

Water quality failures in distribution networks - understanding risk

Rehan Sadiq

Institute for Research in Construction

National Research Council Canada Ottawa, Ontario

September 2004

Outline

- Water quality in distribution networks
 - ✓ Deterioration mechanisms
 - ✓ Water quality monitoring
 - ✓ Water quality management
- Risk analysis
 - Understanding risk
 - Risk assessment & management
- An example

What is Water Quality?

"collection of upper and lower limits on selected water quality indicators"

Microbiological: Bacteria, viruses, protozoa

Physical: Temperature, turbidity

Aesthetic: Color, taste, odor

Chemical: Nutrients, metal, pH, organics

Drinking Water Laws, Regulations and Guidelines

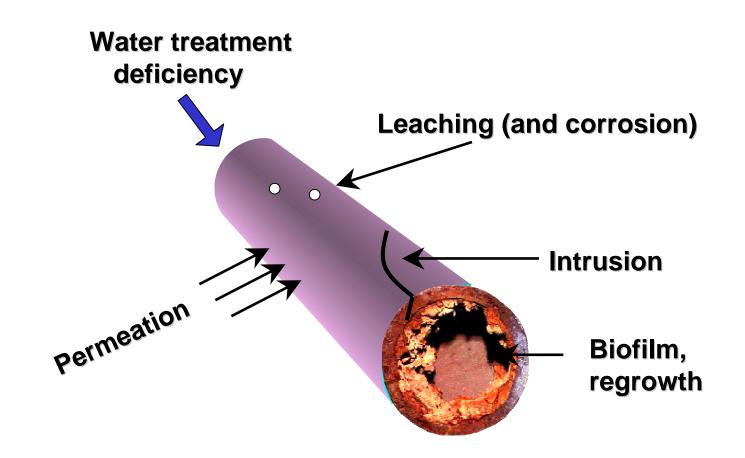
Protects public health

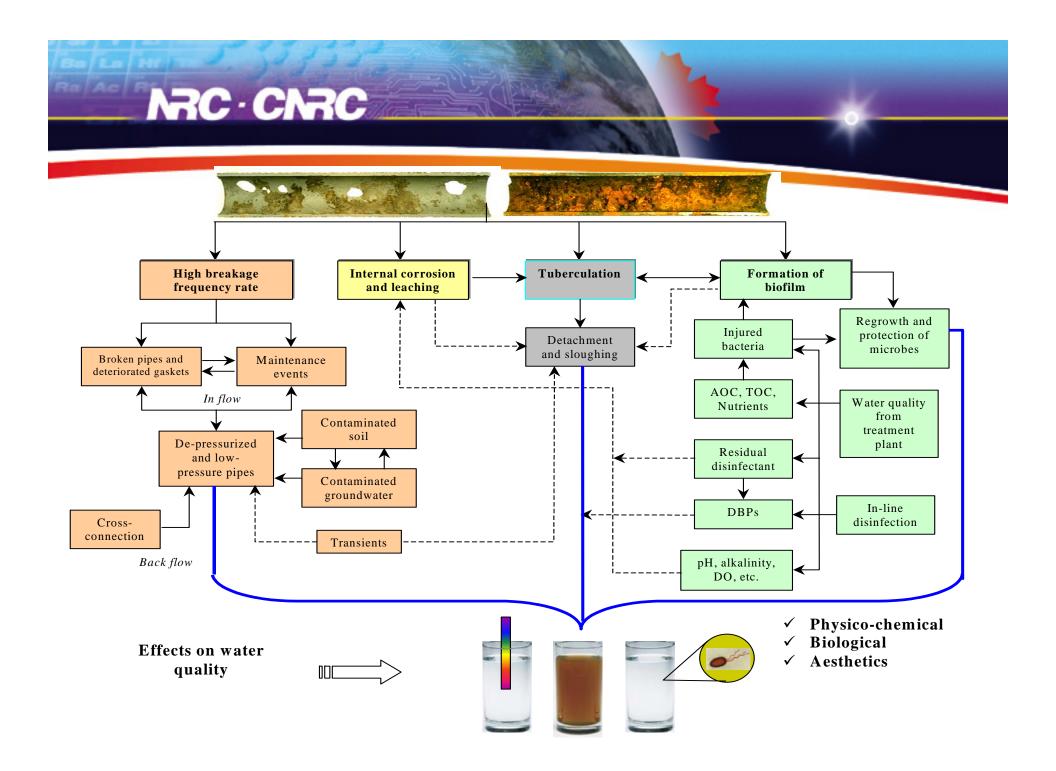
"... concentrations do not result in any *significant risk* to human health, over a lifetime consumption"

