

ST. J@HN'S

Overview

Leak Detection Toolbox

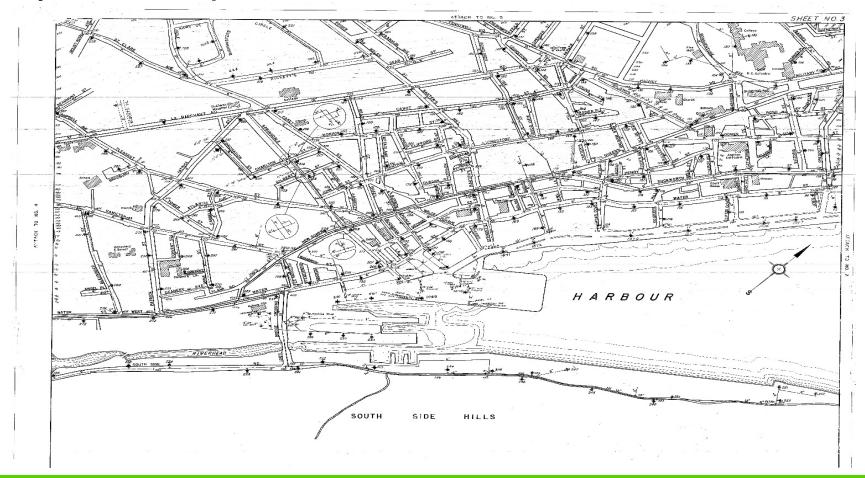
- Discuss different techniques and options
- Basic no special equipment
- Advanced extra equipment and experience
- No one solution need to know options

ST. J@HN'S

Before we start – what do we need?

Basics

- Maps or Layout of Distribution System
- Water Meter
- Leak Listener or Sonophone


ST. J@HN'S

System Maps

- Watermain Locations
- Watermain Diameter
- Valve Locations
- Fire Hydrant Locations
- Other Key Infrastructure WTP, PRVs, Pump, Flow Meters, etc.

