Science

Chemistry 1102

Chemical Reactions

Study Guide

Credit Value: 1

Text: Science 10. Ritter, Plumb, et al; Nelson 2001.

Chemistry Concentration

Chemistry 1102

Chemistry 2102A

Chemistry 2102B

Chemistry 2102C

Chemistry 3102A

Chemistry 3102B

Chemistry 3102C

Table of Contents

the Student	١
Introduction to Chemistry 1102	
Use of Science Study Guides	V
Recommended Evaluation	i
nit 1 - Investigating Chemical Reactions	1
nit 2 - Formula Writing Page	3
nit 3 - Equation Writing Page	6
nit 4 - Introduction to Acids and Bases	(
opendix A Page 1	_

To the Student

I. <u>Introduction to Chemistry 1102</u>

This is the first course in the 'Chemistry Concentration' in the Adult Basic Education program. If you have not recently completed grade 9 in school or Level II in ABE, you may need to spend some time at the beginning of this course learning about atomic structure and the periodic table.

In this course you will learn about naming and writing formulas for ionic and molecular compounds. You will also learn to write chemical equations. You will be expected to know these topics very well in order to have the necessary foundation to build upon as you continue in the Chemistry concentration in ABE.

It is very important to note that *this course is a pre-requisite* to all the other ABE Chemistry courses.

There are 2 required labs for this course. Let your instructor know in advance that you are getting close to being ready to do the labs. The labs require a written report that will be used as part of your final mark for the course. In addition, there is one assignment that you will be asked to submit. This will also be used as part of your evaluation for the course.

You will need lots of practice as you work through the material in this course. There are several worksheets in the Appendix that you should complete. See your instructor for the answers. Your teacher may also provide you with additional worksheets.

The text for this course is *Science 10*; Ritter, Plumb, et al; Nelson, 2001.

To the Student

II. Use of Science Study Guides

Before beginning this course, ensure you have the text and any other resources needed (see the information in the Introduction to this course for specifics).

As you work through the Study Guide, you will see that it is divided according to the Units listed in the Table of Contents. When you open a unit it will have the following components:

Reading for this Unit:

Here you will find the chapters, sections and pages of the text you will use to cover the material for this unit. Skim the sections of the textbook, look at the titles of the sections, scan the figures and read any material in the margins. Once you have this overview of the unit, you are ready to begin. Do not be intimidated by the content. You will work through the text, section by section, gaining knowledge and understanding of the material as you go.

References and Notes

This left hand column guides you through the material to read from the text. Read any highlighted notes that follow the reading instructions. The symbols DD direct you to the questions that you should complete when finished a reading assignment..

Work to Submit

You come across three (3) headings in this right hand column.

Writing: This section comprises your notes for the unit.

Here you will find either written questions or references to specific questions or problems from your text. You may want to write out each question followed by the answer. This material should be checked by your instructor

before moving on to the next unit.

Mathematical problems should have their solutions checked as you go.

Laboratory: This section indicates if there is a Core Lab

that should be completed for the unit. Let the instructor know in advance that you will be ready for the lab. A lab report should be submitted for each **Core Lab**. Your instructor will provide guidelines as to how

s/he wants the report written.

Assignment: This section indicates if there is an assignment

that should be completed for the Unit. The information in the "References and Notes" column will indicate how you obtain the assignment. These assignments frequently relate the science content to technology,

society and the environment.

Study Guide vi Chemistry 1102

To the Student

III. Recommended Evaluation

Written Notes	10%
Labs/Assignments	20%
Test(s)	20%
Final Exam (entire course)	<u>50%</u>
	100%

The overall pass mark for the course is 50%.

Unit 1 - Investigating Chemical Reactions

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit: Science 10

Chapter 5: Introduction: pages 170-171

Section 5.1: pages 172-174

Investigation 5.3: pages 180-182

Handout 1: "WHMIS Activity": Appendix A

References and Notes	Work to Submit		
Defensing to page 170 174 write	Writing:		
Referring to pages 170-174, write answers for questions 1.1 - 1.6.	1.1 Define: a) chemistry b) matter.		
	1.2 Define and give two (2) examples of each of the following: a) pure substances b) element c) compound d) physical property e) chemical property f) chemical change g) reactant h) product		
	1.3 What are five (5) clues that a chemical change has occurred?		
	1.4 What is a chemical test and what is its purpose?		

Unit 1 - Investigating Chemical Reactions

References and Notes Work to Submit Writing: Briefly describe the chemical tests for: 1.5 a) oxygen (O₂) b) hydrogen (H₂) c) carbon dioxide (CO₂) d) water vapor (H₂O) 1.6 Complete Questions 1-2 and 4-5, on page 175. Before you go into the lab, you should **Assignment:** complete the Assignment **▶**▶ 1.7 Complete the "WHMIS Activity" found in Appendix A of this Study Guide. Note: Refer to "Safety Conventions and Symbols", page 658, and the MSDS sheet in Appendix A to help you with the assignment. Laboratory: Referring to pages 180-182, complete 1.8 Work carefully through the 5.3 Investigation,

See your instructor to discuss any additional work that you should complete for this unit.

the Laboratory Investigation.

Study Guide Page 2 Chemistry 1102

"Testing Properties of Substances". Prepare your lab report as outlined by your instructor.