... required to perform regular monitoring to meet regulatory limits

Commonly monitored indicators of water quality

Common parameter	Purpose
Alkalinity	Corrosion control
Dissolved oxygen	Corrosion control; Detection of dead-end mains
Fluoride	Water quality monitoring
Nitrate	Water quality monitoring
рН	Water quality monitoring
Phosphate	Corrosion control; Water quality monitoring
Residual disinfectant	Water quality monitoring
Specific organic	Water quality monitoring
Temperature	Water quality monitoring; Flow management
Turbidity	Water quality monitoring




Water Quality Failure

"an exceedence of one or more water quality indicators from specific regulations, or in the absence of regulations, exceedence of guidelines or self-imposed limits driven by customers' needs"

Sources of Water Quality Failure

Water quality failures in NL*

NRC · CNRC

Indicator	Observed	Standard
Color (TCU)	2 – 165 (36)	15
Turbidity (NTU)	0.06 - 4.52	1
Lead (mg/L)	0.001 – 0.101	0.100
THM (μg/L)	> 20% water supplies (≈80K population)	100
Giardia	8 cases	

5% boiled water advisories due to microbiological water quality failures (*Source to tap – water supplies in Newfoundland & Labrador, 2001)

Rank of Major Water Quality Issues

isk	
Maintaining chlorine residual	
Taste and odour	
Corrosion control	
DBP formation	

Water Quality Monitoring - benefits

- Reduces public health risk by early detection
- Meets legislated requirements
- Helps to take decisions for O & M activities

Water Quality Monitoring - benefits

- Increases consumer confidence (reduces perceived risk)
- Develops water quality baseline data
- Provides a pro-active approach to deal with emerging water quality issues

Bacteriological Monitoring in NL

No distribution system or very small 1 sample/month system serving less than 100 people

Distribution systems serving population < 5,000

4 samples/month

Distribution systems serving population 5,000 to 90,000

Distribution systems serving population > 90,000

1 sample/1,000/month

For 90,000 plus

one sample/additional 10,000/month

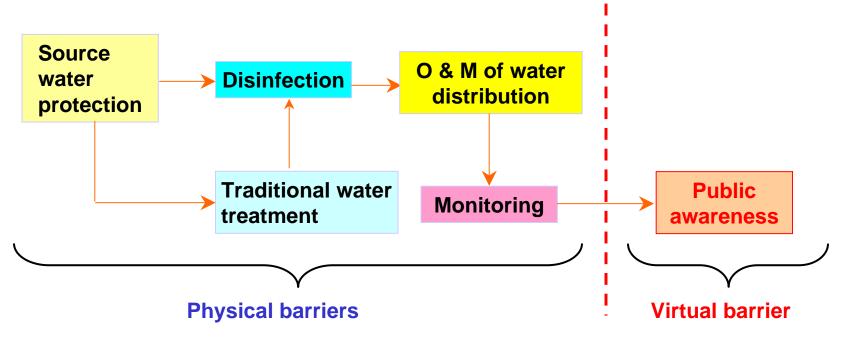
Disinfectant Monitoring in NL

... after a minimum 20 minute contact time, shall contain a residual disinfectant concentration of free chlorine of at least 0.3 mg/L, or equivalent CT value.