ST. J@HN'S

System Maps

ST. J@HN'S

System Maps

ST. J@HN'S

Flow Meter

ST. J@HN'S

Flow Meter Data

- Manual Records
- Data Logger
- Remote Monitoring
 or SCADA

2017 MLD		2018 MLD						2019 MLD			
WL	PHLP	BBBP	WL	PHLP	BBBP	WL	PHLP	BBBP	WL	PHLP	BBBP
D	ecembe	er	January		December			January			
38.3	8.9	19.2	37.8	8.6	21.0	39.2	8.9	23.8	33.1	9.7	21.4
35.8	8.9	20.5	41.9	9.5	15.8	35.5	9.4	21.0	34.0	9.9	21.3
35.8	9.1	21.4	43.1	9.5	27.6	36.6	9.1	22.4	37.4	10.1	21.3
37.0	9.5	22.9	41.3	9.3	21.6	36.9	9.4	23.7	36.5	9.8	22.1
38.3	9.4	24.0	42.2	9.1	25.2	37.8	9.2	20.1	35.7	9.7	19.9
37.6	9.4	22.6	40.0	9.1	20.3	35.9	9.0	23.1	35.3	10.0	24.4
37.9	9.1	20.6	39.8	9.4	21.8	34.9	8.7	23.2	37.0	9.9	21.8
37.6	8.7	22.7	41.6	9.5	24.8	35.5	8.9	19.8	37.6	10.0	21.6
36.0	8.8	25.2	42.5	9.5	23.5	34.9	9.2	20.4	38.2	10.2	23.8
36.5	9.1	23.1	40.6	9.5	22.3	37.5	9.3	23.6	36.9	9.9	24.6
38.1	9.0	24.0	41.5	9.4	23.5	36.5	9.4	21.6	35.8	9.5	22.5
37.6	9.3	20.7	41.0	9.1	20.4	35.8	9.1	22.6	35.5	9.2	23.1
37.9	9.3	23.8	39.1	9.2	22.2	35.9	8.9	21.6	34.2	9.5	21.9
38.9	9.1	20.9	39.9	9.6	21.9	34.5	8.7	23.8	36.3	9.3	21.8
38.7	9.0	24.6	41.0	9.1	24.4	34.3	8.9	21.5	37.0	9.4	23.5
35.8	9.3	18.7	41.1	9.4	23.2	34.3	9.0	23.5	34.8	9.3	24.9
35.6	8.9	22.0	39.6	9.4	23.4	37.5	9.4	24.4	36.5	9.3	21.5
38.7	9.2	24.7	41.1	9.5	22.1	35.1	9.4	20.3	36.2	8.9	19.6
39.9	9.3	21.2	41.7	9.0	21.9	36.9	9.2	21.6	34.5	9.0	22.6
41.3	9.3	21.3	39.5	9.4	23.7	36.3	9.1	21.2	34.4	9.5	22.5
40.0	9.2	24.2	38.7	9.8	20.6	35.1	9.1	21.9	36.6	9.4	25.8
40.0	9.1	22.7	41.2	9.9	23.8	33.3	9.4	21.7	37.6	9.9	23.3
37.9	9.2	20.5	41.4	9.7	22.9	34.2	9.6	21.7	36.7	9.7	22.7
37.1	9.2	20.6	40.6	9.8	20.4	33.8	9.7	19.6	36.8	9.4	21.2
36.1	8.8	19.6	42.0	9.4	21.6	30.1	9.0	22.9	36.5	8.9	22.6
36.4	8.8	21.2	40.7	9.0	27.2	32.9	9.2	17.9	35.2	9.8	23.1
39.3	9.0	19.0	39.5	9.1	21.6	35.0	9.4	21.6	35.0	10.5	23.5
39.9	9.2	26.3	38.8	9.4	20.5	35.1	9.5	21.0	35.8	10.0	20.5
40.0	9.0	20.9	40.8	9.6	21.9	32.8	9.5	22.3	36.2	10.4	22.4
37.7	9.0	20.9	38.8	9.4	24.2	33.3	9.4	20.7	35.6	10.5	22.8
39.2	9.1	20.5	41.5	9.5	22.1	36.6	9.6	22.0	36.6	9.7	22.4
38.0	9.1	21.9	40.7	9.4	22.5	35.3	9.2	21.8	36.0	9.7	22.5
	69.0			72.5			66.3			68.1	

ST. J@HN'S

You have noticed an increase in water flows – now what?

Determine the source of the water flow increase.

Don't assume it's a leak - it could be actual usage!

- Usage from commercial / industrial properties;
- Fire flows;
- Hydrant flushing;
- Recreational swimming pools
- Other

If the source cannot be determined – assume it is a leak.

Leak Detection Toolbox You suspect a leak – how do you find it?

ST. J@HN'S

Based on our experience only 10-20% of water leaks surface.

ST. J@HN'S

What Tools and Techniques are available?

Basic Techniques

Step 1: Noise Survey

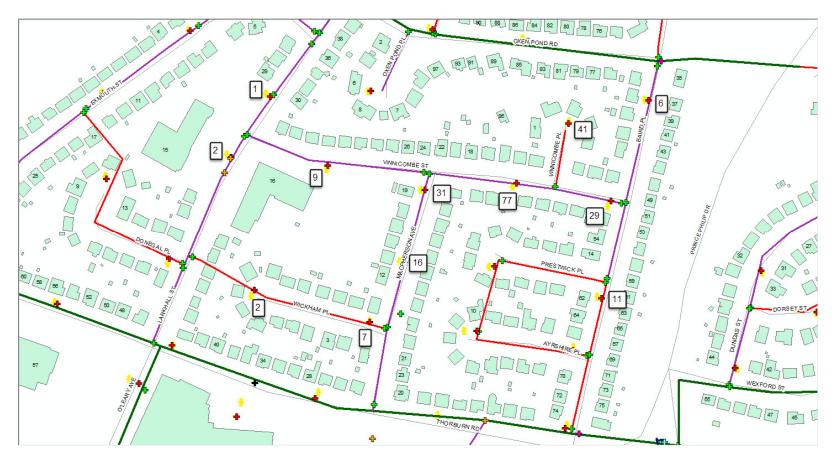
Tools required:

- Sonophone
- Electronic Listener

Step 2: Ground Listening Tools Required:

- Geo Phone
- Electronic Geo Phone

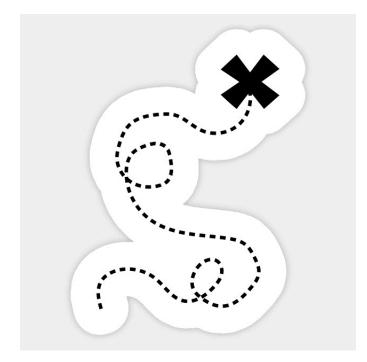
Basic Tools - Listening


ST. J@HN'S

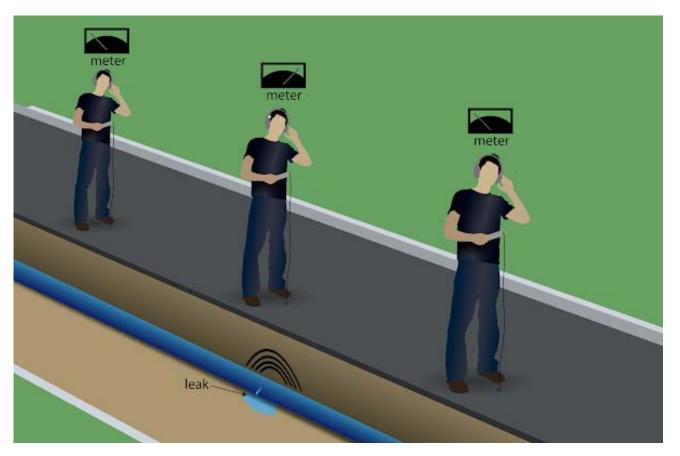
<u>Noise Survey</u> (*note only metallic systems)

- Typically from Hydrants, easy access
- Valves, curb stops or other accessible points within water distribution system;
- Crews listen to each hydrant / valve and record notes;
- Can be done from a list or map;
- Results are reviewed to determine a potential leak area (area of interest).

ST. JOHN'S


Noise Survey – record value or Y/N

ST. J@HN'S


Noise Survey

- After a potential leak is located - narrow down location by sounding other valves or curb stops.
- Once a smaller location is determined - conduct ground listening.

ST. J@HN'S

Ground Listening

ST. J@HN'S

You found a leak – now what?

- Leak Report location of leak
- Notify Owner Municipality or Private
- Repair Leak

It's not finished

- Repair Report
- Recheck area one leak could mask / hide another one

Documentation!

ST. J@HN'S

Leak Detection Toolbox - Advanced

What Tools or Techniques are available?

Advanced

- 1. Noise Loggers
- 2. Leak Noise Correlator
- 3. Step Testing
- 4. System Build Out
- 5. District Metered Areas

ST. J@HN'S

1.) Noise Loggers

- Sensors installed on watermains or valves to listen for leak noise
- Sensors "listen" for a predefined period to determine if there is a possible leak, usually early morning 2 – 4 am.

Installations

- Permanent monitored via fixed system or drive by;
- Temporary Lift and Shift, moved around system.

Types

- Noise Logger provide indication of sound;
- Correlating Logger provide indication of sound and approx. location.

ST. J@HN'S

ST. J@HN'S

<u>General</u>

- Noise Loggers typically replace hydrant surveys;
- Can also be used in "noisy" areas;
- Or high traffic areas.

