Acoustic Leak Detection

Gander Newfoundland 2006

Overview

- Background on Leakage and leak Detection
- Water Loss Management
- Fundamentals of Correlation

Leakage

- The unintentional escape or loss of water from a distribution network.
- Can range from a drip to a major gusher from a burst pipe.
- Main failure due to water loss from improperly sealed joints, defective service connections & corrosion holes.
- Water is a scarce resource- in some countries water is more expensive than petrol so leaks are unacceptable.
- A pin-sized hole in a water pipe under 40 p.s.i. loses over 2,000 gallons of water a day or as much water in a week as what's normally used in a household of four.

Causes of Leaks

- Water corrosivity
- Third party digging
- Ground heave & slip
- Thermal changes
- Earth loading
- Ground support: pipe spans
- AC corrosion from power lines

- DC corrosion from trams & utilities
- Age & neglect
- Road salts
- Ground corrosivity
- Microbially induced corrosion
- Traffic loading

Leakage Problem

- The severity of leakage problems varies across the globe, but it is significant in all parts of the world.
- In the UK, it's legislated that a certain percentage of distribution mains must be surveyed for leaks each year.
- A pin-sized hole in a water pipe under 40 p.s.i. loses over 2,000 gallons of water a day or as much water in a week as what's normally used in a household of four.
- One estimate states that as much as 40% of the water supply is lost as a result of pipe leakage in African cities.

Managing Water. Fatemah Farag, Al-Ahram, Egypt, December 16, 1999. http://www.dams.org/news_events/media.php?article=212

Does Leakage Matter

- Water Utilities are the largest user of electricity in the US, consuming an estimated 75 Billion kW-h annually (3% of total) Von Sacken, 2001
- 5-10 billion of electricity expended on pumping water for leaks
- Leaks can cause damage to infrastructure
- Leakage water often finds it's way to sewage systems, where it is treated...an additional cost (Thornton et al 2002)
- Leakage requires larger infrastructure than necessary
- Watersheds are taxed unnecessarily

Water Leakage Rates at 60 psi

HOLE SIZE	LEAKAGE	LEAKAGE
[MM]	[LITRES/MIN]	[LITRES/HR]
0.50	0.50	30.00
1.00	0.97	58.20
1.50	1.82	109.20
2.00	3.16	189.60
2.50	5.09	305.40
3.00	8.15	489.00
3.50	11.30	678.00
4.00	14.80	888.00
4.50	18.20	1,092.00
5.00	22.30	1,338.00
5.50	26.00	1,560.00
6.00	30.00	1,800.00
6.50	34.00	2,040.00
7.00	39.30	2,358.00

PERCENTAGE ADJUSTMENT FOR PRESSURES OTHER THAN 5 BAR

1 BAR	45%
2 BAR	63%
3 BAR	77%
4 BAR	89%
5 BAR	100%
6 BAR	110%
6 BAR 7 BAR	110% 119%
6 BAR 7 BAR 8 BAR	110% 119% 127%
6 BAR 7 BAR 8 BAR 9 BAR	110% 119% 127% 134%

Pipe Leakage Evaluation

- Identify & locate high leakage areas.
- Prioritize areas for leak detection based upon data from routine network maintenance. Methods used:
 - Burst & leak history
 - Water Audits (unaccounted for water consumption)
 - DMA/Flow measurement (flow into less flow out of network)
 - Hydrostatic testing (pressure testing)
- Repair leaks.
- First need to know the leakage situation

Components and Definitions

Water Balance Component	Definition
System Input Volume	The annual volume input to the water supply system
Authorized Consumption	The annual volume of metered and/or unmetered water taken by registered customers, the water supplier and others who are authorized to do so
Water Losse s	The difference between System Input Volume and Authorized Consumption, consisting of Apparent Losses plus Real Losses
Apparent Losses	Unauthorized Consumption, all types of metering inaccuracies and data handling errors
Real Losse s	The annual volumes lost through all types of leaks, breaks and overflows on mains, service reservoirs and service connections, up to the point of customer metering.
Revenue Water	Those components of System Input Volume which are billed and produce revenue
Non-Revenue Water (NRW)	The difference between System Input Volume and Billed Authorized Consumption

AWWA – IWA Water Balance Sheet

		Billed	Billed Metered Consumption	Revenue
Authorized	Consumption	Billed Unmetered Consumption	Water	
Co	Consumption	Unbilled Authorized Consumption	Unbilled Metered Consumption	
			Unbilled Unmetered Consumption	
System	Appa	Apparent	Unauthorized Consumption	Non
Volume		Losses	Customer Meter Inaccuracies	Revenue
	Water	Real	Leakage on Transmission &	Water
	Losses		Distribution Mains	
	Losses	Leakage and Overflows at Reservoirs		
			Leakage on Service Connections up to metering point	

Unavoidable Annual Real Losses (UARL)

- UARL (gallons/day) = (5.41Lm + 0.15Nc + 7.5Lp) x P where
- Lm = length of water mains, miles
- Nc = number of service connections
- Lp = total length of private pipe, miles = Nc x average distance from curbstop to customer meter
- P = average pressure in the system, psi

Infrastructure Leakage Index (ILI)

 Ratio of Current Annual Real Losses (CARL) to Unavoidable Annual Real Losses (UARL); good for operational benchmarking for real loss control.

