Microbiology of Distribution Systems

Greg S. Bezanson Ph.D. Acadia University

greg.bezanson@acadiau.ca

Outline

Significance of distribution system microbiology

the "Players" (Microbiology 101)

the Problems (possible controls?)

the Future

I) Microbes in the Pipes: Significance

Payment, 1991-1997:

"distribution system could be playing an important role in the contamination of populations"

- 1) Are a reservoir for human / animal disease
 - even though in compliance with current regulations

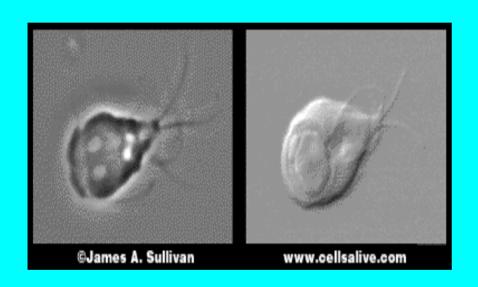
2) Microorganisms in water also can cause biofouling and decay.

the positive side

Microorganisms are <u>natural</u> and <u>essential</u> constituents of water All *naturally* occurring water contain microbes; majority non-pathogenic, non-corrosive

Microbes: use water as medium for growth and survival vehicle for distribution

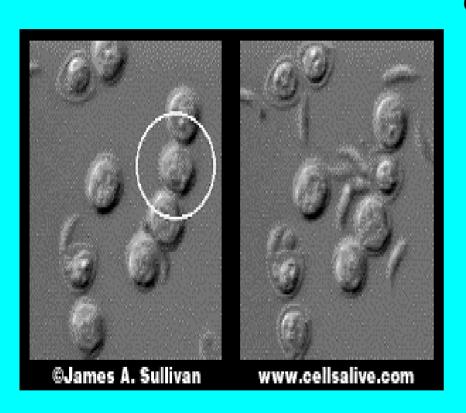
Water: "uses" microbes contribute to chemical quality (Fe, S, Hg, As)


enable C, N, H cycling (CO₂, CH₄, denitrification) control / eliminate pollutants (hydrocarbons, pesticides)

Humans: microbes in water contribute to / replenish normal florahelp maintain disease resistance

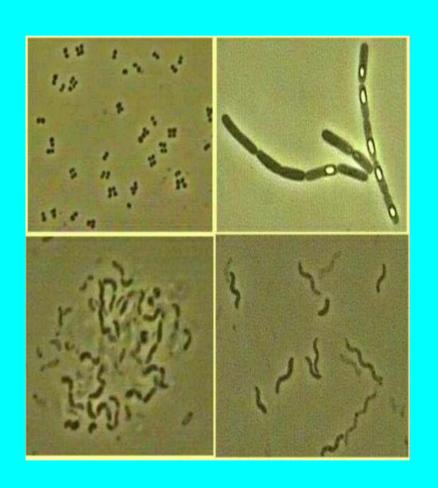
II) the "Players"

- Representative protozoa, bacteria, viruses
- In order of decreasing size (filterability) and increasing chlorine sensitivity


Water-borne parasitic protozoa

Giardia lamblia

- size: 10 -12 um
- removed by filtration
- thick-walled cysts in water
- resistant to chlorine
- infections: motile trophozoite
- treatable diarrhea
- do not multiply in water
- reservoir settling decreased counts, viability


Water-borne parasitic protozoa

Cryptosporidium parvum

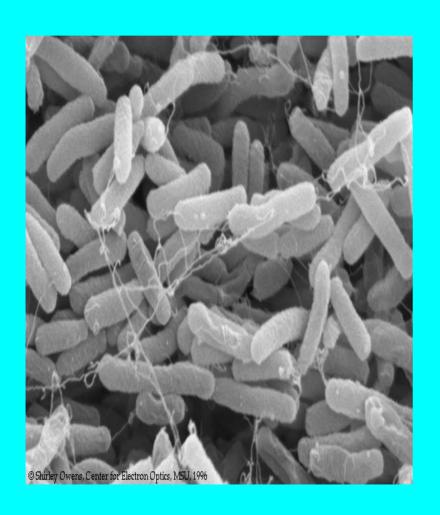
- size: 4 6 um(filtration inconsistent)
- thick-walled oocysts
- UV, ozone sensitive
- infections: non-motile sporozoites (invasive)
- ID₅₀: 10-1000 oocysts
- diarrhea lasts1-2 weeks
- not antibiotic treatable
- do not multiply in water
- OB source: human waste

