Using "Big System" concepts on "Small Systems" 2004 Clean and Safe Drinking Water Workshop Small Systems Operation, Maintenance and Treatment Gander, NL – September 22, 2004

> Alain Lalonde, P.Eng. - Principal Veritec Consulting Inc.

What is in this presentation?

- New AWWA Water Auditing Procedure.
- Leakage Performance Indicators.
- Leakage Control Methods.
- Small System Case Study.

New AWWA Water Audit

- Old audit followed M36 Manual Out!
- UFW and % loss not to be used anymore.
- AWWA adopts IWA audit (Journal Aug. 03).
- IWA true performance indicators that can be used for benchmarking comparison.
- Even the National Guide to Sustainable Municipal Infrastructure has adopted the IWA method.

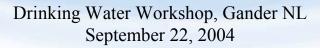
(www.infraguide.ca)

Why not UFW and %?

System	ו A
Length of Mains	25 km
Population	2,750
Residential Connections	900
ICI Connections	15
Per Capita Consumption	225 l/c/d
ICI Consumption	50,000 l/con./d
(Small ICI Users)	
Production	599,594 m3/yr
Billed Usage	499,594 m3/yr
Losses (Leakage)	100,000 m3/yr
UFW %	17%

System	B
Length of Mains	25 km
Population	2,750
Residential Connections	900
ICI Connections	15
Per Capita Consumption	325 l/c/d
ICI Consumption	150,000 l/con./d
(Large ICI Users)	
Production	1,247,469 m3/yr
Billed Usage	1,147,469 m3/yr
Losses (Leakage)	100,000 m3/yr
UFW %	8%

AWWA – IWA Water Balance Sheet


	Authorized	Billed Authorized Consumption	Billed Metered Consumption Billed Unmetered Consumption	Revenue Water
	Consumption Unbilled Authorized	Unbilled Metered Consumption		
		Consumption	Unbilled Unmetered Consumption	
System Input		Apparent	Unauthorized Consumption	Non
Volume	LUSSES		Customer Meter Inaccuracies	Revenue
	Water Losses		Leakage on Transmission & Distribution Mains	Water
		Losses	Leakage and Overflows at Reservoirs	
			Leakage on Service Connections up to metering point	

IWA Water Audit

- Non-Revenue Water Replaces UFW.
- Allows a comparison between Real & Apparent Losses.
- Allows for a true Performance Indicator.
- Litres / service connection / day for urban areas.
- m³ / km of main / day for rural areas.

PAS S

Use Infrastructure Leakage Index for > 5000 con.

ANNUAL WATER BALANCE EXAMPLE IN IWA STANDARD FORMAT, WITH 95% CONFIDENCE LIMITS			Data entry	Calculated Values		
Note: It is	s recommended that the calculation is based on a 12month period, but the softwa	re will calculate for shorter or	longer periods if r	equired		
Utility	Region of Peel	Jan 1 2001	to	Dec 31 2001	365	days
System	Whole System	% of period sys	tem pressurised =	100.0%	365.0	days
					_	
	WATER BALANCE VOLUMES	Volume in			1	
	COMPONENT OF WATER BALANCE	period	95% Confidence Limit as +/- %	Variance		

	_
SIV System Input Volume (corrected for known errors) 171185.0 1.0% 762815	
BACE: Billed Authorised Consumption:Water Exported 0.0 1.0% 0	
BACMR: Billed Authorised Consumption: Metered Residential 104636.0 1.0% 285003 Assessed Valu	ue of NRW
BACM: Billed Authorised Consumption: Metered Non-Residential 54572.0 1.0% 77522 compon	ents
BACU: Billed Authorised Consumption:Unmetered 0 \$/M ³	\$ x 10 ³
NRW Non-Revenue Water 11977.0 17.4% 1125341 0.1498	1794.6
UACM: Unbilled Authorised Consumption: Metered 0 0.0500	0.0
UACU: Unbilled Authorised Consumption: Unmetered: calculated as a % of SIV 1.000% 1711.9 100.0% 762815 0.0500	85.6
WL Water Losses 10265.2 26.2% 1888156 0.1665	1709.0
Apparent Losses - Unauthorised Consumption: calculated as a percentage of SIV 0.500% 855.9 100.0% 190704 0.3900	333.8
Apparent Loss - meter under-registration: % of BACMR Residential 1.500% 1569.5 25.0% 40079 0.3900	612.1
APPARE Apparent Loss - meter under-registration: % of BACMN Non-Residential 2.000% 1091.4 25.0% 19381 0.3900	425.7
Sum of Apparent Loss Components 3516.9 27.9% 250163 0.3900	1371.6
RL Real Losses 6748.2 42.5% 2138319 0.0500	337.4