Unit 2 - Formula Writing

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit:	Science 10	
	Chapter 5:	Section 5.5: pages 184-187
		Section 5.6: pages 188-189
		Section 5.8: pages 192-195
		Section 5.9: pages 196-198
	Handout 2:	"Introduction to IUPAC": Appendix A
	Handout 3:	"IUPAC Naming of Compounds and Writing
		Formulas": Appendix A
	Handout 4:	"Naming Ionic Hydrates": Appendix A

References and Notes

Referring to pages 184-187, write answers for questions 2.1 - 2.7 ▶▶

NOTE:

Read carefully "Did You Know?" on pages 186 and 187 to make sure you are familiar with the terms:

- valence shell
- valence electron
- cation
- anion

Work to Submit

Writing:

- 2.1 Define and give two examples of electrolyte and nonelectrolyte.
- 2.2 Define periodic table
- 2.3 a) Define chemical families.
 - b) Name the chemical family identified by each of the following group numbers:

Group 1 Group 2 Group 17

Group 18

2.4 Name and describe the three subatomic particles (include the charge on each).

Unit 2 - Formula Writing

References and Notes

Note:

Study Handout 2, "Introduction to IUPAC" (found in Appendix A) before you go any further. Make sure you are familiar with the following terms and that you can use them as you work through the remainder of this course:

- molecule
- compound
- molecular element (diatomic molecule)
- molecular formula
- empirical formula

Referring to pages 188-189, write answers for questions 2.8 and 2.9 ▶▶

Note:

Molecular compounds are made up of non-metal atoms only.

Read pages 192-195 carefully before writing answers for questions 2.10 and 2.11

Read pages 196-198 carefully before answering question 2.12 - 2.13 ▶▶

Note:

Remember, if there is more than one polyatomic ion, use brackets. $Mg(NO_3)_2$ is correct. $MgNO_{32}$ is incorrect.

Work to Submit

Writing:

- 2.5 Define ion and explain how ions are formed.
- 2.6 When an element forms a negative ion, what happens to its name?
- 2.7 Complete questions 2-7 in "Understanding Concepts", page 187.

- 2.8 Explain the difference between the types of elements present in ionic and molecular compounds.
- 2.9 Complete questions 1-5 in "Understanding Concepts", page 189.
- 2.10 Define valence.
- 2.11 Complete questions 1-9 in "Understanding Concepts", page 195.
- 2.12 Complete questions 1-4, 6 and 7 in "Understanding Concepts", page 198.
- 2.13 What do you think is the formula and charge of the
 - a) chlorite ion
 - b) phosphite ion.

Unit 2 - Formula Writing

References and Notes

Read carefully through Handout 4, "Naming Ionic Hydrates" before you complete 2.14 and 2.15 ▶▶

Read pages 201-204 carefully before completing questions 2.16 - 2.18

Note: You will find Handout 3, "IUPAC Naming of Compounds and Writing Formulas", in Appendix A of this study guide. It provides a summary of what you should know about naming compounds.

Study Handout 3 and make sure you understand it before completing 2.19

See your instructor to discuss any additional work that you should complete for this unit.

Work to Submit

Writing:

- 2.14 Define hydrate
- 2.15 Complete the worksheet, "Naming Ionic Hydrates" in Appendix A.
- 2.16 Complete questions 1-6 in "Understanding Concepts", page 204.
- 2.17 Give the common names of each of the following compounds:
 - a) H₂O
 - b) NH₃
 - c) CH₄
 - d) H_2O_2
- 2.18 Write the formulas for:
 - a) nitrogen
 - b) oxygen
 - c) fluorine
 - d) bromine
 - e) iodine
- 2.19 Complete the worksheets included with "IUPAC Naming of Compounds and Writing Formulas".

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit:	Science 10 Chapter 6:	Introduction: Section 6.1: Section 6.3: Section 6.5:	pages 216-217 pages 218-219 pages 222-223 pages 226-229
		Section 6.6: Section 6.7:	pages 226-229 pages 230-232 pages 233-235 pages 240-241

References and Notes	Work to Submit	
	Writi	ng:
Read pages 218-219 carefully before completing questions 3.1 - 3.3	3.1	Define word equation.
	3.2	Complete the activity on page 219.
Referring to pages 222-223, follow the	3.3	Complete questions 1-4 in "Understanding Concepts", page 219.
instructions in 3.4 PP	3.4	Complete questions 1 and 5 in "Understanding Concepts", page 223.

References and Notes

Read pages 226-229 carefully before completing questions 3.5 and 3.6 ▶▶

Work to Submit

Writing:

- 3.5 Write definitions for each of the following:
 - a) skeleton equation
 - b) balanced chemical equation
 - c) coefficient
- Complete questions 1-5 in "Understanding Concepts", page 229.

Note:

Notice that the following subscripts are used to indicate the state of each substance:

- (s) for a solid;
- (l) for a liquid:
- (g) for a gas:
- (aq) for an aqueous solution (dissolved in water)

References and Notes	Wor	k to Submit			
		Writing:			
Read pages 230 - 232 carefully before completing questions 3.7 and 3.8	3.7	a) Define combustion.b) Explain what is meant by incomplete combustion.			
	3.8	Complete questions 3 - 6 in "Understanding Concepts", page 232.			
Read pages 233 - 235 carefully before completing questions 3.9 - 3.11	3.9	a) What are synthesis reactions?b) What is the general formula for synthesis reactions?			
	3.10	a) What are decomposition reactions?b) What is the general formula for decomposition reactions?			
	3.11	Complete questions 1 - 5 in "Understanding Concepts", page 235.			
Referring to pages 236-239,	Labo	ratory:			
complete one of the Investigations	6.8 , ". Thing	Work carefully through Investigation <i>Putting Things Together</i> ", or 6.9, " <i>Taking as Apart</i> ". Prepare your lab report as outlined ur instructor.			

