

Optimizing Water Quality Sampling Through Application Of Real Time Ionic Concentration Regression Models

Real-Time Water Quality Monitoring Workshop, 2018

Shibly Rahman Water Resources Management Division

NL Department of Municipal Affairs and Environment

Overview

- Purpose
- Traditional Grab Sampling Vs Real Time Sampling
- Data Collection, Comparison and Methodology
- Sampling Site Description
- Effect of flow on parameter concentration
- Statistical analysis for Conductivity and Parameter Concentration
- Conductivity Ionic Concentration Model (OLS)
- Real Time Ionic Concentration Estimation
- Conclusion and Path Forward

Purpose

- Determine whether differences exists in water quality parameter concentration between urban and non urban water bodies.
- Role of flow in parameter concentration.
- Identify the relationship between Conductivity and Ionic Concentration among four rivers on the island of Newfoundland.
- Apply the model to predict Ionic Concentration in real time and optimize sampling time.

Types of Sampling

- Continuous/Real Time Sampling:
 - Provides a clearer picture of water quality over time.
 - Sample results are obtained at regular intervals
- Grab Sampling:
 - Provides a snapshot of water quality at the time the sample was taken.
 - Takes some time for the sample results to be returned from lab.

Sample Data Measurement

Field Data Measurement

Conductivity Sensor

Data Displayed in Surveyor

Collection of Grab Sample within close period of time

Data Comparison

• The instrument measurements were compared for accuracy using the comparison chart.

		Rank					
Parameter	Excellent	Good	Fair	Marginal	Poor		
Temperature °C		± 0.2	± 0.2-0.5	± 0.5-0.8	± 0.8-1.0	± 1.0	
pH (units)		± 0.2	± 0.2-0.5	± 0.5-0.8	± 0.8-1.0	± 1.0	
	>35 µS/cm	± 3	± 3-10	± 10-15	± 15-20	± 20	
Specific Conductivity	<35 µS/cm	± 3%	± 3%-10%	± 10%-15%	± 15%-20%	± 20%	
Dissolved Oxygen (mg/L)		± 0.3	± 0.3-0.5	± 0.5-0.8	± 0.8-1.0	± 1.0	
	<40 NTU	± 2	± 2-5	± 5-8	± 8-10	± 10	
Turbidity	>40 NTU	± 5%	± 5-10%	± 10-15%	± 15-20%	± 20%	

Data Collection

Department of Environment and Conservation – Automatic Data Retrieval System (ADRS) v6.0

Data Collection

- Individual parameters graphed independently to identify trends over specific time period.
- Available for public view.
- Updated every two hours.

Newfoundland Labrador

Methodology

Map of the study area

Sampling Site – Leary's Brook

- Located in the vicinity of Avalon
 Mall and Memorial
 University.
- Densely surrounded by houses, buildings, business facilities and major roads.

Sampling Site – Waterford River

- Situated near the downtown area of the City of St. John's.
 - Major industrial areas are located within the watershed.

Sampling Site – Rattling Brook

 Located within the construction zone of a commercial processing facility.

٠

Major work resulting from the construction of the processing facility has occurred at the time of sampling.

Sampling Site – Humber River

- Classified as non urban site.
- Small communities located within the watershed but the overall population density is sparse.

Statistical Analysis

- ➢ Min, Max, Mean, Median, 25th and 75th Percentile
- Scatter plot (linearity test)
- Box Plot (Outlier test)
- Model Ionic Concentration Vs Conductivity using Ordinary Least Square.

Statistical Analysis

Stations	Parameters	Size	Min	Max	Mean	Median	Q1	Q3
	Conductivity	47	199.9	6262	799.8	483.1	348.9	696.1
	Sodium	47	29	1280	143.2	80	62.5	113
Leary's Brook @	Chloride	47	48	1770	220.1	131	99.5	194
	Calcium	47	4	47	11.4	9	7	12.5
	Sulphate	47	7	84	13.6	10	9	12.5
	Conductivity	46	256.7	2726	659	543	423.2	673.8
	Sodium	46	39	532	109	86.5	70.5	105.5
Waterford River @	Chloride	46	60	797	176	135.5	109	172 5
Klibride	Calcium	46	7	32.9	13.4	13	10	15 75
	Sulphate	46	9	31	13.4	12	11	14

