0.00213	0.00077	0.00035	0.00042	0.00820
Be [mg/L]	30-Jan-23	15:38	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000013
B [mg/L]	30-Jan-23	15:38	0.005	0.006	0.005	0.003	0.002	< 0.002
Bi [mg/L]	30-Jan-23	15:38	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	0.00003
Ca [mg/L]	30-Jan-23	15:38	6.54	5.53	4.80	6.98	4.00	17.4
Cd [mg/L]	30-Jan-23	15:38	< 0.000003	0.000007	0.000003	< 0.000003	< 0.000003	0.000092
Co [mg/L]	30-Jan-23	15:38	0.000188	0.000020	0.00102	0.000022	0.000063	0.000260
Cr [mg/L]	30-Jan-23	15:38	< 0.00008	< 0.00008	< 0.00008	< 0.00008	0.00162	0.00179
Cu [mg/L]	30-Jan-23	15:38	0.0006	0.0002	0.0005	0.0002	< 0.0002	0.0140
Fe [mg/L]	30-Jan-23	15:38	0.008	0.009	0.009	< 0.007	0.055	0.203
K [mg/L]	30-Jan-23	15:38	0.381	1.70	0.365	0.251	0.225	0.334
Li [mg/L]	30-Jan-23	15:39	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0007
Mg [mg/L]	30-Jan-23	15:39	0.384	0.617	0.213	0.217	0.201	0.634
Mn [mg/L]	30-Jan-23	15:39	0.0556	0.0324	0.0293	0.0284	0.0313	0.0485
Mo [mg/L]	30-Jan-23	15:39	0.00577	0.0196	0.00364	0.00238	0.00287	0.00867
Na [mg/L]	30-Jan-23	15:39	0.52	0.86	0.38	0.30	0.35	0.18
Ni [mg/L]	30-Jan-23	15:39	0.0002	0.0002	0.0002	0.0002	0.0004	0.0031
Pb [mg/L]	30-Jan-23	15:39	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00049
Sb [mg/L]	30-Jan-23	15:39	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0009
Se [mg/L]	30-Jan-23	15:39	0.00021	< 0.00004	< 0.00004	0.00009	< 0.00004	0.00070
Sr [mg/L]	30-Jan-23	15:39	0.00570	0.0512	0.0113	0.00919	0.0125	0.0289

0003226895

Page 1 of 2

Marathon - Berry Set 1

Project : Berry Project

LR Report : CA10182-JAN23

Analysis	3: Analysia	4:	5:	6: B SED Uimh	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#6	B SED-High SFE Wk#6	B QTP-PAG Wk#6	B LGO-PAG B Wk#6	HGO-PAG-ZnB Wk#6	OB-INIL WK#6
Sn [mg/L]	30-Jan-23	15:39	0.00040	0.00027	0.00035	< 0.00006	0.00015	0.00048
Ti [mg/L]	30-Jan-23	15:39	0.00008	0.00044	0.00020	< 0.00005	0.00020	0.00508
TI [mg/L]	30-Jan-23	15:39	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	30-Jan-23	15:39	0.00138	0.00127	0.000139	0.000788	0.00572	0.000112
V [mg/L]	30-Jan-23	15:39	0.00002	0.00058	0.00008	0.00004	0.00015	0.00188
W [mg/L]	30-Jan-23	15:39	0.00026	0.00040	0.00031	0.00046	0.00021	0.00017
Y [mg/L]	30-Jan-23	15:39	0.00003	0.00008	0.00003	< 0.00002	< 0.00002	0.00012
Zn [mg/L]	30-Jan-23	15:39	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.016

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003226895

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

21-February-2023

Date Rec. :	02 February 2023
LR Report:	CA10022-FEB23
Reference:	Wk#6 - Berry Project Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

10:	9:	8:	7:	6:	5:	4:	3:	Analysis
B HGO Wk#6	B LGO Wk#6	B QTP Wk#6	B MD Wk#6	B SED Wk#6	B QPOR Wk#6	Analysis pleted Time	Analysis Completed DateCom	
02-Feb-23	02-Feb-23	02-Feb-23	02-Feb-23	02-Feb-23	02-Feb-23			Sample Date & Time
1004	991	1016	1006	1005	980	10:23	06-Feb-23	HumCell Leachate Vol [mL]
7.20	7.11	7.10	7.52	7.68	7.03	12:39	03-Feb-23	pH [No unit]
< 2	< 2	< 2	< 2	< 2	< 2	12:39	03-Feb-23	Acidity [mg/L as CaCO3]
10	10	12	16	15	14	12:39	03-Feb-23	Alkalinity [mg/L as CaCO3]
25	23	24	30	30	26	12:39	03-Feb-23	Conductivity [uS/cm]
2.4	1.3	0.7	1.2	0.8	0.9	13:32	09-Feb-23	SO4 [mg/L]
< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	12:50	03-Feb-23	F [mg/L]
< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	13:37	19-Feb-23	Hg [mg/L]
< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	13:39	08-Feb-23	Ag [mg/L]
0.029	0.032	0.039	0.051	0.061	0.040	13:39	08-Feb-23	AI [mg/L]
0.0004	0.0002	0.0005	0.0005	0.0005	0.0006	13:39	08-Feb-23	As [mg/L]
0.00031	0.00042	0.00046	0.00089	0.00726	0.00062	13:39	08-Feb-23	Ba [mg/L]
< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000008	13:39	08-Feb-23	Be [mg/L]
0.016	0.018	0.015	0.009	0.015	0.024	13:39	08-Feb-23	B [mg/L]
0.00007	< 0.00001	0.00001	< 0.00001	< 0.00001	< 0.00001	13:39	08-Feb-23	Bi [mg/L]
3.96	3.93	3.79	4.66	4.01	4.19	13:39	08-Feb-23	Ca [mg/L]
< 0.000003	0.000005	0.000003	0.000004	< 0.000003	0.000015	13:39	08-Feb-23	Cd [mg/L]
0.000048	0.000013	0.000018	0.000013	0.000034	0.000034	13:39	08-Feb-23	Co [mg/L]
< 0.00008	< 0.00008	0.00045	0.00040	< 0.00008	< 0.00008	13:39	08-Feb-23	Cr [mg/L]
0.0005	0.0010	0.0010	0.0003	0.0006	0.0004	13:39	08-Feb-23	Cu [mg/L]
< 0.007	< 0.007	0.012	0.011	< 0.007	< 0.007	13:39	08-Feb-23	Fe [mg/L]
0.294	0.293	0.423	0.430	0.706	0.584	13:39	08-Feb-23	K [mg/L]
< 0.0001	0.0002	0.0002	< 0.0001	0.0002	0.0004	13:39	08-Feb-23	Li [mg/L]
0.232	0.230	0.304	0.467	0.415	0.295	13:39	08-Feb-23	Mg [mg/L]
0.0376	0.0329	0.0344	0.0189	0.0315	0.0311	13:39	08-Feb-23	Mn [mg/L]
0.00308	0.00056	0.00150	0.00142	0.00096	0.00163	13:39	08-Feb-23	Mo [mg/L]
0.47	0.45	0.45	0.42	0.55	0.52	13:39	08-Feb-23	Na [mg/L]
0.0004	0.0002	0.0004	0.0002	0.0002	0.0002	13:39	08-Feb-23	Ni [mg/L]
< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	13:39	08-Feb-23	Pb [mg/L]
< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	13:39	08-Feb-23	Sb [mg/L]
0.00043	< 0.00004	0.00048	0.00017	0.00019	0.00014	13:39	08-Feb-23	Se [mg/L]
0.00942	0.0103	0.0133	0.0191	0.0407	0.00698	13:39	08-Feb-23	Sr [mg/L]
0.00026	0.00008	0.00007	0.00006	0.00040	0.00007	13:39	08-Feb-23	Sn [mg/L]

0003236544

Page 1 of 2

Marathon - Berry Set 2

Project : Berry Project

LR Report : CA10022-FEB23

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR Wk#6	6: B SED Wk#6	7: B MD Wk#6	8: B QTP Wk#6	9: B LGO Wk#6	10: B HGO Wk#6
Ti [mg/L]	08-Feb-23	13:39	0.00011	0.00012	0.00016	0.00042	0.00007	0.00011
TI [mg/L]	08-Feb-23	13:39	0.000043	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000053
U [mg/L]	08-Feb-23	13:39	0.00468	0.0124	0.000407	0.000823	0.000715	0.00448
V [mg/L]	08-Feb-23	13:39	0.00016	0.00058	0.00814	0.00015	0.00012	0.00010
W [mg/L]	08-Feb-23	13:39	0.00013	0.00020	0.00007	0.00011	0.00016	0.00016
Y [mg/L]	08-Feb-23	13:39	0.00002	0.00003	< 0.00002	0.00003	0.00004	0.00003
Zn [mg/L]	08-Feb-23	13:39	0.002	< 0.002	0.002	0.002	0.002	0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003236544

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

21-February-2023

Date Rec. :	09 February 2023
LR Report:	CA10067-FEB23
Reference:	Wk#8 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#8	B SED-High SFE Wk#8	B QTP-PAG Wk#8	B LGO-PAG B Wk#8	HGO-PAG-ZnB Wk#8	
Sample Date & Time			09-Feb-23	09-Feb-23	09-Feb-23	09-Feb-23	09-Feb-23	09-Feb-23
HumCell Leachate Vol [mL]	13-Feb-23	15:36	620	710	644	639	705	548
pH [No unit]	10-Feb-23	12:54	7.93	8.73	7.91	7.90	7.87	7.27
Acidity [mg/L as CaCO3]	15-Feb-23	11:10	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	10-Feb-23	12:54	14	22	11	11	10	8
Conductivity [uS/cm]	10-Feb-23	12:54	41	42	26	78	25	79
SO4 [mg/L]	16-Feb-23	15:35	4.7	1.9	2.2	22	2.7	22
F [mg/L]	14-Feb-23	09:06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	13-Feb-23	16:03	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002
Ag [mg/L]	13-Feb-23	16:03	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	13-Feb-23	16:03	0.032	0.052	0.038	0.040	0.031	0.098
As [mg/L]	13-Feb-23	16:03	< 0.0002	0.0019	0.0004	0.0003	0.0003	0.0046
Ba [mg/L]	13-Feb-23	16:03	0.00023	0.00185	0.00063	0.00037	0.00032	0.00665
Be [mg/L]	13-Feb-23	16:03	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	13-Feb-23	16:03	0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Bi [mg/L]	13-Feb-23	16:03	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	< 0.00001
Ca [mg/L]	13-Feb-23	16:03	6.74	5.30	3.91	12.9	3.68	11.7
Cd [mg/L]	13-Feb-23	16:03	< 0.000003	0.000006	< 0.000003	< 0.000003	< 0.000003	0.000028
Co [mg/L]	13-Feb-23	16:03	0.000012	0.000006	0.000025	0.000039	0.000133	0.000146
Cr [mg/L]	13-Feb-23	16:03	< 0.00008	< 0.00008	0.00030	0.00052	0.00029	0.00015
Cu [mg/L]	13-Feb-23	16:03	0.0003	0.0005	< 0.0002	0.0004	0.0015	0.0027
Fe [mg/L]	13-Feb-23	16:03	< 0.007	< 0.007	0.014	0.018	0.014	0.091
K [mg/L]	13-Feb-23	16:03	0.304	1.30	0.235	0.224	0.169	0.330
Li [mg/L]	13-Feb-23	16:03	< 0.0001	0.0002	< 0.0001	0.0001	< 0.0001	< 0.0001
Mg [mg/L]	13-Feb-23	16:03	0.314	0.513	0.150	0.220	0.156	0.540
Mn [mg/L]	13-Feb-23	16:03	0.0499	0.0332	0.0293	0.0271	0.0306	0.0409
Mo [mg/L]	13-Feb-23	16:03	0.00191	0.0123	0.00069	0.00255	0.00103	0.00346
Na [mg/L]	13-Feb-23	16:03	0.42	0.56	0.23	0.28	0.24	0.27
Ni [mg/L]	13-Feb-23	16:03	0.0003	0.0002	0.0003	0.0003	0.0008	0.0005
Pb [mg/L]	13-Feb-23	16:03	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00010
Sb [mg/L]	13-Feb-23	16:03	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0010
Se [mg/L]	13-Feb-23	16:03	< 0.00004	< 0.00004	< 0.00004	0.00012	0.00011	0.00045
Sr [mg/L]	13-Feb-23	16:03	0.00452	0.0423	0.00712	0.0161	0.00872	0.0193
Sn [mg/L]	13-Feb-23	16:03	0.00038	0.00022	0.00089	< 0.00006	0.00013	0.00012

0003236895

Page 1 of 2

Marathon - Berry Set 1

Project : Berry Project

LR Report : CA10067-FEB23

Analysis	3:	4:	5:	6: D CED Uist	7:	8:	9: HGO-PAG-ZnB	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#8	B SED-High SFE Wk#8	B QTP-PAG Wk#8	Wk#8	Wk#8	OD-IVIL VVK#6
Ti [mg/L]	13-Feb-23	16:03	0.00013	0.00024	0.00021	0.00012	0.00013	0.00438
TI [mg/L]	13-Feb-23	16:03	< 0.000005	< 0.000005	< 0.000005	0.000030	< 0.000005	< 0.000005
U [mg/L]	13-Feb-23	16:03	0.000089	0.000973	0.000081	0.00427	0.00606	0.00159
V [mg/L]	13-Feb-23	16:03	0.00003	0.00047	0.00007	0.00005	0.00008	0.00154
W [mg/L]	13-Feb-23	16:03	0.00032	0.00044	0.00009	0.00015	0.00018	0.00019
Y [mg/L]	13-Feb-23	16:03	< 0.00002	0.00007	0.00003	< 0.00002	< 0.00002	0.00016
Zn [mg/L]	13-Feb-23	16:03	< 0.002	< 0.002	0.002	< 0.002	0.002	0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003236895

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

21-February-2023

Date Rec. :09 February 2023LR Report:CA10068-FEB23Reference:Wk#7 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR Wk#7	6: B SED Wk#7	7: B MD Wk#7	8: B QTP Wk#7	9: B LGO Wk#7	10: B HGO Wk#7
Sample Date & Time			09-Feb-23	09-Feb-23	09-Feb-23	09-Feb-23	09-Feb-23	09-Feb-23
HumCell Leachate Vol [mL]	13-Feb-23	15:36	995	1002	991	990	996	981
pH [No unit]	13-Feb-23	11:40	7.44	7.59	7.47	7.49	7.38	7.56
Conductivity [uS/cm]	13-Feb-23	11:40	30	34	38	26	29	32

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

000323692

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

21-February-2023

Date Rec. :16 February 2023LR Report:CA10112-FEB23Reference:Wk#9 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date Con	4: Analysis pleted Time	5: B QPOR-PAG Wk#9	6: B SED-High SFE Wk#9	7: B QTP-PAG Wk#9	8: B LGO-PAG B Wk#9	9: HGO-PAG-Zn Wk#9
Sample Date & Time							
HumCell Leachate Vol [mL]	21-Feb-23	10:38	539	717	651	619	721
pH [No unit]	17-Feb-23	16:45	7.37	7.68	7.10	7.63	7.33
Conductivity [uS/cm]	17-Feb-23	16:45	28	34	29	53	24

Analysis	10: B OB-ML Wk#9
Sample Date & Time	
HumCell Leachate Vol [mL]	511
pH [No unit]	6.97
Conductivity [uS/cm]	62

NI

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003237113

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

21-February-2023

Date Rec. :13 February 2023LR Report:CA10118-FEB23Reference:Wk#0 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date Cor	4: Analysis mpleted Time QF	5: B POR-PAG-COQT 3DP Wk#0	6: B P-PAG-CO3DLG P Wk#0	7: B GO-PAG-CO3D H P Wk#0	8: B IGO-PAG-Zn-C O3DP Wk#0
Sample Date & Time			13-Feb-23	13-Feb-23	13-Feb-23	13-Feb-23
HumCell Leachate Vol [mL]	15-Feb-23	08:53	520	508	446	517

