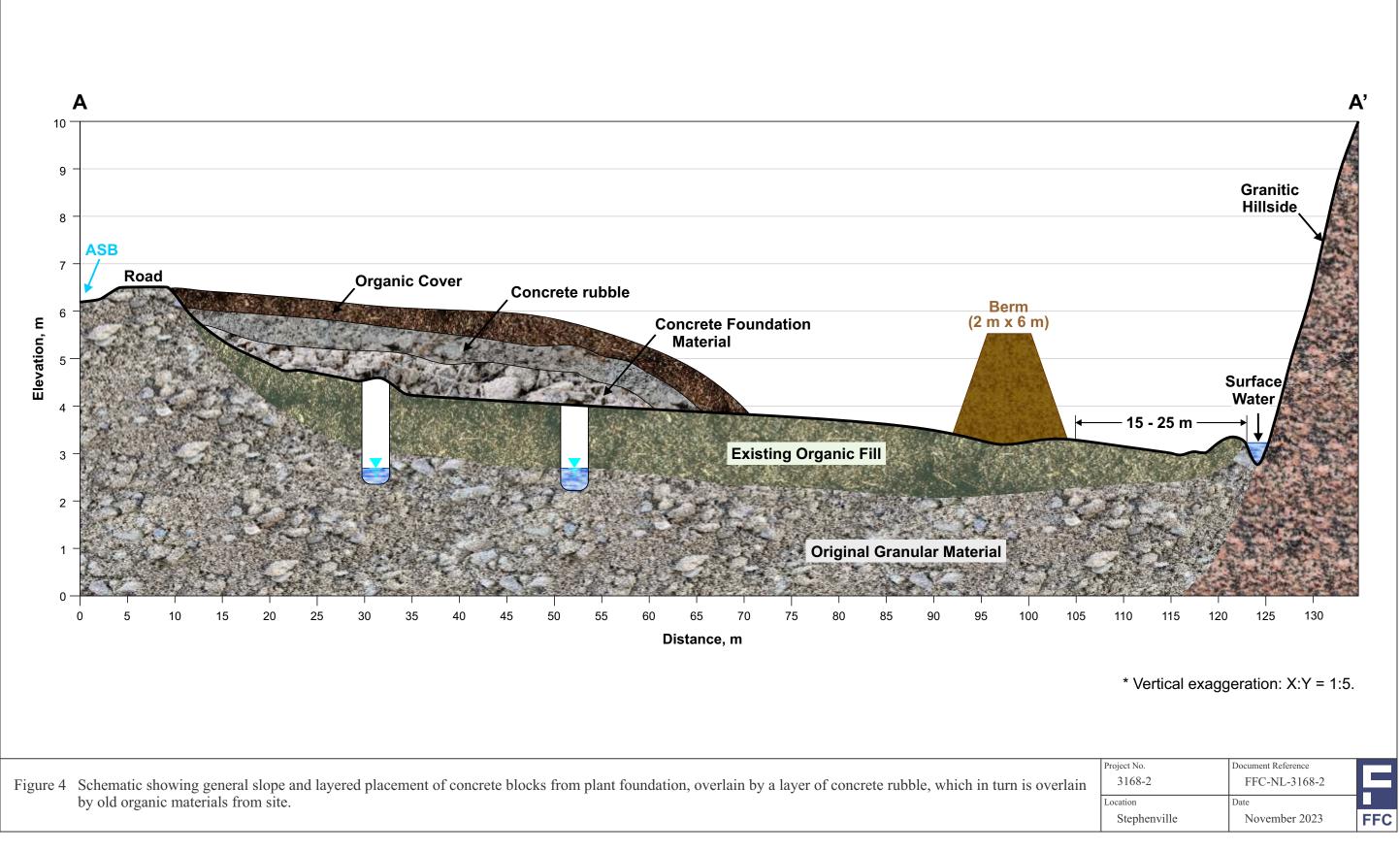

Appendix PPD7-A Construction Debris Storage Site Figures



Appendix PPD9-A Preliminary Wastewater Effluent Composition

World Energy Green Hydrogen Preliminary Waste Water Effluent Composition

By: MDP. Chk:	AB,	Appr:	JF
---------------	-----	-------	----

	Units		ter Supply	High TDS Water 1st pass RO Reject Water (SOURCED FROM Stantec final report)	High TSS Water Combined Utilties/Effluent Sump (SOURCED FROM Stantec final report)	Total WWT Feed stream (by mass proportioning)	Estimated removal efficiency across WWT (assumed per discussions with Stantec, typical removals for selected technologies/target parameters)	Preliminary (and estimated) Effluent composition	Effluent Limit (NLR 65/03 Schedule A)	Comments
Flowrate	m ³ /hr	Min.	Max.	35	240	275	-	275		
рН	-	7.32	6.15	7.3	6.5 - 9.0	-	-	6.5-8	5.5 - 9.9	Chemistry to be finalized during FEED, likely in a neutral pH range
Reactive Silica as SiO2	mg CaCO3/L	2.95	0.9	21.3	1.35	3.9	Not targeted for removal	3.9		- See Note 2. - Largely from the source surface water feeding the high purity RO plant
Chloride	mg/L	24	7	237.2	12	40.7	Not targeted for removal	40.7		- See Note 2. - Largely from the source surface water feeding the high purity RO plant
Fluoride	mg/L	<0.12	<0.12	0.8	0.06	0.2	Not targeted for removal	0.2		- See Note 2. - Largely from the source surface water feeding the high purity RO plant
Sulphate	mg/L	5	<2	33.3	2.5	6.4	Not targeted for removal	6.4		- See Note 2. - Largely from the source surface water feeding the high purity RO plant
Turbidity	NTU	5	<0.5	0.0	15.8	13.8	95	0.7		Standard removal efficiency for clarification process
Electrical Conductivity	umho/cm	147	86	1393	465	583	Not targeted for removal	583		The is another method of indicating total dissolved solids.
Nitrate + Nitrite as N	mg/L	0.24	<0.05	0.8	0.065	0.16	Not targeted for removal	0.2	10	- See Note 2. - Exists in equilibrium and is highly reactve and dependent on other streams combining with it. Source surface water is higher than effluent.
Nitrate as N	mg/L	0.24	<0.05	0.8	0.065	0.16	Not targeted for removal	0.2	10	 See Note 2. Exists in equilibrium and is highly reactive and dependent on other streams combining with it. Source surface water is higher than effluent.
Ammonia as N	mg/L	0.24	< 0.02	1.6	0.12	0.31	Not targeted for removal here (reduced upstream at NH3 plant)	0.3	2	 See Note 2. Exists in equilibrium and is highly reactive and dependent on other streams combining with it; We can treat with polishing if needed. There is an upstream ammonia management system for a single source point from the ammonia plant that reduces ammonia significantly before this step.
Total Organic Carbon	mg/L	9.7	3.9	17.6	3.65	5.4	>40	<3.3		 See Note 2. Removed because we are adding coagulation and flocculation ahead of WWT; needs piloting/modelling to confirm
Ortho-Phosphate as P	mg/L	0.05	< 0.01	0.3	0.025	0.1	Not targeted for removal	0.1		- See Note 2 - This would be residual from boiler/utilities blow down water
Total Sodium	mg/L	17	0.5	112.5	53.8	61.3	Not targeted for removal	61.3		Current source is likely surface water feeding the high purity RO plant but it could be increased with chemistry for the WWT system i.e. if caustic is needed for pH or coagulation enhancement
Total Potassium	mg/L	15	0.1	3.3	1.6	1.8	Not targeted for removal	1.8		Largely from the source surface water feeding the high purity RO plant
Total Calcium	mg/L	18.1	4.5	119.9	57.3	65.3	Not targeted for removal	65.3		Largely from the source surface water feeding the high purity RO plant
Total Magnesium	mg/L	3.2	1.8	21.3	10.1	11.5	Not targeted for removal	11.5		Largely from the source surface water feeding the high purity RO plant
TSS-Total Suspended Solids	mg/L	10	0	0	55.2	48.2	95	2.4	30	Standard removal efficiency for clarification process

PRELIMINARY EFFLUENT

WATER COMPOSITION

Notes:

1) Metals concentrations do not include corrosion byproduct contributions at this time but the WWT system is designed to handle this during operation. 2) No reported value; used Non-Detection Limit divided by 2

World Energy Green Hydrogen Preliminary Waste Water Effluent Composition

	Units	Raw Wat	ter Supply	High TDS Water 1st pass RO Reject Water (SOURCED FROM Stantec final report)	High TSS Water Combined Utilities/Effluent Sump (SOURCED FROM Stantec final report)	Total WWT Feed stream (by mass proportioning)	Estimated removal efficiency across WWT (assumed per discussions with Stantec, typical removals for selected technologies/target parameters)	Preliminary (and estimated) Effluent composition	Effluent Limit (NLR 65/03 Schedule A)	Comments
		Min.	Max.							
TDS-Total Dissolved Solids	mg/L	104	44	921	329.2	404.5	Not targeted for removal	404.5	1000	Concentration swings will be reduced through equalization tank ahead of clarifier
Total Aluminum	ug/L	183	34	1020.8	579.3	635.5	Not targeted for removal	635.5		Aluminum can be contributed by source surface water and by additives such as coagulant at low dosages - no differentiation between total and dissolved in this analysis
Total Antimony	ug/L	3	<2	16.7	9.5	10.4	Not targeted for removal	10.4		No differentiation between total and dissolved
Total Arsenic	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9	500	No differentiation between total and dissolved
Total Barium	ug/L	27	6	150.6	85.5	93.8	Not targeted for removal	93.8	5000	No differentiation between total and dissolved
Total Beryillium	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9		No differentiation between total and dissolved
Total Bismuth	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9		No differentiation between total and dissolved
Total Boron	ug/L	10	5	13.7	19	18.3	Not targeted for removal	18.3	5000	No differentiation between total and dissolved
Total Cadmium	ug/L	< 0.09	<0.017	0.1	0.1	0.1	Not targeted for removal	0.1	50	No differentiation between total and dissolved
Total Chromium	ug/L	<2	<1	5.6	3.2	3.5	Not targeted for removal	3.5	1000	No differentiation between total and dissolved
Total Cobalt	ug/L	<1	<1	5.6	3.2	3.5	Not targeted for removal	3.5		No differentiation between total and dissolved
Total Copper	ug/L	2	<1	11.2	6.3	6.9	Not targeted for removal	6.9	300	No differentiation between total and dissolved
Total Iron	ug/L	391	54	520	2063.1	1866.7	>40	<1120	10000	No differentiation between total and dissolved
Total Lead	ug/L	3.1	<0.5	17.3	9.8	10.8	Not targeted for removal	10.8	200	No differentiation between total and dissolved
Total Manganese	ug/L	176	4	981.7	557.1	611.1	Not targeted for removal	611.1		No differentiation between total and dissolved
Total Molybdenum	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9		No differentiation between total and dissolved
Total Nickel	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9	500	No differentiation between total and dissolved
Total Phosphorous	ug/L	0.5	0.02	0.2	0.1	0.1	Not targeted for removal	0.1	0.5	No differentiation between total and dissolved
Total Selenium	ug/L	<1	<1	5.6	3.2	3.5	Not targeted for removal	3.5	10	No differentiation between total and dissolved
Total Silver	ug/L	<0.1	<0.1	0.6	0.3	0.3	Not targeted for removal	0.3	50	No differentiation between total and dissolved
Total Strontium	ug/L	40	18	265	126.6	144.2	Not targeted for removal	144.2		No differentiation between total and dissolved
Total Thallium	ug/L	<0.1	<0.1	0.6	0.3	0.3	Not targeted for removal	0.3		No differentiation between total and dissolved
Total Tin	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9		No differentiation between total and dissolved
Total Titanium	ug/L	3	<2	11.2	6.3	6.9	Not targeted for removal	6.9		No differentiation between total and dissolved
Total Uranium	ug/L	<0.2	<0.2	1.1	0.6	0.7	Not targeted for removal	0.7		No differentiation between total and dissolved
Total Vanadium	ug/L	<2	<2	11.2	6.3	6.9	Not targeted for removal	6.9		No differentiation between total and dissolved
Total Zinc	ug/L	7	<5	28	7.7	10.3	Not targeted for removal	10.3	500	No differentiation between total and dissolved
Total Mercury	ug/L	< 0.026	<0.026	0.1	0.1	0.1	Not targeted for removal	0.1	5	No differentiation between total and dissolved

PRELIMINARY EFFLUENT WATER COMPOSITION

Appendix PPD11-A Detailed Emission Inventory

Blasting Emissions - Construction

Source Description

Blasting using ANFO explosives. Blasting in quarries will occur to generate the required rock/aggregate used during construction, but also blasting will occur for cuts required for construction of the windfarm and road design. Emissions source from the explosive detonation and from the dust generated by blasting. Blasting during construction will occur once per week.

