Small System Operation and Maintenance - A Local Experience

Austin Pomeroy Public Works Foreman Town of Placentia

Presentation Purpose

To give a local example of small systems
 Provide information concerning the operation and maintenance of those systems

Generate discussion with the owners/operators of other small systems

Presentation Outline

> Background

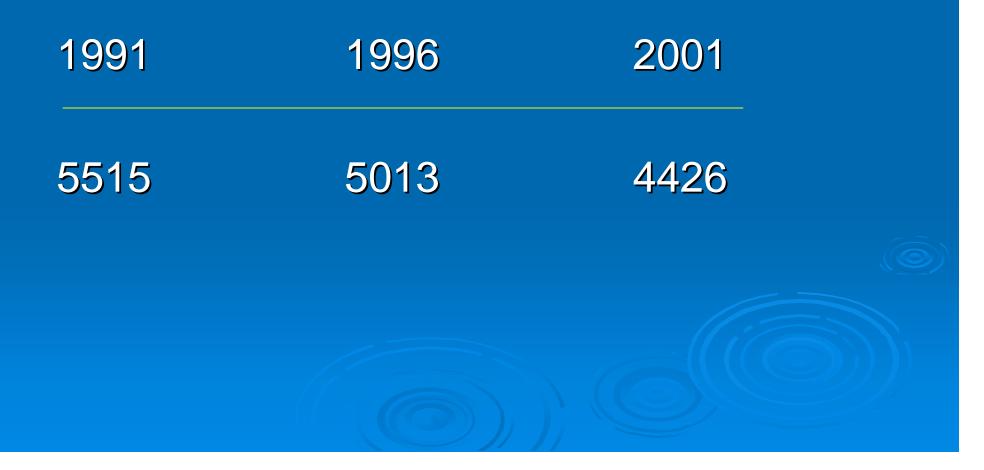
> Water System Infrastructure

- Intakes
- Disinfection Systems
- Distribution Systems
- Water Treatment Plant

> Operation and Maintenance

- Workforce
- Schedule
- Records
- New Initiatives as a result of Training
 - Unidirectional Flushing
 - Leak Detection
- Greatest Problem
- Discussion

Background - Placentia


 Originally populated by Basques fishermen early in the 16th century
 First water mains installed in 1890
 Towns of Dunville, Jerseyside, Placentia and Freshwater amalgamated in 1994 to form the present municipality of Placentia

Background - Placentia

Background - Placentia

Population

Water System Infrastructure

Amalgamation lead to four isolated water systems being operated by the Public Works Department

Four sets of:

- Intakes
- Disinfection Systems
- Distribution Systems

One: Water Treatment Plant

Water System Infrastructure Intakes

Dunville – Wyses Pond

Placentia (Alternate) – SE River

Jerseyside and Placentia – Larkins Pond

Freshwater and Argentia – Clarkes Pond

Water System Infrastructure Primary/Secondary Disinfection Systems

Dunville – Ozone/Chloramines

Placentia (Alternate) – Gas Chlorination

Jerseyside and Placentia – Gas Chlorination

Freshwater and Argentia – Gas Chlorination

Water System Infrastructure Primary/Secondary Disinfection Systems

Gas Chlorination

Ozone/Chloramines

Water System Infrastructure Secondary Disinfection Systems

Jerseyside and Placentia

Liquid Chlorination Booster

Gas Chlorination Booster

Water System Infrastructure Distribution System

 Screens 	4 Sets
 Pumps 	16
 Water Meters 	6
 Piping 	38 km
 Valves 	300 + (Assorted)
 Storage Tanks 	4
 Hydrants 	200
 Service Lines 	1200

Water System Infrastructure > Distribution System

Screens

Water System Infrastructure Distribution System

Pumps

In-Line Booster (Turbine)

Vertical Turbine

Water System Infrastructure Distribution System

• Water Meters

Water System Infrastructure Distribution System

- Piping
- 38 kilometers of water main
- Range in size from 1.5" to 12"
- Ductile Iron (DI), Cast Iron (CI), Asbestos Cement (AC), Polyethylene (PE) and Polyvinyl Chloride (PVC)
- Oldest pipes installed in 1890

Water System Infrastructure Distribution System

Valves

Main Line Gate Valve

Water System Infrastructure Distribution System

Valves

Pressure Reducing Valve (PRV)

Air Release Valves

Water System Infrastructure > Distribution System

• Storage Tanks

In-Ground Concrete Reservoir

Water System Infrastructure Distribution System

• Storage Tanks

Standpipes

Water System Infrastructure Distribution System

Hydrants

- 200 dry barrel hydrants

- Treatment plant originally installed due to taste and odour complaints
- Average raw water colour over 30 TCU was also a concern

Design Specifications:

