
Blue-Green Algae Treatment 
Challenges: A Large, Small and 

Household Drinking Water 
Perspective

Victoria (Tory) Colling, Xiaohui Jin, Souleymane Ndiongue 
March 25, 2014

2014 Clean & Safe Drinking Water Workshop



2
Blue-Green Algae = Cyanobacteria
Photo by: JL Graham (ks.water.usgs.gov/cyanobacteria)

Photo by: B Dallner

Photo by: B Dallner
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Different shapes and sizes

Photo by: Newcombe, G. (2012)



Introduction
Health Implications:
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Cyanotoxins Health effects

Anatoxin (AnTX) Nervous system
Saxitoxin (STX) Nervous system
Microcystins (MC) Liver 

Tumor promoting effects
Nodularins (Nod) Liver
Cylindrospermopsin (CYN) Liver and kidney

Tumor promoting effects

WHO provisional guideline 1.0 µg/L MC-LR
Canadian maximum acceptable concentration 1.5 µg/L MC-LR



Cyanobacteria & Newfoundland
• 2007: First documented 

cyanobacteria bloom 
(0.24-0.36 µg/L MC-LR)

• 2012: cyanobacterial 
blooms (MC-LR non-
detected)

• 2013: cyanobacterial 
blooms (MC-LR non-
detected)

5www.env.gov.nl.ca/env/waterres/quality/background/bgalgae.html



Challenges:

1. Aging cyanobacteria 
cells

2. Some 
treatment cause 

cell rupture

4. Treatment 
effectiveness varies 

with specific 
cyanotoxins

3. Treatment effectiveness varies with 
intracellular and released cyanotoxins

Healthy, young Unhealthy, aged

Treatment A Treatment B
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Water Treatment
• Conventional Treatment Processes
• Dissolved Air Flotation
• Slow Sand Filtration
• Ultrafiltration
• Nanofiltration
• Adsorption (GAC & PAC)
• Oxidation 
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Effective

Moderately 
Effective

Ineffective   

Intracellular

Conventional
• 70-99.9% removal
• Trapped cells could 

rupture and release 
toxins

• May be influenced by 
NOM

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Dissolved Air Flotation
• 93-99% removal
• Sludge must be removed 

frequently
• Not as influenced by NOM, 

than conventional

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Slow Sand Filtration
• 80-99% removal
• Trapped cells could 

rupture and release 
toxins

• Vulnerable between 
maintenance and at 
low temperatures

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Ultrafiltration
• 90-98% removal
• Studies varied 

whether process 
ruptures cells

• May increase 
fouling

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Nanofiltration
• Similar to UF

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Adsorption (GAC & 
PAC)
• Cells will foul and 

clog filters quickly

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Intracellular
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Ozonation
• Ruptures cells
• Suggested to filter 

before ozone



Effective

Moderately 
Effective

Ineffective   

Intracellular
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Chlorination
• Ruptures cells
• Avoid pre-chlorination 

during a bloom



Overview

Effective

Moderately 
Effective

Ineffective   

Intracellular
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Effective

Moderately 
Effective

Ineffective   

Conventional
• Inconsistent results
• MC-LR removal > AnTX-a removal
• Iron chloride > aluminum sulphate

Extracellular
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Effective

Moderately 
Effective

Ineffective   

Dissolved Air Flotation
• Inconclusive

Extracellular
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Effective

Moderately 
Effective

Ineffective   

Slow Sand Filtration
• 80-95% MCs removed
• 70% AnTX-a removed
• Vulnerable between 

maintenance and at low 
temperatures

Extracellular
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Effective

Moderately 
Effective

Ineffective   

Ultrafiltration
• Ineffective due 

to pore size 
exclusion

Extracellular
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Effective

Moderately 
Effective

Ineffective   

Nanofiltration
• 90-100% MCs, 

AnTX-a & CYN 
removed

• Depends on 
hydrophobicity 
and net charge

Extracellular
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Effective

Moderately 
Effective

Ineffective   

Extracellular

Adsorption (GAC & PAC)
• 70-85% MC-LR removed 
• 70% SXT 
• 50-60% Nod & CYN 

removed 
• Good removal for AnTX-a
• Ineffective for MC-LA
• wood>coal>coconut>peat
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Effective

Moderately 
Effective

Ineffective   

Extracellular

Ozonation
• 36-100% of MCs degraded
• 92% of AnTX-a & CYNs  

degraded
• Ineffective for SXT
• Must have ozone residual
• MC-LR removal > MC-RR
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Effective

