Adult Basic Education Mathematics

Mathematics 2104B

Rational Expressions, Trigonometric Applications, and Functions
 Study Guide

Prerequisites: Mathematics 1104A, 1104B, 1104C
Mathematics 2104A
Credit Value: 1
Texts: Mathematics 10. Alexander and Kelly; Addison - Wesley, 1998.
Mathematics 12. Alexander and Kelly; Addison - Wesley, 1999.

Required Mathematics Courses
[Degree and Technical Profile/Business-Related College Profile]
Mathematics 1104A
Mathematics 1104B
Mathematics 1104C
Mathematics 2104A
Mathematics 2104B
Mathematics 2104C
Mathematics 3104A
Mathematics 3104B
Mathematics 3104C

Table of Contents

To the Student V
Introduction to Mathematics 2104B V
Resources V
Study Guide vi
Recommended Evaluation viii
Unit 1 - Rational Expressions Page 1
Unit 2 - Trigonometry and Its Application Page 5
Unit 3 - A Functions Toolkit Page 13
Appendix Page 22

To the Student

I. Introduction to Mathematics 2104B

In the first unit, Rational Expressions, you will evaluate and simplify rational expressions, and identify restrictions on values for variables. You will multiply, divide, add and subtract rational expressions which have monomial, binomial or trinomial denominators.

In the second unit, the definitions for the sine and cosine ratios are developed in terms of the coordinates (x, y). This definition is more general than the right-triangle definition developed in Mathematics 1104B (Sections 8.1-8.3, Mathematics 10). You will apply the Sine Law and Cosine Law to solve problems involving unknown sides and angles of triangles.

The final unit covers the concepts of transformations of functions which are revisited throughout this course and all remaining courses in Academic Math. You will study vertical and horizontal translations and stretches of graphs of functions. Graphs which are reflected in the x-axis and y-axis are introduced. Finally, you will examine what happens when the various transformations are combined.

II. Resources

You will require the following:

- Addison Wesley Mathematics 10, Western Canadian edition Textbook
- Addison Wesley Mathematics 12, Western Canadian edition Textbook
- Scientific calculator
- graph paper
- Access to a TI-83 Plus graphing calculator (see your instructor) and/or Graphmatica or Winplot graphing software

Notes concerning the textbook:

Glossary: Knowledge of mathematical terms is essential to understand concepts and correctly interpret questions. Written explanations will be part of the work you submit for evaluation, and appropriate use of vocabulary will be required.

Your text for this course includes a Glossary where definitions for mathematical terms are found. Be sure you understand such definitions and can explain them in your own words. Where appropriate, you should include examples or sketches to support your definitions.

To the Student

Examples: You are instructed to study carefully the Examples in each section and see your instructor if you have any questions. These Examples provide full solutions to problems that can be of great use when answering assigned Exercises.

Notes concerning technology:

It is important that you have a scientific calculator for your individual use. Ensure that the calculator used has the word "scientific" on it as there are calculators designed for calculation in other areas such as business or statistics which would not have the functions needed for study in this area. Scientific calculators are sold everywhere and are fairly inexpensive. You should have access to the manual for any calculator that you use. It is a tool that can greatly assist the study of mathematics but, as with any tool, the more efficient its use, the better the progress.

You will require access to some sort of technology in order to meet some of the outcomes in this course. Since technology has become a significant tool in the study of Mathematics, your textbook encourages you to become proficient in its use by providing you with step-by-step exercises that will teach you about the useful functions of the TI-83 Plus Graphing calculator. See your instructor concerning this. Please note that a graphing calculator is not essential for success in this course but it is useful.

While graphing calculators and graphing software (Graphmatica or Winplot) are useful tools, they cannot provide the same understanding that comes from working paper and pencil exercises.