Water-borne Bacteria (heterotrophic)

 diverse shapes (sphere, rod, comma, spiral)

- size: 0.2 - 4 um

- most chlorine sensitive

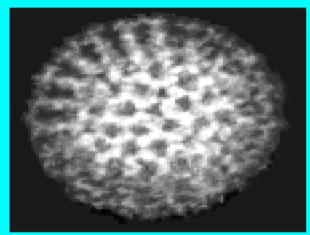

Examples: Enterococcus

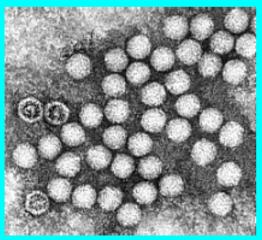
Klebsiella, Serratia

Vibrio cholera

Sprillium

Water-borne bacterium: Escherichia coli (coliforms)




 both pathogenic and non-pathogenic forms in water

Pathogenic type:0157:H7

- attaches to wall of intestine
- forms potent toxin
 - → bloody diarrhea, kidney damage, death
- half-life: approx. 8 days (ground water)
- acid resistant

Water-borne viruses

Small round viruses (SRV)

- 0.02 0.07um diameter
- chlorine resistant
- untreatable gastroenteritis
- ← Rotavirus
 - diarrhea in children
- ← Enterovirus
 - diarrhea children/adults
 - est half-life: 2 8 hours

III) the Problems

High quality water leaving treatment plant <u>subsequently</u> may be subject to several processes that degrade this quality:

- a) disinfection proficiency
- b) regrowth
- c) nitrification
- d) biolfilms
- e) intrusion events

- a) Variation in treatment proficiency, transient failures
 - breakthrough inoculation → reseeding, increase nutrients, color
 - microbes: original complement (esp viruses, protozoans)

Control: effluent monitoring, secondary disinfection

- b) Regrowth: post treatment increase in counts within system
 - disinfectant resistance, nitirification, biofilm sloughing
 - → loss of bacterial quality, new biofilm formation, increased corrosion, taste, odor, grazing macroinvertebrates
 - microbes: coliforms, Gm+, heterotrophs, film formers

Control: limit biodegradable organic material (BOM) entering system with coagulation, filtration (carbon, biologic, membrane) action level: effluent AOC > 150 ug/liter, BDOC > 0.5 mg/l

NB. chlorination, ozone >> BOM in water

- 3) Nitrification: increase in nitrite/nitrate content via microbial activity
 - secondary disinfection with ammonium chloride (chloramination)
 - less reactive than CI (fewer DBPs), penetrates biofilms, but promotes growth of ammonium / nitrite oxidizing bacteria [AOB,NOB] (*Nitrosomonas, Nitrospira*) that deplete chloramine, foster growth of heterotrophic bacteria → loss of water quality. Occurs with residuals of 0.2 -1.1 mg Cl₂/I, 0.3 0.6 mg N/I

Control: monitor effluent pH, NH₄ conc, AOB densities routine flushing, breakpoint chlorination action level: effluent: 50 ug nitrite / nitrate/l

- 3) Biofilms: organized community bacteria adhering to physical surface
 - enables microbe to resist flush, survive nutrient deprivation
 - cause physical damage (corrosion), reduces proper function (flow rates)*, source of pathogens (regrowth), color/odor/taste
 - microbes: coliforms, aerobes (oxidizers), anaerobes (reducers)
 resistant to disinfectants (1-2 mg Cl₂/l,) antibiotics*

Pipe Encrustation

Figure 18.2 Distribution system pipeline heavily encrusted with iron and manganese oxide deposits. From Herro (1991).

Biofilm: tubercle anatomy / activity

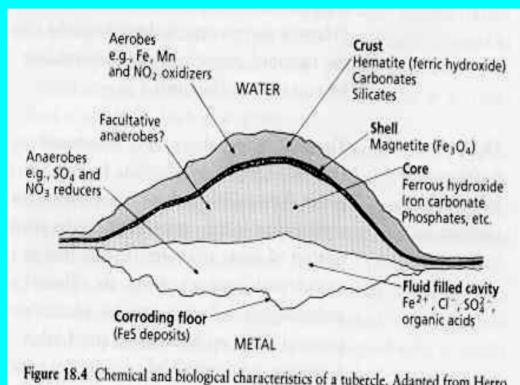
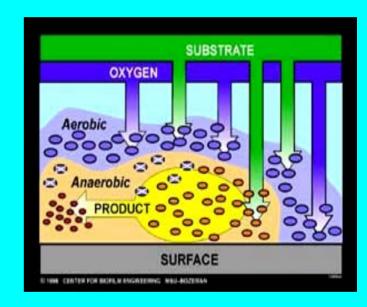



Figure 18.4 Chemical and biological characteristics of a tubercle. Adapted from Herro (1991).