Detectable free chlorine residual must be maintained in all areas in the distribution system.

Water Quality Monitoring - implementation

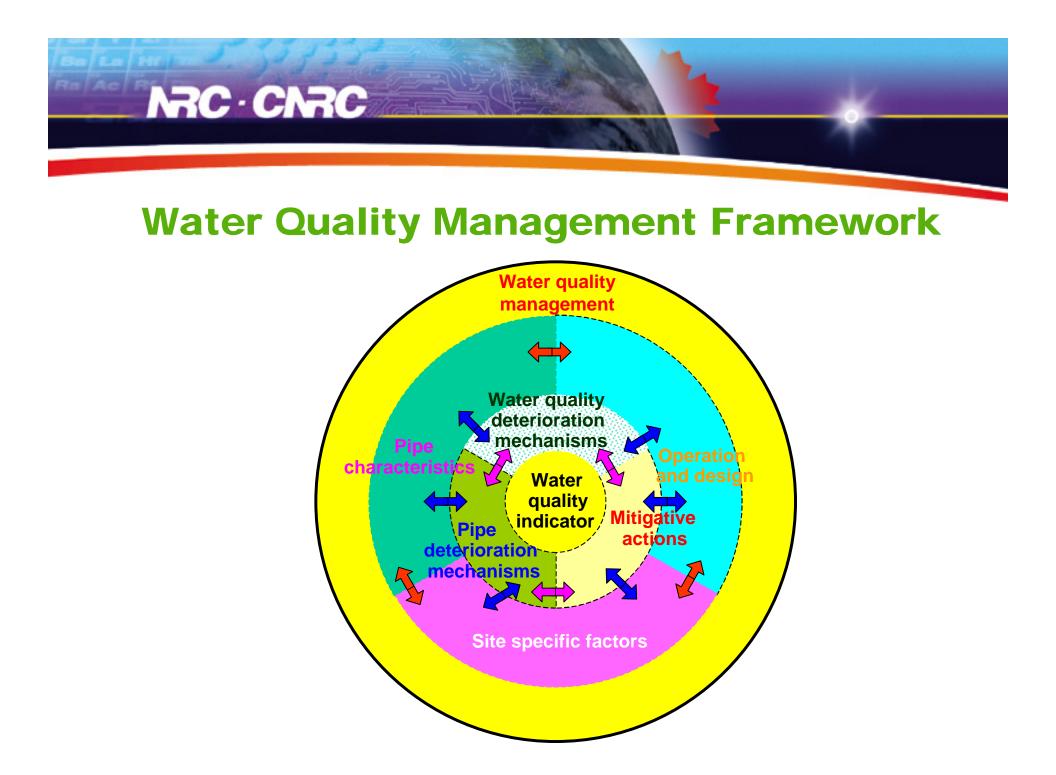
- Decision on water quality indicators, monitoring locations, frequency and
 - sampling techniques
- Management and reporting of collected data


Water Quality Monitoring - implementation

- Incorporation of event-driven monitoring in the program
- Establishment of partnerships with the community to monitor water quality
- Development of response protocols for monitored data and maintenance, and procedures to update program

Water Quality - management

- Multiple barrier approach defensive
- Total water quality management TWQM



Water Quality - management

- HACCP (Hazard Analysis Critical Control Points)
 - ✓ Hazard analysis
 - ✓ Critical control points
 - Critical limits
 - ✓ Monitoring
 - ✓ Risk-based corrective actions
 - ✓ Verification & validation
 - ✓ Record keeping & documentation

Risk

refers to

"joint probabilities of an occurrence of an event and its consequences" (Lowrance, 1976)

"a triplet of causal scenario, likelihood, and consequence" (Kaplan, 1997)

Risk Analysis

Risk Assessment

- What can go wrong?
- What is the likelihood that it will go wrong?
- What are the consequences?
- **Risk Management**
- What can be done?
- What options are available and what are the associated tradeoffs in terms of cost, risks, and benefits?
- What are the impacts of current management decisions on future options?