IWA Water Audit PI FastCalc for Canada with 95% Confidence Limit

	SYSTEM INFRASTRUCTURE AND COST DATA		95% CLs as +/- %
	Mains Length, miles	2009.38	2.0%
Lm	Mains Length, km	3215.00	2.0%
Nrnrc	Number of Service Connections (inc. Fire Services) 225566		2.0%
Nh	h Number of hydrant connections 18516		2.0%
Nc	Total Number of Service Connections (Nh +Nc)	244082	1.9%
Nc/Lm	C/Lm Density of Connections per km of mains 75.9		2.7%
Ls	Ave. distance, Curb-stop to Meter, (feet)	24.6	20.0%
LS	Ave. distance, Curb-stop to Meter, (metres)	7.5	20.0%
Р	Average pressure when system pressurised (psi)	75.0	25.0%
Р	Average pressure when system pressurised (m)	53.0	25.0%
CRS	CRS Cost of running system in period (\$ x 10 ³) 0		

UNAVOIDABLE ANNUAL REAL LOSSES (UARL)- when system is pressurised		Volume in thousand M ³ /day	95% CLs as +/- %
Mains		3.07	25.1%
Service Conns, I	Main to Curb-stop	10.35	25.1%
Underground pip	2.24	32.1%	
Unavoidable Ann	15.67	25.2%	
CURRENT ANNUAL REAL LOSSES (CARL) when system is pressurised		18.49	42.5%
Calculation by	Alain Lalor	nde	
Date	te 4th October 2003		

Lowest Highest PERFORMANCE INDICATOR UNITS OF PERFORMANCE INDICATOR Estimate Estimate Best estimat Basic (IWA Level 1, Fin36) % of System Input by Volu 7.0 8.2 #DIV/0! Non Revenue Water Basic (IWA Level 1, Fin37) % of System Input by Value #DIV/0! #DIV/0! Real Losses Basic (IWA Level 1, Op24) Litres/service connection/day, when system pressurised 76 44 108 1.01 Real Losses Intermediate Litres/serv. conn./day/psi. press. when system pressurise 0.51 1.51 1.18 Real Losses Detailed (IWA Level 3, Op 25) Infrastructure Leakage Index ILI (non-dimensional

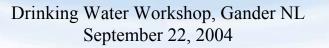
How good is my system?

- Need to calculate appropriate Performance Indicator (PI) as follows:
 - Use L/con/day if you have more then 20 con/km.
 - Use m³/km of main/day if you have less then 20 con/km.
 - Use the Infrastructure Leakage Index (ILI) if you have more then 5000 connections.

Steps to Determine proper PI to use.

1. Do you have more then 5000 connections?

- If yes use ILI
- If no go to 2
- 2. Divide your number of connections by to total km of watermains in your system.
 - If less then 20 use m³/km of main/day
 - If more then 20 use L/con/day



What is the ILI?

- The ILI is a ration of your current annual real losses (CARL) from IWA Water Balance divided by the unavoidable annual real losses (UARL) which is the best you can achieve.
- The unavoidable annual real losses is the technical minimum of leakage losses a system can achieve using all available best practices for control.

How Low <u>Can</u> I Go?

- For ILI calculations, the best achievable is an ILI of 1.0 – thus CARL = UARL.
- For L/con/day, the best systems are at 100 to 150.
- For m³/km of main/day they are at 10 to 12.
- Therefore if you are above your respective PI minimum, you have not achieved your best performance yet! But is it worth getting there?