- 200 gpm
- Raw water colour of 45 TCU
- Raw water turbidity of 5 NTU

Treatment Process:

- Ozonation
- Filtration
- Secondary Disinfection
- pH Adjustment

Treatment Process:

Ozonation

Air Compressor

Ozone Generator

Contact Chamber

Treatment Process:

Filtration

Dual Media Filters

Sludge Lagoon

Clear Water Chamber

Treatment Process:

Secondary Disinfection

Chlorine Addition

Ammonia Addition

Residual Testing

Treatment Process:

pH Adjustment

Lime and Soda Ash Mixing

Injection

pH Testing

Treatment Process:

pH Adjustment

Prior to installing pH adjustment equipment the maintenance crew were repairing approximately 75 leaks per year. Since the installation, the number of leaks has dropped to 3-4 leaks per year.

Treatment Process Outcomes:

Parameter	Before Treatment	After Treatment
Colour (TCU)	40	15
рН	6.0	7.0
Leaks	75 per year	3-4 per year
Complaints	MANY	NONE

Operation and Maintenance Workforce

- Status 5 Fulltime Operators
 1 Fulltime Works Foreman
- Certification
 - 6 Operators with Water Distribution Level One
 - 3 Operators with Water Treatment Level One

Operation and Maintenance Schedule

- Daily

 Pump systems, chlorine systems, chlorine residual, water levels, flow rates, and pressure + Dunville plant (Next Slide)
- Weekly

 Clean screens, run diesel pumps, visual inspection of storage tank exteriors and clean compressor filters
- Monthly
- Yearly
- Grease motors, pumps and blower
 - Flush distribution system (twice), inspect storage tank interiors and conduct leak detection survey

Operation and Maintenance Schedule

As the preceding slide indicates, operation and maintenance is happening on a "seven days a week" basis

Operation and Maintenance

TOWN OF PLACENTIA OPERATOR INSPECTION CHECKLIST

Records

Dunville Water Treatment Plant for the Week of Wednesday Thursday Friday Sunday Item Freq. Monday Tuesday Saturday the Levels/Rate (chlowine) 2 X Daily 2 X Daily Ph Levels Pressure Switches 2 X Daily Check & Record Pressure Reading (see reverse) 2 X Daily Ph, Color, CL, Flow 2 X Daily Check & Record Water Levels (see reverse(2 X Daily Check Reservoir/Filters 2 X Daily Check Wet Well 2 X Daily • • Check Ozone Generator (leaks/gauges/fault lights) Daily Check Compressor Daily Check Belts Daily Daily Drain Trap Lime/Soda Ash Daily Clean Compressor Filters Weekly Grease Blower Monthly Grease Motors Monthly Check Brushes 3 Months Check Reservoir - Clean if Necessary Yearly **Replace Brushes** 3 Years Weekly Clean Screens * See Reverse for Comments and Recorded Readings 23-Jan-01

Operation and Maintenance

> Records

Check Wet Well	2 X Daily
Check Ozone Generator (leaks/gauges/f	ault lights) Daily
Check Compressor	Daily
Check Belts	Daily
Drain Trap	Daily
Lime/Soda Ash	Daily
Clean Compressor Filters	Weekly
Grease Blower	Monthly

Operation and Maintenance

Records

Dunville Water Treatment Plant for the Week of Ph/Color/CL/Flow Comments Pressure Reading (Kpa) Water Level (m) Date Monday Tuesday Wednesday Thursday Friday Saturday Sunday

OPERATOR INSPECTION CHECKLIST

TOWN OF PLACENTIA

 (\bigcirc)

Operation and Maintenance

Records

Month	Flow	Flow	CI2 Residual	CI2 Residual	Pump Pr.	Vacuum	Chlorine
Homen	100						
	Forward	Reverse	Free	Total	< >	< >	Remaining
	<u> </u>	-					
1							
2							
3						199	
5							
		-					
7							
ه 9							
10						Constant States	
10							
11							Conservation of the second
12							
13						7	
15							- And and -
15						1999	
17							
18			1942		182		. Setting
19							AN ALL
20						- 19	
21	*****						
22						10	
23			1				
24			į	1			
25	2.5			H.	1000		
. 26			·				
27							
28							
29							
30						the second	

Operation and Maintenance

S.E. Road, Meter Bldg. Log Book Town of Placentia Public Works

2004

Month	Flow	Flow	Cl2 Residual	Cl2 Residual	Pump Pr.	Vacuum	Chlorine
	Forward	Reverse	Free	Total	<>	<>	Remaining
			10) - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	N) with means a surger (course) (mage (course one ()) acc	na) - fan in ar fyn fyngal a r yfan a syn yr	n an	ng kan kepangan dan sarah sala
	2						
	3						
4	1						

Operation and Maintenance

> Schedule

Ongoing Repairs

Operation and Maintenance Schedule

Ongoing Repairs – Tools and Equipment

Operation and Maintenance Schedule

Ongoing Repairs – Tools and Equipment

Unidirectional Flushing

Leak Detection

- Unidirectional Flushing
- Isolation of pipe segments and flushing in a sequential manner from source to periphery
- Involves closing off valves in a section of the system to create a single path of flow in the section (i.e. all water being flushed from the system passes through the entire length of the section being flushed).