References and Notes

Read pages 240 - 241 carefully before completing questions 3.13 - 3.15 ▶▶

Note:

A precipitate is a solid formed from two solutions. It will not dissolve in water.

For review of the topics covered in Unit 3, complete questions 3.16 and 3.17

See your instructor to discuss any additional work that you should complete for this unit.

Work to Submit

Writing:

- 3.13 a) What are single displacement reactions?
 - b) What are the general formulas for single displacement reactions?
- 3.14 How do you decide which element is replaced in a single displacement reaction?
- 3.15 a) What are double displacement reactions?
 - b) What is the general formula for double displacement reactions?
- 3.16 Complete questions 1 6 in "Understanding Concepts", page 247.
- 3.17 Complete questions 1 6 and 17 in the Chapter 6 Review, "Understanding Concepts", page 252 253.

Study Guide Page 9 Chemistry 1102

Unit 4 - Introduction to Acids and Bases

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit: Science 10

Chapter 8: Introduction: pages 288 - 289

Section 8.2: pages 293 - 295 Section 8.3: pages 296 - 299

Investigation 8.9: page 314

Section 8.10: pages 317 - 319

Handout 5: "Naming Acids": Appendix A

References and Notes

Referring to pages 293 - 295 and the glossary, write answers for questions 4.1 - 4.3

Note:

In order for an acid to have acidic properties, it must be dissolved in water. To indicate that it is dissolved in water, the formula of an acid must be followed by the (aq) subscript.

Work to Submit

Writing:

- 4.1 Copy and complete the following statements:a) ______ can be defined as substances
 - that release Hydrogen (H⁺) ions in water.
 - can be defined as ionic compounds that release the hydroxide ion (OH) in water.
- 4.2 a) Use the glossary to write definitions for acids and bases.
 - b) List five (5) properties of acids.
 - c) List four (4) properties of bases.
- 4.3 Complete questions 1, 3, and 4 in "Understanding Concepts", page 295.

Unit 4 - Introduction to Acids and Bases

References and Notes

Study Handout 5, "Naming Acids", found in Appendix A and answer 4.4

Referring to page 296, write answers for questions 4.5 and 4.6

Referring to pages 314 - 319, write answers for questions 4.7 - 4.9

Note:

The general equation for a neutralization reaction is:

ACID + BASE \rightarrow SALT + WATER HA + BOH \rightarrow BA + HOH (H₂O)

A salt does not necessarily mean sodium chloride.

See your instructor to discuss any additional work that you should complete for this unit.

Work to Submit

Writing:

- 4.4 Complete the worksheet, "Naming Acids". (Appendix A)
- 4.5 Define pH scale.
- 4.6 Complete questions 1-7 in "Understanding Concepts", page 299.
- 4.7 a) Define neutralization (include the general products of a neutralization reaction).
 - b) What category of reactions is neutralization?
 - c) Describe two (2) examples of neutralization reactions.
- 4.8 Define salt.
- 4.9 Complete questions 3 and 4 in "Understanding Concepts", page 319.

Handout 1 - "WHMIS Activity"

2.	What is the purpose of using WHMIS s	What is the purpose of using WHMIS symbols?		
3.	What does MSDS stand for?			
4.	Identify the nine sections of the MSDS.			
	I	VI		
	II	VII		
	III	VIII		
	IV	IX		
	V			
5.	What is the name and chemical formula	a of the chemical?		
6.	What would happen if you were overex	posed to the chemical?		
7.	When you are using this chemical, how	would you protect yourself?		

What does WHMIS stand for?

How must this chemical be stored?

1.

8.