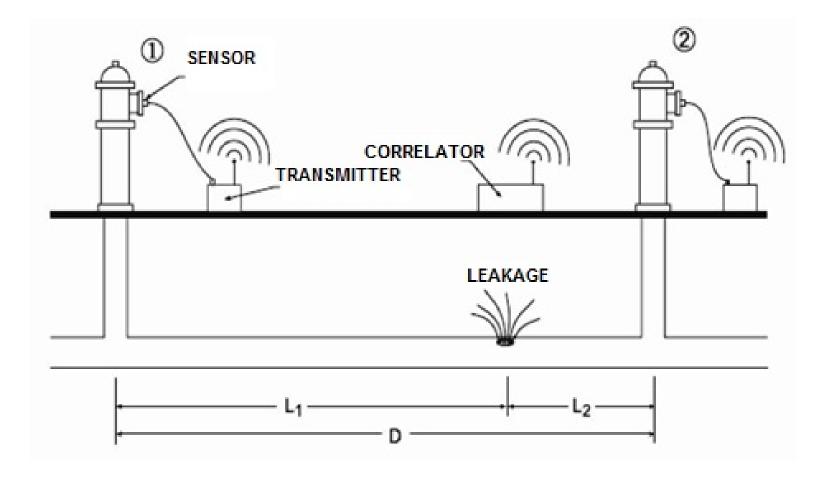
<u>Results</u>

- Narrow down leak locations;
- Field investigation required to "pin-point" leak.

ST. J@HN'S

2.) Leak Correlator

- A system comprised of sensors, transmitters, receiver and software program to determine the location of a water leak.
- System utilizes noise from the leak and pipe properties to determine leak location.


ST. J@HN'S

<u>System</u>

- Sensors can be installed directly on watermain, valves, hydrants, services or any other access point.
- Easier to use, requires pipe diameter, pipe material and distance between sensors.
- Results are indicated as a distance from each sensor

ST. J@HN'S

ST. J@HN'S

<u>General</u>

- Leak Correlators typically replace ground sounding to find leaks;
- Primarily used on metallic water components;
- Can be used on mains or services.

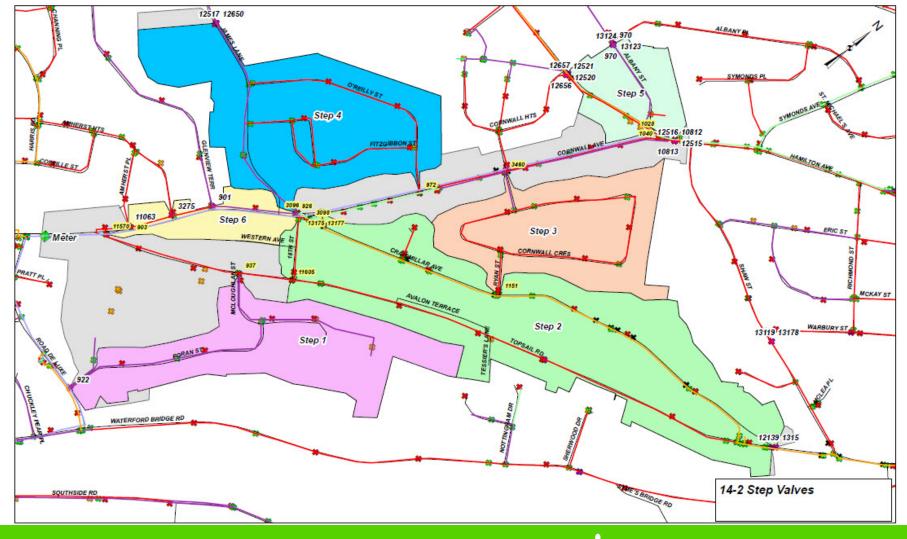
<u>Results</u>

- Pin-Point Leak Locations;
- Ground listening recommended to verify leak location.

ST. J@HN'S

Leak Detection Toolbox - Advanced

3.) Step Testing:


- A method of determining areas of potential leakage through a process of isolating sections of the water distribution system for short periods of time.
- Requires a defined area in which all water is metered these are typically district metered areas.

ST. J@HN'S

Procedure - Steps:

- Confirm boundary ensure that there is only one supply for the area, for example partially open boundary valve.
- Locate and close step valves, record time valves were opened and closed.
- Leave the step valves closed for 5-10 minutes.
- Record data from flow meter initial flow, lowest flow and total drop/change
- During this process the high point (or critical point) within the area is monitored to ensure that the pressure does not drop below 20 psi.
- If pressure drops quickly it may indicate a large usage or leak reopen valves.

