

Real Time Water Quality Report Humber River at Humber Village

Deployment Period 2017-07-28 to 2017-09-11

Government of Newfoundland & Labrador Department of Municipal Affairs and Environment Water Resources Management Division St. John's, NL, A1B 4J6 Canada

Prepared by:

Ian Bell Environmental Scientist

Department of Municipal Affairs and Environment Water Resources Management Division PO Box 2006, Corner Brook, NL, A2H 6J8

t. 709.637.2431

f. 709.637.2541

e. ianbell@gov.nl.ca

General

- This station is operated as part of the Provincial Real Time Water Quality (RTWQ) network.
- This station is operated year round.
- Staff of the Water Resources Management Division (WRMD) monitors the real-time web page on a regular basis. Any unusual observations are investigated.
- This site is easily accessed and the instrument is normally removed on a monthly to bimonthly basis for maintenance and calibration and is reinstalled within one to two days. During the winter months the deployment periods tend to be longer as the instrument is often frozen into place and difficult to remove.
- This monthly deployment report, presents water quality and water quantity data recorded at the Humber River at Humber Village station from July 28, 2017, to September 11, 2017.

Quality Assurance / Quality Control

- Water quality instrument performance is tested at the beginning and end of its deployment period. The process is outlined in Appendix A.
- Instruments are assigned a performance rating (i.e., poor, marginal, fair, good or excellent) for each water quality parameter measured.
- Table 1 shows the performance ratings of five water quality parameters (i.e., temperature, pH, specific conductivity, dissolved oxygen and turbidity) measured by the deployed instrument.
- The performances of all sensors were rated fair to excellent at the beginning, and excellent at the end, of the deployment period (Table 1).
- With the exception of water quantity data (stage height), all data used in the preparation of the graphs and subsequent discussion below adhere to this stringent QA/QC protocol. The stage data is raw data that is transmitted via satellite and published on our web page. It has not been corrected for backwater effect. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.

Table 1: Water quality instrument performance at the beginning and end of the deployment

	Humber River				
Stage of deployment	Beginning	End			
Date	2017-07-28	2017-09-11			
Temperature	Excellent	Excellent			
pН	Excellent	Excellent			
Specific Conductivity	Excellent	Excellent			
Dissolved Oxygen	Fair	Excellent			
Turbidity	Excellent	Excellent			

Deployment Notes

Water quality monitoring for this deployment period started on July 28, 2017 and continued without any significant operational issues until September 11, 2017, when the instrument was removed for routine calibration and maintenance.

Data Interpretation

- Data records were interpreted for each station during the deployment period for the following six parameters:
 - (i.) Stage (m)

(iv.) Specific conductivity (μS/cm)

(ii.) Temperature (°C)

(v.) Dissolved oxygen (mg/l)

(iii.) pH

(vi.) Turbidity (NTU)

Stage

- The stage data is raw data that is transmitted via satellite and published on our web page. It has not been corrected for backwater effect. Water Survey of Canada is responsible for QA/QC of water quantity data. Corrected data can be obtained upon request.
- During this deployment period stage values ranged from 1.58 m to 2.00 m at Humber River at Humber Village, with corresponding flow ranging from 158.35 m³/sec to 220.63 m³/sec (Figure 1).
- Flows over the deployment period were typical for the middle to late summer period with relatively steady low flow conditions, and a gentle increasing trend for the latter half of the deployment.