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003237189

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 2

Project : Berry Project

28-February-2023

Date Rec. :	16 February 2023
LR Report:	CA10113-FEB23
Reference:	Wk#8 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4: Amahusia D	5:	6:	7:	8: D OTD W1-#9	9:
	Analysis Completed Date Con		QPOR Wk#8	B SED Wk#8	B MD Wk#8	B QTP Wk#8	B LGO Wk#8
Sample Date & Time			16-Feb-23	16-Feb-23	16-Feb-23	16-Feb-23	16-Feb-23
HumCell Leachate Vol [mL]	21-Feb-23	10:38	866	919	850	844	871
pH [No unit]	22-Feb-23	11:22	8.23	8.67	8.22	7.86	8.16
Acidity [mg/L as CaCO3]	22-Feb-23	11:22	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	24-Feb-23	10:05	13	12	14	11	11
Conductivity [uS/cm]	22-Feb-23	11:22	21	26	29	21	21
SO4 [mg/L]	28-Feb-23	13:35	0.9	0.6	1.0	0.5	1.6
F [mg/L]	21-Feb-23	10:54	< 0.06	0.09	< 0.06	< 0.06	< 0.06
Hg [mg/L]	17-Feb-23	16:55	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	28-Feb-23	09:41	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	28-Feb-23	09:41	0.066	0.059	0.091	0.069	0.058
As [mg/L]	28-Feb-23	09:41	0.0005	0.0010	0.0005	0.0003	< 0.0002
Ba [mg/L]	28-Feb-23	09:41	0.00061	0.00672	0.00074	0.00032	0.00037
Be [mg/L]	28-Feb-23	09:41	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	28-Feb-23	09:41	< 0.002	0.008	< 0.002	0.008	0.002
Bi [mg/L]	28-Feb-23	09:41	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	28-Feb-23	09:41	3.96	3.80	5.03	3.60	3.88
Cd [mg/L]	28-Feb-23	09:41	0.000020	0.000006	0.000003	< 0.000003	< 0.000003
Co [mg/L]	28-Feb-23	09:41	< 0.000004	0.000005	< 0.000004	< 0.000004	< 0.000004
Cr [mg/L]	28-Feb-23	09:41	< 0.00008	< 0.00008	< 0.00008	0.00013	< 0.00008
Cu [mg/L]	28-Feb-23	09:41	0.0004	0.0003	0.0003	0.0008	0.0010
Fe [mg/L]	28-Feb-23	09:41	< 0.007	< 0.007	0.008	0.010	< 0.007
K [mg/L]	28-Feb-23	09:41	0.525	0.652	0.465	0.380	0.290
Li [mg/L]	28-Feb-23	09:41	< 0.0001	0.0003	< 0.0001	0.0001	< 0.0001
Mg [mg/L]	28-Feb-23	09:41	0.219	0.381	0.486	0.262	0.209
Mn [mg/L]	28-Feb-23	09:41	0.0218	0.0274	0.0153	0.0222	0.0241
Mo [mg/L]	28-Feb-23	09:41	0.00059	0.00531	0.00066	0.00159	0.00046
Na [mg/L]	28-Feb-23	09:41	0.36	0.39	0.36	0.35	0.43
Ni [mg/L]	28-Feb-23	09:41	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Pb [mg/L]	28-Feb-23	09:41	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009

0003246648

Page 1 of 3

Project : Berry Project LR Report : CA10113-FEB23

Analysis	3:	4:	5:	6:	7:	8:	9:
	Analysis		QPOR Wk#8	B SED Wk#8	B MD Wk#8	B QTP Wk#8	B LGO Wk#8
	Completed Date Con	npleted Time					
Sb [mg/L]	28-Feb-23	09:41	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	28-Feb-23	09:41	< 0.00004	0.00041	0.00007	0.00004	0.00004
Sr [mg/L]	28-Feb-23	09:41	0.00506	0.0344	0.0168	0.00918	0.00814
Sn [mg/L]	28-Feb-23	09:41	0.00006	0.00011	< 0.00006	< 0.00006	< 0.00006
Ti [mg/L]	28-Feb-23	09:41	0.00016	0.00005	0.00041	0.00057	0.00029
TI [mg/L]	28-Feb-23	09:41	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	28-Feb-23	09:41	0.000443	0.000679	0.000122	0.000390	0.000880
V [mg/L]	28-Feb-23	09:41	0.00015	0.00048	0.00920	0.00018	0.00010
W [mg/L]	28-Feb-23	09:41	0.00006	0.00017	0.00010	0.00018	0.00006
Y [mg/L]	28-Feb-23	09:41	< 0.00002	< 0.00002	< 0.00002	0.00002	< 0.00002
Zn [mg/L]	28-Feb-23	09:41	< 0.002	0.003	< 0.002	< 0.002	0.002

Analysis	10: B HGO Wk#8
Sample Date & Time	16-Feb-23
HumCell Leachate Vol [mL]	883
pH [No unit]	7.82
Acidity [mg/L as CaCO3]	< 2
Alkalinity [mg/L as CaCO3]	10
Conductivity [uS/cm]	32
SO4 [mg/L]	4.3
F [mg/L]	< 0.06
Hg [mg/L]	< 0.00001
Ag [mg/L]	< 0.00005
AI [mg/L]	0.056
As [mg/L]	0.0002
Ba [mg/L]	0.00028
Be [mg/L]	< 0.000007
B [mg/L]	0.004
Bi [mg/L]	< 0.00001
Ca [mg/L]	5.43
Cd [mg/L]	< 0.000003
Co [mg/L]	< 0.000004
Cr [mg/L]	< 0.00008
Cu [mg/L]	0.0006
Fe [mg/L]	0.010
K [mg/L]	0.323
Li [mg/L]	< 0.0001
Mg [mg/L]	0.296
Mn [mg/L]	0.0300
Mo [mg/L]	0.00264
Na [mg/L]	0.47
Ni [mg/L]	< 0.0001

0003246648

Page 2 of 3

Marathon - Berry Set 2

Project : Berry Project LR Report : CA10113-FEB23

Analysis	10: B HGO Wk#8
Pb [mg/L]	< 0.00009
Sb [mg/L]	< 0.0009
Se [mg/L]	< 0.00004
Sr [mg/L]	0.0109
Sn [mg/L]	0.00008
Ti [mg/L]	0.00048
TI [mg/L]	< 0.000005
U [mg/L]	0.000347
V [mg/L]	0.00010
W [mg/L]	0.00013
Y [mg/L]	< 0.00002
Zn [mg/L]	0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003246648

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

01-March-2023

Date Rec. :23 February 2023LR Report:CA10163-FEB23Reference:Wk#10 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#10	6: B SED-High SFE Wk#10	7: B QTP-PAG Wk#10	8: B LGO-PAG B Wk#10	9: HGO-PAG-Zn Wk#10	10: B OB-ML Wk#10
Sample Date & Time			23-Feb-23	23-Feb-23	23-Feb-23	23-Feb-23	23-Feb-23	23-Feb-23
HumCell Leachate Vol [mL]	28-Feb-23	10:37	539	702	612	592	632	417
pH [No unit]	24-Feb-23	15:08	7.33	7.61	7.28	7.40	7.31	6.69
Conductivity [uS/cm]	24-Feb-23	15:08	32	38	24	43	25	54

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003248095

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

01-March-2023

Date Rec. :21 February 2023LR Report:CA10168-FEB23Reference:Wk#1 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCo	4: Analysis mpleted Time	5: B QPOR-PAG-COO 3DP Wk#0	6: B TP-PAG-CO3DL P Wk#0	7: B GO-PAG-CO3D P Wk#0	8: B HGO-PAG-Zn-C O3DP Wk#0
Sample Date & Time			13-Feb-23	13-Feb-23	13-Feb-23	13-Feb-23
HumCell Leachate Vol [mL]	22-Feb-23	14:02	571	581	509	573

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003248104

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Marathon - Berry Set 2

01-March-2023

Date Rec. : 23 February 2023 LR Report: CA10164-FEB23 Reference: Wk#9 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR Wk#9	6: B SED Wk#9	7: B MD Wk#9	8: B QTP Wk#9	9: B LGO Wk#9	10: B HGO Wk#9
Sample Date & Time			23-Feb-23	23-Feb-23	23-Feb-23	23-Feb-23	23-Feb-23	23-Feb-23
HumCell Leachate Vol [mL]	28-Feb-23	10:37	903	942	917	917	889	900
pH [No unit]	24-Feb-23	15:08	7.37	7.49	7.74	7.35	7.23	7.37
Conductivity [uS/cm]	24-Feb-23	15:08	22	29	38	24	22	27

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003248112

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

06-March-2023

Date Rec. :02 March 2023LR Report:CA10021-MAR23Reference:Wk#11 - Marathon - Berry
Set 1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#11	6: B SED-High SFE Wk#11	7: B QTP-PAG Wk#11	8: B LGO-PAG B Wk#11	9: HGO-PAG-Zn Wk#11	10: B OB-ML Wk#11
Sample Date & Time			02-Mar-23	02-Mar-23	02-Mar-23	02-Mar-23	02-Mar-23	02-Mar-23
HumCell Leachate Vol [mL]	06-Mar-23	10:34	541	689	658	585	686	501
pH [No unit]	03-Mar-23	13:30	7.29	7.54	7.30	7.24	7.23	7.06
Conductivity [uS/cm]	03-Mar-23	13:30	26	33	24	34	19	75

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003252865

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

06-March-2023

Date Rec. :02 March 2023LR Report:CA10022-MAR23Reference:Wk#10 - Marathon - Berry
Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis opleted Time	5: B QPOR B Wk#10	6: SED Wk#10	7: B MD Wk#10B	8: QTP Wk#10B	9: LGO Wk#10	10: B HGO Wk#10
Sample Date & Time			02-Mar-23	02-Mar-23	02-Mar-23	02-Mar-23	02-Mar-23	02-Mar-23
HumCell Leachate Vol [mL]	06-Mar-23	10:34	900	950	942	941	935	939
pH [No unit]	03-Mar-23	13:31	7.38	7.60	7.57	7.36	7.24	7.40
Conductivity [uS/cm]	03-Mar-23	13:31	22	26	28	19	17	24

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003252874

Sample Properties

BL1021-43 Detox Tls (g)	3000
Process Water Cover (mL)	2390
Initital Tailings Height in Column (cn	27.6

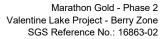
Analysis of Column Leachate

Parameter	Units	CCME FAL / MDMER	0	1	2	4	6	8
Date			25-Nov-22	01-Dec-22	08-Dec-22	22-Dec-22	05-Jan-23	19-Jan-23
LIMS					14281-DEC22		n/a	14495-JAN23
Volume Collected	mL	-	500	450	450	450	450	450
Temp Upon Receipt	°C		20.0	21.0	20.0	20.0	-	20.0
pH	no unit	6.0-9.5	7.78	7.86	7.87	8.01	-	7.72
,	mg/L as CaCO ₃	-	53	65	78	104	-	132
Conductivity	μS/cm	-	1840	1890	1870	1950	-	1880
Redox Potential	mV	-	164	329	333	286	-	145
TDS	mg/L	-	1260	1160	1320	1310	-	1420
F	mg/L	0.12	0.14	0.10	0.08	0.07	-	0.08
NO ₂	as N mg/L	0.06	< 0.3	< 0.3	< 0.3	< 0.3	-	< 0.3
NO ₃	as N mg/L	13	0.95	< 0.6	< 0.6	< 0.6	-	< 0.6
NO ₂ +NO ₃	as N mg/L	-	0.95	< 0.6	< 0.06	< 0.6	-	<0.6
CI	mg/L	120	12	9.7	7.4	7.8	-	7.6
SO ₄	mg/L	-	710	760	800	910	-	860
CN _(T)	mg/L	0.50	0.79	1.90	2.66	2.74	-	31.3
CN _{WAD}	mg/L	0.005 as CNF	0.774	1.51	2.25	2.29	-	0.405
CNS	mg/L	-	< 2	5.7	5.6	4.0	-	< 2
CNO	mg/L	-	62	14 UAL	1.5	< 1	-	< 1
NH ₃ +NH ₄	as N mg/L	-	3.6	5.8	7.3	7.2	-	1.2
Un-ionized NH ₃ (calc'd)	as N mg/L	0.02 / 0.50	0.08	0.16	0.21	0.28	-	0.02
S ₂ O ₃	as S_2O_3 mg/L		< 20	< 20	< 20	< 20	_	< 10
Hg).000026 / 0.000	0.00004	0.00024	0.00003	< 0.00001	_	0.00028
Ag	mg/L	0.00025	0.00029	0.00234	0.00083	0.00031	-	< 0.00005
Al	mg/L	0.1@pH>6.5	0.035	0.0234	0.021	0.018	-	0.014
As	mg/L	0.005 / 0.10	0.0003	0.029	0.0004	0.0006	-	0.0010
B	mg/L	1.5	0.039	0.042	0.097	0.053	_	0.062
Ba	mg/L	-	0.00789	0.00932	0.01056	0.00914	_	0.00621
Be	mg/L		< 0.000007	< 0.000007	< 0.000007	< 0.000007	-	< 0.000021
Bi	mg/L	-	< 0.00001	< 0.00001	< 0.00001	< 0.000001	_	0.00001
Са	mg/L	-	100	95.5	87.6	102	-	167
Cd	mg/L	0.00009	0.000021	0.000024	0.000022	0.000032	-	0.000059
Co	mg/L	-	0.00479	0.00247	0.00389	0.0102	-	0.0250
Cr	mg/L	-	0.00011	< 0.00008	0.00016	< 0.00008	-	0.0148
Cu	mg/L	0.002 / 0.10	0.743	1.63	2.70	2.45	-	0.309
Fe	mg/L	0.3	0.030	< 0.007	< 0.007	0.036	-	13.2
К	mg/L	-	7.09	11.9	10.2	10.7	-	3.64
Li	mg/L	-	0.0037	0.0038	0.0018	0.0012	-	0.0014
Mg	mg/L	-	4.81	7.20	6.73	8.10	-	13.5
Mn	mg/L	-	0.103	0.0543	0.0848	0.0959	-	0.145
Мо	mg/L	0.073	0.0163	0.0342	0.0377	0.0382	-	0.0325
Na	mg/L	-	256	299	287	316	-	263
Ni	mg/L	0.025 / 0.25	0.0123	0.0012	0.0019	0.0041	-	0.0049
Р	mg/L	-	0.013	0.007	0.006	0.004	-	0.010
Pb	mg/L	0.001 / 0.08	0.00103	< 0.00009	< 0.00009	< 0.00009	-	0.00011
S	mg/L	-	292	302	293	312	-	306
Sb	mg/L	-	0.0013	0.0012	0.0013	0.0013	-	0.0013
Se	mg/L	0.001 / 0.01	0.00131	0.00060	0.00036	0.00029	-	0.00115
Si	mg/L	-	1.25	2.36	2.23	2.45	-	4.62
Sn	mg/L	-	0.00389	0.00023	0.00025	0.00016	-	0.00056
Sr	mg/L	-	0.351	0.361	0.347	0.367	-	0.574
Th	mg/L	-	< 0.0001	< 0.0001	0.0008	< 0.0001	-	< 0.0001
Ti	mg/L	-	< 0.00005	< 0.00005	< 0.00005	0.00010	-	0.00011
TI	mg/L	0.0008	< 0.000005	0.000007	0.000019	0.000008	-	< 0.000005
U	mg/L	0.015	0.000524	0.000253	0.000379	0.000868	-	0.000780
V	mg/L	-	0.00002	0.00003	0.00004	0.00003	-	0.00006
W	mg/L	-	0.00009	0.00010	0.00010	0.00006	-	0.00033
Y	mg/L	-	< 0.00002	< 0.00002	< 0.00002	< 0.00002	-	< 0.00002
Zn	mg/L	0.007 / 0.40	< 0.002	0.009	0.015	0.011	-	0.002

