## Adult Basic Education Science

## Physics 3104A

## Force, Motion and Energy Study Guide

Prerequisite: Physics 2104B or Physics 2204
Credit Value: 1
Text: Physics: Concepts and Connections. Irwin, 2002

## Physics Concentration

Physics 1104
Physics 2104A
Physics 2104B
Physics 2104C
Physics 3104A
Physics 3104B
Physics 3104C

## Table of Contents

To the Student ..... v
Introduction to Physics 3104A ..... v
Use of Science Study Guides ..... v
Recommended Evaluation ..... vi
Unit 1 - Motion in Two Dimensions ..... Page 1
Unit 2 - Applications of Newton's Laws ..... Page 3
Unit 3 - Applications of Newton's Laws II ..... Page 5
Unit 4 - Introduction to Statics ..... Page 7
Appendix A ..... Page 13

## To the Student

## I. Introduction to Physics 3104A

This course will involve further study of motion. In Physics 2104A and Physics 2104B, you studied kinematics and were introduced to dynamics. Dynamics will be studied further in this course with more advanced applications of Newton's Laws and more advanced analysis of forces. The study of statics, which is the physics of keeping things still, will be covered at the end of the course.

Like all previous courses, you will need a scientific calculator. You will also need a good understanding of trigonometry. In this course you will be need to find components of vectors to solve problems. It is strongly recommended that a course in trigonometry be completed before you start this course.

## II. Use of Science Study Guides

Before beginning this course, ensure you have the text and any other resources needed (see the information in the Introduction to this course for specifics).

As you work through the Study Guide, you will see that it is divided according to the Units listed in the Table of Contents. When you open a unit it will have the following components:

## To the Student

## Reading for this Unit:

Here you will find the chapters, sections and pages of the text you will use to cover the material for this unit. Skim the sections of the textbook, look at the titles of the sections, scan the figures and read any material in the margins. Once you have this overview of the unit, you are ready to begin. Do not be intimidated by the content. You will work through the text, section by section, gaining knowledge and understanding of the material as you go.
References and Notes
This left hand column guides you through the
material to read from the text. Read any
highlighted notes that follow the reading
instructions. The symbols $\square$ direct you to
the questions that you should complete when
finished a reading assignment..
\(\left.\left.$$
\begin{array}{|ll}\text { Work to Submit } & \text { You come across three (3) headings in this right hand column. } \\
\text { Writing: } & \begin{array}{l}\text { This section comprises your notes for the unit. } \\
\\
\text { Here you will find either written questions or } \\
\text { references to specific questions or problems } \\
\text { from your text. You may want to write out } \\
\text { each question followed by the answer. This } \\
\text { material should be checked by your instructor } \\
\text { before moving on to the next unit. } \\
\text { Mathematical problems should have their }\end{array} \\
\text { Lolutions checked as you go. }\end{array}
$$\right\} \begin{array}{l}This section indicates if there is a Lab that <br>
should be completed for the unit. Let the <br>
instructor know in advance that you will be <br>
ready for the lab. A lab report should be <br>
submitted for each Lab. Your instructor will <br>
provide guidelines as to how s/he wants the <br>

report written.\end{array}\right\}\)| This section indicates if there is an assignment |
| :--- |
| that should be completed for the Unit. The |
| information in the "References and Notes" |
| column will indicate how you obtain the |
| assignment. These assignments frequently |
| relate the science content to technology, |
| society and the environment. |

## III. Recommended Evaluation

| Written Notes | $10 \%$ |
| :--- | :--- |
| Labs/Assignments | $20 \%$ |
| Test(s) | $20 \%$ |
| Final Exam (entire course) | $\underline{50 \%}$ |
|  | $100 \%$ |

The overall pass mark for the course is $\mathbf{5 0 \%}$.