MSDS Sample Sheet

Combustion may produce initating copper fumes and toxic gascous oxides (sulfur oxides). UVEREXPOSUTE TARGET ORGANS AFFECTED: Eyes skin, blood, respiratory system, liver, Kdroeys. INGESTION. Copper salts impost a metallic taste in mouth. May cause gustrointestinal imitation and variding. <u>EFES: Causes conjunctiviths</u>, swelling of the eyelids, ulceration and burns of the comes. <u>SKIN</u>: Causes inflation. May cause allergic skin reaction. INHALATION. Causes upper respiration and congestion of the nasel and mucous membranes. insoluble copper salt. Sweep up and place in a suitable container for disposal. Wash spill area with soap and water. Prevent material from entering sewers and waterways. Chemical safety goggles. Incompatible with acetylene. Copper sells may react to form explosive acetylides. Copper sulfate can cause signition upon contact with hydroxylamine due to the release of neat. Reducing agents react vigorously with copper selfs. swallowed, if conscious, give one or two glasses of water to drink, induce vorniting and call physician. Never give anything by mouth to an For laboratory use only. Not for drug, food or household use. Keep out of reach of children. Revision No. 6 | Date 2/17/89 | Approved Michael Raszeja | Cheman Saley has remained herevit it furnished without exeminary designed. Employees should use this information consisted herevit it furnished without exeminary designed the deministration of studiely and completeness of information remains an excess to exture proper use of these meetings and the state of the information for the information and sources to exture proper use of these meetings and the state of the information for the information of the information for th Discharge, treatment, or disposal may be subject to Federal, State or Local laws. These disposal goldstines are intended for the disposal of catalog-size quantities only. INHALATION: Remove to fresh air. If breathing has stopped give artifical respiration. If breathing is difficult, give coygen. Get medical attention. EXES: Flush thoroughly with water for at lesst 15 minutes. Ventilate the area. Sprinkle lime or sode ash on spill to form iffing upper and lower eyelids occasioanly. Get medical attention. Since which water, then wash with mild soap and water. INGESTION: Excessive temperature and heat. Safety glasses, smock, apron, verted hood, proper gloves, and eye wash station. Dispose of in an approved chemical landfill or contract with a waste disposal agency. vone should be required in normal laboratory use. If dusty conditions privors in a vertillation hood or wear a NIOSH/MSHA-approved dust mask, (Air) As copper metal (dust): 1.0 mg/m 3 . Copper (fume) TLV 0.2 mg/m 3 . Oral, rat: LD50 = 300 mg/kg. Avoid contact with skin, eyes and clothing. Avoid breathing dust. Use with adequate ventilation. Remove and wash container before using. Do not weer contact lanses when working with chemicals SPECIAL PROTECTION INFORMATION Not applicable. SPILL OR LEAK PROCEDURES Eye Protection Local Exhaust Recommended. Special Mechanical (General) Recommended. Other SPECIAL PRECAUTIONS Store in a cool, dry place. Wash thoroughly after handling. HEALTH HAZARD DATA Conditions to Avoid REACTIVITY DATA Conditions to Avoid contaminated clothing. unconscious person. Rubber. Steps to be taken in case material is released or spilled Will Not Occur **Decomposition Products** Effects of Overexposure Threshold Limited Value Waste Disposal Method Ventilation Local Exhaust Hazardous Polymerization Keep container lightly closed when not in use Emergency and First Aid Procedures Precautions to be Taken Protective Gloves Stability Unstable (Materials to Avoid) in Handling & Storing Other Precautions Stable SECTION VIII ncompatibility **SECTION IX** SECTION VI SECTION V SECTION Hazardous Respiration Prof (Specify Type) May Occur MATERIAL SAFETY DATA SHEET CC 535 February 17, 1999 24 HOUR EMERGENCY ASSISTANCE EXTREME 0 HMIS * TLV Units See Section V. Health 2 Reactivity D.O.T. RQ, Environmentally hazardous substance, solid, n.o.s., (Cupric sulfate), 9, UN 3077, PG || Approved by U.S. Department of Labor "essentially similar" to form OSHA-20 Upper In fire conditions, firefighters should wear protective clothing and a NOSHMSH-kaptoved self-contained breathing apparatus. Cupilc Sulfate will not burn, nor will it support combustion. Care should be used to keep material out of streams or other water bodies. HGH Fire or excessive heat may produce hazardous decomposition CHEMTREC 800-424-9300 Day 716-226-6177 2.28 Ϋ́ ΧŽ NFPA HAZARD RATING LEAST SLIGHT MODERATE MSDS No. Effective Date FIRE AND EXPLOSION HAZARD DATA (1996 EMERGENCY RESPONSE GUIDEBOOK, DOT P 5800.7, GUIDE PAGE NO. 171) % 66 × Specific Grevity $(H_2O = 1)$ Ŧ % **NGREDIENTS OF MIXTURES** Flammable Limits in Air N/A % by Volume Use any media suitable for extinguishing supporting fire. Blue crystals or fine blue powder; no odor 1533 W.Henriette Rd. Avon, New York 14414 (716) 228-6177 products as dust or fume. IRRITANT TO SKIN, EYES AND MUCOUS MEMBRANES. PHYSICAL DATA WARNING! HARMFUL IF SWALLOWED OR INHALED. Appreciable (>10%). CUPRIC SULFATE, 5-HYDRATE Copper (II) Sulfate, pentahydrate 653°C (1207°F) CORPORATION Non-flammable. ΚŽ ΑŽ Š Principal Component(s) Cupric Sulfate, pentahydrate CuSO, 5H,O SPECIAL FIREFIGHTING up to 2.5 Kg. ALDON 7758-99-8 UNUSUAL FIRE AND EXPLOSION HAZARDS Vapor Pressure (mm Hg) Vapor Density (Air=1) Appearance & Odor Solublity in Water Melting Point (°F) SECTION IV SECTION II Boiling Point (*F) SECTION III PROCEDURES SECTION Flash Point (Method Used) Extinguisher Media C.A.S. No. Unit Size Formula Product

Handout 2 - "Introduction to IUPAC"

Today most compounds are known by their IUPAC names. IUPAC stands for **International Union of Pure and Applied Chemistry.** This organization has determined a set of rules to be used for naming chemicals. Its purpose is to set international guidelines so that all scientists follow the same rules.

Before you start naming compounds and writing formulas, you need to make sure you understand the following:

Molecules are combinations of two or more elements.

*A molecular element has all atoms the same.

For example, oxygen gas is a molecule composed of 2 atoms of oxygen. It is called a **diatomic molecule** (because it has 2 atoms).

