Transitioning from Conventional Treatment to Integrated Treatment

Martin Gravel, P.Eng. Senior Water Treatment Engineer CH2M HILL Canada

Clean and Safe Drinking Water Workshop Water Treatment Alternatives March, 2002 Gander, NF

Presentation Outline

• First Half

- Review the past and examine the present
- Second Half
 - Look at new trends
- Summary
- Questions

Why Do We Treat Water?

 <u>All</u> surface waters can be contaminated by animals (bacteria, viruses, *Giardia, Cryptosprodium*)

• 0.02 - 0.09 microns

• Hepatitis, Polio, Meningitis

• 0.2 - 2 microns

- First link to water-born disease
- Typhoid, cholera, salmonella

• 3 - 9 microns

- Identified in late 1970's
- Very resistant to chlorination

• 8 - 18 microns

- First outbreaks in the 1960's
- Resistant to chlorination

Key Water Quality Parameters

- Bacteria
- Viruses
- Giardia
- Cryptosporidium
- THM's
- Arsenic
- Sodium

- Iron and Manganese
- Turbidity
- Corrosiveness (copper, lead)
- Hardness
- Taste and Odour

Our Primary Responsibility

• To protect public health

 the public must be able to rely on and assume the supply of drinking water is safe!

Our Secondary Responsibility

To provide an aesthetically pleasing drinking water

- clear and colourless
- tastes great and inoffensive smell

History of Conventional Treatment

• like an "Old Friend"

- more than 80 years old
- proven record on most surface waters met past needs
- developed from the fact that there was readily available filtration media - sand
- cost-effective

Classic Conventional Treatment Process Train

Performance History

- Prior to 1989, provided means of particle removal that could shield bacteria and viruses from disinfectant and improve aesthetics (colour removal)
- Now an important part of a reliable pathogen removal strategy
- Significant part of a multiple barrier process
 - clarification
 - filtration
 - chlorination

Flexibility

- Optimized chemical treatment, especially if filters are operated at high filtration rates (>6 gpm/ft²)
- Multiple trains can allow for shutting down part of the plant during low winter flows
- Plant can be designed for easy future expansion
- Newer process technologies can be "integrated"
 talk about that later
 - talk about that later

Classic Conventional Treatment Process Train

"Direct Filtration"

Benefits of Conventional Treatment vs. Direct Filtration

- Removes higher percentages of naturally occurring organic matter, thereby reducing formation of disinfection by-products
- Provides additional contact time for taste and odour control strategies
- Reduces solid loadings on filters, permitting higher filtration rates and higher productivity
- Reduces impact of algae on filtration process
- Reduces oxidant and disinfectant demand

The "Weakest Link"

- Can meet all current microbial and DBP regulations but uncertainty remains for future regulatory changes (e.g. more pathogens)
 - Can handle large but gradual changes in water quality, however sudden changes can cause plant upsets and reduced pathogen removal efficiency
 - Chemical dependency
 - Just not "sexy" enough compared to new emerging technologies (e.g. membranes)

Fundamentals of Conventional Treatment

Coagulation/ Flocculation

- Definition: Chemical / physical process of blending or mixing a coagulating chemical into a stream and then gently stirring
- Coagulation
 - Chemical process of destabilizing the charge on suspended solids and colloids

Flocculation

- Physical process of gentle mixing to enhance contact of destabilized particles and to build floc particles
- Minimum detention time: 30 minutes

Rapid Mixing

- Basin or in-line mixers
- Mechanical or hydraulic
- Design parameters:
 - mixing energy
 - detention time
 - location of injection

- Mechanical flocculators
 - axial
 - paddle
 - walking beam

- Hydraulic
 Flocculators
 serpentine
 - spiral

Fundamentals of Conventional Treatment

• Clarification / Sedimentation

- removes bulk of heavier and larger floc particles by gravity
- usually large rectangular quiescent tanks and/or upflow clarification
- not included in "direct filtration" plants
- surface loading rates of 0.5-1.0 gpm/ft²
- provides 70-90% particle removal
- Minimum detention time of 1-2 hours
 - helps plant operators to adjust to rapid changes in raw water quality e.g. large solids loadings

- Upflow Clarifiers :
 - radial upflow
 - inclined plate and tube settlers
 - solids contact

Fundamentals of Conventional Treatment

• Filtration

 Definition: passage of water through a porous medium for removal of suspended solids

Driving Force

- Filters operate normally operate under gravity flow
- Configuration can be "rapid rate" dual media filters or slow sand filters

Particle Removal Efficiency

- Sand, depth <1 m 90-99%</p>
- Dual Media, depth <1m 99-99.9%
- Deep Bed, depth >2m 99-99.99%

Rapid Rate Filter

Regulatory Performance

 Typical microbial removal/inactivation regulatory requirements:

- Viruses 4 log (99.99%)
- Giardia 3 log (99.9%)
- Crypto 2 log (99%)
- Typical conventional treatment reduction credits (with chemical inactivation):
 - Viruses 2 log (99%) plus 2.0 log with chemical disinfectant
 - Giardia 2.5 log plus 0.5 log with chemical disinfectant
 - Crypto 2 log (99%)

• Direct filtration only 2.0 log Giardia credit!

"Integrated Treatment": Modernizing Conventional Treatment

- The definition of conventional treatment is being challenged or is it dead?
 - Emergence of updated and new technologies is revolutionizing the engineer's toolbox
 - Dissolved Air Flotation (DAF)
 - Sand-Ballasted Sedimentation (Actiflo)
 - New Upflow Solids Contact Units (Super Pulsator)
 - Biologically Active GAC Filters (BAC)
 - Membranes
 - Ozone
 - Ultraviolet Disinfection (UV)

Sand-Ballasted Sedimentation (Actiflo)

Upflow Solids Contact Units (SuperPulsator)

Dissolved Air Flotation (DAF)

"Integrated Treatment": Modernizing Conventional Treatment

- Integrated Treatment options consider:
 - multiple barriers
 - reliability and process failures
 - likely changes in regulations/ advancement of science
 - ease of operation & maintenance
 - ease of expansion/ modularity
 - environmental impacts
 - capital and life cycle costs

"Integrated Treatment": Modernizing Conventional Treatment

- Processes are integrated for each treatment situation:
 - Which filtration type?
 - What pre-treatment?
 - Which disinfectant (s) and where?
 - Other treatment needs
 - colour, taste and odour, pH, iron, manganese, hardness

CH2M Hill Cost Data

Water Treatment Plant Capital Cost

CH2M Hill Cost Data

Water Treatment Plant Annual O&M Cost

Summary

- Conventional treatment is traditional and proven
- Emergence of new pathogens and changing regulations forcing change and optimization
- Choices for a variety of process units and disinfection methods altering tradition
- Move to "integrated treatment" approaches to meet treatment goals and life cycle evaluations
- Examine your own treatment practices and respect your responsibilities as a water supplier

Transitioning from Conventional Treatment to Integrated Treatment

QUESTIONS?

Martin Gravel, P.Eng. Senior Water Treatment Engineer CH2M HILL Canada

Clean and Safe Drinking Water Workshop Water Treatment Alternatives March, 2002 Gander, NF

425/0HE1