Unit 1 - Motion in Two Dimensions

To fulfill the objectives of this unit, students should complete the following:

Reading for this unit: Physics: Concepts and Connections:
Chapter 3: $\quad$ Section 3.1: pages 79-84
Section 3.2: pages $84-86$
Section 3.3: pages 87-95
Lab 3.1: page 119


## Unit 1 - Motion in Two Dimensions

| References and Notes | Work to Submit |
| :---: | :---: |
|  | 1.7 Complete Questions 1 and 2 on page 86. |
|  | 1.8 Complete Questions 18 and 19 on page 114. |
| Read page 87 Section 3.3 up to Example 2 | 1.9 What is the key to solving two dimensional motion problems? |
| Study Examples 2 and 3 on pages 87 and 88 | 1.10 Complete Questions 20 to 24 on page 115. |
| Study Example 4 on page 89 to 90 | 1.11 Complete Question 29 on page 115. |
| Study Examples 5 on page 91 ■ |  |
|  | 1.12 Complete Problems 30 to 31 on pages 115 and 116. |
| Read page 91 and study Examples 6 on page 92 to $93 \square$ | 1.13 Complete Problem 33 on page 116. |
|  | Laboratory: |
| ready to complete Lab \#1. $\square^{\square}$ | 1.14 Complete and submit Core Lab \#1: Initial Velocity of a Projectile on page 119. |

Unit 2 - Applications of Newton's Laws I

To fulfill the objectives of this unit, students should complete the following:

| Reading for this unit: | Physics: Concepts and Connections: |
| :---: | :---: |
|  | Chapter 4: Section 4.3: pages 131-136 |
|  | Section 4.4: pages 53-64 |
|  | Section 5.5: pages 172-179 |
|  | Section 6.1: pages 194-196 |
|  | Section 6.2: pages 197-202 |


| References and Notes | Work to Submit |
| :---: | :---: |
|  | Writing: |
| Review Section 4.3 and then read pages 137 to 141 of Section 4.4 回 | 2.1 Complete Problem 1 on page 141. |
| Review pages 173 to 178 of Section <br> 5.5. Carefully study Examples 8 to 10 | 2.2 Complete Problem 3 on page 179. |
| Read pages 194 and 195 of Section 6.1 up to and including Example 1 | 2.3 Complete Problem 7(a) and (b) on page 224. |
| Notice that the angle of the inclined plane is the angle you will use to solve your parallel and perpendicular components. |  |
| Study Example 2 on pages 195 and 196回 | 2.4 Complete Problems 3 and 4 on page 196. |
| Watch your signs. When the example changes from using the vector notation $\left(\vec{F}_{f}\right)$ to the notation $\mathrm{F}_{\mathrm{f}}$, the sign on the force (as it is to the left) is negative. |  |

## Unit 2 - Applications of Newton's Laws I

| References and Notes | Work to Submit |
| :---: | :---: |
| Read page 197 up to Example 3. $\square^{\square}$ | 2.5 What is needed to solve string-and-pulley problems? |
| Study Example 3 on pages 197 to 198. | 2.6 Complete Problem 11(a) on page 225. |
| You are solving three problems in 11(a). Your text solves these problems by using letters and solving for an unknown. If you have trouble with this, try substituting numerical values into the equations in place of mg etc. |  |
| Study Example 4 on pages 198 to 199. | 2.7 Complete Problem 11(b). |
| In 11(b) you will have the same string and pulleys, but now the force of friction must be included in your calculations. |  |
| Study Example 5 on pages 200 to 201. | 2.8 Complete Problem 11(c) and 13 on page 225. |
| If $\vec{F}_{1}>\vec{F}_{8}$ then Jane goes up. |  |
| Remember that $\vec{F}_{\\|}$is found from |  |
| the horizontal component of $\square$ |  |
| Also note that your text changes $\mathrm{F}_{11}$ to $\mathrm{F}_{\mathrm{x}}$ in this example. |  |

## Unit 3 - Applications of Newton's Laws II

To fulfill the objectives of this unit, students should complete the following:

| Reading for this unit: | Physics: Concepts and Connections: <br>  <br>  <br>  <br> $\quad$Chapter 6: <br> Section 6.3: pages 202-206 <br> Section 6.4: pages 207-214 |
| :--- | :--- |
|  | Lab 6.1: pages 228-229 |