Water Loss Methodologies

- Pressure Control
- District Meter Areas (DMA's)
- Leak Noise Surveys
- Leak Correlation Survey's
- Noise Logger Survey's

Locating Leaks & Breaks

- Methods used are:
 - Acoustic
 - Acoustic with Correlation
 - Infrared Thermography
 - Chemical
 - Mechanical
 - Ground Penetrating Radar
- Acoustic & acoustic with correlation are by far the most popular methods.

Limitations of Leak Detection Methods

Method	Application	Limitations
Acoustic	Listen for audible sound with listening sticks or ground microphone	 Must to be over or on pipe. Ground dampening. Experienced operators. Background noises. Have to be close to leak. Plastic pipes a problem. Accuracy.
Acoustic with Correlation	2 sensors strategically placed on opposite sides of the leak input sound spectrum to a computer. Correlation program uses delay in sound spectrum to pinpoint leak location.	 Can be expensive. Contact location required. Quiet leaks difficult to correlate Poor performance on PVC/large diameter

Limitations 2

Infrared Thermography	Infrared radiation detector locates temperature differences caused by leaking water.	 Expensive. Significant operator training & experience. Accuracy Weather limitations.
Chemical	A tracer in the pipe escapes through the leak & is detected at the surface.	Expensive & time consuming.Exact pipe location.Depth limitation.Accuracy.
Mechanical	Drilling holes or opening up pipe	Expensive & time consuming.Damage to other utilities.
Ground Penetrating Radar	Radar generates an image based on the reflection of radar waves from changing densities of soil/pipe	•Hard to interpret

Acoustic Survey

Advantages:

- Fast, a large area may be covered quickly
- A skilled listener can hear most leaks

Drawbacks:

- Listening requires some skill
- Quiet leaks may not be heard
- Will not work on PVC if you are not close to leak or if there have been PVC repairs
- Frozen Ground is a problem for surface based survey

Acoustic Survey

Correlation Survey

Advantages:

- Can find leaks their listeners can't
- Less dependant on listener's skills
- More accurate method of locating leaks
- Easy to use
- Finds leaks in all types of distribution pipes

Drawbacks:

- Slower than acoustical survey
- Some areas may be difficult to correlate
- Can't correlate hydrant leaks for dry barrel hydrants

Correlation Background

- How it works
- Bracket the leak with two sensors
- The leak noise takes longer to arrive a point 1 than point 2
- Correlator measures this difference and determines the exact leak location: d=vt where v is the acoustic wave velocity

Correlation Background 2

- Leaks makes noise
- Travels as a 'coupled wave'
 - Fancy way of saying it travels in both the water and the pipe
 - Compression in water, dilatational in pipe
- Correlation is passive, we are not sending any signal into the pipe, only listening to the sound of the leak

Transducers

Distance Measurement

Two signals are time shifted and added together: When the time shift is correct the correlator shows a peak

echo*s*logics

 $\int x_1(t)x_2(t+\tau)dt$

- From the previous figure, the correlation is dependent on the similarity of the two signals to get a good 'sharp' correlation peak
- Sometimes peaks are not so sharp...may be very wide which affects accuracy of the locate
- Why?

- Signals change as they travel through the pipe, may travel different distances
- Different fittings may have different dynamic response to the leak noise
- This can affect plastic pipes more than metallic

- There is a measure of how similar the two signals are at the two sensors
- This is called 'Coherence'
- Coherence is a measure of the similarity of the two signals
- When two signals are identical coherence is 1

'Normal' Correlation

Wide Correlation

Physics of PVC and Large Diameter Pressure Waves

- Need to understand the wave mode: Water Hammer
- Advantage of PVC is that it damps water hammer: Not Good
- Coupled mode: Compression wave in water, circumferential mode in pipe
- Frequency: As will be seen, very low, in some cases subsonic

Wavelength

 Leak Sound in PVC has a very long wavelength

Wavelength in 6" PVC

Speed of Sound in Water (10 C): 1447 m/s

$$\lambda = \frac{v}{f}$$

Wavelength in water at 10 C,

$$f = 20Hz$$
$$\lambda = \frac{1447}{20} = 72.4m$$

Physics of PVC and Large Diameter Leak Detection

- Need to understand the wave mode: Water Hammer
- Advantage of PVC is that it damps water hammer: Not Good
- Coupled mode: Compression wave in water, circumferential mode in pipe
- Frequency: As will be seen, very low, in some cases subsonic

Impedance

Reflection of Waves (Impedance): The rope analogy

Causes of Impedances

- These changes are called impedances in Physics, and can be caused by:
- VALVE KEYS
- 90 degree turns
- Change in diameter
- Change in material

Classic Impedance Example

Hydrophone Mounting

Case Study 1: 200mm PVC, Leak on Service Saddle; Correlation Function

Case study 1: Coherence Function

Case Study 2: 250mm PVC, Abandoned Service

Case study 2: Coherence

Case Study 3: 200mm PVC Service Leak

Case Study 3: Coherence

Case Study 4: Same as 3, service to hydrant

Case Study 4 Coherence

Case Study 5: 8" PVC Service Leak

Case Study 5: Coherence

Case Study 6:

Case Study 6: Coherence

Case Study 7: 500mm CI

Case Study 7: Frequency Spectrum

