Microbiological Safety of Drinking Water: To Your Health

Will Robertson & Dennis Neil Health Canada

Introduction

- What are the pathogens?
- Why should we be concerned?
- How do they enter treated water?
- How do we measure microbiological safety?
- How do we reduce the risks?

What are the pathogens?

- human viruses
 - enteric Norwalk, Hepatitis A
- bacteria
 - enteric Campylobacter, Shigella, Salmonella, E. coli O157
 - respiratory Legionella
- protozoa
 - enteric Giardia, Cryptosporidium
 - systemic Toxoplasma

How do they differ?

- Size/Filterability
 - protozoa > bacteria > viruses
- Chlorine resistance
 - protozoa > viruses > bacteria
- Obligate parasites
 - viruses and protozoa +, bacteria -
- Survivability outside host
 - viruses and protozoa > bacteria
- Ease of detection
 - bacteria > protozoa > viruses

What are the acute health effects?

• DIARRHEA! DIARRHEA! DIARRHEA!

- Norwalk mild
- Campylobacter acute (profuse, watery or bloody)
- Shigella acute (mucous or bloody)
- E. coli O157 acute (bloody)
- Salmonella sudden (watery)
- Giardia acute (explosive, pale)
- Cryptosporidium acute (profuse and watery)

More acute health effects

Organism	Inf. Dose	Symptoms	Duration
Norwalk	Low	V, C, F, H, N	12-48 h
Campy.	Med	C, F, N, V	2-3 d
Shig./O157	Low - Med	F, N, V, C	4-7 d
Salmonella	High	F, C	2-5 d
Giardia	Low	C, G, V	2 -12 w
Crypto.	Low	C, N, F	10-15 d

۲

Acute effects other than the "d" word

• Toxoplasma gondi

- fever, pharyngitis (infectious mononucleosis)
- persists days to weeks
- Hepatitis A
 - nausea, vomiting, jaundice
 - persists 1-2 weeks
- Legionella
 - Legionnaires' disease (pneumonia, often fatal)
 - Pontiac fever (non-infectious flu-like illness, selflimiting)

Chronic Health Effects

۲

Organism Helicobacter pylori Campylobacter Toxoplasma Shigella/E.coli O157 Salmonella

Disease

ulcers, gastric cancer

Guillain-Barré syndrome

blindness, mental illness

kidney damage

reactive arthritis

I Outbreaks 1974-1996

Agent	Outbreaks	Known Cases
Viruses	23	1506
Bacteria	78	3149
Protozoa	59	1320
Unknown	43	2678
All	203	8653

II Outbreaks 1974-1996

Agent	% Outbreaks	% Cases	
Viruses	11.3	17.4	
Bacteria	38.4	36.4	
Protozoa	29.1	15.2	
Unknown	21.2	31.0	

Sources of outbreaks

Supply	% Outbreaks	% Cases
Public	35	65
Semi-public	45	32
Private	20	3

۲

Outbreaks are easily missed!

۲

- Pop'n
- MDs
- Hospitals
- 50% attacked
- Each week:
- 1% to MDs
- 0.01% to Hosp

1,000,000 1,000 25 500,000 ill (2 weeks) 2500 2.5 per MD 25 1 per Hosp

Endemic diarrhea

- How often do you have diarrhea?
 - once per year?
 - twice per year?
 - five times per year?
 - ten times per year?
- 0.5 times per year

Sources of endemic diarrhea

Sources	%
Water	30
Food	30
Person to person	30
Other (animal, stress, etc.)	10

۲

Annual costs of endemic diarrhea

Population	30M people	Cost per case	Total cost
0.5 cases/y	15M		
0.30 water	5M	\$300	\$1,500M
0.1 md	0.5M	\$400	\$200M
0.01 Hos	5,000	\$4,000	\$20M
0.002 RIPs	10	\$0.5M	\$5M

How do pathogens enter treated water?

- Insufficient treatment
 - disinfection
 - E. coli O157, Walkerton
 - Crypto, Kelowna
 - Giardia, Botwood
 - filtration
 - Crypto, Milwaukee,

How do pathogens enter treated water?

