

Disinfection of water mains when conducting emergency repairs

Scott Grasman
City of Fredericton
Engineering & Operations Department
Water & Sewer Division

Agenda

- Fredericton's water system: a brief snapshot
- Water main failure repair considerations:
 - Health and safety of water customers;
 - Regulatory compliance;
 - Risk management: Making the repair;
 - Repair procedures when positive pressure cannot be maintained:
 - Disinfection of materials used in a repair;
 - Flushing and sampling protocols.

Fredericton's water system

Fredericton's water system:

- Over 17 000 service connections;
- Over 450km of water mains in service;
- Groundwater based supply- 11 productions wells;
- 2 water treatment plants (manganese removal);
- 14 reservoirs, 13 booster stations;
- Over 2400 fire hydrants.

Fredericton's water system

10 year historical trends

- Total water main failures 2005-15: 399
- 10 year average: 40
- Highest number of repairs in one year: 47 in 2013;
- Lowest number of repairs in one year: 20 in 2006;
- 41 in 2015...

Water main failure repair considerations

Health and safety of water customers:

- Is the repair site itself safe for the public?
- What is the nature of the area?
 - Residential?
 - Commercial?
 - Institutional?
 - Special customer needs (e.g. Dialysis)
- What is the topography of the area?
 - Flat
 - Elevation differences
 - Risk of backsiphonage?
 - What backflow prevention measures are in place?
- What is the chlorine residual in the area?
- Can positive pressure be maintained at the point of the break?

Regulatory compliance:

- Have impacted customers been notified?
- Has a chlorine residual been measured prior to repair?
- Can we flush through the repair, and flush through a hydrant for water quality purposes?
- Can the impacted area remain isolated from the greater distribution system pending receipt of negative bacteriological samples?
- Does the regulatory agency need to be notified?

Risk management: making the repair

- Can we dig an adequate sump?
- Is the safety of the trench remaining stable?
- Has a sewer main or lateral been broken?
- Has a service been broken?
- Can a clamp be installed while maintaining positive pressure?
- Has an anode been installed?

"Positive pressure...."

Repair procedures when positive pressure cannot be maintained

Loss of pressure water main failure repair considerations

- Notification of impacted customers
- Notification of regulatory agency
- Can the trench water be managed?
- Once impacted pipe has been dewatered, cut, and exposed, does it remain above the trench water level at all times?
- Has each exposed end been inspected for debris (e.g. sand, gravel)
- Have new parts to be installed been properly disinfected?
 - Disinfected according to AWWA Standard C651-05
 - Sterile pail, water, adequate sodium hypochlorite mixture?
 - New only mop head used?
- Boil water advisory required?
- Customers notified prior to returning water main to service?

Maintaining positive pressure (initially)

Managing trench water

Preparing to cut the pipe

Making the cut

Preparing for installation of new pipe

Cutting new pipe to proper length

Disinfection of new parts

Disinfection of new parts

Disinfection of receiving pipe ends

Installation of new pipe section

Installation of anode

Repair complete; anode installed

Flushing and sampling post-repair

- Required for regulatory compliance
- Want to confirm our repairs have been made safely
- A critical part of the repair process- cannot be an afterthought
- Considerations:
 - Can you flush through the repair to a fire hydrant?
 - What is your alternative flushing plan?
- Flush until turbidity is 1.0NTU or less
- Measure chlorine residual prior to sampling
- Disinfect sampling tap prior to sampling
- Disinfect hands
- Collect sample carefully (bottles are cheap.....)
- Leave impacted area isolated (if possible)....
- False positives unnecessarily complicate the process, can inconvenience customers, and cost money

Summary

- Water main failures are a reality in our business
- We must remain committed to minimizing their impacts to customers, damages to property, and water losses to the distribution system
- Public safety and confidence in our actions is paramount
- We must be aware of our obligations, and take action accordingly
- Pressure loss situations must be managed carefully
- Disinfection process critical
- Manage the repairs by managing the risks....

Disinfection of water mains when conducting emergency repairs

Thank you.

QUESTIONS?