Methodology

Air contaminant releases from blasting during construction are estimated based on information provided by Dexter (construction contractor) and published emission factors (from the US EPA AP-42 Chapter 13.3 Explosives Detonation and ECCC NPRI guidance document Pits and Quarries Reporting Guide)

The depth of the quarries was assumed negligible during construction and therefore no put retention factors were assumed. This is conservative.

Ammonium Nitrate Emulsion assumed, therefore, AP-42 emission factors for ammonium nitrate with fuel oil (ANFO) are used.

Emission Factors

Contaminant	EF	Units	Source
NOx	8	kg/Mg	US EPA AP-42 Ch 13.3
CO	34	kg/Mg	US EPA AP-42 Ch 13.3
SO2	1	kg/Mg	US EPA AP-42 Ch 13.3
PM	578.34	kg/Blast	Calculated based on blast area and equation from ECCC NPRI Pits and Quarries Guide
PM10	0.52	scale factor (fraction of total PM)	US EPA AP-42 Ch 13.3
PM2.5	0.3	scale factor (fraction of total PM)	US FPA AP-42 Ch 13.3

Assumed and provided blasting Information from Dexter/WE

Item	Quantity	Unit	Source/Assumption
Total Explosives (site-wide, full construction)	10,000	tonnes	Blasting section of Project Description indicated 4,000,000 to 10,000,000 kg of explosives (full site).
Total Annual Explosives (site-wide)	4,000	tonnes	Calculated based on 30 months of construction, assumed evenly split during construction period
Construction Duration	30	months	Table 2.3 of the PD
Rock required	8,000,000	m3	Blasting section of Project Description indicated 4,000,000 to 8,000,000 m3 of rock excavation required (full site)
Blast depth	3.5	m	Blasting section of Project Description indicated road rock cut depth of 3.5 m and quarry rock cut depth of 8 m. Using 3.5 m as it is conservative when estimating the blast area.
Blast area (site-wide, full construction)	2,285,714	m2	Calculated Area = volume / depth
Blast area per blast	19,048	m2	Based on~ 1 blast per week (communication with Dexter) over the 30 month construction period

Release Estimates

Air Contaminant	CAS#	Total Annual Emissions	Total Construction Phase Emissions		
		(t/a)	(t/construction)		
NOX	10102-44-0	32.0	80		
co	630-08-0	136.0	340		
SO2	7446-09-5	4.0	10		
TSP	N/A-1	30.1	69.4		
PM10	N/A-2	15.6	36.1		
PM2.5	N/A-3	9.0	20.8		

Sample Calculations Explosive Detonation

Annual CO Emissions =	Emission Factor [kg/Mg] x Expl	losive Used [kg/blast] x Nu	mber of Blasts [#/yea	ar] x conversion					
Annual CO Emissions =	34	kg CO		x	4,000	MG ANFO	x	1	tonne CO
		Mg ANFO				year		1000	kg CO
Annual CO Emissions =	136.0	tonne							
Annual Co Emissions =	150.0	year							
Blasting of Ore									
TPM Emission Factor [kg/blast] =	0.00022	x	A^1.5						
Where A = horizontal area (m ²) when	blasting depth <21 m.								
TPM Emission Factor	0.00022	x			(19,048	m² blast)	^1.5	-
TPM Emission Factor =	578.34	kg				Diast			
		blast							
TPM Emissions	EF	x	Blasts		x	Conversion		_	
			hour						
TPM Emissions =	578.34	kg		x	52	blast	x	1	tonne
		blast				year		1000	kg
TPM Emissions	30.1	tonne							
		year							

Storage Piles - Fugitive Dust - Wind Erosion Emissions Estimates - Construction

Source Description Construction materials are stockpiled outside around the construction activities. Emissions result from wind erosion of stockpile surfaces.

Methodology

Air contaminant releases due to wind erosion of storage piles are estimated based on information provided by Dexter (construction company) and published emission factors from the ECCC NPRI Pits and Quarries Reporting Guide. CALMET predicted meteorological data for the Project site (wind speeds and precipitation) are used along with data from the ECCC operated Stephenville Station (days with snow cover) to estimate releases.

Emission Factors & Emission Factors Calculations

Contaminant	Emission Factor (kg/m2yr)
TSP	2.36E-02
PM10	1.18E-02
PM2.5	4.72E-03

Calculation Method - ECCC NPRI Pits and Quarries Reporting Guide (Section 8.9 Emissions Due to Wind Erosion of Stockpile Surfaces)

EF = 1.12 * 10⁻⁴ * J * 1.7 * (s/1.5) * 365 * ((365-P)/235) * (I/15)

FF: Emission factor in (kg/m²) J: Particulate aerodynamic factor

EF Calc. Input	Value	Source
Silt Content	0.5%	Silt content from Mojave Desert Air Quality Management District, 2000 for "limestone"
Days with precip and/or snow cover	255	Min Annual CALMET predicted precipitation data for grid cell containing the project site and snow cove data from ECCC climate normals for Stephenville station (2020 -2022)
Percentage of time with winds >19.3 km/h	32.56	CALMET predicted winds for grid cell containing the project site (surface level - 10 m)
Particle aerodynamic factors for TPM, PM10 ar	d PM2.5	· · · · · · · · · · · · · · · · · · ·
J(TPM) =	1	
I(PM10) =	0.5	

J(PM10) = J(PM2.5) = 0.5

Emission Inputs Source/Assumption Email from Chris Barron (Dexter) on May 17, 2023 re. ballgark amount of excess stockpiled material per Heights will be kept low, JOm was assumed. Assumed 20 smaller stockpiles make up the total volume, equally distributed in size* Calculated: total volume stockpiled / number of piles Calculated based on assumed rectangular piles, 100 m width, 30 m depth, 10 m height, slope of 33.7 degrees with w side, slope of 11.3 degrees from d side Item Volume of stockpiled material per site Stockpile height Piles per site Quantity 200,000 Unit m3 m # m3 20 10,000 Piles per site Volume per pile 3,332 m2 Surface area per pile 3,332 m2 Total surface area of all piles (assumed 20 piles at uso stras) 133,280 m2 "While it was assumed that there were 20 smaller stockpiles that made up the total volum use instead, the surface area total wold be "120000. Using more piles is conservative. Surface area total wold be "120000. Using more piles is conservative.

Calculated based on surface area per pile and number of piles (both sites) ne equally, this does not have a large influence on total surface area. For example, had one large pile been

Emission Rates

			Emission Rates (T/a)			
Air Contaminant	CAS#	Each Pile	Total (assumed 20 piles, two sites)			
TSP	N/A-1	0.08	3.15			
PM10	N/A-2	0.04	1.57			
PM2.5	N/A-3	0.02	0.63			

Sample Calculations

TPM Emissions = Emission Factor × Surface Area of Stockpiles × Conversion

Emission Factor TPM = 1.12 * 10-4 * J * 1.7 * (s/1.5) * 365 * ((365-P)/235) * (l/15) *Parameters defined above

0.5 × 365 × (365 - 255) × 33 1.5 235 15 Emission Factor TPM = 1.12 × 0.0001 1.7

Emission Factor TPM = 0.024 kg m² year

133280 m² × 1 tonne 1000 kg TPM Emissions = 0.024 kg m² year ×

TPM Emissions = 3.15 tonne

Transfer Points - Fugitive Dust Emissions Estimates - Construction

Source Description Fugitive dust releases generated from material transfer (at drop points) from loading and unloading of stockpiles.

(1)

Methodology

Emissions from material transfers are estimated based on information provided by World Energy and published emission factors from the US EPA AP-42 Chapter 13.2.4 Aggregate Handling and Storage Piles. CALMET meteorological data for the Project site (wind speeds) are used to estimate the releases.

Emission Factors & Emission Factors Calculations

Contaminant	Emission Factor (kg/Mg
TSP	7.10E-03
PM10	3.36E-03
PM2.5	5.08E-04

From US EPA AP-42 Ch 13.2.4

The quantity of particulate emissions generated by either type of drop operation, per kilogram (kg) (ton) of material transferred, may be estimated, with a rating of A, using the following empirical expression.¹¹

where:

miles per hour [mph]) E = emission factor k = particle size multiplier (dimens U = mean wind speed, meters per s M = material moisture content (%)

EF Calc. Input	Value	Source
Average Wind Speed (m/s)	4.58	CALMET predicted average wind speed at project site (2020-2022), at surface level (Level01 - 10 m)
Crushed Limestone Moisture Content	1.1%	Moisture content from US EPA Table 13.2.4-1, upper range for crushed limestone.

Emission	Inputs

Item	Quantity	Unit	Source/Assumption
Average Bulk Density of Aggregate	1,475		Sourced from: https://civiltoday.com/civil-engineering-materials/aggregate/198-density-of- aggregate#:~:text=The%20approximate%20bulk%20density%20of%20aggregate%20is,%2D1750%20kg%2Fm3.
High Level Estimate of crushed/screened aggregate for both sites	1,500,000	m3	Section 2.5.1 of the PD
Months of Construction	30	months	Table 2.3 of the PD
Usage per Year for crushed/screened aggregate for both sites	600,000	m3/year	Calculated based on number of months of construction
Add rate (to stockpile for crushed/screened aggregate)	885	kt/year	Calculated from density of aggregate and the quantity of aggregate used per year, assuming all aggregate used was added to a stockpile
Remove Rate (to stockpile for crushed/screen aggregate)	885	kt/year	Calculated from density of aggregate and the quantity of aggregate used per year, assuming all aggregate used was removed from a stockpile
Total material transferred	1,770,000	tonnes/year	Calculated from material added + removed

Particle Size Multiplier, k TSP PM10 PM2 5

Emissions Estimates

Air Contaminant	CAS#	Total Annual Releases (T/a)
TSP	N/A-1	12.56
PM10	N/A-2	5.94
DM2 E	N/A 2	0.00

Sample Calculations

TPM Emissions = Emission Factor × Stockpiled Amount × Conversion

Emission Factor TPM = Particle size multiplier * (0.0016) * (Mean wind speed/2)^1.3 (Material Moisture Content/2)^1.4

Emission Factor TPM =	0.74	×	0.0016	×	4.58	^1.3	/	0.01	^1.4	
					2 20			2.00		

Emission Factor TPM = 0.00710 kg TPM Megagram

TPM Emissions = 0.00710 kg TPM Megagram 1,770,000 1 megagram 1 tonne tonne year 1 1000 tonne kg TPM Emissions = 12.56

tonne year

Crushing and Screening Emissions - Construction

Source Description

Releases of particulates are expected from crushing and screening activities. The construction uses mobile crushers, with 2 at each side. It is assumed that this contains a primary crusher and screen. It was noted that there would be dust collection during crushing.