- Inadequate integrity during storage and distribution
 - infiltration
 - E. coli O157, Cabool MO
 - faulty storage
 - Salmonella, Gideon MO
 - back siphonage
 - faulty construction and repairs

How do we monitor microbiological safety?

• Microbiological quality

• Physical - chemical quality

• Sanitary surveys

• Disease surveillance

Microbiological quality

- Samples must represent true water quality

 sufficient sampling points
 - adequate sampling frequency
 - proper sample collection and transport
- Optimise recovery in lab.
 - Proper storage
 - Standard media
 - No short cuts

Non-random distribution

10	10	0	5	0
10	0	5	10	5

55 bacteria in 10 x 100mL of water, av. 0.5/100mL, range 0-10/100mL

Indicators - the best vs. the rest

- E. coli
 - best indicator of recent or substantial contamination
 - simple detection methods available
- Total & thermotolerant coliforms (in absence of E.coli)
 - indicates regrowth
 - no health significance
- HPC
 - measure of water quality deterioration
 - monitoring changes and trends in system condition

E. coli testing - Making decisions with old data

- Water was unsafe yesterday and maybe even before then so a boil water advisory is being issued today.
- Hope you are feeling well!
- The water may or may not be safe today but we won't know for sure until tomorrow.
- Stay tuned!

Monitoring Crypto.

- Legal requirement in UK
- Cost £ 8M per year
- Cases prevented 1500 per year
- Cost per case prevented £ 5.3K per year!
- Skewed cost/benefit relationship?

Physical-chemical quality

- Free chlorine residuals
 - -0.2-0.5 mg/L
- Turbidity
 - sudden increases above background
- Total dissolved solids
 conductivity

Sanitary surveys

- Simple to conduct
- Cost effective
- Should be carried out periodically
- Identify acute and potential problems
- Especially relevant to small systems

Disease surveillance

- Passive
 - MDs and labs. report cases to MOHs
- Enhanced
 - MOHs seek cases from MDs and labs.
 - sentinel physicians and pharmacies
 - clinical lab reports
 - health hot-lines
 - improves detection of outbreaks
 - controls spread of outbreaks
 - timely boil water advisories

How can we reduce the risks?

- Guidelines
- Multi-barrier approach
- Adequate monitoring
- Public education

Guidelines

- F/P/T Drinking Water Subcommittee develops guidelines
- Reduce risk of illness to tolerable levels at reasonable costs
- Reviewed on a continuous basis and revised when necessary
- Provinces and municipalities apply them judiciously

Multi-barrier approach

- Select the best source and protect it
- Proper system design and evaluation
- Effective treatment (in WTP or home)
- Intact storage & distribution system
- based upon Hazard Analysis Critical Control Point framework

HACCP - new approach for safe water

- HACCP developed as a means to ensure food safety for US space programme
- Systematic approach to identify, evaluate and control safety hazards
- Emphasis placed upon failure prevention rather than end-product testing
- Will form basis of new WHO drinking water quality guidelines

HACCP Principles

- Perform hazard analysis
- Identify critical control points (CCPs)
- Establish critical limits for CCPs
- Establish system to monitor CCPs
- Establish corrective actions as needed
- Establish verification procedures
- Establish documentation procedures

In-home disinfection devices

- Effective devices are available and include:
 - 1 micron filter + UV light or Ozone or Chlorine
 - viruses, bacteria and protozoa
 - EPA Guide Standard or NSF Int'l Standard 55
 - 0.1 micron filter (ceramic)
 - bacteria and protozoa
 - EPA Guide Standard
 - 1 micron filter (carbon block or RO)
 - protozoa
 - NSF Int'l Standards 53 or 58

Public education

- Regular monitoring of private supplies and proper waste management practices
- Domestic hygiene
- Compliance with boil water advisories
- Selection and operation of home water treatment devices

Conclusions I

- Waterborne pathogens can cause serious acute and chronic diseases
- Most waterborne outbreaks are never detected
- Waterborne diseases (epidemic and endemic) present significant costs to society
- Caused by faulty treatment, storage and distribution

Conclusions II

- E. coli is the faecal indicator of choice
- But monitoring safety involves more than just testing for E. coli
- Reduce risks through a multi-barrier approach (HACCP)
- Educated public can make informed decisions

To Your Health...