III. Study Guide

This Study Guide is required at all times. It will guide you through the course and you should take care to complete each unit of study in the order given in this Guide. Often, at the beginning of each unit, you will be instructed to see your instructor for Prerequisites exercises. Please do not skip this step! It should take only a few minutes for you and your instructor to discover what, if any, prerequisite skills need review.

To the Student

To be successful, you should read the References and Notes first and then, when indicated by the $\square \square$ symbols, complete the Work to Submit problems. Many times you will be directed to see your instructor, and this is vital, especially in a Mathematics course. If you have only a hazy idea about what you just completed, nothing will be gained by continuing on to the next set of problems.

Reading for this Unit: In this box, you will find the name of the text, and the chapters, sections and pages used to cover the material for this unit. As a preliminary step, skim the referenced section, looking at the name of the section, and noting each category. Once you have completed this overview, you are ready to begin.

References and Notes

This left hand column guides you through the material to read from the text.

It will also refer to specific Examples found in each section. You are directed to study these Examples carefully and see your instructor if you have any questions. The Examples are important in that they not only explain and demonstrate a concept, but also provide techniques or strategies that can be used in the assigned questions.

The symbols direct you to the column on the right which contains the work to complete and submit to your instructor. You will be evaluated on this material.

Since the answers to Discussing the Ideas and Communicating the Ideas are not found in the back of the student text, you must have these sections corrected by your instructor before going on to the next question.

This column will also contain general Notes which are intended to give extra information and are not usually specific to any one question.

Work to Submit

There are four basic categories included in this column that correspond to the same categories in the sections of the text. They are Investigate, Discussing the Ideas, Exercises, and Communicating the Ideas.

Investigate: This section looks at the thinking behind new concepts. The answers to its questions are found in the back of the text.

Discussing the Ideas: This section requires you to write a response which clarifies and demonstrates your understanding of the concepts introduced. The answers to these questions are not in the student text and will be provided when you see your instructor.

Exercises: This section helps to reinforce your understanding of the concepts introduced. There are three levels of Exercises:
A: direct application of concepts introduced
B: multi-step problem solving and some real-life situations
C: problems of a more challenging nature The answers to the Exercises questions are found in the back of the text.

Communicating the Ideas: This section helps confirm your understanding of the lesson of the section. If you can write a response, and explain it clearly to someone else, this means that you have understood the topic. The answers to these questions are not in the student text and will be provided when you see your instructor

This column will also contain Notes which give information about specific questions.

To the Student

IV. Recommended Evaluation

Written Notes	10%
Assignments	10%
Test(s)	30%
Final Exam (entire course)	$\frac{50 \%}{100 \%}$

The overall pass mark for the course is 50%.

Unit 1 - Rational Expressions

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit: Mathematics 10
Chapter 7: \quad Section 7.1: pages 400-404
Section 7.2: pages 405-410
Section 7.3: pages 411-415
Section 7.4: pages 418-423
Section 7.5: pages 426-430

References and Notes
 Read Section 7.1.
 Study Examples 1 and 2.
 Make sure that you understand how the nonpermissible values were determined in each problem in Example 2.
 Answer the following questions. -

Read Section 7.2.
Answer the following questions. -

Carefully read and work the problems in Examples 1 and 2 before completing Discussing the Ideas.

Work to Submit

1.1 Define the term rational expression. Give an example.
1.2 When is a rational expression not defined?
1.3 Discussing the Ideas, page 402
1.4 Exercises, pages 402-404

Answer questions 1-7 and 11-16.
1.5 Investigate, page 405

Answer questions 1-5.
1.6 Discussing the Ideas, page 407

Answer questions 1-5.