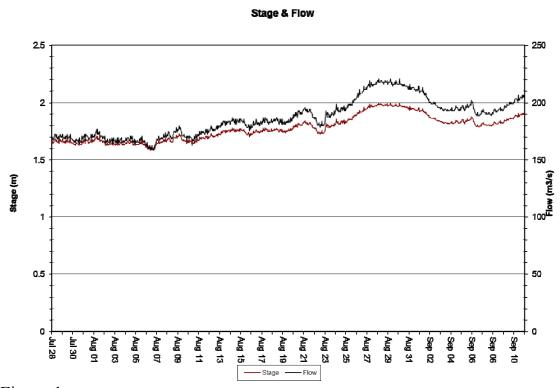


Figure 1: Stage Height (m) at Humber River from July 28, 2017, to September 11, 2017

Temperature

- During this deployment period the water temperature at Humber River ranged from 14.94°C to 18.56°C (Figure 2).
- Water temperature is relatively stable over the deployment period which is consistent with the mid to late summer period.
- The water temperature shows a diurnal trend which is related to the diurnal air temperature trend.

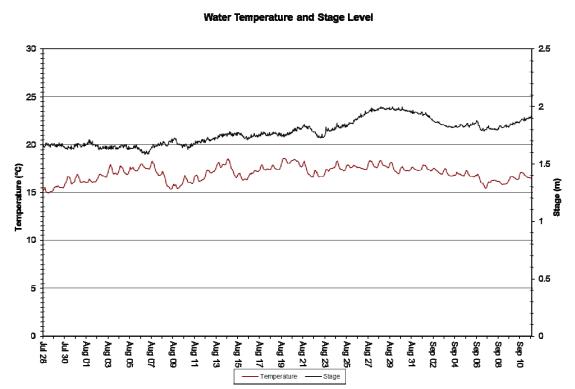


Figure 2: Temperature (°C) at Humber River from July 28, 2017, to September 11, 2017

pН

- During this deployment period pH values at Humber River ranged from 7.02 units to 7.36 units (Figure 3).
- pH was quite stable throughout the deployment period.
- pH shows diurnal fluctuations which are related to the diurnal temperature fluctuations.
- With a median value of 7.20, all of the pH values recorded at Humber River during this deployment period were within the guidelines for pH for the protection of aquatic life (i.e., 6.5 to 9.0 units), as defined by the Canadian Council of Ministers of the Environment (2007).

Water pH and Stage Level

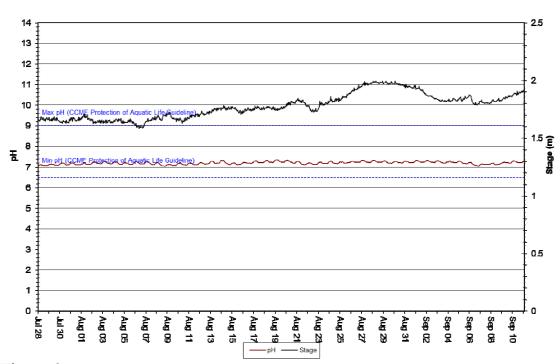


Figure 3: pH values recorded at Humber River from July 28, 2017, to September 11, 2017

Specific Conductivity

- During this deployment period specific conductivity at Humber River ranged from 37.9 μS/cm to 40.6 μS/cm (Figure 4).
- Specific conductivity is relatively stable over the deployment period.

Specific Conductivity of Water and Stage Level

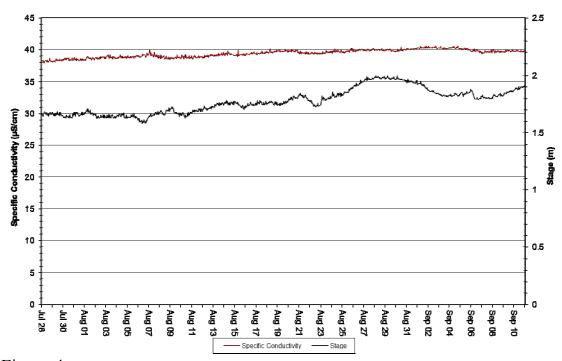


Figure 4: Specific conductivity (μ s/cm) at Humber River from July 28, 2017, to September 11, 2017

Dissolved Oxygen

- During this deployment period dissolved oxygen [DO] values at Humber River ranged from 9.44 mg/l (97.5% saturation) to 10.31 mg/l (105.8% saturation) (Figure 5).
- DO, mg/l, and DO, % saturation, were both relatively stable over the duration of the deployment period.
- DO shows diurnal fluctuations which are related to the diurnal temperature trends for the same period.
- During this deployment period all of the DO values at Humber River were above the minimum guideline set for other life stages (6.5 mg/l) and most of the DO values were at, or above, the minimum guideline set for the protection of early life stages (9.5 mg/l), as determined by the Canadian Council of Ministers of the Environment (2007).