Understanding Risk

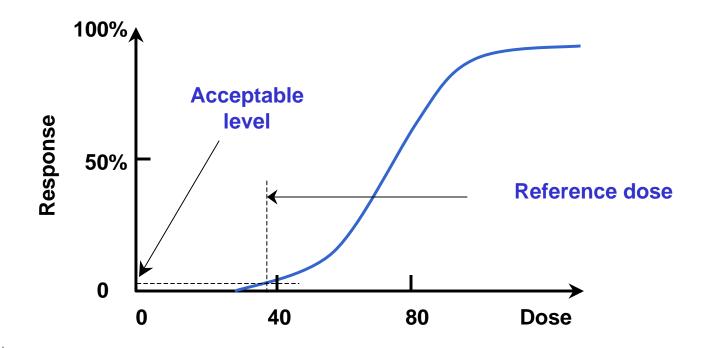
Source	§Annual risk of mortality	
Heart disease	1 in 397 (0.0025)**	Cause of death is
Cancer	1 in 511 (0.002)	cancer for every 511 th death in any
Accidents	1 in 3,014 (0.0003)	year
Alcohol	1 in 6,210 (0.00016)	
Suicide	1 in 12,091 (0.00083)	
Homicide	1 in 15,440 (0.000065)	
Fire	1 in 82,977 (0.0000012)	
Bioterrorism	1 in 56,424,800 (0.0000002)	
Food poisoning	1 in 56,424 (0.00002)	

Human Health Risk Assessment

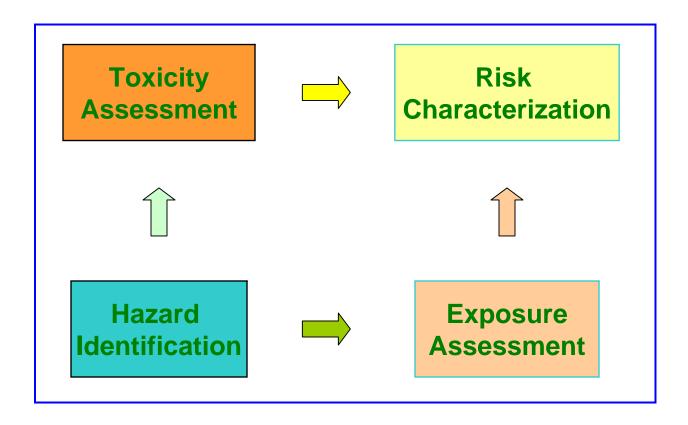
- Hazard identification
- Exposure assessment
- Toxicity assessment (dose-response)
- Risk characterization
- Risk communication

Hazard Identification

- Examines data on contaminants detected during monitoring and emphasizes those of concern
- Requires knowledge of source of contamination, concentration of contaminants and transport mechanisms, i.e., how they reach the receptor


Exposure Assessment

- Source and release mechanisms
- Transport, transfer and transformation mechanisms
- Exposure point
- Receptor
- Exposure route
- Estimation of chronic daily intake (CDI)


Toxicity Assessment

<u>Cancer risk</u>: Determine slope factor, SF (<u>mg/kg-day)⁻¹</u>, from dose-response curve <u>Non-cancer risk</u>: Determine reference dose, RfD (<u>mg/kg-day</u>) from dose-response curve


Risk Characterization

Risk Characterization

- Unit cancer risk = CDI × SF
- Number of a cancer cases (over life span)
 = Unit cancer risk × population
- Hazard index, HI = CDI / RfD
- Non-cancer risk = p(HI > 1)

Uncertainty

Risk estimates are highly uncertain due to:

- ✓ Extrapolation of dose-response curve
- ✓ Non-availability of data on exposure assessment