Table of Diatomic Molecules				
oxygen	O_2			
hydrogen	H_2			
nitrogen	N_2			
fluorine	F_2			
chlorine	Cl ₂			
bromine	Br_2			
iodine	I_2			

Handout 2 - "Introduction to IUPAC" (continued)

A **compound** is a molecule that contains 2 or more **different** types of atoms or ions.

For example, water (H₂O) is a compound because it contains both hydrogen and oxygen.

The formula for water, H₂O, is a combination of **symbols** and **subscripts**.

H and O are the **symbols** for hydrogen and oxygen.

The number 2 is the **subscript**. It indicates that there are 2 atoms of hydrogen in a molecule of water.

A **molecular formula** is a chemical formula that indicates the number and type of atoms in one molecule (i.e. the actual number of atoms of each type in the compound).

An **empirical formula** is the simplest whole number ratio of atoms in the compound.

For example, hydrogen peroxide:

The molecular formula is H₂O₂

The **empirical formula** is HO (lowest ratio is 1:1)

Note: In some cases the molecular formula and the empirical formula are the same.

Rules for Naming Binary Ionic Compounds (simple/multivalent)

- 1. Name the cation (+) by writing the full name of the metal.
- 2. Check the attached partial periodic table to see if it is a multivalent species (has more than one possible ionic charge).

If it has only one ionic charge, proceed to step 3.

If it has more than 1 possible ionic charge, determine the charge of the anion and pick the metal ion that will result in a net charge of zero. Indicate the identity of the metal ion with roman numerals.

3. Name the anion (-) by shortening the name of the atom and adding the **-ide** ending.

Examples: NaCl sodium chloride

K₂O potassium oxide

CaF₂ calcium fluoride

SnCl₄ tin(IV) chloride

PARTIAL PERIODIC TABLE OF THE ELEMENTS

1	2											13	14	15	16	17	18
		3	4	5	6	7	8	9	10	11	12						
					Cr ²⁺ Cr ³⁺	M n ²⁺ M n ³⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺		Cu ⁺ Cu ²⁺							
													Sn ²⁺ Sn ⁴⁺				
													Pb ²⁺ Pb ⁴⁺				
												-		_		_	

Rules for Writing Formulas for Binary Ionic Compounds

- 1. Write the symbols of the ions involved.
- 2. Determine the charges of the ions.

For the cation (positive ion):

If there is no roman numeral after the name of the metal, the ion has only one ionic charge.

If there is a roman numeral after the name of the metal, the ion has more than 1 possible ionic charge, and you must use the roman numeral to determine the charge.

For the anion (negative ion):

There is only one possible charge (recall group number).

- 3. Determine the lowest whole number ratio of ions that will give a net charge of zero. This number (if something other than 1) is written as a subscript after the symbol for the ion.
- 4. Write the formula removing all charges.

Examples: Potassium bromide KBr

Calcium phosphide Ca₃P₂

Iron(II) chloride FeCl₂

Copper(I) chloride CuCl

Rules for Naming Molecular Compounds

- 1. Write the name of the first element in full.
- 2. Shorten the name of the second element and add the ide ending.
- 3. Use prefixes to indicate the number of atoms of each element in the molecular formula.
- 4. The prefix mono on the first name is optional.

Examples:

CCl₄ Carbon tetrachloride

SiO₂ Silicon dioxide

CO Carbon Monoxide

Rules for Writing Molecular Formulas

- 1. Write the symbols for each element in the compound.
- 2. Use the prefix to determine the number of atoms of each element in the formula and write the appropriate number as a subscript to the right of the element's symbol.
- 3. If an element lacks a prefix, assume that there is just one atom of that element. It is not necessary to write the numerical subscript 1, since it is implied.

Examples:

Diboron hexahydride B₂H₆

Nitrogen trioxide NO₃

	Name	Formula	Name	Formula
	1.	P ₄ O ₆	11. iodine trifluoride	
	2.	S ₂ F ₁₀	12. chlorine dioxide	
	3.	N ₂ O ₄	13. methane	
nnds	4.	ICI ₅	14. boron trifluoride	
Molecular Compounds	5.	SF ₆	15 diboron hexahydride	
ılar C	6.	CH ₃ OH	16. phosphorous trihydride	
Tolecu	7.	S ₄ N ₂	17. ethanol	
2	8.	H ₂ O ₂	18. carbon disulfide	
	9.	N ₂ O ₃	19. sulfur trioxide	
	10.	NH ₃	20. diarsenic trioxide	
	21.	CaCl2	31. potassium iodide	
, s	22.	MgO	32. aluminum chloride	
le Ion	23.	NaBr	33. lithium nitride	
Simp	24.	Al ₂ O ₃	34. barium chloride	
– spu	25.	CaO	35. magnesium hydride	
nodu	<u>26.</u>	ZnO	36. magnesium chloride	
ic Co	27.	Ag ₂ S	37. sodium sulfide	
Binary Ionic Compounds - Simple Ions	28.	CaF ₂	38. zinc sulfide	
Bina	29.	CaH ₂	39. potassium chloride	
	30.	K ₂ S	40. silver bromide	
E I		1		

Name of compound Chemical Formula Copper (II) Sulfide Cu₂S e.g. Uranium (IV) oxide 1 Lead (IV) sulfide 2 SnO₂ 3 Manganese (IV) oxide Sb₂S₃ 5 Iron (III) oxide 6 HgS 7 PdS₂ 8 Copper (II) sulfide FeS Lead (IV) oxide 11 HgO 12 $\overline{V_2O_5}$ 13 Tin (II) fluoride 14 Chromium (III) oxide 15 TiO₂ AuF₃ Uranium (VI) bromide 18 NiBr₂ 19 Cobalt Chloride 20

Directions: Place the symbol for each ion in the space provided, then write the correct chemical formula for the ionic compound. Be sure to balance the charges.