| References and Notes | Work to Submit |
| :---: | :---: |
|  | Writing: |
| Read pages 202 to 206 of Section 6.3. | 3.1 Define uniform circular motion. |
| By period ( $T$ ) it is meant how long it takes for 1 cycle around the face of the watch. | 3.2 Regarding the example: the speed of the hand |
|  | doesn't change, why is there acceleration? |
|  | 3.3 What does centripetal mean? |
| Subtracting vectors is illustrated on page 105. |  |
|  | 3.4 What are the equations for the magnitude of centripetal acceleration? Explain what each variable represents. |
| In problem 17 you have to change your 365 day period to seconds. | 3.5 Complete Problems 17 and 18 on page 226. |
|  | 3.6 Complete Problems 1 to 5 on page 206. |
| Read page 207 and 208 of Section 6.4 to the end of Example $7 \square \square$ | 3.7 What is centripetal force? |
| In Example 7, 77 rpm is converted to Hz. Hz is cycles per second. You convert 77 cycles $/ \min x 1 \mathrm{~min} / 60 \mathrm{~s}=$ | 3.8 What happens when the net force on an object traveling in a circle at constant speed is zero? |
| 1.28 cycles/s or 1.28 Hz . | 3.9 What are the three equations for centripetal force? Explain what each variable represents. |

Unit 3 - Applications of Newton's Laws II

| References and Notes | Work to Submit |
| :---: | :---: |
| Study from Example 8 on page 208 to "Centripetal Force and Banked Curves" on page 210. | 3.10 Where is the tension in the shoelace (a) smallest and (b) greatest? |
| Watch the signs of the forces very carefully in this example. | 3.11 Complete Problems 21 and 22 on page 226. |
| Use the information on where the tension is greatest and least for these problems. |  |
| Read page 210: "Centripetal Force and Banked Curves". Study Example 9 on page 210 to 211 . | 3.12 How is centripetal force provided when a car travels along a curve? |
|  | 3.13 How can you reduce reliance on friction? |
|  | 3.14 When a car doesn't rely on the force of friction to keep it on track, what provides the centripetal force? |
|  | 3.15 Calculate the angle at which a frictionless curve must be banked if a car is to round it safely at a speed of $75 \mathrm{~km} / \mathrm{h}$. The radius of the curve is $5.0 \times 10^{2} \mathrm{~m}$. |
| Example 10 on pages 212 to 214. | 3.16 Complete Problems 1 to 5 on page 214. |
| Let your instructor know that you are | Laboratory: |
| required to submit a report. $\square$ D | 3.17 Complete and submit Core Lab \#2: Centripetal Force and Centripetal Acceleration on pages 228 to 229. |

## Unit 4 - Introduction to Statics

To fulfill the objectives of this unit, students should complete the following:

| Reading for this unit: | Physics: Concepts and Connections: Chapter 7: Section 7.1: page 232 <br> Section 7.2: pages 232-233 <br> Section 7.3: pages 234-238 <br> Section 7.4: pages 238-265 <br> Section 7.5: pages 265-251 <br> Lab 7.1: pages 272-273 |
| :---: | :---: |


| References and Notes | Work to Submit |
| :---: | :---: |
|  | Writing: |
| Read Section 7.1 on page 232. $\square^{\text {a }}$ | 4.1 Define statics. |
|  | 4.2 State Newton's First Law. |
|  | 4.3 When will an object stay at rest? |
|  | 4.4 What is static equilibrium? |
|  | 4.5 What is dynamic equilibrium? |
| Read pages 232 to 233 of Section 7.2 | 4.6 What is translation? |
|  | 4.7 What forces must be balanced for static equilibrium? |
|  | 4.8 What is the center of mass (center of gravity)? |

## Unit 4 - Introduction to Statics

| References and Notes | Work to Submit |
| :---: | :---: |
|  | 4.9 How do you find the center of mass of an object? |
|  | 4.10 Complete Problem 17 on page 267. |
| Read pages 234 to 237 of Section 7.3 and carefully study Example 1. | 4.11 What two circumstances allow an object to be in a state of translational static equilibrium? |
| In solving these problems you will need to use trig functions. Set the forces as sides of right triangles. In solving \#4, find the angle first and use that angle to solve for the forces. | 4.12 Complete Problems 1 to 4 on page 237. |
| Read pages 238 to 239 of Section 7.4 up to Example 2 | 4.13 What happens when a force is not directed through an object's center of mass? |
| Try opening and closing the textbook as suggested in Section 7.4 to get an understanding of the relationship between torque, force and angle. | 4.14 What is torque and what symbol is used to represent it? |
|  | 4.15 What are the equations for torque? Explain what each variable represents. |
| Clockwise torques can be considered to move in the direction of the hands of a clock while counterclockwise torques move in a direction opposite that of the hands of a clock. | 4.16 What signs are given to clockwise and counterclockwise torques? |
| Clockwise <br> Counterclockwise |  |

