Adult Basic Education Science

Physics 1104

Motion

Study Guide

Credit Value: 1

Text: \quad Science 10. Ritter, Plumb et al.; Nelson, 2001

Physics Concentration

Physics 1104
Physics 2104A
Physics 2104B
Physics 2104C
Physics 3104A
Physics 3104B
Physics 3104C

Table of Contents

To the Student v
Introduction to Physics 1104 v
Use of Science Study Guides v
Recommended Evaluation vi
Unit 1 - Investigating Speed Page 1
Unit 2 - Investigating Acceleration Page 5
Unit 3 - Vectors Page 10
Unit 4 - Displacement, Velocity and Acceleration Page 12
Text: Science 10, Nelson
Other Resources: Scientific Calculator
Graph or Quad Paper

To the Student

I. Introduction to Physics 1104

The purpose of this course is to introduce you to the study of motion and investigate the principles of kinematics which are fundamental to later study of physics. Principles introduced in this unit will be the basis for further study in Physics at the 2000 and 3000 level. You will use skills from mathematics to assist you in your study of motion and build on the skills of graph making you have learned in your mathematics courses. Much of this unit involves calculations. Know how to use your calculator correctly. Be methodical in solving problems. Include units in all your answers and be aware of units in setting up your problems for solving.

In addition to your study guide and text, you will need a calculator and graph paper. As you work through each page of your study guide, you should ensure that your answers to the problems are correct, before proceeding to the next page. You will need to check with your instructor for answers as there are no solutions at the end of the chapter.

You will have two core labs for this course. Let your instructor know in advance that you are getting close to needing to do these labs. Each lab will require a written lab report, which will be evaluated as part of your course mark. In addition there are several other activities or written reports that you will be asked to submit for evaluation

II. Use of Science Study Guides

Before beginning this course, ensure you have the text and any other resources needed (see the information in the Introduction to this course for specifics).

As you work through the Study Guide, you will see that it is divided according to the Units listed in the Table of Contents. When you open a unit it will have the following components:

To the Student

Reading for this Unit:

Here you will find the chapters, sections and pages of the text you will use to cover the material for this unit. Skim the sections of the textbook, look at the titles of the sections, scan the figures and read any material in the margins. Once you have this overview of the unit, you are ready to begin. Do not be intimidated by the content. You will work through the text, section by section, gaining knowledge and understanding of the material as you go.

III. Recommended Evaluation

Written Notes	10%
Labs/Assignments	20%
Test(s)	20%
Final Exam (entire course)	$\underline{50 \%}$

The overall pass mark for the course is $\mathbf{5 0 \%}$.

Unit 1 - Investigating Speed

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit: Science 10

Chapter 9: Introduction: pages 338-348
Section 9.5: pages 354-359
Section 9.7: pages 362-365
Section 9.8: pages 366-368
Section 9.10: pages 372-373

Unit 1 - Investigating Speed

References and Notes

Go to page 349 ■
Before proceeding, check your answers to the assigned questions

Read pages 354 to 355 ■
You are introduced here to one of the many formulas in this course. The Greek letter Δ, read delta is used a lot. When you see it say the words "change in" that is Δt reads change in time and refers to the difference in the second time measurement $\left(t_{2}\right)$ and the first time measurement $\left(t_{l}\right)$.

Notice that your text uses italics for symbols that represent quantities and that these are also found in equations.

As you review the work to submit, note that there is a problem to complete after you study a sample problem. Do the work in that order, so you encounter similar problems to work on that you have seen a solution to.

Study Sample Problem 1 on page 355 - \square

Study Sample Problem 2 on page 356 - \square

Study Sample Problem 3 on page 356 -

Study Sample Problem 4 on page 357 -

Work to Submit

3.0 Complete Questions 2 to 9.
3.0 Define each of the following terms:
(a) average speed
(b) instantaneous speed
(c) uniform motion
3.0 Complete Problems 3(a) and 8(b) on page 358
3.0 Complete Problems 5, 6 and 7(a) on page 358.
3.0 Complete Problems 8 (a) and (b) on page 358.
3.0 Complete Problem 9 on page 358 .