Uncertainty

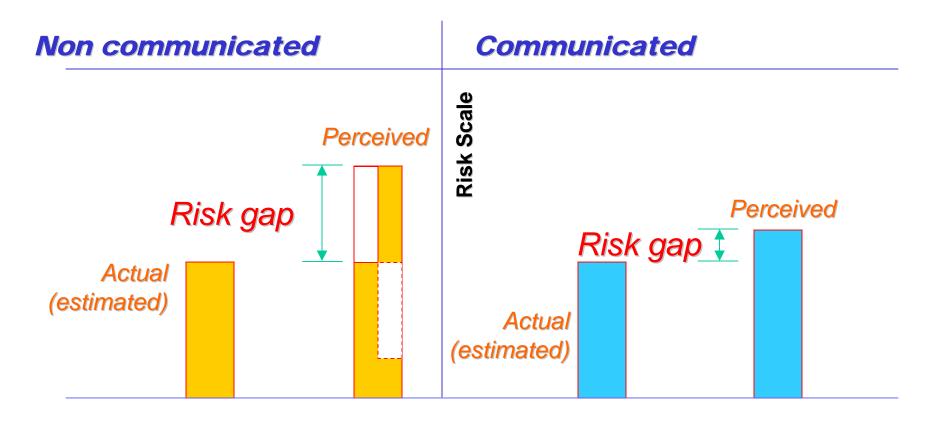
Type of uncertainties

Type I

Variability, stochasticity related to natural heterogeneity

Type II

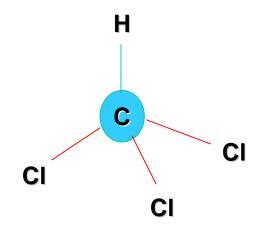
Epistemic, systematic, uncertainty related to partial ignorance, subjectivity and vagueness


Uncertainty - based Methods

Probabilistic risk analysis

- ✓ Monte Carlo simulations (higher order MCS)
- ✓ First order reliability methods
- Fuzzy-based method
 - ✓ Fuzzy arithmetic and possibility theory
- Interval analysis

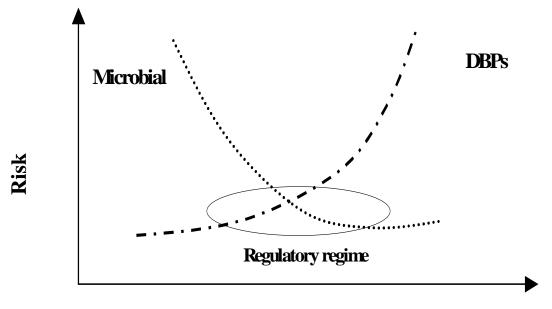
Risk communication



Example - DBPs

Chlorine residual + NOM (natural organic matter) →

THMs (Chloroform (CHCl₃), ...)



"Disinfection ranks with the discovery of antibiotics as one of the major public health accomplishments of the 20th century"

Risk-risk tradeoff

"In terms of *risk*, chlorination has allowed people to live long enough to worry about cancer"

Disinfection level

Example - DBPs

THM = f (NOM, pH, Br, Dose, Temperature, *time*)

- **Dose THM (Treatment related)**
- **NOM** \uparrow **THM** \uparrow (Source WQ & treatment related)
- **Temp.** \uparrow **THM** \uparrow (Environmental)
- Time \uparrow THM \uparrow (Design, O&M related)
- pH ↑ THM ↑ (source WQ & treatment related)

Health risks of DBPs are uncertain, they should be reduced whenever economically feasible

Strategies to reduce DBPs

- Control/surveillance to reduce both DBP precursors and microbial contaminants in source water;
- optimize all treatment processes, to ensure that concentrations of disinfectant are adequate;
- use of alternative disinfectants; and
- reduce water age in distribution system.