Dissolved Oxygen Concentration and Saturation

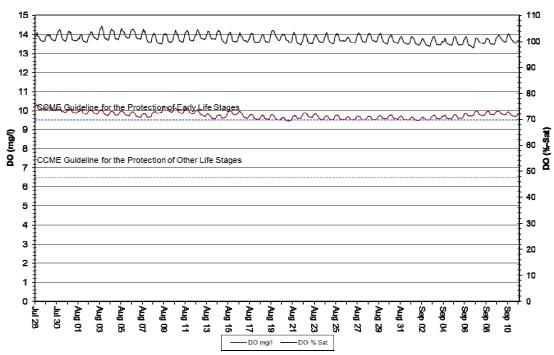


Figure 5: DO (mg/l & % saturation) at Humber River from July 28, 2017, to September 11, 2017

Turbidity

- During this deployment period turbidity values at Humber River ranged from 0.1 NTU to 0.4 NTU which is the typical background level for turbidity at this site (Figure 6).
- The step-like graph for the first half of the deployment period is due to a programming issue with not enough decimal places being recorded. Water Survey Canada staff addressed this programming issue around August 24, 2017, and the graph is more presentable for the second half of the deployment period.

Water Turbidity and Stage Level

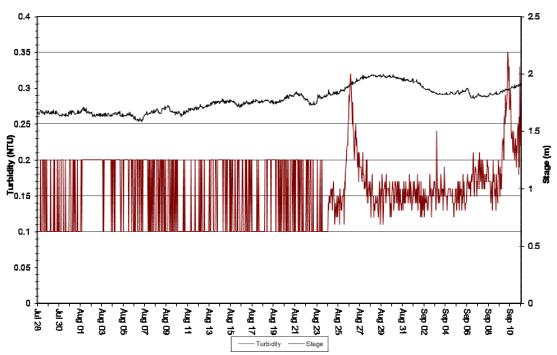
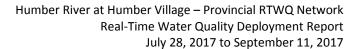



Figure 6: Turbidity (NTU) at Humber River from July 28, 2017, to September 11, 2017

Conclusions

- This monthly deployment report presents water quality and water quantity data recorded at Humber River at Humber Village from July 28, 2017, to September 11, 2017.
- The performances of all sensors were rated fair to excellent at the beginning and excellent at the end of the deployment period.
- Variations in water quality/quantity values recorded at each station are summarized below:
 - O During this deployment period stage values ranged from 1.58 m to 2.00 m at Humber River at Humber Village, with corresponding flow ranging from 158.35 m³/sec to 220.63 m³/sec. These stage and flow values were typical for the middle to late summer period.
 - O During this deployment period the water temperature at Humber River ranged from 14.94°C to 18.56C and was relatively stable, which is consistent with the mid to late summer period.
 - During this deployment period pH values at Humber River ranged from 7.02 units to 7.36 units and were quite stable throughout the deployment period. With a median value of 7.20, all of the pH values recorded at Humber River during this deployment period were within the guidelines for pH for the protection of aquatic life (i.e., 6.5 to 9.0 units), as defined by the Canadian Council of Ministers of the Environment (2007).
 - O During this deployment period specific conductivity at Humber River ranged from $37.9 \,\mu\text{S/cm}$ to $40.6 \,\mu\text{S/cm}$ and was relatively stable over the deployment period.
 - O During this deployment period dissolved oxygen [DO] values at Humber River ranged from 9.44 mg/l (97.5% saturation) to 10.31 mg/l (105.8% saturation) and DO, mg/l, and DO, % saturation, were both relatively stable over the duration of the deployment period. During this deployment period all of the DO values at Humber River were above the minimum guideline set for other life stages (6.5 mg/l) and most of the DO values were at, or above, the minimum guideline set for the protection of early life stages (9.5 mg/l), as determined by the Canadian Council of Ministers of the Environment (2007).
 - o During this deployment period turbidity values at Humber River ranged from 0.1 NTU to 0.4 NTU which is the typical background level for turbidity at this site.