ST. J@HN'S

ST. J@HN'S

				Testing	t Meter A	
			Utep	reoung	9	
DMA	14-2	CORNWA	L			
Date						
Step No		Va	Valve Location			
	Close	Time	Open	Time	Valving	
Step 1						
1	922				Close	Foran St at Road De Luxe
	Verify Val	ve is Close				
2	937				Close	McLoughlan St at Topsail Rd
	Verify Val	ve is Close				
3	Start Leak	Test - Time		5		
4	End Leak	Test - Time				
5			922		Open	Foran St at Road De Luxe
6			937		Open	McLoughlan St at Topsail Rd
Step 2						
1	11605				Close	Topsail Rd #221 near 18 Stre
	Verify Val	ve is Close				

ST. J@HN'S

Review Results:

- Compare measured drop in flow to expected drop.
- Areas with large drops could be subdivided in smaller sections and then additional steps completed.
- Conduct sounding or other method of leak detection in the area of interest to locate water leak or source of water usage.

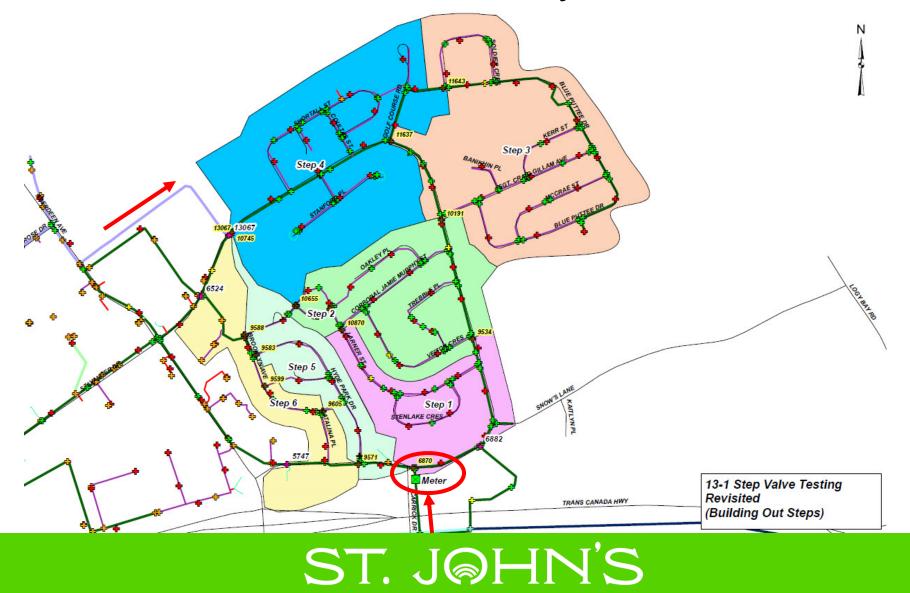
Summary:

- Useful to determine areas of potential leakage could replace noise or hydrant surveys;
- Requires knowledge of water distribution system and experienced operators;
- Requires a flow meter;
- Need to be careful not to drain or de-pressurize the system.

ST. J@HN

Leak Detection Toolbox - Advanced

4.) System Build-Out:


- <u>Opposite</u> of Step Testing;
- A method of determining areas of potential leakage through a process of adding sections of the water distribution system over a defined period;
- Requires a defined area in which all water is metered these are typically district metered areas; AND
- A second water supply to the area.

Procedure for Buildout:

- Open alternate water supply for area;
- Isolate water meter from area flow should be zero;
- Locate and open/close boundary valves to increase service area for flow meter.
- Leave the boundary valves closed for 5-10 minutes.
- Record data from flow meter initial flow, average flow and total increase/change in flow;
- Continue to increase service area in pre-defined steps.

