GOVERNMENT OF NEWFOUNDLAND

Department of Environment and Conservation

Calculation of the Langelier Index

The Langelier index (LI) is an approximate measure of the degree of saturation of calcium carbonate in water. It is calculated using the **pH**, **alkalinity** (reported as $CaCO_3$ in mg/litre), **calcium concentration** (reported as Ca^{2+} in mg/litre), **total dissolved solids** (reported as *TDS* in mg/litre), and **water temperature** (reported as *t* in degrees Celsius, °C) of a water sample collected at the tap. These parameters are highlighted in **red** in the calculations listed below.

The Langelier Index (LI) is calculated as follows:

$$LI = pH - pH_s$$

where pH = measured pH of the tap water pH_s = calculated saturation pH of the tap water

 $pH_s = pK'_2 + pCa^{2+} - pK'_s - \log(2[Alk]) - \log\gamma_m$

In order to calculate $pH_{s_{c}} pK'_{2}$, pK'_{s} and pCa^{2+} must first be computed. Explanations of how to do these calculations are given below. In addition, concentrations of Ca^{2+} and *Alk* must also be converted to moles per litre. These steps are described below.

1. To compute pK'_2 , which is the negative log of the activity constant K'_2 $(-\log K'_2)$:

a. Determine the Ionic Strength (I), in moles per litre (M), of the water:

$$I(M) = (2.5 \times 10^{-5} moles / mg) \times [TDS(mg / litre)]$$

where TDS = Total Dissolved Solids (mg/litre)

b. Determine γ_m , the activity coefficient of monovalent ions (ions that are able to form only one covalent or ionic bond – having only one valence) using the Davies relationship:

If
$$I < 0.5M$$
, $\log \gamma_m = -AZ^2 \left(\frac{\sqrt{I}}{1+\sqrt{I}} - 0.2I\right)$
If $0.5M < I < 1.0M$, $\log \gamma_m = -AZ^2 \left(\frac{\sqrt{I}}{1+\sqrt{I}}\right)$

where *M* = molarity (moles per litre)

$$A = 1.82 \times 10^6 (DT)^{\frac{-5}{2}}$$

D = 78.3, the dialectric constant for water and T = temperature in Kelvins (K). To convert **temperature** (*t*) in degrees centigrade (°C) to Kelvins (K): [T = t(°C)+273]

and Z = the oxidation number of the chemical species in question, which for monovalent ions = 1

If
$$0.5M < I < 1.0M$$
, $\log \gamma_m = -AZ^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} \right)$

c. Calculate pK_2 :

$$pK_2 = \frac{2902.39}{T} + 0.02379(T) - 6.498$$

From which we calculate K_2 :

$$K_2 = 10^{-pK_2}$$

d. Calculate γ_D , the activity coefficient of divalent ions (ions having two valences):

$$\log \gamma_D = -AZ^2 \left[\frac{\sqrt{I}}{1 + \sqrt{I}} \right]$$

where as defined earlier;

 $A = 1.82 \times 10^{6} (DT)^{\frac{-3}{2}}$ D = 78.3, the dialectric constant for water, and T = temperature in Kelvins (K). To convert temperature (t) in degrees centigrade (°C) to Kelvins (K): [T = t(°C)+273]

and Z = the oxidation number of the chemical species in question, which for divalent ions = 2

Then calculate γ_D :

$$\gamma_D = 10^{\log \gamma_D}$$

e. Calculate K'_2 :

$$K_2' = \frac{K_2}{\gamma_D}$$

f. We can then calculate pK'_2 :

$$pK_2' = \log \frac{1}{K_2'}$$

2. To compute pK'_s which is the negative log of the activity constant K'_s $(-\log K'_s)$:

a. First compute pK_s :

$$pK_s = 0.01183t + 8.03$$

where t = **temperature in degrees Centigrade** (°C)

b. Convert the pK_s value to K_s :

$$K_s = 10^{-pK_s}$$

c. Using the value of γ_D calculated earlier, calculate K'_s :

$$K_s' = \frac{K_s}{(\gamma_D)^2}$$

d. We can then calculate pK'_s :

$$pK'_s = \log \frac{1}{K'_s}$$

- **3.** To compute pCa^{2+} :
 - a. Convert the concentration of Ca^{2+} (mg/litre) to moles per liter:

$$Ca^{2+}(moles/litre) = \frac{[Ca^{2+}(mg/litre)] \times 10^{-3}}{40}$$

c. Calculate pCa^{2+} :

$$pCa^{2+} = \log \frac{1}{[Ca^{2+}(moles/litre)]}$$

4. Alkalinity (*Alk*) is reported as mg/litre *CaCO*_{3.} It is necessary to convert the given alkalinity concentration to moles/litre:

$$[Alk(moles/litre)] = \frac{[CaCO_3(mg/litre)] \times 10^{-3}}{100}$$

Reference:

Benefield, L., Judkins, J. & Weand, B. 1982. *Process Chemistry for Water and Wastewater Treatment*. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.