Unit 1 - Investigating Speed

References and Notes	Work to Submit 3.0 Complete the remaining Problems 10 and 11 on page 358 .
Read pages 362 to 365 回	3.0 What does the slope of a distance-time graph represent?
This section of the course involves using graphs to understand relationships and solve problems. The graphs in this course always involve time as an independent variable (on the \boldsymbol{x} axis). An independent variable is a variable chosen by the investigator who is trying to see a relationship between that variable (time) and another variable that is called the dependent variable (on the y axis).	
The relationship we are studying in this unit is how distance travelled by an object depends on time i.e the distance an object has moved in a given time depends of how long it has been moving.	
Page 699 reviews how to construct and use graphs. If you have not done any graphing recently, it is a good idea to study the graphing skills section carefully.	
Recall that the equation for a straight line is $y=m x+b$ where m is the slope of the line and b is the y intercept.	

Unit 1 - Investigating Speed

References and Notes	Work to Submit
Also recall that the slope can be found using any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ and the formula $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	
When we plot time (t) on the x axis and distance (d) on the y axis, our slope becomes $\frac{\Delta d}{\Delta t}$ which is speed (v).	
Go to page 365 回	3.0 Complete Problems 5 and 6.
You will find it easier to answer the next questions if you complete problems 5 and 6 first.	
Now return to the start of the questions on page 365	3.0 Complete Problems 1 to 4.
	Assignment:
Read the Case Study on pages 366 to 368 回 This is an interesting application of monitoring speed on highways.	3.0 Submit to your instructor the Case Study. Include the Questions (a) to (i) found throughout the readings and Questions 1 to 6 of Understanding Concepts. This will be part of your final grade.
Read Investigation 9.10 on page 372 to 373. This is a Core lab for this course. Let your instructor know you are ready to do this lab. $\square \square$	Laboratory: 3.0 Submit your lab report to your instructor.
Guidelines for your report are found on page 691 of your text.	

Unit 2 - Investigating Acceleration
To fulfill the objectives of this unit, students should complete the following:
Reading for this unit: Science 10
Chapter 10:
Section 10.3 pages 384-389
Section 10.4: pages 390-392
Section 10.6: pages 396-397
Section 10.7: pages 398-401
Section 10.8: pages 402-403

References and Notes	Work to Submit Writing:
Read pages 384 to 385 to Sample Problem 1 Note that acceleration can be a positive or negative number. If an object is slowing down, acceleration is negative.	3.0 Define each of the following terms and including an example with your definition: (a) acceleration (b) constant acceleration (c) average acceleration
Review Sample Problem 1 on page 385 and Problem 3 on page 386 回	3.0 What are the units for acceleration and how are they different from speed?
Review Sample Problem 2 on page 386	3.0 Answer Questions 4 to 8 (a) and 9 on page 388.
Review Sample Problem 4 and 5 on page 387	3.0 Answer Question 8 (b) on page 388.
Review Sample Problem 6 on page 388	3.0 Answer Questions 10 to 13 on page 389.
	3.0 Complete Question 14 on page 389.
	3.0 Complete Question 15 on page 389.

Unit 2 - Investigating Acceleration

Unit 2 - Investigating Acceleration

References and Notes	Work to Submit
	Writing:
Read pages 398 to 401: Review Figures 1 through $3 \square$	
	3.0 Answer the following:
	(a) What type of distance-time graph do you get if the speed of an object is constant?
	(b) What type of speed-time graph do you get if the speed of an object is constant?
	(c) What generalization can you make about the instantaneous speed of an object if the object is moving at constant speed?
Review Figures 4 and 5 on page 399	3.0 Answer the following:
	(a) What type of distance-time graph do you get if the speed of an object is constantly increasing?
	(b) What type of speed-time graph do you get if the speed of an object is constantly increasing? Is the slope positive or negative?
	(c) How do you determine the instantaneous speed for an object whose speed is constantly changing?
Review Figure 6 on page 400 回	3.0 How do you determine the average speed for an object whose speed is changing?
Go to pages 400 to 401 D	3.0 Complete Questions 1 to 9.