			Step T	esting						
DMA	13-1	CLOVELL	Y (DMA REV	ISITED)						
Date										
Note:	This DMA will be revisited with steps being built out. This is contrary to previous step									
	testing metho	odology whe	ere steps we	re indeper	ndently isol	ated and analyzed. See				
	sequencing b	elow.								
Step No		Va	Valve Location							
	Close	Time	Open	Time	Valving					
Prior to			13067		Open	Stavanger Dr behind Walmar				
Step 1			Note: This valve was opened to provide an alternative							
			water source for the remainder of the DMA prior to Step 1							
			being isolated. This boundary valve will be closed in Step 6							
Step 1			5 J 2							
otep 1										
1	6870				Close	Stavanger Dr west of #370				
		ve is Close	d by Soundin	g	Close	Stavanger Dr west of #370 Opened in Step 5				
		ve is Close	d by Soundin	g	Close	Opened in Step 5				
1	Verify Val		d by Soundin d by Soundin	-						
1	Verify Val			-		Opened in Step 5				
2	Verify Val 9534 Verify Val 10870	ve is Close		g	Close	Opened in Step 5 Stavanger Dr at Veitch Cres				
2	Verify Val 9534 Verify Val 10870 Verify Val	ve is Close	d by Soundin	g	Close	Opened in Step 5 Stavanger Dr at Veitch Cres				

ST. J@HN'S

Review Results:

- Compare measured increase in flow to expected increase.
- Areas with large increases could be subdivided in smaller sections and then additional steps completed.
- Conduct sounding or other method of leak detection in the area of interest.
- Locate water leak or source of water usage.

ST. J@HN'S

Summary:

- Opposite of Step Testing;
- Useful to determine areas of potential leakage could replace noise or hydrant surveys;
- Requires knowledge of water distribution system and experienced operators;
- Requires a flow meter and a second supply;
- No risk of draining or de-pressurizing the system.

Leak Detection Toolbox - Advanced

5.) District Metered Areas:

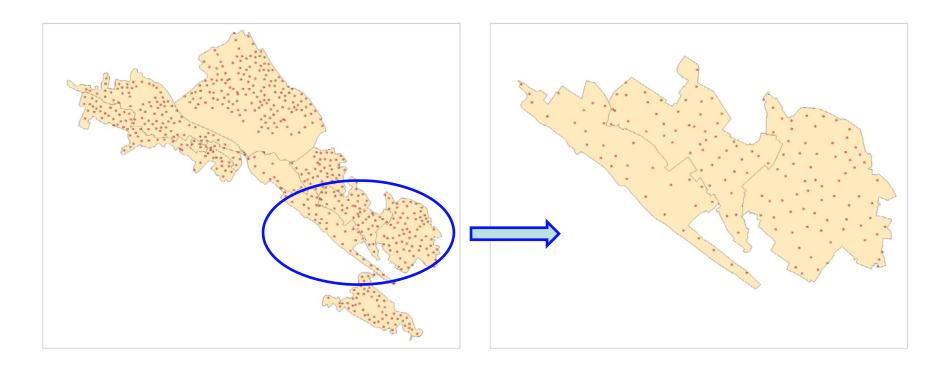
- DMA's are defined as discrete areas in which all incoming (and outgoing) water is metered.
- Typically defined by pressure differences caused by various water distribution infrastructure – PRVs, pump stations, water storage reservoirs, etc.
- Flows are monitored to determine possible leaks.

ST. J@HN'S

DMA Concept

- Minimum night time flow is calculated, leak detection completed to achieve minimum night flows (typically greater than theoretical calculated result).
- Flow data is monitored daily and minimum night flow is compared to actual flow
- Variance in flows = leak(s) or usage

ST. J@HN'S



ST. J@HN'S

District Metered Areas

- Source Meter Increase Flow
- Bay Bulls NC
- Densmore NC
- Waterford Bridge NC
- Topsail West NC
- Topsail East UP
- Road DeLuxe UP
- Craigmillar / Shea Heights – NC

ST. J@HN'S


581 Hydrants

155 Hydrants

ST. J@HN'S

Summary:

- Leak Detection can be done using relatively inexpensive tools;
- Leak Detection can improve and become more efficient with the use of electronic / computer equipment;
- Not one tool for Leak Detection know the tools available in your Toolbox.

ST. J@HN'S