Parameters outside the CCME FAL guidelines are indicated in bold type. Parameters outside the MDMER limits are indicated in bold blue type. Raised RL's for CNS, Nitrates + S $_2$ O $_3$ due to sample matrix

UAL=CNO process past holding time

Sample Properties

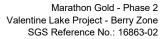

BL1021-43 Detox TIs (g)	3000
Process Water Cover (mL)	2390
Initital Tailings Height in Column (cn	27.6

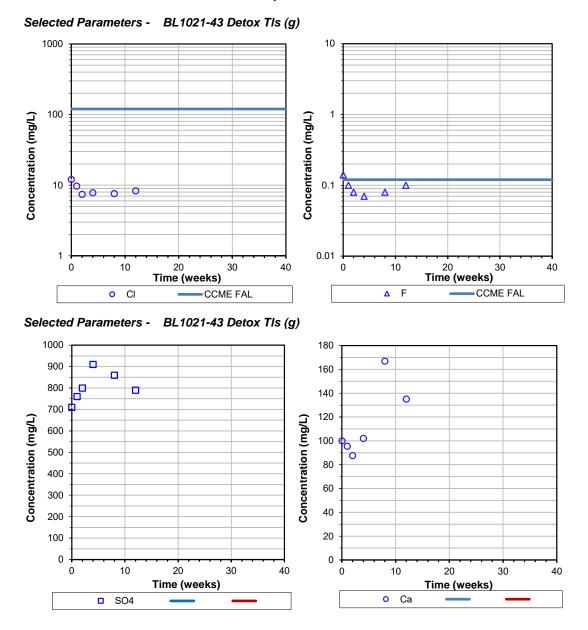
Analysis of Column Leachate

Parameter	Units	CCME FAL / MDMER	10	12	14	16	18	20
Date			02-Feb-23	16-Feb-23	02-Mar-23	16-Mar-23	30-Mar-23	13-Apr-23
LIMS			n/a	14400-FEB23	n/a		n/a	
Volume Collected	mL	-	400	450	450			
Temp Upon Receipt	°C	-	-	20.0	-		-	
pН	no unit	6.0-9.5	-	7.80	-		-	
Alkalinity	mg/L as CaCO ₃	-	-	53	-		-	
Conductivity	μS/cm	-	-	1590	-		-	
Redox Potential	mV	-	-	122	-		-	
TDS	mg/L	-	-	1250	-		-	
F	mg/L	0.12	-	0.10	-		-	
NO ₂	as N mg/L	0.06	-	< 0.3	-		-	
NO ₃	as N mg/L	13	_	< 0.6	_		_	
	-		-		-		-	
NO ₂ +NO ₃	as N mg/L	-	-	< 0.6	-		-	
CI	mg/L	120	-	8.3	-		-	
SO ₄	mg/L	-	-	790	-		-	
CN _(T)	mg/L	0.50	-	16.7	-		-	
CN _{WAD}	mg/L	0.005 as CNF	-	0.19	-		-	
CNS	mg/L	-	-	< 2	-		-	
CNO	mg/L	-	-	< 1	-		-	
NH ₃ +NH ₄	as N mg/L	-	-	0.5	-		-	
Un-ionized NH ₃ (calc'd)	-	0.02 / 0.50	-	0.01				
	as S ₂ O ₃ mg/L	0.02 / 0.00		< 2				
S ₂ O ₃		-	-		-		-	
Hg	0).000026 / 0.000	-	0.00005	-		-	
Ag	mg/L	0.00025	-	< 0.0005	-		-	
AI	mg/L	0.1@pH>6.5	-	0.03	-		-	
As	mg/L	0.005 / 0.10	-	0.012	-		-	
В	mg/L	1.5	-	0.04	-		-	
Ва	mg/L	-	-	0.0172	-		-	
Be	mg/L		-	0.00023	-		-	
Bi	mg/L	-	-	< 0.0001	-		-	
Ca	mg/L	-	-	135	-		-	
Cd	mg/L	0.00009	-	0.00053	-		-	
Со	mg/L	-	-	0.0156	-		-	
Cr	mg/L	-	-	0.0022	-		-	
Cu	mg/L	0.002 / 0.10	-	0.045	-		-	
Fe	mg/L	0.3	-	8.23	-		-	
К	mg/L	-	-	1.85	-		-	
Li	mg/L	-	-	< 0.001	-		-	
Mg	mg/L	-	-	10.4	-		-	
Mn	mg/L	-	-	0.225	-		-	
Мо	mg/L	0.073	-	0.0416	-		-	
Na	mg/L	-	-	201	-		-	
Ni	mg/L	0.025 / <mark>0.25</mark>	-	0.002	-		-	
Р	mg/L	-	-	0.12	-		-	
Pb	mg/L	0.001 / 0.08	-	< 0.0009	-		-	
S	mg/L	-	-	317	-		-	
Sb	mg/L	-	-	< 0.009	-		-	
Se	mg/L	0.001 / 0.01	-	0.0111	-		-	
Si	mg/L	-	-	2.2	-		-	
Sn	mg/L	-	-	0.0019	-		-	
Sr	mg/L	-	-	0.496	-		-	
Th	mg/L	-	-	0.002	-		-	
Ti	mg/L	-	-	0.0080	-		-	
ті	mg/L	0.0008	-	< 0.00005	-		-	
U	mg/L	0.015	-	0.00019	-		-	
V	mg/L	-	-	0.0003	-		-	
Ŵ	mg/L	-	_	< 0.0002	-		-	
Y	mg/L	-	_	< 0.0002	-		-	
Zn	mg/L	0.007 / 0.40	_	< 0.002	-		-	
<u></u>	iiig/L	0.001 / 0.10	-	~ U.UZ	-		-	

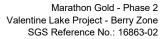
Parameters outside the CCME FAL guidelines are indicated in b Parameters outside the MDMER limits are indicated in bold blue RL raised 10 x for metals due to samlpe matrix interference

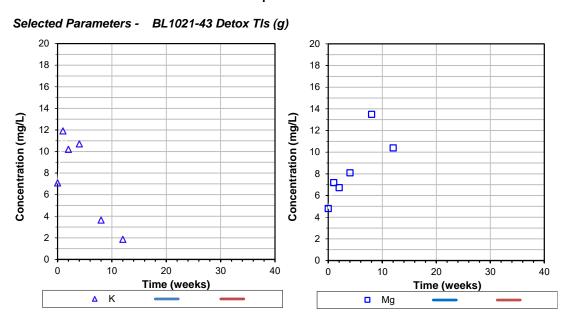
Column top-ups with Li spiked DI water (5 mg/L) starting after Week 10 sampling

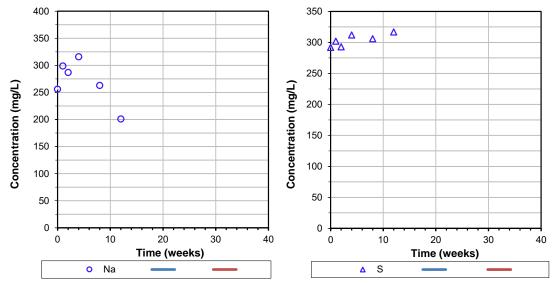


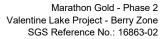

Selected Parameters - BL1021-43 Detox TIs (g) 10 10 9 Concentration (mg/L) 8 000 Concentration (mg/L) 7 1 6 5 4 0.1 3 2 0 1 0 0 0.01 10 20 30 40 10 0 0 20 30 40 Time (weeks) Time (weeks) MDMER - Lower 🗖 рН 🕳 MDMER - Upper • Un-ionized NH3 (calc'd) Selected Parameters - BL1021-43 Detox TIs (g) 100 10 Δ Δ Concentration (mg/L) 1 10 Concentration (mg/L) ΔΔ 0.1 1 0.01 0.1 0.01 0.001 10 20 0 30 40 10 20 30 40 0 Time (weeks) Time (weeks) CNWAD CCME FAL (as CNF) △ CN(T) MDMER

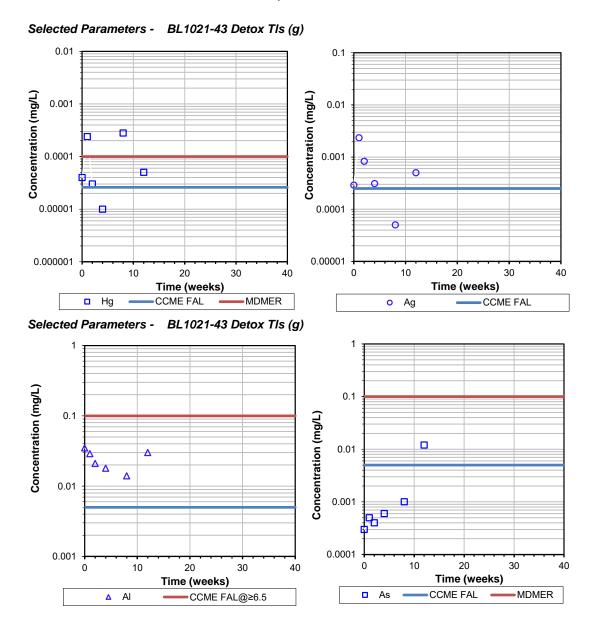
TEST REPORT Sub-Aqueous Column

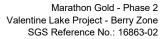

This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

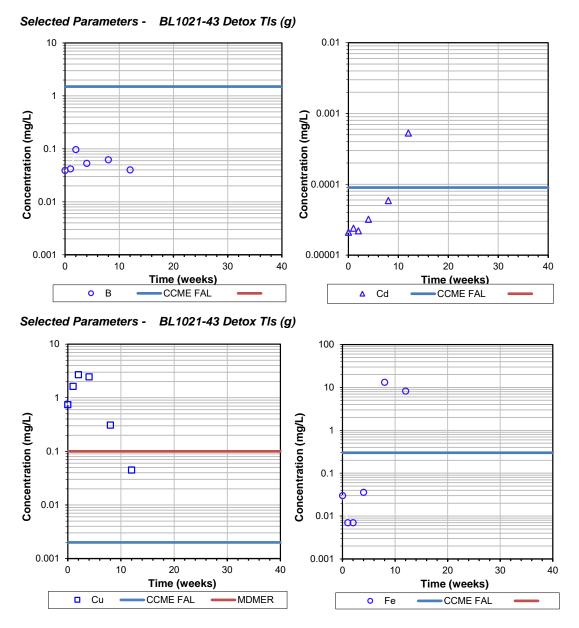



This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

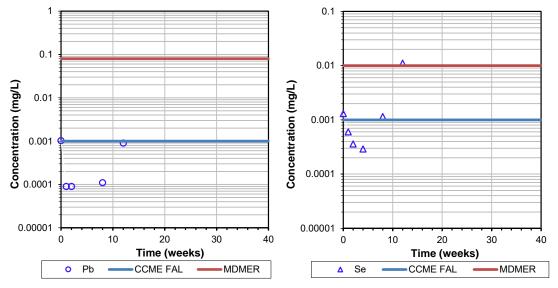


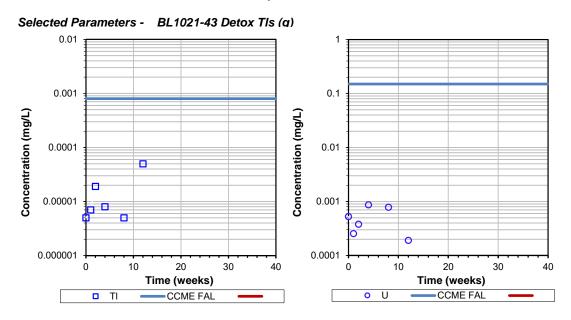




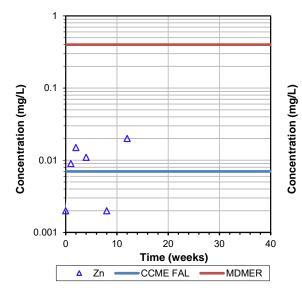


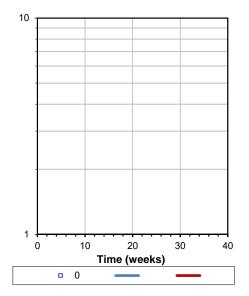
This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.


This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.


Selected Parameters - BL1021-43 Detox Tls (g) 1 1 0.1 Concentration (mg/L) 0.1 Concentration (mg/L) Δ ΔΔ Δ 0.01 0.01 0 0 0.001 0.001 0 10 20 30 40 10 20 30 40 0 Time (weeks) Time (weeks) CCME FAL Δ Мо Ni CCME FAL MDMER

TEST REPORT Sub-Aqueous Column


Selected Parameters - BL1021-43 Detox TIs (g)



Selected Parameters - BL1021-43 Detox Tls (g)

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Marathon - Berry Set 1 NP

Depleted Hum Cells

10-March-2023

Date Rec. : LR Report: Reference:	
	Cells

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3:	4:	5:	6:	7:	8:
	Analysis Completed DateCon	Analysis npleted Time (B POR-PAG-COQT	B P-PAG-CO3DLG	B O-PAG-CO3D H	B GO-PAG-Zn-C
			3DP Wk#2	P Wk#2	P Wk#2	O3DP Wk#2
Sample Date & Time			28-Feb-23	28-Feb-23	28-Feb-23	28-Feb-23
HumCell Leachate Vol [mL]	02-Mar-23	16:14	588	586	503	579
pH [No unit]	01-Mar-23	11:56	5.03	5.17	4.64	5.20
Acidity [mg/L as CaCO3]	01-Mar-23	11:56	5	5	18	5
Alkalinity [mg/L as CaCO3]	01-Mar-23	11:56	< 2	< 2	< 2	< 2
Conductivity [uS/cm]	01-Mar-23	11:56	27	17	56	14
SO4 [mg/L]	09-Mar-23	16:08	9.6	6.0	22	4.6
F [mg/L]	01-Mar-23	09:08	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	06-Mar-23	12:58	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	08-Mar-23	15:17	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	08-Mar-23	15:17	0.006	0.004	0.036	0.002
As [mg/L]	08-Mar-23	15:17	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Ba [mg/L]	08-Mar-23	15:17	0.00068	< 0.00008	0.00028	0.00011
Be [mg/L]	08-Mar-23	15:17	0.000012	0.000031	0.000032	0.000013
B [mg/L]	08-Mar-23	15:17	< 0.002	< 0.002	< 0.002	0.005
Bi [mg/L]	08-Mar-23	15:17	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	08-Mar-23	15:17	1.89	1.04	5.59	0.76
Cd [mg/L]	08-Mar-23	15:17	0.000073	0.000042	0.000070	0.000036
Co [mg/L]	08-Mar-23	15:17	0.00157	0.000365	0.00324	0.000370
Cr [mg/L]	08-Mar-23	15:17	0.00013	0.00020	0.00016	0.00015
Cu [mg/L]	08-Mar-23	15:17	0.0030	0.0050	0.0372	0.0029
Fe [mg/L]	08-Mar-23	15:17	0.031	0.026	0.196	0.014
K [mg/L]	08-Mar-23	15:17	0.084	0.045	0.071	0.042
Li [mg/L]	08-Mar-23	15:17	0.0003	0.0004	0.0006	0.0003
Mg [mg/L]	08-Mar-23	15:17	0.104	0.093	0.216	0.057
Mn [mg/L]	08-Mar-23	15:17	0.0283	0.0796	0.0593	0.0126
Mo [mg/L]	08-Mar-23	15:17	0.00014	< 0.00004	< 0.00004	0.00006
Na [mg/L]	08-Mar-23	15:17	1.61	1.08	1.19	0.90
Ni [mg/L]	08-Mar-23	15:17	0.0022	0.0030	0.0073	0.0012
Pb [mg/L]	08-Mar-23	15:17	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	08-Mar-23	15:17	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	08-Mar-23	15:17	0.00059	0.00076	0.00070	0.00060