How Low **<u>Should</u>** I Go?

- Must determine the cost of the Non-Revenue Water and Real Losses.
- From this, determine what is the Economic Level of Leakage (ELL).
- Effected by supply issues and cost of water.
- ELL is normally less then the CARL for systems with no active leakage control.

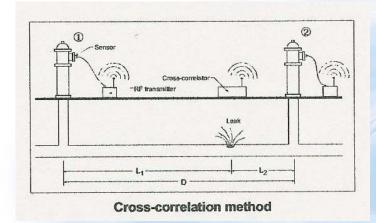
Advantage of PIs vs. UFW %

System	ו A
Length of Mains	25 km
Population	2,750
Residential Connections	900
ICI Connections	15
Per Capita Consumption	225 l/c/d
ICI Consumption	50,000 l/con./d
(No big ICI Users)	0
Billed Usage	499,594 m3/yr
Losses (Leakage)	100,000 m3/yr
Production	599,594 m3/yr
UFW %	17%
Connection Density	36.6
Performance (PI)	299.4 l/con/d

System B				
Length of Mains	25 km			
Population	2,750			
Residential Connections	900			
ICI Connections	15			
Per Capita Consumption	325 l/c/d			
ICI Consumption	150,000 l/con./d			
(Large ICI Users)	0			
Billed Usage	1,147,469 m3/yr			
Losses (Leakage)	100,000 m3/yr			
Production	1,247,469 m3/yr			
UFW %	8%			
Connection Density	36.6			
Performance (PI)	299.4 l/con/d			

Active Leakage Control Measures

- Active leakage is defined as an active effort to locate and repair unreported main leaks.
 - Temporary or Permanent District Metered Area
 - Sonic Survey
 - Step Testing
 - Correlation Surveys
 - Noise Logging Surveys

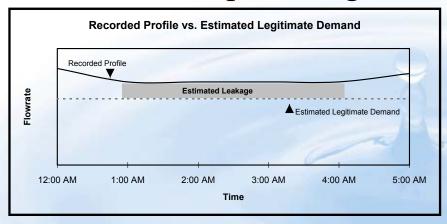


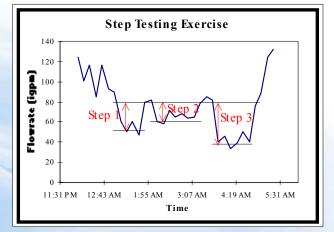
Active Leakage Control

• Sonic Surveys & Leak Correlation.

Sonic Leak Surveys

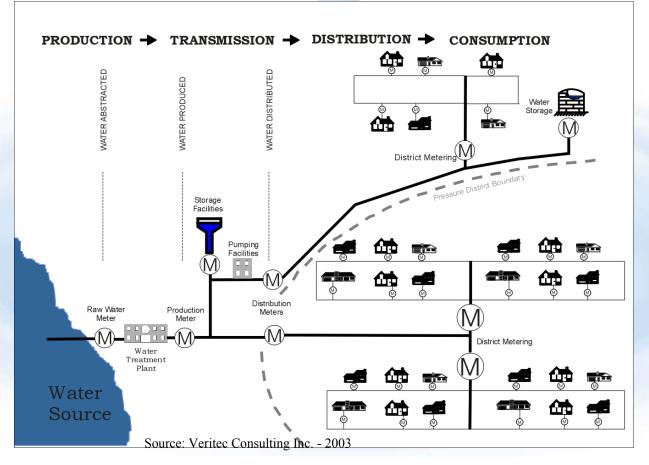
- Although sonic leak surveys are considered a proactive approach, we consider it a preventive maintenance approach – should be done.
- Impossible to know how much leakage is found.
- Impossible to know how much leakage was not found.
- Currently not effective on non-metallic mains.
- Very labour intensive.





