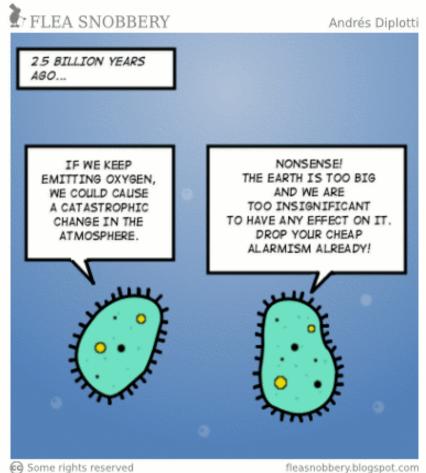
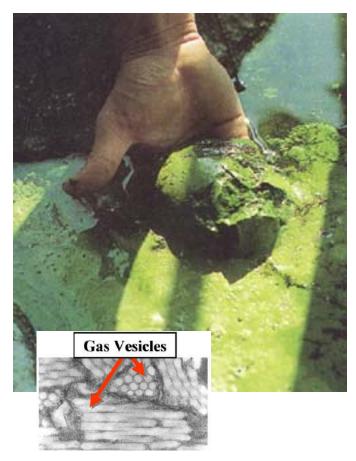
In Vivo Monitoring of Blue-Green "Algae" Using Hydrolab Multi-Parameter Sondes


Patrick A. Sanders Hach Hydromet Hydrolab and OTT Products E-Mail: psanders@hach.com

What are Blue Green "Algae"

- Widely thought to be responsible for creating much of Earth's atmospheric oxygen
- Blue-Green Algae is a common name for the more accurate term: Cyanobacteria
- Cyanobacteria are not related to algae, they are actually prokaryotic bacteria
- Utilize chlorophyll based photosynthesis for metabolism
- An important primary producer found in all aquatic systems



Cyanobacteria Characteristics

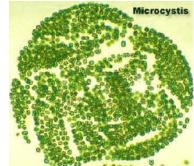
- Can fix molecular nitrogen (N2) from the atmosphere & water and convert it to ammonium
- Nitrogen fixation allows cyanobacteria to maintain high rates of growth
- Can absorb and store excess phosphorus when it is available
- Can adjust their buoyancy to take advantage of better environmental conditions
- Are "hard to handle" and can "taste bad" to primary consumers / grazers

Why Monitor Cyanobacteria?

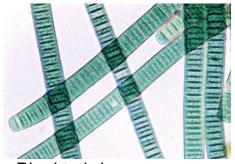
- Some species can release neurotoxins and hepatotoxins that can be a public health risk
- Listed by US EPA as a Water Contaminant Candidate
- Blooms are an indicator of eutrophication and can affect water body aesthetics
- Ecological systems can be adversely affected by cyanobacterial blooms
- Can cause taste & odor problems, as well as an increase in filter run times in drinking water plants
- Research on primary productivity, nutrient cycling, ecosystem dynamics, etc.

Noteworthy Cyanobacteria Genera Due to their Ability to Create Cyanotoxins & Form Nuisance Blooms

Anabaena spp.


Aphanizomenon spp.

Anabaenaopsis spp.


Cylindrospermopsis spp.

Microcystis spp.

Nostoc spp.

Planktothrix spp.

Common Cyanobacteria Toxins

Certain genera of Cyanobacteria can produce a wide array of neurotoxins, liver toxins, cell toxins and skin irritants. Currently ~46 species of Cyanobacteria have been shown to be toxic to vertebrates (Chorus & Bartrum 1999)

<u>Toxin</u>	Cyanobacteria Genera	
Microcystin	Microcystis, Anabaena, Planktothrix,	
(affects liver)	Nostoc, Anabaenopsis, & more	
Anatoxin-a	Anabaena, Aphanizomenon	
(affects nerve synapse)		
Cylindrospermopsin	Cylindrospermopsis, Aphanizomenon	
(affects liver)		
Saxitoxins	Anabaena, Cylindrospermopsis,	
(affects nerve axons)	Aphanizomenon, & more	
Lipopolysaccharides	All	
(potential irritant, affects exposed tissue)		

Top 6 Ways to Assess Whether a Cyanobacterial Problem Exists or is Likely

From the World Health Organization (1999)