Moderately 
Effective

Ineffective   

Extracellular

Chlorination
• 72-100% MC-LR degraded
• 100% Nod & CYN degraded 
• 60-100% SXT degraded
• 15-18% AnTX-a degraded 
• Depends on pH (<8), temp., 

dose and contact time



Overview
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Effective

Moderately 
Effective

Ineffective   

Intracellular

Extracellular



Multi-barrier Approach

26

Coagulation

Flocculation

PAC

UF

Chlorine

ChlorineUF

PAC

DAF
Conventional



Multi-barrier Approach
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SSF GAC Chlorine
Coagulation 

& 
Flocculation

GAC Filters

Clarification

Coagulation

ChlorineSSF



Household Treatment

• Cartridge Filters
• Reverse Osmosis
• Ultraviolet Treatment
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Household Treatment:
Microcystins only
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0

0.5

1

0 1 2 3 4 5 6

Extracellular
Intracellular

Carbon
-Based 
Filters

Fiber 
wound & 
pleated 
paper

Ion 
exchange 

resin & 
GAC

RO UV
Ineffective

Moderately 
Effective

Effective Carbon-Based Filters
• 99% MC-LR removed
• Did not assess cell 

removal
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0

0.5

1

0 1 2 3 4 5 6

Extracellular
Intracellular

Carbon
-Based 
Filters

Fiber 
Wound & 
Pleated 
Paper

Ion 
exchange 

resin & 
GAC

RO UV
Ineffective

Moderately 
Effective

Effective Fiber Wound & Pleated
Paper
• 5.84% MC-LR removed 

(Fiber-wound) 
• 4.65% MC-LR removed 

(Pleated paper)
• Did not assess cell 

removal

Household Treatment:
Microcystins only



31

0

0.5

1

0 1 2 3 4 5

Extracellular
Intracellular

Carbon
-Based 
Filters

Fiber 
Wound & 
Pleated 
Paper

RO UV
Ineffective

Moderately 
Effective

Effective

Extracellular
• 40-57% MCs 

removed 
• Pre-rinse, 

flush and filter 
repeatedly

• Impractical

Intracellular
• 60% filament  

cells removed
• 10% single 

cells removed
• Trapped cells 

could rupture

Household Treatment:
Microcystins only

Ion 
Exchange 
Resin & 

GAC
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0

0.5

1

0 1 2 3 4 5 6

Extracellular
Intracellular

Carbon
-Based 
Filters

Fiber 
Wound & 
Pleated 
Paper

Ion 
Exchange 
Resin & 

GAC

RO UV
Ineffective

Moderately 
Effective

Effective Reverse Osmosis
• 96.7-99.9% MC-LR 

and MC-RR removed
• Toxins accumulate in 

waste
• Did not assess cell 

removal

Household Treatment:
Microcystins only
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0

0.5

1

0 1 2 3 4 5 6

Extracellular
Intracellular

Carbon
-Based 
Filters

Fiber 
Wound & 
Pleated 
Paper

RO UV
Ineffective

Moderately 
Effective

Effective

Household Treatment

Ion 
Exchange 
Resin & 

GAC

Ultraviolet Light
• 20-50% MC-LR & MC-RR 

degraded at 88.2-300 mJ/cm2

• 13.3% CYN degraded at 36 
mJ/cm2

• 50-88% AnTX-a degraded at 
1285 mJ/cm2

• Dose is impractically high
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0

0.5

1

0 1 2 3 4 5 6

Extracellular
Intracellular

Carbon
-Based 
Filters

Fiber 
Wound & 
Pleated 
Paper

RO UV
Ineffective

Moderately 
Effective

Effective

Household Treatment:
Microcystins only

Ion 
Exchange 
Resin & 

GAC



Research gaps
• Study other variants, particularly for 

household units
• Long-term pilot-scale tests and full-scale 

tests
• Periodic exposures of cyanotoxins to 

treatment studies
• Further research & development for 

household treatment removal efficiencies
• Other treatments: AOP, Biofiltration, etc.

35



Conclusion

• Knowledge gap in household treatment 
units for cyanotoxin removal

• Technologies for large and small water 
plants
– Intracellular toxins: Conventional, DAF, SSF
– Extracellular toxins: SSF, NF, AC, Ozone, 

Chlorine
• Multi-barrier approach add resilience
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Thank you for your attention!

Questions?

Victoria (Tory) Colling
vcolling@wcwc.ca
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