Health Issues related to THMs

- Linked to small increase in risk of bladder cancer and colorectal cancer
- Some investigations link to heart, lung, kidney, liver, and central nervous system damage
- Other studies link THM to reproductive problems, including miscarriages

Categorization of contaminants for human health risk assessment

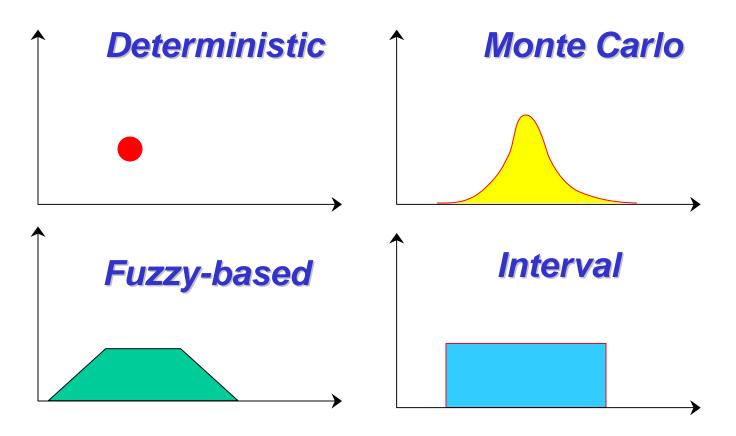
	Animal evidence					
Human evidence	Sufficient	Limited	Inadequate	No data	Evidence of no effect	
Sufficient	Α	Α	Α	Α	Α	
Limited	B1	B1	B1	B1	B1	
Inadequate	B2	С	D	D	D	
No data	B2	С	D	D	E	
Evidence of no effect	B2	С	D	D	Е	

A: Human carcinogen; B: Probable human carcinogen (B1 and B2 represents two levels of B); C: Possible human carcinogen; D: Not Classified; E: Evidence that its is non-carcinogenic

Comparison of Total THM (ppb)

Parameter	Nitrate (mg/L)	THM (ppb)
§ WHO (1993)	45	$\sum_{i=1}^{4} \frac{THM_{i}}{WHO_{i}} \leq 1$
US EPA (2001)	45	80
Health Canada (2001)	45	100
Australia - New Zealand (2000)	50	250
98/83/EC		100
UK (2000)	50	100

§ ratio of individual THMs to guideline values should be less than 1



Health Issues of THMs

Class of DBPs	Compound	Rating	Detrimental effects
Trihalomethanes (THM) Chloroform		B2	Cancer, liver, kidney, and reproductive effects
	Dibromochloromethane	С	Nervous system, liver, kidney, and reproductive effects
	Bromodichloromethane	B2	Cancer, liver, kidney, and reproductive effects
	Bromoform	B2	Cancer, nervous system, liver and kidney effects

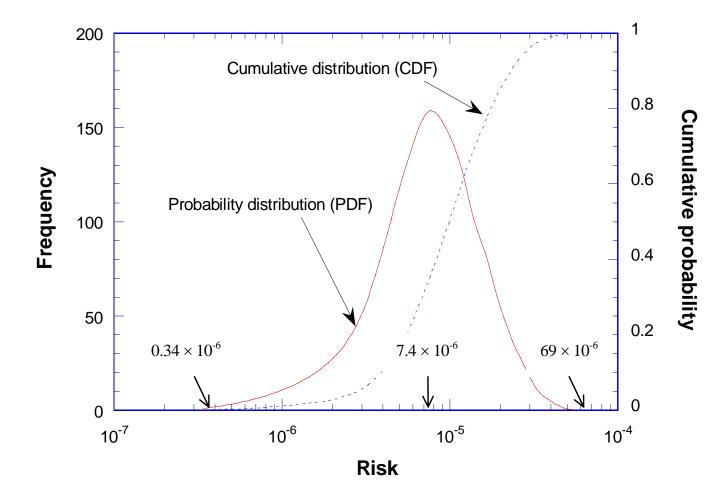
Defining input parameters for cancer risk model

How is risk determined?