References

Canadian Council of Ministers of the Environment. 2007. Canadian water quality guidelines for the protection of aquatic life: Summary table. Updated December, 2007. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. (Website: http://ceqg-rcqe.ccme.ca/download/en/222/)

APPENDIX A Quality Assurance / Quality Control Procedures

- As part of the Quality Assurance / Quality Control (QA/QC) protocol, the performance of a station's water quality instrument (i.e., Field Sonde) is rated at the beginning and end of its deployment period. The procedure is based on the approach used by the United States Geological Survey (Wagner *et al.* 2006)¹.
- At the beginning of the deployment period, a fully cleaned and calibrated QA/QC water quality instrument (i.e., QA/QC Sonde) is placed *in-situ* with the fully cleaned and calibrated Field Sonde. After Sonde readings have stabilized, which may take up to five minutes in some cases, water quality parameters, as measured by both Sondes, are recorded to a field sheet. Field Sonde performance for all parameters is rated based on differences recorded by the Field Sonde and QA/QC Sonde. If the readings from both Sondes are in close agreement, the QA/QC Sonde can be removed from the water. If the readings are not in close agreement, there will be attempts to reconcile the problem on site (e.g., removing air bubbles from sensors, etc.). If no fix is made, the Field Sonde may be removed for recalibration.
- At the end of the deployment period, a fully cleaned and calibrated QA/QC Sonde is once again deployed *in-situ* with the Field Sonde, which has already been deployment for 30-40 days. After Sonde readings have stabilized, water quality parameters, as measured by both Sondes, are recorded to a field sheet. Field Sonde performance for all parameters is rated based on differences recorded by the Field Sonde and QA/QC Sonde.
- Performance ratings are based on differences listed in the table below.

	Rating					
Parameter	Excellent	Good	Fair	Marginal	Poor	
Temperature (°C)	≤±0.2	$> \pm 0.2$ to 0.5	$> \pm 0.5$ to 0.8	$> \pm 0.8$ to 1	>±1	
pH (unit)	≤±0.2	$> \pm 0.2$ to 0.5	$> \pm 0.5$ to 0.8	$> \pm 0.8$ to 1	>±1	
Sp. Conductance (μS/cm)	≤±3	$> \pm 3$ to 10	$> \pm 10$ to 15	$> \pm 15$ to 20	> ±20	
Sp. Conductance $> 35 \mu \text{S/cm}$ (%)	≤±3	$> \pm 3$ to 10	$> \pm 10$ to 15	$> \pm 15$ to 20	> ±20	
Dissolved Oxygen (mg/l) (% Sat)	≤±0.3	$> \pm 0.3$ to 0.5	$> \pm 0.5$ to 0.8	$> \pm 0.8$ to 1	$>\pm1$	
Turbidity <40 NTU (NTU)	≤±2	$> \pm 2 \text{ to } 5$	$> \pm 5$ to 8	$> \pm 8$ to 10	> ±10	
Turbidity > 40 NTU (%)	≤±5	$> \pm 5$ to 10	$> \pm 10 \text{ to } 15$	$> \pm 15$ to 20	> ±20	

¹ Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods 1–D3, 51 p. + 8 attachments; accessed April 10, 2006, at http://pubs.water.usgs.gov/tm1d3

