

Not All Microbes Are Equal

VIRUSES

BACTERIA

PROTOZOA

1

Common Waterborne Pathogens

Viruses

- Adenovirus
- Norovirus

- Small size means they can be found in aquifers
- Most viruses are highly restricted by their host, such that human strains can only infect humans
- Susceptible to chlorine, removed by filtration, most strains susceptible to UV (except adenoviruses)
- Most challenging to detect

Common Waterborne Pathogens

Bacteria

- Escherichia coli O157:H7
- Campylobacter jejuni
 - Wide range of bacterial pathogens
 - Often many animal hosts
 - Varying infectious doses
 - Low to moderate survival in water
 - Susceptible to all water treatment approaches

Common Waterborne Pathogens

Protozoa

- Cryptosporidium sp.
- Giardia lamblia
 - Low infectious dose
 - Multiple animal hosts (zoonotic)
 - Survive for a long time in cool water
 - Resistant to disinfection with chlorine
 - Susceptible to UV disinfection and removed by filtration

Multiple Barrier Approach - MBA

MBA - Micro

Source

- Which types of microbes are present?
- What are the sources of these microbes?
- How do they get transported into the water source?

Not all sources are created equally Wise table Wise

MBA - Source

Types of Water

- 1. Surface water and groundwater under direct influence (GUDI): greatest risk of pathogens
- 2. Groundwater: lesser risk of pathogens

MBA - Micro

Treatment

- Which treatment is needed to remove the microbes found in the source?
- What other compounds can impact the effectiveness of microbes treatment?
- How can I tell that the treatment is working?

MBA - Treatment

Key aim treatment: kill or damage microbial cells

BUT

Not all microbes are created equally Not all treatment types work the same way

How Does Water Treatment Remove/Kill Microorganisms

Treatment	Mechanism/Considerations
Filtration (w/ or w/o coagulation, flocculation and sedimentation)	Physical removal Dependent on organism charge, size Dependent on water condition, filter age etc.
Chlorination	Damages cell membrane so cells cannot replicate or cause infection Dependent on organism, organic load etc.
UV Disinfection	Damages nucleic acid (DNA and RNA) so cells cannot replicate or cause infection Dependent on turbidity, organic and microbial load Some organisms have enzymes to repair damaged DNA

Not All Microbes Are Equal

Viruses

Susceptible to filtration, UV light, chlorine & other disinfectants

Bacteria

• Susceptible to filtration, UV light, chlorine & other disinfectants

Protozoa

- Resistant to chlorine
- Susceptible to filtration and UV light

MBA - Micro

Distribution

- What is needed to prevent microbial re-growth?
- How can contaminant intrusion be avoided?

MBA - Distribution

How do microbes enter distribution system?

- Cross-connections, deadends, cracks, backflow
- Biofilms & conditions allowing microbial growth

MBA - Distribution

How are microbes controlled in distribution systems?

- Good distribution system design
- Secondary disinfection

MBA - Micro

Monitoring

- Is the water free of harmful microbes and safe for human consumption?
- Is the drinking water treatment process working?

Question

For distribution water, how much *E.coli* is too much?

How Much *E.coli* is Too Much *E.coli*?

> 0 CFU/100mL CFU = Colony Forming Unit

What is a CFU?

Benefits of Indicator Testing

- Not pathogenic
- Easier to detect than pathogens
- Relatively simple testing
- Relatively inexpensive
- Standardized

Pitfalls of Indicator Testing

- Correlate ok with bacterial pathogens, poorly with viral and protozoan pathogens
- Slow turn-around-time (TAT)
- Testing in specialized laboratories; transport time (up to 30 hours)
- Century old technology

Thank-You Questions?