## Unit 4 - Introduction to Statics

| References and Notes | Work to Submit |
| :--- | :--- |
| Study Example 2 on pages 239 to 240. |  |
| The text does not provide a diagram |  |
| Tor the Example. Use the Figure on |  |
| page 241 for drawing a free-body |  |
| diagram for solving this problem. |  |
| Remember you are trying to get the |  |
| perpendicular force component and 1 on page 242. |  |
| this is found using right triangle trig |  |
| i.e. sin $\theta$ and $\theta$ will be $85^{\circ}$ not $5^{\circ}$. |  |

## Unit 4 - Introduction to Statics

| References and Notes | Work to Submit |
| :---: | :---: |
| Read page 243 of Section 7.5 to Example 4. | 4.19 How is translation avoided? <br> 4.20 How is rotation avoided? |
| Study Example 4 and 5 on pages 243 to 246 | 4.21 Complete Problem 28 on page 268. |
| It may help to think about zero rotation to be when the clockwise torque (CC) equals the counterclockwise torque (CCW). <br> In Problem 28 let $r=x$ for $C C$ and $r$ $=2.0^{-} \times$for $C C W$. |  |
| Study Example 6 on pages 246 to 248. |  |
| At the end of this Study Guide is a diagram that shows the forces acting on the crane's arm. It is assumed that the arm is uniform so the mass of the arm is acting halfway on the arm. The problem is solved slightly differently and the answer is a little different because of rounding. |  |

## Unit 4 - Introduction to Statics

| References and Notes | Work to Submit |
| :--- | :--- |
| Study Example 7 on page 249 to 250. | 4.22 Complete Problems 1 to 4 on pages 251 and |
| Again choose one end as a pivot point | 252. |
| and the CW torque can be the product |  |
| of each weight exerted times the |  |
| distance from the pivot point. At one |  |
| end the distance is zero so one torque |  |
| disappears. Now the CCW torque is |  |
| the weight of the person (the total of |  |
| the two spring scale forces) times the |  |
| distance (r). |  |

## Appendix A

## Example 6 on page 246 of Physics: Concepts and Connections



Counterclockwise torques (CCW) $\tau_{\text {CCW }}=F_{\text {load }} \times \sin 30^{\circ} \times 30 \mathrm{~m}+\mathrm{F}_{\text {beam }} \times \sin 30^{\circ} \times 15 \mathrm{~m}$ $F_{\text {load }}=1.50 \times 10^{3} \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=1.47 \times 10^{4} \mathrm{~N} ; \mathrm{F}_{\text {beam }}=200.0 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=2.0 \times 10^{3} \mathrm{~N}$ $\sin 30^{\circ}=0.5$

Clockwise torques (CC) $\tau_{\text {CC }}=T \times \sin 60^{\circ} \times 5 \mathrm{~m} ; \sin 60^{\circ}=0.866$

$$
\tau_{\mathrm{CC}}=\tau_{\mathrm{CCW}}
$$

$$
\begin{aligned}
T \times 0.87 \times 5.0 \mathrm{~m} & =1.47 \times 10^{4} \mathrm{~N} \times 0.5 \times 30 \mathrm{~m}+2.0 \times 10^{3} \mathrm{~N} \times 0.5 \times 15 \mathrm{~m} \\
\mathrm{~T} & =2.36 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m} / 4.3 \mathrm{~m}=5.48 \times 10^{5} \mathrm{~N}
\end{aligned}
$$

Now there are two horizontal force components: The tension (T) operating in a right direction and the horizontal reaction forces of equal magnitude operating in the left direction. Therefore $\mathrm{F}_{\mathrm{r}(\mathrm{H})}=5.48 \times 10^{5} \mathrm{~N}$ (left) or (west)

There are three vertical force components: The weights of the load and beam (both down) and the vertical reaction force (up).

Therefore
$\mathrm{F}_{\text {load }}+\mathrm{F}_{\text {beam }}=1.47 \times 10^{4} \mathrm{~N}+2.0 \times 10^{3} \mathrm{~N}$
$=1.67 \times 10^{4} \mathrm{~N}($ down $)$ and $\mathrm{F}_{\mathrm{r}(\mathrm{V})}=1.67 \times 10^{4} \mathrm{~N}$ (up)

