Digital Chlorine Meter Operation and Troubleshooting

Clean and Safe Drinking Water Workshop 2010 Gander, NL Ian Thompson, Atlantic Purification Systems Ltd.

OUTLINE

Chlorine Chemistry
Various Testing Devices
Colorimetry and Reagents Explained
Pocket Colorimeter I and II Overview

Low Range Free Chlorine Test

OUTLINE

- Low Range Total Chlorine and High Range Testing Differences
- Result and Unit Verification
- Error Messages and Troubleshooting

Chlorine Chemistry

 Chlorine is added to water as chlorine gas or as sodium or calcium hypochlorite.

Chlorine Gas:

 $Cl_2 + H_2O \rightarrow HOCl + H^+ + Cl^-$

Sodium Hypochlorite:

 $NaOCl + H_2O \rightarrow Na^+ + HOCl + OH^-$

 The two chemical species formed by chlorine in water are hypochlorous acid and hypochlorite ion

$\begin{array}{c} HOC1 \leftrightarrow H^{+} + OC1^{-} \\ Hypochlorous \ Acid \end{array} \qquad \qquad Hypochlorite \ Ion \end{array}$

Chlorine Chemistry

- Hypochlorous acid is the stronger disinfectant
- Below pH 7.5 free chlorine exists predominantly in the HOCI form
- Above pH 7.5 free chlorine exists predominantly in the OCI⁻ form

Chlorine Chemistry & Disinfection Efficiency:

Free Chlorination:

 $Cl_2 + H_2O \longrightarrow HOCl + OCl^-$

Chloramination:

 $\begin{array}{rcl} \text{NHCl}_2 + \text{HOCl} & \longrightarrow & \text{H}_2\text{O} + \text{NCl}_3 \\ \text{NH}_2\text{Cl} + \text{HOCl} & \longrightarrow & \text{H}_20 + \text{NHCl}_2 \\ \text{NH}_3 + \text{HOCl} & \longrightarrow & \text{H}_20 + \text{NH}_2\text{Cl} \end{array}$

decreasing

(strongest)

disinfection efficiency

Organic Amines:

 $Org N + HOC1 \longrightarrow OrgN-C1$ (~

(~none)

Various Options for Manually Measuring Chlorine in Water

Test Strips

Easiest to Use
Not very accurate
DPD pillow instead

Serving Atlantic Canada Since 1970

Colour Comparison Kit
Accurate to 0.1mg/L
Affected by light
Operators see different readings

Titrations (Digital Amperometic Analysis)
Very Accurate, (ppb)
Relatively Expensive
Effluent Discharge to sensitive areas

Digital Colorimetry
Accurate to 0.01mg/L
Easy to use
Waterproof

Low cost per unit test

How do Colorimeters Read a Sample?

Colorimetry Explained

- (ZERO) Measure the amount of light passing through the untreated sample.
- (READ) Measure the amount of light passing through the reacted sample.
- Convert the difference in transmitted light into a concentration, using the built-in calibration curve.

Reagents

Convenient reagent packaging

- Permachem foil pouches
 - Originally "Powder Pillows"
- AccuVac vials
- SwifTest(TM) Dispenser

What do the Reagents Do?

Reagents + Sample

Colored Complex

How to Make Menu Changes on Pocket Colorimeters

Pocket Colorimeter I

Two Ranges LO = 0-2.00, HI = 0-4.5 mg/L

 Switching Ranges
 Retrieving Factory Default Calibration

Pocket Colorimeter I

 Switching Ranges
 Hold ZERO and READ key, after 1 sec release ZERO key

- HI or LO will show range instrument is in
- Repeat above steps to switch ranges

Pocket Colorimeter I

Retrieving Factory Default Calibration

- Hold ZERO and READ for 3 secs
- CAL then flashing 0 is displayed
- Press READ and hold for 2 secs until dFL is displayed

Pocket Colorimeter II

Two Ranges LO = 0-2.00, HI = 0-8.0 mg/L

 Switching Ranges
 Retrieving Factory Default Calibration

Pocket Colorimeter II

Switching Ranges Press MENU key Display will show SEL Use READ key to toggle between LR and HR Press MENU key to accept

Pocket Colorimeter II

Retrieving Factory Default Calibration
Hold MENU key until USER then CAL appears
Press ZERO to find dFL
Press READ to restore factory calibration

How To Run a Proper Test For Low Range Free Chlorine

Good laboratory Practice

Measuring Hints

- Analyze immediately after collection
- Avoid Plastic containers
- Dedicate different sample cells for Free and for Total Chlorine testing.
- If chlorine concentration is less than 2 mg/L use the Low Range setting and procedure.

Good laboratory Practice

Measuring Hints

- Pretreat glassware by soaking in a dilute bleach solution (1 mL commercial bleach to 1 Liter of D.I. Water for at least one hour.)
 - Thorough rinsing after each use allows for only occasional pretreatment.
 - Air dry the sample cells and sampling containers.

