CHLORAMINATION PILOT STUDY TOWN OF GANDER

Presented by: Tracey Eisan, B.Sc.Eng.

DMG Consulting Ltd.

tracey.eisan@dmg.nf.ca

Clean and Safe Drinking Water Conference March 22-24, 2016

THE GANDER DRINKING WATER SYSTEM

WATER SOURCE: GANDER LAKE

- Third largest lake in Newfoundland: Surface Area = 113.2 km 2
- Approximate Volume = 3.0 trillion USG
- Intake at lake pumps directly to the Water Treatment Plant
- High levels of colour and natural organic matter

CHLORAMINATION PILOT STUDY TOWN OF GANDER

THE GANDER DRINKING WATER SYSTEM

WATER TREATMENT PLANT

- Commissioned in 2007
- Primary Treatment: Ozonation and Filtration
- Secondary Treatment: Chlorination
- Services a population of approx. 13,000 (including the Airport and Canadian Forces Base Gander.

CHLORAMINATION PILOT STUDY TOWN OF GANDER

March 22-24, 2016

THE GANDER DRINKING WATER SYSTEM

PROBLEM

- Study completed in 2014 determined the following:
 - Low chlorine residuals in the extents of Town
 - High levels of Disinfection By-Products (HAAs/THMs) caused by high levels of NOM

POTENTIAL SOLUTIONS

Chlorine Booster Station:

- \$\$\$
- Could <u>increase</u> DBP formation (reaction of chlorine with natural organic matter)

DAF Filtration System

- \$\$\$
- Would <u>not</u> improve chlorine residuals

CHLORAMINATION PILOT STUDY TOWN OF GANDER

CHLORAMINES AS A DISINFECTANT?

- Formed by the reaction of ammonia with chlorine
- Can be used as an alternative to chlorine for secondary disinfection
- Chloramines are **more stable** than chlorine; maintain a disinfection residual further into the distribution system
- Do not react with NOM the same as chlorine; lowers formation of DBPs.
- Currently used in over **100** Canadian municipalities, including St. John's, Ottawa and Toronto.

NOTE: The Gander WTP was originally designed to use chloramines as a secondary disinfectant.

Already includes separate injection room and injection points into the main water line.

CHLORAMINATION PILOT STUDY TOWN OF GANDER

March 22-24, 2016

CHLORAMINES AS A DISINFECTANT?

- Three compounds can be formed:
 Monochloramine , Dichloramine , Trichloramine
- **Monochloramine** is the preferred disinfectant. This is achieved by an optimal reaction of chlorine and free ammonia. (Generally a 5:1 ratio)
- Di And Tri- Chloramines are formed by excess chlorine This can lead to taste/odor issues, and increased operational expenses.

Source: Hach (2015)

FLOW PROPORTIONAL SYSTEM:

- King Process Technology Inc. developed liquid ammonia injection system
- Able to test the effectiveness of chloramines on the system
- Flow proportional ensured accurate results

LENGTH OF PILOT STUDY:

- Study commenced on August 4, 2015
- Carried out for twelve (12) weeks

CHLORAMINATION PILOT STUDY
TOWN OF GANDER

TESTING PARAMETERS:

- Four (4) parameters monitored for chloramination
 - Monochloramine Primary measurement for disinfection
 - Free Ammonia Excess ammonia remaining after
 - formation of monochloramines
 - Free Chlorine Excess chlorine remaining after
 - formation of monochloramines
 - Total Chlorine Sum of free chlorine and chloramine
 - compounds (mono, di- & tri)

Source: Hach (2015)

CHLORAMINATION PILOT STUDY
TOWN OF GANDER

March 22-24, 2016

TESTING PARAMETERS

- Water quality parameters for safety:
 - E. Coli, Total Coliforms
 - HAAs, THMs
 - NDMA (a potential bi-product of chloramination)

TESTING PARAMETER	TESTING FREQUENCY
Free Chlorine, Total Chlorine	Daily
Monochloramine, Free Ammonia	
E.Coli, Total Coliforms	Weekly
HAAs and THMs	
NDMA	Twice During Study (Beginning and Middle)

CHLORAMINATION PILOT STUDY TOWN OF GANDER

March 22-24, 2016

TESTING LOCATIONS

- Mitchell Street
- Penwell Avenue
- Gander International Airport

CHLORAMINATION PILOT STUDY
TOWN OF GANDER

March 22-24, 2016

RESULTS AND FINDINGS

DMG Consulting Limited

Disinfection Residuals (Monochloramine):

- Achieved at all test locations (Averages ranged from 0.36 mg/L to 1.27 mg/L)
- Took a period of 2-3 weeks for results to stabilize (trial and error at WTP)
- Airport had higher residuals due to proximity to WTP and continuous line flushing

Free Ammonia and Chlorine

- Averaged between 0.07 mg/L and 0.3 mg/L
 Preferred: 0.0 mg/L
- Would be easier to optimize with gas chloramination feed rate control and operator familiarity.

Taste/Odor

A few complaints over first 2 weeks of study; none after.

CHLORAMINATION PILOT STUDY TOWN OF GANDER

Clean and Safe Drinking Water Conference

Guideline: > 0.03 mg/L

March 22-24, 2016

RESULTS AND FINDINGS

DMG Consulting Limited

HAAs/THMs

RESULTS AND FINDINGS

DMG Consulting Limited

E. Coli, Total Coliforms, NDMA

• All within Canadian Drinking Water guidelines

Operational Requirements

- Increased labour required during pilot study (daily testing, switching liquid ammonia drums)
- No flushings required prior to study was common occurrence in dead ends
- Permanent gas chloramination system would be less labour intensive

CHLORAMINATION PILOT STUDY TOWN OF GANDER

CONCLUSIONS AND CONSIDERATIONS

- Chloramines successful with increasing disinfection residuals and lowering DBPs
- Can be looked at as an alternative to other costly systems
- Does **not** solve issue of organics in water; Biofilm still an issue and needs to be controlled
- Pilot study ideal to test chloramines on a system without committing to new treatment system
- Additional labour required during a pilot study, however lessens with a permanent system
- Depending on layout of existing facility, may require modifications
- Not compatible with amphibious animals (fish, reptiles, etc) or kidney dialysis patients.

PUBLIC NEEDS TO BE INFORMED

CHLORAMINATION PILOT STUDY
TOWN OF GANDER

March 22-24, 2016

QUESTIONS?

Tracey Eisan, B.Sc.Eng.

DMG Consulting Ltd.

185 Roe Avenue, P.O. Box 194

Ph: 709-256-7501

tracey.eisan@dmg.nf.ca