

Preventing Disinfection By-product Formation

What are some Affordable Alternatives?

Madjid Mohseni

University of British Columbia

RES'EAU-WaterNET

Annual Drinking Water Workshop Gander, Newfoundland March 27-29, 2012

Mission

RES'EAU-WaterNET is dedicated to maximizing benefits to small and rural communities by becoming the nation's premier solution provider for the drinking water treatment industry

JOHN MEUNIER

66

RES'EAU WaterNET's partners leverage their expertise and passions towards affordable technologies and sustainable best practices that will make safe drinking water readily available to all Canadians. 99

DBPsWhat is the problem?

Concern over possible human health risk (epidemiologic studies):

- Risk of bladder cancer; some cause cancer in laboratory animals
- Recent concerns about possible reproductive & developmental effects

DBPsWhat are they?

More than 600 DBPs identified

Halogenated DBPs

- Halomethanes
- Haloacids
- Haloaldehydes
- Haloketones
- Halonitriles
- Haloamides
- Halonitromethanes
- Halopyrroles
- •Haloquinones
- Halofuranones (e.g., MX)
- Oxyhalides (e.g., bromate)
- Many others

Non-halogenated DBPs

- Nitrosamines
- Aldehydes
- Ketones
- Carboxylic acids
- Others

DBPs

Only 11 DBPs are regulated in U.S.

DBPs MCL (μg/L)

•Total THMs 80

•5 Haloacetic acids 60

•Bromate 10

•Chlorite 100

Note: No evidence of regulated DBPs causing bladder cancer in animals

Little known about occurrence, toxicity of unregulated DBPs

A few *unregulated* DBPs are animal carcinogens

DBPs

How are they formed?

DBP Formation

Natural Organic Matter (NOM)

A possible structure of NOM

+ Cl₂

What is NOM?

- Detritus generated by biological processes
- Complex, highly variable composition

Implications for drinking water treatment

- Precursors to chlorination DBPs
- Bacterial regrowth potential

Implications for advanced processes

- Screening of UV
- Membrane fouling

Engelage et al. (2009)

DBPs and DOC content

DBP Formation Factors

Temperature: Increasing temperature results in increased DBP formation rate

pH: THMs increase somewhat with pH, HAAs increase with decreasing pH

Time: Reaction is rapid for the first few hours and then decreases. Reaction will continue as long as there is disinfectant and precursors

Disinfectant Dose: Increasing dose results in increasing DBP formation

Type and concentration of NOM

What are the alternatives?

- Minimize the use of Cl₂
- Remove NOM

Requirements NOM Removal Technologies

- 1. Applicable to a range of raw water qualities
 - Small systems are widely distributed and each has its unique source water that varies seasonally and with climate
- 2. Operator-friendly
- 3. Robust
- 4. Affordable and cost-effective to operate
- 5. Low in maintenance
- 6. Easily serviced with the assistance of remote expertise

Potential Alternatives

Slow sand filtration

Ion Exchange

Electro-coagulation

Slow Sand Filter

- Used for more than 150 years for water treatment
- Many advantages
 - Simple technology
 - Low cost
 - Low maintenance
 - Passive treatment
 - No chemicals used
 - Green technology

Multistage Slow Sand Filter

Ion Exchange Resins (IEX)

Emerging as effective alternatives for the removal of NOM from raw surface water

Show great promise as pre-treatment to reduce the formation of DBPs and increase the efficiency of many advanced treatments (e.g., H₂O₂/UV, ozone, and membrane)

Ion Exchange Resins (IEX)

- Removal mechanisms:
 - Ionic exchange of negatively charged NOM
 - Adsorption of neutral NOM

Operational Aspect

- □ Column Operation
 - Co-flow regeneration
 - Counter flow regeneration
- ☐ Well-mixed
 - MIEX, other IEX resins
- □ Fluidized or Suspended
 - MIEX or any other IEX resin

DOC removal with IEX - Batch

Practical limitations

- ☐ Affinity difference
- ☐ Effective for low concentrations (brackish or sea water)

- ☐ Only ionized targets can be eliminated
- □ Regeneration (cost, environmental burden)

Electro-coagulation (EC)

1) Generates coagulant

2) Destabilizes and adsorbs pollutants

Electro-coagulation (EC)

Advantages:

- 1)No chemical supply chain
- 2)No chemical handling
- 3) No addition of sulfates or chlorine anions
- 4) Minimal service: one electrode change per year
- 5)No pH control necessary
- 6)Possible flotation removal
- 7) Tunable to quality, dose changing is electronic
- 8) Very compact and small footprint

VS

Disadvantages:

- 1)Electricity + water?
- 2)Passivation

EC for NOM Removal

River Water

EC for **NOM** Removal

River Water - energy consumption

RES'EAU EC for FC and Turbidity Removal

River Water

EC for NOM Removal

Comparison of Metals

EC for NOM Removal

Comparison of Metals for different waters

EC for NOM Removal Effect of NOM Concentration

Fraction of NOM that cannot be removed

Take Home Message

Removal of NOM

- Reduces the formation of undesirable by-products
- Increases the efficacy of many water treatment processes (filtration, chlorination, UV-disinfection)
- Saves significant energy associated with downstream processes
- **EC** and IEX are easily retrofitted to existing facilities

a place of mind

Thank You!

Madjid Mohseni
(604)822-0047
mmohseni@chbe.ubc.ca

www.reseauwaternet.ca