Unit 1 - Rational Expressions

References and Notes	Work to Submit 1.7 Exercises, pages 407-409 Answer questions 1-4. (See note below on question 4.) Answer questions 7, 8, 10, 11 and 12.
	Question 4: Make sure that you identify any nonpermissible values before you eliminate common factors.
Read Section 7.3.	
Answer the following questions.	1.8 Investigate, page 411 Answer questions 1-4.
Carefully read and work the problems in Examples 1, 2 and 3 before completing Discussing the Ideas.	1.9 Discussing the Ideas, page 413 Answer questions 1-3.
	1.10 Exercises, pages 413-415 Answer questions 1-5. (See note below on questions 3 and 5.)
Notice, in Example 3b, that if the numerator or the denominator of the divisor is 0 , the result will be undefined.	Answer questions 7, 10, 11, 12 and 15.
	Question 3 and 5: Don't forget to look for nonpermissible values in the numerator in the divisor.
	For example: 3a) $\quad \frac{5}{8} \div \frac{3 b}{4 a}$ can be written $\frac{5 / 8}{3 b / 4 a}$.
	Therefore, the denominator becomes 0 when $b=0$ and becomes undefined when $a=0$.

Unit 1 - Rational Expressions

References and Notes	Work to Submit	
Read Section 7.4.		
Answer the following questions.		Investigate, page 418 Answer questions 1-4.
Carefully study Examples 1, 2 and 3 and work through the calculations.		
When studying this section you should keep the following two basic concepts in mind:		
1) Any number or expression can be multiplied by 1 without changing its value.		
2) 1 can be written in different ways.		
Note that to simplify a complex fraction, the numerator and denominator should be multiplied by the common denominator of the individual fractions.		
Answer the following questions.		Exercises, pages 421-423 Answer questions 1-7, 11-14 and 18-20.

Unit 1 - Rational Expressions

References and Notes	Work to Submit
Read Section 7.5.	
Study Examples 1, 2, and 3. Work through each calculation on your own.	
Answer the following questions.	1.13 Exercises, pages 428-430 Answer questions 1 - 4, 6, 7, 13, 14, 16 and 17.

Unit 2 －Trigonometry and Its Application

To fulfill the objectives of this unit，students should complete the following：
Reading for this unit：Appendix：Mathematics 2104B Study Guide：pages 23 and 24 Mathematics 10
Chapter 8：\quad Section 8．5：pages 490－497
Section 8．6：pages 499－504
Section 8．7：pages 505－512
Section 8．8：pages 513－520
References and Notes
Read Appendix：Area of a
Triangle．
Answer the following questions．
D⿴囗口ا

Read Linking Ideas，page 289.
Read Section 8．5．

This section develops the definitions for the sine and cosine ratio in terms of the coordinates（ x, y ）．
Answer the following questions． －\square^{\square}

After completing Investigate， you should know that，given a unit circle， $\cos A=x$ and $\sin A=y$ ．

Work to Submit

2．1 Find the area of $\triangle \mathrm{ABC}$ given $\mathrm{AB}=40 \mathrm{~cm}$ ， $B C=65 \mathrm{~cm}$ and $\angle \mathrm{B}=36^{\circ}$ ．

2．2 Find the area of $\triangle \mathrm{PQR}$ given $\angle \mathrm{P}=18.4^{\circ}$ ， $\mathrm{QP}=5.4 \mathrm{~m}$ and $\mathrm{PR}=9.3 \mathrm{~m}$ ．

2．3 See your instructor for Prerequisites exercises before beginning this section．

2．4 Investigate，pages 490－492
Answer questions 1－10．

Unit 2 - Trigonometry and Its Application

References and Notes	Work to Submit
Study Visualizing and work through the solutions given for Examples 1, 2 and 3.	
Answer the following questions. Qee your instructor for correction	2.5
Siscussing the Ideas, page 496 of Discussing the Ideas before moving on to the Exercises.	Answer questions 1-4.
Read Section 8.6.	
This section emphasizes visualizing and sketching what is given in a problem. This is used to plan a strategy which applies trigonometric ratios to solve triangles that are not right- angled. The examples and exercises given will help develop the Sine Law and Cosine Law which are introduced in the next two sections.	2.6
Answer questions 1-9.	

