

Agenda

- Background
- Innovative Solutions for Buried Pipeline Asset Management
 - Acoustic Leak Detection
 - Acoustic Pipe Wall Integrity Testing
- Case Studies
 - Newark, NJ
 - Las Vegas
- Q&A

Optimizing Pipeline Asset Management: How to Prioritize Based on Condition?

Pipeline 1	Pipeline 2		
Installed 1860	Installed 1860		
Brown clay soil	Brown clay soil		
Corrosive soil	Moderately corrosive soil		
6" Cast Iron Pipe	18" Cast Iron Pipe		

18.5% Measured Loss

Condition Assessment: Pyramid Model

Condition Assessment: Prioritization Model

Optimizing Pipeline Asset Management: Economic Value of Non-Invasive Assessment

- Prioritize utility investments based on actual pipe condition
 - Enables a Master Planning approach to pipeline Asset management
 - Condition-driven schedule for pipe replacement and rehabilitation
 - Offers objective data for "proof of need" in rate cases
- Offers an immediate Return on Investment
 - Interest on deferred capital: Finding good pipe
 - Reduced water loss: Isolating leaks years in advance

Innovative Solutions for Buried Pipeline Asset Management

The Myth of Aging Pipes

- Contrary facts about aging water mains
 - Rate of rise (water loss) accelerates as water distribution systems age
 - ► **However**, 70%⁺ of pipes being replaced have remaining life
- Asset Management critical to pipe life cycle management
 - Active leakage control to minimize water loss
 - <u>Direct Inspection</u> used to prioritize rehabilitation / replacement
- Innovative, non-invasive solutions are available to:
 - Prevent catastrophic failures
 - Significantly reduce Non-Revenue Water (NRW)
 - Prioritize capital spending for pipe infrastructure

Economics of Water Main Leaks

- Main Break Repair: \$5,000 \$20,000 per incident
- Typical 5-10 GPM Leak
 - ENERGY: 8,800 kWh annual energy loss for pumps and systems
 - \$1,057 annually at \$.12/kWh
 - CARBON*: Lost energy creates 5,300 lbs of CO₂, work of ~ 100 trees
- Catastrophic Failures: \$50K to \$ Millions per break

* 1 kWh saves 1.3 lbs of CO₂

Collateral damage, contamination, EPA/state penalties

Cost of Water

At 70 PSI					
Classification	Hole Size (inch)	Leakage (g/min)	Leakage (g/day)	Marg Cost/Yr @ \$600 / MG	Value/Yr @ \$2,000 / MG
Small	0.125	2	2,880	\$631	\$2,102
	0.250	7	10,080	\$2,208	\$7,358
	0.375	15	21,600	\$4,730	\$15,768
Medium	0.500	25	36,000	\$7,884	\$26,280
	0.625	39	56,160	\$12,299	\$40,997
	0.750	55	79,200	\$17,345	\$57,816
Large	0.875	74	106,560	\$23,337	\$77,789
	1.000	95	136,800	\$29,959	\$99,864
	4.000	1436	2,067,840	\$452,857	\$1,509,523

Leakage Control

Leak Detection Technologies

- Acoustic
- Acoustic with Correlation
- Infrared Thermography
- Chemical
- Mechanical
- Ground Penetrating Radar
- RFEC Intrusive technologies for transmission mains
 - Sahara and Smartball

Most Popular, Invented 1970s

Leak Locations

- Water and force mains
- Fire hydrants
- Valves
- Blow-offs
- Meters
- Service connections

Sources of Leaks

- Environmental factors:
 - Ground heave and slip
 - Earth and Traffic loading
 - Ground support: pipe spans
 - Thermal changes
- Corrosion
- Public works:
 - Road salts
 - 3rd party digging
- Age and neglect

Acoustic Leak Detection Technology Limited Technology Advancement

- Interference from surroundings and ambient noise
- Unable to detect low frequency noise
 - Plastic and AC pipe
 - Larger diameter mains
 - Muffled leaks, e.g., underwater
- Questionable accuracy