Remember complex ions end in $\underline{-ite}$, and $\underline{-ate}$, except for hydroxide and ammonium.

Ex: potassium	_ K ⁺	sulfate	_ SO ₄ 2	_ K ₂ SO ₄
1. aluminum		chloride		
2. calcium		sulfite		
3. sodium		phosphate		
4. copper(II)		nitrate		
5. chromium(II)		nitride		
6. silver		chromate		
7. nickel(III)		Iodide		
8. barium		nitride		
9. sodium		carbonate		
10. zinc		acetate		
11. Magnesium		hydroxide		
12. iron(III)		nitrite		
13. mercury(I)		oxide		
14. copper(II)		chlorate	-	
15. potassium		tetraborate		
16. aluminum		bicarbonate		
17. lead(II)		bisulfate		
18. beryllium		iodide		
19. mercury(II)	_	nitride		
20. ammonium		oxide		
21. iron(II)		bromide		
22. strontium		sulfite		
23. nickel(II)		hydroxide		
24. copper(II)		hydrogen sulfate		
25. mercury(I)		chlorate		
26. aluminum		carbonate		
27. potassium		nitrate		
28. calcium		phosphate		

Worksheet 3

Provide the name of the compound or chemical formula.

Chemical Formula	Name of compound	Chemical Formula	Name of compound
1. Li ₂ CO ₃		16.	Potassium hydroxide
2. K ₂ SO ₄		17.	Lithium phosphate
3. Al(OH) ₃		18.	Iron (III) hydroxide
4. Fe(CIO),		19.	Sodium bicarbonate
5. H₂SO₄		20.	Calcium chlorate
6. Ca(HCO ₃) ₂		21.	Hydrogen borate
7. Pb ₃ (PO ₄) ₂		22.	Magnesium silicate
8. Zn(CH ₃ COOH) ₂		23.	Ammonium nitrate
9. Cu(NO ₃) ₂		24.	Sodium hypochlorite
10. Cu(NO₂)₂		25.	Potassium nitrate
11. K ₂ S ₂ O ₃		26.	Sodium glutamate
12. CaCO ₃		27.	Potassium thiocyanate
13. Na ₂ Cr ₂ O ₇		28.	Calcium cyanide
14. NaCN		29.	Chromium (III) nitrite
15. KH₂PO₄		30.	Iron (II) chlorite

1. Write the formulas for the following compounds in the space provided.

ng compounds in the space provided.
k) nitrogen monoxide
I) tetraphosphorus decoxide
m) silicon carbide
n) methanol
o) diphosphorus pentabromide
p) arsenic tribromide
q) carbon monoxide
r) sulfur dioxide
s) neon
t) dinitrogen tetroxide

2. Write the names for the following compounds, in the space provided.

	owing compounds, in the space provided.
a) CBr ₄	k) N ₂ O
b) I ₂	I) C ₂ H ₅ OH
c) PF ₃	m) O ₃
d) N ₂ O ₄	n) Ar
e) CO	o) P ₄
f) NH ₃	p) ClO ₂
g) H ₂ O ₂	q) SiCL
h) SCk	r) BH ₃
i) SO ₃	s) C ₂ S ₄
j) P ₄ O ₆	t) OF ₂

Worksheet 4

Complete the following table. This is a mixture of molecular and ionic!

Name	Formula	Name	Formula
1.	NaBr	11. calcium iodide	
2.	SrCl ₂	12. silver sulfide	
3.	Zn(BrO ₃) ₂	13. beryllium hydride	
4.	Fe(NO ₃) ₃	14. aluminum sulfate	
5.	RbHCO₃	15 ammonium carbonate	
6.	NaOCI	16. barium phosphide	
7.	Snl₄	17. calcium hydrogen sulfite	
8.	HgCl	18. sodium nitrite	
9.	HgCl ₂	19. manganese(IV) sulfide	-
10.	Cu₂O	20. tin(II) perchlorate	
21.	Ca ₃ N ₂	31. nickel(II) chromate	
22.	P ₄ O ₆	32. potassium cyanide	
23.	LiH ₂ PO ₄	33. chromium(III) sulfite	
24.	Pb(IO ₃) ₂	34. zinc zcetate	
25.	CoCO ₃	35. cadmium oxalate	
26.	AgSCN	36. calcium sulfide	
27.	S ₂ F ₁₀	37. sodium hydrogen sulfate	
28.	HBr	38. cadmium cyanide	
29.	HF	39. copper(II) nitrate	
		tetrahydrate	
30.	Ni ₃ (PO ₄) ₂ •8H ₂ O	40. lead(II) dichromate	
41.	КОН	51. bromine	
42.	N₂O₅	52. calcium carbonate	