Methodology

Releases are estimated based on operating information provided by the design team (Dexter) and published emission factors from the US EPA (AP-42 Chapter 11.19.2 - Crushed Stone Processing and Pulverized Mineral Processing - US EPA 2004) as well as from the Australian National Pollutant Inventory document "Emission estimation technique manual for Gold Ore Processing", Version 2, PM2.5 emissions are estimated based on emission factors frow moisture ore (<< 4%) in Table 2.3 of the Newada DEP Guidance on Emission factors for the Mining Industry. Moisture content was assumed to be 2,1% based on the mositure content presented in Av4.2 Table 13.2 4.1 for Virainous lumestone Products under stone quarrying and processing. The "controlled" emission factors were used as they apply to materials that have moisture content >1.5% (whether naturally or through wet suppression) and to capture the control from dust collection.

Emission Inputs			
Item	Quanity	Unit	Source/Assumption
Total Crushed Aggregate	1,500,000	m3	Table 2.3 of the PD, over the full duration of construction (30 months)
Average Bulk Density of Aggegragate (kg/m3)	1,475	kg/m3	Sourced from: https://civiltoday.com/civil-engineering- materials/aggregate/198-density-of- aggregate#:~:text=The%20approximate%20bulk%20density%20of%20 aggregate%20is%201750%20kg%2Fm3.
Total Crushed Aggregate	2,212,500	tonnes	Calculated from volume using density
Months of Construction	30	months	Table 2.3 of the PD
Total Annual Aggregate	885,000	tonnes/year	Calculated based on number of months of construction

Emission Factors Source

Source	Air Contaminant	EF (kg/Mg)	Source
	TSP	0.01	AUS NPI 2006
Primary Crusher	PM10	0.004	AUS NPI 2006
	PM2.5	0.00061	Nevada DEP 2017
Grizzly Screen	TSP	0.0125	US EPA AP-42 Ch 11.19.2
	PM10	0.0043	US EPA AP-42 Ch 11.19.2
	PM2.5	0.00065	Nevada DEP 2017

Release Estimates

			Total - Both Sites			
Air Contaminant	CAS#	Annual Emission Rate (tonne/year)				
		Primary Crushing	Sceening	Total		
TSP	N/A-1	8.85	11.06	19.91		
PM10	N/A-2	3.54	3.81	7.35		
PM2.5	N/A-3	0.54	0.58	1.11		

Sample Calculation <u>Full Site</u> Annual Primary Crushing TPM

Annual Primary Crushing TPM Emissions (tonne/yea) = 885000 0.01 tonnes year kg tonne × 1 1000 tonne kg ×

Annual Primary Crushing TPM Emissions (tonne/year) = 8.85

tonnes year

Fugitive Emissions of Particulate Matter from Laydown Areas - Construction

Emissions result from wind erosion of the laydown area where the wind turbine components are stored.

Source Description Methodology

The equation for estimating the Fugitive PM emissions was the same as that used for fugitive emissions from storage piles and is sourced from Mojave Desert Air Quality Management District (MDAQMD), Mineral Handling and Processing Industries, Table 2, 2000, as presented in the ECCC NPRI "Pits and quarries reporting guide." The laydown areas are based on the required areas to be cleared for construction of each turbine site. Emission Factors & Emission Factors Calculations

Contaminant	Emission Factor [kg/m ²]
TSP	2.36E-02
PM10	1.18E-02
PM2.5	4.72E-03

Calculation Method - ECCC NPRI Pits and Quarries Reporting Guide (Section 8.9 Emissions Due to Wind Erosion of Stockpile Surfaces)

EF = 1.12 * 10 ⁴ * J * 1.7 * (s/1.5) * 365 * ((365-P)/235) * (l/15)	Th	e particle	aerodynamic fa	ctor for TPM, PM10 and PM2.5 are:
Where,	πL	PM) =	1	
EF: Emission factor in (kg/m ²)	J(PM	110) =	0.5	
J: Particulate aerodynamic factor	J(PM:	2.5) =	0.2	
s: Average silt loading of storage pile in percent (%)				
P: Average number of days during the year with at least 0.254 mm of precipitation				

I: Percentage of time in the year with unobstructed wind speed >19.3 km/h in percent (%)

EF Calc. Input	Value	Source
Silt Content	0.5%	Silt content from Mojave Desert Air Quality Management District, 2000 for "limestone"
Days with precip and/or snow cover	255	Min Annual CALMET predicted precipitation data for grid cell containing the project site and snow cover data from ECCC climate normals for Stephenville station (2020-2022)
Percentage of time with winds >19.3 km/h	32.56	CALMET predicted winds for grid cell containing the project site (surface level - 10

Calculation inputs 1 It is assumed that the silt content from the laydown area is negligible as the areas highlighted are all paved at the airport with the exception of the laydown area at construction site.							
Item Quanity Unit Source/Assumption							
Annual Number of Wind Turbines Constructed	131.2	#	Calculated based on months of construction (30 months) and total number of turbines over the construction period (328). Assumed evenly distributed per month.				
Laydown surface area per wind turbine	10,000	m2	1 turbine laydown area is 1 ha (1 ha = 10000m2), as described in section 2.5.3 of the PD				
Surface area of laydown areas (per year)	1,312,000	m2	Calculated from annual number of turbines constructed and temporary laydown area per wind turbine site				


Total Emissions Summary

Substance	NPRI CAS-No	Emission Rate [tonnes/year]
Total Particulate Matter	N/A-1	30.97
Particulate matter less than or equal to 10 micrometers (µm) (PM10)	N/A-2	15.49
Particulate matter less than or equal to 2.5 µm (PM2.5)	N/A-3	6.19

Sample Calculations

TPM Emissions = Emission Factor × Surface Area of Stockpiles × Conversion

Emission Factor TPM = 1.12 * 10-4 * J * 1.7 * (s/1.5) * 365 * ((365-P)/235) * (l/15) *Parameters defined above

Particulate Emissions from Unpaved Roads - Construction

Source Description

Access roads to wind turbines are unpaved. It was indicated that dust suppression would be used, as required. It was assumed that dust suppressant was applied once per month during summer months. The period of construction occurs over 30 months.

Unit conversion 1 mile =

Methodology

Emissions calculated using method from US EPA, AP-42, Chapter 13.2.2, Equation 13.2.2(1a), the road distances, the number of vehicles on the roads, and the vehicle weights.

Item	Value	Source
		Min Annual CALMET predicted precipitation data for grid cell containing the project
Number of days with >0.2 mm rain plus number of days	255	site and snow cover data from ECCC climate normals for Stephenville station (2020 -
with snow >0.2 mm (snow cover) ¹		2022)
Silt Content (%) ²	8.5%	Silt content obtained from US EPA AP-42 Chapter 13 Table 13.2.2-1, for "Construction

Compound	k [kg/VKT]	а	b
Total Particulate Matter ¹	1.381	0.7	0.45
Particulate matter less than or equal to 10 micrometers (µm) (PM10)	0.423	0.9	0.45
Particulate matter less than or equal to 2.5 µm (PM2.5)	0.042	0.9	0.45

¹Parameters for PM-30 assumed to be equal to TPM as stated in US EPA, AP-42, Chapter 13, Table 13.2.2-2

Sample Calculation

EF = k x (s/12)^a x (W/2.72)^b]

EF =	Emission Factor (kg/VKT)
VKT/yr =	km/yr (total unpaved road travelled)
s =	% (surface material silt content)
W =	metric tonnes (mean vehicle weight)

EF TPM (Mainland Access Road) = [1.381 kg VMT 8.5% 12 0.7 61.70 tons)^ 0.45 1

1.609 km 1 lb = 0.453592 kg

EF TPM = 0.1684 kg VKT

Annual TPM Emissions = EF x VKT x (1- Control Efficiency) x (Natural Adjustment) x Conversion

Natural Adjustment = ______ (Operational Days - Days with snow cover or rain >0.2 mm of rain) Operational Days × 100

Natural Adjustment = <u>(365 - 254.6666667) x</u> 365 100

Natural Adjustment = _____30%

Annual TPM Emissions (Mainland Access Road) = 0.1684 kg x 537.6 km x VKT vear x 0.30 x 1 1000 tonne kg (1-0.84)

Annual TPM Emissions (Mainland Access Road) = 0.0044 tonnes

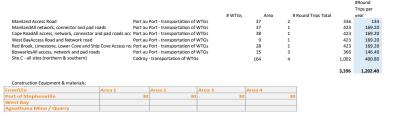
Annual Emissions Summary

Compound	NPRI CAS	Annual Emissions [tonne/year]
Fotal Particulate Matter ¹	N/A-1	0.067
Particulate matter less than or equal to 10 micrometers (μm) (PM10)	N/A-2	0.002
Particulate matter less than or equal to 2.5 µm (PM2.5)	N/A-3	0.000
PM-30 assumed to be equal to TPM as stated in US EPA, AP	-42, Chapter 1	3, Table 13.2.2-2

Emissions Calculations

orld Energy														
Road Segment - Origin	Road Segment - Destination	Segment Length [m]	Road Segment ³	# Vehicles per year"	Mean vehicle weight [tonnes/ vehicle1 ⁵	VKT/yr	TPM Emission Factor [kg/VKT]	PM10 Emission Factor [kg/VKT]	PM2.5 Emission Factor [kg/VKT]	Natural Adjustment [%]	Control Adjustment [%] ²	TPM Emission ¹ [tonne/year]	PM10 Emission [tonne/year]	PM2.5 Emission [tonne/year]
Mainland Access Road	Port au Port - transportation of WTGs	2,000	37	269	62	537.6	0.1684	0.0054	0.0005	30%	16%	4.38E-03	1.40E-04	1.40E-05
Mainland All network, connector and pad roads	Port au Port - transportation of WTGs	3,000	37	338	62	1015.2	0.1684	0.0054	0.0005	30%	16%	8.27E-03	2.65E-04	2.65E-05
Cape Road All access, network, connector and pad roads accessed from main hiehwav	Port au Port - transportation of WTGs	3,000	38	338	62	1015.2	0.1684	0.0054	0.0005	30%	16%	8.27E-03	2.65E-04	2.65E-05
West Bay Access Road and Network road	Port au Port - transportation of WTGs	2,000	9	338	62	676.8	0.1684	0.0054	0.0005	30%	16%	5.51E-03	1.77E-04	1.77E-05
Red Brook, Limestone, Lower Cove and Ship Cove Access roads and network roads	Port au Port - transportation of WTGs	3,000	28	338	62	1015.2	0.1684	0.0054	0.0005	30%	16%	8.27E-03	2.65E-04	2.65E-05
Boswarlos All access, network and pad roads	Port au Port - transportation of WTGs	2,000	15	293	62	585.6	0.1684	0.0054	0.0005	30%	16%	4.77E-03	1.53E-04	1.53E-05
Site C - northern most sites All network. connector and pad roads	Codroy - transportation of WTGs	4,000	164	802	62	3,206	0.1684	0.0054	0.0005	30%	16%	2.61E-02	8.38E-04	8.38E-05
Construction equipment and materials ⁶	All	2,000	-	120	15.00	240	0.0891	0.0029	0.0003	30%	16%	1.03E-03	3.32E-05	3.32E-06
TOTAL												0.067	0.002	2.14E-04

120 total construction deliveries


¹PM-30 assumed to be equal to TPM as stated in US EPA, AP-42, Chapter 13, Table 13.2.2-2 ²Controlled factor of 84% for dust suppressant WRAP (2004) Fugitive Dust Control Measures Applicable for the Western Regional Air Partnerships.