Solving the Problem

Human Voice: 125 – 5000 Hz

Music - Middle C Note: 256 Hz

Music - A440: 440 Hz

Typical 6" Cast Iron Pipe: 200 – 800 Hz

Typical ¾" copper pipe: 400 – 2000Hz

Typical 6" PVC Pipe: 5 – 30 Hz

Assessing Pipe Condition

<u>Indirect</u> Condition Assessment: *Current Methods*

- Internal Environment
 - Water Quality Testing, including Corrosivity
 - Flow rate, temperature, pressure, etc.
- Soil Environment
 - Soil / Geological mapping
 - Soil corrosivity (pH, sulphate content)
 - Soil testing
- Desktop Statistical/Criticality Models
 - Review break rate, soil type
 - Includes consequence of failure

<u>Direct</u> Condition Assessment: *Ferrous Pipe*

- Historical Methods
 - Electromagnetic
 - Broadband (BEM), Magnetic flux leakage (MFL), RFEC
 - Requires direct access to the pipe through a pit, and 360 degree access to the pipe, or a pig inserted into the pipe
 - Pipe Sampling (coupons)
 - Tuberculation level
 - Graphitic Corrosion
 - Metallurgical, e.g. Young's modulus, metal loss, thickness
- Acoustic Assessment Methodology Pipe Integrity Testing
 - Provides an Minimum Average Structural Thickness measurement
 - Leak detection is performed at the same time
 - Cost: 1.0 1.5% of the cost of pipe replacement

Pipe Condition Assessment: How it Works

- Acoustic signals induced in pipe by flowing water from hydrants or using acoustic exciters
 - Causes pipe to "breath"
- Velocity of acoustic wave is measured, wall thickness is calculated from propagation delay
- Derive Minimum Average Wall Thickness for typically 300 – 400 feet sections

Case Study: City of Newark

- Condition assessment performed on section of 1890s era 6" cast iron pipe
- Service leak discovered
- 3 coupon samples extracted along street to confirm
- Pipes in area were part of Concrete Mortar relining program

Pilot Study in Newark

Pilot Study in Newark

Case Study: Las Vegas Valley Water District

- LVVWD planned to replace 6.5 miles of 16" to 36" bar-wrapped steel cylinder transmission main on Las Vegas Blvd
 - Expected to spend \$10,300,000
- Identified mains that did NOT need rehab or replacement
 - Only 15-20% of pipe sections had lost >15% of pipe wall thickness
 - Degraded mains were prioritized for renewal
- LVVWD reallocated over \$2M budget to other projects

Pilot Study - LVVWD

- Two Sections of 6" AC pipe tested
- Excavated 6" Pipe to confirm our results
- Also tested a 24" AC pipe
 - Showed it was in good condition

LVVWD Contract

- LVVWD standardized on acoustics testing for AC Pipe based on confidence and repeatability
- To date have assessed approximately 30 miles of AC in Las Vegas, NV
- Most AC in excellent condition
- Several areas of degraded AC pipe found
- Case Study: 14" pipe assessed to be approximately 30% degraded

Serviceable Lifetime Prediction: What is it?

- Models developed to predict remaining serviceable life based on condition assessment measurements
- Based on the measurement results and current loading conditions of the pipe (pressure and depth), an estimate will be provided on how many more years the pipe can be used
- Provides an accurate idea of when in the future the pipe will need to be rehabilitated or replaced

Translation: When to spend capital on this pipe section?

Serviceable Lifetime Prediction:

How does it work?

 The Failure thickness is predicted by calculating the minimum required thickness to carry the given loads

 The loads include: internal pressure from the water column and external pressure from the soil and traffic loads

Summary - Creating New Options Master Planning Pipe Improvements

- Capital Improvement Programs lack <u>Direct</u> condition data
 - Joint leaks often false indicator of pipe condition
 - Relining programs ineffective on pipes lacking structural integrity
 - Estimate 70% of replaced pipes have remaining life
- Leakage
 - Pipe Replacement Programs do not typically address service leaks, estimated to be 2/3 of the leaks in distribution networks
 - Conventional leak detection fails on Plastic / Asbestos Cement

Summary

- Utilities need to understand the condition of their assets
- Much of the pipe is in excellent condition and has significant remaining life
- There are several assessment options available to utilities, both indirect and direct assessment options have a place in the assessment process
- Acoustic assessment has distinct advantages over other methods of direct assessment, but is complementary with other techniques
- Utilities should undertake some kind of assessment for their pipe assets

Questions?