Page 1 of 2

0003259395

Analysis	3: Analysis Completed DateCor	4: Analysis npleted Time (5: B QPOR-PAG-COQ 3DP Wk#2	6: B TP-PAG-CO3DL0 P Wk#2	7: B GO-PAG-CO3D I P Wk#2	8: B IGO-PAG-Zn-C O3DP Wk#2
Sr [mg/L]	08-Mar-23	15:17	0.00190	0.00064	0.00315	0.00058
Sn [mg/L]	08-Mar-23	15:17	0.00017	0.00011	0.00082	0.00010
Ti [mg/L]	08-Mar-23	15:17	0.00054	0.00051	0.00064	0.00052
TI [mg/L]	08-Mar-23	15:17	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	08-Mar-23	15:17	0.00300	0.000052	0.000052	0.000089
V [mg/L]	08-Mar-23	15:17	0.00002	0.00002	0.00002	0.00003
W [mg/L]	08-Mar-23	15:17	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Y [mg/L]	08-Mar-23	15:17	< 0.00002	< 0.00002	0.00011	< 0.00002
Zn [mg/L]	08-Mar-23	15:17	0.026	0.019	0.028	0.015

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

10-March-2023

Date Rec. :	07 March 2023
LR Report:	CA10046-MAR23
Reference:	Wk#3 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: B QPOR-PAG-CQ O3DP Wk#3			8: B HGO-PAG-Zn- CO3DP Wk#3
Sample Date & Time			7-Mar-23	7-Mar-23	7-Mar-23	7-Mar-23
HumCell Leachate Vol [mL]	07-Mar-23	15:06	655	640	591	658
pH [No unit]	09-Mar-23	09:40	5.44	5.12	4.90	5.26
Conductivity [uS/cm]	08-Mar-23	10:15	36	10	31	6

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003258683

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

27-March-2023

Date Rec. :	09 March 2023
LR Report:	CA10067-MAR23
Reference:	Wk#12 - Marathon - Berry Set 1

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4: Analysis	5:	6:	7:	8:	9:	10:
	Analysis Anal Completed DateCompleted T		B QPOR-PAG Wk#12	B SED-High SFE Wk#12	B QTP-PAG Wk#12	B LGO-PAG Wk#12	B HGO-PAG-Zn Wk#12	B OB-ML Wk#12
Sample Date & Time			09-Mar-23	09-Mar-23	09-Mar-23	09-Mar-23	09-Mar-23	09-Mar-23
HumCell Leachate Vol [mL]	10-Mar-23	10:53	578	696	648	636	722	513
pH [No unit]	13-Mar-23	10:34	7.19	7.58	7.40	7.38	7.15	6.83
Acidity [mg/L as CaCO3]	13-Mar-23	10:34	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	13-Mar-23	10:35	7	21	7	7	7	5
Conductivity [uS/cm]	15-Mar-23	10:20	21	36	22	34	14	33
SO4 [mg/L]	21-Mar-23	12:08	2.7	1.3	1.5	5.3	1.1	7.8
F [mg/L]	10-Mar-23	13:50	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	13-Mar-23	09:19	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	17-Mar-23	16:18	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	17-Mar-23	16:18	0.045	0.055	0.027	0.026	0.030	0.081
As [mg/L]	17-Mar-23	16:18	0.0003	0.0005	0.0005	0.0003	0.0003	0.0021
Ba [mg/L]	17-Mar-23	16:18	0.00021	0.00176	0.00047	0.00022	0.00024	0.00322
Be [mg/L]	17-Mar-23	16:18	0.000028	0.000022	0.000023	0.000026	0.000016	0.000025
B [mg/L]	17-Mar-23	16:18	0.006	0.003	0.002	0.004	< 0.002	< 0.002
Bi [mg/L]	17-Mar-23	16:18	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00002	< 0.00001
Ca [mg/L]	17-Mar-23	16:18	3.97	5.50	3.27	4.80	2.83	4.81
Cd [mg/L]	17-Mar-23	16:18	0.000069	0.000090	0.000080	0.000078	0.000069	0.000084
Co [mg/L]	17-Mar-23	16:18	< 0.000004	< 0.000004	< 0.000004	0.000020	0.000017	0.000112
Cr [mg/L]	17-Mar-23	16:18	0.00020	0.00020	0.00026	0.00033	0.00028	0.00051
Cu [mg/L]	17-Mar-23	16:18	0.0004	< 0.0002	< 0.0002	0.0003	< 0.0002	0.0022
Fe [mg/L]	17-Mar-23	16:18	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.090
K [mg/L]	17-Mar-23	16:18	0.174	1.10	0.181	0.109	0.120	0.210
Li [mg/L]	17-Mar-23	16:18	< 0.0001	0.0002	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mg [mg/L]	17-Mar-23	16:18	0.174	0.526	0.131	0.126	0.108	0.208
Mn [mg/L]	17-Mar-23	16:18	0.0247	0.0446	0.0264	0.0279	0.0296	0.0185
Mo [mg/L]	17-Mar-23	16:18	0.00070	0.00680	0.00047	0.00094	0.00235	0.00174
Na [mg/L]	17-Mar-23	16:18	0.23	0.25	0.16	0.15	0.14	0.11
Ni [mg/L]	17-Mar-23	16:18	< 0.0001	< 0.0001	< 0.0001	0.0001	0.0001	0.0003
Pb [mg/L]	17-Mar-23	16:18	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00013
Sb [mg/L]	17-Mar-23	16:18	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	17-Mar-23	16:18	0.00083	0.00104	0.00094	0.00097	0.00096	0.00091
Sr [mg/L]	17-Mar-23	16:18	0.00312	0.0440	0.00629	0.00535	0.00646	0.00915

Page 1 of 2

Marathon - Berry Set 1

Project : Berry Project LR Report : CA10067-MAR23

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis	B QPOR-PAG B Wk#12	SED-High SFE Wk#12	B QTP-PAG Wk#12	B LGO-PAG	B HGO-PAG-Zn	B OB-ML Wk#12
	Completed DateCom	pieteu mile	WR#12	WR#12	VI (# 12	WK#12	Wk#12	VVR#12
Sn [mg/L]	17-Mar-23	16:18	0.00019	0.00029	0.00108	0.00008	0.00012	0.00048
Ti [mg/L]	17-Mar-23	16:18	0.00088	0.00093	0.00085	0.00100	0.00076	0.00452
TI [mg/L]	17-Mar-23	16:18	< 0.000005	0.000005	< 0.000005	< 0.000005	0.000025	< 0.000005
U [mg/L]	17-Mar-23	16:18	0.00242	0.000597	0.000159	0.00681	0.00305	0.000110
V [mg/L]	17-Mar-23	16:18	0.00013	0.00062	0.00010	0.00008	0.00009	0.00162
W [mg/L]	17-Mar-23	16:18	0.00009	0.00015	0.00005	0.00007	0.00014	0.00011
Y [mg/L]	17-Mar-23	16:18	0.00003	0.00006	0.00004	0.00003	0.00002	0.00012
Zn [mg/L]	17-Mar-23	16:18	0.004	< 0.002	0.002	< 0.002	0.003	0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003278119

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO, Mt. Pearl Canada, A1N 0A1 Phone: 709-730-5046, Fax: Marathon - Berry Set 2

Project : Berry Project

27-March-2023

Date Rec. :09 March 2023LR Report:CA10068-MAR23Reference:Wk#11

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis Ipleted Time	5: B QPOR B Wk#11	6: SED Wk#11	7: B MD Wk#11B	8: QTP Wk#11B	9: LGO Wk#11	10: B HGO Wk#11
Sample Date & Time			09-Mar-23	09-Mar-23	09-Mar-23	09-Mar-23	09-Mar-23	09-Mar-23
HumCell Leachate Vol [mL]	10-Mar-23	10:53	907	938	917	924	916	927
pH [No unit]	13-Mar-23	14:44	7.30	7.48	7.51	7.40	7.12	7.32
Conductivity [uS/cm]	13-Mar-23	14:44	20	24	29	21	18	25

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003278126

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

27-March-2023

Date Rec. :	14 March 2023
LR Report:	CA10093-MAR23
Reference:	Wk#4 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis	4: Analysis	5: B	6: B	7: B	
	Completed DateCor					HGO-PAG-Zn-C
Sample Date & Time			14-Mar-23	14-Mar-23	14-Mar-23	14-Mar-23
HumCell Leachate Vol [mL]	15-Mar-23	08:14	642	648	584	647
pH [No unit]	15-Mar-23	11:00	5.23	5.40	5.09	5.98
Acidity [mg/L as CaCO3]	15-Mar-23	11:00	4	5	7	3
Alkalinity [mg/L as CaCO3]	15-Mar-23	11:00	< 2	< 2	< 2	< 2
Conductivity [uS/cm]	15-Mar-23	11:00	24	10	27	8
SO4 [mg/L]	21-Mar-23	13:29	10	3.8	16	2.2
F [mg/L]	15-Mar-23	13:28	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	16-Mar-23	16:00	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	24-Mar-23	11:52	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	24-Mar-23	11:52	0.022	0.003	0.036	0.005
As [mg/L]	24-Mar-23	11:52	< 0.0002	< 0.0002	0.0008	< 0.0002
Ba [mg/L]	24-Mar-23	11:52	0.00055	0.00011	0.00048	0.00026
Be [mg/L]	24-Mar-23	11:52	0.000027	0.000009	0.000019	< 0.000007
B [mg/L]	24-Mar-23	11:52	0.002	< 0.002	< 0.002	0.002
Bi [mg/L]	24-Mar-23	11:52	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	24-Mar-23	11:52	2.36	0.90	3.13	0.61
Cd [mg/L]	24-Mar-23	11:52	0.000082	0.000009	0.000011	0.000004
Co [mg/L]	24-Mar-23	11:52	0.00457	0.000314	0.00214	0.000251
Cr [mg/L]	24-Mar-23	11:52	0.00350	0.00204	0.00169	0.00233
Cu [mg/L]	24-Mar-23	11:52	0.0090	0.0039	0.0312	0.0019
Fe [mg/L]	24-Mar-23	11:52	0.883	0.782	0.778	0.443
K [mg/L]	24-Mar-23	11:52	0.105	0.047	0.056	0.045
Li [mg/L]	24-Mar-23	11:52	0.0003	0.0002	0.0003	0.0001
Mg [mg/L]	24-Mar-23	11:52	0.206	0.066	0.126	0.037
Mn [mg/L]	24-Mar-23	11:52	0.0667	0.0730	0.0348	0.0110
Mo [mg/L]	24-Mar-23	11:52	0.00101	0.00050	0.00045	0.00055
Na [mg/L]	24-Mar-23	11:52	0.87	0.42	0.45	0.31
Ni [mg/L]	24-Mar-23	11:52	0.0041	0.0066	0.0033	0.0022
Pb [mg/L]	24-Mar-23	11:52	< 0.00009	0.00013	< 0.00009	< 0.00009
Sb [mg/L]	24-Mar-23	11:52	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	24-Mar-23	11:52		0.00005	0.00005	< 0.00004
Sr [mg/L]	24-Mar-23	11:52	0.00214	0.00053	0.00247	
Sn [mg/L]	24-Mar-23	11:52		0.00009	0.00050	

Page 1 of 2

0003278133

Analysis	3:	4:	5:	6:	7:	8:
	Analysis	Analysis	В	В	В	В
	Completed DateCon	npleted Time				HGO-PAG-Zn-C
			3DP Wk#4	P Wk#4	P Wk#4	O3DP Wk#4
Ti [mg/L]	24-Mar-23	11:52	0.00007	0.00011	0.00015	0.00008
TI [mg/L]	24-Mar-23	11:52	0.000012	0.000011	0.000019	0.000018
U [mg/L]	24-Mar-23	11:52	0.00183	0.000231	0.000254	0.000028
V [mg/L]	24-Mar-23	11:52	0.00005	0.00004	0.00004	0.00005
W [mg/L]	24-Mar-23	11:52	< 0.00002	< 0.00002	< 0.00002	0.00004
Y [mg/L]	24-Mar-23	11:52	0.00009	< 0.00002	0.00018	< 0.00002
Zn [mg/L]	24-Mar-23	11:52	0.019	0.013	0.012	0.016

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO, Mt. Pearl Canada, A1N 0A1 Phone: 709-730-5046, Fax: Marathon - Berry Set 1

Project : Berry Project

27-March-2023

Date Rec. :16 March 2023LR Report:CA10114-MAR23Reference:Wk#13 - Marathon - Berry
Set 1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#13	6: B SED-High SFE Wk#13	7: B QTP-PAG Wk#13	8: B LGO-PAG B I Wk#13	9: HGO-PAG-Zn Wk#13	10: B OB-ML Wk#13
Sample Date & Time			16-Mar-23	16-Mar-23	16-Mar-23	16-Mar-23	16-Mar-23	16-Mar-23
HumCell Leachate Vol [mL]	20-Mar-23	12:28	547	659	657	649	716	506
pH [No unit]	21-Mar-23	10:22	7.27	7.42	7.38	7.29	7.16	7.00
Conductivity [uS/cm]	17-Mar-23	12:44	26	26	22	31	18	40

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003278141

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

30-March-2023

Date Rec. :23 March 2023LR Report:CA10162-MAR23Reference:Wk#14 - Marathon - Berry
Set 1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#14	6: B SED-High SFE Wk#14	7: B QTP-PAG Wk#14	8: B LGO-PAG B Wk#14	9: HGO-PAG-Zn Wk#14	10: B OB-ML Wk#14
Sample Date & Time			23-Mar-23	23-Mar-23	23-Mar-23	23-Mar-23	23-Mar-23	23-Mar-23
HumCell Leachate Vol [mL]	29-Mar-23	13:31	592	672	666	655	706	538
pH [No unit]	27-Mar-23	12:39	7.38	7.56	7.39	7.27	7.59	7.03
Conductivity [uS/cm]	24-Mar-23	10:00	26	26	22	31	26	41

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003284950

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

31-March-2023

Date Rec. :23 March 2023LR Report:CA10163-MAR23Reference:Wk#13 - Marathon - Berry
Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis opleted Time	5: B QPOR B Wk#13	6: SED Wk#13	7: B MD Wk#13B	8: QTP Wk#13B	9: LGO Wk#13	10: B HGO Wk#13
Sample Date & Time			23-Mar-23	23-Mar-23	23-Mar-23	23-Mar-23	23-Mar-23	23-Mar-23
HumCell Leachate Vol [mL]	29-Mar-23	13:31	980	978	962	959	957	958
pH [No unit]	24-Mar-23	10:01	7.39	7.54	7.54	7.32	7.32	7.37
Conductivity [uS/cm]	24-Mar-23	10:01	20	24	27	16	17	19

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003285153

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

04-April-2023

Date Rec. :30 March 2023LR Report:CA10210-MAR23Reference:Wk#15 - Marathon - Berry
Set 1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#15	6: B SED-High SFE Wk#15	7: B QTP-PAG Wk#15	8: B LGO-PAG Wk#15	9: B HGO-PAG-Zn Wk#15	10: B OB-ML Wk#15
Sample Date & Time			30-Mar-23	30-Mar-23	30-Mar-23	30-Mar-23	30-Mar-23	30-Mar-23
HumCell Leachate Vol [mL]	30-Mar-23	16:38	619	653	669	645	672	480
pH [No unit]	04-Apr-23	11:30	7.28	7.37	7.28	7.18	6.85	6.89
Conductivity [uS/cm]	31-Mar-23	10:20	22	25	17	37	13	35