43.	Na ₂ SO ₃ •7H ₂ O	53. aluminum nitrate
44.	S ₄ N ₄	54. beryllium iodate
45.	HNO ₃	55. cadmium oxide
46.	HgNO ₂	56. sodium oxalate
47.	K₂Cr₂O ₇	57. iron(II) bromide
48.	Na₂CrO₄	58. cesíum hydroxide
49.	KMnO₄	59. ammonia
50.	CrPO₄	60. mercury(II) acetate
61.	NaOH	68. litium chloride
61.	NaOH	68. litium chloride monohydrate
62.	Mg(HCO ₃) ₂	
		monohydrate
62.	Mg(HCO ₃) ₂	monohydrate 69. iodine trifluoride
62.	Mg(HCO ₃) ₂ SF ₆	monohydrate 69. iodine trifluoride 70. Hydrogen hypochlorite
62. 63. 64.	Mg(HCO ₃) ₂ SF ₆ HClO _{4(sq)}	monohydrate 69. iodine trifluoride 70. Hydrogen hypochlorite 71. Hydrogen phosphate

Worksheet 5

Complete the following table. Consult web pages regarding rules for each category of compounds.

	Name	Formula	Name	Formula
	1.	P ₄ O ₆	11. iodine trifluoride	
	2.	S_2F_{10}	12. chlorine dioxide	
	3.	N ₂ O ₄	13. methane	
li	4.	ICl ₅	14. boron trifluoride	
喜	5.	SF ₆	15 diboron hexahydride	
molecular	6.	CH ₃ OH	16. phosphorous trihydride	
Ħ	7.	S ₄ N ₂	17. ethanol	
	8.	H ₂ O ₂	18. carbon disulfide	
	9.	N ₂ O ₃	19. sulfur trioxide	
	10.	NH ₃	20. diarsenic trioxide	
	21.	CaCl ₂	31. potassium iodide	
	22.	MgO	32. aluminum chloride	
suc	23.	NaBr	33. lithium nitride	
ple i	24.	Al ₂ O ₃	34. barium chloride	
sim.	25.	CaO	35. magnesium hydride	
ic -	26.	ZnO	36. magnesium chloride	
y ior	27.	Ag ₂ S	37. sodium sulfide	
Bínary ionic simple ions	28.	CaF ₂	38. zinc sulfide	
	29.	CaH ₂	39. potassium chloride	
	30.	K ₂ S	40. silver bromide	
	41,	SnO ₂	51. uranium(IV) oxide	
a	42,	Cu ₂ S	52. lead(IV) sulfide	
harg	43.	Sb ₂ S ₃	53. Manganese(IV) oxide	
one c	44.	HgS	54. ferric oxide	
pan (45.	FeS	55. copper(II) sulfide	
ore t	46.	HgO	56. lead(IV) oxide	
ш –	47.	V ₂ O ₅	57. tin(II) fluoride	
onic	48.	TiO ₂	58. chromic oxide	
Binary ionic – more than one charge	49.	AuCl ₃	59. uranium(VI) fluoride	
Bin	50.	NiBr ₂	60. cobalt(III) sulfide	

	61.	K ₂ CO ₃	76. calcium hydroxide
	62.	(NH ₄) ₂ S	77. magnesium silicate
	63.	Cr(NO ₃) ₃	78. iron(II) chlorite
	64.	NaNO ₂	79. potassium dichromate
su	65.	K ₃ PO ₄	80. ammonium sulfate
Binary Ionic - complex ions	66.	KMnO ₄	81. sodium bicarbonate
mple	67.	NH ₄ H ₂ PO ₄	82. calcium sterate
) - CC	68.	Na ₂ SO ₄	83. sodium nitrate
опіс	69.	NaHSO ₄	84. sodium thiosulfate
ary l	70.	NaNO ₂	85. barium perchlorate
Bin	71.	Ca(NO ₃) ₂	86. sodium hydrogen sulfide
	72.	Li ₃ PO ₄	87. potassium cyanide
	73.	Cr ₂ (SO ₄) ₃	88. potassium thiocyanate
	74.	Mn(HPO ₄) ₂	89. ammonium phosphate
	75.	Na ₂ B ₄ O ₇	90. magnesium perchlorate
	91.	MgSO ₄ ·7H ₂ O	101. copper(II) sulfate
			pentahydrate
	92.	FeSO₄:5H ₂ O	102. lithium chloride
ates			monohydrate
Hydrates	93.	Na ₂ SO ₃ ·7H ₂ O	103. copper(II) nitrate
			tetrahydrate
	94.	Ni ₃ (PO ₄) ₂ -8H ₂	104. magnesium sulfate
		0	heptahydrate
ł	95.	HClO _{3(aq)}	105. hydrofluoric acid
	95. 96.	HClO _{3(aq)} H ₂ SO _{3(aq)}	105. hydrofluoric acid 106. chloric acid
sp		I	· ·
Acids	<u> </u>	H ₂ SO _{3(aq)}	106. chloric acid 107. nitrous acid 108. hydrobromic acid
Acids	96. 97.	H ₂ SO _{3(aq)} HCN _(aq)	106. chloric acid 107. nitrous acid

Handout 4 - "Naming Ionic Hydrates"

An **ionic hydrate** is a compound that has water associated with it. Water is part of its crystalline structure.

The name of an ionic hydrate can be distinguished from the names of other ionic compounds by the presence of the term **hydrate** with a prefix indicating the number of water molecules.

