

Reducing the Vulnerability of Public Drinking Water Systems in Newfoundland and Labrador to Climate Change Impacts

> Drinking Water Safety Workshop, Gander Paula Dawe, P.Eng pauladawe@gov.nl.ca March 27-29, 2018

Department of Environment & Conservation

Outline

- Value of public drinking water systems
- Climate change projections for NL
- Observed climate change effects
- Observed climate change impacts on drinking water systems
- Reducing vulnerability to climate change impacts

Department of Environment & Conservation

Expected Useful Live

Drinking Water Component	Years
Reservoirs and Dams	15-100
Intake (no impoundment)	20-50
Groundwater Wells	15-35
Water Treatment Plants- concrete structures	20-50
Water Treatment Plants- mechanical and electrical	15-25
Chlorination Equipment	10-15
Trunk mains and distribution mains	25-100
Water Storage Tank	25-80
Electrical Systems	7-10
Meters	10-15
Buildings	30-60

Value of Public Water Systems

Capital Works Funding for Water-Related Infrastructure

Water Resources Management Division

Department of Environment & Conservation

Department of Environment & Conservation

NL Climate Change Projections

- Climate change is expected to bring weather that is warmer, wetter and stormier
 - Air temperatures rising
 - Increasing sea surface temperatures
 - More extreme weather events
 - Increasing rainfall intensity
 - Rising sea level
 - Less snowpack
 - Earlier melting of snowpack

Climate Change Projections: Temperature

- By the mid-21st century temperatures are projected to rise
 - between 2° and 3° C in Newfoundland
 - between 3° and 4° C in Labrador
 - fewer "heating degree days" (meaning less demand for energy to heat buildings)
 - fewer days with frost resulting in a shorter winter
 - increase in "growing degree days" (meaning longer growing seasons)

Water Resources Management Division

NewToundland

Lâbrador

Department of Environment & Conservation

Environment & Conservation

- More intense precipitation
- (fall & winter) More days precipitation
- precipitation over a 3 day
- More rainfall from short duration

Department of Environment & Conservation

Climate Change Projections: Storm Frequency

- By the 2080s:
 - Current 1-in-100-year storms are projected to become 1-in-25-year storms
 - Current 1-in-50 year storms are projected to become 1-in-20 year storms
 - Current 1-in-20 year storms are projected to become 1-in-5 or 1-in-2 year storms

Department of Environment & Conservation

Climate Change Projections: Sea Level Rise

- Potential sea-level rise of 100+ cm by 2099 will be seen in NL
- Frequency of storm surge events in NL expected to increase

Department of Environment & Conservation

Observed Climate Change Effects: Temperature

Department of Environment & Conservation

Observed Climate Change Effects: Precipitation

Department of Environment & Conservation

Observed Climate Change Effects: Streamflow

Department of Environment & Conservation

Observed Climate Change Effects: Water Quality

Department of Environment & Conservation

Observed Climate Change Effects: Water Quality

Water Resources Management Division

Department of Environment & Conservation

Observed Climate Change Impacts on Drinking Water Systems in NL

- Greater variability in source drinking water quality
- More water shortages
- Water supply dam failures increasing
- Storm surge and saltwater inundation (Ramea)
- Sediment and debris accumulation in surface water reservoirs
- Forest fires in water supply areas
- More algae and taste and odour issues
- Ice issues with intakes
- Increased risk of waterborne illness outbreaks after heavy rainfall events
- Alterations in lake turn-over times

- Landslides
- More groundwater quantity and quality issues
- Flooding and storm surge damaging infrastructure
- Wind damage
- Coastal erosion
- Power outages
- Interruption in transportation networks and shipping
 - Roads
 - Ferries
- Increased water demand
- More communities with water conservation programs
- Combination of events can exacerbate the vulnerability

Water Resources Management Division

Department of Environment & Conservation

Water Quality Variability

- Event based sampling indicates significant increases in some parameters from historical means after high rainfall events
- Challenges for water treatment and disinfection
- More variability in source water quality makes water treatment more challenging

Water Resources Management Division

Department of Environment & Conservation

Water Shortages

- 31% of water shortages in province caused by climate conditions
 - 2012- 8 shortages due to drought
- Majority of climate shortages linked to drought
- Frequency of occurrence of water shortages increasing

Water Resources Management Division

Department of Environment & Conservation

Water Supply Dam Failure

- 11 water supply dam failures have occurred in the province
 - Majority due to high rainfall events
- 1-in-400 chance of a water supply dam failure in any given year
- Past dam failures have resulted in:
 - loss of water supply for the community
 - the washout of roads in some cases isolating the community from the rest of the province
 - millions in economic loses and rehabilitation costs
- Dam design flow may no longer be adequate

Water Resources Management Division

Department of Environment & Conservation

Reservoir Issues

- During high rainfall events there is sediment deposition in the reservoir as the dam blocks the free movement of eroded material and debris
- Accumulation of sediment in the reservoir can impact drinking water quality with higher levels of turbidity, colour and iron
- Reduces storage capacity in reservoir
- Intakes can become buried in sediment and draw sediment into the distribution system
- Debris can also block dam spillways reducing the capacity of the dam to spill water

Water Resources Management Division

Department of Environment & Conservation

Forest Fires

- Average of 116 forest fires per year
- Dry years (2012) when a number of communities also experienced water shortages, tend to have more forest fire incidents
- Water bombers using water sources for fire fighting
- Dropping fire retardant foam in water supply areas