Unit 2 - Investigating Acceleration

References and Notes
Read pages 402 to 403 回
This section is presented here to
provide you with an understanding for
the Investigation 10.9. This
Investigation is not a Core Lab and
your instructor may not choose to
complete this. You should however
work through the concepts as they will
provide you with a better
understanding of the material covered
in Section 10.7.
The data used in this section comes
from an air hockey table. The air
hockey table provides a almost
frictionless surface. (The role of
friction is studied in Level 2 and 3
Physics, but has to do with resistance
to movement.) In this case the air
hockey table is not horizontal but on
its side (not the way you would expect
it to see it usually). Gravity is helping
the puck to constantly accelerate as it
moves down the table. (Acceleration
due to gravity is also studied in Level
2 and 3 Physics.)

Work to Submit

3.0 What question is being asked here?

Unit 2 - Investigating Acceleration

Unit 3 - Vectors

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit:	Science 10 Chapter 11:	Section 11.1: pages 414-417 Section 11.6: pages 430-431 Section 11.7: pages 432-436

References and Notes	Work to Submit
The concept of vector quantities used in the next two chapters is a foreign concept to most of us. It is one that is common in physics. In physics we will often have to have some reference point to discuss what is happening	Writing:
Read pages 414 to 417回	3.0 Write the meaning of the following terms: (a) Reference point (b) Position (c) Vector quantity (d) Scalar quantity (e) Displacement (f) Vector
Using vectors is like adding and subtracting sign numbers. If you are comfortable with doing that vectors won't be too difficult. If you are not	
to solve the problems.	3.0 How is a scalar quantity different from a vector quantity (use an example)?
	3.0 List the three rules used when drawing a single vector.

Unit 3 - Vectors

References and Notes	Work to Submit
Go to pages 416 to 417 $\square^{\text {D }}$	3.0 Complete Questions 1 to 9 and 13.
Read pages 430 to 431. \square^{\square}	3.0 Complete Questions 1 to 4 of "Understanding the Issue".
Read pages 432 to 433. \square^{\square}	3.0 Define each of the following terms: (a) Velocity
It is very easy to get speed and velocity mixed up. Remember velocity if a vector quantity and so has a direction included in it.	(b) Constant velocity (c) Average velocity
When solving problems involving velocity, remember it is change in displacement and that displacement is also a vector quantity, but time is not a vector quantity.	
Read "Average Velocity" on page 433	3.0 Define average velocity.
Study Sample Problem 1 and 2 on pages 433 to 434. ${ }^{\square}$	3.0 Complete Questions 3 to 5 on page 436.
Study Sample Problem 3 on page 434	3.0 Complete Questions 6 (a) to (e); 7(a), (b), (e) and (f) on page 436.
Carefully note the example illustrating the difference between average speed and average velocity found on page 435	
Complete Chapter Review Problems on pages 442 to 443	3.0 Questions 4 to 9,10 (a), 11(c), 15(b) to (c), 17(b), (c)

Unit 4 - Displacement, Velocity and Acceleration

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit:	Science 10 Chapter 12:	Section 12.1: pages 446-451
		Section 12.2: pages 452-457
		Section 12.3: pages 458-459
		Section 12.4: pages 460-461
		Section 12.5: pages 462-465
		Section 12.6: pages 466-469

References and Notes	Work to Submit	
Read pages 446 to 448 to Sample	Writing:	
4, 5 and 6 \square	4.1	Complete Question 2 on page 450.
It is important to see the similarities and differences between speed and velocity. Velocity is a vector quantity		How can velocity be obtained from a position-time graph?
i.e. has a direction. Also it is possible for velocity to have a negative value,	4.3	What does it mean when the slope of a position-time graph is negative?
when the slope of the line is negative. Remember motion is always with reference to another object. So a negative slope above the x-axis indicates motion toward a reference point. Below the x-axis it is away from a reference point. [Figure 7 illustrates this point - study it carefully]		
Study Sample Problem 1 on page 448	4.4	Answer Questions 3 to 5 on page 450.
		How is instantaneous velocity determined from a position-time graph?