Unit 2 - Trigonometry and Its Application

References and Notes	Work to Submit
Study Examples 1 and 2. You should work through all of the calculations given in the solutions.	
Study Example 3. Again, work through the given solution.	
In Examples 1 and 2, two angles and one side were given; whereas in Example 3, two sides and the angle between them are given.	
Answer the following questions.	2.9 Discussing the Ideas, page 503 Answer questions 1-5.
See your instructor for correction of Discussing the Ideas before moving on to the Exercises.	2.10 Exercises, pages 503 and 504 Answer questions 1, 2, 4, 5 and 6.

Unit 2 - Trigonometry and Its Application

References and Notes	Work to Submit	
Read Section 8.7.	2.11	See your instructor for Prerequisites exercises for review.
On page 505, an example from Section 8.6 is examined, and then a general rule, the Sine Law, is formulated.		
Carefully study and work through Example 1 and Example 2.		
There are only two situations in which the Sine Law applies. You must know one angle and its opposite side. You must have one other piece of information, and there are two possibilities:		
1) if you know a second angle, you can solve for the side opposite it.		
2) if you know a second side, you can solve for the angle opposite it.		
Answer the following questions.		Exercises, pages 509-512 Answer questions 1-7.

Unit 2 - Trigonometry and Its Application

References and Notes	Work to Submit
The case when you are given two sides and a non-included angle, is called the ambiguous case. When solving the ambiguous case, you will get an equation of the form sin $A=k$, where k is a positive number. This means that angle A could be between 0° and 90°, or it could be between 90° and 180°. Whether both angles are possible in a given triangle can only be determined by considering the values given and checking both possibilities to see that they both make sense. To give an example: find sin 30°	
and sin 150° on your calculator.	
You found that sin $30^{\circ}=.5$ and	
sin $150^{\circ}=.5$.	
Now, if you were given	
sin $A=.5$, there are $t w o$ possible	
values for angle $A, 30^{\circ}$ and	
150°, both less than 180°;	
hence, the ambiguous case.	

Unit 2 - Trigonometry and Its Application

References and Notes	Work to Submit	
Answer the following questions.	2.13	Given triangle $\mathrm{ABC}, \mathrm{AB}=38, \mathrm{AC}=49$ and $\angle C=41^{\circ}$. Draw a sketch. Find the measure of $\angle B$. Check whether both measures are possible in this triangle.
		Given triangle $\mathrm{ABC}, \mathrm{AC}=2.9, \mathrm{CB}=3.9$ and $\angle A=38^{\circ}$. Draw a sketch. Find the measure of $\angle B$. Again, check whether both measures make sense this triangle.
	2.15	Exercises, page 512 Answer question 20.
Read Section 8.8.		
A general rule, called the Cosine Law, is developed by looking at the steps in the solution of Example 3 on page 501.		
Carefully study and work through the solutions given for Examples 1 and 2.		
when a) you know the length of two sides and the measure of the included angle or b) when you know the lengths of all three sides.	2.16	See your instructor for Prerequisites problems before beginning this section.

Unit 2 - Trigonometry and Its Application

References and Notes	Work to Submit Answer the following questions. See your instructor to have Discussing the Ideas corrected before completing Exercises.
Discussing the Ideas, page 517 Answer questions 1-4.	
2.18Exercises, pages 517-520 Answer questions 1-3, 5-10, 12, 13, 20,21 and 22. Note: You should draw a sketch for each of these problems.	