- Unidirectional Flushing PURPOSE
- Ensures that the water velocity along the pipe section remains relatively constant and that sediment remains suspended until removed (if high enough velocity).

Target velocities:

- 3.0 feet per second sediment
- 5.0 feet per second biofilm

 Unidirectional Flushing How do we know when we have reached 3.0 feet per second or 5.0 feet per second?

- Measure flow with PITOT guage
- Use table to compare flow to pipe diameter

Unidirectional Flushing

Flow Measurement with Pitot Guage

Unidirectional Flushing

 \geqslant

Flow Measurement with Pitot Guage

Operation and Maintenance

New Initiatives as a result of training

Unidirectional Flushing

Table - Flow Vs. Diameter Opening

Flow (Imperial gmp and US gpm) and Velocity(fps) in Water Mains											
	Pipe Diameter (in.)										
Flow	Flow	2	4	6	8	10	12	14	16	18	20
USgpm	lgpm										
24	20	2.4									
36	30	3.7	0.9								
48	40	4.9	1.2	0.5							
60	50	6.1	1.5	0.7	0.4						
96	80	9.8	2.4	1.1	0.6	0.4					
120	100		3.1	1.4	0.8	0.5	0.3				
240	200		6.1	2.7	1.5	1.0	0.7	0.5			
360	300		9.2	4.1	2.3	1.5	1.0	0.7	0.6		
480	400			5.4	3 <mark>.</mark> 1	2.0	1.4	1.0	0.8	0.6	
600	500			6.8	3.8	2.4	1.7	1.2	1.0	0.8	0.6
720	600			8.2	46	2.9	2.0	1.5	1.1	0.9	0.7
840	700			9.5	5.4	3.4	2.4	1.7	1.3	1.1	0.9
960	800			10.9	6.1	3.9	2.7	2.0	1.5	1.2	1.0
1080	900				6.9	4.4	3.1	2.2	1.7	1.4	1.1
1200	1000				7.7	4.9	3.4	2.5	1.9	1.5	1.2
1320	1100				8.4	5.4	3.7	2.7	2.1	1.7	1.3
1440	1200				9.2	5.9	4.1	3.0	2.3	1.8	1.5
1560	1300				10.0	6.4	4.4	3.2	2.5	2.0	1.6
1680	1400					6.9	4.8	3.5	2.7	2.1	1.7
1800	1500					7.3	5.1	3.7	2.9	2.3	1.8
1920	1600					7.8	5.4	4.0	3.1	2.4	2.0
2040	1700					8.3	5.8	4.2	3.3	2.6	2.1
2160	1800					8.8	6.1	4.5	3.4	2.7	2.2
2280	1900					9.3	6.5	4.7	3.6	2.9	2.3
2400	2000					9.8	6.8	5.0	3.8	3.0	2.4
2520	2100					10.3	7.1	5.2	4.0	3.2	2.6
2640	2200						7.5	5.5	4.2	3.3	2.7
2760	2300						7.8	5.7	4.4	3.5	2.8
2880	2400						8.2	6.0	4.6	3.6	2.9
3000	2500						8.5	6.2	4.8	3.8	3.1
3120	2600						8.8	6.5	5.0	3.9	3.2
3240	2700						9.2	6.7	5.2	4.1	3.3
3360	2800						9.5	7.0	5.4	4.2	3.4
3480	2900						9.9	7.2	5.6	4.4	3.6

Operation and Maintenance

New Initiatives as a result of training

Unidirectional Flushing

Table - Flow Vs. Diameter Opening

Flow (Imperial gmp and US gpm) and Velocity(fps) in Water Mains

	Pipe Diameter (in.)										
Flow	Flow	2	4	6	8	10	12	14	16	18	20
USgpm	lgpm										
24	20	2.4									
36	30	3.7	0.9								
48	40	4.9	1.2	0.5							
60	50	6.1	1.5	0.7	0.4						
96	80	9.8	2.4	1.1	0.6	0.4					
120	100		3.1	1.4	0.8	0.5	0.3				
240	200		6.1	2.7	1.5	1.0	0.7	0.5			
360	300		9.2	4.1	2.3	1.5	1.0	0.7	0.6		
480	400			5.4	3.1	2.0	1.4	1.0	0.8	0.6	
600	500			6.8	3.8	2.4	1.7	1.2	1.0	0.8	0.6
720	600			8.2	4 .6	2.9	2.0	1.5	1.1	0.9	0.7
840	700			9.5	5.4	3.4	2.4	1.7	1.3	1.1	0.9
960	800			10.9	6.1	3.9	2.7	2.0	1.5	1.2	1.0
1080	900				6.9	4.4	3.1	2.2	1.7	1.4	1.1