Controlled lactor of devision of lactors spectrasmin where (2004) registree backs, Control measure application to the western ineglobal in articleristics. "Assumption: The number of Well Andree Generencing (VTG) accessed period assessment and PUG will arwel 2 km. The total length of the access road for this site is 4 km. Assuming the following road options are not used the inetheristic of the road sheem was associated by the design that arms and there are other resisted and there are other constrained and there are other constrained

⁶Assumed all construction equipment and materials travel 2 km on unpaved roads

DATA:

Delivery of oversize wind turbine components per day:							
			Daily Delivery Round Trips	Days of Turbine Delivery	# Round Trips # Round Trips per year		Total Port au Port
Area 1	121	1,694	6	282	1,692	677	2,394
Area 2	24	336	6	56	336	134.40	
Area 3	26	364	6	61	366	146.40	
Area 4	143	2,002	6	334	2,004 8	801.60	
Total	314	4,396	24	733	4,398	1,759	

Mobile Equipment Releases - Construction

Source Description Emissions from the combustion of diesel fuel used in heavy equipment during the construction phase.

Air contaminant releases from combustion of fuel in large mobile equipment are estimated based on models and operational information provided by Dexter and published emission factors (from the US EPA AP-42 Chapter 3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines - for engines >600 hp and Chapter 3.3 Gasoline and Diesel Industrial Engines). Methodology

Emissions Summary

Species	CAS-No	Annual Emissions [tonne/year]
NOX	10102-44-0	35.60
SO2	7446-09-5	41.34
CO	630-08-0	310.46
TSP	N/A-1	1.19
PM10	N/A-2	1.19
PM2.5	N/A-3	1.19

Emission Inputs Construction Fleet

Construction Fleet	Model/Description	No. Units	Rated Engine Power (output) hp	Rated Engine Power (output) MMBTU/hr	Operating Hours/yr	Assumed Operating Hours/day	Model Specs Source
	C390	1	524	1.33	3000	12	390F L (2017) Peterson Cat
	C349	8	424	1.08	3000	12	349 Hydraulic Excavator Cat Caterpillar
Excavators	C336	2	300	0.76	3000	12	336 Hydraulic Excavator Cat Caterpillar
	C324	3	188	0.48	3000	12	Caterpillar 324D L Excavator Specs, Dimensions, Comparisons : CEG (constructionequipmentgui
	C305	2	49.2	0.13	3000	12	Caterpillar 305 Excavator Specs – www.MiniExcavatorThumbs.com
	HM400	14	473	1.20	3000	12	HM400-5 articulated truck Komatsu
Haul Trucks	Live Bottom	5	550	1.40	3000	12	Assumed to be: https://slingers.com/product/2015-fatboy-slinger-truck/
Hadi Hadis	Tandem	5	455	1.16	3000	12	Assumed to be: https://www.customtruck.com/rental/vocational-trucks/dump-trucks/tandem axle-19-cu-yd-rear-dump-truck/751-0300
	D8	2	354	0.90	3000	12	D8 Dozers Bulldozers Crawler Dozers Cat Caterpillar
Dozers	D6	3	215	0.55	3000	12	D6 Dozers Bulldozers Crawler Dozers Cat Caterpillar
	D4	1	130	0.33	3000	12	D4 Dozers Bulldozers Crawler Dozers Cat Caterpillar
Roller	CS56	5	157	0.40	3000	12	CS56B Vibratory Soil Compactor Cat Caterpillar
	988	2	541	1.38	3000	12	988K Large Wheel Loader Cat Caterpillar
Loader	980	2	393	1.00	3000	12	980 Wheel Loader Cat Caterpillar
	IT38	2	180	0.46	3000	12	Caterpillar IT38G Wheel Loader Specs, Dimensions, Comparisons : CEG (constructionequipmen
Cranes	LG 1750	4	686	1.75	1500	6	Liebherr LG 1750 Crane Overview and Specifications Bigge.com
	JLG Lift	8	84	0.21	1500	6	Assumed to be: 600S Telescopic Boom Lift JLG
	Concrete Plant	2		0.00			
	Cement Transport	4		0.00			
Concrete	Concrete Truck	14	425	1.08	1500	6	Assume MP 7: https://www.macktrucks.com/-/media/files/brochures/why-mack-for-concrete mixer.pdf
	Concrete Pump Truck	2	485	1.24	1500	6	Assume larger pump: https://dyconcretepumps.com/concrete-pumps/chassis-options/mack/
	Crushing Spread	2		0.00			
	Copco L8	2	430	1.10	1500	6	ROC F9TH eng (driftermachine.com)
D&B	Copco D9	3	33.5	0.09	1500	6	07708100015264695331605201853.pdf (kengroup.kz)
	Explosives Truck	2	485	1.24	1500	6	From the PD, pumper trucks take explosives from tankers to blasting sites and can carry up to 2
Grader	G140	2	160	0.41	3000	12	New Holland G140 Motor Grader Specs & Dimensions :: RitchieSpecs
	Flat Deck	4	360	0.92	1500	6	Assume higher hp version of truck class: https://freightliner.com/trucks/ m2-106-
	Water Truck	2	700	1.78	1500	6	Assume CAT 777: https://www.cat.com/en_US/products/new/equipment/off-highway-
	Fuel Truck	3	370	0.94	1500	6	Upper range of hp around 370: https://trucktanks.com/fuel-trucks-oilmens/
	Telehandler	2	111	0.28	1500	6	Assumed to be: https://www.cat.com/en_US/products/new/equipment/telehandlers/telehandlers/113441.ht
Support	support Cranes	10	400	1.02	1500	6	Assumed higher range of examples here: https://gingerichcrane.com/equipment/crawler- cranes
	Boom Truck	4	173	0.44	1500	6	Assumed: https://cranenetwork.com/uploads/specs/5997f28800295ce036007a64a.pdf
	Pickups	30	250	0.64	3000	12	Assume F150 higher range
	Lightning/Pumps/Gens	100+		0.00			

These sources are captured under stationary combustion These sources are captured under stationary combustion Table 2.5 in the Project Description, hours were provided via email from Chris Barron at Dexter (average utilization of 3000 hrs per unit per year for earthmoving equipment, half that for everything else equipment). This averages to just over 8 hours per day, it was assumed in summer months operations could be longer so 12 hours was conservatively used

Г

Source:

Emission Factors - Diesel Fuel US EPA/Canada CEPA Tier 1, 2, 3 and 4 NOx, CO and PM Emission Standards for Off-Road Heavy-Duty Diesel Engines

	Engine Power (hp)	Tier	Model Year	Emission Factors (g/hp-hr)					
				NO _x *	co	TSP			
				10102-44-0	630-08-0	N/A-1			
	≥100 to <175	Tier 1	1997-2000	6.9	-	-			
		Tier 2	2003-2006	4.5	3.7	0.22			
		Tier 3	2007-2011	2.8	3.7	0.22			
		Tier 4 transitional	2012-2013	0.3	-	0.01			
100		Tier 4 final	2014+	0.3	3.7	0.01			
	≥175 to <300	Tier 1	1996-2002	6.9	8.5	0.4			
		Tier 2	2003-2005	4.5	2.6	0.15			
		Tier 3	2006-2010	2.8	2.6	0.15			
		Tier 4 transitional	2011-2013	-	-	0.01			
175		Tier 4 final	2014+	0.3	2.6	0.01			
	≥300 to <600	Tier 1	1996-2000	6.9	8.5	0.4			
		Tier 2	2001-2005	4.5	2.6	0.15			
		Tier 3	2006-2010	2.8	2.6	0.15			
		Tier 4 transitional	2011-2013	0.3	2.6	0.01			
300		Tier 4 final	2014+	0.3	2.6	0.01			
	≥600 to <750	Tier 1	1996-2001	6.9	8.5	0.4			
		Tier 2	2002-2005	4.5	2.6	0.15			
		Tier 3	2006-2010	2.8	2.6	0.15			
		Tier 4 transitional	2011-2013	0.3	2.6	0.01			
600		Tier 4 final	2014+	0.3	2.6	0.01			
	≥750	Tier 1	2000-2005	6.9	8.5	0.4			
		Tier 2	2006-2010	4.5	2.6	0.15			
		Tier 4 transitional	2011-2014	2.6	2.6	0.07			
750		Tier 4 final	2015+	2.6	2.6	0.03			

Air Contaminant	CAS#	Uncontrolled E	F (Ib/MMBTU) *
		Diesel Engines (AP-42 Ch 3.3)	Large Diesel Engines (AP-42 Ch 3.4)
NOX	10102-44-0	4.41	3.2
SO2	7446-09-5	0.29	0.505
CO	630-08-0	0.95	0.85
TSP	N/A-1	0.31	0.1
PM10	N/A-2	0.31	0.1
PM2.5	N/A-3	0.31	0.1

NOTEs:
NOTEs:
NOTEs:
Canadian Off-Road Compression-Ignition Engine Emission Regulations (ECCC, 2005)
Nonroad Compression-Ignition Engines - Exhaust Emission Standards (US EPA, 2016a)
* Particulate from diesel combustion assumed to be <1 um

Diesel HHV Diesel S Content Assumed Diesel Engini 0.137 MMBTU/gal from US EPA AP-42 Appendix A Misc. Data and Conversion Factors
0.5 %
0.4

