THM Formation And Control

By Ken Roberts

Safe Drinking Water Seminar Gander, Newfoundland March 26/27 2001

THM Formation And Control

- DISINFECTION
- DISINFECTION BYPRODUCTS DBPs
- HEALTH RISKS
- DBP REDUCTION/REMOVAL
- FUTURE

- REGULATIONS; PATHOGENS; DBPs

Disinfection

- A process designed specifically to destroy pathogenic organisms
- Prevents waterborne disease
- Other WT processes such as filtration, or coagulation-flocculation-sedimentation nay achieve reductions; not generally the primary goal

Disinfection

- Waterborne disease is the most significant health risk
- A variety of chemical and physical agents may be used
- The disinfecting agents most commonly used today are chlorine and its compunds
- Chlorine Dioxide, Ozone, UV, membrane

- Chlorine:
 - early 1900s
 - affected by contact time, pH, temperature,turbidity, ammonia
- Chloramines
 - reaction of aqueous chlorine and ammonia
 - less "power' than free Cl_2 , O_3 or ClO_2

- assist in T & O control
- good penetration of biofilms
- Chlorine Dioxide
 - potency not affected by pH or ammonia
 - controls phenolic T & O
 - does not form THMs but chlorite and chlorate
 - must be produced on-site

- Ozone
 - in some respects superior to chlorine
 - unaffected by pH, ammonia
 - unstable and no long-time residual
 - must be produced on-site
 - no chlorinated byproducts
 - has its own DBPs: aldehydes, ketones, caboxylic acid and bromate

- Ultra-Violet Iraradiation
 - can kill bacteria, cysts and viruses
 - raw water quality affects
 - turbidity and colour can block UV
 - a viable alternative for Giardia and Cryptosporidium inactivation
 - no residual

Disinfectant Use - 1998 AWWA GW

Type of Disinfectant	Systems Using - %
Chlorine gas	61
Sodium Hypochlorite	34
-Bulk	31
- Generated on-site	3.3
Calcium Hypochlorite	4.5
-Powder	1.7
-Tablet	2.8
Other	3.9

Surface Water– 1998 AWWA

Treatment Process	Systems - %	
Filtration	97	
Clearwell (BW)	94	
Coagulation	85	
Flocculation	76	
Sedimentation	72	
Fluoridation	56	
Corrosion Control	52	
Disinfection Contact	50	
Basin		
Other – PreOx; Softg, Raw storage	10 - 25	

DBPs of Current Interest

- Halogenated organic compopunds
 - THMs and HAAs
- Inorganic Byproducts
 Bromate: Chlorite: Chlorate
- Disinfection Residuals
 - Chlorine; Chloramines; Chlorine Dioxide

Disinfectants as Oxidants

- Nuisance Zebra Mussels
- Control Iron and Manganese
- Residual to prevent regrowth in DS
- Tastes and Odours
- Improve coagulation efficiency
- Prevent algal growth in sed basins and filters
- Indicators of DS integrity

Health Effects

- THMs formed by chlorination
- Chlorine has virtually eliminated waterborne microbial disease
- Classified as: "probably carcinogenic to humans"
- IMAC of 0.1 mg/l based on chloroform risk
- Extrapolation model Lifetime risk: 3.64 x 10⁻⁸

Health Effects

- DW standards set on basis of:
 - health impacts
 - occurrence (conc. and frequency)
 - exposure
 - cost benefit
 - analytical
 - treatment availability

Health Effects

Based on similar health effects data, including animal studies, jurisdictions can have different "standards". For example:

- US EPA have a THM standard of 80 μ g/L
- Ongoing discussion re chloroform NOEL
- Australia consider a NOEL and have a standard of 250 $\mu g/L$

Canadian THM Guideline

- IMAC is 0.1 mg/l based on a running quarterly average
- Based on the chloroform risk
- Interim until all other DBP risks are determined
- Not expected that all supplies will meet immediately
- Efforts to meet as expansion/upgrade
- Precursor removal is preferred
- Any DBP reduction **MUST NOT** compromise disinfection

DBP Production

- Trihalomethanes are produced by chlorination of raw water precursors e.g.:
 - humic and fulvic (peaty) materials.
- Most common THMs.
 - Chloroform.
 - Bromodichloromethane.
 - Chlorodibromomethane.
 - Bromoform.