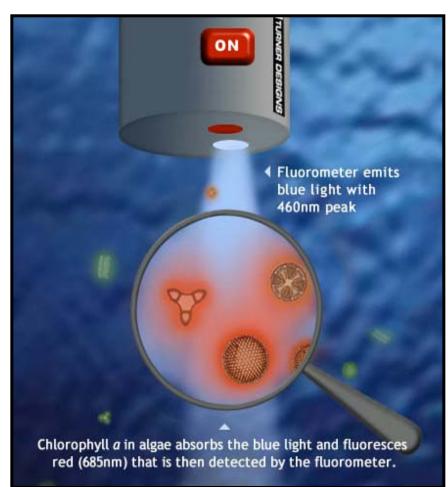
 Table 2: Information to assess whether a cyanobacterial problem exists or is likely, from WHO 1999.

Observation	Sources of Information	Management Options
 Potential for bloom formation 	Water quality monitoring data (nutrients, temperature, etc)	Basis for proactive management
2. History of bloom formation	Cyanobacterial blooms may follow marked seasonal and annual patterns	Can inform proactive management
 Monitoring for Cyanobacteria and/or cyanotoxins 	Turbidity, discoloration, cell microscopic identification, cell counts and toxin analysis provide increasingly reliable information	Possible only during event and enables only reactive management
4. "Scum Scouting"	In areas of high public interest the general public and untrained agency staff may play a role in identifying and reporting obvious hazards such as scums	Possible only during event and enables only reactive management
 Reporting of animal deaths and human illness 	Requires both volition and a mechanism for data collection which may not exist	Possible only during event and informs only reactive management
 Epidemiological detection of disease patterns in the human population 	Requires both effective reporting and large scale effects before detection is likely	Normally well after an event; can inform future management strategies

Source: World Health Organization, 1999

In Vivo Fluorometry (IVF) can Enable Proactive Management of Cyanobacteria

<u>In Vivo</u>


 Occurring or made to occur within a living organism or natural setting

Fluorescence

 The phenomena of some compounds to absorb specific wavelengths of light and instantaneously emit longer wavelengths of light energy

In Vivo Fluorometry Benefits

- Ability to collect large quantities of data quickly & easily, w/o special handling
- Ability to collect & view data in real-time
- Ability to build up historical datasets

graphic from Turner Designs - used w/ permission

Using In Vivo Fluorescence on a Hydrolab for Cyanobacteria Monitoring

- Hydrolab sondes can be used for multiple water quality parameters, including cyanobacteria.
- Cyanobacteria is measured using in vivo fluorescence sensors manufactured by Turner Designs.
- IVF sensor characteristics include:
 - high sensitivity and low noise
 - fast response
 - wide dynamic range
 - excellent turbidity rejection
 - high quality fluorescence data

What is being Measured with our Sensors? Chlorophyll a / Phycocyanin / Phycoerythrin

<u>Chlorophyll a</u> (chl a) (Ex: 440nm / Em: 680nm)

- Located within both photosystems (PS I and PS II) in phytoplankton chloroplasts and in cyanobacteria
- Absorbs light for photosynthesis
- Used to estimate phytoplankton biomass

Phycocyanin (PC) (Ex: 595nm / Em: 650nm)

- Used primarily for freshwater BGA applications
- Light harvesting antennae of PS II

Phycoerythrin (PE) (Ex: 525nm / Em: 570nm)

- Used primarily for marine BGA applications
- Light harvesting antennae of PS II