CDI = (IR × C × ED × EF) / (BW × AT) Unit cancer risk = CDI × SF

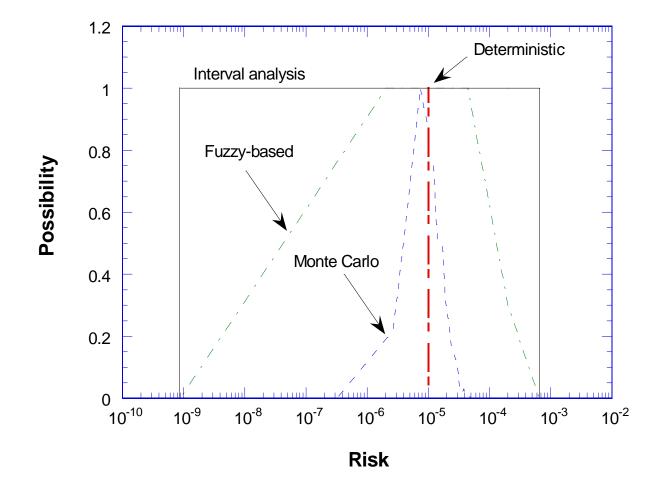
Input parameters for cancer risk model

IR = intake rate (L/Day)
C = chloroform concentration (mg/L)
BW = body weight (kg)
AT = averaging time (days)
EF = exposure frequency (day/yr.)
ED = exposure duration (yr.)
SF = slope factor (mg/kg-day)⁻¹
CDI = chronic daily intake (mg/kg-day)



Cancer risk cases in a million (over life span)

Statistical parameters	Maximum likely	Minimum	Maximum
Deterministic	10	-	-
MCS	7.4	0.34	69
Fuzzy	(2 - 45)	0.00087	660
Interval	-	0.00087	660




Monte Carlo Simulations

Comparison of different methods

Summary

- Water quality can be deteriorated through various sources in distribution networks
- The risk analysis for water quality failures in distribution networks is a complex process and
- Risk estimates are highly uncertain

Publications

NRC · CNRC

- 1. Sadiq, R., Rajani, B., Kleiner, Y. (2004). Risk analysis for water quality deterioration in distribution networks, *Evaluation and Control of Water Loss in Urban Water Networks*, Valencia, Spain, http://irc.nrc-cnrc.gc.ca/fulltext/nrcc47067/nrcc47067.pdf
- 2. Sadiq, R., Kleiner, Y., Rajani, B. (2004). Aggregative risk analysis for water quality failure in distribution networks, *Journal of Water Supply Research and Technology : Aqua*, 53(4): 241-261. http://irc.nrc-cnrc.gc.ca/fulltext/nrcc46269/nrcc46269.pdf
- 3. Sadiq, R., Rodriguez, M.J. (2004). Disinfection by-products (DBPs) in drinking water and the predictive models for their occurrence: a review, *Science of the Total Environment*, 321(1-3): 21-46. http://irc.nrc-cnrc.gc.ca/fulltext/nrcc44499/nrcc44499.pdf
- 4. Sadiq, R., Kleiner, Y., Rajani, B. (2003). Forensics of water quality failure in distribution systems - a conceptual framework, *Journal of Indian Water Works Association*, 35(4): 1-23. http://irc.nrc-cnrc.gc.ca/fulltext/nrcc46742/nrcc46742.pdf
- 5. Sadiq, R., Rodriguez, M.J. (2004). Fuzzy synthetic evaluation of disinfection by-products a risk-based indexing system, *Journal of Environmental Management*, 73(1):1-13. http://irc.nrc-cnrc.gc.ca/fulltext/nrcc46632/nrcc46632.pdf
- 6. Sadiq, R., Rajani, B., Kleiner, Y. (2004). Probabilistic risk analysis of corrosion associated failures in cast iron water mains, *Reliability Engineering and System Safety*, 86(1): 1-10. http://irc.nrc-cnrc.gc.ca/fulltext/nrcc45730/nrcc45730.pdf

Visit us at ...

http://www.nrc.ca/irc/uir/bu/index.html

IRC Institute for Research in Construction URBAN INFRASTRUCTURE PROGRAM Buried Utilities Research