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003288714

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

04-April-2023

Date Rec. : 30 March 2023 LR Report: CA10211-MAR23 Reference: Wk#14 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis opleted Time	5: B QPOR B Wk#14	6: SED Wk#14	7: B MD Wk#14B	8: 8 QTP Wk#14B	9: LGO Wk#14	10: B HGO Wk#14
Sample Date & Time			30-Mar-23	30-Mar-23	30-Mar-23	30-Mar-23	30-Mar-23	30-Mar-23
HumCell Leachate Vol [mL]	30-Mar-23	16:37	905	940	902	920	909	915
pH [No unit]	04-Apr-23	09:27	7.06	7.36	7.18	7.19	7.18	7.17
Conductivity [uS/cm]	04-Apr-23	09:26	18	22	22	16	19	21

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003288743

Sample Properties

BL1021-43 Detox TIs (g)	3000
Process Water Cover (mL)	2390
Initital Tailings Height in Column (cn	27.6

Analysis of Column Leachate

Parameter	Units	CCME FAL / MDMER	0	1	2	4	6	8
Date			25-Nov-22	01-Dec-22	08-Dec-22	22-Dec-22	05-Jan-23	19-Jan-23
LIMS					14281-DEC22		n/a	14495-JAN23
Volume Collected	mL	-	500	450	450	450	450	450
Temp Upon Receipt	°C	-	20.0	21.0	20.0	20.0	-	20.0
pH	no unit	6.0-9.5	7.78	7.86	7.87	8.01	-	7.72
Alkalinity	mg/L as CaCO ₃	-	53	65	78	104	-	132
Conductivity	μS/cm	-	1840	1890	1870	1950	-	1880
Redox Potential	mV	-	164	329	333	286	-	145
TDS	mg/L	-	1260	1160	1320	1310	-	1420
F	mg/L	0.12	0.14	0.10	0.08	0.07	-	0.08
NO ₂	as N mg/L	0.06	< 0.3	< 0.3	< 0.3	< 0.3	-	< 0.3
NO ₃	as N mg/L	13	0.95	< 0.6	< 0.6	< 0.6	-	< 0.6
NO ₂ +NO ₃	as N mg/L	-	0.95	< 0.6	< 0.06	< 0.6	-	<0.6
CI	mg/L	120	12	9.7	7.4	7.8	-	7.6
SO ₄	mg/L	-	710	760	800	910	-	860
CN _(T)	mg/L	0.50	0.79	1.90	2.66	2.74	-	31.3
CN _{WAD}	mg/L	0.005 as CNF	0.774	1.51	2.25	2.29	-	0.405
CNS	mg/L	-	< 2	5.7	5.6	4.0	-	< 2
CNO	mg/L	-	62	14 UAL	1.5	< 1	-	< 1
NH ₃ +NH ₄	as N mg/L	-	3.6	5.8	7.3	7.2	-	1.2
Un-ionized NH ₃ (calc'd)) as N mg/L	0.02 / 0.50	0.08	0.16	0.21	0.28	-	0.02
S ₂ O ₃	as S ₂ O ₃ mg/L	-	< 20	< 20	< 20	< 20	-	< 10
Hg	mg/L	0.000026 / 0.0001	0.00004	0.00024	0.00003	< 0.00001	-	0.00028
Ag	mg/L	0.00025	0.00029	0.00234	0.00083	0.00031	-	< 0.00005
Al	mg/L	0.1@pH>6.5	0.035	0.029	0.021	0.018	-	0.014
As	mg/L	0.005 / 0.10	0.0003	0.0005	0.0004	0.0006	-	0.0010
В	mg/L	1.5	0.039	0.042	0.097	0.053	-	0.062
Ва	mg/L	-	0.00789	0.00932	0.01056	0.00914	-	0.00621
Be	mg/L		< 0.000007	< 0.000007	< 0.000007	< 0.000007	-	< 0.000007
Bi	mg/L	-	< 0.00001	< 0.00001	< 0.00001	< 0.00001	-	0.00001
Са	mg/L	-	100	95.5	87.6	102	-	167
Cd	mg/L	0.00009	0.000021	0.000024	0.000022	0.000032	-	0.000059
Co	mg/L	-	0.00479	0.00247	0.00389	0.0102	-	0.0250
Cr	mg/L	-	0.00011	< 0.00008	0.00016	< 0.00008	-	0.0148
Cu	mg/L	0.002 / 0.10	0.743	1.63	2.70	2.45	-	0.309
Fe	mg/L	0.3	0.030	< 0.007	< 0.007	0.036	-	13.2
К	mg/L	-	7.09	11.9	10.2	10.7	-	3.64
Li	mg/L	-	0.0037	0.0038	0.0018	0.0012	-	0.0014
Mg	mg/L	-	4.81	7.20	6.73	8.10	-	13.5
Mn	mg/L	-	0.103	0.0543	0.0848	0.0959	-	0.145
Мо	mg/L	0.073	0.0163	0.0342	0.0377	0.0382	-	0.0325
Na	mg/L	-	256	299	287	316	-	263
Ni	mg/L	0.025 / 0.25	0.0123	0.0012	0.0019	0.0041	-	0.0049
Р	mg/L	-	0.013	0.007	0.006	0.004	-	0.010
Pb	mg/L	0.001 / 0.08	0.00103	< 0.00009	< 0.00009	< 0.00009	-	0.00011
S	mg/L	-	292	302	293	312	-	306
Sb	mg/L	-	0.0013	0.0012	0.0013	0.0013	-	0.0013
Se	mg/L	0.001 / 0.005	0.00131	0.00060	0.00036	0.00029	-	0.00115
Si	mg/L	-	1.25	2.36	2.23	2.45	-	4.62
Sn	mg/L	-	0.00389	0.00023	0.00025	0.00016	-	0.00056
Sr	mg/L	-	0.351	0.361	0.347	0.367	-	0.574
Th	mg/L	-	< 0.0001	< 0.0001	0.0008	< 0.0001	-	< 0.0001
Ti	mg/L	-	< 0.00005	< 0.00005	< 0.00005	0.00010	-	0.00011
TI	mg/L	0.0008	< 0.000005	0.000007	0.000019	0.000008	-	< 0.000005
U	mg/L	0.015	0.000524	0.000253	0.000379	0.000868	-	0.000780
V	mg/L	-	0.00002	0.00003	0.00004	0.00003	-	0.00006
W	mg/L	-	0.00009	0.00010	0.00010	0.00006	-	0.00033
Y	mg/L	- 0.007 / <mark>0.40</mark>	< 0.00002	< 0.00002	< 0.00002	< 0.00002	-	< 0.00002
Zn	mg/L		< 0.002	0.009	0.015	0.011	-	0.002

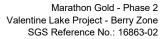
Parameters outside the CCME FAL guidelines are indicated in bold type. Parameters outside the MDMER limits are indicated in bold blue type. Raised RL's for CNS, Nitrates + S $_2$ O $_3$ due to sample matrix

UAL=CNO process past holding time

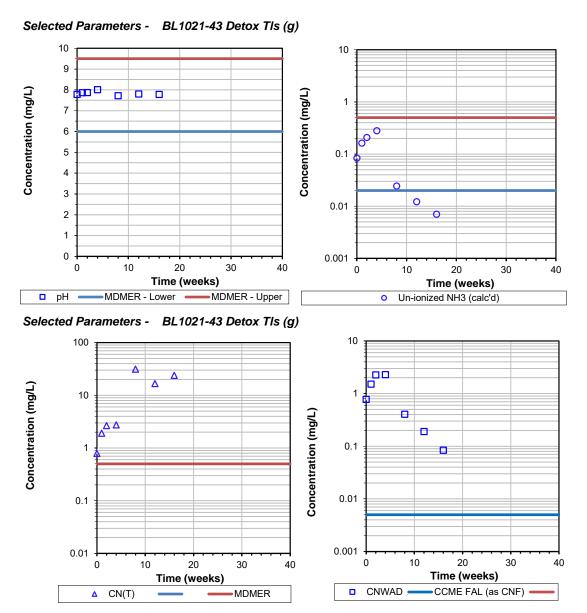
Sample Properties

BL1021-43 Detox Tls (g)	3000
Process Water Cover (mL)	2390
Initital Tailings Height in Column (cn	27.6

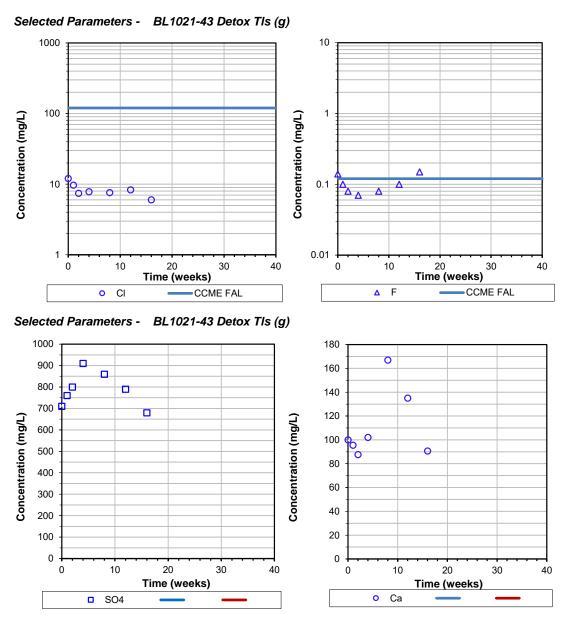
.......

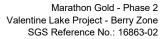

Analysis of Column Leachate

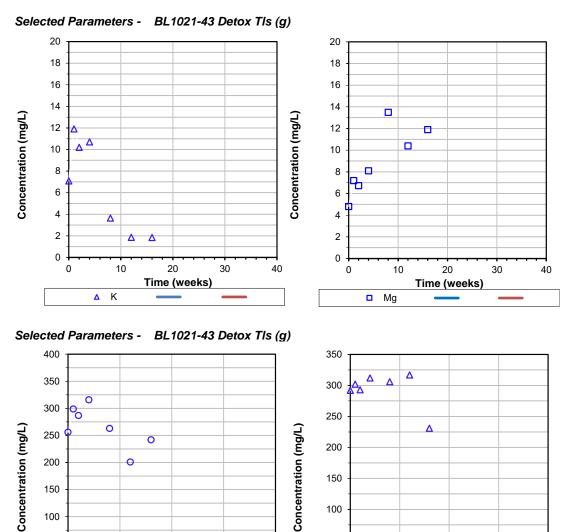
Parameter	Units	CCME FAL / MDMER	10	12	14	16	18
Date			02-Feb-23	16-Feb-23	02-Mar-23	16-Mar-23	30-Mar-23
LIMS			n/a	14400-FEB23	n/a	14415-MAR23	n/a
Volume Collected	mL	-	400	450	450	450	
Temp Upon Receipt	°C	-	-	20.0	-	19.0	-
pH	no unit	6.0-9.5	-	7.80	-	7.78	-
Alkalinity	mg/L as CaCO ₃	-	-	53	-	49	-
Conductivity	μS/cm	-	-	1590	-	1540	-
Redox Potential	mV	-	-	122	-	122	-
TDS	mg/L	-	-	1250	-	1090	-
F	mg/L	0.12	-	0.10	-	0.15	-
NO ₂	as N mg/L	0.06	-	< 0.3	-	< 0.3	-
NO ₃	as N mg/L	13	-	< 0.6	-	< 0.6	-
NO ₂ +NO ₃	as N mg/L	-	_	< 0.6	_	< 0.6	_
	0	120	-	8.3	-	6.0	-
	mg/L		-		-		-
SO ₄	mg/L	-	-	790	-	680	-
CN _(T)	mg/L	0.50	-	16.7	-	23.9	-
CN _{WAD}	mg/L	0.005 as CNF	-	0.19	-	0.084	-
CNS	mg/L	-	-	< 2	-	< 2	-
CNO	mg/L	-	-	< 1	-	< 1	-
NH ₃ +NH ₄	as N mg/L	-	-	0.5	-	0.3	-
Un-ionized NH ₃ (calc'd)	as N mg/L	0.02 / 0.50	-	0.01	-	0.01	-
S ₂ O ₃	as S ₂ O ₃ mg/L	-	-	< 2	-	< 10	-
Hg		0.000026 / 0.0001	_	0.00005	_	< 0.00001	-
Ag	mg/L	0.00025	_	< 0.0005	_	< 0.00005	-
Al	mg/L	0.1@pH>6.5	_	0.03	_	0.014	_
As	mg/L	0.005 / 0.10	_	0.012	_	0.0009	_
В	mg/L	1.5	_	0.04	_	0.047	_
Ba	mg/L	-	_	0.0172	_	0.0110	_
Be	mg/L		_	0.00023	-	< 0.000007	
Bi	mg/L	_	_	< 0.0001	-	0.00440	
Са	mg/L	_	_	135	_	90.7	_
Cd	mg/L	0.00009	_	0.00053	_	0.000010	_
Co	mg/L	-	_	0.0156	-	0.00829	_
Cr	mg/L	_	_	0.0022	_	0.00077	_
Cu	mg/L	0.002 / 0.10	_	0.045	-	0.0397	_
Fe	mg/L	0.3	_	8.23	_	11.3	_
K	mg/L	-	-	1.85	-	1.84	-
Li	mg/L	-	-	< 0.001	-	0.0118	-
	-	-	-	10.4	-	11.9	-
Mg Mn	mg/L	-	-	0.225	-	0.153	-
Mo	mg/L mg/L	0.073	-	0.0416	-	0.0656	-
		0.075	-		-		-
Na	mg/L	-	-	201	-	242	-
Ni	mg/L	0.025 / 0.25	-	0.002	-	0.0053	-
P	mg/L	-	-	0.12	-	0.050	-
Pb	mg/L	0.001 / 0.08	-	< 0.0009	-	0.00025	-
S	mg/L	-	-	317	-	231	-
Sb	mg/L	-	-	< 0.009	-	0.0011	-
Se	mg/L	0.001 / 0.005	-	0.0111	-	0.00035	-
Si	mg/L	-	-	2.2	-	2.33	-
Sn	mg/L	-	-	0.0019	-	0.00099	-
Sr	mg/L	-	-	0.496	-	0.344	-
Th	mg/L	-	-	0.002	-	0.006	-
Ti	mg/L	-	-	0.0080	-	0.00007	-
TI	mg/L	0.0008	-	< 0.00005	-	< 0.000005	-
U	mg/L	0.015	-	0.00019	-	0.000110	-
V	mg/L	-	-	0.0003	-	0.00159	-
W	mg/L	-	-	< 0.0002	-	0.00039	-
Y	mg/L	-	-	< 0.0002	-	0.00004	-
Zn	mg/L	0.007 / <mark>0.40</mark>	-	< 0.02	-	0.028	-


Parameters outside the CCME FAL guidelines are indicated in bol Parameters outside the MDMER limits are indicated in bold blue ty

