Tools for Emergency Response from the Water Resources Management Division

> Amir Ali Khan Paul Neary

Government of Newfoundland and Labrador Department of Environment and Conservation

Underlying Philosophy

Timely access to and presentation of accurate information in its proper context and in a visual format is critical for effective Emergency Response

Geomatics is the science and technology of gathering, analyzing, interpreting, distributing and using geographic information.

Presentation Overview

- Focus 1 Timely Access
- Focus 2 Accurate Information
- Focus 3 Proper Context And In A Visual Format

Focus 1

Timely Access

"Knowing what's happening in real time"

Early warning is critical for effective Emergency Response

Real-Time Water Quality Monitoring for Water Supplies

Real-Time Data Reporting

Instrumentation

Numerous parameters available: Ammonia Temperature Nitrate pН **Turbidity** Redox Salinity Depth Chloride Ambient Light **Barometric** Pressure

Chlorophyll Specific Conductance Dissolved Oxygen Total Dissolved Gas

Real-Time Data Reporting

NF02ZE0033 -Southwest Brook below Southwest Pond

(Miawapukek First Nation Pilot Project)

Newfoundland

Labrador

http://www.env.gov.nl.ca/wrmd/ADRS/v6/Template_Station.asp?station=NF02ZE0033

SCADA

Supervisory Control And Data Acquisition (SCADA)

SCADA systems are used to monitor or to control chemical or transport processes, in municipal water supply systems.

Remote Sensing For Flood Forecasting and Response

Focus 2

Accurate Information

"Knowing what is out there and its exact location"

Accurate information is critical for effective Emergency Response

- Drinking Water Supply Watersheds
- Drinking Water Supply Systems
- Flood Risk Mapping
- Dam Safety

Drinking Water Supply Watershed Maps

The Department has digital boundaries for all public water supplies:

- Protected
- Unprotected
 Potential
- **ILUC**

0

Public Water Supplies

Boundaries are available in several formats including Google Earth

Point Leamington - Little Pond

© 2006 Europa Technologies Image © 2006 DigitalGlobe Image © 2006 TerraMetrics

Google

Eye alt 34292 ft

http://www.env.gov.nl.ca/Env/env/waterres/GIS/Google/PublicWaterSupplies.kmz

Streaming ||||||||| 100%

Remote Sensing For Land Cover Analysis

Remote sensing allows the collection of large amounts of data over a wide area.

Land cover classification based on Landsat satellite imagery in 2000 with a spatial resolution of approximately 30 metres.

Steady Brook Protected Water Supply Area - Slope

Drinking Water Supply Systems

Flood Risk Mapping

- The province, in cooperation with the federal government, undertook engineering studies and mapping of flood risk areas.
- Maps completed for 38 communities
- Delineated the flood risk zones for floods with a return period of
 - 20 years (5% chance in any year)
 - 100 years (1% chance in any year)
- Project underway to digitize these zones completion March 31, 2007

Flood Risk Maps

Stephenville
Orange 1:20
Yellow 1:100
Pink Lines – cross sections

http://gis.env.gov.nl.ca - Water Resources Map Viewer - Microsoft Internet Ex

LEGEND

- -

Flood Risk Mapping

Badger	Petty Harbour
Bishops Falls	Placentia
Brigus	Portugal Cove / St. Philips
Carbonear	Rushoon
Codroy Valley	Rushy Pond
Cox's Cove	Salmon Cove
Deer Lake	Shoal Harbour / Hodges Cove
Ferryland	Steady Brook
Gaudon's Brook / Cold Brook	Stephenville
Glenwood / Appleton	Stephenville Crossing/ Black Duck Siding
Glovertown	Trout River
Hant's Harbour	Victoria
Heart's Delight	Waterford River
Hickman's Harbour	Whitbourne
Outer Cove	Winterton
Parson's Pond	

Flood Area Watershed Maps **Stephenville Flood** Sept 27, 2005

Did wood harvesting contribute to flooding?

Have conditions \mathbf{O} worsened?