APPENDIX B
Environment Canada Weather Data – Corner Brook (07-28-2017 to 09-11-2017)

Environment Canada Weather Data – Corner Brook (U/-28-2017 to 09-							
Date/Time	Max Temp	Min	Mean	Heat Deg	Cool Deg	Total	
	(°C)	Temp (°C)	Temp (°C)	Days (°C)	Days (°C)	Precip (mm)	
7/28/2017	22.3	13.1	17.7	0.3	0	0	
7/29/2017	20.8	13.2	17	1	0	3.2	
7/30/2017	22.2	10.5	16.4	1.6	0	0	
7/31/2017	22.6	10.4	16.5	1.5	0	0	
8/1/2017	18.1	11.5	14.8	3.2	0	18	
8/2/2017	21.2	11.1	16.2	1.8	0	0	
8/3/2017	26.3	11.4	18.9	0	0.9	0	
8/4/2017	27.2	11.5	19.4	0	1.4	0	
8/5/2017	27.4	10.7	19.1	0	1.1	0	
8/6/2017	24.1	10.3	17.2	0.8	0	0.6	
8/7/2017	22.2	14.5	18.4	0	0.4	33	
8/8/2017	22.1	14.1	18.1	0	0.1	0	
8/9/2017	21.5	13.1	17.3	0.7	0	0	
8/10/2017	24.9	13.4	19.2	0	1.2	0	
8/11/2017	23.2	11.3	17.3	0.7	0	0	
8/12/2017	26.9	11.5	19.2	0	1.2	8.9	
8/13/2017	23	14.6	18.8	0	0.8	3.1	
8/14/2017	22.4	12.7	17.6	0.4	0	0	
8/15/2017	21	10	15.5	2.5	0	0	
8/16/2017	23.1	9.5	16.3	1.7	0	1.7	
8/17/2017	18.1	11.1	14.6	3.4	0	0	
8/18/2017	18.4	6	12.2	5.8	0	0	
8/19/2017	24	5.1	14.6	3.4	0	0	
8/20/2017	19.8	14.5	17.2	0.8	0	3	
8/21/2017	22.2	16	19.1	0	1.1	0	
8/22/2017	25.7	12.8	19.3	0	1.3	0	
8/23/2017	24.4	12.2	18.3	0	0.3	5.1	
8/24/2017	24.5	15	19.8	0	1.8	1.1	
8/25/2017	23.6	11.4	17.5	0.5	0	0	
8/26/2017	15.2	9.9	12.6	5.4	0	0.8	
8/27/2017	20.4	7.9	14.2	3.8	0	0	
8/28/2017	21.8	7.6	14.7	3.3	0	0	
8/29/2017	22.9	8.7	15.8	2.2	0	0	
8/30/2017	23.6	8.3	16	2	0	0	
8/31/2017	19.2	10.3	14.8	3.2	0	0	
9/1/2017	17.8	7.9	12.9	5.1	0	2.2	
9/2/2017	14.6	5.8	10.2	7.8	0	1.3	

Date/Time	Max Temp	Min	Mean	Heat Deg	Cool Deg	Total
	(°C)	Temp	Temp	Days (°C)	Days (°C)	Precip
		(°C)	(°C)			(mm)
9/3/2017	19.2	5.4	12.3	5.7	0	0
9/4/2017	18.5	7.3	12.9	5.1	0	6.2
9/5/2017	23.9	13.9	18.9	0	0.9	0
9/6/2017	23.8	18.5	21.2	0	3.2	0
9/7/2017	26.1	19.8	23	0	5	18.7
9/8/2017	21	11	16	2	0	2.8
9/9/2017	20.4	9.8	15.1	2.9	0	6.7
9/10/2017	19.5	10.5	15	3	0	0
9/11/2017	12.8	7	9.9	8.1	0	0