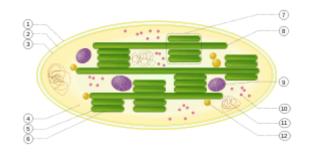
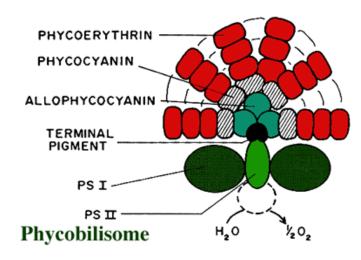
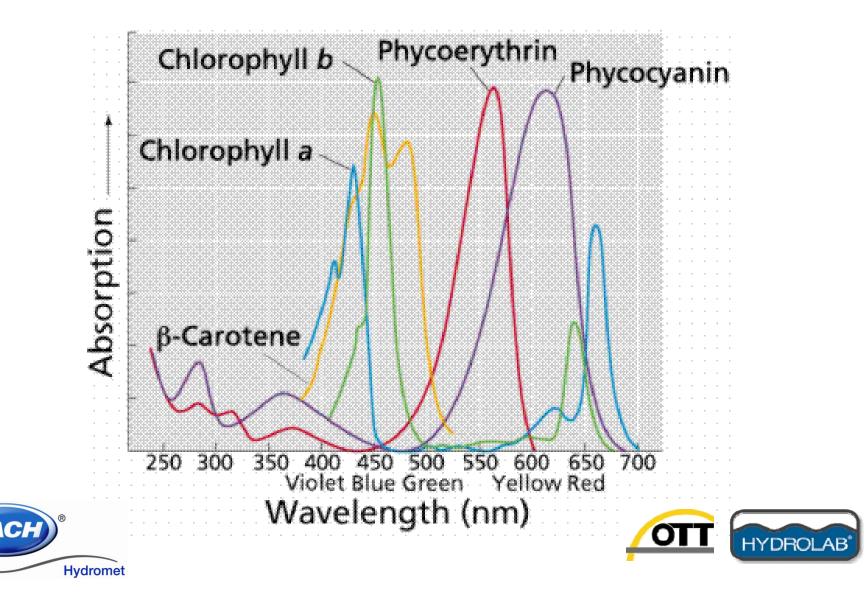
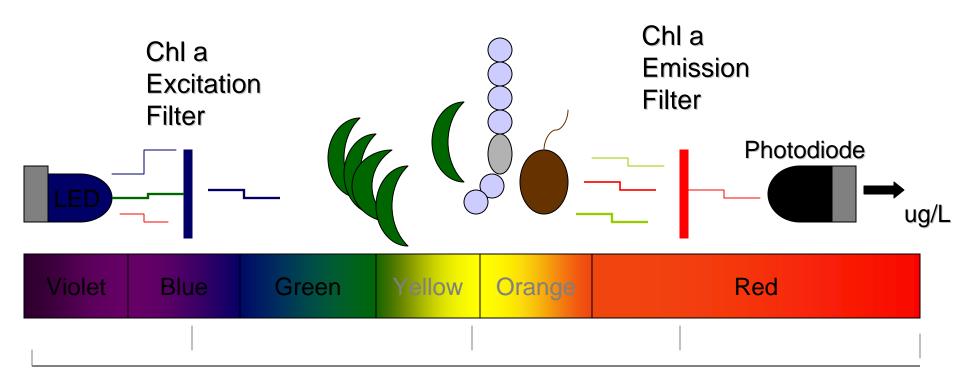
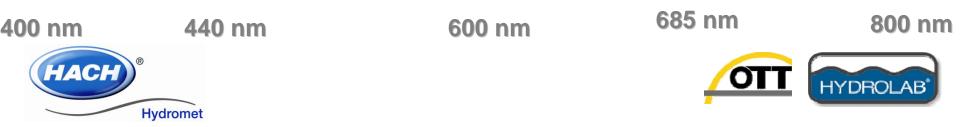
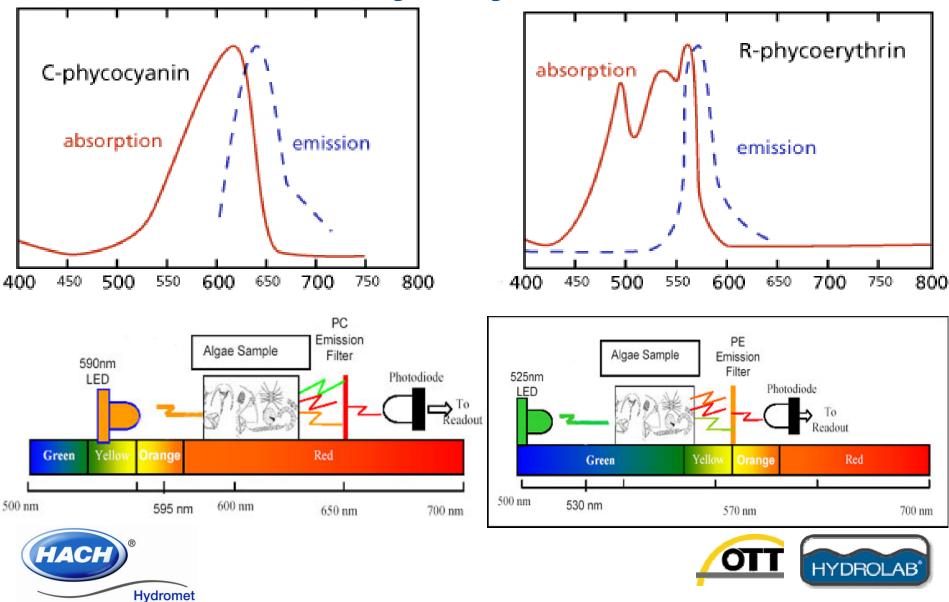