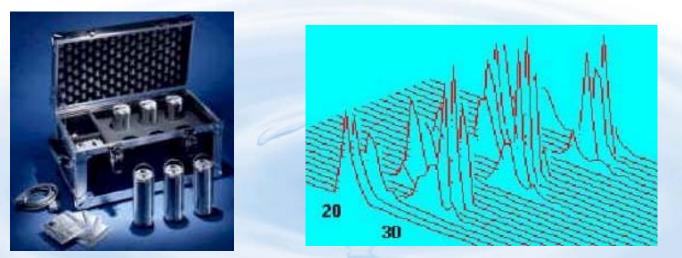
Proactive Leakage Control

• DMA & Step Testing.


DMA & Step Testing

- District Metered Areas allow you to measure leakage levels and verify the IWA audit and PI calculations.
- Prioritizes areas for attention.
- Quantifies leakage rates and savings post repair.
- Determines level of effort required for sonic and correlation surveys and intervention schedule.

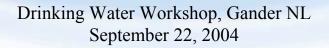
DMA & Step Testing



ERITEC Consulting Inc.

Active Leakage Control

• Noise Logging.


Pressure Management

• Concept is very simple:

The lower the pressure to lower the leakage!

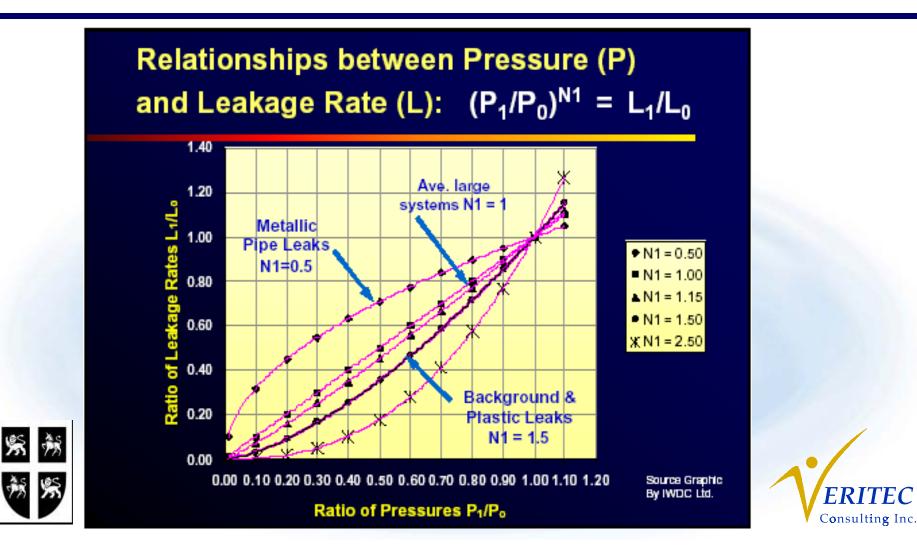
- The implementation of this concept is sometimes very difficult.
- It is made easier on small systems because of fewer pumping zones.

黔潮

粥窝

Pressure Management

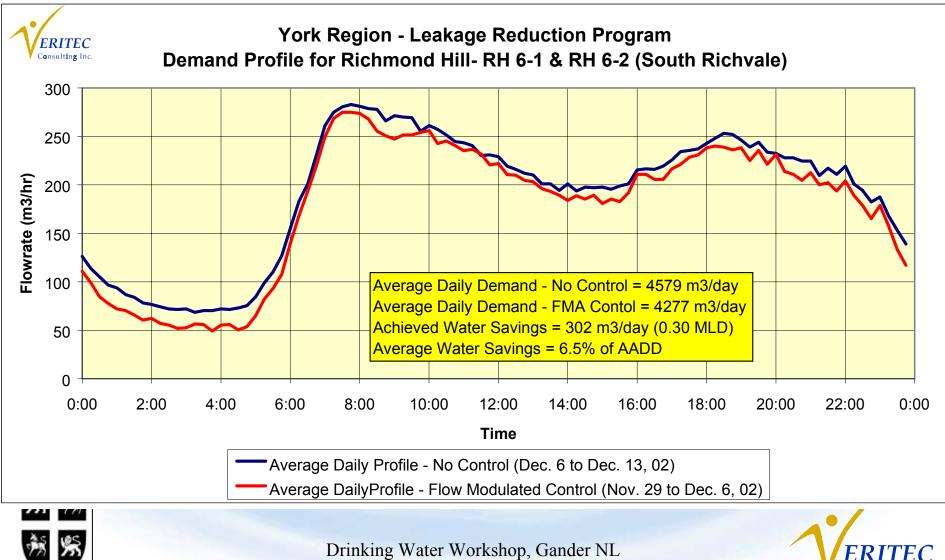
- Use of Pressure Management Areas.
- Fixed Outlet PRV's.
- Modulating PRV's
- Critical Node Control
- Hydraulic Modeling and System Production Changes.