Map 3 **Cutting Activity - Blanche Brook Watershed**

Dam Safety

Industrial Dams Municipal Dams

Dams Safety

Other Geomatic Information

- Sewage Outfalls
- Ambient Water Quality Monitoring Sites
- Ambient Water Quality Watersheds
- Hydrometric Monitoring Sites
- Climate Network
- Ambient Water Quality Contours

Proper Context And In A Visual Format

"Linking all that we know"

Ability to access information in its proper context and in a visual format is critical for effective Emergency Response

Geographic Information System (GIS)

- A computer system capable of integrating, storing, editing, analyzing, sharing, and displaying geographically-referenced information
- GIS is a tool that allows users to create interactive queries (user created searches), analyze the spatial information, edit data, maps, and present the results of all these operations.

Why use GIS?

- Real Time/Dynamic Public Reporting
- Future of information sharing
- Environmental data is essentially spatial in nature
- The spatial attribute allows widely varying datasets to be easily related
- ♦ For example:
 - Areal/spatial analysis shows the variation of a variable in a region
 - See what is within a buffer zone around features such as an intake

The DWQ GIS Application

- Developed in approximately a year and a half
 - Uses the ESRI ArcGIS software suite.
 - Requires only the Internet Explorer browser (6.0 and above) on the end users machine
 - Requires high speed internet connection
- Accessible anywhere on the internal government network including the regional offices
- Will be made available to the public at a later stage of the project
- Application "went live" in May 2004
- Winner of ESRI Canada 2005 Award of Excellence

The Application

Application address:

 <u>http://gis.env.gov.nl.ca/wrmd/</u>
 Username: government
 Password: supplies

 Live demonstration of application ??