Emissions Estimates

		Ho	urly Emission Ra	tes (g/s)			Annual Emission Rates (tonnes/year)							
Parameter	TSP	PM10	PM2.5	NOX	SO2	со	TSP	PM10	PM2.5	NOX	SO2	со		
	N/A-1	N/A-2	N/A-3	10102-44-0	7446-09-5	630-08-0	N/A-1	N/A-2	N/A-3	10102-44-0	7446-09-5	630-08-0		
C390	1.46E-03	1.46E-03	1.46E-03	4.37E-02	4.88E-02	3.78E-01	0.02	0.02	0.02	0.47	0.53	4.09		
C349	9.42E-03	9.42E-03	9.42E-03	2.83E-01	3.16E-01	2.45E+00	0.10	0.10	0.10	3.05	3.41	26.46		
C336	1.67E-03	1.67E-03	1.67E-03	5.00E-02	5.59E-02	4.33E-01	0.02	0.02	0.02	0.54	0.60	4.68		
C324	1.57E-03	1.57E-03	1.57E-03	4.70E-02	5.25E-02	4.07E-01	0.02	0.02	0.02	0.51	0.57	4.40		
C305 - Note 1														
HM400	1.84E-02	1.84E-02	1.84E-02	5.52E-01	6.17E-01	4.78E+00	0.20	0.20	0.20	5.96	6.66	51.65		
Live Bottom	7.64E-03	7.64E-03	7.64E-03	2.29E-01	2.56E-01	1.99E+00	0.08	0.08	0.08	2.48	2.77	21.45		
Tandem	6.32E-03	6.32E-03	6.32E-03	1.90E-01	2.12E-01	1.64E+00	0.07	0.07	0.07	2.05	2.29	17.75		
D8	1.97E-03	1.97E-03	1.97E-03	5.90E-02	6.59E-02	5.11E-01	0.02	0.02	0.02	0.64	0.71	5.52		
D6	1.79E-03	1.79E-03	1.79E-03	5.38E-02	6.01E-02	4.66E-01	0.02	0.02	0.02	0.58	0.65	5.03		
D4	3.61E-04	3.61E-04	3.61E-04	1.08E-02	1.21E-02	1.34E-01	0.00	0.00	0.00	0.12	0.13	1.44		
CS56	2.18E-03	2.18E-03	2.18E-03	6.54E-02	7.31E-02	5.67E-01	0.02	0.02	0.02	0.71	0.79	6.12		

988	3.01E-03	3.01E-03	3.01E-03	9.02E-02	1.01E-01	7.81E-01	0.03	0.03	0.03	0.97	1.09	8.44
980	2.18E-03	2.18E-03	2.18E-03	6.55E-02	7.32E-02	5.68E-01	0.02	0.02 0.02		0.71	0.79	6.13
IT38	1.00E-03	1.00E-03	1.00E-03	3.00E-02	3.35E-02	2.60E-01	0.01	0.01	0.01	0.32	0.36	2.81
LG 1750	7.62E-03	7.62E-03	7.62E-03	2.29E-01	4.45E-01	1.98E+00	0.04	0.04	0.04	1.23	2.40	10.70
JLG Lift	1.87E-03	1.87E-03	1.87E-03	5.60E-02	6.26E-02	6.91E-01	0.01	0.01	0.01	0.30	0.34	3.73
Concrete Plant												
Cement Transport												
Concrete Truck	1.65E-02	1.65E-02	1.65E-02	4.96E-01	5.54E-01	4.30E+00	0.09	0.09	0.09	2.68	2.99	23.21
Concrete Pump Truck	2.69E-03	2.69E-03	2.69E-03	8.08E-02	9.03E-02	7.01E-01	0.01	0.01	0.01	0.44	0.49	3.78
Crushing Spread												
Copco L8	2.39E-03	2.39E-03	2.39E-03	7.17E-02	8.01E-02	6.21E-01	0.01	0.01	0.01 0.01		0.43	3.35
Copco D9 - Note 1												
Explosives Truck	2.69E-03	2.69E-03	2.69E-03	8.08E-02	9.03E-02	7.01E-01	0.01	0.01	0.01	0.44	0.49	3.78
G140	8.89E-04	8.89E-04	8.89E-04	2.67E-02	2.98E-02	2.31E-01	0.01	0.01	0.01	0.29	0.32	2.50
Flat Deck	4.00E-03	4.00E-03	4.00E-03	1.20E-01	1.34E-01	1.04E+00	0.02	0.02	0.02	0.65	0.72	5.62
Water Truck	3.89E-03	3.89E-03	3.89E-03	1.17E-01	2.27E-01	1.01E+00	0.02	0.02	0.02	0.63	1.23	5.46
Fuel Truck	3.08E-03	3.08E-03	3.08E-03	9.25E-02	1.03E-01	8.02E-01	0.02	0.02	0.02	0.50	0.56	4.33
Telehandler	6.17E-04	6.17E-04	6.17E-04	1.85E-02	2.07E-02	2.28E-01	0.00	0.00	0.00	0.10	0.11	1.23
support Cranes	1.11E-02	1.11E-02	1.11E-02	3.33E-01	3.73E-01	2.89E+00	0.06	0.06	0.06	1.80	2.01	15.60
Boom Truck	1.92E-03	1.92E-03	1.92E-03	5.77E-02	6.45E-02	5.00E-01	0.01	0.01	0.01	0.31	0.35	2.70
Pickups	2.08E-02	2.08E-02	2.08E-02	6.25E-01	6.99E-01	5.42E+00	0.23	0.23	0.23	6.75	7.54	58.50
Lightning/Pumps/Ge												
ns												
						Total	1.19E+00	1.19E+00	1.19E+00	3.56E+01	4.13E+01	3.10E+02

1Not included due to too small of an engine size (emission factor not application) - assumed negligible These sources are captured under stationary combustion

Stationary Diesel Consumption - Construction

Source Description

Stationary Diesel Combustion includes generators, heaters, mobile crushers/batch plant and generators for tower lights.

Methodology

Emissions were estimated using emission factors sourced from US EPA, AP 42 Chapter 3.3 - Stationary Internal Combustion Sources, Gasoline and Diesel Industrial Engines.

Item	Quantity	Unit	Source/Assumption
Diesel usage - PaP	1	ML	Email from Chris Barron (Dexter) on May 17, 202
Diesel usage - I al	36882.43	MMBtu*	noting "the only meaningful generator use is for
Diesel usage - Codrov	1 ML		mobile crushers/batch plant, ~1ML per site." This
Diesel usage - courby	36882.43	MMBtu*	is over the full construction period.
PaP Construction Duration	27	months	Section 2.4 of the Project Description (PD)
Codroy Construction Duration	27	months	Section 2.4 of the Project Description (PD)
Monthly Diesel Usage - PaP	1366.02	MMBtu/month	Calculated based on construction duration
Monthly Diesel Usage - Codroy	1366.02	MMBtu/month	calculated based on construction duration
Annual Diesel Usage - PaP	16392.19	MMBtu/year	Calculated based on number of months per year
Annual Diesel Usage - Codroy	16392.19	MMBtu/year	and monhtly usage

Annual Emissions Summary/Emission Calculations

Substance	CAS Number	Diesel Emission Factor (Ib/MMBtu)	PaP Annual Emissions [tonne/year]	Codroy Annual Emissions [tonne/year]	Total Annual Emissions [tonne/year]
Acetaldehyde	75-07-0	7.67E-04	5.70E-03	5.70E-03	1.14E-02
Acrolein	107-08-8	9.25E-05	6.88E-04	6.88E-04	1.38E-03
Anthracene	120-12-7	1.87E-06	1.39E-05	1.39E-05	2.78E-05
Benzene	71-43-2	9.33E-04	6.94E-03	6.94E-03	1.39E-02
1,3-butadiene	106-99-0	3.91E-05	2.91E-04	2.91E-04	5.82E-04
Formaldehyde	50-00-0	1.18E-03	8.78E-03	8.78E-03	1.76E-02
Naphthalene	91-20-3	8.48E-05	6.31E-04	6.31E-04	1.26E-03
Propylene	115-07-1	2.58E-03	1.92E-02	1.92E-02	3.84E-02
Toluene	108-88-3	4.09E-04	3.04E-03	3.04E-03	6.08E-03
Isomers of xylene	1330-20-7	2.85E-04	2.12E-03	2.12E-03	4.24E-03
Acenaphthene	83-32-9	1.42E-06	1.06E-05	1.06E-05	2.11E-05
Acenaphthylene	208-96-8	5.06E-06	3.76E-05	3.76E-05	7.53E-05
Benzo (a) anthracene	56-55-3	1.68E-06	1.25E-05	1.25E-05	2.50E-05
Benzo (a) pyrene	50-32-8	1.88E-07	1.40E-06	1.40E-06	2.80E-06
Benzo (b) fluoranthene	205-99-2	9.09E-05	6.76E-04	6.76E-04	1.35E-03
Benzo (k) fluoranthene	207-08-9	1.55E-07	1.15E-06	1.15E-06	2.31E-06
Dibenzo (a,h) anthracene	53-70-3	5.83E-07	4.34E-06	4.34E-06	8.67E-06
Benzo (g,h,i) pervlene	191-24-2	4.89E-07	3.64E-06	3.64E-06	7.27E-06
Fluoranthene	206-44-0	7.61E-06	5.66E-05	5.66E-05	1.13E-04
Fluorene	86-73-7	2.92E-05	2.17E-04	2.17E-04	4.34E-04
Indeno(1,2,3-c,d) pyrene	193-39-5	3.75E-07	2.79E-06	2.79E-06	5.58E-06
Phenanthrene	85-01-8	2.94E-05	2.19E-04	2.19E-04	4.37E-04
Pyrene	129-00-0	4.78E-06	3.56E-05	3.56E-05	7.11E-05
Total PAHS		1.68E-04	1.25E-03	1.25E-03	2.50E-03
Carbon monoxide (CO)	630-08-0	9.50E-01	7.07E+00	7.07E+00	1.41E+01
Oxides of nitrogen (NOx), expressed as nitrogen dioxide (NO2)	10102-44-0	4.41E+00	3.28E+01	3.28E+01	6.56E+01
Total Particulate Matter	N/A-1	3.10E-01	2.31E+00	2.31E+00	4.61E+00
Particulate matter less than or equal to 10 micrometers (µm) (PM10)	N/A-2	3.10E-01	2.31E+00	2.31E+00	4.61E+00
Particulate matter less than or equal to 2.5 µm (PM2.5)	N/A-3	3.10E-01	2.31E+00	2.31E+00	4.61E+00
Sulphur dioxide (SO2)	7446-09-5	2.90E-01	2.16E+00	2.16E+00	4.31E+00
Volatile organic compounds	NA - M16	3.60E-01	2.68E+00	2.68E+00	5.35E+00
Benzene	71-43-2	9.33E-04	6.94E-03	6.94E-03	1.39E-02
1.3-butadiene	106-99-0	3.91E-05	2.91E-04	2.91E-04	5.82E-04
Formaldehvde	50-00-0	1.18E-03	8.78E-03	8.78E-03	1.76E-02
Propylene	115-07-1	2.58E-03	1.92E-02	1.92E-02	3.84E-02
Toluene	108-88-3	4.09E-04	3.04E-03	3.04E-03	6.08E-03
Isomers of xvlene	1330-20-7	2.85E-04	2.12E-03	2.12E-03	4.24E-03

Sample Calculations Sample calculation for Port au Port Annual Acetaldehyde Emissions (tonnes/year) = Diesel Energy Consumed [MMBTu/year]x EF [lb/MMBtu] x Conversion

kg Ib × 7.67E-04 lb MMBtu MMBtu year Annual Acetaldehyde Emissions (tonnes/year) = 16392 × x 1 tonne 1000 kg 1 2.204 yca. 5.70E-03 tonne year Annual Acetaldehyde Emissions (tonnes/year) =

Emission estimates from flare - emergency NH3 flaring and continuous pilot - Operations

The facility will have a flare that will be used to flare ammonia or hydrogen during non-routine events. The flare plot will be it using butane. It is expected that the faire will only be used once per year and that the full flaring event will be 1-hour. The flare has 3 heads, each with Source Description

The combustion of butane in the flare will likely result in thermal NOx emissions. The combustion of ammonia in the flare will likely result in both thermal NOx and fuel NOx emissions. Thermal NOx emissions are estimated using emission factors from the AP-42 Chapter 13.5 Industrial Flares (US EPA 1995) and from the Texas Commission on Environmental Quality (TEEQ) 2021 Emissions inventory Guidelines (RG-360/21). Particulate emissions from the butane in the flare were estimated based on emission factors presented in the article "Black carbon particulate matter emission factors for buoyancy-driven associated gas flares" (McEven & Johnson 2012). Methodology

Residual emissions of non-inerts (ammonia and butane) are calculated assuming a destruction efficiency of 98% (obtained from US EPA AP-42 Chapter 13.5, 1995).