Unit 3 - A Functions Toolkit

To fulfill the objectives of this unit, students should complete the following:
Reading for this unit: Mathematics 12
Chapter 1: \quad Section 1.1: pages 2-12
Section 1.2: pages 16-22
Section 1.3: pages 25-33
Section 1.4: pages 35-43
Section 1.5: pages 45-52

References and Notes	Work to Submit
Read Section 1.1.	
Draw the graphs in Examples 1, 2 and 3 on pages 4 and 5 . Use grid paper if you do not have access to a TI-83 or computer program such as Graphmatica.	
Study Examples 1 and 2 on pages 8 and 9 . Sketch the graphs.	
Answer the following questions.	3.1 Discussing the Ideas, page 10 Answer questions 1, 2 and 5.
	3.2 Exercises, pages 10-12 Answer questions 1, 4, 5, 7 and 8 (See notes below on questions 1 and 5.)
	Question 1: In 1d), recall that when the object hits the ground, the height, h, is 0 . Now you have to solve the equation for time, t.
	Question 5: If you are using a TI-83, instead of entering every function, you can use the set bracket and all four functions will be graphed at the same time. Try the following: $Y 1=\sqrt{\left(\{16,9,4,1\}-x^{2}\right)}$.

Unit 3 - A Functions Toolkit

References and Notes

Read Section 1.2.
Use a TI - 83 graphing calculator or graphing software to complete Investigate.

Answer the following questions. -

After completing Investigate, you should conclude that when comparing the graph of $y=f(x-k)$ with $y=f(x)$, it is translated horizontally by k units.

Similarity, when the graph of $y=f(x)$ is compared with $y-k=f(x)$, it is translated vertically by k units.

Carefully read page 18 and become very familiar with Vertical Translation Tool and the Horizontal Translation Tool in the purple box on page 19.

Study Examples 1 and 2. Reproduce the graphs of these functions on your graphing calculator or computer. You will notice in Example 1a) that the "translation tools" are used to graph the absolute value function. First the horizontal tool is used and then the vertical tool is applied.

Work to Submit

3.3 Investigate, pages 16 and 17

Answer questions 1-10.

Unit 3-A Functions Toolkit

References and Notes

Answer the following questions.回

When sketching several graphs on a single grid, be sure to label each one.

Read Section 1.3, Reflecting Graphs of Functions.

This section deals with three different reflections. For this course, however, we only are interested in one type of reflection; reflection in the x axis. This reflection occurs when y is replaced with $-y$ in the equation $y=f(x)$.

In other words, the graphs of the functions $y=f(x)$ and $-y=f(x)$ are reflections in the x-axis (vertical reflections).

Work to Submit

3.4 Exercises, pages 20-24

Answer questions 1, 2 and 3.
(See note below on questions 1 - 3.)
Answer questions 4, 5, 6a), 6b), 9, 11, 12, 13 and 14.
(See note below on question 9.)
Questions 1 - 3: If necessary, use the graph of the function $y=x^{2}$ to help you describe what happens to the function.

Question 9: Sketch the graph of $y=\sqrt{x}$ first and then use the vertical and horizontal translation tools.

Unit 3 - A Functions Toolkit

References and Notes

As you work through this section we will only be looking at the material that deals with reflections in the x-axis. If you wish, you can read the whole section, but you will not be responsible for the other two types of reflections.

Answer the following questions.回

On page 27, you will see a graph of the function $y=\sqrt{x}$. If y is replaced with $-y$, the graph of $-y=\sqrt{x}$ or $y=-\sqrt{x}$ is a reflection of the graph $y=\sqrt{x}$ in the x-axis.

If you look at P and R on the graph, you will notice that the y - coordinate of R (which is on the graph of $-y=\sqrt{x}$) is the opposite of the y-coordinate of P (on the graph of $y=\sqrt{x}$).

On the top of page 28, read the information on \boldsymbol{x} - Axis,
Reflection Tool in the purple box.

Work to Submit

3.5 Investigate, pages 25 and 26

Answer questions 5, 7 and 8 in Comparing the graphs of $y=f(x)$ and $-y=f(x)$.

Unit 3 - A Functions Toolkit

References and Notes
Study Example 2 a, b, c and d.
(In c, particularly note the graph
of $y=-f(x)$.)
Answer the following questions.
D⿴

Read Section 1.4, Stretching
Graphs of Functions.
This section deals with horizontal and vertical stretches.

