

Energy Recovery from PRVs Using In-Line Turbines

- About Halifax Water
- Energy Management Program
- Energy Recovery from PRV Chambers

A Brief History

Utility Background

- 1st Regulated W/WW/SW Utility in Canada
- Halifax Regional Water Commission Act
- Regulated by NS Utility & Review Board
- Board of Directors 100% Owned by HRM
- Self Financed Funded by W/WW/FP Revenue

Facilities

Water Treatment

- 3 Large + 6 Smaller Facilities (227 MLD to 8 KLD)
- 18 Storage Reservoirs (269 MLD Capacity)
- Distribution System (~ 180 Pumping/Meter/PRV Stations)
- 7,700+ Fire Hydrants
- 80,000+ Customer Connections

Wastewater Treatment

- 5 Large (344 to 62 MLD) + 10 Smaller Facilities
- Collection System (~ 180 Pumping Stations)

Energy Use

Energy Management Program

Long Term Goals

- Responsible Energy Management
- Reduced Dependency on Fossil Fuels
- Reduction of Pollution & Emissions
- Energy Reduction Targets
- Development of Renewable Energy Projects

Renewable Energy Projects

Energy Recovery From PRV Chambers Using In-Line Turbines

A Brief History

Early Investigations

- Planning/Design of Pockwock System
- Recognized potential for energy recovery
- Economics/Energy costs unfavourable
- Availability of Technology

- HRM Amalgamation

- Formation of Water/Wastewater Utility
- Economics/Energy costs remain unfavourable
- Ongoing infrastructure development

Minimal Activity

Orchard Project

- Pinehill Report
- ID of Projects
- Chain/Robie/Orchard
- COMFIT Program
- WRF/NSE Funding

1970's 1980's 1990's 2000's 2010's

Background

- Energy recovery using turbines in an Open (i.e. atmospheric pressure) water system is very common.
- Energy recovery in a Closed (i.e. pressurized) water system is not common.
- Energy recovery from a Closed water transmission system involves the installation of a "turbine" to replace the normal function of a Pressure Reducing Valve (PRV) in the system.

Potential Water Supply Applications

- Discharge into Reservoir
- Within the Supply Network
- Discharge to the Environment

"Anywhere there is significant and sustained flow with a significant and sustained pressure differential"

Energy Recovery from PRV ChambersWhy Do It?

"Pressure Reduction = Wasted Energy"

- Gravity Based Systems
 - Naturally available head
 - Excess Energy Available (usually!)
- Pumped Systems Energy added to satisfy:
 - Static Head Requirements; and/or
 - System Pressure Requirements.

Traditional Pressure Reduction

ROSS MODEL - 40WR Pressure Reducing Valve

GLOBE FLAT SEAT STYLE

Available Technologies

Pelton Turbines

- High Head, Low Flow Applications
- Variable Flow
- Radial Nozzle Entry
- Good Efficiency
- Built In Flow/Surge Regulation
- Open Discharge (Usually)
- Prone to Nozzle Plugging

Available Technologies

Turgo Turbines

- Medium Head Applications
- Variable Flow
- Side Nozzle Entry
- Good Efficiency
- Open Discharge
- Prone to Nozzle Plugging

Available Technologies

Kaplan Turbine

- Medium Head Applications
- Side Entry Nozzle
- Efficiencies ~87%
- Open Discharge

Available Technologies

• Cross Flow Turbine

- Simple Construction
- Good Efficiency over Varying Flows
- Good Run-of-River Performance
- Open Discharge

Available Technologies

Francis Turbine

- Reaction Turbine
- Most Common Hydro Turbine
- Small to Very Large
- Moderate Flow Variability
- Atmospheric Discharge

Available Technologies

Pump as Turbine

- Limited Flow Variability
- Typically Small Applications
- Simple Construction
- Readily Available Technology (low cost)
- Open/Closed Discharge

Available Technologies

"Reverse Pump" or "Pump as Turbine" (PaT)