Emissions Summary						
				Tonnes/year		
Source	Scenario	Species	Hourly	Daily	Annual	Annual
		Butane (C4H10)	1.17E-02	1.17E-02	1.17E-02	0.3691
	Pilot	Nitrogen Oxides (Nox)	8.40E-04	8.40E-04	8.40E-04	0.0265
Flare 1 - 3 (each)	1100	Carbon Monoxide (CO)	6.79E-03	6.79E-03	6.79E-03	0.2141
Flate 1 - 5 (each)		Particulate Matter (PM)	1.77E-07	1.77E-07	1.77E-07	5.57E-06
	NH3 Release	Ammonia (NH3)	64.9	2.7	0.007	0.23
	ini si neleuse	Nitrogen Oxides (Nox)	18.4	0.77	0.002	0.066108766

Emission Inputs

	ltem	Quantity	Unit	Source/Assumption
	Flare Destruction efficiency	98%	%	US EPA AP-42 Chapter 13.5, 1995
	Density		kg/m3	at 15°C, 1 bara. Obtained from https://www.engineeringtoolbox.com/butane-density-specific-
	Density	2.48	Kg/III3	weight-temperature-pressure-d_2080.html
Butane (C4H10) (continuous	Flow	30	SCFH	Flaring inputs were provided from ARUP from Rebecca Curtis via email on May 5, 2023
pilot)	pilot) Flow Mass Flow C4H10 % C4H10		m3/hr	Converted from SCFH
			kg/hr	Converted from volumetric flow using density
			%	Assumption
		11.5	tons/hour	imperial tons. Flaring inputs were provided from ARUP from Rebecca Curtis via email on May 5,
	Release"	11.5	tons/nour	2023
Ammonia (NH3) (intermittent	Temp*	450	°C	Flaring inputs were provided from ARUP from Rebecca Curtis via email on May 5, 2023
release)	release) Pressure"		bar(g)	Flaring inputs were provided from ARUP from Rebecca Curtis via email on May 5, 2023
	% NH3	100%	%	Assumption
	Mass Flow NH3	11,685	kg/hr	Converted from release in tons/hour

* Flaring inputs were provided from ARUP from Rebecca Curtis via email on May 5, 2023

Species	LHV (MJ/kg)	HHV (MJ/kg)		Source
Heating Values				
1	SCFH =	35.31468492	m3/hr	*68F, 14.696 psi a
1	lb =	0.45	kg	
1	MJ =	947.8170	BTU	
Conversion Units				

Ammonia	18.9	22.5	https://www.engineeringtoolbox.com/fuels-higher-
Butane	45.3	49.1	calorific-values-d_169.html

Emission Factors

Species	Emission Factor	Units	Source
Nitrogen Oxides	0.068	lb/10^6 Btu	US EPA 1995
Carbon monoxide	0.37	lb/10^6 Btu	US EPA 1995
Carbon monoxide	0.5496	LB/MMBTU	TCEQ 2021
			McEwen &
Particulate Matter	0.74798	kg/10^3 m3 fuel	Johnson 2012

Species	Mass basis	Units	Source
Nitrogen oxides	0.50%	Mass basis, kgNOx/kg NH3	TCEQ 2021

Sample Calcs Thermal NOX

Thermal Nox emissions from NH3 = Mass Flow NH3 (kg/hr) x HHV (MG/kg) x Emission Factor (lb Nox/BTU) x Conversions

Thermal Nox emissions from NH3=	11684.6	kg NH3	×	22.5	MJ	×	947.8170	BTU	×	0.068	lb Nox	×	0.45	kg	x	1000	g	×	1	hr
	-	hr			kg		1	MJ		1000000	BTU		1	lb		1	kg		3600	s
Thermal Nox emissions from NH3=	2.135	g																		
		s																		
Thermal Nox emissions from butane =	2.1	kg butane	×	49.1	MJ	x	947.8170	BTU	×	0.068	Ib Nox	x	0.45	kg	x	1000	g	x	1	hr
		hr			kg		1	MJ		1000000	BTU		1	lb		1	kg		3600	s
Thermal Nox emissions from butane =	0.00	g																		
		s																		
CO emissions from butane =	2.1	kg butane hr	x	49.1	MJ kg	x	947.8170 1	BTU MJ	x	0.5496	Ib CO BTU	x	0.45	kg Ib	x	1000	g kg	x	1 3600	hr s
CO emissions from butane =	0.01	g			-												-			
		s																		
PM emissions from butane =	0.8	m3	×	0.74798	kg	x	1	hour												
		hour		1000	m3		3600	sec	_											
PM emissions from butane =	1.76504E-07	g s																		
Fuel NOx																				
Fuel Nox from NH3 =	Mass Flow NH3 (kg/hr) x Emission Fa	ctor (kg Nox/KG NH3) x Cor	nversion																	
Fuel Nox from NH3 =	11684.6	kg NH3	×	0.50%	Kg Nox	x	1000	g	×	1	hr									
		hr			Kg NH3		1	kg		3600	s	_								
Fuel Nox from NH3 =	16.2	g s																		
Residual Emissions																				
NH3 Residual Emissions=	Mass Flow NH3 (kg/hr) x (1 - % destru	uction) x Conversion																		
NH3 Residual Emissions=	11684.6	kg hr	x	(1		0.98) x	1000	g kg	x	1 3600	hr s								
AUD Desident Contrations	c1 014																			

NH3 Residual Emissions= 64.914 g

Emission estimates from the Cooling Tower - Operations

Source Description The ammonia/hydrogen plant has an open recirculating cooling tower to support the electrolyzer. Assume that it runs 24/7/365.

Methodology

Particulate releases are estimated from the cooling tower following the method described in Environment and Climate Change Canada's (ECCC) NPRI "Wet cooling towers: guide to reporting" (ECCC 2023) which follows the approach in AP-42 Chapter 13.4. It was conservatively assumed that TPM = PM10 = PM2.5. The emissions are total for the full cooling tower unit and will be modelled split evenly by cell.

missions Estimates	En	tonne/ year		
Air Contaminant	hourly	daily	annual	annual
TPM	0.42	0.42	0.42	13.09
PM10	0.42	0.42	0.42	13.09
PM2.5	0.42	0.42	0.42	13.09

Item	Value	Units	Source
TDS Concentration	649	mg/L (ppmw)	provided by ARUP
Make up rate:	1,300	GPM	provided by ARUP
Total water supply:	50,700	GPM	provided by ARUP
Total water supply:	11,515,187	L/h	converted from GPM
Annual Operational Hours	8,760	hours/year	Assumed 24/7/365

AP-42 Table 13.4-1 (Met	ric And English Units). PART	ICULATE EMISSIONS FACTORS FOR WET
COOLING TOWERSa		
Tower Typed	Total Liquid Drift	
Tower Typeu	Circulating Water Flow	
Induced Draft (SCC 3-85- 001-01, 3-85-001-20, 3-		

from
W = M - E - D
Where
W = Drift Loss
W = Drift Loss
M = Make-Up Water
E = Evaporated Water
D = Blow Down Water
With limited information on the blowdown water and evaporated water flows, a conservative drift value was applied
With limited information on the blowdown water and evaporated water flows, a conservative drift value was applied
With limited information on the blowdown water and evaporated water flows, a conservative drift value was applied
W = M - E - D

TSD (mg/L) x Drift Loss (%) x Circulating Water Rate (L/h) x Conversion TPM Emissions =

Hourly TPM Emissions (g/s) =	649	mg	x	0.02%	x	11515186.8	L	x	1	hr	x	1	g
		L					h		3600	s		1000	mg
Hourly TPM Emissions (g/s) =	0.42	g											
		s											

Emissions Estimates from Emergency Diesel Combustion Turbine - Operations

Source Description There will be one 50 MW biodiesel backup power unit (combustion turbine) It will only run during emergencies. The plant can run for 13 hrs in survival mode, it was assumed that 4 of these events occur each year (assmuption provided by ARUP), the generator will run for 52 hr/year.

Methodology

Air Contaminant releases from combustion of diesel fuel in the combustion turbine used during construction are estimated in this worksheet. The release estimates are based on power demand provided by ARUP and emission factors sourced from US EPA AP-42 Chapter 3.1 - Stationary Gas Turbines. It was assumed the sulfur content of the fuel will be 15 ppmw (0.0015%)

Emission Factors

		Emis	Emission Rate (g/s)				
Contaminant	Emission Factor (Ib/MMBtu)	hourly	daily	annual	annual		
Nitrogen Oxides	0.88	70.06	37.95	0.42	13.11		
Carbon Monoxide	0.0033	0.26	1.42E-01	1.56E-03	0.0492		
Sulphur Dioxide	0.001515	0.12	6.53E-02	7.16E-04	0.0226		
Total Particulate Matter	0.012	0.96	5.17E-01	5.67E-03	0.1788		
Lead	0.000014	1.11E-03	6.04E-04	6.62E-06	0.00021		
VOCs	0.00041	3.26E-02	1.77E-02	1.94E-04	0.00611		
1,3-Butadiene	0.000016	1.27E-03	6.90E-04	7.56E-06	0.00024		
Benzene	0.000055	4.38E-03	2.37E-03	2.60E-05	0.00082		
Formaldehyde	0.00028	2.23E-02	1.21E-02	1.32E-04	0.0042		
Naphthalene	0.000035	2.79E-03	1.51E-03	1.65E-05	0.00052		
PAHs	0.00004	3.18E-03	1.72E-03	1.89E-05	0.00060		
Arsenic	0.000011	8.76E-04	4.74E-04	5.20E-06	0.00016		
Beryllium	0.0000031	2.47E-05	1.34E-05	1.47E-07	0.00000		
Cadmium	0.0000048	3.82E-04	2.07E-04	2.27E-06	0.00007		
Chromium	0.000011	8.76E-04	4.74E-04	5.20E-06	0.00016		
Lead	0.000014	1.11E-03	6.04E-04	6.62E-06	0.00021		
Manganese	0.00079	6.29E-02	3.41E-02	3.73E-04	0.0118		
Mercury	0.0000012	9.55E-05	5.17E-05	5.67E-07	0.00002		
Nickel	0.0000046	3.66E-04	1.98E-04	2.17E-06	0.00007		
Selenium	0.000025	1.99E-03	1.08E-03	1.18E-05	0.00037		


Emission Inputs

Item	Quantity	Unit	Source/Assumption
Average Power demand	50,000	kW	output - provided by WEGH2
Average Fower demand	171	MMBTu	converted from kW
Thermal efficiency	30%	%	assumed based on typical efficiencies of CTs
Alternator efficiency	90%	%	assumed based on typical efficiencies of CTs
Heat from Fuel (Power)	185,185	Kw	calculated based on output power, thermal and alternator efficiency
fieat from fuel (Fower)	631.9	MMBTu	converted from kW
# CT in operation	1	#	provided
Operating time	13	hours/day	provided by WEGH2
Operating events	4	times/year	provided by WEGH2
Annual operation	52	hours/year	calculated

Sample Calculation

Hourly ER Nitrogen Oxides (g/s) =

Power Demand (MMBtu) x Emission Factor (lb/MMBtu) x Conversion

Emission inputs and emission factors for marine vessels - Operations

Ammonia carriers will be used to ship the product from the Port of Stephenville, with the three most common vessel sizes being 30,000 m3, 52,000 m3, 52,000 m3, and 80,000 m3. World Energy provided the number of trips per month depending on the vessel size - if the mid-sized vessel was used, there would be 4 tanks per month at maximum production. The loading system will be a jettyless floating offloading system, floated to the vessel using tugs. Maneuvering will take 2 hours, while loading was estimated from the loading pipe rate combined with the product volume (ship capacity).