Pressure Management

- International studies show that pressure reduction and leakage have a one to one relationship.
- Breaks tend to follow the square root law (0.5 power).
- But background leakage can be at a power as high as 2.0 for PVC but averages 1.5.

Pressure Management


- Must consider many factors:
 - Critical Node
 - Fire Flows
 - Seasonal Demands & Peak Demands
 - System layout topography
 - System transmission and storage

Drinking Water Workshop, Gander NL September 22, 2004

Consulting Inc.

Can we really use these "BIG SYSTEM" methods on our "small systems"?

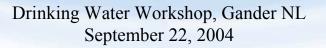
Case Study: Acton, Ontario 2003 Leak Detection Survey

Acton Leakage Reduction Program

- Included well meter accuracy testing.
- Included a temporary DMA system leakage evaluation with step testing.
- Included a complete sonic survey of the system.
- Included an evaluation of benefit of pressure management.
- System is 43 km with 2236 connections (52 con/km).

Acton Leakage Reduction Program

- Started in April 2003 with Meter Testing.
- Leak Detection completed in May 2003.
- Pressure Management data collection completed in June 2003.
- Post leakage repair profile completed in July 2003.



Leak Detection Survey

- DMA approach was selected.
- Entire Acton distribution system treated as one DMA.
- Minimum night flow monitoring was completed at the existing reservoir on Churchill Rd.

Leak Detection Survey

ERITEC

Consulting Inc.

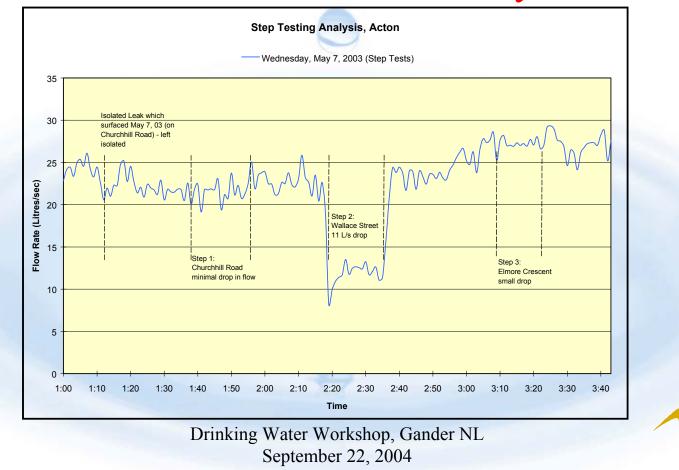
T'S

	Calculated Estimate of Net	- Succion		
	Acton			
		Calculations		
Components of Net Night Flows, Acton			(L/hour)	(L/s)
Distribution Losses	Mains	43	1720	0.48
	Communication Pipes	2200	6600	1.83
Supply Pipe Losses	Underground & Plumbing		2200	0.61
	Households	2200	3740	1.04
	Non-Households			
	Group A	7	6.3	0.00
	(e.g., churches, fire/police, banks, gardens/allotments)		0.3	0.00
	Group B	20	124	0.03
	(e.g., shops, offices, large domestic prope	rties)	124 0.03	
Estimated Customer	Group C	5	63	0.02
Night Use(s)	(e.g., hotels, schools/colleges, restaurants)		03	0.02
	Group D	4	82	0.02
	(e.g., hospitals, factories, public toilets, works sites)		02	0.02
	Group E		0	0
	(e.g., old age homes)			
Exceptional Customer Usage (Louisiana Pacific Canada) =			1800	0.50
Total assuming "Average" background losses =			16339.838	4.54
Corrected Total allowing for 5 minute monitoring interval =			16993.431	4.72
Corrected Total allowing for 5 "Average Zone Night Pressure" (m)= 50			16993.431	4.72