Department of Environment & Conservation

Ice and Intakes

- More incidents of frazil ice blocking intakes
 - Nov-Dec
- Intake damage due to weight of ice and snow
- Intake ponds frozen to the bottom of the pond

Water Resources Management Division

Department of Environment & Conservation

Waterborne Illness

- 10 waterborne illness outbreaks in NL between 1983 and 2002
 - Outbreaks occurred in months with above average monthly rainfall
 - Month of outbreak had at least one high rainfall event
 - 20 mm of rainfall or more
- Warmer temperatures and very heavy rainfall increase the risk of waterborne disease outbreaks within a sixweek period

Water Resources Management Division

Department of Environment & Conservation

Landslides and Coastal Erosion

- Triggered by heavy rainfall events
- Sediment and debris from landslides
 - Damming water sources
 - Impeding access roads
 - Clogging up reservoirs
- Moving water mains away from areas susceptible to coastal erosion

Water Resources Management Division

Department of Environment & Conservation

Groundwater

- Quality
 - Increase in concentration in contaminants with less recharge
 - Strontium
 - Arsenic
 - More dirty water incidents at wells with lack of recharge to aquifer
 - More saltwater intrusion into groundwater wells

- Quantity
 - Less recharge to groundwater aquifers
 - Effects are seen months later
 - Over pumping of wells is damaging permeability of surrounding soil and decreasing recharge
 - Too much recharge in low lying areas

Water Resources Management Division

Department of Environment & Conservation

Flooding and Storm Surge

- Water infrastructure being flooded and damaged
 - Groundwater pump houses
 - Chlorination buildings
 - Pump houses
 - Water mains
- Storm surge destroying water mains along low lying areas
- Access roads being damaged

Water Resources Management Division

Department of Environment & Conservation

Wind Effects

- Wind damage to storage tanks, water treatment buildings, pump houses
- Sediment turn up in water supply ponds affecting water quality

Water Resources Management Division

Department of Environment & Conservation

Reducing Vulnerability to Climate Change Impacts- General

- Keep infrastructure out of flood zones
 - Flood risk maps for NL communities available at: <u>http://www.mae.gov.nl.ca</u> /waterres/flooding/floodin g.html#risk
- Have dam break flood inundation mapping available for your water supply dam
- Keep infrastructure above projected sea level rise
- Greater awareness of forecasted climate warnings
 - Increased time for operators to prepare

- Protect groundwater recharge zones
- Source water protection
- Having Emergency Management Plan in place
- Establish a municipal water conservation program
- Insurance
- Establish mutual aid agreements with neighboring communities
- Climate change impacts and adaptation training

Water Resources Management Division

Department of Environment & Conservation

Reducing Vulnerability to Climate Change Impacts- Design

- Incorporate climate change into the design
 - Climate change IDFs available at: <u>http://www.exec.gov.nl.ca/ex</u> <u>ec/occ/publications/idf_curve</u> <u>2015.pdf</u>
 - Design of dams and road culverts
 - Designing for "safe failure" vs. "fail safe"
- Increased flexibility in design of drinking water systems:
 - Multi-level intakes
 - Systems to deal with frazil ice on the intake
 - System redundancy
 - Storage tank mixing
 - Increase treatment capability

- Design of WTPs should consider expected future water quality variability
- Retroactive climate change proofing
 - Armoring flood prone areas
 - Relocation of infrastructure
 - Upgrading infrastructure to maintain or prolong its useful life under changing climate conditions
- Consider infrastructure adaptation and resilience to climate change as part of design
- Alternative and emergency water supply sources

Water Resources Management Division

Department of Environment & Conservation

Reducing Vulnerability to Climate Change Impacts- Operations

- Monitor weather, flood, and surface water conditions
- Changing routine operational practices to be more responsive to extreme events:
 - Increasing chlorine dosage
 - Optimize water treatment
 - Maximize tank storage capacity
 - Ensure dam spillway not blocked
- Ensure adequate water treatment chemical supply
- Operational measures to isolate and protect the most vulnerable systems or assets
- Water metering
- Leak detection

- Regular clean out of impounded reservoirs to remove accumulated sediment
- Ensure any access road culverts are unblocked
- Planning operations around power failures and communications blackouts
 - Ensure adequate fuel supply for generators
- Additional/revised O&M and inspection procedures
- Understand your climate risks
 - Examine operating conditions in light of the potential for climate change challenges

Water Resources Management Division

Department of Environment & Conservation

Climate Change Adaptation Strategies

Planning strategies:

- Use of models
- Research
- Training
- Supply and demand planning
- Natural resource management
- Land use planning
- Collaboration at watershed and community scales

Operational strategies:

- Efficiency improvements
- Monitoring
- Inspections
- Conservation
- Demand management
- Flexible operations

Capital / infrastructure strategies:

- Construction
- Water resource diversification
- Repairs, retrofits and upgrades
- Phased construction
- New technology adoption

Water Resources Management Division

Path Forward

- Government to produce guidance document on flooding and public water supplies
- Develop more community flood risk maps
- Develop dam break flood inundation mapping for municipal water supply dams
- Develop storm surge mapping for low lying coastal communities
- Improved forecasting and alert systems for flooding, drought, or other conditions that may affect drinking water systems
- Event based source water sampling to better understand water quality variability
- SOP for operating drinking water systems during extreme weather events
- Develop guidance for communities on water conservation programs
- Application of the Public Infrastructure Engineering Vulnerability Committee (PIEVC) Protocol to assess vulnerability of drinking water infrastructure to climate change
 - <u>https://pievc.ca/</u>

Questions?