Biofilms cont'd

Control: use antifouling / anti-adhesive surface^ (iron vs cPVC) chemical biocides (monochloramine)^ physical removal of tubercles reduce AOC (nutrients)^

^ all influence rate and amount of formation

Recognition: sporadic, unexplained change in counts, color, turbidity seasonal flushing

- 4) Intrusions: introduction of microbes from outside system
 - a) accidental: pressure loss, breaks/repairs, cross-connection, seepage, flooding
 - b) intentional: bioterrorism (deliberate tampering)
 - toxigenic bacteria (eg. E.coli 0157:H7[^], B. anthracis)*
 - parasitic protozoans (Cryptosporidium parvum)^
 - enteropathogenic viruses (Norwalk^?)*

Control: good SOPs, communication, controlled access rapid detection, response plan

Confirmed Bioterrorism Agent

Bacillus anthracis (anthrax)

- spores survive soil, water, air
- toxins: skin, GI tract, lungs (resp.> 60% mortality, 48h)
- ID₅₀: 2000 spores/person
- vaccine, antibiotics useful
- spores CI resistant

Potential Bioterrorism Agent

Norwalk virus

- small round, contain RNA
- infections associated with water, aerosols
- incubation period 24-48h
- diarrhea and vomiting
- no vaccines, no antivirals
- chlorine sensitive

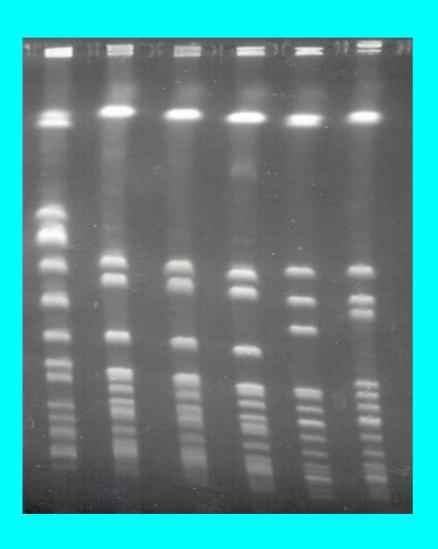
IV) the Future

a) Monitoring / detection

- non-culturable microbes: post-concentration particle counts?
 (acoustic energy concentration, microfluidic/capillary sampling)
- screen for specific pathogens? (molecular probes, PCR)

b) Disinfection

- greater use of UV irradation, ozonation?
- soft X-ray sources?


c) Bacterial source tracking

- eliminate cause rather than deal with outcome (asses similarity) *

d) Regulation

- WHO recommends adoption of HACCP approach

Detection / Confirmation of Contamination Source: DNA Typing

 Comparison of chromosome fragment banding patterns implicates cattle manure as source of *E. coli* polluting well water.

← Left to right: manure

66

well water

66

septic tank

"

Detection of Parasitic Protozoa


- Collect contents of >340 litres water in polypropylene woundstring filter
- Recover, concentrate, stain and examine under epifluorescence microscope

Fluorescent Immunoassay for Protozoa

- ← Giardia cyst
- ← Cryptosporidium oocyst
- ← Cross-reacting algae

WBB: Iron bacteria: Gallionella

- Filamentous, fragmented strands occurring at aerobic/anaerobic interface
- Also includes Thiobacillus and Leptothrix
- Aerobic oxidizers of soluble ferrous iron (FeII) to obtain energy → insoluble ferric (FeIII) oxyhydroxides
- Fe II fr. water → clogs " pipes → pitting

Microbiology 101: the "Basics"

Microorganisms: small, singled-celled, self-replicating life forms

Three major groups: <u>Eubacteria</u> (bacteria, Gram stain + or -)

<u>Eukarya</u> (algae, fungi, protozoa)

<u>Archaea</u> (methanogens)

Viruses (obligate parasites)

Exist as interactive communities in natural systems

- the **Prokaryotes** = Eubacteria, Archaea, viruses
- the **Eukaryotes** = protozoa, fungi, algae

Either aerobic (O₂ requiring) or anaerobic (O₂ independent) Net negative charge at cell surface (adhere to solids)