That is, you will be comparing the graphs of
$y=f(x)$ with $y=f(k x)$ and
$y=f(x)$ with $k y=f(x)$.
Answer the following questions. -

Work to Submit

3.6 Exercises, pages 31-33

Answer questions 1b), 2a), 4b), 5 and 11.
(See note below on question 11.)
Question 11: In a) and b), sketch only the first and third equation [or, sketch $y=f(x)$ and $y=-f(x)$].

3.7 Investigate, pages 35 and 36

Use a graphing calculator.
Comparing the graphs of $y=f(x)$ and $y=f(k x)$.
Answer questions 1, 2, 3, 4 and 5.
(See notes below on these questions)
Comparing the graphs of $y=f(x)$ and $k y=f(x)$. Answer questions 6, 7, 8 , 9 and 10.
(See notes below on these questions.)
Questions 1-5: These questions introduce horizontal compressions and expansions.

Questions 6-10: These questions introduce vertical compressions and expansions.

Unit 3 －A Functions Toolkit

References and Notes	Work to Submit
Look at the graph on the top right of page 37．You will notice that the graph of $2 y=x^{2}$ is compressed vertically relative to the graph of $y=x^{2}$ ． Now look at the graph on the bottom of page 37．Here，you will see that replacing y with $2 y$ compresses the graph vertically； replacing y with $1 / 2 y$ expands it vertically． In the purple box on page 38， carefully read Vertical Stretching Tool and Horizontal Stretching Tool．	
Answer the following questions． ⿴囗口	3.8
Exercises，pages 41 and 42	
Answer questions $1-4,6-8,10,11$ and $14-16$.	

Unit 3-A Functions Toolkit

Unit 3-A Functions Toolkit

References and Notes	Work to Submit
Carefully study page 47 and Examples 1 and 2. Make sure that you work through and understand each step in the solutions.	
Answer the following questions.	3.10 Exercises, pages 51 and 52 Answer questions 1-6. (See note below on question 6.) Answer questions 9 and 10. (See note below on these questions.)
	Question 6: You can simplify the equation $y=\sqrt{4 x+8}$ to $y=2 \sqrt{x+2}$
	Questions 9 and 10: Use the function $f(x)=\sqrt{4-(x-2)^{2}}$ when completing these questions. Question 10 reinforces the idea that the order in which expansions or compressions and translations are performed does make a difference.

Appendix

Area of a Triangle

The formula to find the area, A, of a triangle is $1 / 2 b h$ where b is the base and h is the height which is perpendicular to the base.

Examples:

1.

$A=1 / 2 b h$
$A=1 / 2(10)(8)$
$A=40 \mathrm{~m}^{2}$
2.

$A=1 / 2 b h$
$\mathrm{A}=1 / 2(20)(9.5)$
$\mathrm{A}=95 \mathrm{~cm}^{2}$
3. Given the following triangle, how do you find the area of triangle PQR?

We know that $A=1 / 2 b h$
Since $\sin R=\frac{h}{q}$, solve for h and you will get $h=(\sin R)(q)$.
The base, b, is called p in this example.
Substitute in the formula: $A=1 / 2$ bh and get
$A=1 / 2(p)(\sin R)(q)=1 / 2(p)(q)(\sin R)$
If you are given any two sides and the included angle, you can use this formula to find the area. Given $\triangle \mathrm{ABC}$, the area can be written as:

- \quad Area $=1 / 2 b c \sin A$
- \quad Area $=1 / 2 a c \sin B$
- \quad Area $=1 / 2 a b \sin C$

Example:

$34 m$

A

Area $=1 / 2 a b \sin C$
Area $=1 / 2(34)(22)\left(\sin 36^{\circ}\right)$
Area $=219.83 \mathrm{~m}^{2}$