RL raised 10 x for metals due to sample matrix interference

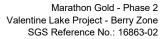

Column top-ups with Li spiked DI water (5 mg/L) starting upon comple



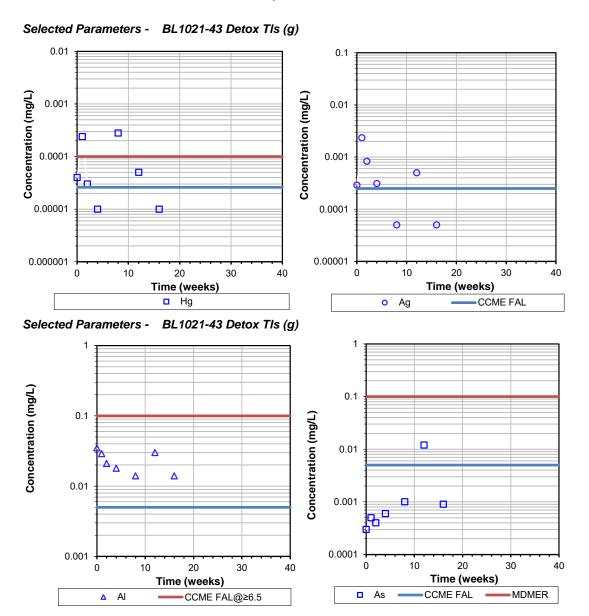


This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

o Na

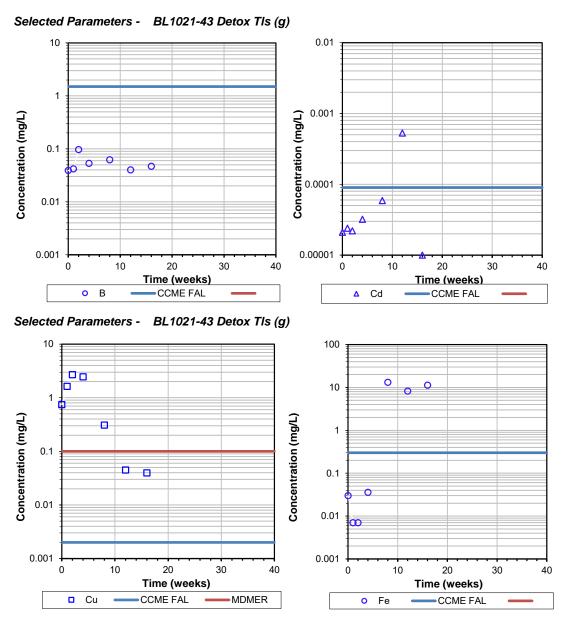

Δ S

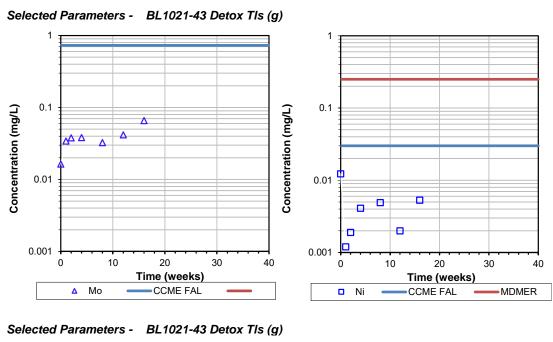
Time (weeks)

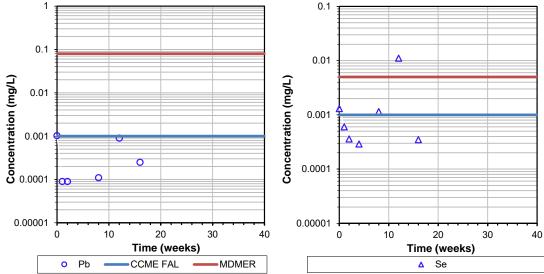

TEST REPORT Sub-Aqueous Column

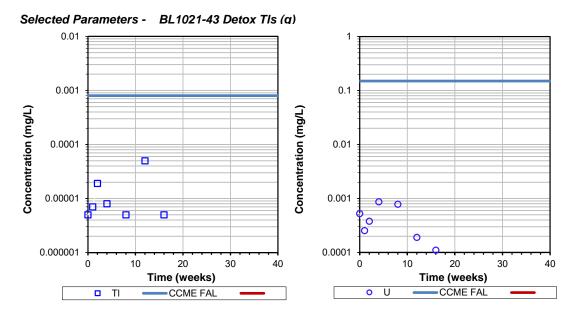
This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.

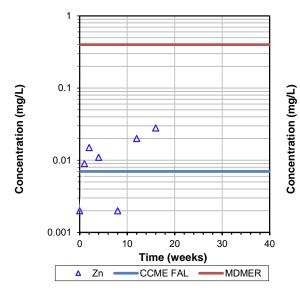
Time (weeks)

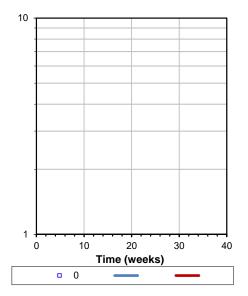



This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.




This report refers to the samples as-received. SGS Minerals Services is not responsible for any use of this data beyond the result of this test method.





Selected Parameters - BL1021-43 Detox TIs (g)

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

OnLine LIMS

Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

06-April-2023

Date Rec. :	04 April 2023
LR Report:	CA10020-APR23
Reference:	Wk#7 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date Con	4: Analysis mpleted Time C	5: B POR-PAG-COQT	6: B P-PAG-CO3DLG	7: B O-PAG-CO3D H	8: B IGO-PAG-Zn-C
			3DP Wk#7	P Wk#7	P Wk#7	O3DP Wk#7
Sample Date & Time			04-Apr-23	04-Apr-23	04-Apr-23	04-Apr-23
HumCell Leachate Vol [mL]	05-Apr-23	16:35	634	657	604	651
pH [No unit]	05-Apr-23	12:34	4.93	4.87	4.50	5.09
Conductivity [uS/cm]	05-Apr-23	12:34	18	17	46	13

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

06-April-2023

Date Rec. :	21 March 2023
LR Report:	CA10141-MAR23
Reference:	Wk#5 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis Completed Date Cor	4: Analysis npleted Time Q	5: B POR-PAG-COQT	6: B P-PAG-CO3DLG	7: B O-PAG-CO3D H	8: B GO-PAG-Zn-C
			3DP Wk#5	P Wk#5	P Wk#5	O3DP Wk#5
Sample Date & Time			21-Mar-23	21-Mar-23	21-Mar-23	21-Mar-23
HumCell Leachate Vol [mL]	22-Mar-23	09:19	677	610	605	669
pH [No unit]	06-Apr-23	10:39	5.04	5.32	4.72	5.60
Conductivity [uS/cm]	06-Apr-23	10:39	32	10	27	6

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003292298

OnLine LIMS

Page 1 of 1

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

06-April-2023

Date Rec. :	28 March 2023
LR Report:	CA10188-MAR23
Reference:	Wk#6 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4: Analysis	5:	6:	7:	8:
	Analysis	В	В	В		
	Completed Date Cor	npleted Time Q	POR-PAG-COQT 3DP Wk#6	P-PAG-CO3DLG P Wk#6	O-PAG-CO3D H P Wk#6	GO-PAG-Zn-C O3DP Wk#6
			5D1 WK#0	I WINHO	1 111/170	0301 111
Sample Date & Time			28-Mar-23	28-Mar-23	28-Mar-23	28-Mar-23
HumCell Leachate Vol [mL]	28-Mar-23	14:49	618	613	554	624
pH [No unit]	29-Mar-23	11:14	4.78	5.14	4.56	4.99
Acidity [mg/L as CaCO3]	29-Mar-23	11:14	7	6	17	5
Alkalinity [mg/L as CaCO3]	29-Mar-23	11:14	< 2	< 2	< 2	< 2
Conductivity [uS/cm]	29-Mar-23	11:14	31	14	34	11
SO4 [mg/L]	30-Mar-23	10:13	11	5.1	12	3.7
F [mg/L]	29-Mar-23	09:16	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	30-Mar-23	10:45	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	06-Apr-23	12:37	< 0.00005	< 0.00005	< 0.00005	< 0.00005
Al [mg/L]	06-Apr-23	12:37	0.038	0.005	0.063	0.003
As [mg/L]	06-Apr-23	12:37	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Ba [mg/L]	06-Apr-23	12:37	0.00038	0.00012	0.00049	< 0.00008
Be [mg/L]	06-Apr-23	12:37	0.000046	0.000008	0.000036	< 0.000007
B [mg/L]	06-Apr-23	12:37	< 0.002	< 0.002	< 0.002	< 0.002
Bi [mg/L]	06-Apr-23	12:37	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	06-Apr-23	12:37	3.14	1.46	2.97	1.05
Cd [mg/L]	06-Apr-23	12:37	0.000108	0.000016	0.000006	0.00006
Co [mg/L]	06-Apr-23	12:37	0.00607	0.000410	0.00275	0.000369
Cr [mg/L]	06-Apr-23	12:37	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	06-Apr-23	12:37	0.0117	0.0046	0.0461	0.0025
Fe [mg/L]	06-Apr-23	12:37	0.219	0.031	0.350	0.013
K [mg/L]	06-Apr-23	12:37	0.139	0.041	0.064	0.040
Li [mg/L]	06-Apr-23	12:37	0.0003	0.0002	0.0003	< 0.0001
Mg [mg/L]	06-Apr-23	12:37	0.258	0.094	0.179	0.053
Mn [mg/L]	06-Apr-23	12:37	0.0665	0.0931	0.0370	0.0105
Mo [mg/L]	06-Apr-23	12:37	0.00035	0.00045	0.00277	0.00031

Analysis	3: Analysis	4: Analysis	5: B	6: B	7: B	8: B
	Completed Date Con	•				
			3DP Wk#6	P Wk#6	P Wk#6	O3DP Wk#6
Na [mg/L]	06-Apr-23	12:37	0.64	0.37	0.38	0.25
Ni [mg/L]	06-Apr-23	12:37	0.0036	0.0034	0.0030	0.0007
Pb [mg/L]	06-Apr-23	12:37	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	06-Apr-23	12:37	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	06-Apr-23	12:37	0.00014	< 0.00004	< 0.00004	< 0.00004
Sr [mg/L]	06-Apr-23	12:37	0.00355	0.00083	0.00422	0.00074
Sn [mg/L]	06-Apr-23	12:37	0.00016	0.00015	0.00028	0.00009
Ti [mg/L]	06-Apr-23	12:37	< 0.00005	< 0.00005	0.00005	< 0.00005
TI [mg/L]	06-Apr-23	12:37	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	06-Apr-23	12:37	0.000059	0.000013	0.000673	0.000060
V [mg/L]	06-Apr-23	12:37	< 0.00001	< 0.00001	< 0.00001	< 0.00001
W [mg/L]	06-Apr-23	12:37	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Y [mg/L]	06-Apr-23	12:37	0.00018	< 0.00002	0.00023	< 0.00002
Zn [mg/L]	06-Apr-23	12:37	0.022	0.010	0.011	0.017

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003292440

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

20-April-2023

Date Rec.: 06 April 2023 LR Report: CA10041-APR23 Reference: Wk#16 - Marathon - Berry Set 1

0003306532

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis Completed	4: Analysis Completed	5: B QPOR-PAG Wk#16	6: B SED-High SFE Wk#16	7: B QTP-PAG Wk#16	8: B LGO-PAG Wk#16
	Date	Time		0. 2		
Sample Date & Time			6-Apr-23	6-Apr-23	6-Apr-23	6-Apr-23
HumCell Leachate Vol [mL]	10-Apr-23	10:10	622	706	703	659
pH [No unit]	12-Apr-23	09:38	7.39	7.54	7.23	7.30
Acidity [mg/L as CaCO3]	12-Apr-23	09:38	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	13-Apr-23	13:15	8	10	7	9
Conductivity [uS/cm]	12-Apr-23	09:38	22	23	20	38
SO4 [mg/L]	11-Apr-23	11:02	2.5	0.5	2.6	8.0
F [mg/L]	10-Apr-23	11:52	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	11-Apr-23	15:47	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	17-Apr-23	14:08	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	17-Apr-23	14:08	0.035	0.047	0.015	0.017
As [mg/L]	17-Apr-23	14:08	< 0.0002	< 0.0002	0.0003	< 0.0002
Ba [mg/L]	17-Apr-23	14:08	0.00011	0.00100	0.00046	0.00093
Be [mg/L]	17-Apr-23	14:08	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	17-Apr-23	14:08	0.004	< 0.002	0.014	0.005
Bi [mg/L]	17-Apr-23	14:08	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	17-Apr-23	14:08	4.43	4.19	3.91	6.75
Cd [mg/L]	17-Apr-23	14:08	< 0.000003	0.00003	< 0.000003	< 0.000003
Co [mg/L]	17-Apr-23	14:08	0.000007	0.000031	0.000017	0.000035
Cr [mg/L]	17-Apr-23	14:08	< 0.00008	< 0.00008	< 0.00008	< 0.0008
Cu [mg/L]	17-Apr-23	14:08	0.0005	< 0.0002	0.0006	0.0007
Fe [mg/L]	17-Apr-23	14:08	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	17-Apr-23	14:08	0.123	0.638	0.158	0.106
Li [mg/L]	17-Apr-23	14:08	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mg [mg/L]	17-Apr-23	14:08	0.140	0.290	0.131	0.184
Mn [mg/L]	17-Apr-23	14:08	0.0196	0.0290	0.0197	0.0317
Mo [mg/L]	17-Apr-23	14:08	0.00081	0.00334	0.00126	0.00266

Page 1 of 3

Project : Berry Project LR Report : CA10041-APR23

8:	7:	6:	5:	4:	3:	Analysis
B LGO-PAG	B QTP-PAG	B SED-High	B QPOR-PAG	-	Analysis	
Wk#16	Wk#16	SFE Wk#16	Wk#16	Completed Time	Completed Date	
0.21	0.23	0.14	0.17	14:08	17-Apr-23	Na [mg/L]
< 0.0001	< 0.0001	< 0.0001	< 0.0001	14:08	17-Apr-23	Ni [mg/L]
< 0.00009	< 0.00009	< 0.00009	< 0.00009	14:08	17-Apr-23	Pb [mg/L]
< 0.0009	< 0.0009	< 0.0009	< 0.0009	14:08	17-Apr-23	Sb [mg/L]
0.00007	0.00012	0.00006	0.00017	14:08	17-Apr-23	Se [mg/L]
0.00655	0.00664	0.0230	0.00304	14:08	17-Apr-23	Sr [mg/L]
< 0.00006	0.00028	0.00017	0.00027	14:08	17-Apr-23	Sn [mg/L]
0.00005	0.00009	0.00018	0.00007	14:08	17-Apr-23	Ti [mg/L]
0.000018	< 0.000005	0.000006	< 0.000005	14:08	17-Apr-23	TI [mg/L]
0.00395	0.000136	0.00491	0.000099	14:08	17-Apr-23	U [mg/L]
0.00002	0.00003	0.00035	0.00002	14:08	17-Apr-23	V [mg/L]
0.00008	0.00008	0.00006	0.00007	14:08	17-Apr-23	W [mg/L]
0.00003	< 0.00002	0.00003	< 0.00002	14:08	17-Apr-23	Y [mg/L]
< 0.002	< 0.002	< 0.002	< 0.002	14:08	17-Apr-23	Zn [mg/L]

Analysis	9: B HGO-PAG-Zn Wk#16	10: B OB-ML Wk#16
Sample Date & Time	6-Apr-23	6-Apr-23
HumCell Leachate Vol [mL]	711	538
pH [No unit]	7.15	7.12
Acidity [mg/L as CaCO3]	< 2	< 2
Alkalinity [mg/L as CaCO3]	6	6
Conductivity [uS/cm]	14	48
SO4 [mg/L]	1.4	11
F [mg/L]	< 0.06	< 0.06
Hg [mg/L]	< 0.00001	< 0.00001
Ag [mg/L]	< 0.00005	< 0.00005
AI [mg/L]	0.016	0.045
As [mg/L]	0.0004	0.0016
Ba [mg/L]	0.00018	0.00406
Be [mg/L]	< 0.000007	< 0.000007
B [mg/L]	0.003	0.004
Bi [mg/L]	< 0.00001	< 0.00001
Ca [mg/L]	2.60	8.53
Cd [mg/L]	< 0.000003	0.000012
Co [mg/L]	0.000011	0.000102
Cr [mg/L]	< 0.00008	0.00010
Cu [mg/L]	0.0003	0.0041
Fe [mg/L]	< 0.007	0.036
K [mg/L]	0.114	0.297