For example:

The IUPAC formula for calcium chloride dihydrate is CaCl₂·2H₂ O.

The IUPAC formula for calcium magnesium sulfate heptahydrate is MgSO₄·7H₂O.

(Note the raised dot in front of the water molecules.)

In order to convert IUPAC names for ionic hydrates into chemical formulas, you will need to know the prefixes listed below:

•	
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7
octa	8
nona	9
deca	10

Handout 4 - "Naming Ionic Hydrates"

Worksheet

Provide the name or formula for each of the following:

Name:	Formula
copper (II) sulphate pentahydrate	
2.	MgSO₄ • 7 H₂O
potassium carbonate octahydrate	
4.	MgCl ₂ • 6 H ₂ O
5. barium chloride dehydrate	
6.	Cd(NO ₃) ₂ • 4 H ₂ O
7. Lithium bromide trihydrate	
8.	Na ₂ S ₂ O ₃ • 5 H ₂ O
9. cobalt (II) chloride hexahydrate	
10.	AICI ₃ • 6 H ₂ O
11.zinc sulphate nonahydrate	
12.	CaCb • 2 H₂O
13. barium hydroxide monohydrate	
14.	Na ₂ SO ₄ • 10 H ₂ O
15.magnesium silicate pentahydrate	

Handout 5 - "Naming Acids"

For this course, when you are given a chemical formula for a hydrogen compound that has the (aq) state of matter subscript, you name it as an acid.

Rules for naming acids:

1. If the *anion does not contain oxygen*, the acid is named with the prefix *hydro-* and the suffix *-ic* attached to the root name for the element.

Example: HCl (aq) hydrochloric acid

HCN (aq) hydrocyanic acid

H₂S _(aq) hydrosulfuric acid

2. If the *anion contains oxygen*, check the ending if the anion.

If the anion has the -ite ending, the suffix -ous is used.

Example:

 $H_2SO_{3 (aq)}$ contains the sulfite (SO₃ ²⁻) ion and is named sulfurous acid.

If the anion has the *-ate* endind, the suffix *-ic* is used..

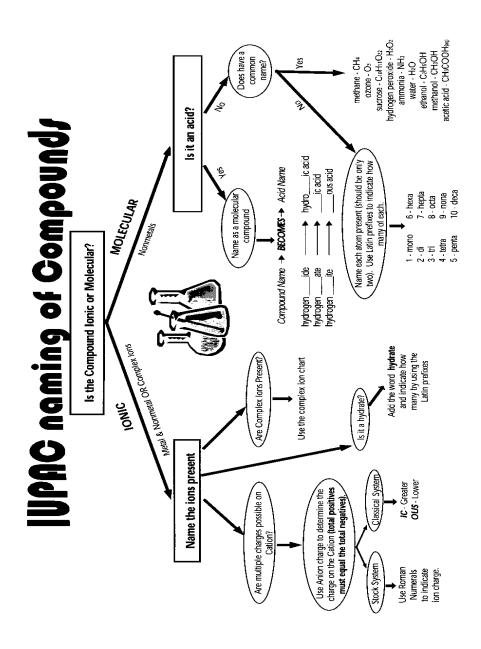
Example:

 $H_2SO_{4 \text{ (aq)}}$ contains the sulfate (SO₄ ²⁻) ion and is named sulfuric acid.

Handout 5 - "Naming Acids"

Worksheet

Rules for naming acids:


Rule #1	hydrogen	ide	becomes hydroic acid
Acid formula	ionic name would be		acid name
ex: HCl _(aq)	hydrogen chloride		hydrochloric acid
1.	hydrogen bromide		
2. HCN _(aq)		_	
3.			hydrofluoric acid
Rule#2	hydrogen_	ate	becomesic acid
Acid formula	ionic name would be		acid name
ex: HClO _{3(aq)}			chloric acid
1.	hydrogen borate		
2. HNO _{3(aq)}			
3.			permanganic acid
Rule #3	hydrogen	ite	becomesous acid
Acid formula	ionic name would be		acid name
ex: HNO _{2(aq)}	hydrogen nitrite		nitrous acid
1.	hydrogen chlorite		
2. HClO _(8q)			
3.			sulfurous acid

NOTE: when naming acids with the root words "sulf" and "phosph", extra syllables are added to make them sound better. Add "ur" to "sulf" and add "or" to "phosph", therefore H₂SO_{4(aq)} is sulf<u>ur</u>ic acid NOT sulfic acid and H₃PO_{4(aq)} is phosph<u>or</u>ic acid NOT phosphic acid

Study Guide Page 36 Chemistry 1102

Complete the following table.

	Formula	Name of Acid
1.	H ₃ BO _{3 (aq)}	
2.		Hydrochloric acid
3.	CH ₃ COOH _(aq)	
4.	H ₂ SO _{4 (aq)}	
5.	H ₂ SO _{3 (aq)}	
6.		Oxalic acid
7.		Phosphoric acid
8.		Stearic acid
9.	H ₂ CO _{3 (aq)}	
10.		Nitric acid
11.	HClO _{4 (aq)}	
12.		Hypochlorous acid
13.	H ₂ S (aq)	
14.		Hydrofluoric acid
15.	HCN _(aq)	
16.		Nitrous acid
17.		Benzoic acid
18.	H ₂ SiO _{3 (aq)}	
19.		Thiosulfur ic acid
20.		Chromic acid