Image source: Wikipedia





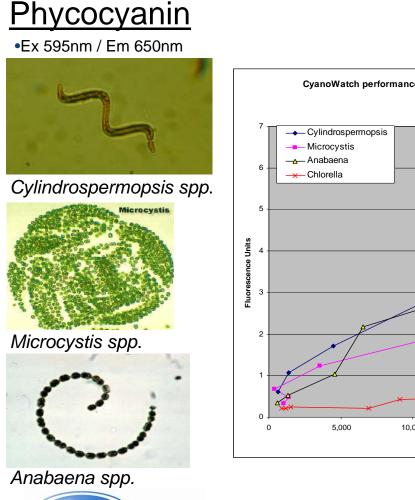
Absorption Spectra for Chl a, PC, & PE

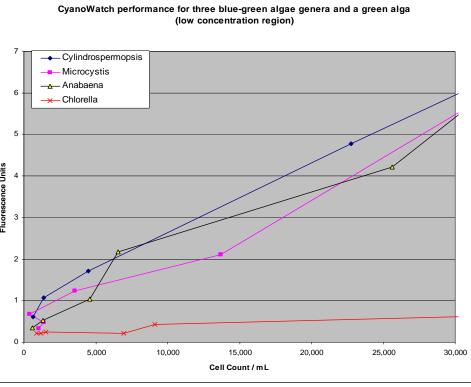


Optical Configuration for Chlorophyll a

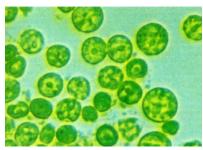
Optical Configurations for Phycocyanin & Phycoerythrin

Calibration Standards & Data Correlation

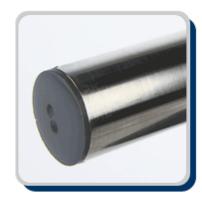

- Adjustable solid secondary standard accessory available for calibration and to check for sensor stability and drift.
- Sensor data correlations can be made with:
 - cell counts
 - extracted pigments (HPLC, absorbance)
 - presence of taste and odor
 - filter run times
- Purified Phycobilin Pigments Available:
 - Prozyme (www.prozyme.com)



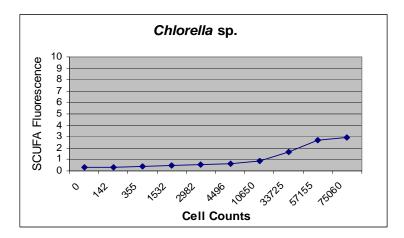
Sensor Performance

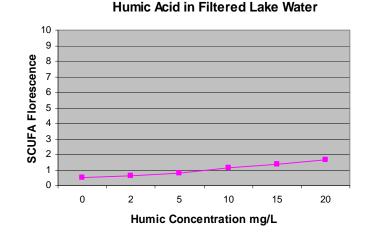


Hydromet



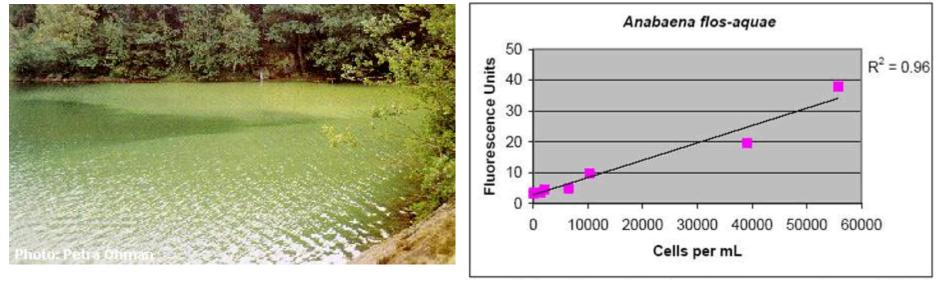
•Ex 440nm / Em 680nm


Chlorella spp.



