

Advances in Hypochlorination Technology Presented by Marc Szuszkiewicz **ProMinent Fluid Controls**

Water Chlorination

- Elemental Chlorine discovered in 1774
- One of the first use in disinfecting was in the form of Hypochlorite for a water supply in England (1850)
- Sodium Hypochlorite continues to be the most used method for potable water disinfection in Canada
 - Effective
 - Proven
 - Consistent
 - Economical, Easy & Manageable
- Purpose of Water Chlorination
 - Disinfection
 - Color removal
 - Control of iron and manganese
 - Removal of taste and odor
 - Restoration and preservation of pipeline capacity

Chlorine Sources

Chlorine Source	Form	Initial Reaction
Chlorine Gas	Gas	$CI_2 + H_2O \rightarrow HOCI + H^+ + CI^-$
Sodium Hypochlorite	Liquid	NaOCI + $H_2O \rightarrow HOCI + Na^+ + OH$
Calcium Hypochlorite	Solid	$Ca(OCI)_2 + 2H_2O \rightarrow 2HOCI + Ca^{++} + (OH)^{=}$

Dosing Hypo \rightarrow **A Challenge?**

Sodium Hypochlorite Injection Systems

Chemical Pumps ≠ Metering Pumps

Gear Pump

Air Operated Diaphragm Pump

Displacement per revolution not adjustable. Not linear from high to low RPMs due to slip at low speed.

Displacement per stroke not adjustable. Not repeatable due to variable air pressure, flexible diaphragm.

Progressing Cavity Pump

Displacement per revolution not adjustable. Chemical incompatibility common with rotor.

Peristaltic Pump

Displacement per revolution not adjustable. Tube stretch prevents repeatability.

Mechanically Actuated Diaphragm Metering Pumps

METERING PUMP = HIGH TURN DOWN RATIO

2% repeatability
Low cost
Seal less design
Liquid End Compatible with Fluid

Metering Pump Liquid End

discharge valve closes, suction valve opens, chamber fills Suction Stroke Complete: fluid chamber is full Discharge Stroke Begins: discharge valve opens, suction valve closes

Discharge Stroke Complete: fluid in chamber is displaced

Off-Gassing in Liquid Ends

- Sodium Hypochlorite off gasses when off duty.
 Gas bubbles build up in the piping and liquid end
 Pump starts pumping but nothing moves
 Pump is Air Locked
- A problem for intermittent / low flow rates

Solution for Off Gassing (I)

Solution for Off Gassing (II)

Suction/discharge strokes <a>OptoDrive®

Chlorine dose

Pump flow rate in
 I/h for 1 ppm dose

GPM USgal	12%	6%	4%	2%
25	0.04	0.08	0.12	0.24
50	0.08	0.16	0.24	0.49
75	0.12	0.24	0.36	0.73
100	0.16	0.32	0.49	0.97
200	0.32	0.65	0.97	1.94
400	0.65	1.30	1.94	3.89
800	1.30	2.59	3.89	7.78
1000	1.62	3.24	4.86	9.72

	Pa	art	Solution Concentration
	Water	Нуро	%
	0	1	12
	1	1	6
9	2	1	4
	3	1	3
	5	1	2
	11	1	1

Chlorine Dose

1 lb = 0.454 kg
1 m³ = 1000*l*
1*USGal* = 3.7854*l*

$$\rho = \text{Density} = \frac{kg}{m^3}$$

 $\rho_{water} = 1000 \frac{kg}{m^3}$
SG_{NaOC112%} = 1.168
 $\rho_{NaOC112\%} = 1168 \frac{kg}{m^3}$