Unit 4 - Displacement, Velocity and Acceleration

Unit 4 - Displacement, Velocity and Acceleration
References and Notes
Let your instructor know you are
ready to complete Investigation 12.4
on page 460 D
After completing this lab, submit to
your instructor a lab report. Use
page691 of your text to help you write
up your report.
Read pages 462 to 463 and study
Sample Problems 1 and 2 (carefully
note the signs)
The calculations in this section are
very similar to those in Section 10.3 .
You just need to remember that
acceleration and velocity involve the
addition of a direction. The direction
is indicated by a positive or negative
sign.
Make sure to watch your units as units
for acceleration can get complicated.
Use Table 1 on page 465 to assist you
in assigning signs to velocity and
acceleration values for solving
problems.
When solving problems make sure you
start each by writing down your
givens, what you are trying to solve
for and then your formulas and
rearrange your formula to solve for
your unknown.

Work to Submit

Laboratory:

4.13 Submit a written lab report. Include answers to Understanding Concepts, Questions 1, 2 and 4.

Writing:

4.14 Complete Problems 3 and 4 on page 465.

Unit 4 - Displacement, Velocity and Acceleration

References and Notes	Work to Submit	
Study Sample Problem 3 and Figure 2 as well as Sample Problem 4 on pages 463 to 464 D	4.15	Complete Questions 5 to 8 on page 465 .
Carefully study the information on page 466 and Figures 1(a) through 1(d). Now answer the questions	4.16	How can we use position-time graphs to find velocity?
The area between the line and the x axis will provide the displacement on velocity-time graph. Remember the area of a rectangle is given by $A=l x$ w and that of a triangle is $A=1 / 2 b h$	4.17	How can we use a graph of velocity-time to find displacement?
It is very important to remember that the problems you are solving in this section will involve constant acceleration. In the case of constant acceleration, the average velocity will		
be given by $\frac{\vec{v}_{1}+\vec{v}_{2}}{2}=\vec{v}_{a v}$ and just as you could solve for distance by rearranging the formula $v=d / \Delta t$ or $d=v \Delta t$, displacement can be determined from		
$\Delta d=\left(\frac{\overrightarrow{v_{1}}+\overrightarrow{v_{2}}}{2}\right) \Delta t$		
Carefully study Figures 3 and 4, then Sample Problem 1 and 2. Note that the values found are vectors	4.18	Answer Question 2 on page 472.
Note that the values found are vectors (i.e have a direction)		

Unit 4 - Displacement, Velocity and Acceleration

References and Notes	
It is very important to remember that these are vectors and you will need to assign positive or negative signs to the values i.e if one velocity is south and the other is north, then the velocity of one will be positive and the other negative.	Work to Submit
While you should be able to construct and use position-time and velocity- time graphs, you will not be expected to use or derive the equation: $\vec{d}=\vec{v}_{1} \Delta t+\frac{1}{2} \vec{a}(\Delta t)^{2}$	
$\Delta{ }^{2}$	
Solve for displacement using the areas $\square \square$	4.19
Complete Question 4 on page 472.	
Try this problem $\square \square$ Break it into two pieces and then add the total areas	4.21

Unit 4 - Displacement, Velocity and Acceleration

References and Notes	Work to Submit	
Prepare for final test by completing the following \square	4.22	Chapter 12: Review on pages 486 to 487. Questions 1 to 12.
As you begin the review for your final evaluation, make sure you understand what each of the following formulas represent: $v_{a v}=\Delta d / \Delta t \text {, slope }=\text { rise } / r u n$	4.23	Unit 3 Review on pages 490 to 491. Questions 1 to 9. Questions 14 to 15 . Questions 17 to 20
$a_{a v}=\Delta v / \Delta t$		
Remember the area of a rectangle is given by $A=l \times w$ and that of a triangle is $A=(1 / 2) b h$.		
$\frac{v_{1}+v_{2}}{2}=v_{a v} \quad \text { and } \quad \frac{\overrightarrow{v_{1}}+\overrightarrow{v_{2}}}{2}=\vec{v}_{a v}$		
$\Delta d=\left(\frac{\overrightarrow{v_{1}}+\overrightarrow{v_{2}}}{2}\right) \Delta t$		