Unidirectional Flushing

Outcomes:

- Have removed much more sediment as evidenced by darker water colour from hydrants during flushing and longer time to return to clear
- Much easier to maintain chlorine residuals in distribution system
- Reduced consumer complaints regarding discoloured, foul smelling water

- Leak Detection
- The use of sonic devices to locate underground leaks in a water system

Leak Detection

Geophones in Use

Operation and Maintenance

New Initiatives as a result of training

Leak Detection

Electronic Equipment in Use

Leak Detection

 Water usage should be approximately 450 litres/person/day (100 gal/person/day) which includes an allowance for leakage

 In modern residential neighborhoods with no commercial or industrial water use and no leaks water use is approximately 200 litres/person/day (45 gal/person/day)

Leak Detection

 Water usage in Freshwater was approximately 500 gpm or 3200 litres/person/day

 This is 7 times the normal water usage of 450 litres/person/day

Resulted in high costs, low pressures and consumer complaints

- Leak Detection Freshwater
- Hired two new people
- Purchased electronic leak detection equipment and leased a half tonne pickup
- Provided time for training with equipment and familiarization of the Freshwater system

Leak Detection - Freshwater

Outcomes:

- Water usage dropped from 500 gpm to 100 gpm or from 3200 litres/person/day to 650 litres/person/day
- Higher pressure
- Lower costs
- Fewer consumer complaints

Leak Detection - Freshwater

Problems:

- Few drawings of the Freshwater system
- Old system with many small leaks difficult to pinpoint
- Lack of continued funding to sustain an ongoing leak detection program. Flow is currently about 200 gpm or 950 litres/person/day

Operation and Maintenance Greatest Problem

Too many tasks with too few resources

Like the majority of Newfoundland and Labrador communities, the operation of Placentia's water systems is the responsibility of the Public Works employees. These same public works employees are responsible for many other aspects of the town's operation. In many instances, time is simply not available to complete all tasks. Operation and Maintenance

Greatest Problem

Maint. Schedule	06-04-99						
Property	D	W	м	3 m	Y		
Dunv. Water Tr. Plant							
Ozone Generator, check, (maint.) Filters changed/cleaned	x		x				
Overhauled					x		
Pump system, Soda ash/lime sys. filters. (clean,grease,)	x		x				
Fwtr. / Jsyd. / Plac. Water Tr. Plants / Pump Stn.							
Pump system, CL 2 Sys. check	x						
Clean, Grease			х				
Screens, (clean). Diesel pumps, (run) Lift Stns.		x					
Check	x						
Cleaned.				×			
Total insp.					x		
Sewer Sys.							
Manholes, Inspected					x		
Outfalls, checked	5			x			
Cleaning performed, (as needed).							
Trouble Areas, checked frequently							
Drainage syst.							
Catch Basins, cleaned				1	x		
Ditches culverts, cleaned, *(trouble areas more frequently) Roads					*x		
Continuous							
Hydrants							
Flushed, checked					(2) ×		
Winterize					x		
Reservoirs							
Visual		x					

Operation and Maintenance

Greatest Problem

Town of Placentia Maint. Schedule

06-04-99

Property	D	w	М	3 m	Y
Loader, Dump Truck					
Maint performed based on hours.					
Vehicles					
Cleaned, inspected.		x			
Maint. As required					
Sanders					
Inspected	x				
Cleaned, greased		x			
Stripped down, cleaned, repaired, painted, prep.for lay-up					х

Operation and Maintenance Greatest Problem

Solution ????

Recent history as shown that water systems MUST be operated in such a way that clean and safe drinking water is delivered to the consumer.

Budgetary constraints result in tough choices for municipal leaders.

What costs more, water or gas?

Costs per litre of various fluids

Perfume (Chanel Nº 5)	\$2,816.90	Whole Milk	\$1.60
Dom Perignon Champagne	\$199.99	Soda Pop	\$1.39
Domestic Beer	\$4.02	Apple Juice	\$1.38
10-30w motor oil	\$2.49	Gasoline	\$0.73
Bottled Water (1 L)	\$1.70	Tap Water *	\$0.0005

^{*} Average consumption charge in 2003

Source: ACWWA, <u>Go With the Flow</u>, Issue # 43, July 2004, Acticle Key Positions of ACWWA

Small System Operation and Maintenance - A Local Experience

Discussion