Page 2 of 3

Project : Berry Project LR Report : CA10041-APR23

Analysis	9: B	10: B OB-ML
	ндо-РА G-Zn Wk#16	Wk#16
Li [mg/L]	< 0.0001	< 0.0001
Mg [mg/L]	0.118	0.414
Mn [mg/L]	0.0176	0.0139
Mo [mg/L]	0.00186	0.00603
Na [mg/L]	0.16	0.24
Ni [mg/L]	< 0.0001	0.0002
Pb [mg/L]	< 0.00009	< 0.00009
Sb [mg/L]	< 0.0009	< 0.0009
Se [mg/L]	0.00068	0.00053
Sr [mg/L]	0.00565	0.0150
Sn [mg/L]	< 0.00006	0.00028
Ti [mg/L]	0.00011	0.00135
TI [mg/L]	< 0.000005	0.00008
U [mg/L]	0.000084	0.00382
V [mg/L]	0.00004	0.00118
W [mg/L]	0.00019	0.00012
Y [mg/L]	< 0.00002	0.00009
Zn [mg/L]	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003306532

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

26-April-2023

Date Rec. :	13 April 2023
LR Report:	CA10090-APR23
Reference:	Wk#17 - Berry Project

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	4: Analysis Completed Time	5: B QPOR-PAG Wk#17	•	7: B QTP-PAG Wk#17		9: B IGO-PAG-Zn Wk#17
Sample Date & Time			13-Apr-23	13-Apr-23	13-Apr-23	13-Apr-23	13-Apr-23
HumCell Leachate Vol [mL]	13-Apr-23	13:05	610	710	690	650	700
pH [No unit]	19-Apr-23	16:39	7.04	7.46	7.51	7.02	7.53
Conductivity [uS/cm]	14-Apr-23	13:36	27	32	22	37	18

Analysis	10: B OB-ML Wk#17
Sample Date & Time	13-Apr-23
HumCell Leachate Vol [mL]	535
pH [No unit]	6.95
Conductivity [uS/cm]	54

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003311692

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

26-April-2023

Date Rec. :	18 April 2023
LR Report:	CA10117-APR23
Reference:	Wk#9 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCor	4: Analysis npleted Time Q	5: B POR-PAG-COQTI 3DP Wk#9	6: B P-PAG-CO3DLG(P Wk#9	7: B D-PAG-CO3D H P Wk#9	8: B GO-PAG-Zn-C O3DP Wk#9
Sample Date & Time			18-Apr-23	18-Apr-23	18-Apr-23	18-Apr-23
HumCell Leachate Vol [mL]	19-Apr-23	16:30	655	636	607	653
pH [No unit]	19-Apr-23	12:55	4.77	4.91	4.29	5.06
Conductivity [uS/cm]	19-Apr-23	12:55	28	23	57	16

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003311742

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

26-April-2023

Date Rec. : 20 April 2023 LR Report: CA10140-APR23 Reference: Wk#17 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCor	4: Analysis npleted Time	5: B QPORB Wk#17	6: SED Wk#17	7: B MD Wk#17B	8: QTP Wk#17	9: B LGO Wk#17	10: B HGO Wk#17
Sample Date & Time			20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23
HumCell Leachate Vol [mL]	21-Apr-23	10:48	1004	991	978	970	957	968
pH [No unit]	25-Apr-23	10:52	7.77	9.23	7.65	7.64	7.30	7.30
Acidity [mg/L as CaCO3]	21-Apr-23	10:35	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	21-Apr-23	10:35	8	11	10	10	7	7
Conductivity [uS/cm]	21-Apr-23	10:35	18	22	22	16	16	21
SO4 [mg/L]	26-Apr-23	08:52	< 2	< 2	< 2	< 2	< 2	< 2

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003312925

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 2

Project : Berry Project

27-April-2023

Date Rec.: 13 April 2023 LR Report: CA10091-APR23 Reference: Wk#16 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis Completed DateCom	4: Analysis npleted Time	5: B QPOR Wk#16	6: B SED Wk#16	7: B MD Wk#16	8: B QTP Wk#16	9: B LGO Wk#16	10: B HGO Wk#16
Sample Date & Time			13-Apr-23	13-Apr-23	13-Apr-23	13-Apr-23	13-Apr-23	13-Apr-23
HumCell Leachate Vol [mL]	13-Apr-23	13:06	996	997	1004	993	1001	1006
pH [No unit]	17-Apr-23	12:15	7.41	7.87	7.40	7.13	7.16	7.51
Acidity [mg/L as CaCO3]	14-Apr-23	12:29	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	14-Apr-23	12:29	8	10	12	10	9	7
Conductivity [uS/cm]	14-Apr-23	12:29	18	22	30	23	22	19
SO4 [mg/L]	26-Apr-23	10:06	0.5	0.2	1.2	0.5	0.8	1.8
F [mg/L]	14-Apr-23	11:04	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	14-Apr-23	16:49	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	20-Apr-23	16:08	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	20-Apr-23	16:08	0.039	0.050	0.045	0.037	0.034	0.029
As [mg/L]	20-Apr-23	16:08	0.0005	0.0003	0.0004	< 0.0002	< 0.0002	< 0.0002
Ba [mg/L]	20-Apr-23	16:08	0.00035	0.00649	0.00049	0.00057	0.00017	0.00017
Be [mg/L]	20-Apr-23	16:08	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	20-Apr-23	16:08	< 0.002	< 0.002	0.002	< 0.002	< 0.002	< 0.002
Bi [mg/L]	20-Apr-23	16:08	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	20-Apr-23	16:08	3.62	3.89	4.46	3.59	3.18	3.70
Cd [mg/L]	20-Apr-23	16:08	0.000013	0.000005	0.000005	0.000003	0.000003	0.000004
Co [mg/L]	20-Apr-23	16:08	0.000004	0.000009	0.000031	< 0.000004	< 0.000004	0.000029
Cr [mg/L]	20-Apr-23	16:08	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	20-Apr-23	16:08	< 0.0002	0.0002	< 0.0002	0.0003	0.0003	0.0002
Fe [mg/L]	20-Apr-23	16:08	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
K [mg/L]	20-Apr-23	16:08	0.275	0.379	0.234	0.176	0.124	0.149
Li [mg/L]	20-Apr-23	16:08	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mg [mg/L]	20-Apr-23	16:08	0.164	0.311	0.310	0.192	0.114	0.145
Mn [mg/L]	20-Apr-23	16:08	0.0298	0.0331	0.0209	0.0373	0.0259	0.0321
Mo [mg/L]	20-Apr-23	16:08	0.00066	0.00098	0.00310	0.00100	0.00033	0.00146
Na [mg/L]	20-Apr-23	16:08	0.09	0.05	0.09	0.11	0.12	0.09
Ni [mg/L]	20-Apr-23	16:08	0.0016	0.0015	0.0016	0.0016	0.0015	0.0016
Pb [mg/L]	20-Apr-23	16:08	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	20-Apr-23	16:08	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	20-Apr-23	16:08	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004	< 0.00004
Sr [mg/L]	20-Apr-23	16:08	0.00428	0.0272	0.0119	0.0112	0.00510	0.00731

0003314664

Page 1 of 2

Project : Berry Project

LR Report : CA10091-APR23

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis	Analysis		B SED Wk#16	B MD Wk#16	B QTP Wk#16	B LGO Wk#16	B HGO Wk#16
	Completed DateCon	pleted Time	Wk#16					
Sn [mg/L]	20-Apr-23	16:08	< 0.00006	< 0.00006	< 0.00006	< 0.00006	< 0.00006	0.00012
Ti [mg/L]	20-Apr-23	16:08	0.00007	0.00012	0.00032	0.00015	0.00006	0.00016
TI [mg/L]	20-Apr-23	16:08	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	0.000026
U [mg/L]	27-Apr-23	09:35	0.000320	0.00108	0.00157	0.000256	0.000943	0.00222
V [mg/L]	20-Apr-23	16:08	0.00010	0.00033	0.00791	0.00009	0.00005	0.00004
W [mg/L]	20-Apr-23	16:08	< 0.00002	0.00003	0.00003	0.00003	< 0.00002	0.00002
Y [mg/L]	20-Apr-23	16:08	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	20-Apr-23	16:08	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003314664

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

27-April-2023

Date Rec. :	25 April 2023
LR Report:	CA10166-APR23
Reference:	Wk#10 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCor	4: Analysis npleted Time	5: B QPOR-PAG-CO 3DP Wk#10	6: B QTP-PAG-CO3 DP Wk#10	7: B LGO-PAG-CO3 DP Wk#10	8: B HGO-PAG-Zn-C O3DP Wk#10
Sample Date & Time			25-Apr-23	25-Apr-23	25-Apr-23	25-Apr-23
HumCell Leachate Vol [mL]	26-Apr-23	09:21	650	606	609	656
pH [No unit]	27-Apr-23	10:06	5.32	5.44	4.45	5.41
Conductivity [uS/cm]	27-Apr-23	10:06	26	21	44	20

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003314698

OnLine LIMS

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO, Mt. Pearl Canada, A1N 0A1 Phone: 709-730-5046, Fax:

Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

28-April-2023

Date Rec.: 11 April 2023 LR Report: CA10068-APR23 Reference: Wk#8

0003315190

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4:	5:	6:	7:	8:
	Analysis Completed DateCor	Analysis npleted Time	B QPOR-PAG-COQ	B TP-PAG-CO3DL	B GO-PAG-CO3D.	B HGO-PAG-Zn-C
			3DP Wk#8	P Wk#8	P Wk#8	O3DP Wk#8
Sample Date & Time			11-Apr-23	11-Apr-23	11-Apr-23	11-Apr-23
lumCell Leachate Vol [mL]	12-Apr-23	09:17	653	655	602	646
H [No unit]	14-Apr-23	09:53	5.23	5.04	4.60	5.15
cidity [mg/L as CaCO3]	14-Apr-23	09:53	4	4	8	4
Ikalinity [mg/L as CaCO3]	14-Apr-23	09:53	< 2	< 2	< 2	< 2
Conductivity [uS/cm]	14-Apr-23	09:53	19	17	38	10
604 [mg/L]	28-Apr-23	09:06	7.0	6.2	14	3.6
[mg/L]	12-Apr-23	10:31	< 0.06	< 0.06	0.07	< 0.06
lg [mg/L]	17-Apr-23	12:23	< 0.00001	< 0.00001	< 0.00001	< 0.00001
vg [mg/L]	21-Apr-23	14:14	< 0.00005	< 0.00005	< 0.00005	< 0.00005
l [mg/L]	21-Apr-23	14:14	0.034	0.006	0.243	0.002
s [mg/L]	21-Apr-23	14:14	< 0.0002	< 0.0002	0.0004	< 0.0002
Ba [mg/L]	21-Apr-23	14:14	0.00030	0.00014	0.00029	0.00010
Be [mg/L]	21-Apr-23	14:14	0.000042	0.000014	0.000068	0.000007
3 [mg/L]	21-Apr-23	14:14	< 0.002	< 0.002	< 0.002	0.002
Bi [mg/L]	21-Apr-23	14:14	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	21-Apr-23	14:14	1.91	1.79	3.08	1.11
Cd [mg/L]	21-Apr-23	14:14	0.000070	0.000016	0.000014	< 0.000003
Co [mg/L]	21-Apr-23	14:14	0.00521	0.000569	0.00433	0.000475
Cr [mg/L]	21-Apr-23	14:14	< 0.00008	< 0.00008	< 0.00008	< 0.00008
Cu [mg/L]	21-Apr-23	14:14	0.0105	0.0062	0.107	0.0031
e [mg/L]	21-Apr-23	14:14	0.183	0.034	0.546	0.014
([mg/L]	21-Apr-23	14:14	0.102	0.044	0.071	0.041
i [mg/L]	21-Apr-23	14:14	0.0002	0.0003	0.0004	0.0001
/ig [mg/L]	21-Apr-23	14:14	0.191	0.128	0.254	0.061
/in [mg/L]	21-Apr-23	14:14	0.0439	0.125	0.0457	0.0117
10 [mg/L]	21-Apr-23	14:14	0.00007	0.00007	0.00008	0.00006
la [mg/L]	21-Apr-23	14:14	0.35	0.41	0.48	0.26
li [mg/L]	21-Apr-23	14:14	0.0027	0.0040	0.0042	0.0008
Pb [mg/L]	21-Apr-23	14:14	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	21-Apr-23	14:14	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	21-Apr-23	14:14	0.00014	0.00008	0.00020	0.00008
Sr [mg/L]	21-Apr-23	14:14	0.00252	0.00116	0.00623	0.00088
Sn [mg/L]	21-Apr-23	14:14	< 0.00006	< 0.00006	< 0.00006	< 0.00006

Page 1 of 2

0003315190

Analysis	3: Analysis	4: Analysis	5: B	6: B	7: B	8: B
	Completed DateCor			-		-
	•		3DP Wk#8	P Wk#8	P Wk#8	O3DP Wk#8
Ti [mg/L]	21-Apr-23	14:14	0.00007	< 0.00005	< 0.00005	< 0.00005
TI [mg/L]	21-Apr-23	14:14	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	21-Apr-23	14:14	0.000039	0.000021	0.000126	0.00009
V [mg/L]	21-Apr-23	14:14	< 0.00001	< 0.00001	< 0.00001	< 0.00001
W [mg/L]	21-Apr-23	14:14	< 0.00002	< 0.00002	< 0.00002	< 0.00002
Y [mg/L]	21-Apr-23	14:14	0.00019	< 0.00002	0.00186	< 0.00002
Zn [mg/L]	21-Apr-23	14:14	0.019	0.009	0.011	0.010

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

28-April-2023

Date Rec. : 20 April 2023 LR Report: CA10139-APR23 Reference: Wk#18 - Marathon - Berry Set 1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateCom	Analysis pleted Time	B QPOR-PAG Wk#18	B SED-High SFE Wk#18	B QTP-PAG Wk#18	B LGO-PAG B Wk#18	HGO-PAG-Zn Wk#18	B OB-ML Wk#18
Sample Date & Time			20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23	20-Apr-23
HumCell Leachate Vol [mL]	21-Apr-23	10:48	612	699	674	644	701	528
pH [No unit]	24-Apr-23	11:49	7.30	7.89	7.13	7.49	7.09	7.06
Acidity [mg/L as CaCO3]	21-Apr-23	11:06	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	21-Apr-23	11:06	7	13	6	10	5	8
Conductivity [uS/cm]	21-Apr-23	11:06	22	26	21	44	15	46
SO4 [mg/L]	27-Apr-23	16:19	2.8	1.1	3.1	11	1.3	10
F [mg/L]	21-Apr-23	09:21	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	22-Apr-23	12:14	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	25-Apr-23	14:56	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	25-Apr-23	14:56	0.033	0.041	0.018	0.019	0.017	0.160
As [mg/L]	25-Apr-23	14:56	< 0.0002	< 0.0002	0.0002	< 0.0002	< 0.0002	0.0018
Ba [mg/L]	25-Apr-23	14:56	0.00011	0.00122	0.00054	0.00055	0.00022	0.00534
Be [mg/L]	25-Apr-23	14:56	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	0.000007
B [mg/L]	25-Apr-23	14:56	< 0.002	< 0.002	0.004	0.006	0.002	< 0.002
Bi [mg/L]	25-Apr-23	14:56	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	25-Apr-23	14:56	4.15	4.20	3.68	7.01	2.70	8.14
Cd [mg/L]	25-Apr-23	14:56	0.000006	0.000014	0.000008	0.000013	0.000006	0.000017
Co [mg/L]	25-Apr-23	14:56	< 0.000004	< 0.000004	0.000009	0.000015	0.00008	0.000146
Cr [mg/L]	25-Apr-23	14:56	0.00051	0.00052	0.00048	0.00024	0.00043	0.00067
Cu [mg/L]	25-Apr-23	14:56	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0023
Fe [mg/L]	25-Apr-23	14:56	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.141
K [mg/L]	25-Apr-23	14:56	0.128	0.747	0.160	0.117	0.105	0.395
Li [mg/L]	25-Apr-23	14:56	< 0.0001	0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Mg [mg/L]	25-Apr-23	14:56	0.130	0.381	0.128	0.212	0.098	0.409
Mn [mg/L]	25-Apr-23	14:56	0.0169	0.0249	0.0187	0.0344	0.0223	0.00861
Mo [mg/L]	25-Apr-23	14:56	0.00044	0.00794	0.00077	0.00121	0.00033	0.00400
Na [mg/L]	25-Apr-23	14:56	0.18	0.20	0.18	0.22	0.14	0.24
Ni [mg/L]	25-Apr-23	14:56	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0009
Pb [mg/L]	25-Apr-23	14:56	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00015
Sb [mg/L]	25-Apr-23	14:56	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0012
Se [mg/L]	25-Apr-23	14:56	< 0.00004	< 0.00004	< 0.00004	0.00004	< 0.00004	0.00024
Sr [mg/L]	25-Apr-23	14:56	0.00261	0.0289	0.00701	0.00706	0.00574	0.0147