Known PaT Suppliers

Orchard Site Considerations

J.D. Kline WSP

- Elevation = ~170 m
- Flows = $\sim 3,600 \, \text{m}^3/\text{hr}$

WSP vs. Orchard Elevation Difference ~ 93 m

Pockwock vs. Orchard Elevation Difference ~ 35 m

Orchard PRV Chamber

- Elevation = ~75 m (Gravity Fed)
- Average Capacity = ~33.5 kW
- Flows = $\sim 400 \text{ m}^3/\text{hr} (1,700 \text{ USGPM})$

Orchard System Hydraulics

Orchard Power Calculations

• Formula: $P_e = \Delta Z \cdot Q \cdot \rho \cdot g \cdot \eta t \cdot \eta e \cdot \eta f \cdot 1/1000$

 $E_e = P_e \cdot 8760 \cdot R_a$

Where: $P_e = Power (kW)$

 $\Delta Z = Head (m)$

 $Q = Flow (m^3/sec)$

 ρ = Density of water (1000 kg/m³)

g = Acceleration due to gravity (9.81 m/sec²)

 η_t = Turbine efficiency (75% $\leq \eta_t \leq$ 85%)

 η_e = Generator efficiency (\geq 92%)

 η_f = Transformer efficiency ($\geq 97\%$)

 $E_e = Energy (kWh)$

R_a = Availability Ratio (Up time/Total time)

Overall Efficiencies Typically 70 – 75%

Orchard Power Calculations

Known Data: Head $(\Delta Z) = 40 \text{ m}$

Flow (Q) = $0.112 \text{ m}^3/\text{sec}$

Density of water = 1000 kg/m^3

Overall Efficiency (η) = 73 %

- Turbine Efficiency (η_t) = 78 %

- Generator Efficiency (η_e) = 93 %

$$P_e = (40 \text{ m} \cdot 1000 \text{ kg/m}^3 \cdot 0.112 \text{ m}^3/\text{sec} \cdot 9.81 \text{ m/sec}^2 \cdot 73\%)/1000$$

= 32 kW

$$E_e = 32 \text{ kW} \cdot 8760 \text{ hrs/yr} \cdot 0.80$$

= 225,000 kWh/yr

Orchard Turbine Selection

Orchard Predicted Turbine Performance

Orchard Project Economics

- COMFIT Project ~ \$0.14/kWh
- Capacity ~ 32 kW / 225,000 kWh/yr *
- Revenue ~ \$31,500/yr *
- Project Cost ~ \$468,000
- Part Funded by WRF + NS DOE \$200,000
- NPV ~ \$350,000
- IRR ~ 11.4% **
- SPB ~ 8.6 Years **

^{*} Estimated

^{**} Based on HW Contribution Only

Orchard Technical Highlights

- Cornell Model 5TR2 Turbine
- Marathon Induction Generator
- NSF/ANSI 61 Certified
- Fully Instrumented & Monitored (SCADA)
- Failsafe (Beckwith Protective Relay)
- Integral Surge Relief (Cla-Val)
- Variable Rate Inlet Control Valve (Bray/Rotork)
- Manual Isolation Valves (AVK)
- Mechanical Seal (John Crane Type 1)
- Interconnection 600 VAC 25 KVAC

Research & Development Perspective

Major Questions to be Answered:

- Water Quality Impacts? None found.
- Up/Down Stream Pressure Transients? Small Upstream.
- Flow Control? No Issues.
- Loss of Grid Connection? No Impact.
- Turbine Shutdown? No Impact.
- Turbine Runaway? Upstream PT due to Flow Reduction.
- Surge Relief? Necessary, automated Turbine Bypass.
- Vibration? No Issues Except for Emergency Shutdowns.

Energy Recovery from Water Systems

Alternative Technologies

Lucid Energy – LucidPipe™ Power System

http://www.lucidenergy.com/

For Further Information Contact:

Jeff Knapp, FEC, P.Eng., CEM Manager, Energy Efficiency Halifax Regional Water Commission (902) 471-2791 jeffreyk@halifaxwater.ca