Good laboratory Practice

Measuring Hints

- If sample turns yellow or shows a flash of pink then goes colorless, dilute the sample and repeat the test.
- Multiply the result by the dilution factor.

Sample Collection, Storage and Preservation

- Collect sample by allowing water to flow for at least 3 - 5 minutes
- If collecting bulk sample, allow container to overflow with the sample several times
- Cap the sample container so there is no headspace
- If transport is absolutely necessary (which is not recommended), chill the sample to 4 degrees C and analyze as quickly as possible.

Sampling and Sample Preservation

 The <u>sample</u> is usually the greatest limiting factor in obtaining a true or representative result.

The analysis is only as good as the sample

Running the Test

- Following the proper sampling techniques, fill the <u>GLASS</u> cell to the 10mL mark and cap it
- Dry outside of cell with a wipe
- Place cell in holder (diamond forward), cover with the instrument cap and hit ZERO
- o 0.00 will be displayed, remove cell

Running the Test

 Add a 10mL DPD Free reagent to the sample, as indicated in the procedure, cap and gently invert for 20 secs

Reaction Chemistry Free Chlorine

• Free chlorine oxidizes DPD indicator at a pH of 6.3-6.6 to form a magenta-colored compound.

 Free Cl₂ + DPD magenta colored compound.
 Reaction time of < 1:00 minute --- No Longer

Running the Test

Place cell in holder, cover with instrument cap and hit READ
The free chlorine result will be displayed in mg/L chlorine

Low Range Total Chlorine and High Range Tests

Reaction Chemistry Total Chlorine

Free Chlorine reaction + Potassium Iodide is added to the reagents.

 <u>Chloramines</u> oxidize iodide to iodine which, along with free chlorine, oxidizes DPD to form pink color.

Reaction time > 3:00 minutes Not longer than 6 minutes

High Range Tests

Put PCI or PCII into HR mode
Use <u>PLASTIC</u> cells and 2 X 10mL DPD reagents
PCI uses 10mL of sample
PCII uses 5mL of sample
Short pathway faces front to back

Low Range Total and High Range Tests

- Procedure is the same for all tests
- Only changes are cells, sample volume (PCII), reagent addition (2 pillows), cell orientation
- o Free Within 1 min
- Total Between 3 and 6 min

How Do I Know if my Results are Correct?

• What is a standard?

 Primary Standard is a solution of D.I. water containing a known amount of a specific substance

Secondary Standards (SpecCheck)

Use of Standards

Primary Chlorine Standard

- Primary Standard used with PC comes as a higher concentration (typically from 25-30mg/L)
- Standards are manufactured highly concentrated as weaker chlorine solutions are not stable for long periods
- Primary standards can be used for calibration verification, instrument performance, operator technique, interfering substances

Use of Standards

Primary Standard Additions

- Smaller volumes of highly concentrated solutions
 - Identifying interferences and percent recovery
- Is my sample compatible with the test?
- Use to prepare a known concentration for any purpose.

Use of Standards

Secondary SpecCheck Standards

- Gel standards that simulate specific chlorine values (Secondary Standards)
- Used as a calibration check only
- Cannot be used to calibrate an instrument

Errors and Troubleshooting

o E1, E2 and E3 Errors

- Verify instrument cap is seated correctly and re-zero
- Check to make sure LED lights up when READ is pressed
- Change batteries
- E2 on PCI often means interference filter should be replaced – no longer any available

o All other "E" Errors

- Factory default calibration curve has been changed
- Follow procedure to retrieve factory calibration
- If error persists, unit requires servicing

Flashing Values

- Flashing 0.00 Check cap/re-zero
- Flashing number above stated range Check for light blockage and/or dilute then retest
- Flashing square on PCII instrument has not been zeroed properly

o Common Interferences - Manganese

- Add 3 drops of Potassium Iodide, mix and wait one minute
- Add 3 drops of Sodium Arsenite mix a run test as per procedure
- Subtract this result from original analysis to obtain correct chlorine concentration

 Common Interferences -Monochloramine

- See a gradual drift towards higher readings.
- Try to analyze sample as soon as possible after adding reagent
- 3.0 mg/L monochlor will increase chlorine result by 0.1mg/L after 1 min

 Common Interferences – All other oxidants

 Oxidants such as bromine, ozone and iodine will cause false positives for chlorine readings

Other Possible Interference Solutions

- FreeChlor F Reagent Solution used to determine free chlorine in the presence of manganese, chloramines and other oxidants.
- At moment, can only be used with Monochloramine test

Freechlor F Reagent Solution Commenced Valuer (752):630 Cat 29649-26 50 ml.

OUTLINE

Chlorine Chemistry
Various Testing Devices
Colorimetry and Reagents Explained
Pocket Colorimeter I and II Overview

Low Range Free Chlorine Test

OUTLINE

- Low Range Total Chlorine and High Range Testing Differences
- Result and Unit Verification
- Error Messages and Troubleshooting

Digital Chlorine Meter Operation and Troubleshooting

QUESTIONS??????

