LEAK DETECTION

ST. JOHN'S DEPARTMENT OF PUBLIC WORKS AND PARKS ENVIRONMENTAL SERVICES DIVISION

Overview

- Theory
- City of St. John's Program
- New Advancements
- Future Projects

Leak Detection?

Leak Detection?

Leak Detection

What is Leak Detection?

- The process of identifying and reducing "non revenue" water.
 - Primarily Leaks
 - Illegal Use of Water

Leak Detection

What is Non Revenue Water?

- Unbilled Metered Consumption
- Unbilled Unmetered Consumption
- Unauthorized Consumption
- Customer Meter Inaccuracies
- Leakage within Water Distribution System

IWA Water Balance

	Authorised Consumption	Billed Authorised Consumption	Billed Metered Consumption	Revenue Water	
			Billed Unmetered Consumption		
		Unbilled Authorised Consumption	Unbilled Metered Consumption		
			Unbilled Unmetered Consumption	Non Revenue Water	
System		Apparent	Unauthorised Consumption		
Volume	Water Losses	Losses	Customer Meter Inaccuracies		
		Real Losses	Leakage on Transmission & Distribution Mains		
			Leakage and Overflows at Reservoirs Leakage on Service Connections up to metering point		

IWA Water Balance

In Newfoundland & Labrador the IWA Water Balance is not commonly used due to lack of residential and commercial water meters.

However, we can focus on "Real Losses" within the Water Distribution system.

Leak Management

Leak Management can be divided into four activities:

- 1. Asset Management
- 2. Speed and Quality of Repairs
- 3. Active Leak Detection
- 4. Pressure Management

Leakage Management

Asset Management

The City of St. John's records information on all water main breaks.

This information is entered into the GIS system. This data is reviewed to determine:

- High concentrations of breaks / leaks
- > Areas requiring repairs or replacement
- Selection of Materials

Asset Management – All WM Breaks

Asset Management – DI WM Breaks

Asset Management

Leak Repairs

Leak Repairs

The volume of water loss due to leakage is a function of flow rate and time – Leak Run Time.

Leak Run Time is comprised of three components:

- Awareness
- Location
- Repair

Leak Run Time

Leak Run Time Awareness

Leak Volume Loss = (A+ L+R) Time x Flow Rate

RUN TIME = Awareness* + Location + Repair

How much water is lost from a water main leak or break?

Answer – It Depends

- Type of Break
- Size of Hole / Opening
- **Pressure**

Typical Water Main Break

- ➢ 30 m³/hr
- Awareness = 1-2 hours
- Location = 1-2 hours
- Repair = 8 hours
- Total Time = 12 hours
- \succ Volume = 360m³

Typical Service Leak

- > 3mm Hole in Pipe (1/8")
- Pressure = 70 psi
- > Flow = $0.54 \text{ m}^{3}/\text{hr}$
- Awareness = 3 months
- Location = 1-2 hours
- Repair = 8 hours
- Total Time = 3 months
- \succ Volume = 1166 m³

Summary

- Majority of Water Main breaks are easily and quickly located and repaired.
 - Resulting in short "Leak Run Time"
 - Large Volume of Water lost in Short Period
- Majority of Service Leaks can go undetected for extended periods of time.
 - ➢Resulting in long "Leak Run Time"
 - Large Volume of Water lost in Large Period
- Therefore Leak Detection should be focused on locating leaks that could go undetected.

Active Leak Control

CSJ's Leak Detection Program is comprised of the following tasks:

- Hydrant Sounding
- Hydrant Leaks versus Main Leaks
- Pin Point Leak Locations
- > Repairs

Active Leak Control

Leak Locations are determined using Leak Noise Correlator

Active Leak Control – Correlator Result

Active Leak Control – Correlator Result

Active Leak Control - Advancements

District Metered Areas:

- DMA's are defined as discrete areas in which all incoming (and outgoing) water is metered.
- Typically defined by pressure differences caused by various water distribution infrastructure – PRVs, pump stations, water storage reservoirs, etc.
- Flows are monitored to determine possible leaks.