Flow Rate = Q =
$$1000 \frac{USGal}{min}$$

Desired Dose = 1 ppm = $1 \frac{mg}{l}$

Sodium Hypochlorite Solution Concentration = 12%

$$Mass_{hypo} = 1000 \frac{USGal}{min} \times \frac{3.7854l}{1USGal} \times 1 \frac{mg}{l} \times \frac{100\%}{12\%} = 31545 \frac{mg}{min} \times \frac{1kg}{1000000mg} = 0.0316 \frac{kg}{min}$$
$$Volume_{hypo} = \frac{0.0316 \frac{kg}{min}}{1168 \frac{kg}{m^3}} = 000027 \frac{m^3}{min} \times \frac{1000l}{1m^3} = 0.027 \frac{l}{min} \times \frac{60 \min}{hr} = 1.62 \frac{l}{hr}$$

Optimum Sizing

Available Metering Pump Manufacturers

Dosing from tank to pipe

Product Storage

- Tank size should be 4-8 week supply
- Made of Polyethylene, UV protected
- Containment basin 110% volume of tank

- Should be in a well ventilated area with a vent pipe if possible
- Location as close as possible to the metering pump
- Kept in a cool place.
- Controls Alarms & Inventory, Levels, Leaks

Corrosion and Leaks???

Maintainability: Material Compatibility with Hypo

- Stalless Steel
- Brass
- Cast iron

- CPVC/PVC
- Acrylic
- Polyethylene
- PVDF
- Viton
- EPDM
 - PTFE

Material Selection

INVESTMENT COST \$

Quality Materials = Consistent Results

Reliable system integration

Dosing equipment considerations

Foot Valve Calibration Column Metering Monitor Isolation Valves Drain Ports Pressure Relief Valve Pulsation Dampener Backpressure Valve Pressure Gauge Injection Valve

Back Pressure Valve

Pressure Relief Valve

Pressure relief valve protects system components

2 port or 3 port PRV

Monitor performance

Pressure Gauge with chemical isolator Calibration Column

Flow Monitor

Pulsation Dampener

Hydraulic shock is the term used to describe the momentary pressure rise in a piping system which results when the liquid is started or stopped quickly.

 Minimizes the pressure peaks and protects the joints and pumps

- Long lines
- High Viscosity
 Chemicals
- Undersized lines
- •High SG chemicals

Flush and Drain Ports – Isolation Valves

Foot Valve-Injection Valve-Injection Lance

Keep suction line verticalPrevent debris from entering system

Prevents back flow to tank
Increases Metering pump performance in suction lift conditions Prevents water backflow in chemical line
Maintains 7 psig back

- Maintains 7 psig back pressure
- Increases chemical mix in the process line
- •When installed properly minimizes injection point clogging

Sodium Hypochlorite Injection Systems

Chemical Metering Controls

Manual ON/OFF	 Water Pump and Metering Pump both on or both off. Water flow must be constant when on.
Flow Proportional	 Addition of chemical to water in constant proportions. Flow meter
Close loop	 Based on a set point from sensor measurement downstream of the injection Proportional control Integral control Derivative control
Compound loop	Combination of Flow Proportional and Closed Loop control.

Troubleshooting

Troubleshooting

Unstable Residuals
 Pump Reliability
 Corrosion and Leaks
 Golden Rules

Troubleshooting: Unstable Residuals?

Sampling Method

- Fresh representative sample
- Avoid plastic containment, use clean glass
- Always repeat same procedure
- Verify Pump sizing
 - Ex. Pump stroking every 10 seconds = bad dispersion
- Pump System Design

Troubleshooting: Unreliable Pump?

- Auto-Degassing Pump Liquid End
- System Design
 - Minimize Fitting Number on Suction
 - Minimize Fluid Volume on Suction Side
 - Material Selection
 - Avoid Trapping Gas
- Maintenance
 - Seals
 - Diaphragms
 - Check valves

Marc Szuszkiewicz 2010 ProMinent®

Troubleshooting: Corrosion or Leaks?

Check Material Selection

- System Design (Accessories to minimize pulsation)
- Avoid Threaded Connections
- Maintenance

Hypo Systems: Golden Rules

Pump sizing

- Fresh Sodium Hypochlorite
- Short suction Line
- Vertical Suction and Discharge lines
- Small volume suction/discharge line
- Maintenance and operation
- Accessories
- Material compatibility PVC viton
- Mechanical/hydraulic stress