The vessel used was conservatively assumed to be the 50,000 m3 Capacity Vessel (LNG Tank Clipper Mars) as this vessel combusts MG0/HP opposed to LNG which the larger vessel uses. Due to Canadian water regulations, MG0 with maximum sulphur content of 0.10% must be used in Canadian jurisdictions.

Vessel Information			
Item	Value	Units	Source/Assumptions
Vessel type:	LPG Tanker Clipper Mars		Chosen from three possible vessel specs provided by Reg Mullet (World Energy). Conservatively chosen as this vessel combusts MGO/HFO opposed to LNG which the larger vessel uses.
Tank capacity ^a	60284	m³	Clipper Mars specification sheet - see note a
Anhydrous Ammonia full load *	40174	m ³	Clipper Mars specification sheet - see note a
Main Engine Fuel ^a	MGO (while in Canadian waters)	-	Clipper Mars specification sheet - see note a
Main Engine RPM (rpm) *	98	rpm	Clipper Mars specification sheet - see note a
Aux Engine Fuel [®]	MGO (while in Canadian waters)	-	Clipper Mars specification sheet - see note a
MGO Density	855	kg/m ³	Obtained from: https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html
Maximum Vessel Size ^b	43544	DWT	Clipper Mars specifications - see note b
Marine Gas Oil HHV	12.75	kWh/kg	Obtained from: https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d 169.html

Clipper Mars Ship Information for Gas Carriers, available at: https://solvangship.no/wpc.comtext/uplads/2006/CForm-Clipper-Mars.pdf
^b Sourced from: https://www.marinetraffic.com/en/ais/details/ships/shipid:312420/mmsi:258667000/imo:9377078/vessel:CLIPPER_MARS

Operations Information

	Marine Termina	al Operations	Total
	LNGTankers	Assist Tugboats	Total
Number of Vessels in Port area at One Time	1	2	3
Number of Vessels per Year *	48	96	144
Maneuvering time per vessel (hours) ^a	2	2	
Loading time per vessel (hotelling) (hrs) b	43	-	
Total Time Maneuvering (hrs/yr)	96	192	
Total Time Hotelling (hrs/yr)	2067	-	
Main Engine Rating Power (kW) c, d	10,150	1,540	-
Auxiliary Engine Rating Power (kW) ^{c, d}	3,600	100	-
Boiler Engine Rating Power (kW)	1,446	-	

Ē

 Torodeo Jr Reg Willet (Word Energy) - that there will be 4 vessib per month, manevering to loading area takes 2 hours.
 * Torodeo Jr Reg Willet (Word Energy) - that there will be 4 vessib per month, manevering to loading area takes 2 hours.
 * Estimated from the vessel product volume and the loading pipe flow rate (1,400 m3/h) as used in the Quantitative Risk Assessment (QRA)
 * Clipper Mars Ship Information for Gar Carriers, available at https://okongetin.on/woro.contert/upda/2020/06/Crom-Clipper-Mars.pdf
 * Based on "Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories" April 2009, US EPA Available at: https://www.shipper-Shipper w.epa.gov/sites/default/files/2016-06/documents/2009-port-inventory-guidance.pdf by ICF Consulting April 2009

Fuel consumption

Aver	Average Fuel Consumption					
ton/day	tonne/hour	m3/hour				
38	1.4364	1.6800				
7	0.2646	0.3095				
5	0.1890	0.2210				
4	0.1512	0.1768				
3	0.1134	0.1326				
-	0.3652	0.4271				
-	0.0238	0.0278				
	ton/day	ton/day tonne/hour 38 1.4364 7 0.2646 5 0.1890 4 0.1512 3 0.1134 - 0.3652				

* Clipper Mars Ship Information for Gas Carriers, available at: https://solvangship.no/wp-content/uploads/2020/06/CForm-Clipper-Mars.pdf * According to the US EPA *Nahylsis of Commercial Marine Vessels Emissions and Fuel Consumption Data", EPA420-4:00-002, February 2000 - Fuel Consumption (gk/Wh) = 14.126/ScJoaf Factor + 05:37.169

Emission Factors Criteria Air contam

Emission Factors	Main Propulsion	Engines	Auxiliary	Engines	Auxiliary	Assist Tugboats	
Emission Factors	Maneuvering	Hotelling	Maneuvering	Hotelling	Boilers		
fanker Load Factor ^{a, b}	0.06	-	0.33	0.26	0.6	0.45	
uel Type	Marine Gas Oil	(MGO)	M	30	MGO	MGO	
Average Sulphur Content (%) *	0.1		0.	.1	0.1	0.1	
NO _x (g/kWh) ^c , ^{d, e}	17.00	17.00	12.10	12.10	2.41	13.20	
CO (g/kWh) ^{d, e, f, g}	1.40	1.40	1.10	1.10	0.60	1.10	
HC (g/kWh) ^{d, e, f, g}	0.60	0.60	0.40	0.40	-	0.50	
PM ₁₀ (g/kWh) ^{d, e, f, g}	0.19	0.19	0.18	0.18	0.12	0.72	
PM _{2.5} (g/kWh) ^{d, e, f, g}	0.17	0.17	0.17	0.17	0.03	0.58	
SO ₂ (g/kWh) ^{d. e. f. g}	0.36	0.36	0.42	0.42	1.71	0.01	
anker Emission Factor Adjustment Factors at	6% Load (Table 2-15):						
NO _x	1.60			-	-	-	
:0	3.25			-	-	-	
IC .	4.35	-	-	-	-	-	
PM 10	2.04	-	-	-	-	-	
M _{2.5}	2.04	-		-	-	-	
0 ₂	1.61	-	-	-	-	-	

⁴ Based on the Canadian requirement that marine fuel must not exceed 0.10% mass sulphur within the Canadian Jurisdiction of the NA-ECA. ^b At lower speeds, the Propeller Law should be used to estimate ship propulsion loads:

^b At lower speeds, the Propeller Law should be used to estimate ship propulsion loads: LF = A(3/AS)², We are a speed (and a speed (anot), and MS = actual speed (anot), and MS

Speciated Organic Compounds and PAHs

Contaminant	Emission Factors " (Ib/MMBTu)	Emission Factor Rating	Emission Factors (kg/kWh)		
Benzene	0.000776	E	1.20E-06		
Toluene	2.81E-04	E	4.36E-07		
Xylenes	1.93E-04	E	2.99E-07		
Propylene	2.79E-03	E	4.33E-06		
Formaldehyde	7.89E-05	E	1.22E-07		
Acetaldehyde	2.52E-05	E	3.91E-08		
Acrolein	7.88E-06	E	1.22E-08		
naphtalene	1.30E-04	E	2.02E-07		
Acenaphthylene	9.23E-06	E	1.43E-08		
Acenaphthene	4.68E-06	E	7.26E-09		
Fluorene	1.28E-05	E	1.99E-08		
Phenanthrene	4.08E-05	E	6.33E-08		
Anthracene	1.23E-06	E	1.91E-09		
Fluoranthene	4.03E-06	E	6.25E-09		
Pyrene	3.71E-06	E	5.75E-09		
Benz(a)anthracene	6.22E-07	E	9.65E-10		
Chrysene	1.53E-06	E	2.37E-09		
Benzo(b)fluoranthene	1.11E-06	E	1.72E-09		
Benzo(k)fluoranthene	2.18E-07	E	3.38E-10		
Benzo(a)pyrene	2.57E-07	E	3.99E-10		
Indeno(1,2,3-cd)pyrene	4.14E-07	E	6.42E-10		
Dibenz(a,h)anthracene	0.00000346	E	5.37E-10		
Benzo(g,h,l)perylene	0.00000556	E	8.62E-10		
Total PAH	0.000212	F	3 29F-07		

* Source: U.S. EPA AP-42 Section 3.4 Large Stationary Diesel

1 kg =	2.2	lb
1 kWh =	3412.142	BTU

Co

Emission estimates for marine vessels in the port - Operations

Ammonia carriers will be used to ship the product from the Port of Stephenville, with the three most common vessel sizes being 80,000 m3, \$2,000 m3, \$2,00

Source Description Methodology

The air contaminant emissions are calculated here using vessel information and emission factors from the "Marine Vessels - EFs and Inputs" sheet. The estimates assume that the tug boats are operated during loading as part of the jettyless floading offloading system. Emissions of speciated organic compounds and metals were estimated from the emission factor (AP-42 Chapter 1.3) and the fuel usage rates. Emissions of the oriteria air contaminants (NO2, CO, HC, PM10, PM2.5, and SO2) were estimated using the emission factors (see sources on "Marine Vessels - EFs and Input" sheet), the engine power rating (KW), and the load factor.