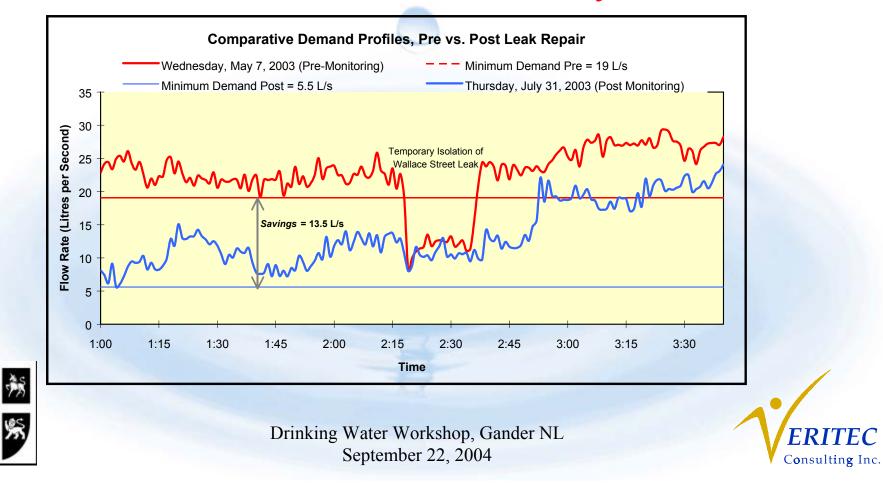
Leak Detection Survey

- Recoverable Leakage Potential:
 - Actual MNF =19.0 l/sNet Night Flow=4.5 l/s

Recoverable Leakage = 14.5 l/s



- Step testing completed on same night as profile to minimize disruption on system.
- Step testing revealed one large leak and several other potential leaks.
- In total, 6 leaks were located and repaired.
- 4 main leaks & 2 hydrant leaks.



Leak Detection Survey

ERITEC

Consulting Inc.

- Wallace Street Leak = 11 l/s.
- Total Leakage = 13.5 l/s.
- 1,165,000 L/day savings.
- Approximately 27% of AADD.
- Reduced the losses from 673 L/con/day to 151 l/con/day.

Leak Detection Survey

- Cost Benefit Analysis:
 - Total Cost of Program = \$9,300
 - Total Water Savings = 1,165 m3/day
 - Assumed production cost of \$0.03 per m3
 - Water Savings = \$12,757 per year
 - Benefit to Cost Ratio = 1.37
 - Based on water savings alone not including additional capacity or development charges.

Recommendations

- **STEP 1 :** Complete an IWA Water Audit:
 - Determine both Apparent and Real Losses of Non-Revenue Water.
 - Use 95% Confidence Intervals (FastCalc Software)
 - Determine appropriate PI for your system and calculate the value.
 - Compare value for the PI for your system to the minimum values.

Recommendations

- **STEP 2** : Determine Cost NRW
 - Determine both the cost of Apparent (at retail) and Real (at production) Losses.
 - Factor in the cost of new supply.
 - Look at revenue from Development Charges.

Recommendations

- **STEP 3** : Initiate NRW Reduction Program:
 - Reduction of Apparent Losses may include meter testing, change out, sizing. Review of meter reading and billing procedures. Review non-metered uses.
 - Reduction of Real Losses should include a DMA leakage survey and evaluation & implementation of a pressure management scheme.
 - Maintenance programs to ensure a low level of NRW should also be considered.

Thank you _ Questions?

Alain Lalonde, P.Eng. – Principal Veritec Consulting Inc. 1495 Bonhill Rd., Unit #12 Mississauga, ON – L5T 1M2 Ph: (905) 696-9391 Fax: (905) 696-9395 E-mail: alain@veritec.ca Web: www.veritec.ca