ē)	http://gis.env.gov.nl.ca/wrmd/WRMD_Viewer//imsScripts/export-SelectReportToExcel.asp?layerSelec - Microsoft Internet Explorer													×						
i Fi	ile Edit V	iew Ins	sert	Format	Tools	Data Ac	Jobe PDF Go To) Favorit	es ⊦	lelp										
1						2	A			~			4						: @	
	Back	0	×		🕥 🌽	Search	Tavorites	1		7 - 6	Ş 7		1 🐴 -						7	-
	A1	-	ß	сом	MUNITY	NAME														
	G		н́				ĸ	LI	A N	0	Р	Q	R	S	Т	U	V	W	Y	
1	SAMPL	E_NUM	LAB	ALKAL	INITY CO	LOR CON	DUCTIVITY HAR	DNESS	рн то	S TSS	TURBIDITY	BORON	BROMIDE	CALCIUM	CHLORIDE	FLUORIDE	POTASSIUM	SODIUM	SULP	-
2	2001-6662-0	0-SI-RE	AT	244	38	544	250	7.5	33 32	3	0.2	0.025	0.14	49	29	0.05	1	17	7	
3	2004-6818-0	IO-SI-RE	AT	197	103	762	189	7.9	93 499	5	8.8	0.02	0.25	79	123	0.12	5	72	12	
4	2005-6521-0	IO-SI-RE	AT	147	87	489	126	7.3	3 31	3	10.2	0.01	0	44	59	0	3	53	16	
5	2002-6563-0	0-SI-RE	AT	221	44	567	142	8.1	5 36	Э	7.2	0.11	0.13	32	45	0.54	9	63	10	
6	2002-6562-0	0-SI-RE	AT	384	34	1110	228	8.6	55 72	2	16.9	0.17	0.44	50	136	0.51	26	160	7	
7	2004-6585-0	IO-SI-RE	AT	368	33	1040	161	7.8	83 670	8	26.8	0.2	0	30	124	0	19	151	3	
8	2004-6816-0	IO-SI-RE	AT	397	55	1130	156	8.3	31 73	5	22.2	0.19	0.67	40	145	0.13	25	171	4	
9	2005-6519-0	IO-SI-RE	AT	379	65	956	139	8.2	25 621	1	4	0.16	0.29	26	104	0.1	19	163	3	
10	2006-6854-0	IO-SI-RE	AT	368	70	1070	170	8.2	23 69	3	13.5	0.18	0.4	35	123	0	19	147	3	
11	2004-6817-0	IO-SI-RE	AT	186	114	861	234	7.8	37 56	0	26.2	0.02	0.45	84	160	0.12	5	89	20	
12	2005-6520-0	IO-SI-RE	AT	210	63	835	211	7.3	3 54:	3	3	0.02	0.2	73	135	0	4	98	25	_
13	2006-6856-0	IO-SI-RE	AT	235	163	645	164	7.3	3 41	9	8.4	0.02	0.12	59	58	0	3	66	10	
14	2001-6661-0	IO-SI-RE	AT 	123	67	310	145	7.5	57 204	4	0.7	0.025	0.025	45	20	0.63	0.5	12	12	
15	2002-6585-0	U-SI-RE	AT	154	43	353	159	/ X - X	37 22		0.2	0.01	0.025	47	17	0.1	0.5	11	6	
16	2003-6662-0	IU-SI-RE	AT AT	128	46	298	124	(); 	13 194 14 004	+	0.3	0.025	0.025	38	16	0.05	0.5	11	ь -	
17	2003-6813-0	IU-SI-RE	AT AT	123	50	307	126	(7.(1 200 19 040) -	0.5	0.005	0.025	39 54	20	0.11	0.5	12	6	
18	2004-0729-0	IU-SI-RE	AT AT	104	42		172	7.0)0 ZI: 25 40'	,	0.5	0.01	0	04 46	20 40	0	0	12	0 5	
19	2004-0730-0		AT AT	120	44	200	144	7.5	00 10 24 040	-	0.5	0.04	0	40 64	10	0	0	11	э 7	
20	2004-0731-0		AT	150	40	340	150	7.0	// 240)3 00-	1	7.2	0.01	0	50	19	0	0	10	, E	
21	2005-6589-0	ID-SLRE	AT	170	48	392	184	7 (10 22 10 254	5	0.4	0.07	0	57	20	0	0	13	6	
22	2003-0503-0	ID-SLRE	AT .	95	40	244	104	74	,2 20, 33 150	9	0.4	0.02	0	30	17	0	0	10	7	
23	2006-6540-0	IO-SLRE	AT	116	65	295	116	7.7	3 19	,	0.7	0 0	0	35	22	0 0	0	12	6	
25	2006-6730-0	0-SI-RE	AT	190	43	447	191	7.9	97 29 [.]	1	2.1	0.01	0 0	60	22	0	0	13	12	
26	2006-6731-0	0-SI-RE	AT	190	34	433	188	7.8	39 28 [.]	1	0.4	0.02	0.07	57	21	0	0	12	8	
27	2001-6667-0	0-SI-RE	AT	190	31	691	112	8.1	4 40	4	7.3	0.07	0.25	25	85	0.5	9	86	20	
	2006-4193-0	0-SI-RE	AT	150	37	326	151	8.0	07 213	2	1.4	0	0	44	12	0	0	8	5	
28																				
29	1995-7229-0	0-SI-RE	NBE	34.1	40	159		7.6	64 10)	0.6			9.1	21.9	0.05	0.73	13.2	7.53	
30	1995-7107-0	IO-SI-RE	NBE	74	35	163		8.1	4 110)	0.4			14.9	5.4	0.029	0.39	3.96	1.58	
31	1998-7225-0	IO-SI-RE	WAL	80.8	36	212		7.9	98 14	11	0.76			21.9	8.7		0.4	5.73	1.7	
32	2003-4257-0	IO-SI-RE	AT	107	38	243	106	7.6	64 156	3	1.5	0.005	0.025	21	0.5	0.05	0.5	7	4	-
33	2006-4248-0	INLSLRE 1 C56B8 1	N/	109	35	251	111	81	18 16	3	13			23	13	n	0	8	े∎∣	-
												1.1								
			_	_					_	_							Charler 112			

🦺 start 🔰 🧭 🖉 🍳 🛤 🕌 🍢 🔊

🗁 SecureID 🚞 Gander 🝘 http://gis.e...

🗟 http://gis.e... 🔇 🖻 🕵 🖸 8:46 PM

Timely access to and presentation of accurate information in its proper context and in a visual format is critical for effective Emergency Response

http://www.env.gov.nl.ca/env/Env/water_resources.asp

Thank You