DMA Concept

- Minimum night time flow is calculated, leak detection completed to achieve minimum night flows (typically greater than theoretical calculated result).
- Flow data is monitored daily and minimum night flow is compared to actual flow
- Variance in flows = leak(s) or usage

Ideal DMA Size

- > 150-200 Fire Hydrants,
- 2500 Service Connections
- 30 km of Water Mains
- Leak Survey to be Completed in 1-2 days
- Total Leak Run Time of 3-4 days

CSJ DMAs

- 23 Current Zones
- 28+ Proposed Zones
- 12 Zone Water Meters Installed
- 5 Zone Water Meters Installations Planned
- Remote Communications to be Installed in 2010

CSJ DMA - Example

Master Meter + 2 Sub Meters

Active Leak Control – DMA Results

Site : KENMOUNT

Active Leak Control – DMA Results

Site : KENMOUNT

Active Leak Control – DMA Overview

Site : KENMOUNT

Pressure Management - Future

Theory of Pressure Management

- During periods of low demand water pressure is reduced below normal setting.
- Lower water pressure will result in reduced leakage and reduced water main breaks
- Typically pressure management is completed during off-peak hours – night time.

Pressure Management - Concept

Two Basic Types of Pressure Management

- Time of Day
 - Pressure Setting Changed for different times of the Day
- Flow Modulation
 - Pressure Varies with Flow
 - Higher Flow = Higher Pressure
 - Lower Flow = Lower Pressure

Pressure Management – Time of Day

Pressure Management – Flow Mod.

Pressure Management - Equipment

Pressure Management – CSJ Example

Pressure Management – CSJ Example

Pressure Management - Savings

Example of Flow Rates

	3mm (1/8") Hole		4.8mm (3/16") Hole		6.5mm (1/4") Hole	
Pressure	Flow	Volume	Flow	Volume	Flow	Volume
120 psi	0.71m ³ /hr	6195 m ³	1.59m ³ /hr	13940m ³	2.83m ³ /hr	24782m ³
110 psi	0.68m ³ /hr	5932 m ³	1.52m ³ /hr	13347m ³	2.71m ³ /hr	23727m ³
100 psi	0.65m ³ /hr	5656 m ³	1.45m ³ /hr	12725m ³	2.58m ³ /hr	22623m ³
90 psi	0.61m ³ /hr	5362 m ³	1.37m ³ /hr	12072m ³	2.45m ³ /hr	21462m ³
80 psi	0.58m ³ /hr	5059 m ³	1.30m ³ /hr	11382m ³	2.31m ³ /hr	20235m ³
70 psi	0.54m ³ /hr	4732 m ³	1.22m ³ /hr	10647m ³	2.16m ³ /hr	18928m ³
60 psi	0.50m ³ /hr	4381 m ³	1.13m ³ /hr	9857 m ³	2.00m ³ /hr	17524m ³
50 psi	0.46m ³ /hr	3999 m ³	1.03m ³ /hr	8998 m ³	1.83m ³ /hr	15997m ³
40 psi	0.41m ³ /hr	3577 m ³	0.92m ³ /hr	8048 m ³	1.63m ³ /hr	14308m ³

Pressure Management - Savings

- Example of Potential Savings
- Assume 6 3mm leaks
- 8 hour reduction period

Case 1 - Pressure Reduction - 100 psi to 80psi
➢ Annual Volume of Water Saved = 1200 m³

Case 2 - Pressure Reduction - 80 psi to 60psi
➢ Annual Volume of Water Saved = 1350 m³

Leak Detection

Future Plans for CSJ

- Continue to Install Zone Water Meters
- Implement Remote Data Collection
- Calculate Minimum Night Flow for each zone
- Conduct Pilot project for Pressure management
- Investigate feasibility of extending leak detection to 12 month operation.