Emission Estimates Criteria Air Contaminants

Speciated Organic Compounds & PAHs - Per Tug Boat

	Maxi	mum Emission Ra	tes			
	Marine Termin	al Operations				
	LNGTankers	Assist Tugboats	Total		Contaminant	Tu
Number of Vessels in Port area at One Time	1	2	3			
Maximum Vessel Size (DWT)*	43544	-	-		Benzene	
Main Engine Rating Power (kW) ^{a, b}	10,150	1,540	-		Toluene	
Auxiliary Engine Rating Power (kW) b	3,600	100	-		Xylenes	
Auxiliary Boiler Rating Power (KW)	1,446	-	-		Propylene	
Operating Mode while in Port	Hotelling	-			Formaldehyde	
Tug Engine Emissions (maneuvering)					Acetaldehyde	
NO _x (g/s)	-	2.54	2.54		Acrolein	
CO (g/s)	-	0.21	0.21		Naphthalene	
HC (g/s)	-	0.10	0.10		Acenaphthylene	
PM10 (g/s)	-	0.14	0.14		Acenaphthene	
PM _{2.5} (g/s)	-	0.11	0.11		Fluorene	
SO ₂ (g/s)		0.00	0.00	1	Phenanthrene	Г
Main Engine Emissions (Hotelling)				1	Anthracene	t
NO, (g/s)					Fluoranthene	1
CO (g/s)			-		Pyrene	1
HC (g/s)					Benz(a)anthracene	1
PM ₁₀ (g/s)					Chrysene	1
PM _{2.5} (g/s)					Benzo(b)fluoranthene	+
SO ₂ (g/s)						+
					Benzo(k)fluoranthene	-
Auxiliary Engine Emissions (Hotelling)	3.146		3.15		Benzo(a)pyrene	-
NO _x (g/s)					Indeno(1,2,3-cd)pyrene	-
CO (g/s)	0.286	-	0.29		Dibenz(a,h)anthracene	-
HC (g/s)	0.104		0.10		Benzo(g,h,l)perylene	-
PM10 (g/s)	0.047				Total PAH	
PM _{2.5} (g/s)	0.044		0.04			
SO ₂ (g/s)	0.109		0.11			
Auxiliary Boiler Emissions b						
NO _x (g/s)	0.089		0.09			
CO (g/s)	0.022		0.02			
HC (g/s)		-	0.00			
PM10 (g/s)	0.004	-	0.00	1		
PM _{2 c} (g/s)	0.001		0.00			
SO ₂ (g/s)	0.063		0.06			
TOTAL HOURLY MAXIMUM EMISSIONS	0.005		0.00			
NO, (g/s)	3.235	5.08	8 32			
CO (e/s)	0.308	0.42	8.32			
HC (g/s)	0.308	0.42	0.73			
PM10 (g/s)	0.051	0.28	0.33			
PM _{2.5} (g/s)	0.045	0.22	0.27			
SO ₂ (g/s)	0.172	0.00	0.17			
TOTAL ANNUAL MAXIMUM EMISSIONS					IMUM EMISSIONS - tonne/	/ear
NO _x (g/s)	0.733	1.151	1.88	NO _x (t/y)	23.11	
CO (g/s)	0.070	0.096	0.17	CO (t/y)	2.20	
HC (g/s)	0.024	0.044	0.07	HC (t/y)	0.74	
PM ₁₀ (g/s)	0.012	0.063	0.07	PM ₁₀ (t/yr)	0.37	
PM _{2.5} (g/s)	0.010	0.050	0.06	PM _{2.5} (t/y)	0.32	
SO, (g/s)	0.039	0.001	0.04	SO ₂ (t/y)	1.23	

	Hourly - g/s				Daily - g/s		Annual - g/s			Annual - tonne/year			
Contaminant	Tug Engine Emissions (Maneuverings)	Aux Engine Emissions (loading/ hotelling)	Aux Boiler Emissions	Tug Engine Emissions (maneuver ing)	Aux Engine Emissions (loading/ hotelling)	Aux Boiler Emissions	Tug Engine Emissions (maneuvering)	Aux Engine Emissions (loading/ hotelling)	Aux Boiler Emissions	Tug Engine Emissions (maneuveri ng)	Aux Engine Emissions (loading/ hotelling)	Aux Boiler Emissions	Marine Vessel (aux + boiler)
Benzene	2.32E-04	3.13E-04	2.90E-04	2.32E-04	3.13E-04	2.90E-04	3.05E-05	7.09E-05	6.57E-05	9.61E-04	2.24E-03	2.07E-03	4.31E-03
Toluene	8.39E-05	1.13E-04	1.05E-04	8.39E-05	1.13E-04	1.05E-04	1.10E-05	2.57E-05	2.38E-05	3.48E-04	8.09E-04	7.50E-04	1.56E-03
Xylenes	5.76E-05	7.78E-05	7.21E-05	5.76E-05	7.78E-05	7.21E-05	7.58E-06	1.76E-05	1.63E-05	2.39E-04	5.56E-04	5.15E-04	1.07E-03
Propylene	8.33E-04	1.13E-03	1.04E-03	8.33E-04	1.13E-03	1.04E-03	1.10E-04	2.55E-04	2.36E-04	3.45E-03	8.04E-03	7.45E-03	1.55E-02
Formaldehyde	2.36E-05	3.18E-05	2.95E-05	2.36E-05	3.18E-05	2.95E-05	3.10E-06	7.21E-06	6.68E-06	9.77E-05	2.27E-04	2.11E-04	4.38E-04
Acetaldehyde	7.52E-06	1.02E-05	9.42E-06	7.52E-06	1.02E-05	9.42E-06	9.89E-07	2.30E-06	2.13E-06	3.12E-05	7.26E-05	6.73E-05	1.40E-04
Acrolein	2.35E-06	3.18E-06	2.95E-06	2.35E-06	3.18E-06	2.95E-06	3.09E-07	7.20E-07	6.67E-07	9.76E-06	2.27E-05	2.10E-05	4.37E-05
Naphthalene	3.88E-05	5.24E-05	4.86E-05	3.88E-05	5.24E-05	4.86E-05	5.10E-06	1.19E-05	1.10E-05	1.61E-04	3.74E-04	3.47E-04	7.22E-04
Acenaphthylene	2.76E-06	3.72E-06	3.45E-06	2.76E-06	3.72E-06	3.45E-06	3.62E-07	8.43E-07	7.81E-07	1.14E-05	2.66E-05	2.46E-05	5.12E-05
Acenaphthene	1.40E-06	1.89E-06	1.75E-06	1.40E-06	1.89E-06	1.75E-06	1.84E-07	4.27E-07	3.96E-07	5.80E-06	1.35E-05	1.25E-05	2.60E-05
Fluorene	3.82E-06	5.16E-06	4.78E-06	3.82E-06	5.16E-06	4.78E-06	5.03E-07	1.17E-06	1.08E-06	1.58E-05	3.69E-05	3.42E-05	7.10E-05
Phenanthrene	1.22E-05	1.65E-05	1.52E-05	1.22E-05	1.65E-05	1.52E-05	1.60E-06	3.73E-06	3.45E-06	5.05E-05	1.18E-04	1.09E-04	2.26E-04
Anthracene	3.67E-07	4.96E-07	4.60E-07	3.67E-07	4.96E-07	4.60E-07	4.83E-08	1.12E-07	1.04E-07	1.52E-06	3.54E-06	3.28E-06	6.83E-06
Fluoranthene	1.20E-06	1.63E-06	1.51E-06	1.20E-06	1.63E-06	1.51E-06	1.58E-07	3.68E-07	3.41E-07	4.99E-06	1.16E-05	1.08E-05	2.24E-05
Pyrene	1.11E-06	1.50E-06	1.39E-06	1.11E-06	1.50E-06	1.39E-06	1.46E-07	3.39E-07	3.14E-07	4.59E-06	1.07E-05	9.90E-06	2.06E-05
Benz(a)anthracene	1.86E-07	2.51E-07	2.32E-07	1.86E-07	2.51E-07	2.32E-07	2.44E-08	5.68E-08	5.27E-08	7.70E-07	1.79E-06	1.66E-06	3.45E-06
Chrysene	4.57E-07	6.17E-07	5.72E-07	4.57E-07	6.17E-07	5.72E-07	6.01E-08	1.40E-07	1.30E-07	1.89E-06	4.41E-06	4.08E-06	8.49E-06
Benzo(b)fluoranthene	3.31E-07	4.48E-07	4.15E-07	3.31E-07	4.48E-07	4.15E-07	4.36E-08	1.01E-07	9.40E-08	1.37E-06	3.20E-06	2.96E-06	6.16E-06
Benzo(k)fluoranthene	6.51E-08	8.79E-08	8.15E-08	6.51E-08	8.79E-08	8.15E-08	8.56E-09	1.99E-08	1.85E-08	2.70E-07	6.28E-07	5.82E-07	1.21E-06
Benzo(a)pyrene	7.67E-08	1.04E-07	9.61E-08	7.67E-08	1.04E-07	9.61E-08	1.01E-08	2.35E-08	2.18E-08	3.18E-07	7.40E-07	6.86E-07	1.43E-06
Indeno(1,2,3-cd)pyrene	1.24E-07	1.67E-07	1.55E-07	1.24E-07	1.67E-07	1.55E-07	1.63E-08	3.78E-08	3.50E-08	5.13E-07	1.19E-06	1.11E-06	2.30E-06
Dibenz(a,h)anthracene	1.03E-07	1.40E-07	1.29E-07	1.03E-07	1.40E-07	1.29E-07	1.36E-08	3.16E-08	2.93E-08	4.28E-07	9.97E-07	9.24E-07	1.92E-06
Benzo(g,h,l)perylene	1.66E-07	2.24E-07	2.08E-07	1.66E-07	2.24E-07	2.08E-07	2.18E-08	5.08E-08	4.71E-08	6.88E-07	1.60E-06	1.48E-06	3.09E-06
Total PAH	6.33E-05	8.55E-05	7.92E-05	6.33E-05	8.55E-05	7.92E-05	8.32E-06	1.94E-05	1.79E-05	2.63E-04	6.11E-04	5.66E-04	1.18E-03

SO₂ (g/s) 0.039

* Otzained from the Olgoer Mars Sile Information for Gas Cartiers, available at: http://s/vangsikg.ng/wp-content/uploads/2020/06/G/Grm-Olgoer-Mars.pdf - Main Engine Bating Power 10.199 Wr. Audiany Figine Rating Power 3.000 WV - Analana Yollier Fued Commotion Bate - Data To Information for or dray) * According to "Current Methodologies in Preparing Mobile Source Port-Related Emission Inventories" April 2009, US EPA. Available at: https://www.epa.gov/sites/default/Res/2016-06/documents/2009-port-inventory.guidance.pdf br (Cornumities, Bate 2009 - Assist Tugboat Propulsion Engine Power = 1,540 WW and Assist Tugboat Audiany Engine Power = 100 WV (Table 3-10)

Sample Calculations

NOx Hourly Emis, Hotelling (g/s) =	Engine Rating Power (KW) x Load Factor x Emission Factor (g/KWh) x Conversion												
NOx Hourly Emis, Hotelling (g/s) =	3,600	kw	x	0.26	×	12.10	g	x	1	hour			
NOx Hourly Emis, Hotelling (g/s) =	3.146	8 5					kWh		3600	5			
Benzene Hourly Emis, Hotelling (g/s)=	Engine Rating Power (kW) x Load Factor x Emission Factor (g/kWh) x Conversion												
Benzene Hourly Emis, Hotelling (g/s)=	3,600	kw	x	0.26	x	1.20E-06	kg kWh	x	1 3600	hour	×	1000	8

18.15 1.51 0.69 0.99 0.79

0.01

Rev. Table 6-1 Air Contaminant Releases – Construction
--

		Emission Rate (tonnes/year)										
Air Contaminant	CAS #	Blasting	Stockpile Fugitives	Transfer Points at Stockpiles	Crushing and Screening	Laydown Areas Fugitives	Unpaved Roads Fugitives	Mobile Combustio n Sources – Heavy Equipment	Stationary Combustion	Total		
NOx	10102-44-0	32.0	-	-	-	-	-	36	65.6	133		
CO	630-08-0	136	-	-	-	-	-	310	14.1	461		
SO ₂	7446-09-5	4.0	-	-	-	-	-	41	4.3	50		
ТРМ	N/A-1	30.1	3.2	12.6	19.9	31.0	0.067	1.2	4.6	165		
PM ₁₀	N/A-2	15.6	1.6	5.9	7.3	15.5	0.002	1.2	4.6	38		
PM _{2.5}	N/A-3	9.0	0.6	0.9	1.1	6.2	2.14E-04	1.2	4.6	15.8		