Statistical Analysis

Stations	Parameters	Size	Min	Max	Mean	Median	Q1	Q3
	Conductivity	56	35.5	64.3	49.9	52.8	41.3	57.3
Dottling Brook	Sodium	56	3	7.3	5.5	6	4.7	6
Below Bridge	Chloride	56	6	14	10.3	11	8.8	12
	Calcium	56	1	5	2.8	3	2	3
	Sulphate	56	1	5	3.3	3	3	4
	Conductivity	27	30.1	43	38.5	38.6	37	40
Humber River @	Sodium	27	2	3.4	2.4	2	2	3
Humber Village	Chloride	27	3	5.6	4.1	4	4	4.3
Bridge	Calcium	27	3	5	4.2	4	4	4.5
	Sulphate	27	1	4	2	2	1	3

Parameter Comparisons Across Locations

Boxplot Comparsions across Stations - Conductivity

Stations

Newfoundland Labrador

Parameter Comparisons Across Locations

Newfoundland Labrador

Parameter Comparisons Across Locations

Sampling Location Flow Profiles

Effect of Flow on Parameter Concentration

Effect of Flow on Parameter Concentration

Variable	Regression Model	R-square	P-Value	Regression Model	R- square	P- Value
	LEARY'S BROOK	WATERFORD RIVER				
Sodium	$Na = 79.12 - 2.72 \times Flow$	0%	0.915	$Na = 88.82 + 1.643 \times Flow$	0%	0.644
Calcium	$Ca = 9.78 - 3.11 \times Flow$	13.3%	0.025	$Ca = 11.49 - 0.1744 \times Flow$	0%	0.367
Chloride	$Cl = 128.8 - 12.05 \times Flow$	0%	0.201	$Cl = 137.5 + 4.056 \times Flow$	0%	0.523
Sulphate	SO4 = 10.07 - 0.54 \times Flow	0%	0.672	$SO4 = 12.11 - 0.047 \times Flow$	0%	0.816
	HUMBER RIVER			RATTLING BR	OOK	
Sodium	$Na = 2.29 + 0.0009 \times Flow$	0%	0.443	$Na = 4.492 - 0.0913 \times Flow$	0%	0.548
Calcium	$Ca = 3.734 + 0.0023 \times Flow$	0%	0.413	$Ca = 1.737 + .0283 \times Flow$	0%	0.802
Chloride	$Cl = 3.598 + 0.0016 \times Flow$	5%	0.128	$Cl = 6.722 - 0.106 \times Flow$	0%	0.735

Stations	Parameters	Regression Model	R- square ^a	P-Value ^b	Bias Corr. c
l earv's	Sodium	log(Na) = - 0.8909 + 1.045 × log(Cond)	0.99	<0.01	1.0027
Leary s Brook @	Chloride	log(Cl) = - 0.6339 + 1.0244 × log(Cond)	0.99	<0.01	1.0017
Clinch	Calcium	log(Ca) = - 0.7562 + 0.639 × log(Cond)	0.89	<0.01	1.0115
Crescent	Sulphate	log(SO4) = - 0.5362 + 0.5857 × log(Cond)	0.91	<0.01	1.0094
Waterford River @ Kilbride	Sodium	log(Na) = - 0.9876 + 1.07 × log(Cond)	0.978	<0.01	1.0029
	Chloride	log(Cl) = - 0.8706 + 1.102 × log(Cond)	0.976	<0.01	1.0017
	Calcium	log(Ca) = - 0.6766 + 0.644 × log(Cond)	0.807	<0.01	1.0109
	Sulphate	log(SO4) = - 0.2268 + 0.4848 × log(Cond)	0.77	<0.01	1.0077

^aR-square (adjusted): the proportion of variation in the response data that is explained by the predictor; ^bP-value: statistical significance between the association between the response and predictor; ^cBias Correction: Bias Correction performed according to (Duan, 1983).

Stations	Parameters	Regression Model	R- square ^a	P-Value ^b	Bias Corr. c
Dettline	Sodium	log(Na) = - 0.93748 + 1.1833 × log(Cond)	0.639	<0.01	1.0089
Brook	Chloride	log(Cl) = - 1.0007 + 1.11 × log(Cond)	0.778	<0.01	1.0065
Below Bridge	Calcium	log(Ca) = - 1.3081 + 1.0276 × log(Cond)	0.394	<0.01	1.0231
Bridge	Sulphate	log(SO4) = - 0.6554 + 0.6829 × log(Cond)	0.13	<0.01	1.0437
Humber River @ Humber Village	Sodium	log(Na) = - 0.7416 + 0.704 × log(Cond)	0.02	0.218	1.0205
	Chloride	log(Cl) = 0.3876 + 0.1398 × log(Cond)	-0.036	0.759	1.0129
	Calcium	log(Ca) = - 0.3131 + 0.5883 × log(Cond)	0.07	0.098	1.0073
	Sulphate	log(SO4) = 1.5825 + -0.8448 × log(Cond)	-0.026	0.56	1.139

^aR-square: the proportion of variation in the response data that is explained by the predictor; ^bP-value: statistical significance between the association between the response and predictor; ^cBias Correction: Bias Correction performed according to (Duan, 1983).