Interfering Substances

Green Algae

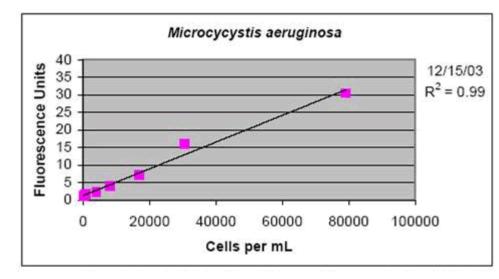

Humic Acid

 Algal groups not containing phycocyanin do not interfere with fluorescence readings • At high humic concentrations there is no significant fluorescence signal indicating that the optics are susceptible to humic interference

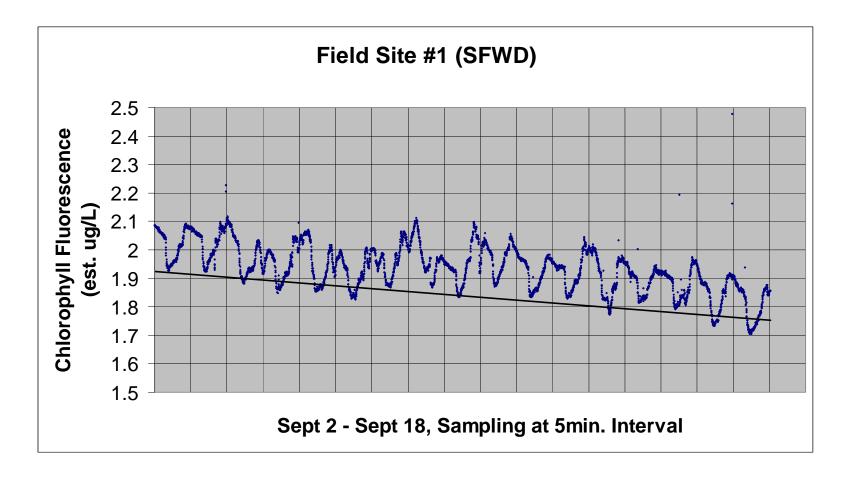
Example: Anabaena flos-aquae IVF Correlation to Cell Counts

Minimum Detection Limit: ~150 cells/mL

Linear up to >150,000 cells/mL


Accuracy +/- 3% for signal levels > 0.5% FS

Example: Microcystis aeruginosa IVF Correlation to Cell Counts


Minimum Detection Limit: ~150 cells/mL

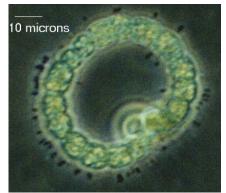
Linear up to >150,000 cells/mL

Accuracy +/- 3% for signal levels > 0.5% FS

The Value of Real-Time IVF Data

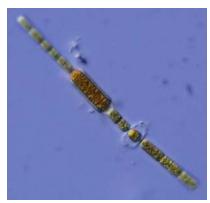
Anabaena spp.

Anabaena spp.



Capable of producing the hepatotoxin Microcystin and the neurotoxins Anatoxin-a and Saxotoxin.

Anabaenopsis spp.


Anabaenaopsis spp.

Aphanizomenon spp.

Aphanizomenon spp.

Capable of producing the hepatotoxin Cylindrospermopsin, and the neurotoxins Anatoxin-a and Saxotoxin.

Cylindrospermopsis spp.

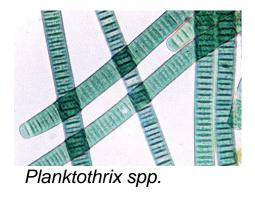
Cylindrospermopsis spp.



Capable of producing the hepatotoxin Cylindrospermopsin, and the neurotoxin Saxotoxin.

Microcystin spp.

Nostoc spp.


Nostoc spp.

Planktothrix spp. (Oscillatoria)

Thank you for your attention. Questions?