Page 1 of 2

Marathon - Berry Set 1

Project : Berry Project LR Report : CA10139-APR23

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis	Analysis	B QPOR-PAG	B SED-High	B QTP-PAG	B LGO-PAG B		B OB-ML
	Completed DateCom	pleted Time	Wk#18	SFE Wk#18	Wk#18	Wk#18	Wk#18	Wk#18
Sn [mg/L]	25-Apr-23	14:56	0.00011	0.00015	0.00018	0.00008	0.00010	0.00023
Ti [mg/L]	25-Apr-23	14:56	0.00012	0.00019	< 0.00005	0.00005	< 0.00005	0.00611
TI [mg/L]	25-Apr-23	14:56	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	25-Apr-23	14:56	0.000096	0.000887	0.000512	0.000369	0.000094	0.000216
V [mg/L]	25-Apr-23	14:56	0.00017	0.00048	0.00020	0.00015	0.00019	0.00165
W [mg/L]	25-Apr-23	14:56	0.00006	0.00008	0.00004	0.00008	0.00015	0.00010
Y [mg/L]	25-Apr-23	14:56	< 0.00002	0.00003	< 0.00002	< 0.00002	< 0.00002	0.00011
Zn [mg/L]	25-Apr-23	14:56	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003316047

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 2

Project : Berry Project

04-May-2023

Date Rec.: 27 April 2023 LR Report: CA10193-APR23 Reference: Wk#18 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3: Analysis	4: Analysis	5: B QPOR	6: B SED Wk#18	7: B MD Wk#18	8: B QTP Wk#18	9: B LGO Wk#18	10: B HGO Wk#18
	Completed DateCon		Wk#18				2 200 111110	
Sample Date & Time			27-Apr-23	27-Apr-23	27-Apr-23	27-Apr-23	27-Apr-23	27-Apr-23
HumCell Leachate Vol [mL]	29-Apr-23	09:24	1000	993	998	997	997	994
pH [No unit]	03-May-23	13:05	7.50	7.59	7.46	7.38	7.29	7.33
Acidity [mg/L as CaCO3]	28-Apr-23	11:15	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	28-Apr-23	11:15	7	11	10	9	8	8
Conductivity [uS/cm]	28-Apr-23	11:15	18	23	21	17	21	16
SO4 [mg/L]	02-May-23	15:44	0.5	0.2	0.4	0.4	1.9	0.5
F [mg/L]	01-May-23	09:54	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	29-Apr-23	09:29	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	03-May-23	15:58	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	03-May-23	15:58	0.051	0.039	0.044	0.039	0.027	0.033
As [mg/L]	03-May-23	15:58	0.0003	0.0008	0.0006	< 0.0002	< 0.0002	< 0.0002
Ba [mg/L]	03-May-23	15:58	0.00033	0.00756	0.00051	0.00019	0.00058	0.00119
Be [mg/L]	03-May-23	15:58	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	03-May-23	15:58	< 0.002	< 0.002	< 0.002	0.002	0.005	0.003
Bi [mg/L]	03-May-23	15:58	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	03-May-23	15:58	3.23	3.81	3.89	3.16	3.91	2.93
Cd [mg/L]	03-May-23	15:58	0.000021	0.000004	< 0.000003	< 0.000003	< 0.000003	< 0.000003
Co [mg/L]	03-May-23	15:58	< 0.000004	< 0.000004	< 0.000004	< 0.000004	< 0.000004	< 0.000004
Cr [mg/L]	03-May-23	15:58	0.00009	0.00015	0.00014	< 0.00008	< 0.00008	0.00012
Cu [mg/L]	03-May-23	15:58	0.0002	0.0002	< 0.0002	0.0004	0.0002	0.0003
Fe [mg/L]	03-May-23	15:58	< 0.007	< 0.007	0.011	< 0.007	0.008	< 0.007
K [mg/L]	03-May-23	15:58	0.229	0.392	0.228	0.170	0.277	0.161
Li [mg/L]	03-May-23	15:58	0.0002	0.0004	0.0002	0.0001	0.0001	0.0002
Mg [mg/L]	03-May-23	15:58	0.139	0.346	0.279	0.171	0.160	0.093
Mn [mg/L]	03-May-23	15:58	0.0342	0.0356	0.0212	0.0372	0.0357	0.0296
Mo [mg/L]	03-May-23	15:58	0.00040	0.00022	0.00021	0.00396	0.00046	0.00013
Na [mg/L]	03-May-23	15:58	0.18	0.44	0.41	0.22	1.24	0.75
Ni [mg/L]	03-May-23	15:58	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Pb [mg/L]	03-May-23	15:58	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009
Sb [mg/L]	03-May-23	15:58	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009
Se [mg/L]	03-May-23	15:58	< 0.00004	0.00008	0.00007	0.00007	0.00074	0.00038
Sr [mg/L]	03-May-23	15:58	0.00374	0.0303	0.0111	0.00701	0.00735	0.00503

0003322983

Page 1 of 2

Project : Berry Project

LR Report : CA10193-APR23

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis	Analysis	B QPOR Wk#18	B SED Wk#18	B MD Wk#18	B QTP Wk#18	B LGO Wk#18	B HGO Wk#18
	Completed DateCon	ipietea Time	VVK#18					
Sn [mg/L]	03-May-23	15:58	< 0.00006	0.00010	< 0.00006	< 0.00006	0.00007	< 0.00006
Ti [mg/L]	03-May-23	15:58	< 0.00005	< 0.00005	0.00042	0.00026	0.00008	< 0.00005
TI [mg/L]	03-May-23	15:58	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	03-May-23	15:58	0.000424	0.000518	0.000143	0.000189	0.000578	0.00147
V [mg/L]	03-May-23	15:58	0.00011	0.00032	0.00834	0.00008	0.00010	0.00008
W [mg/L]	03-May-23	15:58	0.00003	0.00010	0.00006	0.00004	0.00005	< 0.00002
Y [mg/L]	03-May-23	15:58	< 0.00002	< 0.00002	0.00002	< 0.00002	< 0.00002	< 0.00002
Zn [mg/L]	03-May-23	15:58	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003322983

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1

Project : Berry Project

03-May-2023

Date Rec. :27 April 2023LR Report:CA10192-APR23Reference:Wk#19 - Marathon - Berry
Set 1

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR-PAG Wk#19	6: B SED-High SFE Wk#19	7: B QTP-PAG Wk#19	8: B LGO-PAG B I Wk#19	9: HGO-PAG-Zn Wk#19	10: B OB-ML Wk#19
Sample Date & Time			27-Apr-23	27-Apr-23	27-Apr-23	27-Apr-23	27-Apr-23	27-Apr-23
HumCell Leachate Vol [mL]	29-Apr-23	09:24	554	704	684	643	701	539
pH [No unit]	28-Apr-23	14:23	7.14	7.31	7.03	7.18	7.06	7.08
Conductivity [uS/cm]	28-Apr-23	14:23	27	30	20	54	22	43

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003321030

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 1 NP Depleted Hum Cells Project : Berry Project

08-May-2023

Date Rec. :	02 May 2023
LR Report:	CA10017-MAY23
Reference:	Wk#11 - Marathon - Berry Set 1 NP Depleted Hum Cells

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date	•	5: B QPOR-PAG-CC O3DP Wk#11			8: B IGO-PAG-Zn- CO3DP Wk#11
Sample Date & Time			02-May-23	02-May-23	02-May-23	02-May-23
HumCell Leachate Vol [mL]	03-May-23	09:26	656	650	584	643
pH [No unit]	03-May-23	12:24	4.62	4.91	4.13	4.96
Conductivity [uS/cm]	04-May-23	12:44	28	23	79	11

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

10-May-2023

Date Rec. : 04 May 2023 LR Report: CA10042-MAY23 Reference: Wk#19 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed DateCom	4: Analysis pleted Time	5: B QPOR E Wk#19	6: 3 SED Wk#19	7: B MD Wk#19	8: B QTP Wk#19 E	9: 3 LGO Wk#19 B	10: HGO Wk#19
Sample Date & Time			04-May-23	04-May-23	04-May-23	04-May-23	04-May-23	04-May-23
HumCell Leachate Vol [mL]	04-May-23	18:10	981	945	964	923	954	973
pH [No unit]	10-May-23	11:22	7.36	7.45	7.49	7.29	7.03	7.28
Conductivity [uS/cm]	09-May-23	10:56	18	19	22	15	16	21

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003328010

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax:

Marathon - Berry Set 1

Project : Berry Project

16-May-2023

Date Rec.: 04 May 2023 LR Report: CA10041-MAY23 Reference: Wk#20 - Marathon - Berry Set 1

Copy: #1

CERTIFICATE OF ANALYSIS **Final Report**

Analysis	3:	4:	5:	6:	7:	8:	9:	10:
	Analysis Completed DateComp	Analysis leted Time	B QPOR-PAG	B SED-High SFE Wk#20	B QTP-PAG Wk#20	B LGO-PAG B Wk#20	HGO-PAG-Zn Wk#20	B OB-ML Wk#20
Sample Date & Time			04-May-23	04-May-23	04-May-23	04-May-23	04-May-23	04-May-23
HumCell Leachate Vol [mL]	04-May-23	18:09	614	702	686	656	713	536
pH [No unit]	09-May-23	10:55	7.22	7.66	7.11	7.51	7.12	6.83
Acidity [mg/L as CaCO3]	09-May-23	10:55	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity [mg/L as CaCO3]	09-May-23	10:55	8	10	7	10	7	6
Conductivity [uS/cm]	09-May-23	10:55	24	26	22	39	18	39
SO4 [mg/L]	10-May-23	06:59	2.6	0.9	2.8	9.4	1.4	7.7
F [mg/L]	05-May-23	10:49	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Hg [mg/L]	09-May-23	09:56	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ag [mg/L]	11-May-23	13:54	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005
AI [mg/L]	11-May-23	13:54	0.007	0.039	0.015	0.023	0.020	0.081
As [mg/L]	11-May-23	13:54	< 0.0002	0.0012	0.0023	0.0005	0.0005	0.0023
Ba [mg/L]	11-May-23	13:54	0.00014	0.00121	0.00044	0.00025	0.00018	0.00370
Be [mg/L]	11-May-23	13:54	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007	< 0.000007
B [mg/L]	11-May-23	13:54	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Bi [mg/L]	11-May-23	13:54	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001	< 0.00001
Ca [mg/L]	11-May-23	13:54	3.83	4.37	4.06	6.79	3.10	6.61
Cd [mg/L]	11-May-23	13:54	0.000006	0.000004	0.000003	< 0.000003	< 0.000003	0.000006
Co [mg/L]	11-May-23	13:54	0.000004	0.000039	0.000039	0.000009	0.000007	0.000141
Cr [mg/L]	11-May-23	13:54	< 0.00008	0.00018	0.00010	0.00012	0.00011	0.00030
Cu [mg/L]	11-May-23	13:54	< 0.0002	< 0.0002	< 0.0002	0.0003	< 0.0002	0.0024
Fe [mg/L]	11-May-23	13:54	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.100
K [mg/L]	11-May-23	13:54	0.095	0.679	0.151	0.092	0.089	0.328
Li [mg/L]	11-May-23	13:54	< 0.0001	0.0003	0.0003	0.0002	0.0002	0.0003
Mg [mg/L]	11-May-23	13:54	0.122	0.364	0.130	0.168	0.089	0.328
Mn [mg/L]	11-May-23	13:54	0.00781	0.0229	0.0233	0.0322	0.0257	0.00776
Mo [mg/L]	11-May-23	13:54	0.00099	0.00622	0.00180	0.00082	0.00096	0.00296
Na [mg/L]	11-May-23	13:54	0.18	0.16	0.14	0.13	0.12	0.16
Ni [mg/L]	11-May-23	13:54	0.0002	0.0002	0.0002	0.0002	< 0.0001	0.0005
Pb [mg/L]	11-May-23	13:54	< 0.00009	< 0.00009	< 0.00009	< 0.00009	< 0.00009	0.00016
Sb [mg/L]	11-May-23	13:54	< 0.0009	< 0.0009	< 0.0009	< 0.0009	< 0.0009	0.0011
Se [mg/L]	11-May-23	13:54	0.00009	< 0.00004	< 0.00004	< 0.00004	< 0.00004	0.00017
Sr [mg/L]	11-May-23	13:54	0.00250	0.0288	0.00700	0.00623	0.00612	0.0122

0003334758

Page 1 of 2

Marathon - Berry Set 1

Project : Berry Project LR Report : CA10041-MAY23

Analysis	3: Analysis Completed DateCom	4: Analysis	5: B QPOR-PAG	6: B SED-High SFE Wk#20	7: B QTP-PAG Wk#20	8: B LGO-PAG B Wk#20	9: HGO-PAG-Zn Wk#20	10: B OB-ML Wk#20
	Completed DateCom	pieted Time		SFE WK#20	VVK#20	VVK#20	VVK#20	VVK#20
Sn [mg/L]	11-May-23	13:54	< 0.00006	0.00011	0.00024	< 0.00006	0.00011	0.00039
Ti [mg/L]	11-May-23	13:54	< 0.00005	0.00017	< 0.00005	< 0.00005	< 0.00005	0.00482
TI [mg/L]	11-May-23	13:54	< 0.000005	< 0.000005	0.000016	< 0.000005	< 0.000005	< 0.000005
U [mg/L]	11-May-23	13:54	0.000037	0.00261	0.00365	0.000859	0.000174	0.000939
V [mg/L]	11-May-23	13:54	0.00004	0.00040	0.00007	0.00007	0.00008	0.00157
W [mg/L]	11-May-23	13:54	0.00011	0.00010	0.00010	0.00008	0.00013	0.00010
Y [mg/L]	11-May-23	13:54	< 0.00002	0.00002	< 0.00002	< 0.00002	< 0.00002	0.00012
Zn [mg/L]	11-May-23	13:54	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003334758

Marathon Gold Corp

Attn : James Powell

P.O. Box 4006, Pearlgate PO Mt. Pearl, NL A1N 0A1, Canada

Phone: 709-730-5046 Fax: Marathon - Berry Set 2

Project : Berry Project

17-May-2023

Date Rec. : 06 April 2023 LR Report: CA10042-APR23 Reference: Wk#15 - Marathon - Berry Set 2

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	3: Analysis Completed Date Com	4: Analysis pleted Time	5: B QPOR Wk#15	6: B SEDB Wk#15	7: MD Wk#15	8: B QTP Wk#15	9: B LGO Wk#15	10: B HGO Wk#15
Sample Date & Time			6-Apr-23	6-Apr-23	6-Apr-23	6-Apr-23	6-Apr-23	6-Apr-23
HumCell Leachate Vol [mL]	10-Apr-23	10:10	944	987	961	953	945	940
pH [No unit]	12-Apr-23	10:09	7.00	7.33	7.38	7.25	7.10	7.15
Conductivity [uS/cm]	12-Apr-23	10:09	17	21	25	17	15	19

Lisa Thompson Project Specialist Assistant, Environment, Health & Safety

0003336148