Model Validation – Leary's Brook

Model Validation – Waterford River

Model Application – Leary's Brook

Learys Brook at Prince Philip Drive - NF02ZM0178

Dept of Municipal Affairs and Environment - Water Resources Management Division

Model Application – Leary's Brook

Newfoundland Labrador

Model Application – Waterford River

Waterford River at Kilbride - NF02ZM0009 Dept of Municipal Affairs and Environment - Water Resources Management Division SPEC CONDUCT Predicted CHLORIDE 640 -300 576--250 Predicted Chloride (mg/L) 64 50 n Sep-25-18 Sep-30-18 Oct-05-18 Oct-10-18 Oct-15-18 Oct-20-18 Oct-25-18 14:10 14:10 14:10 14:10 14:10 14:10 13:55 Newfoundland Labrador

Model Application – Waterford River

Waterford River at Kilbride - NF02ZM0009

Dept of Municipal Affairs and Environment - Water Resources Management Division

Newfoundland Labrador

Conclusion

- Urban stations showed greater variability in parameter concentration as a result of anthropogenic influence.
- Ionic concentration of selected parameters can be predicted in real time using real time conductivity as a predictor at certain sites.
- The relationship between the predictor and the estimated parameters were stronger in urban sites in comparison to non urban sites.
- The models would greatly aid in estimation of ionic concentration parameters saving time and resources required in grab sampling.

Path Forward

- Potential parameters of interest such as total suspended solids can be estimated in emerging real time sites using real time parameters such as turbidity as predictors by applying the methodological analysis applied in this study.
- Real time identification of impact of water quality due to the application of road salts.
- Real Time Detection of Salt water intrusion.

Acknowledgements

Water Resources Management Division:

• Tara Clinton, Ryan Pugh, Keith Abbott, Kyla Brake, Leona Hyde

Memorial University:

• Dr Leonard Lye

References

Optimizing water quality sampling through application of real time ionic concentration regression models, Shibly Rahman Renee Paterson Water Quality Research Journal (2015) 51 (3): 184-199.

- Christensen, V. G., Rasmussen, P. P. & Ziegler, A. C. 2002 Real time water quality monitoring and regression analysis to estimate nutrient and bacteria concentrations in Kansas streams. *Water Sci. Technol.* 45, 205–219.
- Clissie, D., Pollock, T. L. & Cunjak, R. A. 1996 Variation in stream water chemistry and hydrograph separation in a small drainage basin. J. Hydrol. 178, 137–157.
- Duan, N. 1983 Smearing estimate a nonparametric retransformation method. J. Am. Stat. Assoc. 78, 605–610.
- El-Korashey, R. 2009 Using regression analysis to estimate water quality constituents in Bahr El Baqar Drain. J. Appl. Sci. Res. 5, 1067–1076.
- Granato, G. E. & Smith, K. P. 1999 Estimating Concentrations of Road-Salt Constituents in Highway-Runoff from Measurements of Specific Conductance. U.S. Geological Survey, USA.
- Harvey, R., Lye, L. & Khan, A. 2017 Recent advances in the analysis of real-time water quality data collected in Newfoundland and Labrador. *Can. Water Resour. J.* **36**, 349–361.
- Lind, C. J. 1970 Specific Conductance as a Means of Estimating Ionic Strength. U.S. Geological Survey Professional Paper, USA, pp. 272–280.
- Miller, R. L., Bradford, W. L. & Peters, N. E. 1988 Specific conductance: theoretical considerations and application to

analytical quality control. U.S. Geological Survey Water-Supply Paper 2311.

- Ryberg, K. R. 2006 Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003–05: U.S. Geological Survey Scientific Investigations Report 2006-5241.
- Ryberg, K. R 2007 Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Sheyenne River, North Dakota, 1980–2006: U.S. Geological Survey Scientific Investigations Report 2007-5153.
- Stevens, R. J., O'Bric, C. J. & Carton, O. T. 1995 Estimating nutrient content of animal slurries using electrical conductivity. *J Agric. Sci.* 125 (2), 233–238.
- Thomas, A. G. 1986 Specific conductance as an indicator of total dissolved solids in cold dilute waters. *Hydrol. Sci. J.* 31, 81–92.
- Water Survey of Canada 2073 HYDAT Database. www.ec.gc.ca/rhcwsc/default.asp?lang=En&n=9018B5EC-1, Environment Canada, Canada.
- Williams, W. D. 1966 Conductivity and the concentration of total dissolved solids in Australian lakes. Aus. J. Marine Freshwater Res. 17, 169–176.