Modeling DBP Formation

Mechanistic models have been developed to predict DBP formation

- These models have included:
 - Colour
 - TOC
 - UV absorbance
 - chlorine decay kinetics
- Some general trends have been noted but definitive concentrations difficult

Best results are obtained from on-site testing

- Three basic treatment approaches for THM reduction:
- Removal after formation
- Removal of precursors before Chlorine addition
- Use of alternative disinfectant

Removal of THMs - + and -:

- No need for change of disinfectant +
- Lack of precursor removal and so free chlorine continues to react –
- THMs are transferred to another medium e.g. air or activated carbon, and disiposal issue -

THM removal:

- By Air Stripping potential air pollution; energy intensive; winter operation difficult
- By GAC an advantage is that the process is reversible and GAC can be regenerated (energy and air issues); problems are short bed lives and possible desorption

Overall not optimum solution

Disinfection process changes:

- Moving point of disinfectant addition
- Changing type of disinfectant (e.g. chlorine to ozone, UV)
- Process change e.g. contact chamber layout, pH
- Raw water source change

Changing location of disinfectant addition: Issues

- Zebra mussel control
- Adequate disinfection contact time Precursor removal can achieve 50% reductions through conventional coagulation and settling

US EPA TOC % Removals

TOC	Alk'y; mg/L	Alk'y; mg/L	Alk'y; mg/L
mg/L	0 - 60	60 - 120	> 120
	%	%	%
2.0 - 4.0	35	25	15
4.0-8.0	45	35	25
>8.0	50	40	30

Membrane Filtration (ultrafiltration, nanofiltration and reverse osmosis)

- Effective removal of:
 - particles
 - TOC, DOC and THM precursors
 - other organic compounds
 - microorganisms eg. *Giardia* and *Cryptosporidium*
 - ionic dissolved salts

Biological treatment

- Slow sand filtration
 - simple operation
 - up to 15 20% THM reductions through precursor removal
 - disadvantage is the large filter area required
- High Rate e.g. bilogical GAC (possibly 40% but relatively costly and complex)

Developing a strategy for THM reduction should consider:

- Ability to meet guidelines (can colour be relaxed?)
- THM reduction potential
- Cost capital and O&M
- Reliability and ease of water quality change adjustment
- Complexity of operation
- Flexibility
- Climate sensitivity

Alternative Disinfectants

- Ozone
 - Effective disinfectant
 - good for colour removal, T & O, iron and manganese
 - must be produced on-site
 - not persistent and therefore requires a second DS disinfectant

Alternative Disinfectants

Free Chlorine plus ammonia

- chloramines do not produce THMs
- must have adequate disinfection prior to ammonia addition
- persistent in DS
- chloramine toxicity being evaluated

Alternative Disinfectants

Chlorine Dioxide

- strong disinfectant
- does not form THMs
- residual will persist in DS
- chlorite and chlorate toxicity

Iodine

- historical use in emergency situation
- relatively high cost
- iodinated THMs & pot'l physiological effects

Disinfection/Disinfection ByProducts (DBPs)

- Optimal disinfection is important <u>too much</u> of a good thing e.g. in chlorine application <u>it is not</u>
- DBP production occurs with disinfectant addition
- Chlorine produces trihalomethanes, haloacetic acids
- Ozone can produce ketones, aldehydes, bromates
- Chlorine dioxide chlorate and chlorite
- Chlorine and Chloramines

What's in the Future ?

Health Canada has established a Chlorinated Disinfection ByProducts (CDBP) Task Group to comprehensively assess the risks from THMs in Canadian drinking water supplies and develop risk management recommendations.

- work is ongoing

Groundwater (unless exclusion is granted)

- Disinfection minimum level of treatment
- Chlorine, or other equivalent, for disinfection and DS residual

- GW under direct surface water influence likely to require contact time and disinfectant concentration (CT) as per developed tables

Surface water

- a minimum 3 Log removal/inactivation
 (99.9%) of *Giardia* cysts and 4 Log viruses
- CT tables will define
- higher requirements for poor source bacterial qualities

US EPA considering additional treatment based on raw water *Cryptosporidium* concentrations

- Additional treatment may need to use:
 - ozone
 - chlorine dioxide
 - UV
 - membranes
 - bag/cartridge filtration, or
 - in-bank filtration

Down the Road DBPs

DBPs TO HAVE GUIDELINES

- Disinfection residuals
 - chlorine
 - chloramines
 - chlorine dioxide
- Inorganic ByProducts
 - Bromate ion
 - chlorite ion

Down the Road DBPs

- Halogenated Organic Byproducts
 - THMs (chloroform,
 Bromodichloromethane,
 Dibromochloromethane, Bromoform)

Haloacetic Acids (Monochloroacetic, Dichloroacetic, Trichloacetic, Monobromoacetic, and Dibromoacetic)